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Preface

The demand for devices that utilize digital speech processing is constantly
growing. The desire to carry out tasks “hands-free” is very often the mo-
tivation. Examples are voice controlled technical devices, speech or speaker
recognition systems, hands-free communication with remote partners, systems
to ease communication in noisy environments without using close-talking mi-
crophones, and to improve the hearing ability of impaired persons, to name
only a few. In the majority of these applications, the existence of acoustical
echoes and background noise lead to considerable performance degradations.
Methods for the cancellation of echoes and the suppression of background
noise, therefore, are of high interest to designers of speech processing systems.

The idea for this book arose immediately after the editors had finished
their book on “Acoustic Echo and Noise Control”1 since a number of subjects
could not be treated in sufficient detail and some important topics had to be
completely omitted. The editors also came to the conclusion that the value
of an additional book would be considerably increased if scientists that are
internationally recognized for their work on the related topics would report
on the state of the art and on their findings.

The editors approached most of the authors at EUSIPCO ’2004 and on
the spot they agreed to contribute to this project. The editors feel bound
to express their sincere thanks to all of them. Not only did they finish their
contributions in good time, they also accepted the proposals of the editors
with respect to notation of variables and references. Thus, it should be easier
for the reader to jump between different chapters.

The book is organized in five parts. Part I just contains a brief introduc-
tion into acoustic echo and noise control, a few remarks on current research
topics, and a description of the contents of the book. Part II deals with multi-
microphone processing. Having the outputs of more than one microphone

1 Eberhard Hänsler and Gerhard Schmidt: Acoustic Echo and Noise Control, New
York, NY: Wiley, 2004
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available opens an additional degree of freedom to the designer of speech
processing systems.

In Part III advanced methods for echo cancellation such as the identifica-
tion of sparse impulse responses, selective-tap update, and the application of
nonlinear echo paths models are presented. Attempts for an intelligent control
of hands-free telephones are introduced. Part IV is devoted to noise reduc-
tion procedures. An in-depth treatment of conventional and of advanced time-
and frequency-domain methods is given, followed by a model-based approach
using Kalman filters.

Selected applications of acoustic echo and noise control systems are out-
lined in Part V. Auditory scene analysis, spatial sound reproduction by using
wave field synthesis, in-car communication, and adaptive signal processing in
high-end hearing aids are the topics of this part of the book.

All the authors and the editors hope that this book will become a use-
ful resource for researchers and developers, as well as for doctoral students,
who design new advanced procedures or who are on the “rocky road from
algorithms to systems”.

It is much more than a pure matter of duty that the editors wish to
thank all who helped during the preparation of this book. The dedication
of the authors has already been mentioned. Further thanks go to members
of the Signal Processing and Signal Theory Group at Darmstadt University
of Technology and the Acoustic Signal Processing Group at Harman/Becker
Automotive Systems at Ulm (Germany) for proof reading and various valuable
hints.

Finally, the editors have to thank the Springer Publishing Company, es-
pecially Dr. Dietrich Merkle and his colleagues, for their encouragement and
their help.

Darmstadt and Ulm, Germany Eberhard Hänsler
Gerhard Schmidt
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Abbreviations and Acronyms

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
A/D Analog-to-digital (also AD)
ABF Adaptive beamformer
AD Analog-to-digital (also A/D)
AEC Acoustic echo canceller
AEVD Adaptive eigenvalue decomposition
AGC Automatic gain control
AGC-i Input controlled automatic gain control
AGC-o Output controlled automatic gain control
AI Articulation index
AI-DI Articulation index - directivity index (weighted-average

directivity index)
AM Amplitude modulation
ANSI American National Standards Association
AP Affine projection
APA Affine projection algorithm
AR Auto-recursive
ASA Auditory scene analysis
ASR Automatic speaker- or speech-recognition
AVC Automatic volume control
BSS Blind source separation
BTE Behind-the-ear
CA Coefficient adjustment
CAN Controller area network
CASA Computational auditory scene analysis
CB Codebook
CCR Cartesian coordinate representation
CD Compact Disc
CMOS Comparison mean opinion score
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CPSD Cross-power spectral density
CPU Central processing unit
CU Categorical loudness unit
CWT Continuous wavelet transform
D/A Digital-to-analog (also DA)
DA Digital-to-analog (also D/A)
DACF Differential autocorrelation function
DCR Diagonal coordinate representation
DCT Discrete cosine transform
DFT Discrete Fourier transform
DI Directivity index
DOA Direction-of-arrival
DRT Diagnostic rhyme test
DSL i/o Desired sensation level
DSP Digital signal processor
DVD Digital video disc
DWPA Discrete wavelet-packet analysis
DWT Discrete wavelet transform
ECF Echo cancelling filter
EG Exponentiated gradient
EG± Exponentiated gradient with positive and negative weights
EIC Echo and interference canceller
EIR Echo-to-interference ratio
EM Estimate maximize
EOS Equivalent orthogonalized structure
ERLE Echo-return loss enhancement
ERLS Exponentiated RLS
F0 Fundamental frequency
FERLS Fast exponentiate RLS
FFT Fast Fourier transform
FIR Finite impulse response
FRLS Fast RLS
GCC Generalized cross-correlation
GDCT Generalized discrete cosine transform
GDFT Generalized DFT
GEIC Generalized echo and interference canceller
GMM Gaussian mixture model
GSAEC Generalized sidelobe acoustic echo canceller
GSC Generalized sidelobe canceller
GSM Global System for Mobile Communications
GSVD Generalized singular value decomposition
HMM Hidden Markov Model
IC Integrated circuit
ICA Independent component analysis
IDFT Inverse discrete Fourier transform
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IFFT Inverse fast Fourier transform
IID Independent, identically distributed
IIR Infinite impulse response
InfoMax Information maximization approach
IP Internet Protocol
IPAPA Improved proportionate APA
IPNLMS Improved proportionate NLMS
IR Interference suppression
ISDN Integrated Services Digital Network
ITD Interaural time difference
ITE In-the-ear
ITU International Telecommunication Union
JADE Joint approximate diagonalization of eigenmatrices
KEMAR Knowles electronic manikin for acoustic research
LBG Linde-Gray-Buzo
LCLSE Linearly-constrained LSE
LCMV Linearly-constrained minimum variance
LEM Loudspeaker-enclosure-microphone
LMS Least mean square
LPF Low-pass filter
LS Least squares
LSE Least-squares error
LTI Linear time invariant
LVQ Learning vector quantization
LWG Lambert based gradient
MAC Multiply-accumulate
MAP Maximum-a-posteriori
Max-LMS LMS updating the coefficient with largest amplitude
MC-FDAF Multi channel frequency-domain adaptive filter
MDF Multidelay filter
MDVF Multidelay Volterra filter
MIMO Multi-input multi-output
MIP Millions of instructions per second
MISO Multi-input single-output
MLP Multilayer perceptron
MMax-AP AP updating M coefficients with largest input amplitudes
MMax-LMS LMS updating M coefficients with largest input amplitudes
MMax-RLS RLS updating M coefficients with largest input amplitudes
MMSE Minimum mean-square error
MOS Mean opinion score
MPEG Motion Picture Expert Group
MRP Mouth reference point
MRT Modified rhyme test
MSE Mean square error
MUSIC Multiple signal classification
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NAPA Natural APA
NIIR Nonlinear infinite impulse response
NL Nonlinear
NLMS Normalized LMS
NN Neural network
NPR Near-perfect reconstruction
NRM Real-valued multiplications per output sample
PAMS Perceptual analysis/measurement system
PAPA Proportionate APA
PC Personal Computer
PCM Pulse code modulation
PDA Personal digital assistent
PDF Probability density function
PDS Power density spectrum
PESQ Perceptual evaluation of speech quality
PHAT Phase transform
PNLMS Proportionate NLMS
PPN Polyphase network
PPN-FFT Polyphase analysis system based on FFT
PR Perfect reconstruction
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RBF Radial basis function
RGSC Robust generalized sidelobe canceller
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SAB Self-adjusting back-propagation
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SCOT Smoothed coherence transform
SER Signal-to-echo ratio
SFG Signal-flow graph
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SNR Signal-to-noise ratio
SOM Self-organizing map
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SPNLMS Sparse patial update NLMS
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STFT Short-time Fourier transform
SVD Singular value decomposition
SVF Second-order Volterra filter
TDD Time delay difference
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Acoustic Echo and Noise Control –
Where did we come from and where are we
going?

Eberhard Hänsler1 and Gerhard Schmidt2

1 Darmstadt University of Technology, Darmstadt, Germany
2 Harman/Becker Automotive Systems, Ulm, Germany

The invention of the telephone about 150 years ago extended the range of
verbal communication between humans beyond the bounds given by the power
of their voices. Using this technology, however, was – and still is – inherently
connected with some inconveniences. The talkers have to hold a handset such
that the loudspeaker is close to their ear and the microphone is adjacent to
their mouth. Even then, speech quality is reduced and ambient noise may
be picked up. Replacing the handset by a microphone and a loudspeaker
now positioned a – short – distance from the talker increases the loss of the
transmission loop by say 20 dB [6]. Furthermore, the level of ambient noise
collected by the microphone is increased and the echo from the loudspeaker
signal is picked up.

Methods of acoustic echo and noise control aimed to remedy these dis-
advantages exhibit a long history. Originally, efforts were focussed on the
development of hands-free telephone systems. In the following section we will
highlight some of the important steps toward today’s systems. We will also
point out that the developments were always linked to the technology available
at the time of their proposal.

This introductory chapter will close with an overview of important current
developments reported in the following chapters of this book in detail by
international experts in the field of acoustic echo and noise control.

1.1 The Journey to Maturity

1.1.1 The Problems to be Solved

To restore the comfort of a face-to-face conversation over a hands-free tele-
phone connection three major problems have to be solved:

• Comfortable volumes of the speech signals have to be provided for both
partners without destabilizing the electro-acoustic loop.
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• The echoes of the loudspeaker signal(s) picked up by the microphone(s)
have to be reduced to an acceptable level without affecting double talk
performance.3

• Ambient noise has to be removed from the microphone output signal(s) to
below a level that might be tolerable in case of binaural listening.

If there is only one hands-free telephone (locally) and the remote talker
uses a handset it is this party who suffers mostly from inappropriate solutions
to the problems mentioned above. The local talker may move the loudspeaker
closer to his ear or increase the volume – increasing the risk that the loop
starts howling. His echo and noise problem is minor at most since his partner
holds the microphone close to his mouth. Consequently, when algorithms for
echo and noise control are designed, most attention has to be paid to the
situation of the remote communication partner.

Historically, when efforts to stabilize the electro-acoustic loop started, only
classical acoustic means were available. Loudspeakers and microphones in sep-
arate units or combined in one housing were put in favorable positions. Fur-
thermore, the walls, floor, and ceiling of the enclosing room had to be treated
with absorptive materials [4].

It was not until the 1950s that signal processing means could be considered.
Voice controlled switching of the receiving and sending circuit, center clipping
and frequency shifting were employed at that time.

1.1.1.1 Voice Controlled Switch

Voice controlled switching (see Fig. 1.1) means that either the receiving or
the sending line is interrupted [3]. Thus, only half-duplex communication is
provided, double talk is impossible. Proper control of the switching is difficult.
It is based on the estimated activities of the incoming and the outgoing line.
Noise and echoes can cause malfunctions. The beginning and the end of ut-
terances may be “chopped off ”. For the “inactive” partner of a conversation
it is not possible to break in.

A considerable number of modifications to the loss control circuit have
been proposed over the years. Instead of switching lines completely on and
off, a finite attenuation is inserted and is distributed on the incoming and the
outgoing circuit according to the estimated activities. Short-term power esti-
mations – utilized for speech activity detection – with different time constants
can improve the performance at the starts and at the ends of words.

All these modifications can reduce, but not completely remove, the prob-
lems described above. Nevertheless, voice controlled switching is still used
in modern echo control systems. In an environment with adaptive circuits,
minimum levels of echo attenuation as required by international standards
can only be guarantied by such circuits. However, only the difference of the
3 The term double talk describes periods in which both – the local and the remote

– communication partners speak at the same time.
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attenuation already provided by echo cancellation and/or echo suppression
(see below) and the one called for by the standards has to be inserted. Thus,
in these cases, the impact of loss control on speech quality may be hardly
noticeable, if at all.

Fig. 1.1. Principle of a loss control circuit.

1.1.1.2 Center Clipper

A center clipper (see Fig. 1.2) inserted into the transmission circuit suppresses
small output signals [2]. If these signals contain only the acoustical echo – plus
some small ambient noise – the echo is removed completely. However, if the
echo is superimposed onto a local speech signal, the center clipper proves to
be ineffective and only distorts the speech signal. Again, a large number of
modifications – including adaptive thresholds and adaptive slopes – have been
proposed over the years. Nevertheless, the use of center clippers in acoustic
echo and noise control seems to remain a makeshift solution.

Fig. 1.2. Center clipper.
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1.1.1.3 Frequency Shift

The magnitude of the transfer function of a typical loudspeaker-enclosure-
microphone (LEM) system exhibits a sequence of maxima and minima with
a separation of 5 to 10 Hz (see Fig. 1.3). Peaks and valleys are, respectively,
about 10 dB above and below the average magnitude. Based on this observa-
tion a frequency shift of the loop signal can increase the stability margin [16].
This method was proposed especially for systems like public–address systems
where the loudspeaker output signal feeds back directly into the talker’s micro-
phone. It can be used in hands-free telephone applications as well. Its primary
component is a single–sideband modulator that performs a shift of of the loop
signal by a few Hertz. Thus, stationary howling can not build up. It is moved
to higher or lower frequencies – depending on whether the modulation fre-
quency is positive or negative – until it “falls” into a minimum of the transfer
function of the LEM system.

In speech communication systems frequency shifts of about 3 to 5 Hz are
scarcely noticeable. The stability gain achievable with this method depends
on the signal and the acoustical properties of the enclosure. For speech signals
and rooms with short reverberation times, the stability gain is of the order of
3 to 5 dB; for rooms with long reverberation times it can go up to about 10
dB [15].
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Fig. 1.3. Absolute value of a transfer function measured in a small lecture room.

1.1.1.4 Echo Cancellation and Echo Suppression

The invention of the least mean square (LMS) algorithm in 1960 [19] can
be considered as the most important development for adaptive filtering. This
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procedure became the “work horse” for today’s existing enormous variety of
algorithms for filter adaptation. Its numerical complexity is proportional to
2N , where N is the number of filter coefficients. Given a proper step size, it
does not cause stability problems. However, its speed of convergence is low
especially in case of correlated inputs like speech signals.

The potential of the LMS algorithm for echo cancellation or suppression
was recognized soon after its publication. The first application was the can-
cellation of electrical echoes on long distance transmission lines [11,17]. Com-
pared to acoustic echoes, line echoes are considerably shorter. Thus, they
require less complex filters. In contrast, the processing of acoustical echoes
necessitates adaptive filters that are extremely demanding with respect to
signal processing power. It is, therefore, not astonishing that the application
of adaptive filters to acoustic echo and noise control was not considered be-
fore the late 1970’s [14]. Even at that time the signal processing technology
to implement those filters could only be seen on the distant horizon.

Simulations and laboratory experiments in the 1980’s affirmed the weak-
ness of the LMS algorithm with respect to correlated – e.g. speech – signals.
These results started a strong effort by researchers to utilize the recursive
least squares (RLS) algorithm for acoustic echo processing. In contrast to the
LMS algorithm, the complexity of this procedure grows quadratically with
the number N of filter coefficients that have to be adapted. It can handle cor-
related signals very well since it has a “built in” decorrelation facility. This,
however, needs the inversion of the short-term N × N correlation matrix of
the input signal. In the applications considered here, N may range up to the
order of several thousands. This matrix can become singular by the nature
of the input signal or the estimation procedure. As a consequence, the RLS
algorithm frequently becomes instable for echo processing. The stabilization
and reduction of the complexity to a linear dependency on the number of filter
coefficients was one of the major topics at the first International Workshop on
Acoustic Echo Control held in 1989 in Berlin, Germany. Despite all the efforts
at that time and in the following years, the problems of applying the RLS
algorithm to acoustic echo cancellation still seem unsolved. The situation can
be highlighted by a cartoon (see Fig. 1.4).

The LMS and the RLS algorithms may be considered extremes in the
world of adaptive algorithms. This holds with respect to complexity and nu-
merical problems, but also with respect to their dependence on past signals
and settings of the filter coefficients. The LMS algorithm uses only current
inputs whereas the RLS procedure looks back on past inputs according to a
forgetting factor. In order to stabilize the RLS algorithm it may be necessary
to furnish the algorithm with a long memory. This turns out to be a handicap
when changes to the LEM system have to be tracked.

The affine projection (AP) algorithm [13], and especially its fast version [9],
provides a good compromise between the LMS and RLS algorithms. Compared
to the LMS algorithm, numerical complexity is modestly increased. The speed
of convergence for speech inputs nearly reaches that of the RLS procedure.
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Fig. 1.4. “Better to have a sparrow in the hand than a pigeon on the roof” (by
Prof. Helmut Lortz).

These properties are achieved by optimizing the filter coefficients not just with
respect to the current input signals – as the LMS algorithm does – but also
optimizing for M−1 preceding inputs. M is called the order of the algorithm.
For M = 1 it is equal to the LMS procedure. Like the RLS algorithm, the AP
method needs the inversion of a matrix. This, however, is of size M ×M only.
For speech inputs M can be chosen in the order of 2 to 5. By comparison, in
this situation the RLS algorithm would require inversion of an N ×N matrix
with N in the order of 1000.

1.1.1.5 Echo Cancellation

Echo cancellation is achieved by using the output of a filter that attempts to
match the LEM system (see Fig. 1.5). Since the latter is changing constantly,
the filter has to be adaptive.

During the development of echo cancellation filters (ECFs), a long-winded
discussion took place whether a transversal (FIR) or a recursive (IIR) filter
is better suited to model the LEM system. Since a long impulse response has
to be modelled by the ECF (see Fig. 1.6), an IIR filter seems best suited at
first glance. However, upon further inspection, the impulse response exhibits a
highly detailed and irregular shape. To achieve a sufficiently good match, the
replica must offer a large number of adjustable parameters. Several studies
have shown that an IIR filter does not provide a sufficiently large advantage
over an FIR filter to justify the enormous cost of controlling its stability
[10, 12, 20]. The even more important argument in favor of an FIR filter is
that adaptation algorithms for FIR filter are available and that the stability
of these filters need no extra control.
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Fig. 1.5. Principle of echo cancellation.

Fig. 1.6. Impulse response of LEMs measured in an office (left) and in a car (right).
The sampling rate is 8 kHz.

1.1.1.6 Control of the Filter Adaptation

From a control engineering point of view, the adaptation of the echo cancel-
lation filter is equivalent to the identification of a highly complex system. To
make things even more difficult, the adaptation has to be performed in an
environment where the signal-to-noise ratio often falls below 0 dB. A short
example may help illustrate the complexity of the task: Assume, that the error
signal (see Fig. 1.5) suddenly rises. This can have two reasons:

• The local speaker started talking or a local noise started.
• The local speaker changed his position and thus changed the impulse re-

sponse of the LEM system.

The control of the adaptive filter that can only rely on the output signals of
the microphone and the ECF cannot distinguish between the two cases. The
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reactions, however, have to be diametrical: Adaptation has to be frozen in
the first case whereas it has to be opened as much as possible in the second
instance. No algorithm for adaptive filters can handle this situation without
additional information.

This information has to come from estimates of various quantities. Most
of them are not directly measurable. Independent of the currently available
processing power and processing speed, the reliability of these estimates de-
pends critically on the length of the signal segment the estimation can be based
on. This simply means that it may be necessary to delay control actions until
dependable estimates are available. In cases where erroneous control signals
lead to a rapid divergence of the filter coefficients – as in the first case of
the example given above – rapid actions based on temporary estimates are
necessary to prevent “dangerous” situations.

In this respect, the question of applying adaptation algorithms that result
in a high speed of convergence of the filter coefficients becomes an additional
consideration: Fast adaptation requires a reliable and fast acting control struc-
ture. The reaction time of the latter, however, is limited by the time necessary
to acquire a sufficiently long signal segment. If this condition is not fulfilled, an
algorithm not reacting “nervous like a race horse” may lead to better results.

1.1.1.7 Echo and Noise Suppression

With echo cancellation, the achievable echo attenuation is limited to at most
30 dB in an ordinary office. This is due to thermal fluctuations [5], nonlin-
earities within the A/D and D/A converters, within the electro-acoustic con-
verters [18], and, lastly, the insufficient length of the echo cancellation filter.
To improve echo attenuation, a filter in the transmission circuit is necessary
(see Fig. 1.7). The transfer function of this filter is adapted according to the
spectrum of the speech signal. A similar filter can be used to suppress ambient
noise picked up by the microphone. The coefficients of both filters, however,
have to be adapted according to the different properties of the residual echo
and the noise.

In contrast to echo cancellation by a filter parallel to the LEM system,
echo and noise suppression affects the quality of the transmitted speech signal.
Therefore a compromise between speech quality and echo and noise suppres-
sion is always necessary.

1.2 State of the Art

Acoustic echo and noise control are among to the most challenging problems
in digital signal processing. Many authors confirm this statement. The effort in
research and development over the last three decades has been overwhelming.
As a result, the problems around “classical” single channel hands-free systems
are very well understood and are basically solved. There are systems available
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Fig. 1.7. Principle of echo and/or noise suppression.

that function satisfactorily. The fact that systems with poor performance are
still in use seems to depend on two reasons: The sales price of consumer
products is calculated by the cent. The hands-free functionality has to be
implemented with absolutely minimum cost. Furthermore, the benefit of a
high-quality echo and noise control system is with the remote communication
partner; and he is not the one who pays for the system.

Stereophonic systems still offer open questions. Due to the fact that both
signals may be fully dependent on each, the optimal settings of the coeffi-
cients of the ECFs are not unique. A remedy is found by artificially distorting
one or both signals [1]. Fortunately, real systems behave well and only small
distortions are necessary. From a conceptual point of view, a more “elegant”
solution seems desirable. Promising approaches towards this goal are the sub-
ject of current research.

Parallel to the growth of processing power, new applications that require
more and more sophisticated systems move into the field of vision of re-
searchers. Advanced methods are based not only on measured and estimated
signals but also on expert knowledge of the underlying processes.

New algorithms for filter adaptation are proposed that are tailored to the
specific properties of the echo and noise control process.

Multi microphone and/or multi loudspeaker configurations offer additional
degrees of freedom to the echo and noise control problem. Microphone ar-
rays allow the speaker to be located and tracked. The same holds for noise
sources. All these methods aim to improve the signal-to-noise ratio of the audio
signal. With loudspeaker arrays, radiation patterns are generated such that
microphones are located within the minima of sound intensity. Both array
approaches are able to reduce the echo problem. Since the electro-acoustic
properties of inexpensive microphones exhibit considerable variances, auto-
matic scaling improves the performance of microphone arrays.
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Methods of sound source separation isolate individual speakers from mix-
tures of speech signals and noise. Blind methods for this task are under inves-
tigation.

The application of the Kalman filter offers considerably better results in
noise reduction than “classical” procedures like spectral subtraction. Process-
ing in subbands overcomes the complexity problem of the filter.

Based on models for speech production and on the properties of human
sound perception, methods for enhancing speech signals beyond the quality of
the still widely used telephone speech are proposed. Making use of code books
for narrow and wide band speech signals and of the masking properties, it is
possible to fool the human ear such that the impression of listening to wide
band speech is generated from processing narrow band speech signals without
using any side information.

The deverberation of speech signals and the inclusion of dictionaries im-
proves the reliability of speech recognition systems.

The development of new methods is – at least partly – related to new
application areas. The technology for implementing demanding algorithms in
hearing aids has become available only in the last few years. Digital imple-
mentations allow for more adjustable parameters. Thus, a better match to
hearing impairments is possible.

Demands for greater passenger comfort initiated the search for solutions
for in-car passenger communication.

This list is far from complete. With a look into the proceedings of recent
signal processing conferences and into signal processing journals it can easily
be extended.

The quality of early real-time implementations of echo and noise control
systems was bounded by the capacity of signal processors available at that
time. This limitation no longer exists. Forgetting for a moment the above
remarks on the allowed costs of consumer products, algorithms implemented
now or in the near future can perform at their theoretical limits.

The availability of powerful general purpose computers and high level sim-
ulation tools allow the simulation of algorithms for acoustic echo and noise
control with low effort. Reality, however, turns out to be much more complex
than even sophisticated models. Results based only on simulations should be
handled with extreme care.

1.3 Outline of this Book

It is the purpose of this book to describe a number of highly important de-
velopments in acoustic echo and noise control in more detail. Distinguished
authors present overviews and results of their research. Their contributions
are organized in four Parts focusing on multi-microphone processing (Part II),
echo cancellation (Part III), noise reduction (Part IV), and selected applica-
tions (Part V).
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In Part II, Chapter 2 addresses the problem of time-varying echo paths,
high level background noise, and frequent double-talk. A new joint acoustic
echo canceller and beamformer is derived and evaluated. The advantages of
the joint system are shown by a realization that integrates a stereophonic
echo canceller and a generalized sidelobe canceller. The described solution
requires only one echo canceller for an arbitrary number of microphones and
no separate adaptation control.

Chapter 3 treats the problem of separating multiple sources of audio sig-
nals – as occurs during teleconferences or in hearing aids, to name only two
application areas. The input signals to several microphones are convolutive
mixtures of speech signals and ambient noise. The solution uses blind in-
dependent component analysis in the frequency domain. The phenomena of
permutation and circularity are addressed and successfully solved. The au-
thors present a complete solution for source separation. Experimental results
are included.

In Chapter 4 techniques for the localization of acoustic sources are pre-
sented. The methods are based on only two microphones and perform a pre-
cise time-delay estimation. Using these techniques, a moving speaker can be
tracked and the direction of high sensitivity of a microphone array can be
steered such that it points towards this speaker.

Part III starts with adaptation algorithms for filters that have to model
systems with sparse impulse responses (Chapter 5). Sparse in this context
means that only a small percentage of the sample values of the impulse re-
sponse of the original system exhibits values significantly larger than zero.
Based on this prior knowledge, general procedures for filter adaptation like
the LMS or the RLS algorithm can be considerably improved. It is shown how
refined algorithms can be derived and how known procedures and the algo-
rithms developed in this chapter are related to each other. Further, the dis-
tinction between algorithms with linear and with nonlinear updates is made.
In the case of acoustic echo cancellation, procedures with nonlinear updates
can be advantageous.

Cancellation of acoustical echoes needs the update of filters with up to sev-
eral thousands of coefficients. In Chapter 6 it is shown that the computational
complexity associated with this task is reduced by updating only a fraction
of the coefficients at a time. Through proper selection the performance of the
filter degrades only by a small degree. The sorting of the filter coefficients,
however, may lead to a considerable overhead. Fast sorting algorithms de-
scribed in this chapter overcome this problem. It is also shown that selective
update methods may be a remedy against the misalignment of the ECFs due
to their non-uniqueness in stereophonic systems.

Realistic electro-acoustic echo paths may contain a number of elements
with non-negligible nonlinearities, such as low cost loudspeakers, overloaded
amplifiers and non-ideal converters. In Chapter 7 a nonlinear model of the
echo path is formulated consisting of a cascade of linear and nonlinear filters.
It is explained that second order Volterra filters are suited to model loud-
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speaker nonlinearities, whereas power filters are proper models of memoryless
nonlinearities as they occur, for instance, with overloaded amplifiers or low
cost converters. Adaptation algorithms for both filter types are developed and
applications to real systems are discussed.

Systems for acoustic echo and noise control require sophisticated proce-
dures to supervise all subsystems in order to avoid performance degradations
in case of “dangerous” communication events. Incidents like these are, for
example, the sudden onset of double talk or changes in the echo path by
movements of the local speaker. To arrive at a robust control structure, the
outputs of detectors and estimators have to be combined in an intelligent way.
Chapter 8 presents several systematic approaches for this combination. Their
additional computational effort is made up for by an improved overall system
performance.

Chapter 9 in Part IV gives an in-depth treatment of noise reduction algo-
rithms. The emphasis is put on single microphone solutions based on Wiener
filtering and spectral subtraction. The design of Wiener filters is described
in the time and in the frequency domain; filtering effects and realisations are
explained. A second focal point is spectral subtraction methods and their re-
lationship to Wiener filters. Central to both methods is the estimation of the
noise power spectral density that is discussed in the following sections. Finally,
techniques for the design of uniform and non-uniform filter banks – including
wavelets – are described.

In Chapter 10 a Kalman filter based single channel noise reduction method
is presented. It starts with an analysis of speech signals and car noise and the
formulation of parametrical models needed for the Kalman filter. A special
procedure for the estimation of speech parameters from noisy signals is devel-
oped. The complexity problem of the Kalman filter is overcome by a subband
approach. Methods are discussed to enhance the noise reduction performance
of the filter. A comparison with more conventional noise reduction methods
closes this chapter.

Part V opens with considerations about the assessment of the quality of
acoustic echo and noise control systems. Subjective listening tests are the
most reliable means. To perform such tests, however, is time consuming and
expensive. Therefore, especially during the algorithm development phase, the
availability of objective tests is desirable. In Chapter 11 both classes of tests
are discussed. It is described how they can be performed and how their results
have to be evaluated.

Chapter 12 is concerned with auditory scene analysis. This techniques is
inspired by the ability of humans to segregate a sound source from a mix-
ture of multiple sources even from only a monophonic signal. A system for
computational acoustic scene analysis (CASA) performs successively four sub-
functions. Firstly, a peripheral analysis is performed where the auditory scene
is decomposed into a time-frequency representation. A feature extraction fol-
lows. These features provide the basis of a segmentation and, finally, of a
grouping. Here, segments for the sound source of interest – the target – and



1 Acoustic Echo and Noise Control 15

the interferers are created. Finally, the waveform of the target is synthesized
from the related segments. The approach described here is primarily feature-
based. Except for unvoiced grouping, no prior knowledge is assumed.

Chapter 13 deals with the synthesis of wave fields, a novel method for
spatial sound reproduction. It applies arrays of large numbers of loudspeakers
to recreate a sound field in a listening area. Even if the main applications of
this techniques are in the areas of entertainment and performing arts, it may
also be used to recreate sound fields for human communications. The technique
is based on the physical properties of wave propagation. It applies the solution
of the acoustic wave equation by Green’s function. Signal processing methods
to derive the input signals for the loudspeakers of the wave field synthesis
system are reported. Exemplary implementations close this contribution.

Chapter 14 deals with so called in-car communication systems. They help
to ease communication between passengers in a car. Such a system is espe-
cially helpful for passengers seated in the back of the car to understand those
seated in the front. The problem that has to be solved is comparable to the
one present with public address systems where the electro-acoustic loop is
closed within the enclosure and where only very short processing delays are
tolerable. In contrast to e.g. hands-free systems, the (local) speech signal and
the echo signal are highly correlated. Therefore, new control structures have to
be developed. Since standardized quality measures for in-car communication
systems do not yet exist, measurements and subjective test are also reported.

The continuous improvements in semi-conductor technology allowed the
changeover from analog to digital technology. Chapter 15 describes algorithms
implemented in high-end hearing aids to improve the hearing ability and the
hearing comfort of impaired people. The procedures have to take into account
the special requirements of these devices. For example, the loudspeaker and
the microphones are very close together and a high amplification is inevitable.
Furthermore, different listening situations call for their automatic classifica-
tion, enabling the selection of different parameter sets.
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For full-duplex hands-free acoustic human/machine interfaces, often a com-
bination of acoustic echo cancellation and speech enhancement is required to
suppress acoustic echoes, local interference, and noise. To optimally exploit
positive synergies between acoustic echo cancellation and speech enhance-
ment, various approaches were presented in the literature. However, efficient
solutions for situations with high levels of background noise, with time-varying
echo paths, and frequent double talk are still a challenging research topic. In
this contribution, we address this problem by a joint least-squares (LS) op-
timization criterion for integrating acoustic echo cancellation and adaptive
linearly-constrained minimum variance (LCMV) beamforming. After summa-
rizing the state-of-the-art of this field, we derive the joint acoustic echo cancel-
lation and beamforming system and show its relation to existing approaches.
A realization of the joint system integrating a stereophonic acoustic echo can-
celler (AEC) and a robust generalized sidelobe canceller (RGSC) shows the
advantages of the proposed system for high levels of background noise, time-
varying echo paths, and frequent double talk. The proposed solution requires
only one AEC for an arbitrary number of microphones. A separate adaptation
control for the AEC is not necessary. Moreover, for AECs for multiple repro-
duction channels, the problem of slow convergence due to cross-correlated
loudspeaker signals is avoided.

2.1 Introduction

For audio signal acquisition in hands-free human/machine interfaces, adaptive
beamforming microphone arrays can be efficiently employed for enhancing a
desired signal while suppressing interference and noise [11].

For full-duplex communication systems, not only interference and noise
corrupt the desired signal, but also acoustic echoes originating from loud-
speakers. For suppressing acoustic echoes, acoustic echo cancellers (AECs)
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using adaptive filters are the optimum choice since they exploit the reference
information provided by the loudspeaker signals [12,32,41,42].

To simultaneously suppress interferers and acoustic echoes, it is thus desir-
able to combine acoustic echo cancellation with adaptive beamforming in the
acoustic human/machine interface. To achieve optimum performance, syner-
gies between the AECs and the beamformer should be maximally exploited
while the computational complexity should be kept moderate. When design-
ing such a joint acoustic echo cancellation and beamforming system, it proves
necessary to consider especially the time-variance of the acoustic echo path,
the background noise level, and the reverberation time of the acoustic envi-
ronment.

To combine acoustic echo cancellation with beamforming, various strate-
gies were studied in the literature [4, 21, 44, 47, 49, 54, 55, 57, 63, 66, 67], reach-
ing from cascades of AECs and beamformers to integrated solutions. These
combinations address aspects such as maximization of the echo and noise
suppression for slowly time-varying echo paths and high echo-to-interference
ratios (EIRs) [55, 57, 66, 67], strongly time-varying echo paths, and low
EIRs [21, 47, 49, 63], or minimization of the computational complexity [4, 44].
Overviews and comparisons of these methods can be found in [48,58].

In this chapter, we review the state-of-the-art of joint acoustic echo can-
cellation and beamforming and compare the various approaches. Especially,
we analyze the joint acoustic echo cancellation and beamforming system af-
ter [47, 49] in more detail. We show that this method, which is based on a
joint linearly-constrained minimum variance (LCMV) optimization criterion,
is especially efficient for low numbers of microphones (M = 4 . . . 8), low and
moderate reverberation times in the range of T60 = 50 ms and 400 ms, low
EIRs, and/or strong time-variance of the echo path. A separate adaptation
control for the AEC is not required so that the difficult task of designing a
robust adaptation control for the AEC is avoided. For multichannel reproduc-
tion systems such as, for example, stereophonic or 5.1-channel systems, the
commonly known problem of slow convergence due to highly cross-correlated
loudspeaker signals [5, 84] is avoided since the system identification problem
is reduced to an interference cancellation problem [48].

Our proposed approach is based on the robust generalized sidelobe can-
celler (RGSC) after [48]. The RGSC provides high suppression of both strongly
time-varying interference such as competing speakers and slowly time-varying
diffuse noise, (as typical for, e.g., the interior of cars,) while preserving signal
integrity of the desired speech, even for relatively small array apertures and
limited numbers of microphones, and even in reverberant environments or for
a moving desired speaker.

This chapter is organized as follows: In Sec. 2.2, we introduce the concepts
of acoustic echo cancellation and of adaptive beamforming and discuss the
previously presented combinations of acoustic echo cancellation and beam-
forming. In Sec. 2.3, the joint LCMV approach to acoustic echo cancellation
and beamforming and its realization as a generalized sidelobe canceller (GSC)
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are presented. Sec. 2.4 outlines a practical realization based on the RGSC.
Sec. 2.5 gives experimental results.

2.2 Concepts for Joint Acoustic Echo Cancellation and
Adaptive Beamforming

We consider the scenario of an acoustic human/machine front-end with Q
loudspeakers and a microphone array with M microphones. The microphones
capture the desired speech signal of the user, interference from other sound
sources, such as speech of other human talkers, and ambient noise, such as
noise from air conditioning or from computer fans. We can thus identify two
problems for the acoustic human/machine interface: acoustic echo cancellation
for multiple reproduction channels and noise and interference suppression by
microphone arrays.

In the following, we provide a concise overview of the problems and so-
lutions for the individual tasks – acoustic echo cancellation (Sec. 2.2.1) and
adaptive beamforming (Sec. 2.2.2). The integration into a joint system is dis-
cussed in Sec. 2.2.3.

2.2.1 Acoustic Echo Cancellation

With acoustic echo cancellation being considered from several points of view
in this book (Chapters 5, 6, 7, and 8), we only review the main aspects of
the general multichannel concept. The principle of multichannel acoustic echo
cancellation is illustrated in Fig. 2.1. For simplicity, the multichannel AEC is
shown only for a single recording channel.

The signals xq(n), q = 0, 1, . . . Q − 1, are played back by the Q loud-
speakers and fed back to the microphones, where the signals xq(n) appear
as acoustic echoes dq(n). With the assumption that the amplifiers and the
transducers are linear, a linear model is commonly used for the echo paths
between the loudspeaker signals xq(n) and the microphone signals y(n). See,
e.g., [38, 59, 87] and Chapter 7 of this book for the case where nonlineari-
ties of the transducers and of the amplifiers cannot be neglected. To can-
cel the acoustic echoes in the microphone channel, adaptive filters ĥq(n),
q = 0, 1, . . . Q − 1, are placed in parallel to the echo paths between the
loudspeakers and the microphones with the loudspeaker signals xq(n) as ref-
erences. The adaptive filters form replicas of the echo paths such that the
output signals d̂q(n) of the adaptive filters are replicas of the acoustic echoes.
Subtracting the output signals of the adaptive filters from the microphone
signal thus suppresses the acoustic echoes. Acoustic echo cancellation is thus
a system identification problem, where the echo paths are usually identified
by adaptive linear filtering. The design of the adaptation algorithm requires
consideration of the nature of the echo paths and of the echo signals:
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Fig. 2.1. Principle of multichannel acoustic echo cancellation with Q loudspeakers
and a single microphone.

Time-variance of acoustic echo paths. The acoustic echo paths may vary
strongly over time due to moving sources or changes in the acoustic environ-
ment requiring a good tracking performance of the adaptation algorithm [12].

Reverberation time of the acoustic environment. The reverberation
time of the acoustic environment typically ranges from, e.g., T60 ≈ 50 ms in
passenger cabins of vehicles to T60 > 1 s in public halls. With

Nĥ ≈ ERLE
60

fs T60 , (2.1)

where ERLE is the desired echo suppression of the AEC in dB [12], as a rule of
thumb it becomes obvious that with many realistic acoustic environments and
sampling rates fs = 8− 48 kHz, FIR filters with several thousands coefficients
are needed to achieve ERLE ≈ 20 dB. For environments with long reverbera-
tion times, this means that the time for convergence – even for fast converging
adaptation algorithms – cannot be neglected and that, after a change of the
echo paths, noticeable residual echoes may be present until the adaptation
algorithm has re-converged.

Auto- and cross-correlation of loudspeaker signals. The spatial sound
impression in multi-loudspeaker systems is often artificially generated by
weighting and delaying the spectrally colored source signals according to the
position of the sources. This leads to a high auto- and cross-correlation of
the loudspeaker signals [5, 14, 15, 30, 84]. With increasing auto- and cross-
correlation and with an increasing number of reproduction channels, the con-
dition number of the loudspeaker signals’ correlation matrix increases, which
reduces the rate of convergence of many adaptation algorithms in turn [43].
To reduce the auto-correlation of the loudspeaker signals, prewhitening fil-
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ters can be applied [28,95,96]. Furthermore, to reduce the cross-correlation of
the loudspeaker signals, inaudible nonlinearities [5, 30, 84] or inaudible time-
varying filters can be introduced into the loudspeaker channels [2, 53] or in-
audible noise with no correlation between the channels can be added to the
loudspeaker signals [29,34].

Double talk. The presence of disturbing sources such as desired speech,
interference, or ambient noise may lead to instability and divergence of the
adaptive filters. To prevent these instabilities, adaptation control mechanisms
are required which adjust the step size of the adaptation algorithm to the
present acoustic conditions [12, 42, 64]. With a decrease in the power ratio of
acoustic echoes and disturbance a smaller step size becomes mandatory, which
increases the time until the adaptive filters have converged to efficient echo
path models.

As the discussion about adaptive filtering for acoustic echo cancellation
shows, the convergence time of the adaptive filters is a crucial factor in acoustic
echo cancellation and limits the performance of AECs in realistic acoustic en-
vironments. With the aim of reducing the convergence time while assuring ro-
bustness against instabilities and divergence even during double talk, various
adaptation algorithms, such as the normalized least mean-squares (NLMS) al-
gorithm, the affine projection algorithm, or the recursive least-squares (RLS)
algorithm have been studied for realizations in the time-domain, in the DFT-
domain, or in frequency subbands using filterbanks [8, 12, 32, 42, 56, 81, 83].
Acoustic echo cancellation in the DFT-domain or in frequency subbands has
the advantage that sparseness of desired speech, interference, and noise can
be exploited for selecting the step size of the adaptation algorithm differently
for different frequencies as a function of the disturbance level to obtain faster
convergence.

Even with fast converging adaptation algorithms, there are typically resid-
ual echoes present at the output of the AEC. Furthermore, it is desirable to
combine the echo cancellation with noise reduction. Therefore, single-channel
echo and noise reduction is often cascaded with the AEC to suppress resid-
ual echoes and noise at the AEC output [10,26,39,40,68,69]. These methods
are typically based on spectral subtraction or Wiener filtering [9, 61] so that
estimates of the noise spectrum and of the spectrum of the acoustic echoes
at the AEC output are required. These are often difficult to obtain in single-
microphone systems for time-varying noise spectra and frequently changing
echo paths.

2.2.2 Adaptive Beamforming

To overcome the limitations of single-channel noise reduction especially for
interference and noise with time-varying spectra, beamforming with micro-
phone arrays is promising for many applications as, thereby, the spatial do-
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main supports separation of desired and undesired signals. In practical sit-
uations, source positions and signal characteristics change over time so that
adaptive, data-dependent beamforming algorithms are preferable over fixed
data-independent beamformers [92].

For speech and audio signal processing, adaptive data-dependent beam-
forming can be classified into LCMV beamforming, minimum mean-squared
error (MMSE) beamforming, and maximum-a-posteriori (MAP) beamform-
ing, disregarding special combinations with automatic speech recognition
[78,80].

LCMV beamforming [31,48,51,75]. In LCMV beamforming, with the GSC
as one implementation, the variance of the output signal of the beamformer
is minimized subject to constraints which prevent distortion of the desired
signal. Estimates of the auto-power spectral densities (PSDs) and of the cross-
power spectral densities (CPSDs) of interference and noise at the sensors are
not required so that the efficient suppression of signals with highly time-
varying spectra, such as speech signals, becomes possible. Adaptive differential
microphone arrays [25,89] are a special case of the LCMV beamformer.

However, reverberation of the acoustic environment w.r.t. the desired sig-
nal [18, 77, 94], moving desired sources, or array imperfections, such as po-
sition errors or gain and phase mismatch of the microphones [16, 35, 52, 97],
may lead to distortion of the desired signal by the adaptive LCMV beam-
former due to ‘leakage’ of the desired signal. To resolve this problem, the
filter coefficients can be updated only when interference and noise are present
[51, 74, 90, 93], quadratic [20, 33, 48, 50–52, 75, 88] or adaptive spatio-temporal
constraints [31,48,51] can be used, or the speech distortion can be controlled
directly [23,86].

The suppression of ambient noise and ‘cocktail-party’ noise is limited due
to the limited number of spatial degrees of freedom of the microphone array. To
overcome this limitation for such noise scenarios, two methods have been pro-
posed: First, LCMV beamformers can be combined with single-channel noise
reduction (‘post-filtering’) [19,65,70,71,79,82]. This leads to a structure that
is basically equivalent to the MMSE beamformer [24, 82], but which exploits
the advantages of the LCMV beamformer. Second, a spatial pre-processor
in the structure of the GSC can be combined with single-channel noise re-
duction [72, 76] or with a so-called ‘speech distortion weighted multichannel
Wiener filter’ [23, 86].

MMSE beamforming [1, 22, 23, 27, 79, 86]. MMSE beamforming is an ex-
tension of single-channel noise reduction to the multichannel case. In contrast
to adaptive LCMV beamforming, multichannel MMSE beamformers are in-
herently robust against array imperfections and reverberation of the acoustic
environment, so that the problem of cancellation of the desired signal due
to signal leakage is avoided. However, the minimization of the mean squared
error inherently allows for desire signal distortion which may not be accept-
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able for applications where high speech quality is required. Moreover, MMSE
beamformers require estimates of the CPSDs of interference and noise at the
sensors so that – at least from today’s point of view– there is limited suppres-
sion of noise and interfering signals with highly time-varying PSDs.

MAP beamforming [62]. While the derivation of multichannel MMSE esti-
mators is often difficult, multichannel MAP estimators often provide simpler
mathematical descriptions. Thereby, multichannel MAP estimation allows, for
example, the use of general statistical models, such as super-Gaussian proba-
bility density functions for speech and noise.

Adaptive data-dependent beamformers are generally realized using time-
averaging over a finite temporal aperture to estimate the relevant statistics
of the sensor data. For directly considering this temporal averaging in the
optimization criterion of the MMSE beamformer, the term least-squares error
(LSE) beamformer is used in [91]. Following [46, 48], we use in this work
the term linearly-constrained least-squares error (LCLSE) beamformer for
including this temporal averaging into the optimization criterion of the LCMV
beamformer.

2.2.3 Joint Acoustic Echo Cancellation and Adaptive
Beamforming

In this section, we briefly discuss solutions to the problem of joint acoustic
echo cancellation and adaptive beamforming which were presented previously
in the literature, namely ‘AEC first’, ‘beamformer first’, AEC integrated into
the GSC (‘GSAEC’), and a joint system of ‘AEC first’ and ‘beamformer first’.

‘AEC first’ [13, 21, 44, 48, 54, 57, 58, 66]. The AECs can be captured by a
matrix of time-variant impulse responses Ĥ(n) in the sensor channels. This
matrix Ĥ(n) directly models the echo path between all loudspeakers and
all microphones, without interaction with the beamforming (Fig. 2.2). For
the adaptive beamformer described by a vector of time-variant impulse re-
sponses w(n), positive synergies can be exploited after convergence of the
AECs: The acoustic echoes are efficiently suppressed by the AECs, and the
adaptive beamformer w(n) does not depend on the echo signals. Thus, all
degrees of freedom of the beamformer are available for the suppression of in-
terference and noise. Obviously, one AEC is necessary for each sensor channel
so that an M -fold complexity, where M is the number of microphones, is re-
quired at least for the filtering and for the filter update in comparison to AEC
for a single microphone [57]. Even with a moderate number of microphones
(4 ≤ M ≤ 8), this is a limiting factor for the use of ‘AEC first’ in cost-
sensitive systems. Moreover, in the presence of strong interference and noise,
the adaptation of the AECs must be slowed down or even stopped in order
to avoid instabilities of the adaptive filters Ĥ(n). This reduces the tracking
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capability and, consequently, the efficiency of the AECs for frequently chang-
ing echo paths. Limited echo suppression of the AECs, however, limits the
positive synergies with the adaptive beamformer so that the performance im-
provement of ‘AEC first’ relative to an adaptive beamformer alone strongly
depends on the acoustic environment.

Fig. 2.2. Combinations of AEC and beamforming [58,66].

‘Beamformer first’ [4, 44, 48, 54, 57, 58, 66]. Alternatively, the AEC can be
placed behind the adaptive beamformer (Fig. 2.2). Obviously, the complexity
is reduced to that of AEC for a single microphone. However, positive synergies
cannot be exploited for the adaptive beamformer, since the beamformer always
‘sees’ not only interference but also acoustic echoes. On the other hand, the
AEC captured in a vector of time-variant impulse responses ĥ(n) generally
cannot track the relatively fast time-variance of w(n), which results from the
dependency of w(n) on the time-varying spectra of the sensor signals and the
generally smaller number of filter taps of w(n) relative to ĥ(n) [48].

AEC integrated into the GSC (GSAEC). Another solution would be
to integrate acoustic echo cancellation and adaptive beamforming so that the
AEC does not depend on the time-variance of the adaptive beamformer [58].
One option, which is based on the structure of the GSC [37] (see Sec. 2.3.2),
was proposed in [44]. For this so-called GSAEC, the AEC is placed in the
reference path behind the quiescent weight vector wc of the GSC so that the
AEC is independent of the time-varying sidelobe-cancelling path (Fig. 2.3),
which consists of the blocking matrix B(n) and the interference canceller
ĥ(n).

However, acoustic echoes may leak through the sidelobe-cancelling path
although they may be efficiently suppressed by the AEC in the reference path,
so that the overall performance of ‘AEC first’ cannot be expected. Moreover,
analogously to ‘AEC first’, the performance of this integrated system is limited
for strong interference and noise or for frequently changing echo paths.
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Fig. 2.3. AEC integrated into the GSC (GSAEC) [44].

To overcome the problems of these structures in environments with fre-
quently changing echo paths, frequent double talk, interference, and back-
ground noise, we study here the joint optimization of adaptive beamforming
and acoustic echo cancellation. We focus on an LCLSE optimization crite-
rion to derive the beamformer weight vector. MMSE/LSE and MAP criteria
are not considered since they require estimates of the interference spectra at
the microphones, which are difficult to obtain for mixtures of non-stationary
signals.

2.3 Joint Optimization of Acoustic Echo Cancellation
and Adaptive Beamforming

In contrast to ‘beamformer first’ in Fig. 2.2, where different signals are used to
optimize w(n) and the AEC ĥ(n), we propose to use the output signal e(n)
to optimize both AEC and the adaptive beamformer as shown in Fig. 2.4.
The reference loudspeaker signals x(n) can thus be interpreted as additional
input signals for the adaptive beamformer. This idea was first used in [21] for
a combination of acoustic echo cancellation and multichannel noise-reduction
based on the generalized singular value decomposition (GSVD). In [63], a
similar approach is used for a combination of blind source separation with
acoustic echo cancellation.

We assume that the sensor signals y(n) are given by the superposition of
the desired signal s(n), interference and noise b(n), and acoustic echoes d(n),

y(n) = s(n) + b(n) + d(n) , (2.2)

where s(n), b(n), and d(n) are zero-mean and mutually uncorrelated. The
output signal e(n) of the combined system can be written as a function of
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Fig. 2.4. Joint optimization of adaptive beamforming and acoustic echo cancella-
tion.

the sensor signals y(n), the loudspeaker signals x(n), the stacked beamformer
weight vector w(n), and the stacked AEC weight vector ĥ(n) as

e(n) = wT(n)y(n) + ĥ
T
(n)x(n) , (2.3)

where

y(n) =
[
yT

0 (n), yT
1 (n), . . . , yT

M−1(n)
]T
, (2.4)

ym(n) =
[
ym(n), ym(n− 1), . . . , ym(n−Nw + 1)

]T
, (2.5)

x(n) =
[
xT

0 (n), xT
1 (n), . . . , xT

Q−1(n)
]T
, (2.6)

xq(n) =
[
xq(n), xq(n− 1), . . . , xq(n−Nĥ + 1)

]T
, (2.7)

w(n) =
[
wT

0 (n), wT
1 (n), . . . , wT

M−1(n)
]T
, (2.8)

wm(n) =
[
w0,m(n), w1,m(n), . . . , wNw−1,m(n)

]T
, (2.9)

ĥ(n) =
[
ĥ

T

0 (n), ĥ
T

1 (n), . . . , ĥ
T

Q−1(n)
]T
, (2.10)

ĥq(n) =
[
ĥ0,q(n), ĥ1,q(n), . . . , ĥNĥ−1,q(n)

]T
. (2.11)

Nw and Nĥ are the number of filter coefficients of the beamformer weight
vectors wm(n) and of the AEC filters ĥq(n), respectively. With stacked vectors

w̃(n) =
[
wT(n), ĥ

T
(n)
]T
, (2.12)

x̃(n) =
[
yT(n), xT(n)

]T
, (2.13)

we can write e(n) as
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e(n) = w̃T(n)x̃(n) . (2.14)

which reflects that the AEC input signals x(n) and the AEC filters ĥ(n) can
be interpreted as additional channels of a beamformer w̃(n).

2.3.1 Linearly-Constrained Least-Squares Error (LCLSE)
Minimization

An LCLSE optimization criterion is obtained when we aim at minimizing the
windowed sum of squared output signal samples e2(n) subject to constraints
which assure that the desired signal is not distorted by w̃(n). That is,

min
w̃

(n)

n∑
i=0

gi(n) e2(i) subject to C̃
T
(n)w̃(n) = c(n) . (2.15)

The windowing function gi(n) extracts desired samples from the output sig-
nal y(n) which should be included into the optimization.3 For example, infi-
nite memory with exponential decay is obtained with gi(n) = λn−i [43]. The
constraint matrix C̃(n) of size (MNw + QNĥ) × C and the constraint col-
umn vector c(n) of length C put C spatial constraints onto w̃(n) in order to
assure unity beamformer response for the direction-of-arrival of the desired
signal [91]. Since the Q loudspeaker signals x(n) can safely be assumed to
be orthogonal to the desired signal, the constraints are only required for the
microphone signals, just as for conventional LCMV beamformers [91]. We can
thus write C̃(n) as

C̃(n) =
[
CT(n), 0C×QNĥ

]T
, (2.16)

where C(n) of size MNw ×C is a conventional constraint matrix known from
LCMV beamforming [91]. We thus obtain with Eq. 2.15 a formally simple op-
timization criterion, where only one single error signal needs to be minimized
for an arbitrary number of microphones. This combined optimization allows
us to update the beamformer and the AEC simultaneously without reducing
the step size for the AEC – in contrast to the previously discussed combi-
nations, where the adaptation of the AEC at least has to be slowed down
if interference, noise, or the desired signal are active. Thereby, the structural
problems for tracking in ‘AEC first’ and the leakage in GSAEC can be avoided.
The number of spatial degrees of freedom for interference suppression and for
echo cancellation are increased by the number of loudspeakers Q relative to a
beamformer alone. Due to the correlation of y(n) and x(n), however, it must
be expected that the conditioning of the optimization problem is worsened
relative to the individual optimization problems.
3 The corresponding LCMV optimization criterion is obtained by replacing the

windowed sum of squared output signal samples e2(n) by the expected value of
e2(n). The solution of the LCMV optimization criterion is analogous to that of
the LCLSE criterion shown here.
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2.3.2 Realization as a Generalized Sidelobe Canceller (GSC)

A direct solution of Eq. 2.15 can be determined using Lagrange multipliers
[91]. However, with regard to an efficient realization of this combined system,
we transform the constrained optimization problem into an unconstrained one
using the structure of the GSC [17,37].

To obtain the GSC, the stacked weight vector w̃(n) is projected onto two
orthogonal subspaces,

w̃(n) =
[
P c(n) + P a(n)

]
w̃(n) . (2.17)

The first subspace w̃c(n) := P c(n)w̃(n) (constrained subspace) fulfills the
constraint equation. That is,

C̃
T
(n)w̃c(n)

!= c(n) . (2.18)

From (2.16), it follows that w̃c(n) can be chosen as

w̃c(n) =
[
wT

c (n), 01×QNĥ

]T
(2.19)

in order to fulfill Eq. 2.18. The weight vector wc(n) of size MNw ×1 is known
as quiescent weight vector [91]. The quiescent weight vector wc(n) steers the
sensor array to the position of the desired source and enhances the desired
signal relative to interference and noise (Fig. 2.5).4

The second (orthogonal) subspace is chosen as

P a(n) w̃(n) := −B̃(n) w̃a(n) , (2.20)

where the columns of the matrix B̃(n) are orthogonal to the columns of the
constraint matrix C̃(n), i.e.,

C̃
T
(n) B̃(n) != 0 . (2.21)

The cascade of B̃(n) and w̃a(n) is termed the sidelobe-cancelling path [37].
From Eq. 2.16, it may be seen that Eq. 2.21 is met for

B̃(n) =
[

B(n) 0MNw×QNĥ

0QNĥ×(M−C)Nwa
IQNĥ×QNĥ

]
, (2.22)

where IQNĥ×QNĥ
is the identity matrix of size QNĥ ×QNĥ and where B(n)

meets CT(n)B(n) = 0. Since the constrained subspace generally contains the
desired signal, the matrix B(n), which fulfills the requirement that the second
subspace is orthogonal to the constrained subspace, suppresses desired signal
4 Note that we used in Fig. 2.3 for the GSAEC structure a fixed quiescent weight

vector. This assumption is relaxed here for generality of the derivation.
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components. Therefore, the matrix B(n) is generally referred to as a blocking
matrix [91]. The identity matrix assures that acoustic echoes are not cancelled
by B̃(n). As a consequence, ideally only acoustic echoes, interference, and
noise are present at the output of B̃(n), so that the weight vector w̃a(n) can
be determined by unconstrained LS minimization of e(n),

min
w̃a(n)

n∑
i=0

gi(n)
[(

w̃c(n) − B̃(n)w̃a(n)
)T

x̃(i)
]2

. (2.23)

Introducing Eqs. 2.19 and 2.22 into Eq. 2.23 and identifying the result with
Eq. 2.3, it may be seen that w̃a(n) is equivalent to a stacked weight vector
consisting of a weight vector wa(n) and of the AEC ĥ(n),

w̃a(n) :=
[
wT

a (n), ĥ
T
(n)
]T
. (2.24)

We obtain for the output signal e(n) the expression

e(n) =
[
wc(n) − B(n)wa(n)

]T
y(n) − ĥ

T
(n)x(n) , (2.25)

which can be put into the structure depicted in Fig. 2.5. The combined system
thus corresponds to the GSC, where wa(n) is combined with the AEC ĥ(n),
and where the loudspeaker signals x(n) are used as additional channels of the
sidelobe-cancelling path. wa(n) is generally called an interference canceller
since wa(n) is optimized to cancel interference and noise at the output of the
GSC. Analogously, we refer to w̃a(n) as the ‘echo and interference canceller’
(EIC) and to the combined system of AEC and GSC as the ‘generalized echo
and interference canceller’ (GEIC).

Fig. 2.5. Generalized echo and interference canceller (GEIC).

The optimum weight vector w̃a(n) is now obtained by setting the deriva-
tive of Eq. 2.23 w.r.t. w̃a(n) equal to zero and by solving the obtained system
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of linear equations for w̃a(n):

w̃a,opt(n) =
[
B̃

T
(n) Φ̃(n) B̃(n)

]+
B̃

T
(n) Φ̃(n) w̃c(n) , (2.26)

Φ̃(n) =
n∑

i=0

gi(n) x̃(i) x̃T(i) =
[

Φyy(n) Φyx(n)
Φxy(n) Φxx(n)

]
. (2.27)

The (·)+ is the pseudoinverse of a matrix, and Φ̃(n) is the sample correlation
matrix of the stacked data vector x̃(n) [43] for a given windowing function
gi(n). As shown in (2.27), Φ̃(n) can be decomposed into the submatrices

Φyy(n) =
n∑

i=0

gi(n)y(i)yT(i) , (2.28)

Φxx(n) =
n∑

i=0

gi(n)x(i)xT(i) , (2.29)

Φyx(n) =
n∑

i=0

gi(n)y(i)xT(i) , (2.30)

Φxy(n) = ΦT
yx(n) , (2.31)

with the sample correlation matrix of the sensor signals Φyy(n), the sample
correlation matrix of the loudspeaker signals Φxx(n), and the sample cross-
correlation matrices between the sensor signals and the loudspeaker signals
Φxy(n) and Φyx(n), respectively. The solution of the optimum weight vector
w̃a,opt(n) is formally equivalent to the optimum weight vector of the GSC [17].
Finally introducing Eqs. 2.19, 2.22, and 2.27 into Eqs. 2.26, 2.26 can be written
as [

wa,opt(n)

ĥopt(n)

]
=

[
BT(n)Φyy(n)B(n) BT(n)Φyx(n)

Φxy(n)B(n) Φxx(n)

]+

×
[

BT(n)Φyy(n)wc(n)
Φyx(n)wc(n)

]
. (2.32)

Because of the structural equivalence of the GEIC to the GSC, any imple-
mentation of the GSC can be used to realize the GEIC. Especially, any linear
constraints can be used for designing the quiescent weight vector and the
blocking matrix. Furthermore, the echo and interference canceller can be cal-
culated directly employing Eq. 2.32 or iteratively using recursive adaptation
algorithms [48,91]. With regard to practical realizations, the matrix inversion
in Eq. 2.32 can be avoided by using recursive adaptation algorithms, and,
thus, the computational complexity can be reduced.

For the GSC, the number of filter taps Nwa is generally chosen such
that fast convergence of wa(n) is assured. Typically, Nwa = 64 . . . 512 for
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an fs = 8 kHz sampling rate independently of the reverberation time T60 of
the acoustic environment [48]. The number of filter taps Nĥ of the AEC ĥ(n),
however, is typically chosen as a function of the reverberation time T60, and is
typically Nĥ = 256 . . . 2048 for T60 = 0.05 . . . 0.5 s (see Eq. 2.1). In most cases,
the number of filter taps Nĥ should thus be greater than Nwa depending on
the reverberation time of the acoustic environment (typically T60 ≥ 100 ms) in
order to assure optimum performance of wa(n) and ĥ(n). However, different
numbers of filter taps are problematic for the convergence behavior of w̃a(n)
for a time-varying sample correlation matrix Φ̃(n), since the convergence speed
of wa(n) differs from that of ĥ(n). Consider as an extreme case Nĥ → ∞:
Then, the convergence speed of ĥ(n) tends to zero, which yields inefficiency
of the AEC. It is thus necessary to limit Nĥ to Nwa . This may reduce the
performance of GEIC relative to ‘AEC first’ in situations where ‘AEC first’
does not exhibit tracking or adaptation problems as, for example, for presence
of weak interference and noise and/or for slowly time-varying acoustic echo
paths. The influence of the acoustic environment on the performance of GEIC
will be investigated experimentally in Sec. 2.5.

2.3.3 Simplification to General Sidelope Acoustic Echo Canceller
(GSAEC)

The joint optimization of ĥ(n) and wa(n) introduces the off-diagonal matrices
into the first correlation matrix on the right side of (2.32). Setting the off-
diagonal matrices equal to zero corresponds to separate optimization of ĥ(n)
and wa(n), which yields for the optimum weight vector:

wa,opt(n) =
[
BT(n)Φyy(n)B(n)

]+
BT(n)Φyy(n)wc(n) , (2.33)

ĥopt(n) = Φ+
xx(n)Φxy(n)wc(n) . (2.34)

It may be noticed that Eq. 2.33 corresponds to the LS solution of a GSC
interference canceller [17] and that Eq. 2.34 is equivalent to the LS solution of
an AEC which is located after the quiescent weight vector. Eqs. 2.33 and 2.34
can thus be described by the system depicted in Fig. 2.3, which is recognized
as the structure of the GSAEC [44].

Independent optimization of the GSC and of the AEC after the quiescent
weight vector allows to choose the number of filter taps of the interference can-
celler, Nwa , and of the AEC, Nĥ, independently so that the coupling problems
of the echo and interference canceller of GEIC can be avoided. However, [48]
describes in detail in that efficient cancellation of the acoustic echoes in the
reference path of the GSC leads to leakage of acoustic echoes through the
sidelobe-cancelling path of the GSC so that the performance of GSAEC is
reduced relative to ‘AEC first’. Moreover, for the presence of strong interfer-
ence and noise and/or time-varying echo paths, GSAEC exhibits the same
convergence problems as ‘AEC first’. Experimental results can be found in
Sec. 2.5.
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2.4 Implementation

In this section, we describe the practical implementation of the joint acoustic
echo cancellation and adaptive beamforming systems examined experimen-
tally in Sec. 2.5, namely GEIC, ‘AEC first’, GSAEC, and GSC. For all joint
acoustic echo cancellation and adaptive beamforming systems, the beam-
former is realized as a GSC with an adaptive blocking matrix (RGSC,
Sec. 2.4.1). The AEC is implemented as a stereophonic AEC (Sec. 2.4.2).
A detailed description including parameter setting can be found in [48].

2.4.1 Robust Generalized Sidelobe Canceller (RGSC)

To realize the adaptive beamformer, it is crucial to obtain (a) tracking of
moving sources with time-varying spectra and (b) robustness against cancel-
lation of the desired signal due to reverberation, source movements, and array
imperfections. To solve these problems, we choose the RGSC in the discrete
Fourier transform (DFT) domain [48] with an adaptive blocking matrix [51]
as the adaptive beamformer, as depicted in Fig. 2.6.

Fig. 2.6. GSC with an adaptive blocking matrix after [51].

For adaptation of the blocking matrix and of the interference canceller, we
use computationally efficient multichannel DFT-domain adaptive filters (MC-
FDAFs) [6, 7, 15]. Their RLS-like convergence behavior leads to fast conver-
gence and they allow for a frequency-selective adaptation to exploit sparseness
of the sensor signals.
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2.4.1.1 Quiescent weight vector

The quiescent weight vector is realized as a fixed beamformer wc(n) := wc.
We thus assume that the position of the desired speaker is roughly known,
as it can be safely assumed for, for example, laptop PCs or personal digital
assistants (PDAs). The width of the mainlobe of the quiescent weight vector
needs to be adjusted to the expected variations of the source position.

2.4.1.2 Blocking Matrix

The blocking matrix is realized by adaptive filters bm(n) between the out-
put of the time-invariant quiescent beamformer wc and each of the inputs of
the interference canceller wa(n). The adaptive filters bm(n) use the output
of wc as a reference for the desired signal and subtract the desired signal
from the sidelobe-cancelling path. Orthogonality of the reference path and
of the sidelobe-cancelling path is thus assured for the desired signal. Since
the quiescent beamformer cannot produce an estimate of the desired signal
that is free of interference, the filters bm(n) should only be adapted when the
signal-to-interference ratio (SIR) is high in order to prevent suppression of the
interference by the blocking matrix [51,90].

In [48], the adaptive blocking matrix is formally linked to LCLSE beam-
forming and to the derivation of the GSC in Sec. 2.3.2.

Realization of the blocking matrix by adaptive filters yields greater ro-
bustness against distortion of the desired signal than fixed realizations [31,
48,51,90]: For the GSC, the distortion results from the interference canceller,
which cancels desired signal components leaking through the blocking matrix
due to inherent mismatched constraints. The inherent mismatch results from
possible array imperfections and especially from the fact that the required ex-
act spatio-temporal information for the desired signal is not perfectly given.
Adaptive filters, however, allow tracking of time-varying propagation for the
desired source and time-varying array imperfections so that the desired signal
is efficiently cancelled by the blocking matrix.

2.4.1.3 Interference Canceller

The interference canceller wa(n) adaptively subtracts the signal components
from the reference path, which are correlated with the output signals of the
blocking matrix. However, the blocking matrix – due to limited convergence
speed, limited tracking capability, and limited number of filter coefficients –
generally does not produce an estimate of the interference which is perfectly
free of the desired signal. Therefore, the interference canceller (1) is realized
using a (usually quadratic) norm constraint [20, 33, 48, 50–52, 75, 88] and (2)
is only adapted when the SIR is low in order to maximally prevent distortion
of the desired signal [51,74,90,93].
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2.4.1.4 Adaptation Control

The blocking matrix and the interference canceller cannot be adapted si-
multaneously but should only be adapted when the SIR is high and low,
respectively. By exploiting sparseness in the spectra of desired speech and
interference, i.e., by considering individual frequency components separately,
the blocking matrix and the interference canceller can be adapted more often
than adaptation in the fullband enabling a better tracking capability and a
better convergence speed to be obtained. Experiments show that the exploita-
tion of sparseness is also necessary for the interference canceller of the RGSC
to track the time variance of the adaptive blocking matrix and to efficiently
suppress non-stationary interference [45,48].

Obviously, to exploit the sparseness, an activity detector is required, which
detects ‘desired signal only’ (adaptation of the blocking matrix), ‘interference
only’ (adaptation of the interference canceller), and ‘double talk’ (no adapta-
tion) in discrete frequency bins [48].

2.4.2 Acoustic Echo Canceller

The design of the AEC – as long as it is realized independently of the beam-
former – requires consideration of the tracking performance, of the conver-
gence speed, and of the robustness against double talk. For the joint adapta-
tion of the AEC and beamformer, acoustic echoes can simply be interpreted
as additional interference, and these aspects do not need to be explicitly taken
into account. However, at the EIC input, the variance of the output signals of
the blocking matrix needs to be adjusted to the variance of the loudspeaker
signals by an automatic gain control to have similar signal levels.

Especially because of the high convergence speed with moderate computa-
tional complexity, we employ MC-FDAFs to realize the AECs. Adaptation of
the AECs of ‘AEC first’ and of GSAEC is controlled by a double talk detector
based on a shadow filter [85] with a constant frequency-independent step size
during adaptation. The GEIC is realized as an RGSC with additional chan-
nels of the interference canceller for the AECs. For the experiments described
below, the time-averaged variance of the loudspeaker signals is manually ad-
justed to the time-averaged variance of the blocking matrix output signals.
For all structures, the loudspeaker signals are de-cross-correlated by a simple
time-invariant nonlinearity to increase the convergence speed of the adaptive
filters [5].

2.4.3 Computational Complexity

The computational complexity of GEIC is compared to that of ‘AEC first’,
GEIC, GSAEC, and RGSC in Fig. 2.7 as a function of the filter length Nĥ
of the AEC for M = 4 microphones (Fig. 2.7a) and M = 8 microphones
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(Fig. 2.7b) for a stereophonic AEC. The filter length of the interference can-
celler is Nwa = 256 for all systems. For GEIC, the filter length of the AEC is
adjusted to the filter length of the interference canceller, i.e.,Nwa = Nĥ = 256.
The adaptation control of the AEC and of the RGSC is not taken into account.
Furthermore, the filter length Nwa is not changed since experimental results in
environments with various reverberation times show that the optimum filter
length does not change with the reverberation time in our implementations
of the RGSC and the GEIC. The computational complexity is measured as
‘real-valued multiplications per output sample’ (NRM )5. Comparing Fig. 2.7a
with Fig. 2.7b, roughly speaking, it may be noticed that doubling the number
of sensors doubles NRM . The relative complexity reduction from ‘AEC first’
to GEIC rises with increasing Nĥ: For Nwa = Nĥ = 256, the relative com-
plexity reduction from ‘AEC first’ to GEIC is 21% for M = 4 and 25% for
M = 8, while 59% (M = 4) and 37% (M = 8) for Na = 2048. Obviously, the
complexity of the RGSC dominates the complexity of the additional AECs
for ‘AEC first’.

Fig. 2.7. Comparison of the number of real multiplications per sample (NRM ) of
‘◦’ ‘AEC first’, ‘�’ GEIC, ‘�’ GSAEC, and ‘∗’ RGSC for (a) M = 4 and for (b)
M = 8 (Nwa = 256 and for GEIC Nĥ = 256).

5 The results differ from the results in [48], since, here, NRM includes the inversion
of the CPSD matrix of the input signals of the interference canceller and of the
EIC. The matrix inversion is assumed to be carried out using the matrix inversion
lemma [36].
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2.5 Experimental Results

We illustrate the performance of the joint acoustic echo cancellation and adap-
tive beamforming systems by experiments in the passenger cabin of a car and
in an office room. In Sec. 2.5.1, we analyze the performance for time-invariant
echo paths, for a fixed position of the desired source, and for variable noise
level. In Sec. 2.5.2, we examine the influence of time-varying echo paths and
of a time-varying position of the desired source on the performance of joint
AEC-beamforming systems. Section 2.5.3 illustrates the influence of the rever-
beration time on the performance of GEIC.

2.5.1 Time-Invariant Echo Paths and Time-Invariant Source
Position

In this section, we study the performance of GEIC for variable SIR and
time-invariant echo paths in the passenger cabin of a car relative to the other
concepts presented in Sec. 2.2. The interference is slowly time-varying car
noise recorded with a microphone array setup inside of the car’s passenger
cabin (Fig. 2.8).

Fig. 2.8. Temporal signal (a) and power spectral density (PSD) of the car noise (b)
measured at one of the microphones (before highpass filtering).

The desired source and two loudspeakers are located in broadside direction
(θ = 90◦) and in the two endfire directions (θ = 0◦, 180◦), respectively, at a
distance of 60 cm from the array center. The room impulse responses between
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the two loudspeakers and the microphones and between the desired source
position and the microphones are simulated using the image method [3] with
a simulated reverberation time T60 = 50 ms. The desired source signal is a
subset of 50 utterances of the TIDigits database [60], while the loudspeaker
signals are stereophonic pop music. The microphone signals are obtained by
convolving the clean source signal with the room impulse responses followed by
superposing noise with variable SIR and a fixed signal-to-echo ratio SER =
7 dB. The microphone array consists of M = 4 sensors or M = 8 sensors
with sensor spacing d = 4 cm. The frequency range is 200 Hz–4 kHz. The
echo suppression ERLE and the interference suppression IR averaged over
the whole test data are given in Fig. 2.9 (M = 4) and in Fig. 2.10 (M = 8).
The filter lengths are chosen as follows: ‘AEC first’, GSAEC: Nĥ = 512,
Nw = 256; GEIC, RGSC: Nĥ = Nw = 256).

Fig. 2.9. Interference suppression IR and echo suppression ERLE for RGSC alone,
‘AEC first’, GSAEC, and GEIC for fixed echo paths and fixed source position in the
car environment for M = 4 (Signal-to-echo ratio SER = 7dB).

For high SIR (equivalent to high EIR, since SER = 7 dB), the AECs
of ‘AEC first’ converge in pauses of the desired speaker and provide high
echo suppression, which translates to a greater ERLE and IR of ‘AEC first’
relative to GSC and GEIC. With decreasing EIR, the echo suppression of the
AECs of ‘AEC first’ decreases until the AECs are inefficient and ERLE and
IR of ‘AEC first’ are equivalent to the RGSC. Here, the GEIC outperforms
‘AEC first’, since the number of degrees of freedom does not depend on the
EIR. Nevertheless, ERLE of GEIC falls with decreasing EIR, since the system
concentrates on the suppression of the stronger car noise. ForM = 4 (Fig. 2.9),
it can be noticed that the improvement of ERLE and IR relative to RGSC
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Fig. 2.10. Interference suppression IR and echo suppression ERLE for RGSC alone,
‘AEC first’, GSAEC, and GEIC for fixed echo paths and fixed source position in the
car environment for M = 8 (Signal-to-echo ratio SER = 7dB).

is larger than for M = 8 (Fig. 2.10). This is due to the RGSC’s greater
number of degrees of freedom, where the additional degrees of freedom of
GEIC due to the AEC yield a relative lower performance improvement. In fact,
the improvement of IR can even be neglected in this scenario. The performance
of GSAEC decreases relative to ‘AEC first’, since, after convergence of the
AEC in the reference path of the GSC (Fig. 2.3), acoustic echoes leak through
the sidelobe-cancelling path of the GSC, which leads to reduced echo and
interference suppression relative to ‘AEC first’ [44,48].

2.5.2 Time-Varying Echo Path and Time-Varying Source Position

In this section, we compare the performance of joint acoustic echo cancellation
and adaptive beamforming for a time-varying echo path and a moving desired
source. Because of the better tracking during double talk, we expect that
the performance gap between echo and noise suppression of GEIC and that
of ‘AEC first’ and GSAEC increases. The position of the desired source is
switched randomly for each file of the TIDigits database in the interval θ =
80◦ . . . 100◦ in steps of 2◦ with equal probability for all directions. This range
corresponds to the 5 dB width of the mainlobe of the uniformly weighted
delay&sum beamformer at 4 kHz. The desired signal is thus attenuated by
less than 5 dB at 4 kHz. While one of the loudspeakers is located at θ =
180◦, the position of the second loudspeaker is switched every 20000 samples
between θ = 0◦ and θ = 60◦. The distance between the sources and the
array center is fixed at 60 cm. The interference suppression IR and the echo
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suppression ERLE are averaged over the entire data set across all variations
of the loudspeaker position.

Fig. 2.11. Interference suppression IR and echo suppression ERLE for RGSC alone,
‘AEC first’, GSAEC, and GEIC for time-varying echo paths and fixed source position
in the car environment for M = 4 (Signal-to-echo ratio SER = 7 dB).

Fig. 2.12. Interference suppression IR and echo suppression ERLE for RGSC alone,
‘AEC first’, GSAEC, and GEIC for time-varying echo paths and fixed source position
in the car environment for M = 8 (Signal-to-echo ratio SER = 7 dB).
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Figs. 2.11 and 2.12 depict the results for M = 4 and M = 8, respectively.
The difference in performance between M = 4 and M = 8 can be explained
similarly as in Figs. 2.3 and 2.9 by the greater number of degrees of freedom
of the beamformer for M = 8. It may be further noticed that the performance
of ‘AEC first’ and GSAEC is considerably reduced for SIR ≥ 20 dB relative
to fixed echo paths (see Figs. 2.9 and 2.10). This effect can be explained by
the reduced efficiency of the AECs of ‘AEC first’ and of GSAEC due to the
missing capability to adapt the AECs while desired speech and acoustic echoes
are simultaneously active. The performance loss is mainly related to the time-
variance of the echo paths: Experiments showed that the performance for
fixed echo paths and the time-varying position of the desired source (θ =
80◦ . . . 100◦) can almost not be distinguished from the results in Figs. 2.9 and
2.10. As for fixed echo paths and the fixed position of the desired source, the
echo suppression and the interference suppression converge with an increasing
number of microphones.

Note that the AECs of ‘AEC first’ and of GSAEC are realized using a
frequency-independent double talk detector with a constant step size dur-
ing adaptation. When using a DFT bin-wise step-size control with variable
frequency-dependent step size as, for example, proposed in [26, 73], it is pos-
sible to exploit sparseness of desired speech and of interference. The AECs
can therefore be adapted more frequently, which improves the performance
of ‘AEC first’ and of GSAEC for time-varying acoustic conditions and high
EIRs.

2.5.3 Reverberation Time

In this section, we study the dependency of the echo and noise suppression
of GEIC on the reverberation time T60. Because of the limited number of
filter taps of the EIC, we expect the performance of the GEIC to decrease
compared to ‘AEC first’ and to GSAEC with increasing reverberation time.
The experimental setup is the same as in Sec. 2.5.1, except for the fact that the
impulse responses between the loudspeakers and the microphones are taken
from three different acoustic environments: the environment with T60 = 50 ms
as above, and measured impulse responses from office rooms with T60 = 250 ms
and with T60 = 400 ms. The microphone array with M = 4 sensors is used,
SER = 7 dB, and SIR = 10 dB. The results are depicted in Fig. 2.13.

It can be seen that the average echo suppression ERLE (Fig. 2.13a) de-
creases with increasing reverberation time from 19.5 dB for T60 = 50 ms to
15.5 dB for T60 = 400 ms. The interference suppression IR decreases from
10 dB for T60 = 50 ms to 9.5 dB for T60 = 400 ms. Considering that the
number of filter taps of the AEC is only Nĥ = 256 for a reverberation
time T60 = 400 ms, where, according to (2.1), Nĥ = 1240 is required for
ERLE = 15.5 dB, these results reflect that the AECs within GEIC are better
interpreted as interference cancellers than as system identifiers. The usage
of GEIC –despite the limitation on the number of filter taps– is thus not
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Fig. 2.13. Interference suppression IR and echo suppression ERLE for RGSC alone,
‘AEC first’, GSAEC, and GEIC as a function of the reverberation time T60 for M = 4
(Signal-to-echo ratio SER = 7 dB, Signal-to-interference ratio SIR = 10dB).

restricted to environments with low reverberation times but still gives accept-
able echo suppression in environments with longer reverberation time such as
office or home environments, at least for slowly time-varying conditions. Note,
however, that the performance of joint acoustic echo cancellation and adap-
tive beamforming systems based on the GSC depends on the robustness of
the GSC against distortion of the desired signal in reverberant environments.
It is thus not assured that all GSC realizations yield an undistorted desired
signal.

2.6 Conclusion

We presented a technique for joint optimization of acoustic echo cancellation
and adaptive LCMV beamforming. The derivation of the system shows that it
can be interpreted as a straightforward extension of the GSC with additional
input channels of the interference canceller (GEIC). With a realization exam-
ple based on the RGSC and a stereophonic AEC, we showed that the GEIC is
especially efficient for (a) transient echo paths if frequent double talk between
acoustic echoes, local interference, and desired speakers is to be expected and
(b) high levels of background noise. For stationary conditions and low levels
of background noise, the performance of GEIC is reduced relative to ‘AEC
first’ due to a constraint on the number of filter taps of the weight vector
of the AEC. However, the proposed solution requires only one AEC for an
arbitrary number of microphones and no separate adaptation control for the
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AEC. For acoustic echo cancellation with multiple reproduction channels, the
problem of slow convergence due to cross-correlated loudspeaker signals can be
avoided, since the system identification problem is reduced to an interference
cancellation problem.
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Blind Source Separation of Convolutive
Mixtures of Audio Signals in Frequency
Domain

Shoji Makino, Hiroshi Sawada, Ryo Mukai, and Shoko Araki

NTT Communication Science Laboratories, Japan

This chapter overviews a total solution for frequency-domain blind source
separation (BSS) of convolutive mixtures of audio signals, especially speech.
Frequency-domain BSS performs independent component analysis (ICA) in
each frequency bin, and this is more efficient than time-domain BSS. We
describe a sophisticated total solution for frequency-domain BSS, including
permutation, scaling, circularity, and complex activation function solutions.
Experimental results of separating speech signals for the cases of 2× 2, 3× 3,
4× 4, 6× 8, and 2× 2 moving sources (#sources × #microphones) in a room
are promising.

3.1 Introduction

Blind source separation (BSS) [14,19,28] is an approach to estimating source
signals by using only the information of mixed signals observed at each input
channel. The estimation is performed blindly, i.e., without possessing informa-
tion on each source such as its location and active time. Typical examples of
such source signals include mixtures of simultaneous speech signals that have
been picked up by several microphones. Potential audio signal applications of
BSS include speech enhancement for speech recognition, teleconferences, and
hearing aids. In such applications, signals are mixed in a convolutive manner
with reverberations. This makes the BSS problem difficult. We need very long
finite impulse response (FIR) filters (e.g., around a thousand taps for 8-kHz
sampling) to separate the acoustic signals mixed under such conditions.

Independent component analysis (ICA) [18, 27] is a major statistical tool
for dealing with the BSS problem. If signals are mixed instantaneously, we
can directly employ an instantaneous ICA algorithm to separate them. How-
ever, signals are mixed in a convolutive manner in the applications mentioned
above. Therefore, we need to extend the ICA/BSS technique so that it can be
used for convolutive mixtures.
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The first approach is time-domain BSS, where ICA is directly extended to
the convolutive mixture model [1,11,15,22,30,49]. This approach is theoreti-
cally sound and achieves good separation once an algorithm converges, since
the algorithm correctly evaluates the independence of separated signals. How-
ever, an ICA algorithm for convolutive mixtures is not as simple as an ICA
algorithm for instantaneous mixtures, and it is computationally expensive for
long FIR filters because it includes convolution operations.

The second approach is frequency-domain BSS, where complex-valued ICA
for instantaneous mixtures is employed in each frequency bin [4–7, 20, 24, 31,
33,35–38,40,41,43,45,48,50]. The merit of this approach is that the ICA algo-
rithm remains simple and can be performed separately at each frequency. Also,
any complex-valued instantaneous ICA algorithm can be employed with this
approach. The computational time for BSS can be reduced by employing a fast
algorithm such as FastICA [10,17] and/or by performing parallel computation
for multiple frequency bins. However, the permutation ambiguity of the ICA
solution becomes a serious problem. We need to align the permutation in each
frequency bin so that a separated signal in the time domain contains frequency
components from the same source. This problem is well known as the permu-
tation problem of frequency-domain BSS [4,7,20,24,31,33,35–37,41,43,45,48],
which is the main focus of this chapter. Another problem relates to the circu-
larity effect of discrete frequency representation. Frequency responses calcu-
lated in the frequency domain assume a periodic time-domain filter for their
implementation. However, such a periodic filter is unrealistic, and we usually
use its one-period operation for the separation filter. Therefore, the frequency
responses should be smoothed so that the one-period operation does not rely
on the circularity effect [7, 40]. This chapter also discusses this problem.

The third approach uses both the time and frequency domains. In some
time-domain BSS methods, convolutions in the time domain are speeded up
by the overlap-save method in the frequency domain [11,21]. Furthermore, in
some methods [8, 25, 26], filter coefficients are updated in the frequency do-
main while nonlinear functions for evaluating independence are applied in the
time domain. The permutation problem does not occur in either case since
the independence of separated signals is evaluated in the time domain. Nor
does the circularity problem occur when there is an appropriate constraint
for filter coefficients [46] by such means as rectangular windowing. However,
the algorithm moves back and forth between the two domains at every it-
eration, spending non-negligible time on discrete Fourier transforms (DFTs)
and inverse DFTs. Therefore, dealing with the permutation and circularity
problems seems to be inevitable if we hope to benefit from the merits of
frequency-domain BSS.

This chapter deals with the second approach, i.e., frequency-domain BSS.
We begin by formulating the BSS problem for convolutive mixtures in Sec. 3.2.
Sec. 3.3 provides an overview of frequency-domain BSS. We then present sev-
eral important techniques that enable this approach to achieve effective sepa-
ration of many sources mixed in a reverberant environment. Sec. 3.4 discusses
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Fig. 3.1. BSS system configuration.

complex-valued ICA for instantaneous mixtures. Understanding the separa-
tion mechanism of BSS in Sec. 3.5 greatly helps us to cope with the problem.
Sec. 3.7 presents a method for solving the permutation problem, which is the
most important task in frequency-domain BSS. To solve this problem, infor-
mation on source location is very useful. This can be estimated from ICA
solutions as shown in Sec. 3.6. The key point with respect to source localiza-
tion is that the estimation of the mixing system is easily obtained. This is
because the ICA algorithm is just for instantaneous mixtures, and thus it is
straightforward to calculate the (pseudo)-inverse of a separation matrix, which
corresponds to the mixing system. This fact also makes it easy to solve the
scaling ambiguity as shown in Sec. 3.8. Sec. 3.9 discusses a spectral smoothing
technique designed to solve the circularity problem. The experimental results
shown in Sec. 3.10 are very promising. Sec. 3.11 concludes this chapter.

3.2 Blind Source Separation for Convolutive Mixtures

In the case of audio source separation, several sensor microphones are placed
in different positions so that each records a mixture of the original source
signals at a slightly different time and level. In the real world, where the
source signals are speech and the mixing system is a room, the signals that
are picked up by the microphones are affected by reverberation. Suppose that
N source signals si(n) are mixed and observed at M sensors:

xj(n) =
N∑

i=1

∑
l

hji(l) si(n− l), j = 1, . . . ,M, (3.1)
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where hji(l) represents the impulse response from source i to sensor j. We
assume that the number of sources N is known or can be estimated in some
way (e.g., by [42]) and that the number of sensors M is more than or equal
to N (N ≤M).

The separation system typically consists of a set of FIR filters wij(l) of
length L to produce N separated signals at the outputs:

yi(n) =
M∑

j=1

L−1∑
l=0

wij(l)xj(n− l), i = 1, . . . , N. (3.2)

The separation filters are estimated so that the separated signals become
mutually independent. The separation filters wij(l) should be obtained blindly,
i.e., without knowing si(n) or hji(l).

A two-input, two-output convolutive BSS problem, i.e., N = M = 2, is
shown in Figs. 3.1 and 3.2. It is assumed that the source signals s1(n) and
s2(n) are mutually independent. This assumption usually holds for sounds in
the real world. There are two microphones that pick up the mixed speech. Only
the observed signals x1(n) and x2(n) are available, and they are correlated.
The goal is to adapt the separation systems wij(l) and to extract y1(n) and
y2(n) so that they are mutually independent. With this operation, we can
obtain s1(n) and s2(n) in the output y1(n) and y2(n). No information is
needed on the source positions or period of source existence/absence. Nor
is any information on the mixing systems hji(l) required. Thus, this task is
called blind source separation.

Fig. 3.3 shows a block diagram of BSS. The ideal goal of BSS is to separate
and deconvolve the mixtures xj(n) and to obtain a delayed version of source
si(n) at each output i. However, this is very difficult if si(n) is a colored
signal, which is the case when separating natural sounds such as speech [15].
A practical alternative goal [30, 49] is to obtain the convolved version of a
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source si(n) measured at a sensor Ji:

yi(n)
!=
∑

l

hJii(l) si
(
n− L

2
− l
)
, (3.3)

where the sensor index Ji can be selected according to each output i. The way
used to attain this goal will be discussed in Sec. 3.8.

3.3 Overview of Frequency-Domain Approach

Fig. 3.4 and more visually Fig. 3.5 show the flow of frequency-domain
BSS. Time-domain signals xj(t) sampled at frequency fs are converted into
frequency-domain time-series signals Xj(ejΩ, n) with an L-point short-time
Fourier transform (STFT):

Xj

(
ejΩ, n

)
=

L
2 −1∑

r=−L
2

xj(n+ r)win(r) e−jΩr, (3.4)

where Ω ∈ {0, 1
L2π, . . . , L−1

L 2π} is a normalized frequency, win(r) is a win-
dow that tapers smoothly to zero at each end, such as a Hanning window
1
2 (1 + cos 2πr

L ), and n is an index representing time.
The remaining operations are performed in the frequency domain. The

advantage is that the convolutive mixtures in Eq. 3.1 can be approximated as
instantaneous mixtures in each frequency bin:

Xj

(
ejΩ, n

)
=

N∑
i=1

Hji

(
ejΩ

)
Si

(
ejΩ, n

)
, (3.5)

where Hji(ejΩ) is the frequency response from source i to sensor j, and
Si(ejΩ, n) is a frequency-domain time-series signal of si(n) obtained by the
same operation as Eq. 3.4. The vector notation of the mixing model (Eq. 3.5)
is
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x
(
ejΩ, n

)
=

N∑
i=1

hi

(
ejΩ

)
Si

(
ejΩ, n

)
, (3.6)

where
x
(
ejΩ, n

)
=
[
X1

(
ejΩ, n

)
, . . . , XM

(
ejΩ, n

) ]T
(3.7)

is a sensor sample vector and

hi

(
ejΩ

)
=
[
H1i

(
ejΩ

)
, . . . , HMi

(
ejΩ

) ]T
(3.8)

is the vector of the frequency responses from source si(n) to all M sensors.
To obtain the frequency responses Wij(ejΩ) of separation filters wij(l) in

Eq. 3.2, complex-valued ICA

y
(
ejΩ, n

)
= W

(
ejΩ

)
x
(
ejΩ, n

)
(3.9)

is solved, where

y
(
ejΩ, n

)
=
[
Y1

(
ejΩ, n

)
, . . . , YN

(
ejΩ, n

) ]T
(3.10)

is a vector of separated signals,

W
(
ejΩ

)
=
[
w1

(
ejΩ

)
, . . . , wN

(
ejΩ

) ]H
(3.11)

is an N ×M separation matrix,
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wi

(
ejΩ

)
=
[
Wi1

(
ejΩ

)
, . . . , WiM

(
ejΩ

) ]H
(3.12)

and

Wij

(
ejΩ

)
=
[
W
(
ejΩ

) ]
ij
. (3.13)

The details of the ICA algorithm are discussed in Sec. 3.4.
Calculating the Moore-Penrose pseudoinverse W +(ejΩ) (reduced to the

inverse W−1
(
ejΩ

)
if N = M) of W (ejΩ) as[

a1

(
ejΩ

)
, · · · , aN

(
ejΩ

) ]
= W +

(
ejΩ

)
, (3.14)

ai

(
ejΩ

)
=
[
A1i

(
ejΩ

)
, . . . , AMi

(
ejΩ

) ]T
(3.15)

is very useful for source localization and scaling alignment, as described in
Sec. 3.6 and Sec. 3.8, respectively. It should be noted that it is not difficult
to make W (ejΩ) invertible by using an appropriate ICA procedure (for an
example, see Sec. 3.4). By multiplying both sides of Eq. 3.9 by W +(ejΩ),
the sensor sample vector x(n) is represented by a linear combination of basis
vectors a1(ejΩ), . . . ,aN (ejΩ):

x
(
ejΩ, n

)
=

N∑
i=1

ai

(
ejΩ

)
Yi

(
ejΩ, n

)
. (3.16)

It is well-known that an ICA solution (Eq. 3.9) has permutation and scaling
ambiguities: even if we permute the rows of W (ejΩ) or multiply a row by a
constant, it is still an ICA solution. In matrix notation,

W
(
ejΩ

)← Λ
(
ejΩ

)
P
(
ejΩ

)
W
(
ejΩ

)
(3.17)
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is also an ICA solution for any permutation P (ejΩ) and diagonal Λ(ejΩ)
matrix. Permutation alignment is to decide P (ejΩ) so that a time-domain
separated signal contains frequency components from the same source. Sec. 3.7
presents a method for solving this problem. Scaling alignment is to decide
Λ(ejΩ) so that a time-domain separated signal satisfies the goal (Eq. 3.3), as
discussed in Sec. 3.8.

Then, we perform spectral smoothing so that a time-domain separation
filter tapers smoothly to zero at each end. This is typically achieved by mul-
tiplying the time-domain filter by a Hanning window, which is equivalent to
smoothing the frequency-domain separation matrices as

W
(
ejΩ

)← 1
4

[
W
(
ejΩ−ΔΩ

)
+ 2W

(
ejΩ

)
+ W

(
ejΩ+ΔΩ

) ]
,

where ΔΩ = 2π
L is the difference from the adjacent frequency. However, this

smoothing changes the ICA solution and causes an error. Sec. 3.9 discusses
the error and how to minimize it.

Finally, separation filters wij(l) are obtained by applying inverse DFT to
Wij(ejΩ) = [W (ejΩ)]ij :

wij(l) =
∑

Ω∈{0, 1
L 2π, ..., L−1

L 2π}
Wij

(
ejΩ

)
ejΩ(l−L

2 ),

where l = 0, . . . , L − 1. The reason for using ejΩ(l−L
2 ) instead of ejΩl is to

make the separation filter wij(l) causal. Then, the separated signals yi(n) are
produced by Eq. 3.2.

3.4 Complex-Valued Independent Component Analysis

This section discusses how to solve the ICA equation 3.9. One of the advan-
tages of frequency-domain BSS is that we can employ any ICA algorithm for
instantaneous mixtures, such as the information maximization approach (In-
foMax) [9] combined with the natural gradient [2], FastICA [17], JADE [13],
or an algorithm based on the non-stationarity of signals [29]. Here, we explain
a procedure that was shown to be efficient by the experiments described in
Sec. 3.10. The procedure consists of the following three steps:

1. Dimension reduction and whitening by eigenvalue decomposition,
2. ICA by a unitary matrix (FastICA),
3. ICA by InfoMax combined with the natural gradient.

The first step performs a linear transformation

z
(
ejΩ, n

)
= V

(
ejΩ

)
x
(
ejΩ, n

)
for M -dimensional sensor observations x(ejΩ, n) such that the dimension of
z(ejΩ, n) is reduced (if necessary) to the number of sources N and z(ejΩ, n) is
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spatially whitened (sphered), i.e., E
{

z(ejΩ, n)zH(ejΩ, n)
}

= I, where I is the
N×N identity matrix. The linear transformation V (ejΩ) is typically obtained
by eigenvalue decomposition. Let λ1(ejΩ) ≥ · · · ≥ λM (ejΩ) be sorted eigenval-
ues of the spatial correlation matrix R(ejΩ) = E

{
x(ejΩ, n)xH(ejΩ, n)

}
and

e1(ejΩ), . . . , eM (ejΩ) be their corresponding eigenvectors. Then, the linear
transformation is

V
(
ejΩ

)
= D−1/2

(
ejΩ

)
EH

(
ejΩ

)
,

where
D
(
ejΩ

)
= diag

[
λ1

(
ejΩ

)
, . . . , λN

(
ejΩ

) ]
is the diagonal matrix of the N largest eigenvalues,

E
(
ejΩ

)
=
[
e1

(
ejΩ

)
, . . . , eN

(
ejΩ

) ]
is the matrix of their corresponding eigenvectors, and

ei

(
ejΩ

)
=
[
e1i

(
ejΩ

)
, . . . , eMi

(
ejΩ

) ]T
.

This step has practical importance for the following two reasons. First,
the outputs y

(
ejΩ, n

)
of ICA (Eq. 3.9) adhere to the signal subspace that is

identified by the N eigenvectors e1(ejΩ), . . . , eN (ejΩ). This means that the
following ICA algorithm does not pursue its solution in the noise subspace,
which consequently stabilizes the algorithm and also has a noise/reverberation
reduction effect [7]. A geometrical interpretation of the dimension reduction is
given in [50]. Second, the whitening E

{
z(ejΩ, n)zH(ejΩ, n)

}
= I is necessary

for FastICA, and it also provides an efficient convergence for InfoMax even if
the step size is constant over all frequency bins.

The second step performs ICA in a constrained form:

y
(
ejΩ, n

)
= B

(
ejΩ

)
z
(
ejΩ, n

)
,

where B(ejΩ) is an N × N unitary matrix: B(ejΩ)BH(ejΩ) = I. This is
performed by a complex-valued version of FastICA [10,17]. It is very efficient
because a fairly good solution can be obtained with only several iterations.
The efficiency comes from the fact that z(ejΩ, n) is whitened and B(ejΩ) is
unitary. However, there remains room for improving the solution by using
another ICA algorithm. One of the reasons is that the output y(ejΩ, n) of
FastICA is whitened E

{
y(ejΩ, n)yH(ejΩ, n)

}
= I and thus uncorrelated,

whereas original sources S1(ejΩ, n), . . . , SN (ejΩ, n) are not always completely
uncorrelated with a limited number of samples.

The third step improves the ICA solution obtained so far as an initial value

y
(
ejΩ, n

)
= W

(
ejΩ

)
x
(
ejΩ, n

)
= B

(
ejΩ

)
V
(
ejΩ

)
x
(
ejΩ, n

)
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by employing another ICA algorithm that does not have the unitary con-
straint. Based on the use of InfoMax combined with the natural gradient, a
separation matrix W (ejΩ) is gradually improved by the learning rule:

W
(
ejΩ

)← W
(
ejΩ

)
+ μ

[
I − E

{
Φ
(
y
(
ejΩ, n

) )
yH
(
ejΩ, n

) } ]
W
(
ejΩ

)
,

(3.18)
where μ is a step-size parameter. Φ(y) = [Φ(y1), . . . , Φ(yN )]T is an element-
wise nonlinear function defined by

Φ
(
yi

)
= − ∂

∂yi
log p(yi), (3.19)

where p(yi) is the probability density function (PDF) of a complex-valued
signal yi = |yi| ej·arg(yi). Since yi is a frequency-domain signal whose phase
can be shifted arbitrarily by shifting the STFT window position (Eq. 3.4),
a feasible assumption is that the PDF is independent of the phase p(yi) =
β · p(|yi|), where β is a constant. This assumption reduces Eq. 3.19 to

Φ
(
yi

)
= ϕ

(|yi|
)
ej arg(yi), (3.20)

ϕ
(|yi|

)
= − ∂

∂|yi| log p
(|yi|

)
. (3.21)

If we assume the Laplacian distribution p(|yi|) = 1
2e

−|yi|, which is typical for
speech modeling, we have ϕ(|yi|) = 1 and thus a simple nonlinear function

Φ
(
yi

)
= ej arg(yi).

A nonlinear function of the form of Eq. 3.20 has a better convergence property
[38] than one where the nonlinearity is applied separately to the real and
imaginary parts of a complex-valued signal yi.

3.5 Separation Mechanism of Blind Source Separation

The mechanism of BSS based on ICA has been shown to be equivalent to that
of an adaptive microphone array system, i.e., N sets of adaptive beamformers
(ABFs) with an adaptive null directivity aimed in the direction of unnecessary
sounds [5, 6]. From the equivalence between BSS and ABF, it becomes clear
that the physical behavior of BSS reduces the jammer signal by making a
spatial null toward the jammer and extracts the target.

The separation performance of BSS is compared with that of ABF. Fig. 3.6
shows the directivity patterns obtained by BSS and ABF. In Fig. 3.6, (a)
and (b) show directivity patterns by W obtained by BSS, and (c) and (d)
show directivity patterns by W obtained by ABF. When TR = 01, a sharp
spatial null is obtained by both BSS and ABF [see Figs. 3.6(a) and (c)]. When
TR = 300 ms, the directivity pattern becomes duller for both BSS and ABF
[see Figs. 3.6(b) and (d)].
1 TR abbreviates the reverberation time.
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Fig. 3.6. Directivity patterns (a) obtained by BSS (TR = 0 ms), (b) obtained by
BSS (TR = 300 ms), (c) obtained by ABF (TR = 0 ms), and (d) obtained by ABF
(TR = 300 ms).

BSS can be regarded as an intelligent version of ABF in the sense that it
can adapt without any information on the source positions or period of source
existence/absence [28].

3.6 Source Localization

This section presents a source localization method by analyzing the ICA so-
lution (Eq. 3.9 or equivalently Eq. 3.16). The information on source locations
can be used to solve the permutation problem, as described in the next sec-
tion. Many source localization methods have been proposed. A widely used
method is MUSIC (MUltiple SIgnal Classification) [44], which employs sub-
space analysis with second-order statistics. The ICA-based method, on the
other hand, employs higher-order statistics (or multiple second-order statistics
based on non-stationarity). In this sense, the ICA-based method has certain
advantages over the subspace-based method [39].

The source localization technique that employs ICA is a by-product of
research on frequency-domain BSS. Direction-of-arrival (DOA) estimation
methods [20, 24, 37] have been proposed based on beamforming theory [51].
They calculate directivity patterns as shown in Fig. 3.6 from the separation
matrix W (ejΩ) and then search the null directions, which correspond to the
directions of sources [6]. However, it is simpler and more effective to estimate
the directions directly from the basis vectors ai(ejΩ), which are given by
the pseudoinverse of W (ejΩ). The source localization method [31, 33, 39, 41]
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Fig. 3.7. Nearfield (direct-path) model.

presented in this section is based on this idea. Such an idea was taken for
granted in research on blind identification [12, 47], where the mixing system
is estimated directly.

3.6.1 Basic Theory of Nearfield Model

Let us assume a mixing model that is suitable for source localization. Although
the mixing model (Eq. 3.1) in the time domain is a multi-path mixing model,
we approximate the frequency response Hji(ejΩ) in Eq. 3.5 with a nearfield
(direct-path) model (Fig. 3.7):

Hji

(
ejΩ

) ≈ 1
‖qi − pj‖

e
j
Ω fs
c

(
‖qi − pj‖ − ‖qi‖

)
, (3.22)

where pj and qi are three-dimensional vectors representing the locations of
sensor j and source i, respectively, and c is the propagation velocity of the
signals. We assume that the amplitude is attenuated based on the distance
‖qi−pj‖. We also assume that the phase depends on the difference between the
distances ‖qi −pj‖−‖qi‖ from the source to the sensor and to the origin o =
[0, 0, 0]T. This makes the phase zero at the origin. If the phase 2Ω fs

c

(‖qi−pj‖−
‖qi‖

)
is outside the range (−π, π), this model suffers from spatial aliasing.

Therefore, the model is feasible as long as the condition

f =
Ω

2π
fs <

∣∣∣∣∣ c

2
( ‖qi − pj‖ − ‖qi‖

) ∣∣∣∣∣
is satisfied.

The ICA-based source localization discussed in this section estimates the
location qi of source i from information on sensor locations pj and the sep-
aration matrix W (ejΩ) obtained by ICA (Eq. 3.9). Let us assume here that
the decomposition (Eq. 3.16) of observations x(ejΩ, n) has been obtained in
each frequency bin by the pseudoinverse of W (ejΩ). By comparing Eq. 3.6 and
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Eq. 3.16, we observe the following fact. If the ICA algorithm works well and the
outputs y1(n), . . . , yN (n) are the estimation of the sources s1(n), . . . , sN (n),
then the basis vectors a1(ejΩ), . . . , aN (ejΩ) are also estimations of the mixing
vectors h1(ejΩ), . . . , hN (ejΩ) up to the permutation and scaling ambiguity.

Following the model (Eq. 3.22), the ratio between two elements aji(ejΩ)
and aj′i(ejΩ) of the same basis vector ai(ejΩ) provides the key equation for
source localization:

aji

(
ejΩ

)
aj′i (ejΩ)

=
αiHji

(
ejΩ

)
αiHj′i (ejΩ)

=
‖qi − pj′‖
‖qi − pj‖

e
j
Ω fs
c

(‖qi − pj‖ − ‖qi − pj′‖)
, (3.23)

where the scaling ambiguity αi is cancelled out by calculating the ratio. The
permutation ambiguity still remains. However, if we estimate the location qi

for all i = 1, . . . , N , the set of all estimated locations does not depend on the
permutation.

With respect to the phase differences, the set of vectors qi in the argument
of Eq. 3.23,

‖qi − pj‖ − ‖qi − pj′‖ =
arg
(
aji

(
ejΩ

)
/aj′i

(
ejΩ

) )
(Ω fs)/c

, (3.24)

defines a surface where the difference between the distances from pj and pj′

is constant. The surface is one sheet of a two-sheet hyperboloid.
Alternatively, with respect to the level differences, the set of vectors qi in

the modulus of Eq. 3.23,
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‖qi − pj′‖
‖qi − pj‖

=

∣∣∣∣∣ aji

(
ejΩ

)
aj′i (ejΩ)

∣∣∣∣∣ , (3.25)

defines a sphere where the ratio of the distances from pj and pj′ is constant.
Therefore, with these two equations 3.24 and 3.25, we can estimate the pos-
sible location qi of source i. Such hyperboloid and sphere are defined by a
pair of sensors j and j′. If we select another pair of sensors, a different hyper-
boloid and sphere are obtained. In this way, the location qi is estimated as
the intersection of several hyperboloids and spheres. An example is shown in
Fig. 3.8.

3.6.2 Direction of Arrival Estimation with Far-field Model

Although it is useful to estimate a three-dimensional location, calculating the
intersections of hyperboloids and spheres is computationally demanding. In
many cases, it is sufficient to estimate only the direction-of-arrival (DOA) of
source signal si(n). If we assume the source location qi is far from sensors pj

and pj′ , Eq. 3.24 can be approximated as a far-field model (Fig. 3.9):

[
pj − pj′

]T qi

‖qi‖
=

arg
(
aji

(
ejΩ

)
/aj′i

(
ejΩ

) )
(Ω fs)/c

, (3.26)

and the cosine of angle θjj′
i between the two vectors qi and pj − pj′ can be

calculated as

cos θjj′
i =

[
pj − pj′

]T
qi

‖pj − pj′‖ ‖qi‖

=
arg
(
aji

(
ejΩ

)
/aj′i

(
ejΩ

) )
Ω fs
c

‖pj − pj′‖
. (3.27)

The set of vectors qi that satisfy Eq. 3.26 represents a cone [31], which
is the asymptotic surface of the corresponding hyperboloid (Eq. 3.24). To
estimate the DOA of a source, the intersections of several cones should be
obtained. Let us assume that we select u cones whose corresponding sensor
pairs are (j1, j′1), . . . , (ju, j′u). The set of equations 3.26 for u sensor pairs is
represented as

D
qi

‖qi‖
=

ri

(
ejΩ

)
(Ω fs)/c

, (3.28)

where

D =
[
pj1−pj′

1
, . . . , pju

−pj′
u

]T
,

ri

(
ejΩ

)
=

[
arg

(
aj1i

(
ejΩ

)
aj′

1i (ejΩ)

)
, . . . , arg

(
ajui

(
ejΩ

)
aj′

ui (ejΩ)

) ]T

.
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Fig. 3.9. Far-fieldmodel.

In practical situations, there is no exact solution for Eq. 3.28 because the u
conditions do not coincide exactly. Therefore, we typically solve it with the
least-square approach by using the Moore-Penrose pseudoinverse [33]:

qi

‖qi‖
=

D+ri

(
ejΩ

)
(Ω fs)/c

. (3.29)

If rank(D) ≥ 3, the set of vectors qi that satisfy Eq. 3.29 represents a line in
three-dimensional space, which represents the DOA of a source i.

The upper photo in Fig. 3.10 shows the case where eight microphones and
three loudspeakers are arranged three-dimensionally, and the lower plot shows
the DOA estimation results for this case. Each point shows a location vector
q̄i(Ω) that is normalized to unit norm

q̄i(Ω) =
qi(Ω)

‖qi(Ω)‖ .

The estimations are obtained for all frequencies Ω and all output indexes i.
As shown in the plot, they form clusters, each of which corresponds to the
location of each source.

If the sensor and source locations are limited to a two-dimensional plane,
the dimensionality of location vectors, such as pi and qi, can be reduced to
two. In this case, rank(D) ≥ 2 is sufficient to reach a solution in (3.29).
Moreover, the DOA of source i can be represented simply by the angle θi that
satisfies

q̄i =
[
cos(θi), sin(θi)

]T
, −180◦ < θi ≤ 180◦. (3.30)
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Fig. 3.10. Three-dimensional arrangement of eight microphones and three loud-
speakers (upper picture) and DOA estimation results for this case (lower picture).

Fig. 3.19 shows the case where the sensor and source locations are limited to
two dimensions. The DOA estimations in this case are shown in Figs. 3.20
and 3.21.

If the sensors are arranged linearly and the potential source location is in a
two-dimensional half-plane, which is to one side of the sensor arrangement line,
the angle θjj′

i (0◦ ≤ θjj′
i ≤ 180◦) by Eq. 3.27 provides sufficient information

on the source location. For example, Fig. 3.14 shows DOA estimation results
for such a case with the conditions shown in Fig. 3.13.



3 Blind Source Separation in Frequency Domain 67

3.7 Permutation Alignment

This section discusses how to solve the permutation problem. Various methods
have already been proposed. With reference to the ICA Eq. 3.9 as well as to the
decomposition (Eq. 3.16) of observations x(ejΩ, n), we classify these methods
into four categories based on the following strategies:

1. Applying an operation to the separation matrix W (ejΩ),
2. Utilizing the information on the separation matrix W (ejΩ) itself,
3. Utilizing the information on the basis vectors a1(ejΩ), ...,aN (ejΩ),
4. Utilizing the information on the separated signals Y1(ejΩ, n), ..., YN (ejΩ, n).

The operation of the first strategy basically involves smoothing the separa-
tion matrices in the frequency domain. This has been realized by reducing the
filter length through rectangular windowing in the time domain [11,36,45,48]
or by averaging the separation matrices with adjacent frequencies [48]. How-
ever, this operation makes the separation matrix W (ejΩ) different from the
ICA solution (Eq. 3.9), which may have a detrimental effect on the separation
performance. A possible way to solve this problem is to interleave the ICA
update, e.g., Eq. 3.18, and this operation until convergence. In this sense, this
strategy is related to the third approach to BSS discussed in the introduction.

The second category includes the beamforming approach [20,24,37], where
the directivity patterns formed by the separation matrix are analyzed to iden-
tify the DOA of each source. The third category includes an approach that
utilizes the results of source localization with the basis vectors [31,33,41,47].
The theory and operation for source localization were discussed in Sec. 3.6.
These two approaches from the second and the third categories utilize basi-
cally the same information because the separation matrix W (ejΩ) and the ba-
sis vectors a1(ejΩ), . . . , aN (ejΩ) are directly connected by the pseudoinverse
operation (Eq. 3.14). However, the information used in the third category is
easier to handle since it directly represents the mixing system (Eq. 3.6). The
last category includes an approach that employs the inter-frequency corre-
lations of output signal envelopes [4, 35]. This is particularly effective for a
non-stationary signal such as speech.

In the next two subsections, we explain the approaches of the third and
fourth categories, respectively. Since these two approaches have different but
complementary characteristics, integrating them is a good way to find a better
solution to the permutation problem [41]. Subsection 3.7.3 presents a method
that effectively integrates the two approaches to solve the permutation prob-
lem in a better way. In the following subsections, let ΠΩ be a permutation
corresponding to the inverse P−1(ejΩ) of the permutation matrix of Eq. 3.17.
The permutation problem can be formulated to obtain ΠΩ for every frequency
Ω, which is a mapping from source index k to output index i:

i = ΠΩ(k).
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3.7.1 Localization Approach

The basic idea of this approach is to estimate the locations of sources and
then cluster them to decide the permutation. ICA-based source localization
(Sec. 3.6) estimates the location qi(Ω) of a source that corresponds to the
i-th basis vector ai(ejΩ) for each frequency Ω. Let the following function
“localize” estimate the location in this way:

qi(Ω) = localize
(
Ω,ai

(
ejΩ

) )
If the DOA estimation alone is adequate, the location vector qi(Ω) should be
normalized to the unit norm (see Eq. 3.30). If the locations of sensors and
sources are limited to a two-dimensional plane, we simply obtain θi(Ω) that
satisfies Eq. 3.30 as a DOA estimation.

Then, we employ a clustering algorithm to find N clusters C1, . . . , CN

formed by estimated locations q̄i(Ω) or θi(Ω). Each Ck corresponds to the
location of source k. Let the following function “clustering” perform clustering
for all of the estimated locations q̄i(Ω) and return the centroid ck and the
variance σ2

k of each cluster Ck:[
c1, σ1, . . . , cN , σN

]
= clustering

(
∀Ω, q̄1(Ω), . . . , q̄N (Ω)

)
,

ck =
∑

q̄∈Ck

q̄

|Ck| ,

σ2
k =

∑
q̄∈Ck

‖ck − q̄‖2

|Ck| ,

where |Ck| is the number of vectors in the cluster. The optimization criterion
for clustering is to minimize the total sum

∑N
k=1 σ

2
k of the variances. This

optimization is efficiently performed with the k-means clustering algorithm
[16]. Once we have N clusters, permutations for all frequencies Ω can be
decided by

ΠΩ = argminΠΩ(k)

N∑
k=1

∥∥∥ck − q̄ΠΩ(k)(Ω)
∥∥∥2

. (3.31)

The advantage of this source localization approach is that it is very simple
to decide the permutation ΠΩ for each frequency once the centroids of N
clusters are obtained. However, the disadvantage of this approach is that the
estimated locations or DOAs, and thus the permutations ΠΩ , are not accurate
for some frequencies. Such situations typically arise at low frequencies, where
the phase difference caused by the sensor spacing is very small, as shown in
Fig. 3.14.
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Fig. 3.11. Envelopes of two output signals at different frequencies.

3.7.2 Correlation Approach

This subsection presents an approach to permutation alignment based on
the inter-frequency correlation of separated signals. The correlation should
be calculated for the amplitude |yi(ejΩ, n)| or (log-scaled) power |yi(ejΩ, n)|2
of separated signals. The correlation of raw complex-valued signals yi(ejΩ, n)
would be very low due to the STFT property. Here, we use the amplitude
(so-called envelope)

vΩ
i (n) =

∣∣∣yi

(
ejΩ, n

) ∣∣∣
of a separated signal yi(ejΩ, n). The correlation of two sequences x(n) and
y(n) is usually calculated by the correlation coefficient

cor(x, y) = (μxy − μx μy)/(σx σy),

where μx is the mean and σx is the standard deviation of x(n). Based on this
definition, cor(x, x) = 1, and cor(x, y) = 0 if x(n) and y(n) are uncorrelated.

Envelopes have high correlations at neighboring frequencies if separated
signals correspond to the same source signal. Fig. 3.11 shows an example.
Two envelopes vΩ1

1 and vΩ2
1 , as well as vΩ1

2 and vΩ2
2 , are highly correlated. Ω1

represents the frequency 1562 Hz = Ω1
2π fs, Ω2 was set according to 1566 Hz =

Ω2
2π fs. Thus, calculating such correlations helps us to align permutations.

A simple criterion for deciding ΠΩ is to maximize the sum of the correla-
tions between neighboring frequencies within distance δ:
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ΠΩ = argmaxΠ

∑
|Ω̃−Ω|≤δ

N∑
i=1

cor
(
vΩ
ΠΩ(i), v

Ω̃
Π

Ω̃
(i)

)
, (3.32)

where Π
Ω̃

is the permutation at frequency Ω̃. This criterion is based on local
information and has a drawback in that mistakes in a narrow range of fre-
quencies may lead to the complete misalignment of the frequencies beyond
that range.

To avoid this problem, the method in [35] does not limit the frequency
range in which correlations are calculated. It decides permutations one by one
based on the criterion

ΠΩ = argmaxΠ

N∑
i=1

cor

(
vΩ
ΠΩ(i),

∑
Ω̃∈F

vΩ̃
Π

Ω̃
(i)

)
, (3.33)

where F is a set of frequencies in which the permutation is decided. This
method assumes high correlations of envelopes even between frequencies that
are not close neighbors. This assumption is not satisfied for all pairs of fre-
quencies, e.g., vΩ2

i and vΩ3
i in Fig. 3.11 do not have a high correlation (Ω3

corresponds to the Frequency 3516 Hz = Ω3
2π fs). Therefore, this method still

has the drawback of permutations possibly being misaligned at many frequen-
cies.

If a source signal has a harmonic structure, as in the case of speech, there
are strong correlations between the envelopes of a fundamental frequency f0
and its harmonics 2f0, 3f0, . . . . Therefore, maximizing the correlation among
harmonics is another idea for permutation alignment [41]:

ΠΩ = argmaxΠ

∑
Ω̃∈H(Ω)

N∑
i=1

cor
(
vΩ
ΠΩ(i), v

Ω̃
Π

Ω̃
(i)

)
, (3.34)

where H(Ω) provides a set of harmonic frequencies of Ω. The permutation
accuracy improves if we take the harmonic structure of the signal into con-
sideration. However, maximizing Eq. 3.32 and Eq. 3.34 simultaneously is not
very straightforward and is computationally expensive.

3.7.3 Integrated Method

This subsection presents a method that integrates the two approaches dis-
cussed in the last two subsections. The intention behind this integration is
to solve the permutation problem robustly and precisely. Let us review the
characteristics of the above two approaches.

• Robustness: The localization approach is robust since a misalignment at
one frequency does not affect other frequencies. The correlation approach
is not robust since a misalignment at one frequency affects the results of
other frequencies and may cause consecutive misalignments.
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• Preciseness: The localization approach is not precise since the evaluation
is based on a direct-path approximation (3.22) of the mixing system. The
correlation approach is precise as long as signals are well separated by
ICA, since the measurement is based on the separated signals themselves.

To benefit from both advantages, namely the robustness of the localization ap-
proach and the preciseness of the correlation approach, the integrated method
first decides permutations with the localization approach and then refines
the solution with the correlation approach. Implementation of the integrated
method consists of the following four steps [41]:

1. Decide the permutations by the localization approach (3.31) at certain
frequencies where the confidence of source localization is sufficiently high,

2. Decide the permutations based on neighboring correlations (3.32) as long
as the criterion gives a clear-cut decision,

3. Decide the permutations at certain frequencies where the correlation
among harmonics (3.34) is sufficiently high,

4. Decide the permutations for the remaining frequencies based on neighbor-
ing correlations (3.32).

The key to the first step is fixing a permutation only if the confidence of
source localization is sufficiently high. We assume that the confidence is high
if the squared distance between an estimated location and its corresponding
centroid is smaller than the variance, i.e., ‖ck − q̄ΠΩ(k)(Ω)‖2 < σ2

k. In the
second step, permutations are decided one by one for the frequency Ω where
the sum of the correlations with fixed frequencies Ω̃ ∈ F within distance |Ω̃−
Ω| ≤ δ is the maximum. This is repeated as long as the maximum correlation
sum is larger than a threshold thcor. In the third step, the permutations are
decided for frequencies Ω where the sum of the correlations among harmonics
is larger than a threshold thha. The last step decides the permutations for the
remaining frequencies with the same criterion as the second step.

Let us discuss the advantages of the integrated method. The main advan-
tage is that it does not cause a large misalignment as long as the permutations
fixed by the localization approach are correct. Moreover, the correlation part
compensates for the lack of preciseness of the localization approach. The cor-
relation part consists of three steps (steps 2, 3, 4) for two reasons. First,
the harmonics part works well if most of the other permutations are fixed.
Second, the method becomes more robust by quitting step 2 if there is no
clear-cut decision. With this structure, we can avoid fixing the permutations
for consecutive frequencies without high confidence. As shown in the exper-
imental results (Sec. 3.10), this integrated method is effective in separating
many sources.
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3.8 Scaling Alignment

The scaling ambiguity Λ(ejΩ) in Eq. 3.17 is easily solved by calculating
the (pseudo)-inverse of a separation matrix W (ejΩ) [30, 35]. The frequency-
domain counterpart of the BSS goal (Eq. 3.3) is

yi

(
ejΩ, n

) != HJii

(
ejΩ

)
si
(
ejΩ , n

)
, (3.35)

where Ji can be selected according to each output i but should be the same for
all frequencies Ω. Let us assume that the ICA and the permutation problem
have been solved. Then the ai(ejΩ) term in Eq. 3.16 is close to the hi(ejΩ)
term in Eq. 3.6:

hi

(
ejΩ

)
si
(
ejΩ, n

) ≈ ai

(
ejΩ

)
yi

(
ejΩ, n

)
. (3.36)

By substituting Eq. 3.35 into Eq. 3.36, we have the condition for scaling
alignment:

hi

(
ejΩ

) ≈ ai

(
ejΩ

)
hJii

(
ejΩ

)⇔ aJii

(
ejΩ

) ≈ 1.

This condition, i.e., aJii(e
jΩ) = 1, is attained by

W
(
ejΩ

) ← Λ
(
ejΩ

)
W
(
ejΩ

)
,

Λ
(
ejΩ

)
= diag

[
aJ11

(
ejΩ

)
, . . . , aJN N

(
ejΩ

) ]
,

where aji

(
ejΩ

)
= [W +(ejΩ)]ji is an element of the pseudoinverse of W (ejΩ).

3.9 Spectral Smoothing

The frequency-domain BSS described in this chapter is influenced by the cir-
cularity of discrete frequency representation. The circularity refers to the fact
that frequency responses sampled at L points with an interval fs/L (fs: sam-
pling frequency) represent a periodic time-domain signal whose period is L/fs.
Since this filter is unrealistic, we usually use its one-period operation. How-
ever, such one-period filters may cause a problem. Fig. 3.12 shows impulse re-
sponses from a source sk(n) to an output yi(n) defined by Eq. 3.47. Responses
on the left u11(l) correspond to the extraction of a target signal, and those on
the right u14(l) correspond to the suppression of an interference signal. The
upper responses are obtained with infinite-length filters, and the lower ones
with one-period filters. We can see that the one-period filters create spikes,
which distort the target signal and degrade the separation performance. Note
that these spikes are inevitable in the frequency-domain BSS, since we have
an ICA solution in the frequency domain.
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Fig. 3.12. Impulse responses uik(l) obtained with periodic filters (above) and with
their one-period operation (below).

3.9.1 Windowing

To solve this problem, we need to control the frequency responsesWij(ejΩ) so
that the corresponding time-domain filter wij(l) does not rely on the circular-
ity effect whereby adjacent periods work together to perform some filtering.
The most widely used approach is spectral smoothing, which is realized by
multiplying a window g(l) that tapers smoothly to zero at each end, such as a
Hanning window g(l) = 1

2 (1 + cos 2πl
L ). This makes the resulting time-domain

filter wij(l) g(l) fit length L and have small amplitude around the ends [7]. As
a result, the frequency responses Wij(ejΩ) are smoothed as

W̃ij

(
ejΩ

)
=

1
2π

2π∫
φ=0

G
(
ejφ
)
Wij

(
ej(Ω−φ)

)
dφ,

where G(ejΩ) is the frequency response of g(l). If a Hanning window is used,
the frequency responses are smoothed as

W̃ij

(
ejΩ

)
=

1
4

[
Wij

(
ej(Ω−ΔΩ)

)
+ 2Wij

(
ejΩ

)
+Wij

(
ej(Ω+ΔΩ)

) ]
, (3.37)

since the frequency responses G(ejΩ) of the Hanning window are G(ej 0) = 1
2 ,

G(ejΔΩ) = G(ej(2π−ΔΩ) = 1
4 , and zero for the other frequency bins. ΔΩ is

specified as ΔΩ = 2π
L .
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The windowing successfully eliminates the spikes. However, it changes the
frequency response from Wij(ejΩ) to W̃ij(ejΩ) and causes an error. Let us
evaluate the error for each row wi(ejΩ) = [Wi1(ejΩ), . . . , WiM (ejΩ)]T of the
ICA solution W (ejΩ). The error is

ei

(
ejΩ

)
= min

αi

[
w̃i

(
ejΩ

)− αi wi

(
ejΩ

) ]
= w̃i

(
ejΩ

)− w̃H
i

(
ejΩ

)
wi

(
ejΩ

)∥∥wi (ejΩ)
∥∥2 wi

(
ejΩ

)
, (3.38)

where w̃i(ejΩ) = [W̃i1(ejΩ), . . . , W̃iM (ejΩ)]T and αi is a complex-valued
scalar representing the scaling ambiguity of the ICA solution. The minimiza-
tion minαi

is based on least-squares, and it can be represented by the projec-
tion of w̃i(ejΩ) to wi(ejΩ). We can evaluate the error for the Hanning window
case by substituting Eq. 3.37 for w̃i(ejΩ) of Eq. 3.38:

ei

(
ejΩ

)
=

1
4

[
e−

i

(
ejΩ

)
+ e+

i

(
ejΩ

) ]
, (3.39)

where

e−
i

(
ejΩ

)
= wi

(
ej(Ω−ΔΩ)

)
− wH

i

(
ej(Ω−ΔΩ)

)
wi

(
ejΩ

)∥∥wi (ejΩ)
∥∥2 wi

(
ejΩ

)
, (3.40)

e+
i

(
ejΩ

)
= wi

(
ej(Ω+ΔΩ)

)
− wH

i

(
ej(Ω+ΔΩ)

)
wi

(
ejΩ

)∥∥wi (ejΩ)
∥∥2 wi

(
ejΩ

)
. (3.41)

This e−
i (ejΩ) [or e+

i (ejΩ)] represents the difference between two vectors
wi(ejΩ) and wi(ej(Ω−ΔΩ)) [or wi(ej(Ω+ΔΩ))]. Since these differences are usu-
ally not very large, the error ei does not seriously affect the separation if we
use a Hanning window for spectral smoothing.

3.9.2 Minimizing Error by Adjusting Scaling Ambiguity

Even if the error caused by the windowing is not very large, the separation
performance is improved by minimizing the error [40]. The minimization is
performed by adjusting the scaling ambiguity of the ICA solution before the
windowing. LetDi(ejΩ) be a complex-valued scalar for the scaling adjustment:

wi

(
ejΩ

)← Di

(
ejΩ

)
wi

(
ejΩ

)
. (3.42)

We want to find Di(ejΩ) such that the error (Eq. 3.38) is minimized. The
scalar Di(ejΩ) should be close to 1 to avoid any great change in the predeter-
mined scaling. Thus, an appropriate total cost to be minimized is

J =
∑
Ω

Ji(Ω), Ji(Ω) =

∥∥ei

(
ejΩ

) ∥∥2∥∥wi (ejΩ)
∥∥2 + β

∣∣∣Di

(
ejΩ

)− 1
∣∣∣2, (3.43)
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where β is a parameter indicating the importance of maintaining the pre-
determined scaling. With the Hanning window, the error after the scaling
adjustment is easily calculated by substituting Eq. 3.42 for Eq. 3.39:

ei

(
ejΩ

)
=

1
4

[
Di

(
ej(Ω−ΔΩ)

)
e−

i

(
ejΩ

)
+Di

(
ej(Ω+ΔΩ)

)
e+

i

(
ejΩ

) ]
, (3.44)

where e−
i (ejΩ) and e+

i (ejΩ) are defined in Eq. 3.40 and Eq. 3.41, respectively.
The minimization of the total cost can be performed iteratively by

Di

(
ejΩ

)← Di

(
ejΩ

)− μ ∂J
∂Di (ejΩ)

(3.45)

with a small step size μ. With the Hanning window, the gradient is

∂J
∂Di (ejΩ)

=
∂Ji(Ω −ΔΩ)
∂Di (ejΩ)

+
∂Ji(Ω +ΔΩ)
∂Di (ejΩ)

+
∂Ji(Ω)
∂Di (ejΩ)

(3.46)

=
eH

i

(
ej(Ω−ΔΩ)

)
e+

i

(
ej(Ω−ΔΩ)

)
+ eH

i

(
ej(Ω+ΔΩ)

)
e−

i

(
ej(Ω+ΔΩ)

)
8
∥∥wi (ejΩ)

∥∥2

+2β
[
Di

(
ejΩ

)− 1
]
.

With Eqs. 3.44 to 3.46, we can optimize the scalar Di(ejΩ) for the scal-
ing adjustment and minimize the error caused by the spectral smoothing
(Eq. 3.37) with the Hanning window.

3.10 Experimental Results

The performance of BSS is evaluated by a signal-to-interference ratio (SIR),
which is the power ratio between the target component and the interference
components. Let uik(l) be the impulse responses from source sk(n) to sepa-
rated signal yi(n):

uik(l) =
M∑

j=1

L−1∑
τ=0

wij(τ)hjk(l − τ). (3.47)

Then, the SIR of output i is calculated as

SIRi = 10 log10

〈∣∣∣∑
l

uii(l)si(n− l)
∣∣∣2〉

n〈∣∣∣ ∑
k �=i

∑
l

uik(l)sk(n− l)
∣∣∣2〉

n

(dB), (3.48)

where 〈·〉n denotes the averaging operator over time n.
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Fig. 3.13. Experimental conditions with linear array.
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Fig. 3.14. DOA estimations by (3.27) with four sources.

Table 3.1. Separation performance with linear array.

#sources / position 2 / a c 3 / a b d 4 / a b c d

Spectral smoothing no yes no yes no yes

Average SIR at microphones (dB) 0.1 -2.9 -4.6

Average SIR of output (dB) 20.1 22.3 14.7 17.0 9.3 11.5

Execution time (s) 5.2 5.2 8.0 8.1 12.3 12.4

3.10.1 2 × 2, 3 × 3, and 4 × 4 with Linear Array

We performed experiments to separate speech signals in an environment whose
conditions are summarized in Fig. 3.13. Our experiments involved two, three
and four sources whose locations are indicated in Fig. 3.13. The individual
selections are indicated in Tab. 3.1. The sensors were arranged linearly, and
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Fig. 3.15. Comparison of different methods for solving permutation problem.

the number of sensors used was the same as the number of sources. We used
filters of length L = 2048 because this length provided the best performance
under the conditions. The BSS program was coded in Matlab� and run on
Athlon XP 3200+.

The results shown in Tab. 3.1 are the average SIRs of output for eight
combinations of 7-second speeches. We can see that the spectral smoothing
discussed in Sec. 3.9 improves the average SIR for every setup. The short
execution time, as shown in Table 3.1, enables the BSS system to perform in
real time if the number of source signals is not very large.

Fig. 3.14 shows DOA estimations for mixtures of four sources obtained
with Eq. 3.27. Fig. 3.15 shows SIRs for three and for four sources with the
different methods for solving the permutation problem discussed in Sec. 3.7.
Here, “Localization” is the localization (DOA) approach (Eq. 3.31) alone, “Cor-
relation” is the correlation approach (Eq. 3.32) alone, “Integrated” is the in-
tegrated method, and “Optimal” is the optimal solution obtained by utilizing
the si(n) and hji(l) information. The performance of “Localization” was sta-
ble but insufficient. The performance of “Correlation” was unstable and very
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Table 3.2. Experimental conditions.

Sampling rate 8 kHz
Data length 2 s
Window Hanning
Frame length 1024 points (128 ms)
Frame shift 256 points (32 ms)
ICA algorithm Infomax (complex valued)

poor in the four-source cases. The “Integrated” method performed very well,
achieving nearly the same results as those by “Optimal”.

We carried out experiments with two sources arriving from the same di-
rection and two microphones using speech signals convolved with impulse
responses measured in a room [32]. The room layout is shown in Fig. 3.16.
The sources are located in the same direction from the microphone pair. The
reverberation time of the room was 130 ms at 500 Hz. Other conditions are
summarized in Tab. 3.2. The experimental procedure is as follows.

First, we apply ICA to observed signals xj(n) (j = 1, 2) and calculate
separation matrix W (ejΩ) for each frequency bin. Then we estimate radii R̂1

and R̂2 of two spheres on which each source signal exists by using W−1(ejΩ)
and Eq. 3.25, and the permutation is aligned so that R̂2 ≥ R̂1. In order to
evaluate the reliability of the solution provided by the estimated spheres, we
introduce a threshold parameter α ≥ 1, and we accept solutions only for
frequency bins that satisfy the condition R̂2/R̂1 ≥ α. We then apply the
correlation-based method to the remaining frequency bins. The permutation
problem is solved simply by using the geometric information when α = 1 and
simply by using the correlation when α = ∞.
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We define SIR as the average of SIR1 and SIR2 in order to cancel out
the effect of the input SIR. We measured SIRs for 12 combinations of source
signals using two male and two female speakers and varying the threshold
parameter α.

Fig. 3.17 shows the experimental results. When we solve the permutation
problem using only the estimated spheres (α = 1), the performance is in-
sufficient. In contrast, the performance we obtain using only the correlation
(α = ∞) is unstable. The combination of both methods yields good and stable
performance. These tendencies are similar to the results we obtain when we
use DOAs as geometric information [41].

We obtained good performance when the threshold parameter α was rela-
tively large. When α was 8 to 16, the permutation of about 1/5 to 1/10 of the
frequency bins was determined by the geometric information. This result sug-
gests that we should use this geometric information for frequency bins where
the estimation is highly reliable.

Fig. 3.18 shows the spatial gain patterns of the separation filters in one
frequency bin (1000 Hz) drawn with the near-field model. The gain of the
observed signal at microphone 1 is defined as 0 dB. We can see that the
separation filter forms a spot null beam focusing on the interference signal.
When source signals are located in different directions, a separation filter
utilizes the phase difference of the input signals and makes a directive null
toward the interference signal [6], whereas both the phase and level differences
are utilized to make a regional null when signals come from the same direction.
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Fig. 3.18. Example spatial gain patterns of separation filters (around 1000 Hz).

3.10.2 6 × 8 with Planar Array

Next, we carried out experiments on separating six sources with a planar array
of eight microphones. The room layout and other experimental conditions are
shown in Fig. 3.19. All six sources produce 6-second speech signals, and two
came from the same direction. The filter length was again L = 2048 for an
8-kHz sampling rate.

Let us explain the method for solving the permutation problem in this
situation. First, the source directions were estimated with small-spacing mi-
crophone pairs (1-3, 2-4, 1-2 and 2-3 shown in the right-top corner of Fig. 3.19).
This was performed based on Eqs. 3.26, 3.28 and 3.29. Fig. 3.20 shows a his-



3 Blind Source Separation in Frequency Domain 81

-150 deg
s6

s1
2 cm

4 cm

445 cm

35
5 

cm

Microphones (omnidirectional, height: 135 cm)
Loudspeakers (height: 135 cm)

120 cm

mic.1

mic.2

mic.3

mic.4

mic.5

mic.6

mic.7

180 cm

mic.8

s2

s3

s4

s5

30 deg

150 deg

225 cm

Room height: 250 cm

Reverberation time: 130 ms

60 cm
30 cm

90 deg

-30 deg

Fig. 3.19. Experimental conditions for planar array case.

.

Fig. 3.20. Histogram of DOAs estimated with small spacing microphone pairs.

togram of the estimated DOAs. There are five clusters in this histogram, and
one cluster is twice the size of the others. This implies that two sources came
from the same direction (about 150◦). We solved the permutation problem for
the other four sources by using this DOA information as shown in the upper
plot of Fig. 3.21.

Then, to distinguish between the two sources that came from the same
direction, the spheres of these sources were estimated with large-spacing mi-
crophone pairs (7-5, 7-8, 6-5 and 6-8 shown in the center of Fig. 3.19). This was
performed based on Eq. 3.25. The lower plot of Fig. 3.21 shows the radii of the
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Fig. 3.21. Permutation solved by using estimated DOAs (upper) and spheres
(lower).

spheres estimated with microphone pair 7-5. Although the radius estimations
had large variances, it provided sufficient information to distinguish between
the two sources. Consequently, the signal components of all frequencies were
classified into six clusters. We decided the permutation only for frequency bins
where the classification was reliable, as discussed in Sec. 3.7.3.

To show the effectiveness of this method, we compared SIRs by three differ-
ent methods for the permutation problem. Tab. 3.3 shows the results. The last
row, “DOA + Sphere + Correlation”, shows the results obtained with the in-
tegrated method. The two methods for comparison were “Correlation” where
only the correlations (Eq. 3.32) were maximized, and “DOA + Correlation”
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Table 3.3. Separation performance with planar array measured by SIR (dB).

SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 Average

SIR at microphone 1 -8.3 -6.8 -7.8 -7.7 -6.7 -5.2 -7.1

Correlation 4.4 2.6 4.0 9.2 3.6 -2.0 3.7

DOA + Correlation 9.6 9.3 14.7 2.7 6.5 14.0 9.4

DOA + Sphere + Correlation 10.8 10.4 14.5 7.0 11.0 12.2 11.0

where only the DOA information was used for the source localization step in
the integrated method. To see how much the SIRs improved, we also measured
the SIR of the mixture observed at microphone 1 (“SIR at microphone 1”). The
effectiveness of the two integrated methods can again be observed. If we com-
pare the results of “DOA + Correlation” with “DOA + Sphere + Correlation”,
the improvement of the latter over the former is apparent for sources 4 and 5,
which came from the same direction. This means that the sphere information
was effective again in distinguishing between sources coming from the same
direction (Fig. 3.18). The BSS program was again coded in Matlab� and run
on Athlon XP 3200+. The computational time for separating six speeches of
6 seconds was around one minute.

3.10.3 2 × 2 Moving Sources

In most realistic applications, the source location may change. A mixing sys-
tem is time-varying when source signals move. A naive approach for tracking a
time-varying system is an online algorithm that updates the separation system
sample by sample [3, 23].

Indeed, an online algorithm can track a time-varying system; however, its
performance is generally worse than a batch algorithm, which can employ a
number of samples, when the system is stationary. Although we are dealing
with moving sources, we do not want to degrade the performance for fixed
sources.

In this section, we describe a real-time BSS method [34] that employs
frequency-domain ICA with a blockwise batch algorithm. This algorithm
achieves better separation performance than an online algorithm for fixed
source signals.

We measured the BSS performance using ICA. Fig. 3.22 shows the aver-
age and standard deviation of SIR for fixed sources (the target is at A and
the interference at C in Fig. 3.23). This indicates that the blockwise batch
algorithm outperforms the online algorithm (step size μ is tuned to optimize
the performance) when we use the update equation 3.18. In addition, the de-
viation of the batch algorithm is smaller than that of the online algorithm,
which is why we adopt the blockwise batch algorithm. We used block size Tb

= 1.0 s in the experiments.
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We carried out experiments using speech signals recorded in a room. The
reverberation time of the room was 130 ms. We used two omni-directional
microphones with an inter-element spacing of 4 cm. The layout of the room
is shown in Fig 3.23. The target source signal was first located at A and then
moved to B at a speed of 30 deg/s. The interference signal was located at C
and moved to D at a speed of 40 deg/s.

The step-size parameter μ in Eq. 3.18 affects the separation performance of
BSS when the block size changes. We carried out preliminary experiments and
chose μ to optimize the performance for each block size. The other conditions
are summarized in Tab. 3.4. We measured SIRs with 30 combinations of source
signals, using three male and three female speakers, and then averaged them.

We investigated the BSS performance for moving sources using the block-
wise batch algorithm. Fig. 3.24 shows the SIR for a moving target (solid line)
and that for a moving interference (dotted line). We can see that the SIR is
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Table 3.4. Experimental conditions.

Common Sampling rate fs = 8 kHz
Window = Hanning
Reverberation time TR = 130 ms

ICA part Frame length TICA = 1024 points (128 ms)
Frame shift = 256 points (32 ms)
g = 100.0
μ = optimized for block size Tb

Number of iterations NI = 100
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Fig. 3.24. SIR of blockwise batch algorithm without postprocessing. Target and
interference signals moved at 10 s (Tb = 1.0 s)

not degraded even when the target moves. By contrast, interference movement
causes a decline in the SIR.

This can be explained by the directivity pattern of the separation system
obtained by ICA. The solution of frequency-domain BSS works in the same
way as an adaptive beamformer that forms a spatial null toward an interfer-
ence signal (Fig. 3.6). Because of this characteristic, BSS using ICA is robust
with a moving target signal but fragile with a moving interference signal. Tak-
ing advantage of this nature, we can estimate residual crosstalk components,
even when the interference signal moves, by employing postprocessing in the
second stage [34].

3.11 Conclusion

This chapter presented a comprehensive description of frequency-domain BSS
as well as various techniques that enable frequency-domain BSS to be used
for separating many speech signals mixed in a real-room environment. The
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permutation problem has been a major concern with the frequency-domain
approach. However, with the methods described in Sec. 3.7, this problem can
be solved even in a practical situation. Moreover, the locations of sources
can be estimated by the method described in Sec. 3.6. This ability is unique
to the frequency-domain approach and cannot be seen in time-domain BSS.
Our experimental results show that the separation performance was fairly
good and the computational cost was feasible. These results demonstrate the
effectiveness of frequency-domain BSS.
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Speaker localization and automatic tracking in a reverberant environment are
challenging and often needed tasks in many audio-based applications includ-
ing hands-free mobile phones, speech recognition, and teleconferencing. In this
chapter, we present signal processing algorithms for reliable location estima-
tion of audio sources. We discuss high-quality techniques based on time-delay
estimation using only two microphones. These algorithms can be used to es-
timate directions of sound waves travelling to a one-dimensional microphone
array. We focus on this basic situation because it frequently occurs in practice.
Furthermore, a precise and robust algorithm for time-delay estimation is fun-
damental to multi-dimensional source localization tasks as well. We present an
automatically steered microphone array for speaker tracking using an adaptive
beamformer in connection with a direction estimation subsystem. This array
is very well suited to adjust the main lobe of the beam pattern to the direction
of a moving speaker while suppressing sounds from other directions. In addi-
tion, the system is capable to track speaker movements or to switch among
speakers in rooms with modest reverberation. The automatically steered mi-
crophone array uses a computationally efficient multi-input FFT filterbank.
MATLAB� programs are available to facilitate algorithm implementation and
testing by interested readers.

4.1 Introduction

Acoustical source localization is a well developed feature of the human audi-
tory system. Using only two sensors, this biological system has a remarkable
precision in resolving the position of speakers and other acoustical sources.
The human ears in conjunction with the brain can accurately localize and
track sources in a sound field around the head except two small ambiguity
regions (cones of confusion) [1]. In addition, noise and reverberation do not
greatly influence the precision of source localization. Achieving such a perfor-
mance using two microphones and digital signal processing is a rather chal-
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lenging task. In this chapter, our primary goal is the presentation of robust
acoustical source localization algorithms which can be used to steer adaptive
microphone arrays. Multiple microphones in array configurations offer many
advantages over systems with a single microphone. Due to miniature piezo-
electric sensors and powerful digital signal processors, microphone arrays can
now be built in a compact and inconspicuous design. This leads to a number of
applications of automatically steered microphone arrays like voice communi-
cations in cars, hands-free mobile phones, speech recognition, and teleconfer-
encing. With these applications in mind, we focus on one-dimensional source
localization since knowledge of the angle of arrival (azimuth in the xy-plane
of a Cartesian coordinate system) is sufficient to adjust one-dimensional mi-
crophone arrays. To determine the position of a speaker in a room, we can
use a multi-dimensional array or separate one-dimensional arrays.

The two-microphone technique of delay estimation is fundamental to all
multi-dimensional source localization algorithms because different delay mea-
surements can be combined by refined procedures to estimate a speaker’s
position and movement. However, extensions to multiple microphones and
localization of multiple sources will not be treated in this chapter. Further
readings on multi-microphone techniques for multi-source localization can be
found in recent books [2–4].

The basic setup using two microphones is sketched in Fig. 4.1. If we assume
far-field conditions (plane wave propagation), the estimation of azimuth Φ can
easily be carried out by measuring the Time Delay Difference (TDD) between
the two microphone signals.

0�r2 �r1

λ Source

�er

�r

Φ

Fig. 4.1. Basic two-microphone layout for source localization (azimuth Φ of arrival
direction, single frequency plane wave with wavelength λ).

Denoting microphone distance d = ‖�r2 − �r1‖, sound velocity vs, and TDD
Δt, we get

Φ = arccos
vsΔt

d
. (4.1)
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Due to the nonlinear relationship, accuracy is poor for Φ near 0° and 180°. In
addition, discrete-time processing of the microphone signals results in quan-
tized TDD estimates. If we estimate azimuth Φ from TDDs with accuracy
±T

2 (sampling interval T = 1/fs), we can expect an error behavior as shown
in Fig. 4.2. Curves plotted in Fig. 4.2 obey the relationship
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Fig. 4.2. Maximum azimuth error magnitude as a function of azimuth Φ and sam-
pling frequency fs.

δΦmax(Φ) ≈ min
(
δΦ0,

β

|sinΦ|
)
, (4.2)

with β = vs
2dfs

< 1, and δΦ0 = arccos (1 − β). As a consequence, we must
use oversampling or a two-dimensional array (e.g. a quadratic array layout
with 4 microphones) to reduce errors at Φ ≈ 0° and Φ ≈ 180°. Later in this
chapter, we will present an algorithm which exhibits an improved performance.
It should be noted that Fig. 4.2 only shows the influence of delay quantization.
In addition, errors resulting from TDD estimation must also be taken into
account.

According to (4.2), the azimuth error at a given sampling frequency fs
can be reduced by increasing microphone distance d. For practical reasons,
however, array size is limited in most situations like car cockpits. Additional
problems affecting the performance of source localization algorithms are in-
troduced by the specific nature of speech signals exhibiting speech pauses and
segments with different spectral contents, and by noise and reverberation.

In the next sections, we will discuss algorithms which are rather robust in
regard to these obstacles. We begin with a classical method using the General-
ized Cross-Correlation (GCC) function [5]. The GCC method can efficiently be
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implemented using the Fast Fourier Transform (FFT). Motivated by binaural
signal processing, an algorithm based on Interaural Time Differences (ITD) is
presented next. This method offers an azimuth estimation with high accuracy
but requires more computational load [6]. Afterwards, two source localiza-
tion algorithms involving adaptive filters are described. One technique uses an
adaptive eigenvalue decomposition to estimate TDDs [7]. This promising tech-
nique employes a normalized Least Mean-Square (LMS) adaptive algorithm
suitable for implementation using the FFT. We conclude with a presentation
of an adaptive microphone array comprised of an FFT filterbank beamformer
and a source localization subsystem to automatically steer the beam pattern
towards a moving speaker.

In order to facilitate implementation, algorithm variables and equations
are formulated in a discrete-time framework. We do not use continuous-time
variables, as sometimes found in the literature on TDD estimation. In addi-
tion, MATLAB� programs and test data for all algorithms presented in this
chapter are available at www.nt.tuwien.ac.at/dspgroup/gdobling.html.
Testing and comparison of the algorithms can thus be carried out with mini-
mal effort.

4.2 Source Localization Using the Generalized
Cross-Correlation Function

If we assume an ideal wave propagation model and an array with two mi-
crophones (see Fig. 4.1), then the analog (continuous-time) sensor signals are
given by

xa1(t) = sa(t) + va1(t) (4.3)
xa2(t) = sa(t− τ0) + va2(t), (4.4)

with source signal sa(t) and noise disturbances va1,2(t). In (4.3), (4.4), we have
neglected any signal attenuation and spreading (caused by room acoustics).
The discrete-time representations of the bandlimited sensor signals are

x1(n) = s(n) + v1(n) (4.5)
x2(n) = sa(nT − τ0)︸ ︷︷ ︸

sτ0(n)

+v2(n), (4.6)

with sampling interval T . In general, signal delay τ0 is not an integer multiple
of T . Therefore, sτ0(n) is not simply a delayed version of s(n). Only if τ0 =
n0T , then sτ0(n) = s(n− n0). However, using the reconstruction property of
a bandlimited analog signal

sa(t) =
∞∑

k=−∞
s(k)

sin π
T (t− kT )

π
T (t− kT )

, (4.7)
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we obtain

sτ0(n) = sa(nT − τ0) =
∞∑

k=−∞
s(k) ha

(
(n− k)T − τ0

)︸ ︷︷ ︸
hτ0(n− k)

, (4.8)

with hτ0(n) = sin π(n−τ0/T )
π(n−τ0/T ) . Thus, the discrete-time representation of the de-

layed microphone signal is an interpolated version of the non-delayed signal.
An ideal lowpass interpolation function with parameter τ0/T is used. If we
determine signal delays in time domain, we have to use a sufficiently high sam-
pling frequency or some kind of signal interpolation. As an alternative, signal
delays can be obtained in the frequency domain from the phase spectrum.
Application of the Fourier Transform to (4.5), (4.6) results in

X1

(
ejΩ

)
= S

(
ejΩ

)
+ V1

(
ejΩ

)
(4.9)

X2

(
ejΩ

)
= S

(
ejΩ

)
e−jΩ

τ0
T + V2

(
ejΩ

)
. (4.10)

Assuming zero-mean uncorrelated noise disturbances, the cross-power spec-
trum is

Sx1x2(Ω) = E
{
X1

(
ejΩ

)
X∗

2

(
ejΩ

)}
= Sss(Ω) ejΩ

τ0
T , (4.11)

where E{·} means expectation and ∗ denotes complex conjugate operation. A
computation of signal delays τ0 from (4.11) requires a robust phase unwrap-
ping algorithm and a least-squares procedure involving phase measurements
at a set of different frequencies. In the context of microphone arrays, robust
phase unwrapping has been proposed in [8, 9]. However, these methods pose
less robustness regarding room reverberation.

An alternative to phase unwrapping is delay estimation from the general-
ized cross-correlation (GCC) Rx1x2(n):

τ0
T

≈ n0 = arg max
n
Rx1x2(n), (4.12)

with

Rx1x2(n) =
1
2π

π∫
−π

ψ12

(
ejΩ

)
Sx1x2(Ω) ejΩndΩ. (4.13)

Non-integer delays τ0/T can only be approximately obtained from (4.12).
To increase accuracy of delay estimation, an interpolation must be applied
to Rx1x2(n) prior to maximum detection. If we omit the weighting function
ψ12

(
ejΩ

)
in (4.13), we obtain the classical cross-correlation between the sensor

signals as the inverse Fourier Transform of the cross-power spectrum.
The benefits of using a weighting function ψ12

(
ejΩ

) �≡ 1 are discussed
in detail in [5]. The main idea is to create a sharp dominant peak and to
reduce spurious peaks in Rx1x2(n) caused by room reverberation and colored
source signal spectra. A single sharp peak in the GCC function requires a flat
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cross-power spectrum magnitude. As a result, the weighting function must
act as a pre-whitening filter. This leads to the SCOT (Smoothed Coherence
Transform) algorithm with a weighting function

ψ12

(
ejΩ

)
= ψS

(
ejΩ

)
=

1√
Sx1x1(Ω)Sx2x2(Ω)

. (4.14)

Alternatively, we obtain the PHAT (Phase Transform) algorithm with the
weighting function

ψ12

(
ejΩ

)
= ψP

(
ejΩ

)
=

1∣∣∣Sx1x2(Ω)
∣∣∣ . (4.15)

Under ideal conditions as given in (4.11), the PHAT weighting function de-
livers an ideal GCC

Rx1x2(n) =
1
2π

π∫
−π

ejΩ
τ0
T ejΩndΩ =

sinπ(n+ τ0
T )

π(n+ τ0
T )

. (4.16)

The PHAT weighting function has the computational advantage that only
the cross-power spectrum is needed. Both the SCOT-GCC and the PHAT-
GCC algorithm perform very well in practical situations with modest room
reverberation, like medium-size office rooms, and car cabins. Furthermore,
these GCC algorithms are robust against environmental noise and the specific
nature of speech spectra. As shown by a comprehensive statistical analysis
in [10], the PHAT-GCC is optimal among the class of GCC functions when
used in reverberant environments. The GCC principle can be extended to
more than one microphone pair, yielding better precision of source position
estimates, especially in larger rooms [11].

Speech signals require an estimation of power spectra on a short-time basis.
Therefore, the expectation operator in (4.11) will be replaced by a suitable
time-average. Power spectra can be estimated from windowed signal frames
of N samples (e.g. N = 512 at fs = 16 kHz). Frames may overlap by some
extend (typically N/2 to 3N/4 samples). We use an exponential weighting of
past frames resulting in the following cross-power spectrum estimate:

Ŝx1x2(m, k) = αŜx1x2(m− 1, k) + (1 − α)X1(m, k)X∗
2 (m, k), (4.17)

with α = 0.7 . . . 0.8 to accommodate for the short-time stationarity of speech
signals (m is the frame index, k the index of the discrete frequency axis, respec-
tively). The Discrete Fourier Transforms (DFTs) of the windowed microphone
signal frames are

Xi(m, k) =
N−1∑
n=0

xi(mM + n)w(n)e−j 2π
N nk, i = 1, 2 (4.18)
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(frame index m = 0, 1, 2, . . ., frequency index k = 0, 1, . . . , N − 1). The frame
hop size M determines frame overlapping (no overlapping if M ≥ N). A
bell-shaped function w(n) like Hann or Hamming windows may be used for
time-windowing.

By means of the inverse DFT (IDFT), the cross-power spectrum estimate
(4.17) can now be used to estimate the PHAT-GCC of the mth signal frame:

R̂x1x2(m,n) =
1
N

N−1∑
k=0

Ŝx1x2(m, k)∣∣∣Ŝx1x2(m, k)
∣∣∣ ej 2π

N nk, n = 0, 1, . . . , N − 1. (4.19)

Finding the maximum location of R̂x1x2(m,n) in order to determine the TDD
must be done with care. First, TDDs may be positive or negative depending
on the azimuth of the sound wave (see Fig. 4.1). Therefore, indices N−n must
be used instead of −n according to the periodicy of the DFT. Secondly, we do
not need to carry out maximum search over the whole interval n ∈ [0, N − 1]
because the maximum delay τ0max is limited by the microphone distance d
(τ0max = d/vs). Third, and most important: In order to resolve fractional
signal delays, we must use an interpolation of R̂x1x2(m,n) before finding the
maximum location. This can conveniently be done in the frequency domain by
increasing the length (e.g. N ′ = 4N) of the IDFT in combination with proper
zero-padding. Alternatively, GCC interpolation can efficiently be carried out
in the time domain since the relevant GCC length is rather short.

Fig. 4.3 and Fig. 4.4 show a typical example of a PHAT-GCC azimuth es-
timation using a 50 seconds speech record of a moving speaker in a room with
modest reverberation and noise. The initial speaker position is at azimuth 90°.
After 16 seconds, the speaker moves towards 0°, and finally to 180°. Azimuth
estimates are held constant during speech pauses detected by comparing the
maximum of R̂x1x2(m,n) with a threshold value. This speech activity detec-
tion is very robust at virtually no additional cost. Frame size is set to N = 512
samples with a frame hop size M = 128. FFT length is increased by a factor
of 4 when calculating R̂x1x2(m,n) in (4.19). In (4.18), however, an N = 512
point FFT is applied to compute the DFTs of the two microphone signals.

4.3 Source Localization Based on Interaural Time
Differences

As briefly discussed in the introduction, human beings have an astonishing
precise sound localization ability based on interaural differences in time delay
and intensity between sound pressure signals at the two ears. Processing of
these interaural differences is carried out to a great extend in the human
brain. Several binaural models exist to describe numerous experimental data
(see [12] for a detailed review). One of these models is the basis of the source
localization algorithm presented in this section [6]. Basically, we create a set
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Fig. 4.3. PHAT-GCC map of a speaker movement in a medium-size office environ-
ment (Speech pauses are clearly visible as discontinuities).

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

Time t in sec.

A
zi

m
ut

h 
f 

in
 d

eg
.

d = 37.5 cm,  f
s
 = 16000 Hz

Fig. 4.4. Azimuth estimation using maximum search on the PHAT-GCC of Fig. 4.3
(Estimates are held constant during speech pauses).

of all relevant delays between the two microphone signals needed to estimate
azimuth Φ to a given resolution. This set is searched for the optimum delay
value resulting in the best coincidence of the two microphone signals. However,
the matching procedure is implemented in the frequency domain to obtain
fractional delays in an easy way.
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The whole azimuth range Φ ∈ [0, π] is subdivided into an odd number I
of equally spaced sectors. Using the array geometry of Fig. 4.1, each sector
corresponds to a TDD1

τi =
d

2vs
sin
(
i− 1
I − 1

π − π

2

)
, i = 1, 2, . . . , I, (4.20)

with microphone distance d and sound velocity vs. As an example, we need a
set of I = 73 values τi to obtain an azimuth resolution of 2.5°. If we use an
N -point DFT to represent the microphone signals in the frequency domain,
this set of delays corresponds to phase factors

pk(i) = e−j 2π
N kfsτi , k = 0, 1, . . . ,

N

2
, i = 1, 2, . . . , I, (4.21)

with sampling frequency fs and τi from (4.20). The N -point DFTs X1,2(m, k)
of the microphone signals are computed on a frame by frame basis as in
(4.18). To find the optimum delay for each frequency index k, we can use the
system shown in Fig. 4.5. The DFTsX1,2(m, k) are multiplied by phase factors

Fig. 4.5. Delay (phase) matching in frequency domain for each frequency index k
(frame index m).

from (4.21) and compared in the coincidence detection box. Comparison is
performed on each vertically aligned pair only, since the delays of the two
microphone signals are coupled due to the array geometry and phase factors
are properly arranged in Fig. 4.5. The coincidence detection is carried out
according to the simple matching rule

1 Delays τi are measured here with respect to the origin in Fig. 4.1.
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iopt(m, k) = arg min
i
Δi(m, k), k = 0, 1, . . . ,

N

2
(4.22)

Δi(m, k) =
∣∣∣pk(i)X1(m, k) − pk(I − i+ 1)X2(m, k)

∣∣∣2, i = 1, 2, . . . , I

(4.23)

(frame index m = 0, 1, 2, . . .). With optimum delay indices from (4.22), opti-
mum delays τi can be found for each frequency point k and framem according
to (4.20). To obtain the TDD, and thus the azimuth of the sound source from
this set of data, we first build a histogram map Pk(τi,m) by counting τi
values for each frequency point in several consecutive signal frames. τi values
will gather around the actual delay corresponding to the azimuth of the signal
source. In a similar manner as in [6], we use the following histogram averaging
procedure in case of speech signals:

Pk(τi,m) = αPk(τi,m− 1) + δ
(
i− iopt(m, k)

)
,

i = 1, 2, . . . , I

k = 0, 1, . . . ,
N

2
m = 0, 1, 2, . . . ,

(4.24)

where δ(·) is the unit impulse and τi is the set of delays in (4.20). Forgetting
factor α is chosen between 0.85 and 0.95.

An illustrative example of a histogram map is shown in Fig. 4.6 wherein
delay values τi are replaced by corresponding azimuth values. A stationary
broadband noise source emitting from azimuth direction 60° is used. In the
frequency range below 2 kHz, a prominent population of azimuth values along
a vertical line is observed. An additional curved pattern stems from phase
ambiguity. Spatial aliasing occurs for signals with frequency contents above
fmax = vs

2d due to λ
2 < d. With a microphone distance d = 37.5 cm, we get

fmax ≈ 450 Hz.
To reduce the influence of phase ambiguity, we sum up histogram data over

all frequency indices k for each azimuth (or τi, respectively). The optimum
delay is then obtained by searching for the maximal sum. As a result, the
azimuth of the source location is given by

τopt(m) = arg max
τi

N
2∑

k=0

Pk(τi,m), (4.25)

for each signal frame m. Despite the presence of phase ambiguity, the max-
imum in (4.25) is rather sharp. Further improvements, especially in case of
multiple sources, are discussed in [6]. However, a high computationally effort
is needed which is not justified in case of a single speaker or even for multiple
speakers not talking at the same time. Our investigations show that no sig-
nificant improvements by the refinements proposed in [6] are obtained in real
acoustic environments.
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Fig. 4.6. Histogram map of a stationary white noise source, bandlimited between
300Hz and 6400Hz, emitting from azimuth direction Φ = 60°, (FFT length N = 512,
α = 0.9, azimuth resolution 2.5°).

Using the same source signal as in Fig. 4.3, a representative example of a
histogram map summed up over frequency is shown in Fig. 4.7. The result of
azimuth estimation by searching for maxima locations in the ITD histogram
map of Fig. 4.7 is presented in Fig. 4.8. Performance differences between the
PHAT-GCC and ITD algorithm can barely be derived from these example
figures. However, they can be better detected by using artificial broadband
noise from known directions as test signals. The ITD method offers the ad-
vantage that the angular resolution can be selected by choosing the size I of
the delay set in (4.20). In comparison with the PHAT-GCC algorithm, the ac-
curacy is better for azimuths near 0° and 180°. Obviously, this is an advantage
if two microphone pairs are used to find a speaker’s position by calculating
the cross point of the two azimuth estimates. Furthermore, there is no need
for signal oversampling or increasing the FFT size because phase matching is
done in the frequency domain. On the other hand, substantially more search
algorithms are required for minima and maxima detections.

Our experiments with speech signals indicate less robustness against envi-
ronmental noise and reverberation as compared to the PHAT-GCC method.
The increased sensitivity with respect to room acoustics is due to the influence
of sound reflections that smear maxima locations in the ITD histogram map.
In [6] the authors suggest to set Pk(τi,m) to zero for values below a certain
threshold. According to our experience, however, this does not improve the
performance in reverberant rooms. Therefore, application of the ITD algo-
rithm is limited to situations where accurate source localization under mod-
erate environmental noise is needed. For automatic steering of microphone
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Fig. 4.7. ITD histogram map summed over frequency of a moving speaker (same
acoustical environment as in Fig. 4.3, azimuth instead of delay values on vertical
axis).
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Fig. 4.8. Azimuth estimation by maximum search on the ITD histogram map from
Fig. 4.7 (Estimates are held constant during speech pauses).

arrays, we prefer to use the PHAT-GCC method because of its robustness.
Arrays of up to 8 microphones exhibit relatively broad main lobes in their
array patterns. As a consequence, there is no need for an azimuth estimation
accuracy less then 3° . . . 5°.
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4.4 Source Localization Using Adaptive Filters

In the derivations of source localization algorithms, we have assumed an ideal
wave propagation model so far. In such an environment with no sound reflec-
tions, the two microphone signals in Fig. 4.1 are simply delayed versions of
the source signal. Although this model works remarkably well in real acoustic
environments too, a more realistic approach is to find the signal delay from
the actual impulse responses between source and microphones. In this section,
two different adaptive systems for delay estimation are presented. The first
system models the time delay between the two microphones. It is assumed
that the direct path of sound propagation dominates. In the second method,
we estimate the impulse responses by an adaptive eigenvalue decomposition.
This method is more robust if strong reverberation is present. Both algorithms
can efficiently be implemented by frequency-domain adaptive filters.

The first adaptive filtering technique is straight forward and shown in
Fig. 4.9.2 A detailed performance analysis can be found in [13]. We denote

x1(n−Δ)

e(n)

FIR filter
Adaptive

w(n)

τ̂(n)

location
Peak

x1(n)

x2(n)

Δ
Delay

Fig. 4.9. Time delay estimation using an adaptive FIR filter (length L, coefficient
vector w(n), delay Δ = �L−1

2
�).

FIR filter state as vector x2(n) and coefficients as vector w(n) according to

x2(n) =
[
x2(n) x2(n− 1) · · · x2(n− L+ 1)

]T (4.26)

w(n) =
[
w0(n) w1(n) · · · wL−1(n)

]T
, (4.27)

(“T” denotes vector transpose). The error signal e(n) is then given by

e(n) = x1(n−Δ) − wT(n)x2(n), (4.28)

2 FIR = Finite Impulse Response Duration



104 G. Doblinger

(Δ = �L−1
2 �). The Least Mean-Square (LMS) algorithm can be used to update

the weight vector:

w(n+ 1) = w(n) + μLMS e(n)x2(n). (4.29)

In general, however, a better performance is achieved with the normalized
LMS algorithm

w(n+ 1) = w(n) +
μNLMS

‖x2(n)‖2
e(n)x2(n), (4.30)

with ‖x2(n)‖2 = xT
2 (n)x2(n). In order to improve the convergence behavior,

a pre-emphasis filter with impulse response hpre(n) = δ(n)−0.9δ(n−1) (unit
impulse δ(n)) can be used for simple pre-whitening of speech signals. Such
a pre-filter is not required if we use the following frequency-domain adaptive
filter. Only three FFTs per frame plus one FFT every M samples (M = 2000,
typically) are needed. In addition, convergence is superior in case of speech
signals due to a frequency dependent adaptive filter step size. The algorithm
is based on the fast block LMS adaptive filter as proposed in [14], combined
with a frequency dependent step size as suggested in [15]. To implement the
LMS adaptive filter in the frequency domain by means of the FFT, samples
are grouped into frames and coefficients are held constant till the next frame is
processed. The update of the adaptive filter coefficients in frequency-domain
at each frame index m can be summarized as follows:

X2(m, k) =
N−1∑
n=0

x2(mL+ n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.31)

y(m,n) =
1
N

N−1∑
k=0

W (m, k)X2(m, k)ej
2π
N nk, n = 0, 1, . . . , N − 1

(4.32)

ẽ(m,n) =

{
0 n = 0, 1, . . . , L− 1
x1(mL+ n−Δ) − y(m,n) n = L,L+ 1, . . . , N − 1

(4.33)

E(m, k) =
N−1∑
n=0

ẽ(m,n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.34)

Sx2x2(m, k) = αSx2x2(m− 1, k) + (1 − α)|X2(m, k)|2, k = 0, 1, . . . , N − 1
(4.35)

W (m+ 1, k) = W (m, k) +
μ

Sx2x2(m, k) + ε
X∗

2 (m, k)E(m, k)

k = 0, 1, . . . , N − 1. (4.36)

The frame length is N = 2L, with a frame hop size equal to the adaptive
filter length L. An overlap-save method with an N point DFT/IDFT is used
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to perform the linear convolution needed in (4.28). Note that the step size of
the weight update (4.36) is normalized by an estimate of the spectral power
at each frequency point.3 As a consequence, the convergence behavior of the
adaptive algorithm is nearly independent on the signal spectrum.

Delay estimates are computed every M ′ frames (i.e. every M = M ′L
samples) by finding peak locations of the adaptive filter coefficients

w(m′, n) =
1
N

N−1∑
k=0

W (m′, k)ej
2π
N nk, n = 0, 1, . . . , N − 1. (4.37)

Due to the overlap-save method, the last L values of w(m′, n) are the valid
filter coefficients to be searched to find the peak location. In addition, the
search range can be further reduced because peak positions are limited to
[Δ − Nd,Δ + Nd], where Nd = � d

vs
fs� is the maximum delay between the

microphone signals.
A typical example using the same microphone signals as before is shown

in Fig. 4.10 and Fig. 4.11. The proposed frequency-domain adaptive filter is
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Fig. 4.10. Adaptive filter coefficient map of a moving speaker (same acoustical
environment as in Fig. 4.3).

applied with length L = 512, step size μ = 0.2, and α = 0.2. The coefficient
map is updated every M = 2048 samples to allow for sufficient convergence
of the adaptive filter. Delay estimation is performed every M samples too by
maximum detection using the coefficient map. Coefficients are oversampled
by a factor of 4 to determine the peak location with sufficient accuracy.

3 ε avoids division by zero during speech pauses.
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Fig. 4.11. Azimuth estimation by maximum search on the coefficient map from
Fig. 4.10 (Estimates are held constant during speech pauses).

A different adaptive system showing a better performance in environments
with strong reverberation is proposed in [7]. In principle, the impulse responses
between source and microphones are estimated by means of an eigenvalue
decomposition. Denoting h1(n) and h2(n) as impulse response from source to
microphone 1, and microphone 2, respectively, we get the following discrete-
time model:

x1(n) =
∞∑

k=−∞
h1(k)s(n− k) + v1(n) (4.38)

x2(n) =
∞∑

k=−∞
h2(k)s(n− k) + v2(n), (4.39)

(source signal s(n), noise disturbances v1,2(n)). At the moment, we assume a
linear environment with time-invariant impulse responses. Later on, we will
relax the time-invariance property by estimating h1,2(n) on a frame by frame
basis. This allows for adaptation to sufficiently slow changes in the room
acoustics, and for speaker movements. For the estimation of the impulse re-
sponses, we further assume that h1,2(n) can be approximated by filters with
finite impulse response length L. Additionally, the noise signals v1,2(n) are
neglected at first. This leads to the relation

(x1 ∗ h2)(n) = (s ∗ h1 ∗ h2)(n) = (x2 ∗ h1)(n) (4.40)

between the convolutions since the order in which two stable sequences are
convolved is unimportant (see Fig. 4.12). Equation (4.40) is the basis of an
adaptive algorithm to estimate the impulse responses.
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s(n) x1(n)

x2(n)

e(n) ≡ 0

h2(n)

h1(n) h2(n)

h1(n)

Fig. 4.12. Relationship between impulse responses according to (4.40) (signal model
left, perfect estimation of impulse responses right).

If the impulse responses are approximated by length L filters, all data can
be grouped in L× 1 vectors

xi(n) =
[
xi(n) xi(n− 1) · · · xi(n− L+ 1)

]T
, i = 1, 2 (4.41)

hi =
[
hi(0) hi(1) · · · hi(L− 1)

]T
. (4.42)

Equation (4.40) can now be rewritten as

xT
1 (n)h2 = xT

2 (n)h1. (4.43)

Following the derivation outlined in [7], we introduce 2L× 1 vectors

x(n) =
[
xT

1 (n) xT
2 (n)

]T (4.44)

u =
[
hT

2 −hT
1

]T (4.45)

to rewrite (4.40):

xT(n)u = xT
1 (n)h2 − xT

2 (n)h1 = 0. (4.46)

Left multiplying (4.46) by x(n) and taking expectation yields

Rxx(n)u = 0. (4.47)

Rxx(n) = E{x(n)xT(n)} is the 2L × 2L covariance matrix of the two mi-
crophone signals. Note that Rxx(n) contains both temporal and spatial cor-
relations of the microphone signals. Equation (4.47) indicates that u is the
eigenvector of Rxx(n) corresponding to eigenvalue 0. Therefore, both impulse
responses can be found by determining this eigenvector.

If noise signals v1,2(n) are present, u may be estimated by minimizing
uTRxx(n)u with constraint uTu = 1 [7]. Consequently, we get u by com-
puting the normalized eigenvector of Rxx(n) corresponding to the smallest
eigenvalue. There exist several efficient algorithms to find the smallest eigen-
value and the associated eigenvector of a correlation matrix. Since the dimen-
sion of matrix Rxx(n) is quite large, an adaptive algorithm will be used. As
a main advantage, we need only a few iterations because the TDD between
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the microphone signals is of interest. There is no need to estimate the actual
shapes of the impulse responses. According to (4.46) and Fig. 4.12, the error
signal

e(n) = uT(n)x(n) (4.48)

should be zero under ideal conditions. Actually, the cost function

J(n) =
1
2
E
{
e2(n)

}
=

1
2
uT(n)Rxx(n)u(n) (4.49)

can be minimized with the gradient-based adaptive algorithm

u(n+ 1) = u(n) − μLMS ∇uJ(n) = u(n) − μLMS Rxx(n)u(n). (4.50)

∇uJ(n) is the cost function gradient with respect to vector u. With the
approximation Rxx(n) = E{x(n)xT(n)} ≈ x(n)xT(n), we get the LMS al-
gorithm

u(n+ 1) = u(n) − μLMS e(n)x(n). (4.51)

The constraint uTu = 1 can be taken into account by normalization [7]:

v(n) = u(n) − μNLMS e(n)x(n) (4.52)

u(n+ 1) =
v(n)√

vT(n)v(n)
. (4.53)

As mentioned above, only the delay between the two microphone signals is of
interest. If we initialize the elements ui(n) of vector u(n) at n = 0 by

ui(0) =

⎧⎪⎨⎪⎩
0 0 ≤ i ≤ �L

2 � − 1
1 i = �L

2 �
0 �L

2 � + 1 ≤ i ≤ 2L− 1
, (4.54)

then a negative peak will evolve in u(n) during adaptation. This peak corre-
sponds to the direct path in the impulse response h1 (see (4.45)). The positive
peak will remain at the initial position i = �L

2 �. The index difference of these
two peaks in u(n) determines the delay between the microphone signals. Since
the position of the positive peak is fixed, we need to find the index of the neg-
ative peak only by searching vector elements ui(n), �L

2 �+1 ≤ i ≤ 2L−1. In a
practical implementation, we will interpolate u(n) before peak position find-
ing. Additionally, in case of a moving speaker we have to reset the adaptive
algorithm periodically to allow tracking. Otherwise, peaks will stick at the
first estimated positions, particularly for small step size values μLMS. Setting
ui(nK) = ui(0) for some period K removes all old negative peaks and allows
the adaptive algorithm to adjust to the new delay position. Period K deter-
mines the tracking speed and is set to some 1000 samples, typically. During
this period, the adaptive algorithm has plenty of time to converge.

The adaptive source localization algorithm can easily be implemented in
the time domain. However, a significantly greater computational efficiency can
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be achieved by using a frequency-domain adaptive filter. As opposed to [7],
an FFT based algorithm can be devised requiring only 4 FFTs per frame
(plus one FFT at every initialization period) instead of 7 FFTs. This saving
is obtained by eliminating the normalization of vector u in (4.53). It is argued
in [7] that the normalization may avoid an error propagation in (4.51) if the
algorithm runs over a long period of time. However, in order to ensure tracking,
we have to periodically reset the adaptive algorithm. Thus, an eventual error
propagation will efficiently be eliminated too.

The algorithm has a similar structure as the fast LMS algorithm (4.31) -
(4.36):

X1(m, k) =
N−1∑
n=0

x1(mL+ n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.55)

X2(m, k) =
N−1∑
n=0

x2(mL+ n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.56)

e(m,n) =
1
N

N−1∑
k=0

[
U1(m, k)X1(m, k) + U2(m, k)X2(m, k)

]
ej

2π
N nk,

n = 0, 1, . . . , N − 1 (4.57)

ẽ(m,n) =

{
0 n = 0, 1, . . . , L− 1
e(m,n) n = L,L+ 1, . . . , N − 1

(4.58)

E(m, k) =
N−1∑
n=0

ẽ(m,n)e−j 2π
N nk, k = 0, 1, . . . , N − 1 (4.59)

Sx1x1(m, k) = αSx1x1(m− 1, k) + (1 − α)|X1(m, k)|2, k = 0, 1, . . . , N − 1
(4.60)

Sx2x2(m, k) = αSx2x2(m− 1, k) + (1 − α)|X2(m, k)|2, k = 0, 1, . . . , N − 1
(4.61)

U1(m+ 1, k) = U1(m, k) − μ

Sx1x1(m, k) + ε
X∗

1 (m, k)E(m, k)

k = 0, 1, . . . , N − 1 (4.62)

U2(m+ 1, k) = U2(m, k) − μ

Sx2x2(m, k) + ε
X∗

2 (m, k)E(m, k)

k = 0, 1, . . . , N − 1. (4.63)

Similarly to the fast LMS algorithm, the DFT length is set to N = 2L, with
impulse response length L. Vector u (see (4.45)) is split into two length L sub-
vectors, i.e. u = [uT

1 uT
2 ]T. The updates of these sub-vectors are performed

in the frequency domain. Delay estimates are computed every M ′ frames
(i.e. every M = M ′L samples) by finding the dominant negative peak in u2.
Likewise to (4.37), the elements of u2 are obtained by the IDFT
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u2(m′, n) =
1
N

N−1∑
k=0

U2(m′, k)ej
2π
N nk, n = 0, 1, . . . , N − 1. (4.64)

Nearly the same results as in Fig. 4.10, 4.11 are obtained if we use the
same microphone signals and algorithm parameters L = 512, α = 0.2, and
μ = 0.2.

4.5 Some Remarks on Algorithm Selection

Deciding which algorithm to choose depends on the specific area of appli-
cation. In a car cabin, with no speaker movement, little reverberation, and
heavy disturbing noise, the PHAT-GCC and the frequency-domain adaptive
filter perform best. Both algorithms also exhibit the lowest computational
demand. In situations with modest reverberation, the two adaptive source
localization algorithms show the same performance. However, according to
a detailed experimental comparison of algorithms in [7], the adaptive eigen-
value decomposition offers a better performance in rooms with strong rever-
beration and moderate noise. The best accuracy in azimuth estimation can
be expected by the ITD based algorithm if nearly ideal sound propagation is
present. However, the prize to be payed is the relatively high computational
cost and memory demand.

If we compare the arithmetic operations per frame interval required by
each algorithm, we get the coarse result listed in Tab. 4.1. The FFT length is
equal to frame length N in case of PHAT-GCC and ITD algorithm. All FFTs
use real-valued input data. The fast LMS algorithm (FLMS) and the adaptive
eigenvalue decomposition (AEVD) require length N = 2L FFTs (impulse
response length L). One FFT is needed every M ′ frames only. Oversampling
is not considered in Tab. 4.1. If we apply e.g. an oversampling (factor R)
to find the GCC peak, one FFT must have a length RN . The IDT-algorithm
requires only 2 real-input FFTs and no oversampling. However, the numbers of
additions and multiplications depend on the azimuth resolution ΔΦ ≈ 180°/I.
In addition, N

2 + 1 maximum/minimum search operations are needed.

Table 4.1. Comparison of computational requirements per frame of length N

Algorithm FFT Add. Mult. Div. Sqrt. Search

PHAT 3 5
2
N 8N N

2
N
2

1

ITD 2
(
4I + 1

2

)
N

(
11
2

I + 2
)
N - - N

2
+ 1

FLMS 4 9
2
N 7N N

2
- 1

AEVD 5 9N 14N N - 1
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4.6 Frequency-Domain Adaptive Beamformer with
Speaker Tracking

In this section, we present an adaptive beamformer combined with source
localization. The system automatically adjusts the main lobe of the array
pattern to a speaker and suppresses sounds from all other directions. This
behavior is preserved if the speaker moves. Applications include teleconfer-
encing, hands-free telecommunications in cars, etc. The adaptive beamformer
is based on the Frost constrained LMS algorithm [16]. However, as opposed
to the original Frost beamformer, the adaptive algorithm is formulated in the
frequency domain.

The main advantages of this approach are the possibility to use an efficient
multi-input overlap-add FFT filterbank, the avoidance of variable fractional
delay filters, and the inclusion of more constraints like nulls in the array pat-
tern. In addition, the FFT filterbank beamformer can easily be combined with
an adaptive post-filter for speech enhancement purposes [17–19]. Disadvan-
tages are the signal delay introduced by the FFT block processing and a higher
storage demand as compared with the time domain approach. However, signal
delays are within usual tolerance limits if the frame size is properly chosen
(e.g. 512 at 16 kHz sampling frequency). Additionally, memory requirements
are no limiting factors with modern hardware.

The basic structure of the adaptive beamformer is shown in Fig. 4.13.
Single channel overlap-add FFT filterbanks are used in many audio-based ap-
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Fig. 4.13. Adaptive beamformer with N -channel overlap-add FFT filterbank and
constrained LMS algorithm to compute weights wk(m) (frequency index k, frame
index m).
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plications [20]. Such a multirate filterbank structure is highly efficient and
offers a nearly perfect signal reconstruction property. In our extended fil-
terbank system with multiple input channels, FFT spectra are modified by
complex-valued weights on a frame by frame basis. For each frequency index
k and frame index m the N -dimensional weight vectors wk(m) are updated
according to a constrained LMS algorithm. This algorithm will be derived in
the sequel. Algorithm parameters P k and wck depend on the desired direction
which is supplied by a source localization algorithm. The source localization
algorithm makes use of the already available FFTs of the out-most two mi-
crophone signals of the array.

In the following derivation of the frequency-domain adaptive algorithm,
the frame index m is omitted for clarity. The beamformer optimization prob-
lem to be solved by means of an adaptive algorithm may be defined by the
minimization of a quadratic cost function under linear constraints:

wk = arg min
wk

wH
k Sxkxk

wk, CH
k wk = f (4.65)

(for each frequency index k). Superscript H denotes Hermitian transposition,
i. e. transposition combined with complex conjugation. The minimization of
the quadratic form stems from the desired minimization of the power of Yk

given by
E{Y 2

k } = wH
kE{xkxH

k }wk = wH
k Sxkxk

wk, (4.66)

with wk = [w1,k w2,k · · ·wN,k]T, xk = [X1,kX2,k · · ·XN,k]T. Matrix Sxkxk
is

the N ×N spatio-spectral correlation matrix at frequency index k. This ma-
trix depends on array geometry and sound field, and will be estimated by the
adaptive algorithm. Minimization of E{Y 2

k } has to be done with constraints.
At least, signals from the desired direction must not be attenuated. In ad-
dition, signals from certain other directions may be suppressed by imposing
nulls in the array pattern. These constraints are collected in (4.65) as a set of
equations with matrix Ck. The structure of this matrix is determined by the
wave propagation model. If we assume plane waves and far field conditions,
Ck is composed of steering vectors of the form

dk(Φ) =
[
ejΩkτ1(Φ) ejΩkτ2(Φ) · · · ejΩkτN (Φ)

]T
, (4.67)

with Ωk = 2πfs k
Nf

(sampling frequency fs, FFT lengths Nf ). Microphone
signal delays τi depend on the direction (azimuth Φ) of the impinging wave.
For simplicity, we are using a one-dimensional array with a coordinate system
as shown in Fig. 4.1. This is not a restriction in general because delays τi can
easily be calculated in a 3-dimensional coordinate system. In addition, more
complicated steering vectors can be used if we apply other wave propagation
models like those covering near field conditions. The structure of the opti-
mization problem remains the same. We have to use different steering vectors
only. Actually, knowledge of the sound propagation is very incomplete. There-
fore, the simple steering vectors offer a convenient way to overcome this lag
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of information. However, a better beamformer performance can be achieved
with more realistic steering vectors.

Suppose that the desired speaker direction has azimuth Φd and we want
an array pattern null at azimuth Φs. Then dk(Φd)Hwk = 1 is the beamformer
response in desired direction and dk(Φs)Hwk = 0 is the response in the un-
wanted direction. Therefore, matrix Ck is given by Ck = [dk(Φd)dk(Φs)] and
vector f must be set to f = [1 0]T in order to get the constraints in (4.65). We
can include more array pattern nulls and extend the row dimension of matrix
Ck. To avoid an over-determined set of equations, the number of constraints
must be less than the number N of microphones. In practice, only a few con-
straints should be used to obtain a good beamforming pattern with a strong
main lobe and small side lobes.

We can solve the constrained optimization problem (4.65) with Lagrange
multipliers by defining the cost function

L(wk,λ) =
1
2
wH

k Sxkxk
wk + λH

(
CH

k wk − f
)
. (4.68)

Evaluation of the gradient of this cost function yields

∇wk
L(wk,λ) = Sxkxk

wk + Ckλ. (4.69)

Using the gradient relationship, an iterative solution of the optimization prob-
lem on a frame by frame basis is given by

wk(m+ 1) = wk(m) − μLMS ∇wk
L(wk,λ). (4.70)

Lagrange multiplier λ is obtained from (4.69) and (4.70) combined with the
constraints CH

k wk(m+ 1) = f (see (4.65)) according to

λ =
1

μLMS

(
CH

k Ck

)−1

CH
k wk(m) −

(
CH

k Ck

)−1

CH
k Sxkxk

wk(m)

− 1
μLMS

(
CH

k Ck

)−1

f .

(4.71)

Using this relationship in (4.69), we get from (4.70)

wk(m+ 1) = P k

[
wk(m) − μLMS Sxkxk

wk(m)
]

+ wck, (4.72)

with N ×N matrix

P k = I − Ck

(
CH

k Ck

)−1

CH
k , (4.73)

and N × 1 vector

wck = Ck

(
CH

k Ck

)−1

f . (4.74)

We finally arrive at the constrained LMS algorithm by replacing the unknown
spatio-spectral correlation matrix by the basic estimate S̃xkxk

= xkxH
k and

applying Yk(m) = wH
k (m)xk(m) (see Fig. 4.13):
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wk(m+ 1) = P k

[
wk(m) − μLMS xk(m)Y ∗

k (m)
]

+ wck. (4.75)

Although the constrained LMS algorithm can easily be implemented, the
basic form given by (4.75) exhibits a suppression of the desired signal in real
environments. The constraint dk(Φd)Hwk = 1 can hardly be met in practical
situations due to microphone tolerances, microphone position errors, and most
important, errors of the desired direction. If we modify the adaptive algorithm
in order to achieve a large robustness against these influences, suppression of
the desired signal can be avoided. By modeling the errors as uncorrelated
white noise signals at the microphone inputs, we observe that the variances
of these errors are amplified by wH

k wk. Thus, limiting wH
k wk = ‖wk‖2 will

reduce the influence of these errors. A detailed discussion on making the Frost
beamformer more robust can be found in [21].

The weight vector norm constraint can conveniently be included in the
adaptive algorithm, if we split the weight vector into wk(m) = vk(m) + wck

and recognize P kwck = 0 (see (4.73), (4.74)). With upper bound Bk, the
norm constraint can be expressed as

‖wk(m)‖2 = ‖vk(m)‖2 + ‖wck‖2 ≤ Bk. (4.76)

It follows that the norm of the variable component vk(m) of wk(m) must be
limited by

‖vk(m)‖ ≤
√
Bk − ‖wck‖2 = bk. (4.77)

Parameter bk does not depend on frame index m and can be pre-computed
for every frequency index k. Therefore, we get the final adaptive algorithm:

Initialization: wck = Ck

(
CH

k Ck

)−1

f (4.78)

P k = I − Ck

(
CH

k Ck

)−1

CH
k (4.79)

bk =
√
Bk − ‖wck‖2 (4.80)

vk(0) = 0. (4.81)
For each frame index m: (4.82)

ṽk(m+ 1) = P k

[
vk(m) − μLMS xk(m)Y ∗

k (m)
]

(4.83)

vk(m+ 1) =

⎧⎨⎩ṽk(m+ 1) if ‖ṽk(m+ 1)‖ ≤ bk
bkṽk(m+ 1)
‖ṽk(m+ 1)‖ if ‖ṽk(m+ 1)‖ > bk (4.84)

wk(m+ 1) = vk(m+ 1) + wck (4.85)
k = 0, 1, . . . , Nf .

In general, this adaptive algorithm requires a substantial amount of mem-
ory due to storage of matrix P k and vector wck for each FFT frequency
index. However, for special cases like broadside arrays (azimuth Φ = 90°),
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all of these vectors and matrices are equal. In addition, memory savings are
also possible in case of symmetries regarding the location of specified nulls
in the array pattern. If no specified null is present, matrix inversion in (4.73)
and (4.74) reduces to scalar division because constraint matrix Ck is equal to
the steering vector dk(Φd). This important case occurs at arrays for speaker
tracking where fixed nulls in the beamformer pattern are not desired.

The step size μLMS of the adaptive algorithm must be selected with some
care. As shown in [16], convergence of the constrained LMS algorithm is en-
sured if

0 < μLMS <
2

3E{xH
k xk} . (4.86)

Therefore, a proper normalization of the step size μLMS will improve the con-
vergence behavior of the adaptive algorithm. With such a modification, the
convergence speed is independent on the signal magnitudes. In accordance
to the normalized LMS algorithm, the modified weight vector update is then
given by

ṽk(m+ 1) = P k

[
vk(m) − μ

‖xk(m)‖2 + ε
xk(m)Y ∗

k (m)
]
. (4.87)

Typically, the new step size μ should be chosen between 0.001 and 0.02 to
ensure a stable convergence of the adaptive algorithm.

Another important design parameter of the constrained LMS algorithm is
the upper bound Bk. We get a sensitive superdirective array with Bk > 10. On
the other hand, a robust delay-and-sum beamformer is obtained with small
values (Bk < 1). In addition, Bk must be frequency dependent in order to
achieve a flat beamformer frequency response not only in the exact desired
direction but also at small deviations thereof. In principle, the frequency de-
pendency of Bk can be optimized to obtain a flat frequency response. However,
a tolerance analysis of perturbated arrays shows that the following set of limits
works very well at a sampling frequency of fs = 16 kHz [22]:

10 log10Bk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10 dB 0 < f ≤ 250 Hz
8 dB 250 Hz < f ≤ 450 Hz
2 dB 450 Hz < f ≤ 700 Hz
−2 dB 700 Hz < f ≤ 1000 Hz
−4 dB 1000 Hz < f ≤ 2000 Hz
−6 dB 2000 Hz < f ≤ 4000 Hz
−7.5 dB 4000 Hz < f ≤ 8000 Hz.

(4.88)

Note that the frequency index k of the Nf -point FFT is given by k =

round
(
Nf

f
fs

)
.

We can combine the adaptive filterbank beamformer with a source local-
ization subsystem as shown in Fig. 4.14. This augmented system is capable to
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Fig. 4.14. Adaptive FFT filterbank beamformer combined with source localization
to be used for automatic speaker tracking (frame index m).

focus the main lobe of the beam pattern to a moving speaker by re-computing
the parameters P k, wck, bk at multiples of the frame index. With a typi-
cal frame length of 512, frames are processed every 512/4 = 128 samples,
i. e. every 8ms at 16 kHz sampling frequency. This is the minimum time pe-
riod to re-compute P k, wck, bk based on azimuth estimation. It can barely
be used because the adaptive filter typically needs several 100 ms to converge.
The starting solution wk(0) = wck corresponds to a delay-and-sum beam-
former and offers an adequate beam pattern during fast movements of the
speaker. Adaptation will begin after the speaker position has been settled. It
should be noted, however, that there is no need to reset the adaptive filter
weight vectors wk at new azimuth estimates.

For azimuth estimation, all of the previously presented source localization
algorithms can efficiently be implemented in the frequency domain. Therefore,
we can directly use the already available FFTs of the microphone signals (and
not the signals themselves, as shown in Fig. 4.14). We have implemented the
adaptive beamformer using an array of 8 microphones, a sampling frequency of
16 kHz, and an FFT length of 512 with Hann windowing of input frames. With
a frame hop size of 512/4 = 128 samples, we obtain a filterbank oversampling
by a factor of 4. This oversampling factor guarantees that distortions due to
multirate filterbank processing are not audible.

Both uniform and non-uniform array geometries have been investigated.
As an example, the layout of a non-uniform microphone array is sketched in
Fig. 4.15. This configuration requires fewer sensors than a comparable uni-
form array and offers a good tradeoff between main lobe width and side lobe
amplitudes over the whole frequency range. Due to the use of a linear array,
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Fig. 4.15. Microphone array geometry in cm (total size 37.5 cm).

the azimuth range is confined to a 180° field-of-view. If a 360° field-of-view is
required, a circular array geometry should be preferred [23].

To avoid spatial aliasing, the input signal must be bandlimited to 6400 Hz.
There is no need for additional low pass filters in the microphone channels, if
we set the respective frequency bins of the FFTs to zero. This will also reduce
the size of vectors and matrices needed by the adaptive algorithm.

The PHAT-GCC algorithm is used for automatic speaker tracking. To pro-
vide sufficient time for convergence of the adaptive algorithm, parameters P k,
wck are held constant during speech pauses and during speaker movements
with changes in azimuth less than 2°.

In order to visualize the functioning of the adaptive beamformer with
speaker tracking, we show a representative array pattern in Fig. 4.16 and
Fig. 4.17 at a frequency of 1 kHz. We use the same speaker movement as in
the source localization experiments. The speaker’s position starts at broadside

Fig. 4.16. Log-scale array pattern at f = 1 kHz of the adaptive beamformer auto-
matically steered to a moving speaker.
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(Φ = 90°), moves on towards Φ = 0°, and continues to move back to Φ =
90°, and finally Φ = 180°. The main lobe of the array pattern follows this
movement. The estimated azimuth trace is overlayed in the image plots shown
in Fig. 4.17 at a frequency of 1 kHz, and in Fig. 4.18 at 3 kHz, respectively.
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Fig. 4.17. Array pattern at f = 1 kHz of the automatically steered adaptive beam-
former with superimposed estimated azimuth trace of a moving speaker.

The main lobe is clearly visible as a white region following the trace of
the estimated azimuth. The settling period of the adaptive algorithm can be
observed at the beginning where the speaker position remains constant at
Φ = 90°. A sharper main lobe but larger side lobe maxima are present in the
array pattern at f = 3 kHz, as compared with the pattern at f = 1 kHz.
This reflects the behavior of a delay-and-sum beamformer which is used as
the starting solution of the adaptive algorithm. It should be noted that the
beamformer shows a unity gain frequency response in desired direction. Only
main lobe width and side lobe patterns change with frequency. The chopped
texture of the array pattern in Fig. 4.18 is due to the step-like azimuth changes
after hold operations during speech pauses.

The behavior of the adaptive beamformer depends on the input signals.
The array patterns shown in Fig. 4.16, 4.17, 4.18 are computed using a single
moving speaker. If we use a fixed desired direction, i.e. switch off speaker track-
ing, the adaptive algorithm will automatically suppress interfering sounds
from other directions than the desired one. This build-in feature is due to
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Fig. 4.18. Array pattern at f = 3 kHz of the automatically steered adaptive beam-
former with superimposed estimated azimuth trace of a moving speaker.

the adaptive algorithm constraints by which the desired signal is emphasized.
To illustrate this behavior, we show array patterns using random noise band-
limited from 300 Hz to 6400 Hz as a desired source signal. The beamformer
output signal power is calculated as a function of the noise signal direction.
Typical results are shown in Fig. 4.19. Four different desired directions are
given. The steady-state output power is computed after the settling period
of the adaptive beamformer. A sharp main lobe can be observed, especially
at desired direction Φ = 90°. At Φ = 0° the array is less sensitive regard-
ing changes in the desired direction. This behavior is common to broadband
adaptive beamformers based on the constrained LMS algorithm because the
optimization constraint is defined for a single desired direction only. A sharp
main lobe is not a disadvantage of our adaptive beamformer because the de-
sired direction is automatically adjusted using speaker tracking.

The entire system has been simulated using a MATLAB� program which
can be downloaded from the authors home page.4 An implementation written
in the C programming language runs in real-time at 16 kHz sampling fre-
quency on any modern PC equipped with an 8 channel analog input sound sys-
tem (like Terratec� EWS88MT, M-Audio� Delta 1010, or RME� Hammerfall�

DSP). With CPU clock frequencies at 2 GHz, 16 microphone channels can be
processed in real-time at 16 kHz sampling frequency.

4 www.nt.tuwien.ac.at/dspgroup/gdobling.html
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Fig. 4.19. Output signal power vs. azimuth of the adaptive array excited with
random noise bandlimited from 300 Hz to 6400 Hz, and with four different desired
directions.

4.7 Conclusions

We have presented an overview on different source localization techniques
based on time-delay estimation using only two microphones. These algorithms
are well suited for direction (azimuth) estimation and speaker tracking in real
environments with moderate reverberation. The main purpose of source local-
ization covered in this chapter is the application to speaker tracking with au-
tomatically steered microphone arrays. An efficient adaptive beamformer has
been described in detail combining a multi-input overlap-add FFT filterbank,
a constrained LMS algorithm, and a GCC-PHAT based source localization
algorithm.
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Sparse impulse responses are encountered in many applications: network and
acoustic echo cancellation, feedback cancellation in hearing aids, blind identi-
fication of acoustic impulse responses for time delay estimation, source local-
ization, and dereverberation, etc. Recently, several adaptive algorithms have
been proposed, in different contexts, which take this important information
(i.e. sparseness) into account. As a result, these new adaptive filters perform
(in terms of initial convergence and tracking) much better than the classi-
cal stochastic gradient, or LMS, algorithm. In this book chapter, we give an
overview of the most important adaptive algorithms developed for sparse im-
pulse responses. We show how they can be derived. We also show how they
are linked to each other. Finally, we give new directions and explore how far
we can go in improving performances.

5.1 Introduction

An impulse response that is sparse has a small percentage of its components
with a significant magnitude while the rest are zero or small. Another defini-
tion could be the following: an impulse response is sparse if a large fraction of
its energy is concentrated in a small fraction of its duration. We find sparse im-
pulse responses in many important applications such as network and acoustic
echo cancellation, feedback cancellation in hearing aids, blind identification of
acoustic impulse responses for time delay estimation, source localization, and
dereverberation, etc.

Classical and most used algorithms such as the normalized least-mean-
square (NLMS) [1] or recursive least-squares (RLS) [2] do not take into account
whether the impulse responses they try to identify are sparse or not. Intuitively
however, it seems possible to improve the performance of the NLMS algorithm,
for example, if the target is sparse.
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Perhaps one of the first persons who exploited this intuition algorithmically
was Duttweiler in the context of network echo cancellation involving a hybrid
transformer in conjunction with variable network delay and where impulse
responses are clearly sparse. The so-called proportionate NLMS (PNLMS)
algorithm was then introduced [3]. This new algorithm converges and tracks
much faster than the NLMS algorithm when the impulse response that we
need to identify is sparse. PNLMS and other more sophisticated versions such
as improved PNLMS (IPNLMS) [4] are success stories since they are now used
in many products.

Recently, another variant of the LMS algorithm, called the exponentiated
gradient algorithm with positive and negative weights (EG± algorithm), was
proposed by Kivinen and Warmuth in the context of computational learning
theory [5]. This new algorithm also converges much faster than the LMS al-
gorithm when the target is sparse. The EG± algorithm has the nice feature
that its update rule takes advantage of the sparseness of the impulse response
to speed up its initial convergence and to improve its tracking abilities com-
pared to LMS. In [6], a general expression of the mean squared error (MSE)
is derived for the EG± algorithm showing that for sparse impulse responses,
the EG± algorithm, like PNLMS, converges more quickly than the LMS for a
given asymptotic MSE. Even though the EG± and PNLMS algorithms may
look very different, clearly they must be linked somehow. It is quite remark-
able that two equivalent algorithms, as it will be shown later, were proposed
in two completely different contexts.

There are two fundamental ways to update the coefficients of an adaptive
filter h(n). The linear update:

h(n) = M1(n)h(n− 1) + m2(n), (5.1)

where M1(n) and m2(n) are respectively a matrix and a vector independent
of h(n− 1), and the nonlinear update:

h(n) = M1

[
h(n− 1)

]
h(n− 1) + m2(n), (5.2)

where this time, as indicated, M1[h(n−1)] depends on h(n−1). All classical
algorithms such as NLMS and RLS can be deduced from (5.1) and new ones
can be derived from (5.2). This view gives already an answer to the important
question: how can this a priori information (sparseness) be taken into account
to improve convergence and tracking of adaptive algorithms? The study of this
question is the main objective of this chapter.

5.2 Notation and Definitions

In derivations and descriptions, the following notation is used:
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x(n) = input signal,
y(n) = hT

t x(n) + w(n), output signal plus noise,

x(n) =
[
x(n) x(n− 1) · · · x(n− L+ 1)

]T
, excitation vector,

ht =
[
ht,0 ht,1 · · · ht,L−1

]T
, true impulse response,

h(n) =
[
h0(n) h1(n) · · · hL−1(n)

]T
, estimated impulse response.

Here L is the length of the adaptive filter, n is the time index, and superscript
(·)T denotes transpose of a vector or a matrix.

We now give some important definitions that will be used in the rest of
this chapter:

e(n) = y(n) − ŷ(n)
= y(n) − xT(n)h(n− 1), a priori error signal, (5.3)

ε(n) = y(n) − xT(n)h(n), a posteriori error signal, (5.4)

en(n) =
[
xT(n)G(n− 1)x(n)

]−1/2
e(n), (5.5)

normalized a priori error signal,

εn(n) =
[
xT(n)G(n− 1)x(n)

]−1/2
ε(n), (5.6)

normalized a posteriori error signal,
e(n) = y(n) − XT(n)h(n− 1), a priori error signal vector, (5.7)
εεε(n) = y(n) − XT(n)h(n), a posteriori error signal vector, (5.8)

en(n) =
[
XT(n)G(n− 1)X(n)

]−1/2

e(n), (5.9)

normalized a priori error signal vector,

εεεn(n) =
[
XT(n)G(n− 1)X(n)

]−1/2

εεε(n), (5.10)

normalized a posteriori error signal vector,

where

y(n) =
[
y(n) y(n− 1) · · · y(n− P + 1)

]T
is a vector containing the P more recent samples of the output signal y(n),

X(n) =
[
x(n) x(n− 1) · · · x(n− P + 1)

]
is an L× P matrix of the input signal samples x(n), and

G(n− 1) = diag
{
g0(n− 1) g1(n− 1) · · · gL−1(n− 1)

}
(5.11)

is an L×L diagonal matrix, where gl(n−1) > 0, ∀n, l. This matrix is context
dependent but is usually a function of h(n− 1).
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5.3 Sparseness Measure

Before presenting different algorithms that have the potential to work well
when impulse responses are sparse, we need first to agree somehow on what
we mean by sparse. But is it possible to quantify sparseness with a number?
The answer to this question is not obvious since the definition of sparseness
is not obvious itself. We will argue, though, that the following measure:

ξ(h) =
L

L−√
L

(
1 − ‖h‖1√

L‖h‖2

)
(5.12)

is a reasonable one for evaluating the sparseness of a filter h of length L > 1,
where ‖ · ‖1 and ‖ · ‖2 are the 1- and 2-norm vectors, respectively. The same
definition was proposed in [7].

Consider the Dirac filter,

hd =
[
1 0 · · · 0

]T
, (5.13)

the uniform filter,

hu =
[
1 1 · · · 1

]T
, (5.14)

and the exponentially decaying filter,

he =
[

1 exp
(
− 1

β

)
· · · exp

(
−L−1

β

)]T

, (5.15)

where β is a positive decay constant. The Dirac and uniform filters are par-
ticular cases of he. Indeed:

lim
β→0

he = hd, (5.16)

lim
β→∞

he = hu. (5.17)

While the Dirac filter is the sparsest of all possible impulse responses,
the uniform filter is the most dispersive one. The filter he is a good model of
acoustic impulse responses where β depends on the reverberation time. For
a long reverberation time (large β), he will decay slowly while for a short
reverberation time (small β), he will decay rapidly. Having this in mind, we
now give some important properties.

Properties:

(a) 0 ≤ ξ(h) ≤ 1, (5.18)
(b) ∀ a �= 0, ξ(ah) = ξ(h), (5.19)
(c) ξ(hd) = 1, (5.20)
(d) ξ(hu) = 0. (5.21)
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Fig. 5.1. (a) Impulse responses he of length L = 256 for different values of the
decay constant β (from 1 to 50). (b) Sparseness measure for he as a function of the
decay constant, β.

Proofs: We only show property (a) since (b), (c), and (d) are obvious. It is
easy to check that ‖h‖2 ≤ ‖h‖1, which implies that ξ(h) ≤ 1. It can be shown
(see [21], for example) that:

‖h‖1 ≤
√
L‖h‖2. (5.22)

As a result, ξ(h) ≥ 0.
We see from these properties that the measure is bounded and is not

affected by a scaling factor. Furthermore, the closer the measure is to 1 (resp.
0), the sparser (resp. more dispersive) is the impulse response.

To further confirm that (5.12) is a good measure of sparseness, Fig. 5.1
illustrates what happens for a class of exponentially decaying filters he of
length L = 256. Figure 5.1(a) shows the amplitude of all those filters from
β = 1 to β = 50 and Fig. 5.1(b) gives the corresponding values of ξ(he).
For β = 1 (very sparse filter), ξ(he) ≈ 0.97 and for β = 50 (quite dispersive
filter), ξ(he) ≈ 0.4. From values of the decay constant between 1 and 50, the
sparseness measure decreases smoothly and follows well this decaying.
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5.4 The NLMS, PNLMS, and IPNLMS Algorithms

In this section, we briefly explain the normalized least-mean-square (NLMS),
proportionate NLMS (PNLMS), and improved PNLMS (IPNLMS) algo-
rithms. Even though NLMS and IPNLMS may seem coming from the same
family of adaptive filters, this is not really the case and the similarity between
the two is quite deceiving.

The role of an adaptive filter, h(n), is to estimate the true impulse re-
sponse, ht, at each iteration time, n, when new samples, x(n) and y(n), are
available. Depending on the algorithm used for this task, convergence, track-
ing, complexity, robustness to noise, etc, can be very different. One of the most
popular adaptive filters in signal processing applications is the NLMS [1], [2],
due to its simplicity and robustness. But its convergence and tracking are slow
in general, especially for long impulse responses. In many situations where an
adaptive algorithm is required, convergence and tracking are critical for a good
performance of the entire system. While in the NLMS, the adaptation step is
the same for all components of the filter, in the PNLMS [3], an adaptive indi-
vidual step size is assigned to each filter coefficient. The step sizes are calcu-
lated from the last estimate of the filter coefficients in such a way that a larger
coefficient receives a larger increment, thus increasing the convergence rate of
that coefficient. This has the effect that active coefficients are adjusted faster
than non-active coefficients (i.e. small or zero coefficients). Hence, PNLMS
converges much faster than NLMS for sparse impulse responses. Unfortu-
nately, PNLMS behaves much worse than NLMS when the impulse response
is not sparse. This problem is due to the fact that the proportionate update
is not very well refined. In [4], an IPNLMS was proposed where the adaptive
individual step size has a better balance between the fixed step size of NLMS
and the large amount of proportionality in PNLMS. As a result, IPNLMS
always converges and tracks better than NLMS and PNLMS, however sparse
the impulse response.

The error signal and the coefficient update equation of the three previously
discussed algorithms can be written as:

e(n) = y(n) − hT(n− 1)x(n), (5.23)

h(n) = h(n− 1) +
μG(n− 1)x(n)e(n)

xT(n)G(n− 1)x(n) + δ
, (5.24)

where

G(n− 1) = diag
{
g0(n− 1) g1(n− 1) · · · gL−1(n− 1)

}
(5.25)

is a diagonal matrix that adjusts the step sizes of the individual taps of the
filter, μ (0 < μ < 1) is the overall step-size factor, and δ is the regularization
parameter.

The NLMS algorithm is obtained by taking:
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G(n) = I, (5.26)
δ = δNLMS = cst · σ2

x, (5.27)

where I, σ2
x, and cst are the identity matrix, the power of the signal x(n), and

a small positive constant, respectively.
In the PNLMS, the diagonal elements of G(n) = Gp(n) are calculated as

follows [3]:

γp,l(n) = max {ρmax [δp, |h0(n)|, · · · , |hL−1(n)|] , |hl(n)|} , (5.28)

gp,l(n) =
γp,l(n)

‖γγγp(n)‖1
, 0 ≤ l ≤ L− 1, (5.29)

where

γγγp(n) =
[
γp,0(n) γp,1(n) · · · γp,L−1(n)

]T
.

Parameters δp and ρ are positive numbers with typical values δp = 0.01, ρ =
0.01. The first term in (5.28), ρ, prevents hl(n) from stalling when its mag-
nitude is much smaller than the magnitude of the largest coefficient and δp
regularizes the updating when all coefficients are zero at initialization. For the
regularization parameter, we usually choose:

δPNLMS = δNLMS/L. (5.30)

For the IPNLMS algorithm, the diagonal matrix, G(n) = Gip(n), is com-
puted in a more elegant way [4]:

γip,l(n) = (1 − α)
‖h(n)‖1

L
+ (1 + α)|hl(n)|, (5.31)

gip,l(n) =
γip,l(n)

‖γγγip(n)‖1

=
1 − α
2L

+ (1 + α)
|hl(n)|

2‖h(n)‖1
, 0 ≤ l ≤ L− 1, (5.32)

where α (−1 ≤ α < 1) is a parameter that controls the amount of proportion-
ality in the IPNLMS. For α = −1, it can easily be checked that the IPNLMS
and NLMS algorithms are identical. For α close to 1, IPNLMS behaves like
PNLMS. In practice, a good choice for α is −0.5 or 0. With this choice and
in simulations, IPNLMS always performs better than NLMS and PNLMS. As
for the regularization parameter, it should be taken as:

δIPNLMS =
1 − α
2L

δNLMS. (5.33)

The IPNLMS algorithm is summarized in Table 5.1.
Before finishing this section, it is worth mentioning another variant of

PNLMS, called PNLMS++ [8]. In this algorithm, the adaptation of the filter
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Table 5.1. The IPNLMS algorithm.

Initialization:

hl(0) = 0, l = 0, 1, · · · , L − 1

Parameters:

−1 ≤ α < 1

0 < μ < 1, δIPNLMS = cst · σ2
x
1 − α

2L
ε > 0 (very small number to avoid division by zero)

Error:

e(n) = y(n) − hT(n − 1)x(n)

Update:

gip,l(n − 1) =
1 − α

2L
+ (1 + α)

|hl(n − 1)|
2‖h(n − 1)‖1 + ε

μ(n) =
μ

L−1∑
j=0

x2(n − j)gip,j(n − 1) + δIPNLMS

hl(n) = hl(n − 1) + μ(n)gip,l(n − 1)x(n − l)e(n)

l = 0, 1, · · · , L − 1

coefficients alternates between NLMS and PNLMS; as a result, PNLMS++
seems a little bit less sensitive to the assumption of a sparse impulse response
than PNLMS. For a nice overview on this class of adaptive filters, see [9].

Now, a natural question arises: is it possible to find an optimization crite-
rion that includes the sparseness information?

5.5 Universal Criterion

In this section, we show how to derive different classes of adaptive filters. As
explained in [5], a reasonable adaptive algorithm must find a good balance
between its needs to be conservative (retain the information it has acquired in
preceding iterations) and corrective (make sure that with new information, the
accuracy of the solution is increased). For that, we give a universal criterion
that is the sum of two terms: one of them is a distance between the old and
new weight vectors (and depending on how we define this distance, we obtain
different update rules) and the other one depends on the a posteriori error
signal. Therefore, according to this principle, one easy way to find adaptive
filters that adjust the new weight vector, h(n), from the old one, h(n− 1), is
to minimize the following function:
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J(n) = d [h(n),h(n− 1)] + εεεT
n (n)εεεn(n), (5.34)

where d [h(n),h(n− 1)] is some measure of distance from the old to the new
weight vectors. Differentiating J(n) with respect to h(n) and setting the re-
sulting vector to zero, we can see that any adaptive algorithm has the form:

2P x(n) [h(n) − h(n− 1)] +
∂d [h(n),h(n− 1)]

∂h(n)

= 2X(n)
[
XT(n)G(n− 1)X(n)

]−1

e(n), (5.35)

where
P x(n) = X(n)

[
XT(n)G(n− 1)X(n)

]−1

XT(n) (5.36)

is a projection matrix for G(n− 1) = I. It has the two properties:

P x(n)G(n− 1)X(n) = X(n), (5.37)
P x(n)G(n− 1)P x(n) = P x(n). (5.38)

Clearly, the choice of the distance d [h(n),h(n− 1)] is significant. Depend-
ing on how we choose it, we may have a linear or nonlinear update equation
with respect to the weight vector.

5.5.1 Linear Update

In this important category of adaptive filters, we take G(n − 1) = I and we
choose for the distance:

d
[
h(n),h(n− 1)

]
=
[
h(n) − h(n− 1)

]T
Qx(n)

[
h(n) − h(n− 1)

]
, (5.39)

where the symmetric matrix Qx(n) is positive definite and depends on the
input signal x(n) only. Using (5.39) in (5.35), we obtain the update equation:

h(n) = h(n− 1) +
[
P x(n) + Qx(n)

]−1

X(n)
[
XT(n)X(n)

]−1

e(n). (5.40)

There are two important things to pay attention to. First, if we replace e(n)
by its value in (5.40), we can see that this equation is updated linearly with
respect to the estimation filter h(n − 1). Second, the choice of the matrix
Qx(n) will lead to well-known algorithms and even to new ones.

Let’s take:
Qx(n) = μ−1I − P x(n). (5.41)

It can easily be checked that Qx(n) is positive definite if 0 < μ < 1. Replacing
(5.41) in (5.40), we get the affine projection algorithm (APA) [10]:

h(n) = h(n− 1) + μX(n)
[
XT(n)X(n)

]−1

e(n). (5.42)
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For the particular case P = 1, we obviously have the (non-regularized) NLMS
algorithm [2].

Consider a recursive estimation of the input signal correlation matrix:

R(n) = λR(n− 1) + x(n)xT(n), (5.43)

where λ (0 < λ < 1) is an exponential forgetting factor. With P = 1 and
plugging

Qx(n) =
R(n)

xT(n)x(n)
− P x(n) (5.44)

in (5.40), we obtain the recursive least-squares (RLS) algorithm [2]:

h(n) = h(n− 1) + R−1(n)x(n)e(n). (5.45)

Thus, so far, we have seen how to deduce the three most classical adaptive
filters that can be found in the literature: NLMS, APA, and RLS.

5.5.2 nonlinear Update

In this second category of adaptive filters, G(n− 1) is now a function of the
filter h(n− 1) and the distance is changed accordingly:

d
[
h(n),h(n−1)

]
=
[
h(n)−h(n−1)

]T
Qx

[
G(n−1)

][
h(n)−h(n−1)

]
, (5.46)

where now the symmetric positive-definite matrix Qx[G(n − 1)] is not only
a function of the input signal x(n) but also of G(n − 1) [and indirectly of
h(n− 1)] as well. Minimizing (5.34) with (5.46), we obtain a general form of
the adaptive algorithm:

h(n) = h(n− 1) +
{

P x(n) + Qx

[
G(n− 1)

]}−1

X(n)

·
[
XT(n)G(n− 1)X(n)

]−1

e(n), (5.47)

where P x(n) is defined in (5.36). The main difference between expressions
(5.40) and (5.47) is that the former one is linearly updated with respect to
the estimation filter h(n − 1) while the latter one is not since G(n − 1) is a
function of h(n− 1).

With the distance defined in (5.46), the parameter space is a curved mani-
fold (non Euclidean). Such a space is a Riemannian space. The L×L positive-
definite matrix Qx[G(n − 1)] is called the Riemannian metric tensor and it
depends in general on h(n− 1). The Riemannian metric tensor characterizes
the intrinsic curvature of a particular manifold in L-dimensional space.

Taking P = 1 and

Qx(n) = μ−1G−1(n− 1) − P x(n), (5.48)
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we get the natural gradient (NG) algorithm proposed by Amari [11]:

h(n) = h(n− 1) +
μG(n− 1)x(n)e(n)
xT(n)G(n− 1)x(n)

. (5.49)

Depending on the choice of G(n−1), we may obtain PNLMS [3], IPNLMS [4],
or other proportionate versions of NLMS [12], [13], [14].

Now with P > 1 and with the same definition of Qx(n) as in (5.48), we
have the natural APA (NAPA):

h(n) = h(n− 1) + μG(n− 1)X(n)
[
XT(n)G(n− 1)X(n)

]−1

e(n). (5.50)

Again, the choice of G(n− 1) leads to different interesting algorithms such as
proportionate APA (PAPA) [15] or improved PAPA (IPAPA) [16].

Following the same philosophy, we may derive the natural RLS (NRLS)
algorithm:

h(n) = h(n− 1) + G1/2(n− 1)R−1
h (n)G1/2(n− 1)x(n)e(n), (5.51)

where
Rh(n) = λRh(n− 1) + x(n)G(n− 1)xT(n) (5.52)

is an estimate of the input signal correlation matrix.
To summarize this subsection, we can say that this relatively new nonlinear

framework for the update of the coefficients of the filter is very promising since
it seems to fit very well the identification of sparse impulse responses: by
taking this information into account, the adjustment of the coefficients of the
estimated filter is done in a non-uniform manner (e.g., components with large
magnitude have a larger step size than components with small magnitude)
and the performance of the adaptive filter can be greatly improved. In the
next section, we present another class of algorithms having the same feature.

5.6 Exponentiated Gradient Algorithms

The exponentiated gradient (EG) algorithms were first proposed by Kivinen
and Warmuth in the context of computational learning theory [5]. These al-
gorithms are highly nonlinear and can be easily derived from the criterion
explained in Section 5.5, by simply using for the distance dre [h(n),h(n− 1)],
the relative entropy also known as Kullback-Leibler divergence. Since this di-
vergence is not really a distance, it has to be handled with care.

5.6.1 The EG Algorithm for Positive Weights

In this subsection, we assume that the components of the impulse response
that we try to identify are all positive, in order that the relative entropy is
meaningful.



136 J. Benesty, Y. Huang, J. Chen, P. A. Naylor

Taking P = 1 and G(n− 1) = I, the criterion (5.34) simplifies to:

J(n) = dre [h(n),h(n− 1)] + ε2n(n)

= dre [h(n),h(n− 1)] +
[
xT(n)x(n)

]−1
ε2(n), (5.53)

where now

dre [h(n),h(n− 1)] = η−1
L−1∑
l=0

hl(n) ln
hl(n)

hl(n− 1)
, (5.54)

with η > 0. With this formalism, h(n) and h(n − 1) are probability vec-
tors, which means that their components are nonnegative and ‖h(n)‖1 =
‖h(n − 1)‖1 = u > 0, where u is a scaling factor. Therefore, we minimize
J(n) with the constraint that

∑
l hl(n) = 1 (i.e. we take here u = 1). This

optimization leads to:

η−1

[
ln

hl(n)
hl(n− 1)

+ 1
]
− 2x(n− l) [xT(n)x(n)

]−1
ε(n) + κ = 0, (5.55)

l = 0, 1, · · · , L− 1,

where κ is a Lagrange multiplier. Equation (5.55) is highly nonlinear so that
solving it is very difficult if not impossible. However, if the new weight vector
h(n) is close to the old weight vector h(n − 1), replacing the a posteriori
error signal, ε(n), in (5.55) with the a priori error signal, e(n), is a reasonable
approximation and the equation

η−1

[
ln

hl(n)
hl(n− 1)

+ 1
]
− 2x(n− l) [xT(n)x(n)

]−1
e(n) + κ = 0, (5.56)

l = 0, 1, · · · , L− 1,

is much easier to solve. We then deduce the EG algorithm [5]:

hl(n) =
hl(n− 1)rl(n)

L−1∑
j=0

hj(n− 1)rj(n)
, l = 0, 1, · · · , L− 1, (5.57)

where

rl(n) = exp [η(n)x(n− l)e(n)] , (5.58)

with η(n) = 2η
[
xT(n)x(n)

]−1. The algorithm is initialized with: hl(0) = c >
0, ∀l.

5.6.2 The EG± Algorithm for Positive and Negative Weights

The EG algorithm is designed to work for positive weights only, due to the
nature of the relative entropy definition. However, there is a simple way to
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generalize the idea to both positive and negative weights. Indeed, we can
always find two vectors h+(n) and h−(n) with positive coefficients, in such a
way that the vector

h(n) = h+(n) − h−(n) (5.59)

can have positive and negative components. In this case, the a priori and a
posteriori error signals can be written as:

e(n) = y(n) − [h+(n− 1) − h−(n− 1)]Tx(n), (5.60)
ε(n) = y(n) − [h+(n) − h−(n)]Tx(n), (5.61)

and the criterion (5.53) will change to:

J±(n) = dre[h+(n),h+(n− 1)] + dre[h−(n),h−(n− 1)]

+
1
u

[
xT(n)x(n)

]−1
ε2(n), (5.62)

where u is a positive scaling constant. Using the Kullback-Leibler divergence
plus the constraint

∑
l[h

+
l (n) + h−l (n)] = u and the same approximation as

for the EG, the minimization of (5.62) gives:

η−1

[
ln

h+
l (n)

h+
l (n− 1)

+ 1
]
− 2
u
x(n− l) [xT(n)x(n)

]−1
e(n) + κ = 0, (5.63)

η−1

[
ln

h−l (n)
h−l (n− 1)

+ 1
]

+
2
u
x(n− l) [xT(n)x(n)

]−1
e(n) + κ = 0, (5.64)

l = 0, 1, · · · , L− 1,

where κ is a Lagrange multiplier. From the two previous equations, we easily
find the EG± algorithm [5]:

h+
l (n) = u

h+
l (n− 1)r+l (n)

L−1∑
j=0

[h+
j (n− 1)r+j (n) + h−j (n− 1)r−j (n)]

, (5.65)

h−l (n) = u
h−l (n− 1)r−l (n)

L−1∑
j=0

[h+
j (n− 1)r+j (n) + h−j (n− 1)r−j (n)]

, (5.66)

where

r+l (n) = exp
[
η(n)
u
x(n− l)e(n)

]
, (5.67)

r−l (n) = exp
[
−η(n)

u
x(n− l)e(n)

]
(5.68)

=
1

r+l (n)
,
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Table 5.2. The EG± algorithm.

Initialization:

h+
l (0) = h−

l (0) = c > 0, l = 0, 1, · · · , L − 1

Parameters:

u ≥ ‖ht‖1

0 < μ < 1, δEG = cst · σ2
x

Error:

e(n) = y(n) − [h+(n − 1) − h−(n − 1)]Tx(n)

Update:

μ(n) =
μ

xT(n)x(n) + δEG

r+
l (n) = exp

[
L

μ(n)

u
x(n − l)e(n)

]
r−l (n) =

1

r+
l (n)

h+
l (n) = u

h+
l (n − 1)r+

l (n)
L−1∑
j=0

[
h+

j (n − 1)r+
j (n) + h−

j (n − 1)r−j (n)
]

h−
l (n) = u

h−
l (n − 1)r−l (n)

L−1∑
j=0

[
h+

j (n − 1)r+
j (n) + h−

j (n − 1)r−j (n)
]

l = 0, 1, · · · , L − 1

with η(n) = 2η
[
xT(n)x(n)

]−1. We can check that we always have ‖h+(n)‖1+
‖h−(n)‖1 = u. This algorithm is summarized in Table 5.2.

The fact that,

u = ‖h+(n)‖1 + ‖h−(n)‖1 ≥ ‖h+(n) − h−(n)‖1 = ‖h(n)‖1, (5.69)

suggests that the constant u has to be chosen such that u ≥ ‖ht‖1 in order
that h(n) converges to ht. If we take u < ‖ht‖1, the algorithm will introduce
a bias in the coefficients of the filter.

The motivation for the EG± (and EG) algorithm can be developed by
taking the logarithmic of (5.65) and (5.66). This shows that the logarith-
mic weights use almost the same update as the NLMS algorithm. Alterna-
tively, this can be interpreted as exponentiating the update, hence the name
EG±. This has the effect of assigning larger relative updates to larger weights,
thereby deemphasizing the effect of smaller weights. This is qualitatively sim-
ilar to the PNLMS algorithm which makes the update proportional to the size
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of the weight. This type of behavior is desirable for sparse impulse responses
where small weights do not contribute significantly to the mean solution but
introduce an undesirable noise-like variance.

5.6.3 The Exponentiated RLS (ERLS) Algorithm

The RLS algorithm is optimal from a convergence point of view since its
convergence does not depend on the condition number of the input signal co-
variance matrix. It is well known that with ill-conditioned signals (like speech)
this condition number can be very large and algorithms like LMS suffer from
slow convergence [2]. Thus, it is interesting to compare the RLS algorithm
to the other algorithms when the impulse response to identify is sparse. The
update equation (5.45) of the RLS algorithm can be rewritten as:

hl(n) = hl(n− 1) + kl(n)e(n), 0 ≤ l ≤ L− 1, (5.70)

where

k(n) =
[
k0(n) k1(n) · · · kL−1(n)

]T
= R−1(n)x(n) (5.71)

is the Kalman gain. A fast RLS (FRLS) can be derived by using the a priori
Kalman gain k′(n) = R−1(n− 1)x(n) and the forward and backward predic-
tors. This a priori Kalman gain can be computed recursively with only 5L
multiplications [2].

Following the same approach as for the EG± algorithm, we deduce the
exponentiated RLS (ERLS) algorithm [17]:

e(n) = y(n) − [h+(n− 1) − h−(n− 1)]Tx(n), (5.72)

h+
l (n) = u

h+
l (n− 1)r+l (n)

L−1∑
j=0

[
h+

j (n− 1)r+j (n) + h−j (n− 1)r−j (n)
] , (5.73)

h−l (n) = u
h−l (n− 1)r−l (n)

L−1∑
j=0

[
h+

j (n− 1)r+j (n) + h−j (n− 1)r−j (n)
] , (5.74)

where now:

r+l (n) = exp
[
kl(n)
u
e(n)

]
(5.75)

=
1

r−l (n)
.

Obviously, a fast ERLS (FERLS) can easily be derived since the Kalmain gain
in (5.75) is the same as the one used in the FRLS. Simulations presented later
show that there is not much difference between the FRLS and FERLS for
initial convergence, but for tracking, FERLS can be much better than FRLS.
Hence, the FERLS algorithm may be of some interest.
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5.7 The Lambert W Function Based Gradient Algorithm

As was shown in the previous section, the EG algorithm is derived from the
relative entropy which is not a symmetric distance, e.g. dre [h(n),h(n− 1)] �=
dre [h(n− 1),h(n)]. Moreover, the constraint

∑
l hl(n − 1) =

∑
l hl(n) =

1 needs to be added in the minimization process to ensure that
dre [h(n),h(n− 1)] ≥ 0.

Consider the following symmetric distance:

dlw

[
h(n),h(n− 1)

]
= η′−1

L−1∑
l=0

[
hl(n) − hl(n− 1)

][
lnhl(n) − lnhl(n− 1)

]
= η′−1

L−1∑
l=0

hl(n) ln
hl(n)

hl(n− 1)

+η′−1
L−1∑
l=0

hl(n− 1) ln
hl(n− 1)
hl(n)

= dre

[
h(n),h(n− 1)

]
+ dre

[
h(n− 1),h(n)

]
. (5.76)

It is easy to see that dlw [h(n),h(n− 1)] ≥ 0 as long as the components
hl(n) and hl(n − 1) are nonnegative. This means that a criterion using
dlw [h(n),h(n− 1)] does not need to include any constraint, which is not the
case if dre [h(n),h(n− 1)] is used.

If we now take the general case (positive and negative components), we
seek to minimize:

Jlw(n) = dlw

[
h+(n),h+(n− 1)

]
+ dlw

[
h−(n),h−(n− 1)

]
+
[
xT(n)x(n)

]−1
ε2(n). (5.77)

This minimization with respect to h+(n) and h−(n) (then approximating the
a posteriori error with the a priori error) leads to the two equations:

1 − η′(n)x(n− l)e(n) = ln
h+

l (n− 1)
h+

l (n)
+
h+

l (n− 1)
h+

l (n)
, (5.78)

1 + η′(n)x(n− l)e(n) = ln
h−l (n− 1)
h−l (n)

+
h−l (n− 1)
h−l (n)

, (5.79)

l = 0, 1, · · · , L− 1,

where η′(n) = 2η′
[
xT(n)x(n)

]−1. Exponentiating the two previous equa-
tions, we find what we call the Lambert W function based gradient (LWG)
algorithm:

exp
[
1 − η′(n)x(n− l)e(n)

]
= w+

l (n) expw+
l (n), (5.80)

exp
[
1 + η′(n)x(n− l)e(n)

]
= w−

l (n) expw−
l (n), (5.81)
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where

w+
l (n) =

h+
l (n− 1)
h+

l (n)
, (5.82)

w−
l (n) =

h−l (n− 1)
h−l (n)

. (5.83)

The Lambert W function is defined to be the multivalued inverse of the func-
tion w expw [20]. Since exp [1 ± η′(n)x(n− l)e(n)] > 0, there is a unique value
for w+

l (n) and w−
l (n).

Obviously, the complexity of the LWG algorithm is quite high since it
requires, at each iteration and for each component of the filters, to find the
solution of the nonlinear equation: z = w expw. Iterative algorithms exist for
that and MATLAB has a function called “lambertw” to find w.

5.8 Some Important Links Among Algorithms

nonlinear algorithms like EG are not easy to analyze and even when it is
possible, very often the information we can get from a tedious analysis is not
that much helpful in understanding their behavior. It is sometimes more useful
to link a new adaptive filter to a well-studied one such as NLMS, in order to
be able to deduce its limitations and potentials.

5.8.1 Link Between NLMS and EG± Algorithms

If we initialize hl(0) = 0, l = 0, 1, · · · , L− 1, in the NLMS algorithm, we can
easily see that:

h(n) =
n−1∑
i=0

μ(i+ 1)x(i+ 1)e(i+ 1)

= μ

n−1∑
i=0

x(i+ 1)e(i+ 1)
xT(i+ 1)x(i+ 1)

, (5.84)

where μ(i+ 1) = μ
[
xT(i+ 1)x(i+ 1)

]−1.
If we start the adaptation of the EG± algorithm with h+

l (0) = h−l (0) =
c > 0, l = 0, 1, · · · , L−1, we can show that (5.65) and (5.66) are equivalent
to [18]:

h+
l (n) = u

s+l (n)
L−1∑
j=0

[
s+j (n) + s−j (n)

] , (5.85)

h−l (n) = u
s−l (n)

L−1∑
j=0

[
s+j (n) + s−j (n)

] , (5.86)
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where

s+l (n) = exp

[
1
u

n−1∑
i=0

η(i+ 1)x(i+ 1 − l)e(i+ 1)

]
, (5.87)

s−l (n) = exp

[
− 1
u

n−1∑
i=0

η(i+ 1)x(i+ 1 − l)e(i+ 1)

]
(5.88)

=
1

s+l (n)
,

and η(i+ 1) = 2η
[
xT(i+ 1)x(i+ 1)

]−1. Clearly, the convergence of the algo-
rithm does not depend on the initialization parameter c (as long it is positive
and nonzero). Now

hl(n) = h+
l (n) − h−l (n)

= u
s+l (n) − s−l (n)

L−1∑
j=0

[
s+j (n) + s−j (n)

]

= u

sinh
[

1
u

n−1∑
i=0

η(i+ 1)x(i+ 1 − l)e(i+ 1)
]

L−1∑
j=0

cosh
[

1
u

n−1∑
i=0

η(i+ 1)x(i+ 1 − j)e(i+ 1)
] . (5.89)

Note that the sinh function has the effect of exponentiating the update, as
previously commented.

For u large enough and using the approximations sinh(a) ≈ a and
cosh(a) ≈ 1 when |a| � 1, (5.89) becomes:

hl(n) =
2η
L

n−1∑
i=0

x(i+ 1 − l)e(i+ 1)
xT(i+ 1)x(i+ 1)

, 0 ≤ l ≤ L− 1. (5.90)

Comparing (5.84) and (5.90), we understand that, by taking η = Lμ/2 and for
u large enough, the NLMS and EG± algorithms have the same performance.
Obviously, the choice of u is critical in practice: if we take u < ‖ht‖1, the
EG± will introduce a bias in the coefficients of the filter, and if u � ‖ht‖1,
the EG± will behave like NLMS.

5.8.2 Link Between IPNLMS and EG± Algorithms

PNLMS and IPNLMS algorithms were developed for use in network echo
cancelers [19]. In comparison to the NLMS algorithm, they have very fast
initial convergence and tracking when the echo path is sparse. As previously
mentioned, the idea behind these “proportionate” algorithms is to update each
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coefficient of the filter independently of the others by adjusting the adaptation
step size in proportion to the estimated filter coefficient.

How are the IPNLMS and EG± algorithms specifically related? In the rest
of this subsection, we show that the IPNLMS is in fact an approximation of
the EG±.

If we suppose that h+(n) [resp. h−(n)] is close to h+(n−1) [resp. h−(n−
1)], which is usually the case in all adaptive algorithms (especially for a small
step size), the two distances dre[h+(n),h+(n− 1)] and dre[h−(n),h−(n− 1)]
in criterion (5.62) can be approximated as follows:

dre[h+(n),h+(n− 1)] = η−1
L−1∑
l=0

h+
l (n) ln

h+
l (n)

h+
l (n− 1)

≈ η−1
L−1∑
l=0

h+
l (n)

[
h+

l (n)
h+

l (n− 1)
− 1

]
, (5.91)

dre[h−(n),h−(n− 1)] = η−1
L−1∑
l=0

h−l (n) ln
h−l (n)

h−l (n− 1)

≈ η−1
L−1∑
l=0

h−l (n)
[
h−l (n)

h−l (n− 1)
− 1

]
. (5.92)

Using (5.91) and (5.92) plus the constraint
∑

l[h
+
l (n) + h−l (n)] = u and the

same approximation as for the EG±, the minimization of (5.62) gives the
approximated EG± algorithm:

h+
l (n) = h+

l (n− 1)
[
1 +

η(n)
2u

x(n− l)e(n) − η(n)
2u2

ŷ(n)e(n)
]
, (5.93)

h−l (n) = h−l (n− 1)
[
1 − η(n)

2u
x(n− l)e(n) − η(n)

2u2
ŷ(n)e(n)

]
, (5.94)

so that:

hl(n) = h+
l (n) − h−l (n)

= hl(n− 1) +
η(n)[h+

l (n− 1) + h−l (n− 1)]
2u

x(n− l)e(n)

−η(n)
2u2

hl(n− 1)ŷ(n)e(n). (5.95)

Neglecting the last term of the right-hand side of (5.95), we get:

hl(n) = hl(n− 1) +
η(n)

2
h+

l (n− 1) + h−l (n− 1)
‖h+(n− 1)‖1 + ‖h−(n− 1)‖1

x(n− l)e(n). (5.96)

If the true impulse response ht is sparse, it can be shown that if we choose
u = ‖ht‖1, the (positive) vector h+(n − 1) + h−(n − 1) is also sparse after
convergence. This means that the elements
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h+
l (n− 1) + h−l (n− 1)

‖h+(n− 1)‖1 + ‖h−(n− 1)‖1

in (5.96) play exactly the same role as the elements gip,l(n) in the IPNLMS
algorithm in the particular case where α = 1 (PNLMS algorithm). As a re-
sult, we can expect the two algorithms (IPNLMS and EG±) to have sim-
ilar performance. On the other hand, if u � ‖ht‖1, it can be shown that
h+

l (n − 1) + h−l (n − 1) ≈ u/L, ∀l. In this case, the EG± algorithm will be-
have like IPNLMS with α = −1 (NLMS algorithm). Thus, the parameter α
in IPNLMS operates like the parameter u in EG±. However, the advantage
of IPNLMS is that no a priori information of the system impulse response
is required in order to have a better convergence rate than the NLMS algo-
rithm. Another clear advantage of IPNLMS is that it is much less complex to
implement than EG±. We conclude that IPNLMS is a good approximation of
EG± and is more useful in practice. Note also that the approximated EG±
algorithm (5.96) belongs to the family of natural gradient algorithms [12], [13].

5.8.3 Link Between LWG and EG± Algorithms

As we have already mentioned, the complexity of the LWG is high, so this
algorithm is not normally suitable for practical applications. However, it is
important to understand how it is related to other algorithms.

If we make the usual assumption that h+(n) [resp. h−(n)] is close to
h+(n − 1) [resp. h−(n − 1)], the LWG algorithm can be approximated as
follows:

h+
l (n) =

h+
l (n− 1)

1 − η′(n)
2

x(n− l)e(n)
, (5.97)

h−l (n) =
h−l (n− 1)

1 +
η′(n)

2
x(n− l)e(n)

, (5.98)

l = 0, 1, · · · , L− 1.

For |a| � 1, we have:

1
1 − a ≈ 1 + a, (5.99)

1
1 + a

≈ 1 − a. (5.100)

Using these approximations in (5.97) and (5.98), we obtain the approximated
LWG algorithm:
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h+
l (n) = h+

l (n− 1)
[
1 +

η′(n)
2
x(n− l)e(n)

]
, (5.101)

h−l (n) = h−l (n− 1)
[
1 − η′(n)

2
x(n− l)e(n)

]
, (5.102)

l = 0, 1, · · · , L− 1,

which is equivalent to the approximated EG± algorithm. Therefore, we can
expect that in practice, the EG± and LWG algorithms will perform in a very
similar way.

5.9 Simulations

The objective of this section is to show, by way of simulations, how some of
the algorithms presented in this chapter work in typical conditions of room
acoustic impulse response identification. Comparison among the different al-
gorithms is another important aspect we emphasize here. The aim is to give
a representatives set of simulation scenarios that are relevant in this context.
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Fig. 5.2. Acoustic impulse responses used in simulations.

The two room acoustic impulse responses ht to be identified are shown in
Fig. 5.2. The impulse response of Fig. 5.2(a) is more sparse [ξ(ht) ≈ 0.69] than
the one of Fig. 5.2(b) [ξ(ht) ≈ 0.65]. They are both of length L = 1024 and
the same length is used for all the adaptive filters h(n). The sampling rate is
8 kHz and a white noise signal with 30 dB SNR (signal-to-noise ratio) is added
to the output y(n). The input signal x(n) is either a white Gaussian signal or
a speech signal. The parameter settings chosen (unless stated otherwise) for
all the simulations are:

• hl(0) = 0, h+
l (0) = h−l (0) = 1, l = 0, 1, · · · , L− 1,

• μ = 0.3, δ = 10σ2
x,

• α = −0.5, ε = 0.001,



146 J. Benesty, Y. Huang, J. Chen, P. A. Naylor

0.5 1 1.5 2 2.5 3
40

35

30

25

20

15

10

5

0

Time in seconds

M
is

al
ig

nm
en

t i
n 

dB

(a)

(b)
(c)

(d)

Fig. 5.3. Misalignment of the IPNLMS algorithm for different values of α with a
white Gaussian noise as input signal, impulse response of Fig. 5.2(a), and using the
true coefficients in G(n). (a) α = −1 (equivalent to NLMS), (b) α = −0.5, (c) α = 0,
and (d) α = 0.9.

• ρ = 0.01, δp = 0.01,
• λ = 1 − 1/(3L),
• δNLMS = δEG = δ, δPNLMS = δ/L, δIPNLMS = (1 − α)δ/(2L).

Figures 5.3–5.10 show the convergence of the normalized misalignment (in
dB),

10 log10

‖ht − h(n)‖2

‖ht‖2
, (5.103)

for all the algorithms. The only simulation that was done with a speech source
as excitation signal is shown in Fig. 5.10; all the others were done with a white
Gaussian signal. Impulse response of Fig. 5.2(a) was used everywhere except
for Fig. 5.7, where impulse response of Fig. 5.2(b) was used.

Figures 5.3 shows how IPNLMS behaves with different values of α. In this
unrealistic simulation, we used for the diagonal matrix G(n), the true values
of the coefficients ht instead of the estimated ones. This may seem like what
we can do best with the “proportionate” idea. First, we see that when α
approaches 1, the algorithm degrades and a good value seems to be α = −0.5.
Second, comparing Fig. 5.3 with Fig. 5.4 where this time the real IPNLMS is
evaluated [with the estimated coefficients in G(n)], we see that the difference
is not that significant, although better when G(n) is known a priori. This
observation is very important because it shows, in a very simple manner, the
limits of natural gradient algorithms in general.
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Fig. 5.4. Misalignment of the IPNLMS algorithm for different values of α with a
white Gaussian noise as input signal and impulse response of Fig. 5.2(a). (a) α = −1
(equivalent to NLMS), (b) α = −0.5, and (c) α = 0.5 (close to PNLMS).

Figure 5.5 presents the misalignment of the EG± algorithm for different
values of u. As expected, for a large u, this algorithm coincides with NLMS
and for u = 0.5‖ht‖1, it introduces a bias in the coefficients of the filter and,
as a result, the EG± is much worse than NLMS. Clearly, the EG± algorithm
is not very interesting from a practical point of view since it requires some a
priori knowledge that we can not have.

Figure 5.6 compares the initial convergence of four algorithms (NLMS,
PNLMS, IPNLMS, and EG±) with the impulse response of Fig. 5.2(a). We
see on this figure that the PNLMS, IPNLMS, and EG± (with u = 2‖ht‖1)
algorithms converge much faster than NLMS. We also see that IPNLMS and
EG± are very close to each other, confirming that these two algorithms are
related.

In Fig. 5.7, we compare again the initial convergence of the same four
algorithms but with the impulse response of Fig. 5.2(b). While IPNLMS and
EG± still perform much better than NLMS, PNLMS starts degrading very
significantly after 1.2 seconds. This confirms that PNLMS is not very well
optimized when the impulse response is not strongly sparse.

Tracking is another very important issue in adaptive algorithms. In appli-
cations like room acoustics, it is essential that an adaptive filter tracks fast
since impulse responses are not very stationary. Figures 5.8 and 5.9 compare
the algorithms in a tracking situation when after 3 seconds the sparse im-
pulse response of Fig. 5.2(a) is shifted to the right by 12 samples. The other
conditions of Fig. 5.8 are the same as that in Fig. 5.6. According to this sim-
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Fig. 5.5. Misalignment of the EG± algorithm for different values of u with a white
Gaussian noise as input signal and impulse response of Fig. 5.2(a). (a) u = 0.5‖ht‖1,
(b) u = 2‖ht‖1, and (c) u = 50‖ht‖1 (equivalent to NLMS).
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Fig. 5.6. Misalignment of the NLMS (dotted line), PNLMS (dashed line), IPNLMS
(solid line), and EG± (dash-dot line) algorithms with white Gaussian noise as input
signal and impulse response of Fig. 5.2(a).

ulation, the PNLMS, IPNLMS, and EG± algorithms track much better than
the NLMS algorithm. In Fig. 5.9, the FRLS algorithm is compared to the
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Fig. 5.7. Misalignment of the NLMS (dotted line), PNLMS (dashed line), IPNLMS
(solid line), and EG± (dash-dot line) algorithms with white Gaussian noise as input
signal and impulse response of Fig. 5.2(b).

FERLS algorithm with u = 6‖ht‖1: while the initial convergence of the two
algorithms is almost the same, the FERLS tracks faster than the FRLS. It is
also worth noticing that IPNLMS tracks better than the FRLS and FERLS
algorithms.

In Fig. 5.10, the initial convergence and tracking of the NLMS, PNLMS,
IPNLMS, and EG± algorithms are compared with a speech source as input
signal and impulse response of Fig. 5.2(a). Here, we changed the adaption step
to μ = 0.5. We notice the same trend as with a white Gaussian noise as input
signal. Virtually, IPNLMS and EG± give almost the same results and they
are slightly better than PNLMS; all three of them are better than NLMS in
terms of initial convergence and tracking.

5.10 Conclusions

Throughout this chapter, we have shown how to use a priori information on
sparseness in the design of adaptive algorithms in order to make them perform
better (in terms of initial convergence and tracking) than classical adaptive
algorithms. We have first proposed a universal criterion from which any adap-
tive filter can be derived. It was clearly shown that a nonlinear update with
respect to the filter weights is advantageous. We have studied and compared
in particular the IPNLMS and EG±, which are the two most important algo-
rithms with nonlinear update. The IPNLMS algorithm was introduced in the
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Fig. 5.8. Misalignment during impulse response change. The impulse response
changes at time 3 seconds. Other conditions same as in Fig. 5.6.
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Fig. 5.9. Misalignment, during impulse response change, of the FRLS (solid line)
and FERLS (dotted line) algorithms with white Gaussian noise as input signal,
impulse response of Fig. 5.2(a), and u = 6‖ht‖1 for the FERLS algorithm.

context of network echo cancellation where there is a strong need to improve
convergence rate and tracking. It was known for a long time that unknown
echo paths in the network are most of the time sparse and there are many dif-
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Fig. 5.10. Misalignment of the NLMS (dotted line), PNLMS (dashed line), IPNLMS
(solid line), and EG± (dash-dot line) algorithms with a speech source as input signal
and impulse response of Fig. 5.2(a). The impulse response changes at time 3 seconds.

ferent intuitions on how one should take advantage of that. Kivinen and War-
muth [5] derived the EG± algorithm in the context of computational learning
theory. We have shown here that a good approximation of the EG± leads to
the IPNLMS. As a result, the two algorithms have very similar performance
in all the simulations we have investigated. We have also shown some links
between the EG± and NLMS algorithms, so that with appropriate choice of
some parameters, the two algorithms can be identical. We have also proposed
a new algorithm called LWG by simply doubling the Kullback-Leibler diver-
gence to have a symmetric distance. In fact, the LWG and EG± are almost
equivalent.

Finally, all the ideas presented here can be generalized to blind identifi-
cation of multichannel systems with sparse channels. Some possibilities are
presented in [17] and [22].
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Selective-Tap Adaptive Algorithms for Echo
Cancellation

Patrick A. Naylor and Andy W.H. Khong

Imperial College London

An unknown echo path impulse response can be estimated using system iden-
tification techniques based on adaptive filters. For acoustic echo cancellation,
in which adaptive filters with up to several thousand taps are required, there
is a strong motivation to seek out methods for reducing the computational
complexity of adaptation. One such method is to employ selective-tap adap-
tive algorithms in which only a subset of taps are updated at each iteration. In
this chapter, it will be shown how the use of selective-tap algorithms is equiv-
alent to imposing an approximation of sparseness on the input signal and that
such an approximation only causes a graceful degradation in echo cancella-
tion performance. The Normalized LMS algorithm will initially be employed
to illustrate the main concepts underpinning selective-tap algorithms. A con-
vergence analysis will be presented for time-varying systems. The concept
of tap selection will then be applied to both Affine Projection and Recur-
sive Least Squares adaptive filters. Simulation results are given to illustrative
the performance of these algorithms for acoustic echo cancellation. Selective-
tap algorithms typically suffer from a computational overhead in determining
which taps should be adapted at each iteration, often in the form of a sort-
ing operation. Fast sorting procedures will be described which substantially
alleviate this computational overhead. Recently, a new use of selective-tap
adaptive filters has been proposed for multichannel algorithms which exploits
the sparseness approximation not to reduce complexity but instead to decor-
relate the input signals in, for example, stereophonic acoustic echo cancellers.
Such decorrelation will be shown to address the well known misalignment
problem in stereo systems and significant performance enhancements will be
demonstrated. The chapter will end with concluding remarks on selective-tap
algorithms applied to echo cancellation.
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6.1 Introduction

Adaptive system identification of echo responses has been, and continues to
be, a topic of significant interest both in the telecommunications industry
and the research communities that support it [30]. Whether the echo path
arises due to electrical or acoustic coupling in a telecommunications terminal
strongly affects the nature of the echo cancellation problem. The well-known
technical challenges that must be faced in the design of acoustic echo cancellers
include (i) the long duration of the unknown echo path response, which typical
requires several thousand adaptive coefficients to model accurately, (ii) the
highly nonstationary behaviour of the echo response, particularly in its later
coefficients and (iii) the need to train the adaptive echo canceller using the
speech signal itself, which is nonideal in terms of its spectrum, persistence and
sample amplitude distribution.

The motivation for the introduction of selective-tap adaptive algorithms
can be explained by considering the high computational load of adaptive
algorithms with several thousand coefficients. The Normalized Least Mean
Squares (NLMS) algorithm [31] for an adaptive filter of length L requires ap-
proximately 2L multiply-accumulate (MAC) operations per sampling period
of the signal. In the past, this rate of operation was considered high for typ-
ical telecommunications end-user equipment and researchers were therefore
motivated to seek techniques that could reduce the computational complex-
ity of adaptation without significantly degrading effectiveness in terms of its
convergence rate or final misadjustment. More recently, the computational
capability of low-cost processing hardware has increased very rapidly so that
a typical NLMS implementation would not be seen as a heavy computational
demand. However, new pressures on product design have emerged - the in-
crease of user mobility imposes a requirement of low power consumption for
portable battery powered equipment; the growth of telecommunications us-
age imposes a requirement of high density implementation for infrastructure
equipment so that the number of simultaneous echo cancellers of given tap
length that can be run within a specified MIP-budget (millions of instructions
per second) is maximized. Both these requirements renew the motivation for
low computational complexity, even with today’s high speed processors.

The basic method employed for achieving low complexity in selective-tap
adaptive algorithms is to compute the coefficient update calculations at a rate
lower than the sampling rate. Algorithms differ in the criteria used for select-
ing which coefficients to update at each iteration. The Sequential-LMS and
Periodic-LMS algorithms [19] employ tap selection schemes that are indepen-
dent of the input data. In contrast, data dependent tap selection criteria are
employed in later algorithms including Max-LMS [18] and MMax-NLMS [2,3].
Block-based and transform domain algorithms have also been proposed, for
example [15,16].

The evaluation of selective-tap adaptive algorithms normally involves
quantification of the trade-off between the computational complexity of the
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algorithm and its performance. It is usually not possible to make general con-
clusions concerning computational complexity since it depends heavily on the
implementation details and architecture of the hardware employed. Instead, it
is common practice to quantify complexity in terms of the number of MACs
and, if appropriate, comparisons. Algorithm performance is normally mea-
sured in terms of the time evolution and asymptotic behaviour of measures
such as the output Mean Square Error (MSE), the Echo Return Loss Enhance-
ment (ERLE) and the Weight Error Vector Norm (WEVN) defined elsewhere
in this book. It is normal to expect that as the number of coefficients updated
per iteration is reduced, the computation complexity is also reduced but at
the expense of some loss of performance. Hence the goal of the designers of
selective-tap algorithms is to find ways to reduce the number of coefficients
updated per iteration in a manner which degrades algorithm performance as
little as possible. It will be seen that tap selection criteria have been proposed
that enable as few as 50% of coefficients to be updated per iteration without
significant loss of performance.

Whereas selective-tap adaptive filters were originally proposed with the
aim of reducing computational complexity in single channel applications, mul-
tichannel selective-tap algorithms have recently been proposed that make use
of other properties introduced by tap selection. In multichannel acoustic echo
cancellation [5], standard adaptive filters converge poorly because of high lev-
els of interchannel coherence between the input signals. It has been shown [34]
that tap selection can be employed to reduce significantly the interchannel co-
herence, thereby improving convergence. Although not their main aim, such
approaches also yield some reduction in complexity.

In this Chapter, we will initially review adaptive algorithms employing
data independent tap selection. Selective-tap algorithms will then been de-
scribed in which the tap selection is made dependent on the input data and
it will be shown that such algorithms employ an assumption of sparseness of
the input signal. A third class of tap selection will then be introduced that
extends the tap selection to be dependent not only on the input data but also
dependent on the unknown system estimate at each iteration. The final part of
this Chapter will consider the multichannel case and will focus specifically on
the application of selective-tap adaptive algorithms to the important example
of stereophonic acoustic echo cancellation (SAEC).

6.2 Sequential and Periodic Tap Selection

The Periodic-LMS and Sequential-LMS algorithms were proposed in [19]
and perform tap selection in a data independent manner. In the Periodic-
LMS algorithm, reduction in computation is achieved at each time iteration
n by updating filter coefficients periodically using the N�n/N�th instanta-
neous gradient estimate where �·� is defined as the truncation operator and
N ∈ {1, 2, · · · , L}. In addition, defining l = 0, 1, . . . , L− 1 as the tap indices,
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only taps satisfying the condition (n+ l) mod N = 0 are updated. Combining
these two features and defining an L× L tap selection matrix

Q(n) = diag
{
q0(n), q1(n), . . . , qL−1(n)

}

=

⎡⎢⎢⎢⎢⎣
q0(n) 0 · · · 0

0 q1(n)
. . .

...
...

. . . . . . 0
0 · · · 0 qL−1(n)

⎤⎥⎥⎥⎥⎦
L×L

(6.1)

the Periodic-LMS update can be expressed as

ĥ(n+ 1) = ĥ(n) + μQ(n)x(j)e(j) , (6.2)

where j = N�n/N�. The tap selection elements for l = 0, 1, . . . , L − 1 are
given as

ql(n) =
{

1, if (n+ l) mod N = 0,
0, otherwise, (6.3)

while the error signal e(n) is expressed as

e(n) = d(n) − xT(n)ĥ(n). (6.4)

It can be seen that at each time iteration, L/N filter coefficients are updated
such that after N iterations all the filter coefficients are updated once. For
N = 1, the Periodic-LMS algorithm reduces to the LMS algorithm.

In contrast to Periodic-LMS, Sequential-LMS employs the instantaneous
gradient estimate at each time iteration for updating the coefficients. The
filter coefficients satisfying the condition (n − l + 1) mod N = 0 only are
updated. The Sequential-LMS tap-update is expressed by

ĥ(n+ 1) = ĥ(n) + μQ(n)x(n)e(n) , (6.5)

where the tap selection elements are now given as

ql(n) =
{

1, if (n− l + 1) mod N = 0,
0, otherwise. (6.6)

Similarly to Periodic-LMS, the Sequential-LMS algorithm is equivalent to the
LMS algorithm when N = 1. The computational complexity in terms of num-
ber of multiplications per iteration for the Periodic-LMS and Sequential-LMS
is given as (2L+ 1)/N + 1/N and 1 + (1 + 1/N)L respectively. Normalization
of these algorithms follows exactly the approach used in NLMS.

A brief performance evaluation of Periodic-NLMS and Sequential-NLMS
is given in Fig. 6.4.
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6.3 MMax Tap Selection

It has been seen how the Sequential and Periodic tap selection algorithms
employ tap selection criteria which are independent of the input data. In con-
trast, MMax tap selection employs a data-dependent criterion and gives better
performance. The MMax tap selection criterion chooses M ≤ L coefficients to
update at each iteration. Coefficients are selected for updating if they corre-
spond to one of theM largest amplitude elements of the tap-input vector. The
remaining L−M coefficients corresponding to the small amplitude elements
of the tap-input vector are not updated.

This approach can be justified in the context of the NLMS coefficient
update equation [31]

ĥ(n+ 1) = ĥ(n) +
μ

‖x(n)‖2
2 + δ

x(n)e(n) (6.7)

where ‖ · ‖2
2 is defined as the squared l2-norm operator and δ is the regulariza-

tion constant. The second term on the right hand side modifies the elements
of ĥ by an amount proportional in magnitude to the corresponding elements
of the tap-input vector x(n). Therefore, it can be seen that a signal with
many samples of small amplitude will give rise to correspondingly many small
updates of coefficients. In MMax tap selection, these small updates are ap-
proximated as zero, which is equivalent to approximating the M −L smallest
elements in the tap-input vector x(n) to be zero. We refer to this as im-
posing a sparse approximation on the tap-input vector. The validity of this
assumption is clearly data dependent but generally accepted to be a reason-
able assumption for the majority of speech signals. In order to justify the use
of this assumption, let us first define a signal to be sparse if a large fraction
of its energy is concentrated in a small fraction of its duration [43]. As can be
seen in Fig. 6.1 for a typical sentence of male speech analyzed using a frame
duration of 128 ms, 50% of the speech energy in this example is contained
within 16% of the frame duration.

Based on the work in [40], one of the earliest partial-update algorithms is
introduced in [17] where a family of NLMS algorithms are derived by min-
imizing the change in adaptive coefficients using different l-norms. Defining
‖ · ‖1 as the l1-norm, it was found that by minimizing

‖ĥ(n+ 1) − ĥ(n)‖2
1 , (6.8)

subject to the constraint of

ĥ
T
(n+ 1)x(n) = d(n) , (6.9)

the adaptive algorithm degenerates to Max-NLMS [18] in which, at each time
iteration, only the filter coefficient associated with the tap-input sample that
has the largest magnitude in x(n) is updated.
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Fig. 6.1. Speech signal (upper) and sparseness (lower).

6.3.1 The MMax-NLMS Algorithm

The single channel MMax-NLMS algorithm is now briefly reviewed and the
concept of MMax tap selection is then extended to the single channel affine
projection (AP) and recursive least squares (RLS) algorithms in Sec. 6.3.3
and Sec. 6.3.4, respectively. The main benefit reported to motivate the intro-
duction of AP and RLS selective-tap schemes is that they form the basis of
selective-tap algorithms which are able to improve the conditioning of multi-
input-multi-output (MIMO) system identification problems with correlated
inputs such as occur in stereophonic acoustic echo cancellation (SAEC) [34]
which we will discuss in detail in Sec. 6.8.

The single channel MMax-NLMS algorithm [2] is a direct extension of the
Max-NLMS algorithm as described in [17] and [18] such that, for an adaptive
filter of length L, a number of coefficients 1 ≤ M ≤ L corresponding to the
M largest magnitude tap-inputs are selected for updating at each iteration.
Let the subselected tap-input vector be defined

x̃(n) = Q(n)x(n) , (6.10)

such that
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Q(n) = diag
{
q0(n), q1(n), . . . , qL−1(n)

}

=

⎡⎢⎢⎢⎢⎣
q0(n) 0 · · · 0

0 q1(n)
. . .

...
...

. . . . . . 0
0 · · · 0 qL−1(n)

⎤⎥⎥⎥⎥⎦
L×L

(6.11)

where for l = 0, 1, . . . , L− 1,

ql(n) =
{

1, |xl(n)| ∈ {M maxima of |x(n)|}
0, otherwise. (6.12)

The MMax-NLMS tap-update equation is then given by

ĥ(n+ 1) = ĥ(n) + Q(n)
μx(n)e(n)
‖x(n)‖2

2 + δ
, (6.13)

where δ and μ are the regularization parameter and step size respectively.
This algorithm is summarized in Table 6.2.

6.3.2 Dependence of Convergence Rate on MMax Tap Selection

For an adaptive filter of length L, the dependence of convergence rate on
the number, M , of coefficients selected for updating at each iteration can be
examined using the measure

M(n) =
‖Q(n)x(n)‖2

2

‖x(n)‖2
2

. (6.14)

This measure quantifies the ratio of the energy of the M selected tap-
inputs to the energy of the full tap-input vector so that M = 1 corresponds
to updating of all the coefficients. The study of M(n) provides some useful
insight into the robustness of adaptive algorithms to MMax tap selection. In
addition, M(n) will be seen to be a key feature used in the formulation of
multichannel tap selection criteria as will be discussed later in Sec. 6.8.

Fig. 6.2 shows how M varies with the number of selected taps M for
zero mean, unit variance white Gaussian noise (WGN) at a particular time
iteration n. We note that M exhibits only a modest reduction from unity
in the range 0.5L ≤ M < L. Fig. 6.3 shows the number of iterations for
MMax-NLMS to achieve −20 dB normalized misalignment for various M
and hence verifies our expectation that, over the range 0.5L ≤ M < L, a
graceful reduction in convergence rate is obtained as compared to full update
adaptation (M = L) [33].
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Fig. 6.2. Variation of M (see (6.14)) with number M of selected coefficients per
iteration showing modest reduction of M within the region 0.5L ≤ M < L for WGN
sequence with L = 256.

6.3.3 The MMax Affine Projection Algorithm

The affine projection (AP) algorithm [31] incorporates multiple projections by
concatenating past tap-input vectors from time iteration n to time iteration
n −K + 1 where K is defined as the projection order. In a similar manner,
our approach for MMax-AP will be to concatenate the subselected tap-input
vectors such that they propagate consistently from each iteration to the next.
To formulate the MMax-AP algorithm [42], we first define the subselected and
full tap-input matrices of dimensions K × L respectively as

X̃(n) =
[
x̃(n), x̃(n− 1), . . . , x̃(n−K + 1)

]T
, (6.15)

X(n) =
[
x(n),x(n− 1), . . . ,x(n−K + 1)

]T
. (6.16)

The tap-update for the MMax-AP algorithm is then given by

ĥ(n+ 1) = ĥ(n) + μX̃
T
(n)
[
X(n)XT(n) + δI

]−1

e(n) , (6.17)

where I is a K×K identity matrix, e(n) = [e(n), e(n−1), . . . , e(n−K+1)]T

and δ is the regularization parameter. Thus for projection order K = 1,
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Fig. 6.3. Number of iterations to converge to -20 dB normalized misalignment as
a function of M (see (6.14)) for L = 256.

MMax-AP is equivalent to MMax-NLMS. We note that MMax-AP in gen-
eral cannot be classified as a partial-update algorithm since the tap-update

vector X̃
T
(n)
[
X(n)XT(n)+δI

]−1
e(n) is fully populated and therefore every

coefficient in ĥ(n) will be updated at each iteration. Consequently, we classify
MMax-AP instead as a selective-tap algorithm.

6.3.4 The MMax Recursive Least Squares Algorithm

One of the main disadvantages of the NLMS algorithm is the dependence of
convergence rate on the eigenvalue spread of Rxx = E

{
x(n)xT(n)

}
. Specif-

ically, input signals having a small eigenvalue spread exhibit higher rate of
convergence compared to those having larger eigenvalue spread [31]. This af-
fects the performance of speech applications where the eigenvalue spread can
be very significant (of the order of several hundred times higher than for a
WGN input). We shall next derive the recursive least squares (RLS) algorithm
employing MMax tap selection.

The tap-update equation of the RLS algorithm is given by [31]

ĥ(n+ 1) = ĥ(n) + k(n)e(n) , (6.18)

where k(n) = Ψ−1(n)x(n) is defined as the Kalman gain. The time averaged
autocorrelation matrix with forgetting factor λ, 0 � λ < 1 is given by
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Ψ(n) =
n∑

j=1

λn−jx(j)x(j)T (6.19)

and Ψ−1(n) can be found recursively using [31]

Ψ−1(n) =
λ−1Ψ−1(n− 1)

1 + λ−1xT(n)Ψ−1(n− 1)x(n)
. (6.20)

We note that direct extension of the MMax tap selection approach achieved by
sorting the magnitude of k(n) in (6.18) will not give the desired convergence
behaviour especially for statistically non-stationary signals such as speech.
This is because the Kalman gain depends on previous values of the time-
averaged autocorrelation matrix [34].

Our approach will be to subsample the tap-input vectors at each time iter-
ation based on the MMax tap selection criterion such that Ψ(n) is computed
from x̃(n) giving Ψ̃ (n). This ensures that the subselected tap-input vectors
propagate consistently through the memory of the RLS algorithm.

The MMax-RLS algorithm [42] solves the least-squares normal equation
formed from x̃(n) given as

ĥ(n) = Ψ̃
−1

(n)Θ̃(n) (6.21)

where

Ψ̃(n) =
n∑

j=1

λn−jx̃(j)x̃T(j) , (6.22)

Θ̃(n) =
n∑

j=1

λn−jx̃(j)d(j) , (6.23)

where d(j) is the receiving room’s microphone signal at the jth iteration.
We may now express (6.22) recursively as

Ψ̃(n) = X̃(n)Λ(n)X̃
T
(n)

= λΨ̃(n− 1) + x̃(n)x̃T(n) , (6.24)

where X̃(n) = [x̃(1), x̃(2), . . . , x̃(n)] and Λ(n) = diag
{
[λn, λn−1, . . . , λ]

}
. As

before, the subselected tap-input vector is given as x̃(n) = Q(n)x(n) where
the diagonal elements of the MMax tap selection matrix Q(n) are defined
in (6.12). In a similar manner, the cross-correlation vector in (6.23) may be
expressed recursively as

Θ̃(n) = X̃(n)Λ(n)d(n)

= λΘ̃(n− 1) + x̃(n)d(n) (6.25)
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with d(n) = [d(1), d(2), . . . , d(n)]T.
Like the RLS algorithm, the MMax-RLS utilizes the matrix inversion

lemma [31] to compute Ψ̃
−1

(n) efficiently as

Ψ̃
−1

(n) =
1
λ

[
Ψ̃

−1
(n− 1) − k̃(n)x̃T(n)Ψ̃

−1
(n− 1)

]
, (6.26)

where the modified Kalman gain is now given by

k̃(n) =
λ−1Ψ̃

−1
(n− 1)x̃(n)

1 + λ−1x̃T(n)Ψ̃
−1

(n− 1)x̃(n)

= λ−1
[
Ψ̃

−1
(n− 1) − k̃(n)x̃T(n)Ψ̃

−1
(n− 1)

]
x̃(n)

= Ψ̃
−1

(n)x̃(n) . (6.27)

The recursive solution to the normal equation given in (6.21) can be obtained
by substituting the recursive form of Θ̃(n) and Ψ̃(n) in (6.25) and (6.26)
into (6.21) and using (6.27), the MMax-RLS tap-update equation is then
expressed by

ĥ(n+ 1) = ĥ(n) + k̃(n)e(n) . (6.28)

Similar to the MMax-AP algorithm as described in Sec. 6.3.3, the MMax-
RLS algorithm in general updates all the taps at each iteration since the
Kalman gain vector k̃(n) is a fully populated column vector. We choose there-
fore to denote this a selective-tap algorithm rather than a partial-update al-
gorithm.

6.3.5 Computational Complexity

The MMax tap selection procedure selects the M largest tap-inputs at each
time iteration. This sorting operation can be achieved efficiently using, for
example, the SORTLINE [44] or the Short-sort [41] routines given in Table 6.6.
The Short-sort MMax procedure operates by considering a short segment of
the tap-input vector xss(n) = [x(n), x(n−1), . . . , x(n−S+1)] of length S � L.
Once every S iterations, an efficient insertion sort [35] is performed on xss(n),
as shown in [41], and A coefficients are selected corresponding to the elements
of xss(n) with largest magnitude. This tap selection is propagated through
the filter by incrementing the indices of the selected coefficients by one at
each sample period. Thus the worst-case comparison load using Short-sort is
(1 + S − A)A/S comparisons per iteration compared to 2 + 2 log2 L used in
the SORTLINE procedure.

We now consider the computational complexity of the Short-sort MMax
NLMS (SM-NLMS), MMax-NLMS, MMax-AP and MMax-RLS algorithms.
For the purpose of this comparison, we define complexity as the total number
of multiplications and comparisons per sample period. Thus MMax-NLMS
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employing the SORTLINE procedure requires at most L +M + 3 + 2 log2 L
operations whereas L+ S + (S + 1 −A)A/S operations are required for SM-
NLMS.

The complexity of AP using the generalized Levinson algorithm is 2LK +
7K2 multiplies per sample period [25]. The MMax-AP algorithm employing
the SORTLINE procedure requires an additional 2 + 2 log2 L sorting opera-
tions in each channel for x̃(n). However, due to a reduction in multiplications

required when computing the sparse vector X̃
T
(n)
[
X(n)XT(n) + δI

]−1, the
complexity for MMax-AP is (M + L)K + 7K2 + 2 + 2 log2 L operations per
sample period.

The number of multiplications required for the RLS algorithm is 4L2 +
3L+ 2 per adaptive filter where an additional L multiplications are required
for the tap-updates. Due to the subselection of input vector x̃(n), the number
of multiplications required for computing Ψ̃(n) for the MMax-RLS is (M +
L)L+1 while L2 +M multiplications are required for computing the Kalman
gain. Hence the number of operations required for the MMax-RLS is at most
L(L + 3M + 2) + M + 3 + 2 log2 L per sample period. The computational
complexity of the algorithms described is summarized in Table 6.1.

Table 6.1. Computational Complexity of MMax Algorithms

Algorithm Sort Procedure Multiplications and Comparisons

SM-NLMS Short-sort L + S + (S + 1 − A)A/S

MMax-NLMS SORTLINE L + M + 3 + 2 log2 L

MMax-AP SORTLINE (M + L)K + 7K2 + 2 + 2 log2 L

MMax-RLS SORTLINE L(L + 3M + 2) + M + 3 + 2 log2 L

6.4 Selective Partial Update Tap Selection

As with the other partial update algorithms so far discussed, the objective
of Selective Partial Update NLMS (SPU-NLMS) [16] is to reduce compu-
tational complexity of the adaptive filter by updating only a subset of filter
coefficients at each interaction. A key feature of SPU-NLMS is the partition-
ing of tap-input vector x(n) = [x0(n), x1(n), . . . , xL−1(n)]T and corresponding
coefficient vector into B blocks so that
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x(n) =
[
xT

1 (n),xT
2 (n), . . . ,xT

B(n)
]T

(6.29)

ĥ(n) =
[
ĥ

T

1 (n), ĥ
T

2 (n), . . . , ĥ
T

B(n)
]T
, (6.30)

from which the update of block i is

ĥi(n+ 1) = ĥi(n) +
μxi(n)e(n)
‖xi(n)‖2

2 + δ
, (6.31)

and is derived as the solution to the constrained minimization problem [28]

min
1≤i≤B

min
ĥi(n+1)

‖ĥi(n+ 1) − ĥi(n)‖2
2 (6.32)

subject to the constraint ĥ
T
(n+ 1)x(n) = d(n). (6.33)

A decision can then be made at each iteration n on which B out of B blocks
to update. For B = 1, it is shown that the block, i, with the smallest squared
Euclidean norm in (6.32) should be updated and this is found from the mini-
mization

i = arg min
1≤j≤B

‖ĥj(n+ 1) − ĥj(n)‖2
2

= arg min
1≤j≤B

∥∥∥∥xj(n)e(n)
‖xj(n)‖2

2

∥∥∥∥2

2

= arg min
1≤j≤B

1
‖xj(n)‖2

2

= arg max
1≤j≤B

‖xj(n)‖2
2. (6.34)

To update more than one block, 1 < B ≤ B, the set IB = {i1, i2, . . . , iB} is
defined to contain the indices of the blocks to be updated such that

xIB
(n) =

[
xT

i1(n),x
T
i2(n), . . . ,x

T
iB

(n)
]T
. (6.35)

The SPU-NLMS algorithm is then given as

ĥIB
(n+ 1) = ĥIB

(n) +
μxIB

(n)e(n)
‖xIB

(n)‖2
2 + δ

(6.36)

IB = {i for which ‖xi(n)‖2
2 is one of the

B greatest of ‖x1(n)‖2
2, . . . ,xB(n)‖2

2}.
For B = L, the tap selection criteria used in SPU-NLMS and MMax-NLMS
are equivalent.

Extension of the selective-partial-update approach to include the affine
projection adaptive algorithm is presented in [16]. Further discussion and
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analysis of the algorithm is presented in [49]. Bounds on the step size μ are
derived for convergence in the mean squared sense and it is shown that an
instantaneous estimate for μ giving the fastest convergence rate is

μ̂ =
‖xIB

(n)‖2
2

‖x(n)‖2
2

(6.37)

which implies normalization by the l2-norm of the complete tap-input vector as
in the MMax-NLMS algorithm. Such normalization has been employed in the
comparative simulations in Sec. 6.5. In addition, [49] employs the concept of
set-membership adaptive filters [27] jointly with the partial updating scheme
to obtain a set-membership partial update NLMS algorithm.

6.5 Performance Comparison for Single-Channel
Selective-Tap algorithms

We now compare the convergence performance of the fully updated NLMS al-
gorithms to the selective-tap Sequential-NLMS, Periodic-NLMS, SPU-NLMS
and MMax-NLMS algorithms. Performance evaluation of the MMax-AP and
MMax-RLS algorithms is given later in Sec. 6.8 in the context of multichan-
nel techniques since this is the manner in which they would more normally be
deployed.

In this single channel example, the echo path impulse response h is gen-
erated at fs = 8 kHz sampling frequency using the method of images [1] and
is of length LR = 1024. The adaptive filter is chosen to be of length L = 512.
The MMax-NLMS algorithm is tested with M = L/2 and M = L/4. For
both the Sequential-NLMS and Periodic-NLMS we have used N = 2. For
the SPU-NLMS algorithm, B = 32 and B = 16 so that L/2 taps are up-
dated at each iteration. The step size for each algorithm is chosen so that all
algorithms achieve the same asymptotic performance in terms of final mis-
alignment. This corresponds to μNLMS = 0.7 for NLMS, μPeriodic = 0.7 for
Periodic-NLMS, μMMax = 0.7 for MMax-NLMS, μSPU = 0.6 for SPU-NLMS
and μSequential = 0.5 for Sequential-NLMS. The SNR in this experiment is
30 dB. It can be seen from Fig. 6.4 that fully updated NLMS achieves the
highest rate of convergence. For the case of MMax-NLMS with M = 0.5L,
the convergence is close to that of NLMS.

6.6 Convergence Analysis

In this section we analyse the effect of MMax tap selection on convergence
of the NLMS algorithm. Since acoustic echo path systems are time varying,
we have employed a non-stationary system model which will be initially de-
scribed. Subsequently, we present a steady-state misalignment analysis of the
NLMS and MMax-NLMS algorithms under non-stationary system conditions.
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6.6.1 Non-stationary System Model

To introduce a time-varying unknown system model, the modified first-order
Markov model [9] ,

h(n+ 1) = ξh(n) +
√

1 − ξ2 s(n) (6.38)

is employed, where h(n) is the impulse response of the unknown system and
s(n) is a noise process drawn from the normal distribution N (0, σ2

s). As shown
in [9], this model has the key features that the single parameter 0 � ξ < 1
controls the relative contributions to the instantaneous values of the coef-
ficients of ‘system memory’ (the term ξh(n)) and ‘innovations’ (the term√

1 − ξ2s(n)). In addition, the average power of the norm of the coefficients
is independent of ξ. It is subsequently shown in [9] that the system varia-
tion, measured in terms of the difficulty of tracking by an adaptive filter, is a
monotonic decreasing function of ξ.

For the purpose of this analysis we assume that E {h(n) } = 0, E {w(n) } =
0 and that h(n) and w(n) are independent, where w(n) is measurement noise
of zero mean and variance σ2

w. We also assume that the dimension of ĥ(n)
has been chosen to match the dimension of h(n). We define the misalignment
vector
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v(n) = ĥ(n) − h(n) (6.39)

which results in the error signal given by

e(n) = w(n) − xT(n)v(n). (6.40)

Consider algorithms of the form

ĥ(n+ 1) = ĥ(n) + Γ (n)x(n)e(n) (6.41)

where Γ (n) is the L× L diagonal tap selection control matrix, such that for
NLMS and MMax-NLMS,

Γ NLMS(n) =
2μ

‖x(n)‖2
2 + δ

I (6.42)

and
Γ MMax-NLMS(n) =

2μ
‖x(n)‖2

2 + δ
Q(n) (6.43)

respectively where Q(n) is given in (6.12). Using (6.13) and (6.38) - (6.40) we
obtain

v(n+ 1) = ĥ(n+ 1) − h(n+ 1)

= ĥ(n) − ξh(n) −
√

1 − ξ2 s(n) + Γ (n)x(n)e(n)
= v(n) + (1 − ξ)h(n) + Γ (n)x(n)w(n)

−
√

1 − ξ2 s(n) − Γ (n)x(n)xT(n)v(n) (6.44)

from which

Rvv(n+ 1) = E
{

v(n+ 1)vT(n+ 1)
}

= Rvv(n) + 2(1 − ξ)σ2
sI + σ2

w E
{

Γ (n)x(n)xT(n)Γ T(n)
}

−Rvv(n) E
{

Γ (n)x(n)xT(n)
}

−Rvv(n) E
{

x(n)xT(n)Γ T(n)
}

+E
{

Γ (n)x(n)xT(n)v(n)vT(n)x(n)xT(n)Γ T(n)
}

(6.45)

where we have also made use of the following relations

E
{

v(n)vT(n)
}

= Rvv(n)

E
{
w2(n)

}
= σ2

w

E
{

v(n)vT(n)x(n)xT(n)Γ T(n)
}

= Rvv(n)E
{

x(n)xT(n)Γ T(n)
}

and, from the definition of the first-order Markov model as shown in (6.38),
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E
{

h(n)hT(n)
}

= E
{

s(n)sT(n)
}

= σ2
sI. (6.46)

Following the approach adopted in [31], we assume the time variations of
h(n) are sufficiently slow that the adaptive filter is able to track the unknown
system to within a time lag and, after convergence, v(n) is fluctuating around
its mean ∀ n and thus E

{
v(n)vT(n)

}
= Rvv(n). We may then define Rvv

as the approximate time-invariant autocorrelation matrix of the mean weight
error vector and write the misalignment η = tr{Rvv} where tr{·} is the trace
operator.

6.6.2 Mean Square Misalignment for NLMS with M = L

We first consider a fully updated algorithm such that Q(n) = I. Hence
Γ (n) = Γ , ∀n, is time-invariant and statistically stationary for inputs x(n).
Using the factorization property of independent Gaussian variables as shown
in Appendix II [31] and denoting Rxx = E

{
x(n)xT(n)

}
as the autocorre-

lation matrix of the input signal, the expectations in (6.45) can be evaluated
using the terms

E
{

Γ (n)x(n)xT(n)Γ T(n)
}

= ΓRxxΓ T

E
{

Γ (n)x(n)xT(n)
}

= ΓRxx

E
{

x(n)xT(n)Γ T(n)
}

= RxxΓ T

E
{

Γ (n)x(n)xT(n)v(n)vT(n)x(n)xT(n)Γ T(n)
}

=

Γ

[
2RxxRvv(n)Rxx + Rxxtr

{
RxxRvv(n)

}]
Γ T. (6.47)

Substituting (6.47) into (6.45), we obtain

Rvv(n+ 1) = Rvv(n) − Rvv(n)ΓRxx − Rvv(n)RxxΓ T

+Γ

[
2RxxRvv(n)Rxx + Rxxtr

{
RxxRvv(n)

}]
Γ T

+ΓRxxΓ Tσ2
w + 2(1 − ξ)σ2

sI. (6.48)

We proceed by considering Γ = cI where c = 2μ/(Lσ2
x) for NLMS and

Gaussian input with variance σ2
x giving Rxx = σ2

xI. Hence we can sim-
plify (6.48) and write the steady-state misalignment η given by

η = tr
{
Rvv

}
=
cσ2

wL

2φ
+

(1 − ξ)Lσ2
s

cσ2
xφ

(6.49)

where
φ = 1 − cσ2

x(1 +
L

2
) . (6.50)
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The first term in (6.49) corresponds to the estimation variance [36] and is de-
pendent on measurement noise w(n). The second term in (6.49) corresponds to
the lag variance [36] and is due to system time variation ξ. We note from (6.49)
that these two terms are uncoupled.

For the LMS case, c = 2μ and hence

ηLMS =
μσ2

wL

φ
+

(1 − ξ)Lσ2
s

2μσ2
xφ

. (6.51)

The estimation variance term of this result is, as expected, linear in μ and
consistent with that presented in [31] for which it is assumed φ ≈ 1. However,
the analysis presented here needs no such assumption. The lag variance term
is inversely proportional to μ and linearly dependent on the system variation
parameter ξ.

For NLMS, c = 2μ/(Lσ2
x) and as a result,

ηNLMS =
μσ2

w

σ2
xφ

+
(1 − ξ)L2σ2

s

2μφ
. (6.52)

We may proceed to evaluate the step size, μmis, which achieves the lowest
misalignment under time-varying conditions by letting

γ = 2(1 + L/2)/L (6.53)

and differentiating (6.52) with respect to μ to obtain

d ηNLMS

d μ
=
σ2

w

σ2
x

[
γμ

(1 − γμ)2 +
1

1 − γμ
]

+
(1 − ξ)L2σ2

s

2

[
2γμ− 1

μ2(1 − γμ)2
]
.

Setting d ηNLMS/d μ = 0, we obtain a quadratic equation in terms of μmis.
Under the condition that 0 < μmis ≤ 1, we may solve for μmis giving

μmis = 0.5
σ2

x

σ2
w

[
− (1 − ξ)L2σ2

sγ

+

√[
(1 − ξ)L2σ2

sγ
]2

+ 2
(
σ2

w

σ2
x

)
(1 − ξ)L2σ2

s

]
.

(6.54)

We may now see the well known result that as ξ → 1, μmis → 0 and hence a
smaller step size achieves a lower final misalignment, though at the expense
of convergence rate. Hence we note that if μmis < μ ≤ 1 under the condition
ξ < 1, convergence rate increases with μ but at the expense of poorer final
misalignment.
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6.6.3 Mean Square Misalignment for MMax-NLMS with M �= L

For convergence in the mean square, we start by considering (6.45) and the
evaluation of E

{
Γ (n)x(n)xT(n)

}
. We note that the tap selection elements

ql(n), l = 0, . . . , L− 1 are not independent of xl(n) = x(n− l) as they ensure
that only the M largest |xl(n)| are selected. The M selected samples of x̃(n)
are assumed to have zero mean and exploiting the mean ergodic theorem [31],
the variance of x̃(n) is defined as

σ̃2
x =

1
L

L−1∑
l=0

x̃2
l (n). (6.55)

Assuming that x(n)xT(n) is diagonal and defining Γ (n) = μ(n)Q(n) such
that μ(n) = 2μ/(Lσ2

x) and E {μ(n) } = c, a scalar constant, we can evaluate

E
{

Γ (n)x(n)xT(n)
}

= E
{

x(n)xT(n)Γ T(n)
}

= E {μ(n) }E
{

Q(n)x(n)xT(n)
}

=
M

L
cσ̃2

xI. (6.56)

The condition E {Γ (n) } = Γ implicit in (6.47) is not valid in this case.
However, we can proceed to evaluate tr{Rvv(n)} using

tr
{

E
{

Γ (n)x(n)xT(n)v(n)vT(n)x(n)x(n)TΓ T(n)
}}

= tr
{
c2E

{
Q(n)x(n)xT(n)v(n)vT(n)x(n)xT(n)

}}
= c2tr

{
Rvv(n)(L+ 2)

M

L
σ̃2

xσ
2
xI

}
= c2tr

{
Rvv(n)

}
(L+ 2)

M

L
σ̃2

xσ
2
x ,

tr
{

E
{

Γ (n)x(n)xT(n)Γ T(n)
}}

= tr
{
M

L
c2σ̃2

xI

}
=
M

L
c2σ̃2

xL. (6.57)

Substituting (6.56), (6.57) and (6.46) into (6.45),
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tr
{

Rvv(n+ 1)
}

= tr
{

Rvv(n)
}
− 2tr

{
Rvv(n)

}M
L
cσ̃2

x

+c2tr
{

Rvv(n)
}

(L+ 2)
M

L
σ̃2

xσ
2
x

+
M

L
c2σ̃2

xσ
2
wL+ 2(1 − ξ)σ2

sL

= tr
{

Rvv(n)
}[

1 − 2
M

L
cσ̃2

x + (L+ 2)
M

L
c2σ̃2

xσ
2
x

]
+Mc2σ̃2

xσ
2
w + 2(1 − ξ)Lσ2

s . (6.58)

The misalignment for MMax-NLMS can be found from (6.58) and using
the approach of (6.49) as

tr
{

Rvv

}[
2
M

L
cσ̃2

x − (L+ 2)
M

L
c2σ̃2

xσ
2
x

]
= Mc2σ̃2

xσ
2
w + 2(1 − ξ)Lσ2

s (6.59)

resulting in

tr
{

Rvv

}
=

cσ2
wL

2 − (L+ 2)cσ2
x

+
2(1 − ξ)L2σ2

s/M

2cσ̃2
x − (L+ 2)c2σ̃2

xσ
2
x

. (6.60)

For MMax-NLMS where c = 2μ/(Lσ2
x), the steady-state misalignment is then

expressed as

ηMMax−NLMS =
μσ2

w

σ2
xφ

+
Lσ2

x

σ̃2
xM

(1 − ξ)L2σ2
s

2μφ
(6.61)

where the term φ is defined in (6.50).
Comparing (6.61) with (6.52) we can see the additional factor of Lσ2

x/(σ̃
2
xM)

in MMax-NLMS compared to NLMS. Hence we note that if Lσ2
x/(σ̃

2
xM) > 1,

we can expect the lag variance of the misalignment in MMax-NLMS to be
greater than in NLMS by an amount inversely proportional to μ, the fraction
of taps updated and the variance of the tap vector for the updated taps. How-
ever, the estimation variance term is identical to that of NLMS such that for
a time-invariant system with ξ = 1, ηMMax−NLMS = ηNLMS. We also note that
for M = L, σ̃2

x = σ2
x and as a consequence, ηMMax−NLMS = ηNLMS for each

case of ξ.
We may further proceed to evaluate, for each ξ, the step size of MMax-

NLMS which achieves the lowest misalignment μmis by writing for clarity

γ = 2(1 + L/2)/L (6.62)

and
ψ = Lσ2

x/(σ̃
2
xM). (6.63)

Differentiating (6.61) with respect to μ and solving solving the quadratic
equation for μmis we obtain
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μmis = 0.5
σ2

x

σ2
w

[
− ψ(1 − ξ)L2σ2

sγ

+

√[
ψ(1 − ξ)L2σ2

sγ
]2 + 2ψ

(
σ2

w

σ2
x

)
(1 − ξ)L2σ2

s

]
.

(6.64)

Similar to the NLMS algorithm, we note that for the case of MMax-NLMS, if
μmis < μ ≤ 1 under the condition ξ < 1, the convergence rate increases with
μ but at the expense of poorer steady-state misalignment.

6.6.4 Simulation Results for single channel NLMS and
MMax-NLMS

We first present single channel NLMS and MMax-NLMS simulations to sup-
port the theoretical normalized misalignment analysis for time-varying system
identification. We employ the normalized misalignment η′ defined as

η′(n) =
‖ĥ(n) − h(n)‖2

2

‖h(n)‖2
2

. (6.65)

6.6.4.1 Effect of Non-stationarity

Fig. 6.5 shows NLMS normalized misalignment results for a time-invariant
system, obtained using ξ = 1, and three time-varying systems, obtained using
ξ = {0.999999, 0.99999, 0.9999}, where smaller values of ξ indicate higher
degrees of time-variation. In this simulation, the adaptive filter is of length
L = 64 while the adaptive step size μ = 0.1 is used. The values have been
chosen arbitrarily for the purposes of these illustrations. The ξ values used
in these tests deviate by only a small amount because s(n) has been chosen
to be large in amplitude such that σ2

s = σ2
x = 1. This allow the NLMS

algorithm to track the unknown system. The learning curves are averaged
over 8 independent trials and the theoretical values of η′NLMS given by (6.65)
and (6.52) are superimposed as straight horizontal lines.

Fig. 6.6 shows the results of an equivalent experiment for MMax-NLMS
with L = 64 andM = 8. The theoretical values of η′MMax−NLMS given by (6.65)
and (6.61) are superimposed as straight horizontal lines. For comparison pur-
poses, the corresponding theoretical values of η′NLMS from the previous ex-
periment are also included in Fig. 6.6 as dashed lines. For both experiments,
white Gaussian measurement noise w(n) is added such that the SNR is 35 dB.

The results show that both NLMS and MMax-NLMS are sensitive to time-
variation of the unknown system in that the misalignment performance de-
grades with increasing deviation of ξ from unity. The MMax-NLMS algo-
rithm example can be seen to perform around 3 to 4 dB worse, in terms of
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steady-state normalized misalignment, than NLMS under these time-varying
conditions. For a time-invariant system, ξ = 1, both MMax-NLMS and
NLMS achieve the same steady-state misalignment as can be seen by (6.52)
and (6.61). The MMax-NLMS algorithm however has a lower rate of conver-
gence compared to that of NLMS as expected.
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Fig. 6.5. NLMS normalized misalignment for varying ξ with μ = 0.1, σ2
x = σ2

s =
1, L = 64, SNR= 35 dB.

6.6.4.2 Effect of Tap Selection on Normalized Misalignment

We now compare the effect of tap selection on the normalized misalignment
under time-varying conditions of the unknown system for the MMax-NLMS
algorithm. Fig. 6.7 shows the variation of average normalized misalignment
with M for MMax-NLMS. The length of the adaptive filter is L = 32 while
8 ≤ M ≤ 24 and ξ = 0.9999 with μ = 0.1. The normalized misalignment is
averaged over 5 independent trials and for each trial an SNR = 40 dB is used.
We see that the normalized misalignment reduces with increasing M under
the condition ξ = 0.9999 such that there is an improvement of approximately
1.5 dB as M is increased from 8 to 24. The mean error between theoretical
and experimental results in this simulation is 0.0045 dB hence verifying our
analysis.
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Fig. 6.6. MMax-NLMS normalized misalignment for varying ξ with μ = 0.1, σ2
x =

σ2
s = 1, L = 64, M = 8, SNR= 35 dB.

6.6.4.3 Effect of SNR on Normalized Misalignment

We next investigate the effect of SNR on the normalized misalignment
for MMax-NLMS under the non-stationary unknown system condition of
ξ = 0.99999. The experimental parameters for this simulation setup were
L = 128, M = 64, μ = 0.1. The normalized misalignment for each algorithm
is averaged over 5 independent trials.

Fig. 6.8 shows the variation of MMax-NLMS normalized misalignment
with SNR. We note that the normalized misalignment improves with increas-
ing SNR as expected. When SNR is increased from 10 to 40 dB, the final
misalignment performance is improved by approximately 4 dB. The mean
error between our theoretical and experimental results is 0.061 dB.

6.6.4.4 Effect of Step-Size on Normalized Misalignment

Fig. 6.9 shows the effect of variation of μ on the final misalignment for NLMS
under stationary (ξ = 1) and time-varying (ξ = 0.99999) cases. In this ex-
periment, the filter length is L = 128 and w(n) is added such that an SNR
of 40 dB is achieved. The average final normalized misalignment is obtained
from 5 independent trials.

We observe that for the stationary case ξ = 1, the final normalized mis-
alignment is approximately linear in μ. As μ increases, the final normalized
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Fig. 6.7. Variation of MMax-NLMS average normalized misalignment with number
M of selected coefficients per iteration for L = 32, μ = 0.1, ξ = 0.9999, σ2
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s =

1, SNR= 40 dB.

misalignment increases as expected. In this simulation example, the mean dif-
ference between the experimental and theoretical final normalized misalign-
ment is 0.164 dB. For the case of ξ = 0.99999, we note that there exists a
μmis such that the lowest misalignment can be achieved. The theoretical value
of μmis = 0.475, computed using (6.54), is shown by the vertical dotted line.
The mean difference between the experimental and the theoretical normalized
misalignment is 0.407 dB.

Fig. 6.10 shows the effect of step size on MMax-NLMS under the condition
ξ = 1 and ξ = 0.99999 with L = 128 and M = 64. We have simulated this
experiment using 30 dB SNR. Similar to the case of NLMS, we observe that
for ξ = 1, the final normalized misalignment is approximately linear in μ. For
the case of ξ = 0.99999, there exists a μmis = 0.384 governed by (6.64) which
is plotted as a vertical line. The mean difference between the experimental
and theoretical final misalignment for the case of ξ = 1 and ξ = 0.99999 is
0.13 and 0.034 dB respectively. Note that the final misalignment for NLMS
in Fig. 6.9 is generally lower than that of MMax-NLMS in Fig. 6.10 since a
higher SNR is used in the former experiment.
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Fig. 6.8. Variation of MMax-NLMS average normalized misalignment with signal-
to-noise ratio (SNR) for L = 128, M = 64, μ = 0.1, ξ = 0.99999, σ2
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s = 1.

6.7 Sparse Partial Update NLMS

An echo path impulse response may be said to exhibit sparseness, using the
same definition as in Sec. 6.3, if a large fraction of its energy is concentrated
in a small fraction of its duration [43]. A degree of sparseness can arise in
acoustic echo cancellation for handsfree systems if, for example, the direct
path acoustic propagation time from the loudspeaker to the microphone is
such as to give a significant number of leading zeros in the impulse response.
Alternatively, if the talker moves unexpectedly close to the microphone of the
handsfree system, then the impulse response will likely be overmodelled by the
adaptive echo canceller, with the effect that a significant number of trailing
zeros may occur in the impulse response. Sparseness is also a very important
characteristic affecting the design of network echo cancellers, particular for
packet-switched networks, and is discussed further in, for example, [11] and
the references contained therein.

It has been shown [43, 47] that standard adaptive algorithms perform
poorly in such cases in terms of convergence. Several improvements to stan-
dard adaptive algorithms have been proposed, many of which are based on
the concept of proportionate updating. For example, the Proportionate NLMS
(PNLMS) algorithm, and improved versions including [8, 11, 22], adjust the
adaptive step size, on a tap-by-tap basis, to make it proportional to the mag-
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nitude of the corresponding coefficient. In this manner, large magnitude co-
efficients are adapted with large steps whereas small coefficients take corre-
spondingly small steps. Further details of these techniques are presented in
Chapter 5 of this book. Proportionate updating schemes are similar in concept
to the estimation of a sparse approximation of the true impulse response in
which the coefficients with small magnitude are approximated as zero. Con-
sequently, these algorithms can be thought of as exploiting sparseness in the
impulse response. This is in contrast to the MMax-based selective-tap adap-
tive algorithms that have been discussed above which exploit (approximate)
sparseness in the tap-input vector.

The Sparse Partial Update NLMS algorithm (SPNLMS) is developed
in [12–14]. This algorithm is able to exploit both sparseness in the tap-input
vector and also sparseness in the impulse response by employing a tap se-
lection criterion that considers the product of the tap-input sample and the
corresponding coefficient. In this case the tap selection criterion is

ql(n) =

{
1, if

∣∣xl(n)ĥl(n)
∣∣ ∈{M maxima of

∣∣x(n) � ĥ(n)
∣∣},

0, otherwise,
(6.66)

for l = 0, 1, . . . , L − 1 where � represents the element-by-element vector
product.
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This data dependent tap selection criterion results in convergence perfor-
mance that is dependent on sparse properties of the echo path impulse re-
sponse. However, comparative evaluations [43] show good performance when
the echo response is suitably sparse.

6.8 multichannel Selective-Tap Algorithms for
Stereophonic Acoustic Echo Cancellation

6.8.1 Overview and Rationale

Applications such as desktop conferencing and hands-free telephony bene-
fit from multichannel audio. For example, users can localize multiple talkers
in teleconference meetings using stereophonic perception. The stereophonic
acoustic echo canceller (SAEC) as shown in Fig. 6.11 suppresses the echo re-
turned to the transmission room so as to enable undisturbed communication
between the rooms.

In general, the solutions for the adaptive filters in SAEC are non-unique
and depend both on the transmission and receiving rooms’ impulse re-
sponses [5]. In the practical case in which L < LT, where LT is the length
of the transmission room impulse response, the problem of non-uniqueness is
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ameliorated to some degree by the ‘tail’ effect [5]. However, the system identifi-
cation problem remains ill-conditioned due to the high interchannel coherence
between the two channels’ tap-input vectors [5,20], resulting in very slow con-
vergence. Several techniques have been developed to decorrelate the two input
signals. One of the most effective methods of achieving interchannel decorre-
lation uses a nonlinear (NL) preprocessor [5] with the level of nonlinearity
controlled by the nonlinearity factor 0 < α ≤ 0.5. Other approaches include
the use of spectrally shaped random noise [24, 46], comb filtering [6], leaky
extended LMS [32] and alternating fixed-point [21] algorithms. The common
aim of these algorithms is to achieve decorrelation of input signals x1(n) and
x2(n) without affecting the quality or stereophonic image of the speech.
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( )d n

1( )h n

2 ( )h n
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2 (n)g 1( )g n
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roomAcoustic echo
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2̂ ( )h n
1̂( )h n

Source+

Fig. 6.11. Schematic diagram of stereophonic acoustic echo cancellation (after [5]).
Only one channel of the return path is shown for simplicity.

It has been seen earlier in this chapter that selective-tap schemes were
introduced with the aim of reducing the complexity of adaptive filters. In
this section we consider an alternative motivation for the use of selective-tap
schemes: the reduction of interchannel coherence in multichannel adaptive
filtering algorithms, and we shall discuss this in terms of the SAEC problem.

6.8.2 Reducing Interchannel Coherence using Tap Selection

In order to examine the effect of tap selection on interchannel coherence in
SAEC, we first employ the squared coherence function

Cx1x2(Ω) =

∣∣Px1x2(Ω)
∣∣2

Px1x1(Ω)Px2x2(Ω)
, (6.67)
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where Px1x2(Ω) is the cross power spectrum between the two channels and
Ω is the normalized frequency.

As an illustrative example, we consider the system of Fig. 6.11 for the case
when the source signal is zero mean unit variance WGN and g1 and g2 are
highly correlated impulse responses each of length 1024. This results in highly
correlated tap-input vectors x1(n) and x2(n) with xj(n) = [xj(n), xj(n −
1), . . . , xj(n − L + 1)]T and we choose for this illustration L = 512. In this
example, g1 is generated using the method of images [1] while g2 is formed
using the following relation

g2 = γg1 + (1 − γ)b , (6.68)

where b is an independent WGN sequence also with zero mean and 0 ≤ γ ≤ 1
controls the amount of independent WGN added to g1. To reflect the high
interchannel correlation found in practice, we have used γ = 0.9, giving a
correlation coefficient of 0.904.

The highly correlated tap-input vectors give rise to a squared coherence
close to one across most of the frequency band as shown in Fig. 6.12(a). In the
case shown in Fig. 6.12(b), taps are selected according to the MMax selection
criterion withM = 0.5L. It can be seen clearly that MMax tap selection does
not provide any significant decorrelation. This is because the MMax criterion
selects nearly identical tap-indices in both filters for updating, due to the high
coherence between the two channel tap-input vectors. This does not achieve
our desired effect of decorrelating the signals.

In contrast, Fig. 6.12(c) shows the result obtained from an exclusive tap
selection criterion such that selection of the same tap-index in both channels
is not permitted. A simple, but not useful, example of such an exclusive case
withM = 0.5L is to select the taps corresponding to theM largest magnitude
tap-inputs in the first channel and the exclusive set of taps in the second
channel. The mean interchannel coherence is seen to be significantly reduced
from 0.88 to 0.52, providing the motivation for further study of tap selection
for multichannel adaptive algorithms.

Exclusive tap selection can be seen as a method for improving the
conditioning of the input autocorrelation matrix by considering the case
where x1(n) and x2(n) are highly correlated Gaussian inputs. Defining for
the two channel case, x(n) = [xT

1 (n),xT
2 (n)]T, the autocorrelation matrix can

be expressed as

Rxx = E
{

x(n)xT(n)
}

=
[

R11 R12

R21 R22

]
. (6.69)

After exclusive tap selection, the resulting sparse vectors x̃1(n) = Q1(n)x1(n)
and x̃2(n) = Q2(n)x2(n) give rise to R

x̃x̃
. The diagonals and some off-

diagonal elements of R12 and R21 are zero. This improves on the condi-
tioning of Rxx and in the limit where x̃1 and x̃2 are perfectly uncorre-
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Fig. 6.12. Squared coherence for (a) M = L = 512 (b) M = 0.5L with MMax tap
selection (c) M = 0.5L with exclusive tap selection.

lated and white, the autocorrelation matrix is a diagonal matrix R
x̃x̃

=
diag

{
[σ̃2

1 , . . . , σ̃
2
1 , σ̃

2
2 , . . . , σ̃

2
2 ]
}

with a 2-norm condition number of

∥∥R
x̃x̃

∥∥
2

∥∥R
x̃x̃

−1
∥∥

2
=

max(σ̃2
1 , σ̃

2
2)

min(σ̃2
1 , σ̃

2
2)
, (6.70)

where σ̃2
j is the jth channel subselected tap-input variance.

Fig. 6.13 shows the variation of mean condition number of the autocor-
relation matrices Rxx and R

x̃x̃
as a function of γ. Both the autocorrelation

matrices are formed from x1 and x2 generated by convolving a WGN sequence
with g1 and g2 governed by (6.68) with the additional exclusive tap selection
criterion imposed when generating R

x̃x̃
. For each case of γ, the average 2-

norm condition number for 50 trials is computed and plotted as shown in
Fig. 6.13(a) and (b) for Rxx and R

x̃x̃
respectively. We see that as γ is re-

duced, x1(n) and x2(n) become less correlated and hence a reduction of mean
condition number for both Rxx and R

x̃x̃
is exhibited. In addition, for each

case of γ, R
x̃x̃

has a lower mean condition number than Rxx and hence ex-
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clusive tap selection gives rise to a better conditioned autocorrelation matrix
which in turn reduces the misalignment problem in SAEC.
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Fig. 6.13. Effect of exclusive tap selection on average condition number for amount
γ of independent WGN added (see (6.68)) (a) without tap selection (b) with exclu-
sive tap selection.

6.9 Exclusive Maximum Tap Selection

6.9.1 Formulation and Realization using Exhaustive Search

It has been shown in Sec. 6.8.2 that exclusive tap selection can reduce the
interchannel coherence and hence improve the conditioning of the adaptive
filtering in SAEC. We wish to develop a selective-tap adaptive filtering scheme
which makes use of this concept without degrading convergence due to partial
adaptation. As discussed in Sec. 6.3.2, since convergence rate can be seen to in-
crease monotonically with M, we propose that any degradation in convergence
performance due to subselection of taps can be minimized by selecting taps so
as to maximize M. We now therefore formulate the joint optimization prob-
lem of maximizing the MMax criterion, determined by M, and minimizing the
interchannel coherence under the control of tap selection. This is done using
two variables: magnitude weighting, wm, to describe the ‘closeness’ of the tap
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selection to that of the MMax scheme, and coherence weighting, wc = 1−wm,
to describe interchannel coherence between the subsampled tap-input vectors.
A magnitude weighting of wm = 1 corresponds to selecting coefficients based
on the MMax tap selection criterion only.

We begin by considering LCM combinations of selecting M = 0.5L taps
from each channel’s adaptive filter of length L. Let the combinations be in-
dexed k, r = 1, 2, . . . ,L CM giving tap selection sets {βk} and {βr} for chan-
nel 1 and 2 respectively and define {βkr(n)} as the combined two channel tap
selection set. Let x̃k(n) be defined as the subselected input vector using tap
selection set {βk(n)}. We next define, at each time iteration n, A(n) and C(n)
as square matrices with elements

akr(n) =
∥∥∥∣∣x̃k(n)

∣∣+ ∣∣x̃r(n)
∣∣∥∥∥

1
, (6.71)

ckr(n) =
〈 ∣∣P

x̃k x̃r
(Ω)

∣∣2
P

x̃k x̃k
(Ω)P

x̃r x̃r
(Ω)

〉
(6.72)

respectively such that akr(n) denotes the absolute sum of the selected tap-
inputs in a particular tap selection set βkr(n) and ckr(n) is the squared co-
herence, with < · > indicating averaging over frequency, of the two tap-input
vectors with L−M unselected inputs in each channel set to zero.

Since the elements of matrix A(n) are the magnitude sums, of which we
require the maximum, an integer cost is first associated with each of the
elements akr(n) such that the least cost is allocated to the element having the
largest magnitude in A(n). We now denote this new magnitude cost matrix
as A(n). In a similar manner, each element in C(n) will be allocated an
integer cost such that element corresponding to the minimum coherence is
allocated the least cost. We denote this new coherence cost matrix as C(n).
Hence matrices A(n) and C(n) now contain integer cost values depending on
the magnitude sum and interchannel coherence. A total cost matrix V (n) is
then given by

V (n) = wmA(n) + wcC(n) . (6.73)
We define {βmin} = {βkmin,rmin}, for each time iteration n, as the tap selection
set having minimum cost in matrix V (n) and search for {βmin} such that

kmin, rmin = arg min
k,r

[
V (n)

]
k, r = 1, 2, . . . , LCM . (6.74)

For small L and letting ĥ(n) =
[
ĥ

T

1 (n), ĥ
T

2 (n)
]T and x(n) =

[
xT

1 (n), xT
2 (n)

]T,
V (n) can be searched exhaustively such that, at each time iteration, the tap
selection set βmin can then be incorporated into NLMS adaptation as

ĥ(n+ 1) = ĥ(n) + Q(n)
μx(n)e(n)
‖x(n)‖2

2 + δ
, (6.75)

with Q(n) = diag{[qT
1 (n), qT

2 (n)]} being the two channel selection matrix
such that, at each time iteration n, element u of q1(n) and element v of q2(n)
are defined for u, v = 1, 2, . . . , L as
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{q1,u, q2,v} =
{

1, if u,v ∈ {βmin},
0, otherwise.

Fig. 6.14 shows simulation results for the normalized misalignment with
different values of magnitude weighting (wm = 0.1, 0.7, 0.9, 1.0). In this ex-
ample, the input is a zero mean WGN sequence with adaptive filters having 6
taps per channel and for every iteration, 3 taps are updated (L = 6, M = 3).
The relationship between impulse responses g1 and g2 with lengths LT = 12
is again determined by (6.68) with γ = 0.9. The impulse responses h1 and h2

are taken from a WGN sequence and are of lengths LR = 6. This choice of
LT and LR allows us to study the adaptive filters which uniquely determine
the unknown system whilst minimizing the misalignment caused by under-
modelling. The normalized misalignment for only one of the two channels is
plotted for each case of wm for reasons of clarity. Uncorrelated measurement
noise is added to d(n) such that an SNR of 40 dB is achieved.
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Fig. 6.14. Normalized misalignment for (a) wm = 1, (b) NLMS, (c) wm= 0.9,
(d) 0.7, (e) 0.1. L=6, M=3, μ = 0.6, γ = 0.9, SNR= 40 dB.

The simulation result shows that wm = 1 coincides with MMax-NLMS
where performance is close to that of the fully updated NLMS as expected.
The highest convergence rate can be seen when wm = 0.1 (wc = 0.9) where
there is a high weighting given to the minimization of interchannel coherence.
Upon further investigation, it was found that for wm = 0.1, all the tap se-
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lection sets satisfy the exclusive criterion across all time iterations, such that
combinations k and r contain no tap-indices in common i.e

βk(n) ∩ βr(n) = {φ} , ∀ n , (6.76)

where {φ} is a null set. Therefore we can redefine our optimization problem
in the simpler form of a search such that (6.76) is satisfied whilst maximiz-
ing M(n) at each iteration.

6.9.2 Efficient Realization

The exhaustive search of V (n) for the optimum exclusive maximum tap selec-
tion is computationally expensive for adaptive filters of higher orders. We now
therefore propose an efficient alternative to the exhaustive search. In the fol-
lowing, we shall temporarily omit the dependence of variables on n for brevity
such that xj = [xj(0), xj(1), . . . , xj(L− 1)]T.

Let us define, at each time iteration, the interchannel tap-input magnitude
difference vector

p = |x1| − |x2| , (6.77)

and
p̆ =

[
p̆(1), . . . , p̆(L)

]T
, p̆(1) > p̆(2) > . . . > p̆(L) (6.78)

as p sorted in descending order. Let x̆1(k) and x̆2(k) denote the kth tap-
input samples of channel 1 and 2, ordered according to the sorting of p̆ such
that p̆(k) = |x̆1(k)| − |x̆2(k)|, k = 1, 2, . . . , L. In this two channel case M is
defined as

M =
‖Qx‖2

2

‖x‖2
2

(6.79)

with Q = diag
{
[qT

1 , qT
2 ]
}

and x = [xT
1 , xT

2 ]T. Utilizing the robustness of the
NLMS algorithm to MMax tap selection for 0.5L ≤M ≤ L, we consider M =
0.5L.

As will be shown in the following paragraph, the tap selection set that
maximizes M jointly for both channels contains the M largest elements of p
from channel 1 and the M smallest elements of p from channel 2, i.e.{

x̆1(1), . . . , x̆1(M), x̆2(M + 1), . . . , x̆2(L)
}
. (6.80)

Hence at each iteration, element u of q1 and element v of q2 are defined
for u, v = 1, 2 , . . . , L where

q1(u) =
{

1, p(u) ∈ {M maxima of p},
0, otherwise,

q2(v) =
{

1, p(v) ∈ {M minima of p},
0, otherwise. (6.81)
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To verify that the exclusive tap selection set given by (6.81) maximizes M
jointly for both channels at each time iteration, we consider whether the ab-
solute sum given by

∑M
i=1 |x̆1(i)|+

∑L
i=M+1 |x̆2(i)| is greater than the absolute

sum obtained from all LCM − 1 other exclusive combinations of tap-inputs.
We start by testing whether

M∑
i=1

∣∣x̆1(i)
∣∣+ L∑

i=M+1

∣∣x̆2(i)
∣∣ > L∑

i=M+1

∣∣x̆1(i)
∣∣+ M∑

i=1

∣∣x̆2(i)
∣∣ (6.82)

holds. Simplifying (6.82), we obtain

M∑
i=1

[∣∣x̆1(i)
∣∣− ∣∣x̆2(i)

∣∣] > L∑
i=M+1

[∣∣x̆1(i)
∣∣− ∣∣x̆2(i)

∣∣]
M∑
i=1

p̆(i) >
L∑

i=M+1

p̆(i) (6.83)

which is valid from the definition of p̆. We now consider the LCM − 2
other possible cases. Suppose for example, we select tap-indices in the set
{x̆1(2i), x̆2(2i− 1)} where i = 1, 2, . . . ,M for which we must test whether

M∑
i=1

∣∣x̆1(i)
∣∣+ L∑

i=M+1

∣∣x̆2(i)
∣∣ > M∑

i=1

∣∣x̆1(2i)
∣∣+ M∑

i=1

∣∣x̆2(2i− 1)
∣∣ (6.84)

holds. Rewriting (6.84) we obtain

M∑
i=1

∣∣x̆1(i)
∣∣− M∑

i=1

∣∣x̆2(2i− 1)
∣∣ > M∑

i=1

∣∣x̆1(2i)
∣∣− L∑

i=M+1

∣∣x̆2(i)
∣∣

and hence we can show that

M/2∑
i=1

∣∣x̆1(2i)
∣∣+ L∑

i=ϕ

∣∣x̆2(2i− 1)
∣∣+ M/2∑

i=1

p̆(2i− 1) >

M/2∑
i=1

p̆(2i+M) +
M/2∑
i=1

∣∣x̆1(2i)
∣∣+ L∑

i=ϕ

∣∣x̆2(2i− 1)
∣∣

M/2∑
i=1

p̆(2i− 1) >
M/2∑
i=1

p̆(2i+M) (6.85)

where ϕ = 1 +M/2. Since M ≥ 0, (6.85) is valid from the definition of p̆.
Similar analysis can then be used to verify the remaining cases.

As an illustration, consider an SAEC system with channels j = 1, 2, adap-
tive filters each of length L = 4 and tap-input vectors
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xj =
[
xj(1) xj(2) xj(3) xj(4)

]T
.

The vector p may then be expressed as⎡⎢⎢⎣
p(1)
p(2)
p(3)
p(4)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
∣∣x1(1)

∣∣∣∣x1(2)
∣∣∣∣x1(3)
∣∣∣∣x1(4)
∣∣
⎤⎥⎥⎦−

⎡⎢⎢⎣
∣∣x2(1)

∣∣∣∣x2(2)
∣∣∣∣x2(3)
∣∣∣∣x2(4)
∣∣
⎤⎥⎥⎦ . (6.86)

Consider the example case p(3) > p(2) > p(1) > p(4), for a particular time
instant. Since p(3) + p(2) > . . . > p(1) + p(4), it can be shown that∣∣x1(3)

∣∣+ ∣∣x1(2)
∣∣+ ∣∣x2(1)

∣∣+ ∣∣x2(4)
∣∣ > ... > ∣∣x1(1)

∣∣+ ∣∣x1(4)
∣∣+ ∣∣x2(2)

∣∣+ ∣∣x2(3)
∣∣,

(6.87)
where ... refers to all other pair-wise combinations of elements p. Thus the tap
selection corresponding to inputs x1(3), x1(2), x2(1) and x2(4) maximizes M
with the minimum coherence constraint satisfied by the exclusivity of the tap
selection at each time iteration.

In this way, the exclusive maximum (XM) tap selection criterion efficiently
selects the best exclusive sets of taps where best here is defined as nearest to
MMax jointly for both channels. This is achieved by maximizing the M(n)
measure computed using the taps from both channels. Because of the exclu-
sivity constraint, neither channel in general attains a tap selection as good
as MMax and some degradation in convergence performance is therefore to
be expected. Nevertheless, our results indicate that such degradation is small
compared to the improvement in convergence due to the decorrelating prop-
erty of XM tap selection.

As a final comment, we note that it is irrelevant to consider other tap
selection sets since they have smaller magnitude sum. This approach allows
us to eliminate LCM ×L CM − 1 possible combinations thus allowing efficient
implementation of the exclusive maximum tap selection which we denote XM.

6.10 Exclusive Maximum Adaptive Filters

As has been shown in Sec. 6.8.2, XM tap selection can improve the condi-
tioning of Rx and hence improved convergence is expected. The effect of tap
selection for the AP and RLS cases on the autocorrelation matrix will be
seen to be similar to that which occurs in the NLMS case. The XM approach
relies on the existence of a unique solution for the adaptive filter coefficients
which is the case for L < LT. As will be shown through simulations, XM tap
selection in combination with the nonlinear (NL) preprocessor leads to bet-
ter conditioning than the use of the NL-preprocessor alone. This combination
of XM and NL approaches, which we refer to as XMNL, is highly effective
for the cases we have studied and therefore we focus on this combined struc-
ture for our later experiments. Fig. 6.15 shows the schematic diagram of the
XMNL-based SAEC structure.
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Fig. 6.15. Schematic diagram of XMNL preprocessor in stereophonic echo canceller.
Bold arrows indicate tap selection control.

6.10.1 XM-NLMS Algorithm

The XM tap selection technique may be incorporated into the NLMS by
selecting taps corresponding to the M = 0.5L largest elements of the input
magnitude difference vector p(n) in the first channel and the M smallest
elements of p(n) in the second channel as shown in (6.81). Tap-indices are
then updated using (6.13).

6.10.2 XMNL-NLMS Algorithm

The nonlinear (NL) preprocessor [5] is one of the most effective methods
of achieving signal decorrelation without significantly affecting stereophonic
perception and is written, using α as the nonlinearity constant

x′
1(n) = x1(n) + 0.5α

[
x1(n) +

∣∣x1(n)
∣∣] , (6.88)

x′
2(n) = x2(n) + 0.5α

[
x2(n) −

∣∣x2(n)
∣∣] . (6.89)

We refer to the use of the NL preprocessor with NLMS adaptation as NL-
NLMS. Several workers [7, 39, 45] have proposed algorithms in combination
with the NL preprocessor so as to achieve low misalignment. In the same
manner, a combined algorithm has been proposed [34] employing XM tap
selection to improve the conditioning of the autocorrelation matrix and hence
improve the convergence rate compared to the use of the NL preprocessor
alone. Hence we denote this XM tap selection for the NL processed signals as
XMNL. The XMNL-NLMS algorithm is summarized in Table 6.3.
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6.10.3 XMNL-AP Algorithm

We may extend the single channel MMax-AP algorithm derived in Sec. 6.3.3
for the SAEC application by using the tap selection matrix

Q(n) = diag
{[

qT
1 (n), qT

2 (n)
]}

(6.90)

such that elements of q1(n) and q2(n) are given by (6.81). The filter update
equation is then given in (6.17). The resulting XMNL-AP algorithm is given
in Table 6.4.

6.10.4 XMNL-RLS Algorithm

Similar to the XMNL-AP, we can extend the single channel MMax-RLS al-
gorithm as derived in Sec. 6.3.4. Using (6.81), the XMNL-RLS algorithm is
summarized in Table 6.5.

6.11 SAEC Simulation Results

6.11.1 Experimental Setup

In all our simulations, impulse responses g1, g2, h1 and h2 are generated using
the method of images [1] . Two microphones are placed 1 m apart in the centre
of both the transmission and receiving rooms each of dimension 3×4×5 m. The
source is then positioned 1 m away from each microphone in the transmission
room. Tap-input vectors x′

1(n) and x′
2(n) are obtained by convolving the

source with two impulse responses g1 and g2 and then applying the nonlinear
preprocessor defined in (6.88) and (6.89). The desired response d(n) in the
receiving room is obtained by summing hT

1 x′
1(n) and hT

2 x′
2(n). For clarity,

the normalized misalignment of only one channel is plotted in each experiment.

6.11.2 NLMS Simulations

We examine the performance of XM tap selection and the NL preproces-
sor in combination with NLMS adaptation. In this experiment, the lengths
of the adaptive filters are L = 256 while the lengths of the transmission
and receiving rooms’ impulse responses are LT = 1600 and LR = 256 re-
spectively. Fig. 6.16 shows the normalized misalignment plot for (a) NLMS,
(b) NL-NLMS, (c) XM-NLMS and (d) XMNL-NLMS. A WGN input sig-
nal with a sampling frequency of fs = 8 kHz is used with M = 128 and
a step size of μ = 0.4 is chosen for each algorithm. A nonlinear distortion
factor of α = 0.5 is used [5] and WGN sequence is added to d(n) such that
an SNR of 30 dB is achieved. We see that NLMS has the slowest conver-
gence. The convergence rate of XM-NLMS and NL-NLMS increases signifi-
cantly due to the XM and NL pre-processors respectively. The XMNL-NLMS
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algorithm shows even further improvement compared to NL-NLMS due to the
additional improvement in conditioning caused by XM tap selection. Alterna-
tively, XMNL-NLMS could achieve the same rate of convergence as NL-NLMS
but with a lower value of α [34], hence reducing the nonlinear distortion.
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Fig. 6.16. Normalized misalignment for WGN sequence (a) NLMS, (b) NL-NLMS
(c) XM-NLMS and (d) XMNL-NLMS [L = 256, LT = 1200, LR = 256, M = 128,
fs = 8 kHz, μ = 0.1, α = 0.5 and SNR = 30 dB].

6.11.3 AP Simulations

The performance of the XMNL-AP algorithm is compared with that of the
AP algorithm in combination with the NL preprocessor (NL-AP) for a speech
signal. The impulse responses are chosen to be of length LT = LR = 1200,
adaptive filters of length L = 512 and M = 256 are used. We have used
a sampling frequency of fs = 8 kHz and an additive WGN is added to the
desired signal such that an SNR of 30 dB is achieved. The adaptive step size
for each algorithm is chosen such that they achieve approximately the same
final normalized misalignment. A nonlinearity constant of α = 0.5 and affine
projection order K = 3 are used.

We see from Fig. 6.17 that the rate of convergence of XMNL-AP is sig-
nificantly higher than that of the NL-AP. This is again due to the additional
improvement in conditioning caused by XM tap selection. For the arbitrary
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Fig. 6.17. (a) Speech signal and normalized misalignment for (b) NL-AP and
(c) XMNL-AP [L = 512, LT = LR = 1200, M = 256, fs = 8 kHz, μNL−AP =
0.5, μXMNL−AP = 0.4, α = 0.5, K = 3 and SNR = 30 dB].

choice of μNL−AP = 0.5, it was found that μXMNL−AP = 0.4 gives approxi-
mately the same final normalized misalignment.

6.11.4 RLS Simulations

In Fig. 6.18, we compare the performance of XMNL-RLS with that of the RLS
incorporating the NL preprocessor (NL-RLS) [5]. We have used LT = LR =
800, L = 256, M = 128 and a speech input sequence with sampling frequency
of fs = 8 kHz. As before, the nonlinearity constant is α = 0.5 and a WGN
sequence is added to the desired signal such that an SNR of 30 dB is achieved.
A forgetting factor of λXMNL−RLS = 1 − [1/(10L)] = 0.99961 [10] is used
for XMNL-RLS while for NL-RLS, λNL−RLS = 0.99957 is used such that both
algorithms achieve approximately the same final normalized misalignment.

In Fig. 6.18, the XMNL-RLS algorithm shows a significant improvement
in convergence rate over NL-RLS.

6.12 Discussion and Conclusion

Selective-tap schemes enable the computational complexity of updating the
coefficients of an adaptive filter to be reduced without necessarily reducing
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Fig. 6.18. (a) Speech signal and normalized misalignment for (b) NL-RLS and
(c) XMNL-RLS [L = 256, LT = LR = 800, M = 128, fs = 8 kHz, λXMNL−RLS =
0.99961, λNL−RLS = 0.99957, α = 0.5 and SNR = 30 dB].

the order of the filter. This is particularly useful in applications in which the
number of coefficients is large such as, for example, acoustic echo cancellation
for which several thousand coefficients may be required in order to model the
echo path with sufficient accuracy. Several alternative techniques for select-
ing the set of coefficients to update at each iteration have been discussed.
The main objectives in the design of tap selection criteria is to enable the
number of tap-updates performed at each iteration to be reduced with min-
imal degradation in performance and with minimal computational overhead
in performing the tap selection itself.

It has been seen that tap selection criteria that are dependent on properties
of the tap-input vector, such as are employed in the MMax-NLMS and SPU-
NLMS algorithms, are generally more effective than criteria that are data-
independent, such as are employed in Periodic-NLMS and Sequential-NLMS.
An analysis of the convergence and tracking properties of the MMax-NLMS
algorithm for a time-varying system model has been presented. The SORT-
LINE and Short-sort algorithms, or block-based techniques, can be used to
reduce the computation overhead in performing the tap selection that would
otherwise be incurred by the data-dependent schemes.

It has been seen through simulation results that updating L/2 taps intro-
duces an insignificant degradation in performance when using, for example,
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MMax tap selection. This has been explained intuitively by considering sparse-
ness properties of the input signal. For speech signals, which have been seen
to exhibit sparse characteristics, a significant number of the elements of the
tap-input vector are small and give rise to correspondingly small tap-updates,
the omission of which has negligible effect on convergence. In addition to con-
sidering sparseness of the input signal, it has been seen that sparseness of the
impulse response can also be taken into account. Both types of sparseness are
used simultaneously in the Sparse Partial Update algorithm.

Although selective-tap algorithms were originally introduced for the pur-
pose of computational complexity reduction, it has been shown that they can
also be used to improve the performance of multichannel adaptive filters, as
used for SAEC, in which the input signals are highly correlated. The exclusive
tap selection criterion has been shown to reduce the interchannel coherence of
the tap-input vectors and hence improve the conditioning of the autocorrela-
tion matrix, leading to an improvement in convergence rate. The efficient XM
tap selection technique has been developed as an optimization of the MMax
criterion subject to an exclusivity constraint between the tap selection sets of
the two channels. This XM tap selection has been applied in combination with
a nonlinear preprocessor to the NLMS, AP and RLS algorithms. Simulation
results have shown a significant improvement in convergence compared with
algorithms that use the NL-preprocessor alone.
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A Appendices

A.1 Algorithm Summary Tables

Table 6.2. Tap selection schemes.

Single Channel MMax Tap Selection

M ∈ {1, 2, . . . , L}
Q(n) = diag

{
q0(n), q1(n), . . . , qL−1(n)

}
ql(n) =

{
1,

∣∣xl(n)
∣∣ ∈ {M maxima of

∣∣x(n)
∣∣}

0, otherwise

Stereophonic XMNL Tap Selection

M =
L

2

ĥ(n) =
[
ĥ

T
1 (n) , ĥ

T
2 (n)

]T
k̂(n) =

[
k̂

T
1 (n) , k̂

T
2 (n)

]T
x′

1(n) = x1(n) + 0.5 α
[
x1(n) +

∣∣x1(n)
∣∣]

x′
2(n) = x2(n) + 0.5 α

[
x2(n) −

∣∣x2(n)
∣∣]

x(n) =
[
x′T

1 (n) , x′T
2 (n)

]T
qj(n) =

[
qj,0(n), qj,1(n), . . . , qj,L−1(n)

]T
, j = 1, 2

p(n) =
∣∣x′

1(n)
∣∣− ∣∣x′

2(n)
∣∣

Q(n) = diag

{[
qT

1 (n) , qT
2 (n)

]}
q1,u(n) =

{
1, pu(n) ∈

{
M maxima of p(n)

}
0, otherwise

q2,v(n) =

{
1, pv(n) ∈

{
M minima of p(n)

}
0, otherwise
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Table 6.3. MMax-NLMS and XMNL-NLMS Algorithms

e(n) = d(n) − ĥ
T

(n)x(n)

ĥ(n + 1) = ĥ(n) + μ
Q(n)x(n)e(n)

‖x(n)‖2
2 + δ

Table 6.4. MMax-AP and XMNL-AP Algorithms

X(n) =
[
x(n), x(n − 1), . . . , x(n − K + 1)

]T
x̃(n) = Q(n)x(n)

X̃(n) =
[
x̃(n), x̃(n − 1), . . . , x̃(n − K + 1)

]T
d(n) =

[
d(n), d(n − 1), . . . , d(n − K + 1)

]T
e(n) = d(n) − X(n)ĥ(n)

ĥ(n + 1) = ĥ(n) + μX̃
T

(n)
[
X(n)XT(n) + δI

]−1
e(n)

Table 6.5. MMax-RLS and XMNL-RLS Algorithms

Initialize:

Ψ̃
−1

0 = δ−1I

Algorithm:

x̃(n) = Q(n)x(n)

k̃(n) =
Ψ̃

−1
(n − 1) x̃(n)

λ + x̃
T
(n) Ψ̃

−1
(n − 1) x̃(n)

e(n) = d(n) − ĥ
T

(n)x(n)

ĥ(n + 1) = ĥ(n) + k̃(n)e(n)

Ψ̃
−1

(n) =
1

λ

[
Ψ̃

−1
(n − 1) − k̃(n)x̃

T
(n)Ψ̃

−1
(n − 1)

]
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Table 6.6. Short-sort Algorithm

Parameters:
S : sort window length (< N)
A : # samples to select (< S)
c : counter

q =
[
q0, q1, ..., qA−1

]
: storage

m : smallest qi, i = 0, 1, ..., A − 1
mi : index in q of smallest sample

Algorithm:
for n = 0, 1, 2, ...
c = n mod S
if (c = 0) then

m = ∞
endif
if (c < A) then

qc = c

if m >
∣∣x(n)

∣∣then

m =
∣∣x(n)

∣∣
mi = qc

endif
else

if m <
∣∣x(n)

∣∣
qmi = c

m = min value in
[
x(n − qi)

]
, i = 0, 1, ..., A − 1

mi = value of i for
[
x(n − qi)

]
= m, i = 0, 1, ..., A − 1

endif
endif
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A.2 Fourth-order Factorization for Zero Mean Gaussian Variables

For an i.i.d. Gaussian distributed signal x(n), the matrix Ψ = E
{

xnxT
nxnxT

n

}
has elements

Ψk,l = E

{
x(n− k)

L∑
i=1

x2(n− i)x(n− l)
}

where xn = [x(n), x(n− 1), . . . , x(n−L+ 1)]T. The factorization property of
real zero-mean Gaussian variables is that

E {x(i)x(j)x(k)x(l) } = E {x(i)x(j) }E {x(k)x(l) }
+E {x(i)x(k) }E {x(j)x(l) }
+E {x(i)x(l) }E {x(j)x(k) }

from which

E
{

xnxT
nxnxT

n

}
kl

= 2
L∑

i=1

E {x(n− k)x(n− i) }

×E {x(n− l)x(n− i) }

+E {x(n− k)x(n− l) }
L∑

i=1

E
{
x2(n− i)} .

From the above it can be seen that, for the complete matrix, Ψ = 2R2 +
R tr{R}. Now for x(n) i.i.d Gaussian variables

E {x(n− i)x(n− j) } =
{

0. i �= j,
σ2

x, i = j,

so that Ψ = (L+ 2)σ4
xI.
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Nonlinear Acoustic Echo Cancellation
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While standard approaches for acoustic echo cancellation in telecommunica-
tion systems assume that the echo path to be identified can be modeled by
a linear system, in practice, many loudspeaker systems involve non-negligible
nonlinearities, e.g., caused by overloaded amplifiers due to low battery volt-
age of mobile communication receivers, or nonlinearities in the electroacoustic
transduction as common with low-cost loudspeakers driven at high volume.
Above a certain degree of nonlinear distortion, purely linear approaches are
not able to provide a sufficient echo attenuation and nonlinear echo cancellers
become desirable. Based on a nonlinear discrete-time model for the acoustic
echo path we discuss different nonlinear adaptive structures for nonlinear
acoustic echo cancellation and verify their effectiveness by measurements in
real-world environments. While the frequency-dependent nonlinear behaviour
of common electrodynamic loudspeakers can be modeled by Volterra filters,
power filters are well suited to compensate memoryless saturation-type non-
linearities as they occur with overloaded amplifiers and miniaturized loud-
speakers, e.g., in mobile phones.

7.1 Introduction

Linear adaptive filtering plays an important role in statistical signal processing
and respective theoretical and practical results are well established [14]. In
practice, however, nonlinear adaptive filtering often becomes desirable if the
considered systems exhibit nonlinear behaviour. Acoustic echo cancellation
represents an important example for such situations.

Standard approaches for the cancellation of acoustic echoes rely on the
assumption that the echo path can be modeled by a linear system [5]. Ac-
cordingly, the acoustic echo canceller (AEC) is implemented as a linear filter.
Since the echo path is unknown and, moreover, can change during operation
of the echo canceller, the linear filter has to be realized adaptively. Unfortu-
nately, the simple assumption of a linear echo path does not always hold in
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practice, as it does not include the behaviour of nonlinear audio hardware.
The nonlinearly distorted components of the echo signal can not be captured
by a linear AEC and, thus, are transmitted back to the far-end speaker who
perceives an annoying copy of his own voice. Consequently, any non-negligible
nonlinear distortion of the echo signal leads to a reduction of the echo atten-
uation achievable by purely linear approaches and, thus, impairs the quality
of speech communication systems.

Possible sources for nonlinear distortion in the echo path are, e.g., small
loudspeakers driven at high volume or overloaded amplifiers [32, 42, 43]. The
problem of nonlinearly distorted echoes is especially common in mobile com-
munication devices where high sound levels are desired with only low bat-
tery voltage available. For instance, in case of mobile phones operated in
their hands-free mode, consumers usually prefer a nonlinear distortion of the
loudspeaker signal over reduced output levels. Nonlinear echoes also occur
in hands-free teleconferencing systems that include small-sized loudspeakers.
If the consumer sets the loudspeaker system to its maximum volume, linear
behaviour of small and/or cheap loudspeakers can not be expected anymore.
The listening tests presented in [41] show that the accepted level of nonlinear
distortion of speech is sufficiently high to cause annoying nonlinear echoes
which can not be compensated by linear AECs.

To surpass echo cancellation performance of purely linear approaches, non-
linear methods have to be taken into consideration, where basically two ap-
proaches can be applied:

• nonlinear preprocessing of the loudspeaker signal,
• nonlinear adaptive filtering in the AEC.

The first approach aims at a linearization of the audio hardware components
via nonlinear preprocessing of the received far-end signal. Then, the overall
echo path to be modeled by the AEC consists of the acoustic echo path which is
extended by the nonlinear preprocessing stage. In case of an ideal preprocess-
ing of the loudspeaker signal, this overall echo path is linear and, thus, the
AEC can also be realized as a linear filter. This approach can include meth-
ods known from the linearization of loudspeakers [8] and/or techniques that
are used to compensate for the nonlinear distortion introduced by overloaded
power amplifiers in digital communication systems [24]. Another method is to
intentionally limit the excitation signal of the loudspeaker in order to avoid
nonlinear behaviour of the loudspeaker and its amplifier. Note that in this
case, the linear AEC has to be adapted with respect to the preprocessed sig-
nal. A major drawback imposed by these approaches is the required exact a
priori knowledge of the nonlinearities of the loudspeaker system. This, how-
ever, implies that the nonlinear preprocessor of the echo cancellation unit
can be designed only if the audio components of the loudspeaker system are
accessible.

Here, we consider the more general approach of nonlinear adaptive filter-
ing in the AEC in order to be more independent of the actual hardware in the
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loudspeaker system. It turns out that then only the type of nonlinearity in the
acoustic echo path has to be known but not its exact properties, i.e., its pa-
rameter values. Here, we distinguish between two different types of nonlinear
behaviour:

• nonlinearities with memory, as in case of a small loudspeaker driven at
high volume,

• memoryless nonlinearities such as the saturation characteristic of over-
loaded amplifiers.

In the following, we apply certain polynomial filters [28] such as Volterra fil-
ters, truncated Taylor series expansions, and linear filters in order to model
the behaviour of each of these nonlinearities. Based on these models, corre-
sponding nonlinear filters can be developed which sufficiently model the over-
all nonlinear acoustic echo path. The goal is then to derive suitable adaptive
algorithms for these nonlinear filters in order to provide a satisfying echo can-
cellation performance for the case that nonlinear audio hardware is included
in telecommunication systems.

This chapter is organized as follows: In Sec. 7.2, we consider the properties
of acoustic echo paths. After a discussion of nonlinear audio components, we
introduce a discrete-time model of the acoustic echo path based on a non-
linear cascaded structure. The discussion of suitable adaptive approaches is
divided into the following two sections. On the one hand, adaptive Volterra
filters are considered in Sec. 7.3 and address nonlinearities with memory [28].
On the other hand, Sec. 7.4 focusses on the situations where the nonlinearity
in the echo path can be considered as memoryless. It turns out that so-called
power filters are more suitable than Volterra filters in this case [21]. The ef-
fectiveness of the discussed approaches in nonlinear acoustic echo cancellation
is confirmed by experiments using real hardware.

7.2 Nonlinear Acoustic Echo Paths

For the design of nonlinear acoustic echo cancellers, it is essential to have
sufficient knowledge about the properties of the underlying physical echo path.
Therefore, we initially investigate the main components of typical acoustic
echo paths. These results can then be used to obtain suitable nonlinear models
for the identification of real echo paths.

The general structure of an acoustic echo path is illustrated in Fig. 7.1
and is common for hands-free telephone sets or mobile phones. The respective
signal path is a cascade of digital-to-analog (D/A) converter, amplifier, loud-
speaker, microphone, microphone preamplifier, and analog-to-digital (A/D)
converter. Additionally, it comprises the acoustic propagation path of the
speech signal between loudspeaker and microphone.

In general, the propagation path between loudspeaker and microphone can
be considered as a linear system. It is commonly modeled by a linear FIR filter
representing the room impulse response [5].
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propagation pat
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Fig. 7.1. Block diagram of the general structure of an acoustic echo path.

The microphone signals that are common with hands-free and mobile tele-
phony have only moderate excitation levels. Thus, it is reasonable to assume
a linear behaviour for the microphone and its preamplifier which is in accor-
dance with the observations reported in [42].

From a system theoretical point of view, an ideal D/A converter can be
described by an impulse response of a linear filter [34]. In practice, non-ideal
hardware components can lead to a nonlinear mapping of the digital input
signal to the analog output of the D/A converter [1, 34]. The same applies
to A/D converters which, in addition, imply quantization of analog signals
due to finite word lengths used for representation of digital signals. Early
publications [1,6] address the problem of nonlinear network echo cancellation
resulting from nonlinear D/A and A/D converters, respectively. With the
modern, high-resolution converters used in todays telecommunication systems,
it is mostly acceptable to neglect both, quantization errors, and any other
nonlinear mapping characteristic caused by non-ideal signal conversion.

In this chapter we consider two sources for nonlinear distortion: the loud-
speaker and its amplifier. The properties of these nonlinear system compo-
nents are discussed next.

Amplifier nonlinearities are especially present in mobile communication de-
vices. There, the dilemma arises to provide high signal levels while having only
low battery voltage available. The consumers usually prefer an overloading of
the amplifier over a reduction of the sound volume. The nonlinear behaviour
of amplifiers can therefore be described as saturation characteristic with a
soft clipping of large amplitude values [42]. Due to the limited bandwidth of
telephone signals, amplifiers applied to audio applications can in general be
considered as memoryless.

Many research efforts aimed at the characterization of the nonlinearities of
electrodynamic loudspeakers [16, 37]. Summarizingly, one can distinguish be-
tween three different parts of the loudspeaker which may introduce nonlinear
distortion: the acoustical part, the electromagnetic part, and the mechanical
part. Nonlinearities in the acoustical part, such as nonlinear wave propaga-
tion play an important role in the modeling and linearization of horn loud-
speakers [17]. However, as this type of loudspeaker is generally used in public
announcement systems only, any nonlinearities caused by sound radiation are
not considered here.
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The nonlinearities in the electromagnetic part (also referred to as motor
part) are mainly caused by the asymmetries of the magnetic flux, and its
decay outside the air gap of the motor. Thus, the driving force on the voice
coil is a nonlinear function of its position. Additionally, the self-inductance of
the voice coil depends on its displacement, too.

In the mechanical part, the nonlinear dependency of the stiffness of the
spider and the outer rim on the position of the voice coil has to be taken into
account. It is worth mentioning that the characteristic of this nonlinearity is
slowly time-varying, as the mechanical properties of the spider and the rim
are changing in time due to changes in temperature and aging effects of the
used materials.

A common approach to incorporate the above-mentioned nonlinearities
into a loudspeaker model is to approximate the various nonlinear characteris-
tics by a truncated Taylor series expansion for the decisive parameters. Then,
the approximated parameters are introduced into the differential equations
that describe the behaviour of the loudspeaker [16, 37]. However, such a rep-
resentation of the loudspeaker is out of scope of this chapter, as this is not
suited for adaptive realizations as required for the echo cancellation applica-
tion. Consequently, we exploit the main result of [16, 37], i.e., the nonlinear
behaviour of loudspeakers will be modeled by an appropriate Volterra filter.
More precisely, we consider the loudspeaker as a black box, the input/output
relation of which can sufficiently well be approximated by a second-order
Volterra filter. On the other hand, the results presented in [23] indicate that
for acoustic echo cancellation in mobile phones, a saturation-type behaviour of
the miniaturized loudspeakers can be expected. In this case, specialized third-
order polynomial filters with less memory support represent a more suitable
choice.

Other sources for nonlinear distortion in loudspeaker systems are given
by rattling and vibration effects caused by a strong physical coupling be-
tween loudspeaker, microphone, and their enclosure, as, e.g., common in mo-
bile phones. However, this distortion can hardly be modeled or predicted,
as it is of chaotic nature [3]. It should rather be considered as uncorrelated
noise (analogously to any background noise) and, thus, be processed accord-
ingly. The problem of vibrating system components is, however, not further
considered here.

Furthermore, mechanical clipping can be observed in the loudspeaker for
very high excitation levels if the available displacement range for the voice
coil is not sufficiently large [37,40]. This problem, however, is also not further
considered here.

Discrete-Time Model for the Echo Path

As a result of the above discussion, we are now able to derive a discrete-time
model for the acoustic echo path that is common in acoustic echo cancella-
tion. Such a model can consist of the cascade of different linear and nonlinear
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components as illustrated by the block diagram Fig. 7.2. Obviously, the cas-
caded structure is a direct consequence of the cascade of the different system
components shown in Fig. 7.1.

hc,k he,kSVF

Fig. 7.2. Block diagram of the nonlinear model of the acoustic echo path.

The first block in Fig. 7.2 is the linear FIR filter hc,k representing the
combination of all linear filtering steps involved in the D/A-conversion. Fol-
lowing [42], we assume that the loudspeaker amplifier can be regarded as
memoryless soft clipping and, thus, be approximated by a truncated Tay-
lor series expansion. Although a seventh-order Taylor series has been applied
in [42] to model the behaviour of the amplifier, simulation results have shown
that a third-order polynomial can sufficiently reproduce the influence of the
amplifier nonlinearity. The corresponding block in Fig. 7.2 illustrates the soft
clipping by showing a corresponding mapping characteristic. Note that for
mobile phones, the level of nonlinear distortion introduced by the amplifier
may depend on the charge level of the battery that provides the power supply.
Thus, the parameters of the polynomial representing the amplifier have to be
at least slowly time-variant.

The third block in Fig. 7.2 represents a second-order Volterra filter (SVF)
that is used to simulate the loudspeaker nonlinearities. As already mentioned,
the mechanical contribution to the nonlinear distortion is not constant over
time due to fatigue of material. Consequently, the coefficients of the Volterra
filter should also be at least slowly time-variant. In case of mobile phones,
the nonlinear behaviour of miniaturized loudspeakers exhibit a memoryless
saturation characteristic [23]. Then, the Volterra filter can be replaced by a
Taylor series expansion. The cascade of the loudspeaker and its amplifier can
thus be modeled by using only a single truncated Taylor series expansion, i.e.,
by discarding the third block in Fig. 7.2.

The last block comprises three cascaded linear models, representing the
sound propagation path between loudspeaker and microphone, the micro-
phone characteristic (including its preamplifier), and the A/D converter, re-
spectively. As the linear FIR filter he,k includes the room impulse response,
it may be rapidly time-variant.

It can be shown that every parallel/cascaded combination of linear filters,
truncated Taylor series expansions, and Volterra filters can be replaced by a
corresponding Volterra filter exhibiting the same input/output relation. It is
straightforward to verify that for the above model of the nonlinear echo path,
this results in a fifth-order Volterra filter if the amplifier is represented by
a third-order polynomial and a second-order Volterra filter is used as loud-



7 Nonlinear Acoustic Echo Cancellation 211

speaker model. This approach, however, is not practicable due to the enormous
number of required coefficients for higher-order Volterra filters [28].

Simplifications of the general model of the echo path according to Fig. 7.2
can be achieved if any a priori knowledge about the properties of the system
to be identified can be exploited. In the following we assume that at least
one of the nonlinear components in Fig. 7.2 can be neglected: In Sec. 7.3 we
look at the case where solely the second-order Volterra filter is included in the
actual model of the acoustic echo path, whereas in Sec. 7.4 the Taylor series
expansion is considered as the only nonlinear component. Furthermore, the
cascaded nature of the echo path can be taken into account for deriving more
efficient overall models of the nonlinear echo path.

7.3 Volterra Filters

For the case that the small-sized loudspeaker of a hands-free telecommuni-
cation device represents the main source for nonlinear distortion in the echo
path, it has to be modeled by a second-order Volterra filter. In this section
we therefore discuss Volterra filters and corresponding adaptive realizations
in both, time domain and frequency domain. The basic concepts of adaptive
Volterra filtering are presented for the general case of P -th order Volterra
filters. In more specific parts such as the control of the adaptation or the
evaluation of the presented algorithms, we explicitly refer to the acoustic echo
cancellation application and limit ourselves to second-order Volterra filters.

The output d(n) of a P -th order Volterra filter is composed of the sum of
the outputs of all kernels up to order P :

d(n) =
P∑

p=1

dp(n). (7.1)

Most commonly, the input/output relation of the p-th order kernel is expressed
by [28]

dp(n) =
Np−1∑
kp,1=0

Np−1∑
kp,2=kp,1

· · ·
Np−1∑

kp,p=kp,p−1

hkp

p∏
i=1

x(n− kp,i), (7.2)

where the memory lengths Np of the Volterra kernels can in general be differ-
ent for each order p. In Eq. 7.9, the index vector

kp = [kp,1, kp,2, . . . , kp,p] (7.3)

can be interpreted as reference to a certain coefficient hkp
of the p-th order

Volterra kernel in a p-dimensional Cartesian coordinate system. Thus, Eq. 7.2
is referred to as Cartesian coordinate representation (CCR) of Volterra fil-
ters [35]. As can be noticed from Eq. 7.2, there is a strong relation between
multidimensional linear filtering and Volterra filters in CCR [28].
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In the following we consider an alternative representation of Volterra filters
which turns out to be more useful in the nonlinear echo cancellation context
featuring nonlinear cascaded structures. Regarding [35], we apply the following
change of coordinates:

kp,1 = k, 0 ≤ k ≤ Np − 1, (7.4)
kp,i = rp,i−1 + k, 2 ≤ i ≤ p. (7.5)

For interpreting the above coordinate transform, we recall that the set of
indices kp,1, kp,2, . . . , kp,p can be considered as Cartesian coordinates which
corresponds to the p-dimensional sampled hypercube representing the p-th
order Volterra kernel. The combination of the indices rp,1, rp,2, . . . , rp,p−1,
and k can then be understood as reference to the kernel coefficients lying
on a straight line which is parallel to the main diagonal of the Cartesian
coordinate system. Following [35], we refer to these straight lines as diagonals,
where the main diagonal is defined by setting kp,1 = kp,2 = . . . = kp,p which
implies rp,1 = rp,2 = . . . = rp,p−1 = 0. Based on these interpretations, we
consider the new set of indices rp,1, rp,2, . . . , rp,p−1, and k as coordinates of
the so-called diagonal coordinate system. The relation between the CCR and
the diagonal coordinate representation (DCR) is illustrated in Fig. 7.3 for
the quadratic Volterra kernel. As an example, the diagonal corresponding to

Fig. 7.3. Illustration of the relation between the CCR and DCR for a quadratic
Volterra kernel (p = 2). Each • corresponds to a kernel coefficient.

r2,1 = 2 is highlighted in both figures. Additionally, the dark quadrangles
mark the indices (k2,1, k2,2) = (5, 7) and (r2,1, k) = (2, 5), respectively, which
reference the same kernel coefficient.

Analogously to the coefficient index vector kp in Eq. 7.3, we introduce the
two coefficient vectors
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rp = [rp,1, rp,2, . . . , rp,p−1], (7.6)
rp,k = [k, rp,1 + k, . . . , rp,p−1 + k], (7.7)

where for the linear kernel r1 = [ ] and r1,k = k. The diagonal index vector rp

references a certain diagonal, whereas the corresponding coefficient index vec-
tor rp,k references a certain kernel coefficient on that diagonal. Note that rp

has the length p−1, while rp,k consists of p elements. The diagonal index vec-
tor associated with the main diagonal is obviously given by rp = 0. Thus, the
index vector elements rp,i of rp determine the distance of that diagonal from
the main diagonal of the p-th order Cartesian coordinate system. It should
be pointed out that with the definition of the coefficient index vector rp,k in
Eq. 7.7, the notation of the kernel coefficients have been kept unchanged, i.e.,

hrp,k
= hkp

, if rp,k = kp. (7.8)

The desired form of the input/output relation of the p-th order kernel is
obtained by introducing the new index vectors rp and rp,k into Eq. 7.2 and
by additionally changing the order of summation:

dp(n) =
Np−1∑
rp,1=0

· · ·
Np−1∑

rp,p−1=rp,p−2

Lrp
−1∑

k=0

hrp,k
x(n− k)

p−1∏
i=1

x(n− rp,i − k), (7.9)

where
Lrp

= Np − rp,p−1, (7.10)

obviously depends on both, the kernel order p, and the actual value of rp,p−1.
For the linear kernel (p = 1) we have Lr1

= N1. As proposed in [35], we
refer to Volterra filters featuring the above form for computing the output
of the p-th order Volterra kernel as Volterra filters in diagonal coordinate
representation (DCR).

In the following we examine the relation between Volterra filters in DCR
and multichannel linear filtering. For a deeper insight into the internal multi-
channel structure of the DCR, we introduce the input signal of the diagonal
rp according to

xrp
(n) = x(n)

p−1∏
i=1

x(n− rp,i), (7.11)

where xr1
(n) = x(n). The corresponding output drp

(n) of the diagonal with
index rp is then given by

drp
(n) =

Lrp
−1∑

k=0

hrp,k
xrp

(n− k). (7.12)

Obviously, drp
(n) can be considered as the output of the linear FIR filter

hrp,k
of length Lrp

with input xrp
(n). In other words, drp

(n) results from the
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convolution of xrp
(n) with the linear filter hrp,k

and can therefore be expressed
by

drp
(n) = hrp,n

∗ xrp
(n), (7.13)

where ∗ denotes convolution. The above definitions are used to rewrite the
output dp(n) of the p-th order kernel according to Eq. 7.9:

dp(n) =
Np−1∑
rp,1=0

· · ·
Np−1∑

rp,p−1=rp,p−2

drp
(n). (7.14)

From the specific form of Eq. 7.14 we notice that dp(n) can be interpreted as
the output of a linear multiple input/single output (MISO) system, where each
diagonal with index vector rp corresponds to one linear channel with input
xrp

(n). Extending this interpretation to the computation of the output of the
Volterra filter according to Eq. 7.1, d(n) can be considered as the output of a
special MISO system featuring a combination of P multichannel structures,
where each channel corresponds to one particular diagonal of the DCR.

Aiming at a compact vector notation for the computation of dp(n), we
introduce the input signal vectors xp(n) associated to the p-th order kernel
vector hp according to

xp(n) =

[
. . . , x(n)

p−1∏
i=1

x(n− rp,i), . . .

]T

, (7.15)

hp =
[
. . . , hrp,k

, . . .
]T
. (7.16)

The
(
Np+p−1

p

)
elements of xp(n) and hp can in principle be arranged arbitrar-

ily according to any given preferences. Of course, the elements in xp(n) and
hp have to be arranged consistently such that

dp(n) = hT
p xp(n). (7.17)

With the definitions of the vectors

xVF(n) =
[
xT

1 (n), xT
2 (n), . . . , xT

P (n)
]T
, (7.18)

hVF =
[
hT

1 , hT
2 , . . . , hT

P

]T
, (7.19)

we can finally extend the vector notation also to the computation of the overall
Volterra filter output d(n):

d(n) = hT
VF xVF(n). (7.20)

We notice that Eq. 7.20 reflects the linearity of the output d(n) with respect
to the Volterra filter coefficients which are summarized in hVF. This formal
analogy to linear filtering can be exploited in order to straightforwardly extend
adaptive algorithms known from linear adaptive filtering to Volterra filters.
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7.3.1 Application to Cascaded Structures

In the following, we look at the configuration according to Fig. 7.4 in more
detail which consists of the cascade of a Volterra filter hrp,k

followed by a
linear filter ck.

Fig. 7.4. Cascaded structure consisting of a second-order Volterra filter hr p,k fol-
lowed by a linear FIR filter ck.

First, we recall the assumption that the model of the echo path Fig. 7.2
can be simplified to the cascade of a linear filter, a second-order Volterra filter,
and another linear filter. The cascade of a linear filter followed by a Volterra
filter can be represented by a corresponding Volterra filter of the same order
but with increased memory length. Thus, the assumed simplified model of
the acoustic echo path represents a special case of the configuration shown in
Fig. 7.4.

From an efficiency point of view, one might tend to directly use an adaptive
implementation of the two cascaded units for realizing the nonlinear acoustic
echo canceller. This approach has already been proposed in [11] for acoustic
echo cancellation including nonlinearly distorting loudspeakers. However, it
is challenging to assure convergence to the optimum solution or even assure
a stable adaptation behaviour for cascaded structures. This problem has also
been observed by the authors of [11]. As a remedy, they suggest to adapt
the Volterra filter only after the linear postfilter has ’sufficiently’ converged.
In order to circumvent any sophisticated adaptation control as required for
the adaptation of cascades, we consider an equivalent Volterra model as a
parallelized realization of the cascaded structure instead. It turns out that the
DCR provides an elegant representation of such equivalent Volterra models.

As the convolution is a linear operation, the computation of the output of
thecascaded structure directly follows from Eqs. 7.1, 7.13, 7.14:

z(n) =
P∑

p=1

zp(n), (7.21)

zp(n) =
Np−1∑
rp,1=0

Np−1∑
rp,2=rp,1

· · ·
Np−1∑

rp,p−1=rp,p−2

zrp
(n), (7.22)

where the outputs zrp
(n) of the respective DCR-channel read

zrp
(n) = cn ∗ hrp,n

∗ xrp
(n)

= grp,n
∗ xrp

(n). (7.23)
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We note from Eqs. 7.22, 7.23 that zp(n) can be considered as the output of
a special p-th order Volterra kernel grp,k

with input x(n), where the number
and the position of the diagonals are not changed compared to the Volterra
kernel hrp,k

. However, the length of the filter in each DCR-channel with index
vector rp is increased according to

L̃rp
= Lrp

+Nc − 1, (7.24)

where Nc denotes the length of the linear filter ck. Obviously, the correspond-
ing CCR of the kernel grp,k

has the overall memory length Np +Nc−1, where
only a corridor with respect to the main diagonal of width Np has non-zero
coefficients. The resulting region of support of the Volterra kernels, i.e., the
non-zero coefficients, is illustrated in Fig. 7.5 for the quadratic kernel and the
special case N2 = 4 and Nc = 16. Comparing Fig. 7.5 with Fig. 7.3(b), the

Fig. 7.5. Illustration of the quadratic Volterra kernel corresponding to the cascaded
structure according to Fig. 7.4 for the special case N2 = 4 and Nc = 16. Each •
corresponds to a non-zero kernel coefficient.

specific shape of the region of support becomes clear.
The reduced region of support as required for Volterra models of cascaded

structures according to Fig. 7.4, can easily be taken into account by appro-
priately modifying Eq. 7.14:

dp(n) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

drp
(n). (7.25)

The parameter Rp is used here to specify the maximum distance of a diagonal
with respect to the main diagonal. Introducing Eq. 7.12 into Eq. 7.25 yields

dp(n) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

Lrp
−1∑

k=0

hrp,k
xrp

(n− k). (7.26)

The output drp
(n) of the diagonal with index vector rp is still computed

according to Eq. 7.12, implying that the linear filter of the corresponding
channel has the memory length Lrp

= Np − rp,p−1. Choosing Rp < Np yields
the desired reduced region of support compared to the case Rp = Np (as
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imposed by Eq. 7.14). The possibility to reduce the width R2 of the quadratic
kernel without impairing the echo cancellation performance of an adaptive
second-order Volterra filter is exemplified in Sec. 7.3.4 for a real acoustic echo
path.

Throughout the rest of this chapter, we always refer to the extended defin-
ition Eq. 7.26 when considering Volterra filters in DCR. Moreover, we restrict
ourselves to the case Rp ≤ Np. Then, Np still represents the memory length1

of the p-th order kernel, whereas Rp is referred to as its width. It should be em-
phasized that the distinction between Rp and Np does not imply an additional
degree of freedom for the design of Volterra filters: We only explicitly exclude
certain coefficients of the corresponding CCR which are a priori assumed to
be zero.

The number of diagonals Ndiag,p included in the p-th order kernel with
width Rp is given by

Ndiag,p =
(
Rp + p− 2
p− 1

)
. (7.27)

Note that only for p ≤ 2, i.e., for the linear and the quadratic kernel, the
width Rp equals to the number of diagonals. For the linear kernel R1 obviously
always equals one. The number of coefficients Ncoeff,p of the p-th order kernel
with memory length Np and width Rp is obtained as

Ncoeff,p =
(
Rp + p− 1

p

)
+ (Np −Rp)Ndiag,p (7.28)

with Ndiag,p according to Eq. 7.27.

7.3.2 Time-domain Adaptive Volterra Filters

The fundamental problem of adaptive Volterra filtering in acoustic echo can-
cellation is illustrated in Fig. 7.6. From Fig. 7.6 we notice that the require-

Fig. 7.6. General configuration for adaptive Volterra filtering in acoustic echo can-
cellation.

1 Strictly speaking, the memory length is Np − 1.
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ments for adaptive Volterra filtering are basically equivalent to the task of
a linear adaptive filtering in the echo cancellation context: The coefficients
ĥrp,k

(n) of the adaptive Volterra filter have to be determined such that d̂(n)
matches the output of the unknown system d(n). As already indicated in
Fig. 7.6, we assume in the following that the unknown system (i.e., the acoustic
echo path) can can be characterized by the Volterra filter coefficients hrp,k

(n).
Using the notation of Fig. 7.6, the error e(n) is defined as

e(n) = y(n) − d̂(n), (7.29)

where the output of the P -th order adaptive Volterra filter reads

d̂(n) = ĥ
T

VF(n)xVF(n). (7.30)

The coefficient vector ĥVF(n) is defined analogously to Eqs. 7.16, 7.19, but
contains the kernel coefficients ĥrp,k

(n) of the adaptive Volterra filter instead
of hrp,k

(n). The output d(n) of the unknown system is given by Eqs. 7.1,
7.26, i.e., we assume that it can be completely modeled by a P -th order
Volterra filter. In the following we additionally assume that the order P and
the memory lengths Np are equal for both, the adaptive Volterra filter, and
the unknown system.

The observed microphone signal y(n) is given by

y(n) = d(n) + b(n) + s(n), (7.31)

where d(n) represents the actual echo signal. The external distortions b(n)
and s(n) represent background noise and local speech, respectively, and are
summarized to

n(n) = b(n) + s(n). (7.32)

The residual echo ε(n) is given by

ε(n) = d(n) − d̂(n). (7.33)

Similarly to linear adaptive filtering, the LMS algorithm represents the
most commonly used adaptation algorithm for Volterra filters [27,28] mainly
because of its simplicity and robustness. This is especially important since
Volterra filters imply a huge number of coefficients to be adapted, as can be
noticed from Eq. 7.28. The update equation for the coefficient vector ĥVF(n),
applying the LMS algorithm, is given by [27]

ĥVF(n+ 1) = ĥVF(n) + μLMS(n) e(n)xVF(n). (7.34)

The step size control parameter μLMS(n) can be chosen to vary for different
coefficients, as discussed later in this section.

The standard NLMS algorithm for Volterra filters is obtained by normal-
izing the step size parameter μLMS(n) according to
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μLMS(n) =
αNLMS(n)

xT
VF(n)xVF(n)

, 0 < αNLMS(n) < 2. (7.35)

The given range for the step size αNLMS(n) indicates the range where stable
convergence can be expected [27].

Although the above normalization formally yields the NLMS algorithm for
Volterra filters, it might not always be useful in practice. From the definition
of xVF(n) in Eq. 7.18 it follows that the denominator of Eq. 7.35 is composed
of the sum over different moments of x(n), up to order 2P . In general, the
orders of magnitude of these moments significantly differ and, thus, the joint
normalization of all Volterra kernels according to Eq. 7.35 is not suitable for
higher-order Volterra filters. Considering

xT
p (n)xp(n) � max

i

{
xT

i (n)xi(n)
}
, (7.36)

we realize that the adaptation of the coefficients of the p-th order kernel almost
freezes for a joint normalization of the step size αNLMS(n).

There exist also more sophisticated algorithms for the adaptation of
Volterra filters which can be used to circumvent the inherent slow conver-
gence of the LMS algorithm. Prominent examples are the Affine Projection
Algorithm (APA) [7] or the RLS algorithm [27] which are also well known in
linear adaptive filtering [9]. Note that due to the huge number of coefficients
that are associated with higher-order Volterra filters, the APA and the RLS
algorithm are usually not realizable in practice.

There is another major difference between the matrix representation of
linear filters and the matrix representation of Volterra filters: The input vector
xVF(n) does not exhibit the tapped delay line structure of the input vector
x(n) = x1(n) as used in linear filtering. Assuming stationary input x(n), the
autocorrelation matrix

Rxx = E
{

x(n)xT(n)
}
, (7.37)

associated with the input vector x(n) for linear filters, features a Toeplitz
form, whereas this is not true for the autocorrelation matrix

RxVF xVF
= E

{
xVF(n)xT

VF(n)
}
, (7.38)

corresponding to the input vector xVF(n) of Volterra filters. Unfortunately,
computationally efficient versions of the RLS and the APA for linear adaptive
filters explicitly exploit the Toeplitz structure of Rxx [9]. Therefore, these
methods cannot be applied to adaptive Volterra filters in a straightforward
manner. Nevertheless, there are still structural features in the input vector
xVF(n) on which fast versions of the RLS algorithm for Volterra filters can
be based on, as has been shown in [25] for the second-order case.
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Adaptation Control for Second-order Volterra Filters

The performance of an adaptive algorithm strongly depends on the control
of the adaptation. This is especially true for the LMS algorithm, as it im-
plies rather slow convergence for correlated input signals. In the following,
we therefore present a coefficient-dependent adaptation control for the LMS
algorithm for second-order Volterra filters that corresponds to the approach
proposed in [20].

Since we are aiming at a coefficient-dependent step size, we consider the
LMS update equation for a single coefficient ĥrp,k

(n). From Eq. 7.34 we obtain

ĥrp,k
(n+ 1) = ĥrp,k

(n) + μrp,k
(n) e(n)xrp

(n− k). (7.39)

For the following discussion, we assume that the input x(n) is an independent,
identically distributed (IID) random process, where the probability density
function (PDF) of the amplitudes of x(n) is an even function. Additionally,
we assume that the coefficients of the adaptive Volterra filter are indepen-
dent of the input signal. The assumed properties of x(n) imply that the in-
put of the linear kernel and the output of the quadratic kernel of both, the
adaptive Volterra filter, and the unknown Volterra filter are orthogonal, i.e.,
E { y2(k)x(n− k) } = E { ŷ2(k)x(n− k) } = 0. It can be shown that then,
the optimum filter coefficients of the linear adaptive kernel ĥr1,k

(n) are equal
to the corresponding filter coefficients hr1,k

(n). Correspondingly, it can be
shown that the optimum coefficients for the quadratic kernel ĥr2,k

(n) are
given by hr2,k

(n). Thus, we introduce the coefficient errors of the linear and
the quadratic kernels according to

mrp,k
(n) = hrp,k

(n) − ĥrp,k
(n), p ∈ {1, 2}. (7.40)

Following [20], the optimality criterion for determining the optimum coefficient-
dependent step size μopt,rp,k

(n) is chosen as the mean squared error between
the actual coefficient error and the corresponding LMS update term:

Jμrp,k
(n) = E

{ [
mrp,k

(n) − μrp,k
(n) e(n)xrp

(n− k)]2 } , p ∈ {1, 2}.
(7.41)

As shown in [20], the optimum step size, which minimizes the cost function
Eq 7.41, is obtained as

μopt,rp,k
(n) =

E
{
mr

2
p,k

(n)
}

E
{
ε2(n) + b2(n) + s2(n)

} , p ∈ {1, 2}, (7.42)

where it has been assumed that the input x(n), the background noise b(n),
and the speech signal of the near-end talker s(n) are mutually statistically
independent processes. Interestingly, the form of the optimum step size is
identical for both kernels, which results from the linearity of the output with
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respect to the coefficients of any kernel. Considering that the error signal can
be expressed as

e(n) = ε(n) + b(n) + s(n), (7.43)

we notice that the denominator in Eq. 7.42 can be identified as the second-
order moment of the error signal e(n). Since e(n) is observable, its second-order
moment can in general be estimated reliably. However, the mean squared coef-
ficient errors E

{
mr

2
p,k

(n)
}

are not observable in practice, making a straight-
forward realization of the optimum step size impossible. Therefore, we apply
the approach proposed in [20] in order to obtain models for the estimation of
the unknown statistical terms.

For the following discussion it will be useful to distinguish between the
residual echoes associated to each single Volterra kernel, and define

εp(n) = dp(n) − d̂p(n). (7.44)

The overall residual echo for second-order Volterra filters can then be ex-
pressed by

ε(n) = ε1(n) + ε2(n). (7.45)

Note that for the assumed input signal x(n), the residual echoes of the different
Volterra kernels are orthogonal, and, thus,

E
{
ε2(n)

}
= E

{
ε21(n)

}
+ E

{
ε22(n)

}
. (7.46)

As the residual echoes εp(n) result from the misadjustment of the correspond-
ing kernel coefficients, we rewrite Eq. 7.44 for the linear and the quadratic
kernel in terms of the coefficient errors:

ε1(n) =
N1−1∑
k=0

mr1,k
(n)x(n− k), (7.47)

ε2(n) =
R2−1∑
r2,1=0

Lr2
−1∑

k=0

mr2,k
(n)xr2(n− k). (7.48)

For the considered zero-mean IID input x(n), the mean squared residual echo
of the linear kernel can then be expressed by

E
{
ε21(n)

}
=

N1−1∑
k=0

E
{
mr

2
1,k

(n)
}

E
{
x2(n− k)

}
. (7.49)

As discussed in [20], in the echo cancellation context it is reasonable to ap-
ply a corresponding approximation of the mean squared residual echo of the
quadratic kernel:

E
{
ε22(n)

} ≈
R2−1∑
r2,1=0

Lr2
−1∑

k=0

E
{
mr

2
2,k

(n)
}

E
{
xr

2
2
(n− k)} . (7.50)



222 F. Küch, W. Kellermann

For a better understanding of the optimum step size, we follow [20] and in-
troduce the kernel-independent auxiliary step-size factors

αdt(n) =
E
{
ε2(n) + b2(n)

}
E
{
ε2(n) + n2(n) + s2(n)

} , (7.51)

αbn(n) =
E
{
ε2(n)

}
E
{
ε2(n) + b2(n)

} . (7.52)

Note that for the definition of αdt(n) and αbn(n), the mutual statistical inde-
pendence of the input signal, the background noise, and the near-end speech
has been used. Additionally, we introduce the kernel-dependent auxiliary step-
size factors

αεp
(n) =

E
{
ε2p(n)

}
E
{
ε21(n)

}
+ E

{
ε22(n)

} , p ∈ {1, 2}, (7.53)

where the orthogonality property according to Eq. 7.46 has been exploited.
Furthermore, we define coefficient-dependent step-size factors

αr1,k
(n) =

E
{
mr

2
1,k

(n)
}

N1−1∑
l=0

E
{
mr

2
1,l

(n)
}

E
{
x2(n− l)

} (7.54)

for the adaptation of the linear kernel. The corresponding step sizes for the
coefficients of the quadratic kernel are given by

αr2,k
(n) =

E
{
mr

2
2,k

(n)
}

R2−1∑
r2,1=0

Lr2
−1∑

l=0

E
{
mr

2
2,l

(n)
}

E
{
xr

2
2
(n− l)}

. (7.55)

Note that the auxiliary step-size factors αr1,k
(n) and αr2,k

(n) are based on
Eq. 7.49 and the approximation in Eq. 7.50, respectively.

With the above auxiliary step sizes, the optimum step size according to
Eq. 7.42 can be approximated by a factorized version [20]:

μopt,rp,k
(n) ≈ αdt(n)αbn(n)αεp

(n)αrp,k
(n), p ∈ {1, 2}. (7.56)

The influence of the different step-size parameters on the control of the adap-
tation is discussed next.

According to its definition αdt(n) accounts for double-talk (dt) situations,
where s(n) �= 0. In the echo cancellation context it is reasonable to implement
αdt(n) as an on/off switch in combination with a double-talk detector [2], i.e.,
αdt(n) = 0 if a near-end talker is active, in order to avoid divergence of the
adaptive filter coefficients, and αdt(n) = 1, otherwise.
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The step-size factor αbn(n) controls the adaptation of the acoustic echo
canceller with respect to the distortion introduced by background noise (bn)
b(n). Methods for the estimation of the product αdt(n)αbn(n) have been thor-
oughly discussed in [26] and are not further considered here.

For an interpretation of αεp
(n) we note that the error introduced by a

misadjusted linear kernel acts as an interference for the adaptation of the
quadratic kernel, and vice versa. Hence, the step-size factors αεp

(n) can be
regarded as an adaptation control with respect to interferences caused by the
misadjusted Volterra kernels. As follows from Eq. 7.53, the computation of
αεp

(n) requires knowledge of at least the ratio of the second-order moments
of εp(n) and ε(n) which is in general not accessible. Therefore, a model for
estimating the respective second-order moments is required. More precisely,
we assume that the second-order moment of the residual echo of the linear
kernel, i.e., ε1(n), is proportionate to the output of the adaptive linear kernel,
i.e., d̂1(n). Analogously, the second-order moment of ε2(n) is assumed to be
proportionate to d̂2(n):

E
{
ε2p(n)

} ≈ γε(n)

[
δεp

+
∣∣∣d̂p(n)

∣∣∣], p ∈ {1, 2}, (7.57)

where
∣∣∣d̂p(n)

∣∣∣ denotes a smoothed version of the magnitude of d̂p(n). This
estimation model can be regarded as the first term of a Taylor series expansion
of the mean squared residual echoes with respect to the magnitude of the
output of the corresponding kernel. The smoothing of the output is used to
avoid significant variations of the estimates due to strongly varying amplitudes
of the output signal. The offset term δεp

can be used in Eq. 7.57 to manipulate
the dependency of the kernel-dependent step size αεp

(n) on the corresponding
kernel output d̂p(n). Note that δεp

is required especially in the beginning of
the adaptation, where d̂p(n) = 0 if the Volterra coefficients were initialized
with zero. The proportionality factor γε(n) represents the general convergence
properties of the Volterra kernels, i.e., γε(n) decreases for a stable adaptation.
However, the actual values γε(n) are not required explicitly, as the fraction
appearing in the definition of αεp

(n) can be reduced correspondingly.
The coefficient-dependent step size αrp,k

(n) can be used to speed-up the
adaptation of coefficients that cause large coefficient errors. However, the coef-
ficient errors are not known and, therefore, we have to use models for estimat-
ing the respective second-order moments. A common assumption is that large
coefficient magnitudes also cause large error magnitudes [36]. Consequently,
we assume that the second-order moment of a certain coefficient error is pro-
portionate to the magnitude of the corresponding adaptive coefficient:

E
{
mr

2
p,k

(n)
}
≈ γm,p(n)

[
βm,p(n) +

∣∣∣ĥrp,k
(n)
∣∣∣ ], p ∈ {1, 2}. (7.58)



224 F. Küch, W. Kellermann

This estimation model can be considered as the first term of a Taylor series ex-
pansion of the mean squared coefficient error with respect to the magnitude of
the corresponding coefficient of the adaptive Volterra filter. The time-variant
proportionality factor γm,p(n) reflects the reduction of the magnitude of the
coefficient errors during the convergence of the adaptive filter. The actual
value of γm,p(n) does not have to be specified explicitly, as the fractions in
Eq. 7.54 and Eq. 7.55 can be reduced respectively. The parameter βm,p(n) can
be used to adjust the influence which the coefficients of the adaptive Volterra
filter have on their associated LMS update term. Note that βm,p(n) should
not equal zero in the beginning of the adaptation if all coefficients were ini-
tialized with zeroes. Otherwise, the coefficients remain at their initial values.
For the computation of Eq. 7.54 and Eq. 7.55, we additionally replace the
expectations with respect to the input by the corresponding instantaneous
values.

It should be mentioned that there is a strong link between the coefficient-
dependent step size presented above and the proportionate NLMS (PNLMS)
for second-order Volterra filters proposed in [18]: If the parameters βm,p(n)
are chosen according to

βm,1(n) =
βc,1

N1

N1−1∑
k=0

∣∣∣ĥr1,k
(n)
∣∣∣ , (7.59)

βm,2(n) =
βc,2

Ncoeff,p

R2−1∑
r2,1=0

Lr2−1∑
k=0

∣∣∣ĥr2,k
(n)
∣∣∣ , (7.60)

the PNLMS according to [18] results.

Simulations

To evaluate the performance of the step size control algorithm presented
above, we present simulation results obtained for a second-order adaptive
Volterra filter. In the experiment, the input has been wide-sense stationary
coloured noise with a power spectral density (PSD) corresponding to the long-
term PSD of speech. The nonlinear echo path has been modeled by a second-
order Volterra filter in DCR, where the memory length of the linear kernel has
been N1 = 320. To account for the cascaded nature of nonlinear acoustic echo
paths, the memory length of the quadratic kernel has been N2 = 64, while its
width is only R2 = 20. The same region of support has also been chosen for
the second-order adaptive Volterra filter. As double-talk detection algorithms
are outside the scope of this chapter, we set s(n) = 0 in the following which
implies αdt = 1. An SNR of 30 dB has been preset with respect to b(n) and
d(n). Since we are mainly interested in the improvements resulting from the
kernel-dependent and the coefficient-dependent step size parameters, a fixed
value αbn = 0.3 has been used. The performance is measured using the Echo
Return Loss Enhancement (ERLE) which is defined by
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ERLE = 10 log10

E
{
d2(n)

}
E {ε2(n)} [dB]. (7.61)

The level of nonlinear distortion has been preset such that the maximum
achievable ERLE of a purely linear approach is limited to approximately
20 dB.

In Fig. 7.7, the ERLE graphs obtained for a second-order adaptive Volterra
Filter (VF) applying two different realizations of its step size are compared to
a purely linear approach. Here, we look at the case where the step size para-
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Fig. 7.7. ERLE obtained for a second-order adaptive Volterra filter (VF) apply-
ing the LMS algorithm with the proposed coefficient-dependent step size, and the
kernel-independent NLMS, together with a linear approach for wide-sense stationary
coloured noise input.

meters αεp
(n) and αrp,k

(n) are estimated by means of the models Eq. 7.57 and
Eq. 7.58. The constant parameter δεp

of the model for the residual errors have
been chosen to δεp

= 0.001 for both kernels. For the model of the coefficient er-
rors, Eqs. 7.59 and 7.60 has been used, where βc,1 = βc,2 = 1. Note that this
choice implies the practically realizable PNLMS algorithm for second-order
Volterra filters [18]. Furthermore, Fig. 7.7 shows the ERLE-graph obtained
for the kernel-independent NLMS with a fixed step size αNLMS(n) = 0.3.
Fig. 7.7 additionally depicts the ERLE of a linear adaptive filter which has
been implemented analogously to the linear kernel of the adaptive Volterra
filter with coefficient-dependent step-size control.

As can be seen, the second-order Volterra filter with coefficient-dependent
step size clearly outperforms the corresponding Volterra filter applying a
kernel-independent NLMS algorithm. We also notice from Fig. 7.7 that the
achievable echo attenuation of the purely linear approach is limited due to the
nonlinear distortion in the echo path.
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7.3.3 Multidelay Adaptive Volterra Filters

DFT-domain approaches are very popular in linear adaptive filtering, as they
allow for an increased convergence speed, while at the same time reducing
the computational complexity [30, 38]. Corresponding DFT-domain methods
which exploit fast convolution techniques via block processing are therefore
desirable in adaptive Volterra filtering, too. For the derivation of such al-
gorithms, we can basically distinguish between two different approaches for
exploiting fast convolution methods. They are based on

• linear multidimensional filtering,
• linear multichannel filtering.

The first approach exploits the relation between linear multidimensional sys-
tems and Volterra filters in CCR [15,22]. These methods are most efficient if
the entire region of support of the Volterra kernels (i.e., Rp = Np) has to be
included. The second approach bases on the interpretation of Volterra filters
in DCR as special linear MISO systems [19, 29], as already discussed above.
The linear multidelay filter [30] applies partitioned block techniques which
can be exploited to allow for different memory lengths for each kernel in the
corresponding generalization to Volterra filters. This is especially attractive
with acoustic echo cancellation for nonlinear loudspeaker systems, where it
has been observed that the required memory length for the linear kernel is
larger than that of the quadratic kernel [43]. Therefore, the restriction to a
uniform DFT length for all Volterra kernels, as imposed in the DFT-domain
approaches according to [15, 29], leads to inefficient system configurations,
making the approaches [19,22] more attractive for the acoustic echo cancella-
tion application.

The DFT-domain algorithm presented in this section corresponds to [19]
and represents an extension of the linear adaptive multidelay filter according
to [30] to Volterra filters in DCR. An advantage of the resulting multidelay
Volterra filter is that it preserves the flexibility with respect to choosing a
desired region of support, as featured by the DCR.

Following the linear approach [30], a block-partitioned version of Eq. 7.13
is obtained by partitioning the linear filter hrp,k

into Brp
blocks of length

N . In the following we assume that the memory lengths Np of all Volterra
kernels are integer multiples of the partition length N . From the definition of
Lrp

in Eq. 7.10 we recall that the memory lengths of the filters in different
channels are in general not uniform but can take on any value in the range
Np − Rp < Lrp

< Np. Consequently, the number of partitions Brp
has to be

chosen depending on the memory length Lrp
of the corresponding diagonal

such that (
Brp

− 1
)
N < Lrp

≤ Brp
N, Brp

, N ∈ N. (7.62)

Aiming at a partitioned block version of the overlap/save method, we intro-
duce zero-padded partitions of memory length M = 2N according to
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hrp,b,l
=
{
hrp,bN+l

, 0 ≤ l < N ∧ 0 ≤ b < Brp
,

0, N ≤ l < M ∧ 0 ≤ b < Brp
.

(7.63)

It is important to note that in addition to the explicit zero-padding for N ≤
l < M , the definition Eq. 7.63 also includes an implicit zero-padding in case
of Lrp

< Brp
N . For the last partition with index b = Brp

−1, we additionally
have to regard that

hrp,bN+l

∣∣
b=Brp

−1
= 0, for l ≥ Lrp

− (Brp
− 1)N. (7.64)

The partitioning and the zero-padding of the channel filters hrp,k
according to

Eq. 7.63 is illustrated in Fig. 7.8 for Brp
= 6, where hrp,b,l

is shown for b = 1
and b = 5. Note that only the shaded areas contain nonzero coefficients. To

Fig. 7.8. Illustration of the partitioning according to Eq. 7.63 for Brp = 6 and
Lrp

≤ Brp
N . The implicit zero-padding according to Eq. 7.64 occurs for b = 5.

exemplify the implicit zero-padding for b = Brp
−1 according to Eq. 7.64, the

memory length Lrp
has been chosen smaller than Brp

N .
The input signal of each partition hrp,b,l

is defined as

xrp,b(n) = xrp
(n− bN). (7.65)

Introducing the definitions Eq. 7.63, Eq. 7.65 into Eq. 7.13 yields a block-
partitioned version for computing the output of the channel rp:

drp
(n) =

Brp
−1∑

b=0

hrp,b,n
∗ xrp,b(n). (7.66)

Furthermore, we introduce a block-time index ν and signal blocks of length
M = 2N for the input signals of each partition according to

xrp,b(ν, κ) = xrp,b(νL+ κ−N), for 0 ≤ κ < M, (7.67)

in order to account for the block processing of the overlap/save method. Fol-
lowing [30], the block time shift L, representing the number of new samples
of successive signal blocks, is defined using an overlap factor ρ, so that
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L =
N

ρ
, L ∈ N. (7.68)

Introducing the block time index ν into Eq. 7.66 yields

drp
(ν, κ) =

Brp
−1∑

b=0

hrp,b,κ
∗ xrp,b(ν, κ), (7.69)

where the convolution is performed with respect to κ. The DFT-domain cor-
respondence of Eq. 7.69 is given by

Drp
(ν,m) =

Brp
−1∑

b=0

Hrp,b,m
Xrp,b(ν,m), (7.70)

whereHrp,b,m
andXrp,b(ν,m) denote the M-point DFT of hrp,b,l

and xrp,b(ν, κ),
respectively. Analogously to the time domain, the computation of the DFT-
domain output D(ν,m) of the Volterra filter is performed according to

Dp(ν,m) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

Drp
(ν,m), (7.71)

D(ν,m) =
P∑

p=1

Dp(ν,m). (7.72)

Let d̆(ν, κ) represent the M -point inverse DFT of Dp(ν,m), i.e.,

d̆(ν, κ) = F−1
M

{
D(ν,m)

}
, (7.73)

where F−1
M {·} denotes the M -point inverse DFT. Taking the relation between

circular and linear convolution into account [34], we notice that the first N
elements of d̆(ν, κ) are corrupted by time-domain aliasing, while the last N
elements of d̆(ν, κ) are equal to the desired output signal block of the P -th
order Volterra filter at block time index ν. The output sequence d(n) is finally
obtained by applying the overlap/save method [34], i.e., by discarding the first
N elements of d̆(ν, κ) and setting

d(n) = d̆(ν, n− νL+N), νL ≤ n < νL+N , (7.74)

for the last N elements of d̆(ν, κ). Note that for an overlapping factor ρ > 1,
only the last L elements represent new values of d(n), whereas the remaining
N − L elements have already been computed in previous block time steps.
However, choosing ρ > 1 is beneficial for the adaptive implementation of the
Volterra filter, as then, the adaptation of the kernel coefficients is performed
ρ times more frequently, resulting in an increased convergence speed of the
adaptive algorithm.
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It should be mentioned that for the special case that all kernels have
the same memory length (i.e., Ni = Nj) and no partitioning is applied (i.e.,
Brp

= 1), the above algorithm reduces to the approach presented in [29].
The following discussion of the adaptation of the multidelay Volterra filter

is based on the notation according to Fig. 7.6. The DFT-domain output of the
adaptive Volterra filter ĥrp,k

(n) is computed analogously to Eqs. 7.70–7.72:

D̂rp
(ν,m) =

Brp
−1∑

b=0

Ĥrp,b,m
(ν)Xrp,b(ν,m), (7.75)

D̂p(ν,m) =
Rp−1∑
rp,1=0

Rp−1∑
rp,2=rp,1

· · ·
Rp−1∑

rp,p−1=rp,p−2

D̂rp
(ν,m), (7.76)

D̂(ν,m) =
P∑

p=1

D̂p(ν,m), (7.77)

where Ĥrp,b,m
(ν) denotes the DFT-domain correspondence of the adaptive

Volterra filter coefficients ĥrp,k
(n). Furthermore, we define the DFT-domain

error signal
Ĕ(ν,m) = D(ν,m) − D̂(ν,m). (7.78)

As indicated by the symbol ,̆ Ĕ(ν,m) results from using the output of the
Volterra filter based on the circular convolution according to Eq. 7.73, in-
stead of the output based on linear convolution. Therefore, we introduce the
windowed time-domain error signal according to [30]

e(ν, κ) =
{

0, 0 ≤ κ < N,
ĕ(ν, κ), N ≤ κ < M, (7.79)

where ĕ(ν, κ) denotes the M -point inverse DFT of Ĕ(ν,m). The adaptation
of the DFT-domain coefficients Ĥrp,b,m

(ν) is then based on the DFT-domain
correspondence of e(ν, κ), i.e.,

E(ν,m) = FM

{
e(ν, κ)

}
. (7.80)

Regarding [19], the LMS-type update equation for the DFT-domain adaptive
coefficients Ĥrp,b,m

(ν) is given by

Ĥrp,b,m
(ν+1) = Ĥrp,b,m

(ν)+μp(ν,m)FM

{
wrp,b,l

F−1
M

{
E(ν,m)Xr

∗
p,b(ν,m)

}}
.

(7.81)
The time-domain window function wrp,b,l

is used to explicitly enforce the zero-
padding of the time-domain partitions according to Eq. 7.63. For the definition
of wrp,b,l

we have to distinguish between different values of the partition index
b. In case of b < Brp

− 1, the window function wrp,b,l
is defined by
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wrp,b,l
=
{

1, 0 ≤ l < N ∧ b < Brp
− 1,

0, N ≤ l < M ∧ b < Brp
− 1, (7.82)

whereas in case of b = Brp
− 1 we use the definition according to

wrp,b,l
=
{

1, 0 ≤ l < Lrp
∧ b = Brp

− 1,
0, Lrp

≤ l < M ∧ b = Brp
− 1. (7.83)

The differences in the definition of wrp,b,l
in dependence on the partition index

b is due to the implicit zero-padding of ĥrp,b,l
(ν) resulting from Eq. 7.64. Due

to the these time-domain constraints included in the update equation, Eq. 7.81
is commonly referred to as constrained adaptation algorithm.

For an implementation of the adaptive multidelay Volterra filter, the re-
quired distinction with respect to the definition of the time-domain window
function wrp,b,l

is rather inconvenient. Therefore, it is beneficial to quantize
the filter lengths Lrp

to integer multiples of the partition length N . In this
case, wrp,b,l

can be replaced by the single window function

wl =
{

1, 0 ≤ l < N,
0, N ≤ l < M, (7.84)

which is then used for the adaptation of all partitions of each channel.

Step-size Normalization and Control for Second-Order Volterra Filters

A major advantage of linear DFT-domain adaptive filtering is the possibility
to apply a frequency-dependent normalization of the step size [30, 38]. This
approach is motivated by the approximate orthogonality property of the DFT,
implying

E
{
Xr

∗
1,b(ν, i)Xr1,b(ν, j)

} ≈ 0, for i �= j, (7.85)

if the DFT length M is sufficiently large [10]. In the following we assume that
the corresponding orthogonality property also holds for the input of both,
linear and nonlinear channels:

E
{
Xr

∗
p,a(ν, i)Xsq,b(ν, j)

}
≈ 0, for i �= j, ∀ rp, sq, a, b, (7.86)

where rp and sq denote index vectors of certain diagonals of the Volterra filter
and a and b denote a certain partition of these diagonals. It then directly
follows from Eq. 7.86 that the normalization of the step size can be performed
DFT bin-wise in case of adaptive multidelay Volterra filters, too. In the echo
cancellation context it is reasonable to assume that the input signal of the
linear kernel and the input signals of the diagonals of the quadratic kernel are
orthogonal, implying

E
{
Xr

∗
1,a(ν,m)Xr2,b(ν,m)

}
= 0, ∀ a, b. (7.87)
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It can be shown that this orthogonality property is always fulfilled if the
input signal x(n) is a so-called spherically invariant random process (SIRP).
Since SIRPs represent a realistic model for bandlimited speech [4], Eq. 7.87
in general holds in the echo cancellation application. Thus, the normalization
of the step size μp(ν,m) in Eq. 7.81 can be performed frequency- and kernel-
dependently:

μp(ν,m) =
αp(ν,m)
SX,p(ν,m)

, p ∈ {1, 2} (7.88)

Following the linear approach [39], the normalization factor SX,1(ν,m) of the
linear kernel partitions is computed recursively according

SX,1(ν,m) = λSX,1(ν,m) + (1 − λ)
Br1

−1∑
b=0

∣∣Xr1,b(ν,m)
∣∣2 , (7.89)

with the forgetting factor λ in the range 0 ≤ λ < 1. The normalization factor
SX,2(ν,m) used for the adaptation of the quadratic kernel is given by

SX,2(ν,m) = λSX,2(ν,m) + (1 − λ)
R2−1∑
r2,1=0

Br2
−1∑

b=0

∣∣Xr2,b(ν,m)
∣∣2 . (7.90)

The step-size normalization according to Eq. 7.88 implies that αp(ν,m)
has to control the adaptation with respect to the local distortions such as
double-talk and background noise. Additionally, it has to take the interaction
between different Volterra kernels into account, as a misadjusted linear kernel
affects the adaptation of the quadratic kernel and vice versa. As in the time
domain, we apply the factorization method for implementing αp(ν,m) and
introduce

αp(ν,m) = αdt(νL) αbn(ν,m) αEp
(ν,m). (7.91)

As in the time domain, step-size factor αdt(n) accounts for double-talk situ-
ations and has already been defined in Eq. 7.51. It should be mentioned that
the double-talk detection used to implement αdt(νL) as an on/off switch, can
also be performed in the DFT domain [2].

If b(n) represents coloured noise, the level of distortion introduced by the
background noise is in general different for each DFT bin. In this case it is ad-
vantageous to implement αbn(ν,m) individually for each DFT bin. Regarding
the derivation for linear DFT-domain adaptive filters in [31], the DFT-domain
correspondence of Eq. 7.51 is given by

αbn(ν,m) =
E
{ ∣∣∣E(ν,m)

∣∣∣2}
E
{ ∣∣∣E(ν,m)

∣∣∣2}+ E
{ ∣∣∣B(ν,m)

∣∣∣2} , (7.92)
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where B(ν,m) denotes the DFT-domain representation of the background
noise b(n) at block time index ν, and E(ν,m) is the DFT-domain correspon-
dence of the residual echo ε(n). Methods for estimating the statistical terms
required for computing αbn(ν,m) are also presented in [31] and, thus, are not
further considered here.

Analogously to its time-domain counterpart Eq. 7.53, the kernel-dependent
auxiliary step size αEp

(ν,m) is given by

αEp
(ν,m) =

E
{ ∣∣∣Ep(ν,m)

∣∣∣2}
E
{ ∣∣∣E1(ν,m)

∣∣∣2}+ E
{ ∣∣∣E2(ν,m)

∣∣∣2} , p ∈ {1, 2}. (7.93)

For estimating the mean squared magnitude of the DFT-domain residual echos
Ep(ν,m), it is possible to use the proportionality model according to Eq. 7.57
in its DFT-domain version:

E
{ ∣∣∣Ep(ν,m)

∣∣∣2} ≈ γE(ν,m)
[
δEp

+
∣∣∣D̂p(ν,m)

∣∣∣ ], p ∈ {1, 2}, (7.94)

where |D̂p(ν,m)| represents a smoothed version of the magnitude of D̂p(ν,m).
The meaning of the remaining parameters in Eq. 7.94 is equivalent to the cor-
responding parameters of the time-domain model Eq. 7.57. Simulation results
indicate that in general the even simpler assumption of uniform mean squared
residual echos, i.e,

E
{ ∣∣∣E1(ν,m)

∣∣∣2} ≈ E
{ ∣∣∣E2(ν,m)

∣∣∣2} (7.95)

can be used without loss in performance. Then, Eq. 7.94 reduces to a kernel-
independent factor

αEp
(ν,m) ≈ 1

2
, p ∈ {1, 2}, (7.96)

implying a kernel-independent step size αp(ν,m).
It should finally be mentioned that applying a coefficient-dependent DFT-

domain step-size control does not further improve the performance of the
adaptive multidelay Volterra filter. This results from the fact that the DFT
already yields a sufficient decoupling of the adaptation of the kernel coeffi-
cients for different DFT bins.

Simulations

In the following we present simulation results in order to evaluate the perfor-
mance of adaptive multidelay Volterra filters in the acoustic echo cancellation
context. The nonlinear echo path has been modeled by a second-order Volterra
filter in DCR with a memory length of N1 = 320 taps for the linear kernel
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and a memory length of N2 = 64 taps for the quadratic kernel. The width of
the quadratic kernel has been set to R2 = 20. The input signal has been wide-
sense stationary coloured Gaussian noise. There has been no active near-end
talker, i.e., s(n) = 0, and the variance of the additive white noise signal b(n)
has been chosen such that an SNR of 30 dB is obtained with respect to the
variance of the echo signal d(n).

The adaptive multidelay Volterra filter (MDVF) has been implemented
with a partition length of N = 64 and an overlap factor ρ = 4. The number
of partitions of the linear kernel has been Br1

= 5, implying N1 = 320. In
accordance with the echo path model, the memory length and the width of the
quadratic kernel have been chosen to N2 = 64 and R2 = 20, respectively. Since
the block length N matches the memory length of the quadratic kernel, no
partitioning is applied to any diagonal of the quadratic kernel (implyingBr2

=
1). The adaptation of the multidelay Volterra filter has been performed using
the kernel-dependent normalization of the step size according to Eq. 7.88,
where the fixed, kernel-independent value αp(ν,m) = 0.3 has been used for
both kernels.

Additionally, we consider a time-domain adaptive second-order Volterra
filter that has the same region of support as the multidelay Volterra filter
described above. The adaptation has been controlled applying the coefficient-
dependent step size as already used for the simulations shown in Fig. 7.7.

The echo cancellation performance of the different approaches is illus-
trated in Fig. 7.9, where the ERLE obtained for a linear adaptive multidelay
filter (MDF) that corresponds to the linear kernel of the adaptive multide-
lay Volterra filter is shown, too2. As can be clearly noticed, the convergence
speed of the DFT-domain Volterra filter is significantly faster compared to
the corresponding time-domain approach. This result shows the capability
of DFT-domain methods to improve the convergence behaviour of adaptive
Volterra filters. It can also be seen from Fig. 7.9 that the performance of the
linear approach is clearly limited due to the nonlinear distortion in the echo
path.

7.3.4 Application to Real Systems

Second-order Volterra filters have been introduced as a model for the nonlinear
behaviour of loudspeakers. In the following we examine the suitability of this
Volterra filter model when applied to real acoustic echo paths.

The experimental approach is divided into two parts, i.e., signal acquisition
followed by simulations with recorded data: First, the echo signal is recorded
in a room with low reverberation that also exhibits a low level of background
noise. The actual experiments with respect to acoustic echo cancellation are
then performed using the stored audio files of the input signal and the cor-
responding recording of the microphone signal. To provide an increased level
2 Note that due to the definition of the ERLE in Eq. 7.61, the ERLE-values can

be larger than the SNR with respect to the echo signal and the noise signal.
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Fig. 7.9. ERLE obtained for a second-order adaptive multidelay Volterra filter
(MDVF), a time-domain second-order adaptive Volterra filter, and a linear adaptive
multidelay filter (MDF) for wide-sense stationary coloured noise input.

of background noise, an artificial noise signal is added to the recording of the
microphone signal.

The loudspeaker used in the following experiments is a small electro-
dynamic loudspeaker with a diameter of 3.5 centimeters that is mounted in a
closed box with a volume of about one liter. During the measurements it has
been assured that the amplifier of the loudspeaker does not introduce signifi-
cant nonlinear distortion. This allows for the desired isolated analysis of the
nonlinear behaviour of the loudspeaker.

The coefficients of the linear and the quadratic kernels of the adaptive
Volterra filters obtained from measurements of the considered loudspeaker
with white Gaussian noise input are shown in Fig. 7.10. For illustrative rea-
sons, we have used the Cartesian coordinate representation of the quadratic
kernel, here. The zero-coefficients of the quadratic kernel corresponding to the
indices k2,2 < k2,1 result from the triangular representation of the Volterra fil-
ter according to Eq. 7.2. Note that the zero-valued coefficients for small values
of k2,1 correspond to the initial delay of the linear kernel. This initial delay
results from the propagation of the echo signal on the direct path from the
loudspeaker to the microphone. We further notice that the magnitudes of the
quadratic kernel coefficients decay rapidly for increasing values of the coeffi-
cient indices k2,1 and k2,2. Nevertheless, the coefficients of the quadratic kernel
have nonnegligible amplitudes within a large region in the (k2,1, k2,2)-plane
which confirms that the loudspeaker nonlinearities can not be considered as
memoryless.

For the experimental results shown in Fig. 7.11, a speech signal sampled
at 8 kHz has been used as input. The nonlinear echo canceller has been imple-
mented as a second-order adaptive MDVF with memory lengths N1 = 320 for
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Fig. 7.10. Coefficients of the linear and quadratic Volterra kernels in Cartesian
coordinate representation obtained from measurements in a room with low rever-
beration.

the linear kernel and N2 = 64 for the quadratic kernel. The DFT length has
been chosen to M = 128, implying that no partitioning has been applied to
the quadratic kernel, whereas the linear kernel has been divided into B1 = 5
partitions. To achieve faster convergence, an overlap factor of ρ = 4 has been
used. The adaptation is performed according to Eq. 7.81, where the kernel-
dependent normalization is applied. For both kernels, the normalized step size
has been fixed to αp(ν,m) = 0.3. For the simulation, a white Gaussian noise
signal has been added to the recording of the microphone signal. The vari-
ance of the noise has been adjusted to provide an SNR of 30 dB relative to the
microphone signal. The ERLE values obtained for the different kernel widths
R2 = N2 = 64 and R2 = 15 are shown in Fig. 7.11. For comparison, the
result of a linear DFT-domain adaptive filter that corresponds to the linear
kernel of the Volterra filters is given, too. As can be seen from Fig. 7.11, the
performance of the purely linear approach is severely affected by the nonlin-
ear distortion caused by the small-sized loudspeaker. We further notice that
a remarkable increase of the echo attenuation can be achieved by both im-



236 F. Küch, W. Kellermann

0 1 2 3 4 5 6
5

0

5

10

15

20

25

30

E
R

LE
 in

 d
B

Time in seconds

R
2
=64

R
2
=15

Linear

Fig. 7.11. ERLE obtained for second-order adaptive MDVFs with different width
of the quadratic kernel together with the speech input. For comparison, the ERLE
of a corresponding linear approach is shown, too.

plementations of the second-order Volterra filter. Especially during periods of
high excitation levels, the adaptive MDVFs are able to improve the ERLE by
5 to 10 dB.

The DCR of Volterra filters has been motivated by its suitability to ef-
ficiently represent the cascaded structure that has been used as a simplified
model for the acoustic echo path in case of nonlinearly distorting loudspeak-
ers. The possibility to reduce the region of support of the adaptive Volterra
filter without impairing the performance of the echo canceller is also shown
in Fig. 7.11: The width of the quadratic kernel can be reduced to R2 = 15
without any significant loss in achievable echo attenuation. The reduction of
R2 implies that the number of coefficients of the quadratic kernel is consid-
erably decreased from Ncoeff,2 = 2080 to Ncoeff,2 = 855 in case of using only
R2 = 15 diagonals instead of R2 = 64. Accordingly, the MDVF with reduced
region of support increases the computational complexity compared to the
linear approach only by a factor of four, whereas in case of R2 = 64 a factor
of thirteen results. Although not shown here, a further decrease of the width
of the quadratic kernel yields a significant reduction of the achievable echo
attenuation.

The experimental results according to Fig. 7.11 confirm the capability
of second-order adaptive Volterra filters to cope with nonlinearly distorting
loudspeakers. Furthermore, they illustrate that the advantageous structural
features of the DCR allow for an efficient representation of the corresponding
nonlinear acoustic echo path and according computational savings.
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7.4 Power Filters

The nonlinear filters considered in this section are called power filters. They
differ from general Volterra filters as they do not include nonlinear combina-
tions of input samples taken at different time instances, while still representing
a nonlinear system with memory. As shown later in this section, power filters
represent a parallelized approximation of the echo path model according to
Fig. 7.2 if the Volterra filter (SVF) is discarded. In other words, power filters
represent a suitable approximation of the acoustic echo path if the nonlinear
audio components can be considered as memoryless.

The block diagram shown in Fig. 7.12 illustrates the multichannel structure
of a P -th order power filter. The input signal x(n) is passed into P different

Fig. 7.12. Block diagram of a P -th order power filter.

channels. In the p-th channel, the input sample x(n) is taken to the p-th power,
and then passed through a linear filter h(p)

k . The overall output d(n) of the
power filter is obtained by the summation over all channel outputs d(p)(n):

d(n) =
P∑

p=1

d(p)(n). (7.97)

The output of the p-th channel results from the linear convolution of xp(n)
with the filter coefficients h(p)

k , i.e.,

d(p)(n) =
Np−1∑
k=0

h
(p)
k xp(n− k). (7.98)

Obviously, power filters can be interpreted as linear MISO systems, where
the input of the p-th channel is given by the p-th power of x(n). Comparing
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Eq. 7.98 with Eq. 7.26, we notice that there is a strong relation between
power filters and Volterra filters in diagonal coordinate representation: The
p-th channel of a power filter corresponds to the main diagonal of a p-th order
Volterra kernel in DCR. Thus, power filters can be considered as a special
type of Volterra filters in DCR, where all kernels have width Rp = 1. Setting

h
(p)
k = hrp,k

∣∣∣
rp,k

=[k,k,...,k]T
(7.99)

shows the equivalency of Eq. 7.98 and Eq. 7.26 in case of Rp = 1.
For compactness, we rewrite Eq. 7.98 in vector notation:

d(p)(n) = h(p)Tx(p)(n), (7.100)

where the input vector x(p)(n) and the coefficient vector h(p) are defined by

x(p)(n) = [xp(n), xp(n− 1), . . . , xp(n−Np + 1)]T , (7.101)

h(p) =
[
h

(p)
0 , h

(p)
1 , . . . , h

(p)
Np−1

]T
. (7.102)

The DFT-domain implementation of power filters can in principle be ob-
tained from Section 7.3.3 for the special case Rp = 1. For presentational
convenience in upcoming sections, we assume in the following that no parti-
tioning is applied to the channel filters h(p)

k . The block length N is then chosen
according to the maximum memory length of all channels, i.e.,

N = max
p
Np. (7.103)

The length of the DFT is M = 2N . The DFT-domain input vector

X(p)(ν) =
[
X(p)(ν, 0), X(p)(ν, 1), . . . , X(p)(ν,M − 1)

]T
(7.104)

corresponding to the time-domain input vector xp(n) of the p-th channel is
obtained from

X(p)(ν) = F M×M [xp(νL−N), xp(νL−N + 1), . . . , xp(νL+N − 1)]T ,
(7.105)

where ν represents the block time index n = νL. In Eq. 7.105, F M×M is
defined as theM×M DFT matrix which has elements of the form e−j2πκm/M .
The block time shift L = N/ρ has been introduced in Eq. 7.68. The DFT-
domain coefficient vector corresponding to the p-th channel is given by

H(p) = F M×M

[
h(p)T 0T

(M−Np)×1

]T
. (7.106)

The DFT-domain representation for the output D(p)(ν) of the p-th channel
is given by
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D(p)(ν) = diag
{

H(p)
}

X(p)(ν). (7.107)

As in the time domain, the overall DFT-domain output vector D(ν) is finally
obtained by the summation over all channel outputs:

D(ν) =
P∑

p=1

D(p)(ν). (7.108)

The relation between the DFT-domain output vector D(ν) (of lengthM) and
the corresponding time-domain output block

d(ν) = [d(νL), d(νL+ 1), . . . , d(νL+N − 1)]T (7.109)

of length N results from the overlap/save method and reads

d(ν) =
[
0N×N IN×N

]
F−1

M×M D(ν). (7.110)

Here, 0N×N represents the N ×N zero matrix and IN×N denotes the N ×N
identity matrix. Note that the matrix notation Eq. 7.110 corresponds to the
element-wise notation of the overlap/save method according to Eqs. 7.73 and
7.74.

The discussion of power filters in the sequel is organized as follows: The
application of adaptive power filters to nonlinear acoustic echo cancellation is
motivated in Section 7.4.1 by showing that for certain applications the nonlin-
ear echo path can be approximated by power filters. Orthogonalized versions
of power filters in both, time domain and frequency domain are introduced in
Section 7.4.2 in order to provide better performance of corresponding adaptive
implementations. In Section 7.4.3, we apply adaptive orthogonalized power fil-
ters to real audio systems, including a nonlinear amplifier and the nonlinear
loudspeaker of a mobile phone.

7.4.1 Application to Cascaded Structures

In the following we consider the cascaded structure shown in Fig. 7.13. It

Fig. 7.13. Block diagram of the considered nonlinear cascaded structure.

consists of the cascade of a linear filter wk, a memoryless nonlinearity, and
a second linear filter ck. Comparing Fig. 7.13 with the model of the acoustic
echo path according to Fig. 7.2, we notice that these two cascaded structures
are equivalent if the Volterra filter (SVF) representing the nonlinear behaviour
of the loudspeaker is discarded in Fig. 7.2. In practice, there are two cases,
where Fig. 7.13 in fact models the nonlinear acoustic echo path well:
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• Loudspeakers can be regarded as almost linear if the required output sound
level is well below the maximum output level. Then, the only source of
nonlinear distortion is given by the amplifier, and the model of the acoustic
echo path reduces to Fig. 7.13.

• The nonlinear behaviour of miniaturized loudspeakers operating close to
the maximum level can be modeled sufficiently well by a memoryless satu-
ration characteristic [23]. If both, the nonlinearity of the amplifier and the
nonlinear characteristic of the loudspeaker are approximated by a trun-
cated Taylor series expansion, their cascade can be modeled by a single
Taylor series expansion, too. Again, the simplified model of the echo path
according Fig. 7.13 results.

Note that the model according to Fig. 7.13 basically coincides with the model
for the nonlinear echo path proposed in [32]. However, in [32] the authors use
a continuously differentiable saturation characteristic based on a parametric
function as an alternative model for the Taylor series expansion used here.

Using the notation given in Fig. 7.13, the output v(n) of the memoryless
nonlinearity yields

v(n) =
P∑

p=1

ap u
p(n), (7.111)

where ap denote the coefficients of the truncated Taylor series expansion of the
nonlinearity. The overall output z(n) of the nonlinear cascade is then given
by

z(n) =
P∑

p=1

Nc−1∑
k=0

apck u
p(n− k), (7.112)

where Nc denotes the filter length of ck. Comparing Eq. 7.112 with Eq. 7.97
and Eq. 7.98 shows that z(n) can be considered as the output of a P -th
order power filter, having u(n) as input. The coefficients of the linear filter
associated to the p-th channel are obviously given by c(p)

k = apck. Thus, we
can rewrite Eq. 7.112 using the power filter model:

z(n) =
P∑

p=1

z(p)(n), (7.113)

z(p)(n) =
Nc−1∑
k=0

c
(p)
k up(n− k). (7.114)

Note that this interpretation of the computation of z(n) corresponds to [23],
where power filters are considered as parallelized implementation of the cas-
cade of a memoryless nonlinearity and a linear filter.

Let us now consider the computation of the terms up(n) which are re-
quired for computing z(p)(n). As u(n) is the output of the linear filter wk

with memory length Nw, we obtain
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up(n) =
Nw−1∑
k1=0

Nw−1∑
k2=0

· · ·
Nw−1∑
kp=0

p∏
i=1

wki
x(n− ki). (7.115)

Due to the commutativity of the product terms in
∏p

i=1 wki
x(n− ki), we can

rewrite Eq. 7.115 by changing the lower limits on its right hand side:

up(n) =
Nw−1∑
k1=0

Nw−1∑
k2=k1

· · ·
Nw−1∑

kp=kp−1

Γ (k1, k2, . . . , kp)
p∏

i=1

wki
x(n− ki), (7.116)

where Γ (k1, k2, . . . , kp) denotes the number of possible distinct permutations
of the indices k1, k2, . . . , kp. Comparing Eq. 7.116 with Eq. 7.2 we notice that
up(n) can be considered as the output of a specific p-th order Volterra kernel.
The coefficients wkp

of the corresponding Volterra kernel are obtained by
equating wkp

= Γ (k1, k2, . . . , kp)
∏p

i=1 wni
. From the results in Section 7.3.1 it

follows that the configuration according to Fig. 7.13 can exactly be represented
by an appropriately chosen P -th order Volterra filter in DCR having memory
length of Nw + Nc − 1 and width Nw. Note that the illustration in Fig. 7.5
can also serve as an example for the region of support of the corresponding
quadratic kernel if we set Nw = 4 and Nc = 16. In general, such a Volterra
model for acoustic echo paths is not practicable due to the enormously large
required region of support of higher order kernels as can be noticed from
Eq. 7.28. Thus, we look for an approximation of the equivalent Volterra filter
by a corresponding power filter. For illustrative reasons, we decompose up(n)
into two parts:

up(n) = u(p)(n) + ures,p(n), (7.117)

where, the first term on the right hand side of Eq. 7.117 is defined by

u(p)(n) =
Nw−1∑
k=0

wp
k x

p(n− k), (7.118)

i.e., it results from linear filtering of xp(n) with the coefficients wp
k. Note that

u(p)(n) represents the output of the main diagonal of the p-th order Volterra
kernel corresponding to Eq. 7.116. Discarding the residual term ures,p(n) in
Eq. 7.117 yields an approximation for the computation of z(p)(n) according
to

z(p)(n) ≈
Nc−1∑
k=0

c
(p)
k u(p)(n− k). (7.119)

The approximation underlying Eq. 7.119 is illustrated in Fig. 7.14. As can be
seen, the cascade of the linear filter wk and a p-th order potentiator is replaced
by the cascade of the potentiator followed by a linear filter with coefficients wp

k.
Using Fig. 7.5, this approximation can be illustrated for p = 2: All coefficients
of the quadratic Volterra kernel are discarded expect for those lying on the
main diagonal r2,1 = 0. Note that the approximation according to Fig. 7.14
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Fig. 7.14. Illustration of the approximation applied in Eq. 7.119.

represents an equality if the prefilter wk is only a single delay. In this case,
the model of the echo path according to Fig. 7.13 can be simplified to a
corresponding cascade of a memoryless nonlinearity followed by a linear filter
as proposed in [42]. Obviously, Eq. 7.119 exactly holds for the linear channel.

In case of the approximation Eq. 7.119, z(p)(n) can be interpreted as the
output of the cascade of the linear filters c(p)

k and wp
k, having xp(n) as input.

If we finally introduce Eq. 7.118 in Eq. 7.119, we obtain the desired approxi-
mation of the nonlinear cascaded structure by a corresponding power filter:

z(p)(n) ≈
Ng−1∑
k=0

g
(p)
k xp(n− k), (7.120)

where the coefficients g(p)
k of the power filter are given by

g
(p)
k =

Nc−1∑
l=0

c
(p)
l wp

k−l. (7.121)

The memory length of g(p)
k is Ng = Nc +Nw − 1.

The approximation of the nonlinear echo path model according to Fig. 7.13
using power filters can be regarded as a compromise between model accuracy
and convergence behaviour of a corresponding adaptive implementation: The
authors of [32] propose to realize the echo canceller by applying the same
cascaded structure as used for the echo path model. However, it is challenging
to assure convergence to the optimum solution or even assure stable adap-
tation behaviour for cascaded structures. This is especially true for the case
that multiple linear filters are involved. The improvements with respect to
convergence properties which should result from the inherent parallel nature
of power filters are only achieved if a mutual orthogonalization of the channel
inputs xp(n) is applied.

The approximation of Fig. 7.13 by power filters also represents a compro-
mise between an exact model of the echo path and the approximation proposed
in [42]. While [42] completely discards the prefilter, the power filter model in-
cludes part of the influence of wk on the echo signal, as implied by Eq. 7.121.
Experimental results indicate, however, that this increase in model accuracy
does not improve the performance of corresponding adaptive implementations
with respect to achievable echo attenuation.

Note that power filters realize the linear component of the echo path with
only one single linear filter, whereas the approach [32] implicitly uses the
cascade of two. This is an important property, since acoustic echo paths are
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usually only weakly nonlinear, i.e., the major contribution to the echo sig-
nal results from linear filtering of the input. Adaptive power filters therefore
circumvent convergence problems that can not be excluded with adaptive
structures that consist of the cascade of multiple linear filters.

7.4.2 Adaptive Orthogonalized Power Filters

The actual goal of the considerations presented in this section is the derivation
of efficient adaptive implementations of power filters for their application to
acoustic echo cancellation. The main obstacle to this is here that the input
signals of the different channels of power filters, i.e., x(n), x2(n), . . . , xP (n)
are not mutually orthogonal. Therefore, a direct adaptive implementation of
the power filter structure according to Fig. 7.12 suffers from slow convergence
as the adaptation of different channels interacts. To improve the performance
of adaptive power filters, we discuss corresponding orthogonalized versions in
the following.

Orthogonalization of the Input Signals

Following [23], we introduce a new set of mutually orthogonal input signals
x

(p)
o (n) according to

x(1)
o (n) = x(n), (7.122)

x(p)
o (n) = xp(n) +

p−1∑
i=1

qp,i x
i(n), 1 < p ≤ P. (7.123)

The orthogonalization coefficients qp,i are chosen such that

E
{
x(i)

o (n)x(j)
o (n)

}
= 0, for i �= j. (7.124)

A well-known approach for determining the orthogonalization coefficients qp,i

is given by the Gram-Schmidt orthogonalization method [33]. The p− 1 coef-
ficients qp,i which are required for orthogonalizing the input of the p-th order
channel can be obtained by solving⎡⎢⎢⎢⎢⎣

m
(2)
x m

(3)
x . . . m

(p)
x

m
(3)
x m

(4)
x . . . m

(p+1)
x

...
...

. . .
...

m
(p)
x m

(p+1)
x . . . m

(2p−2)
x

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
qp,1

qp,2

...
qp,p−1

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
m

(p+1)
x

m
(p+2)
x

...
m

(2p−1)
x

⎤⎥⎥⎥⎥⎦ , (7.125)

where m(k)
x denotes the k-th order moment of x(n), i.e.,

m(k)
x = E

{
xk(n)

}
. (7.126)
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If x(n) is a stationary process and its statistics are a priori known, the or-
thogonalization coefficients qp,i are constant in time and can be calculated in
advance. In practice, however, m(k)

x has to be replaced by corresponding time-
variant estimates m̂(k)

x (n), especially if x(n) is non-stationary. The estimation
of m(k)

x can be performed, e.g., by applying the first order recursion

m̂(k)
x (n) = λm̂(k)

x (n− 1) + (1 − λ)xk(n). (7.127)

The forgetting factor λ is in the range 0 ≤ λ < 1 and can be adjusted in order
to adapt the estimation to the statistics of the input signal x(n). Obviously,
the orthogonalization coefficients qp,i(n) always depend on time if they are
determined from Eq. 7.125 but based on time-variant estimates m̂(k)

x (n) of
m

(k)
x .
For presentational convenience we assume in the following that all channels

of the power filter have uniform memory length, i.e., Np = N . The matrix
representation for a block of N input samples corresponding to Eq. 7.122 and
Eq. 7.123 reads

x(1)
o (n) = x(1)(n), (7.128)

x(p)
o (n) = x(p)(n) +

p−1∑
i=1

Qp,i(n)x(i)(n), 1 < p ≤ P. (7.129)

The orthogonalized signal vectors x
(p)
o (n) are defined analogously to Eq. 7.101,

i.e.,

x(p)
o (n) =

[
x(p)

o (n), x(p)
o (n− 1), . . . , x(p)

o (n−N + 1)
]T
. (7.130)

In Eq. 7.129, Qp,i(n) represents the diagonal orthogonalization matrix

Qp,i(n) = diag
{[
qp,i(n), qp,i(n− 1), . . . , qp,i(n−N + 1)

]}
. (7.131)

The definition of Qp,i(n) already includes the possible time-variance of its
elements qp,i(n). Note that the orthogonalization Eq. 7.123 is performed in a
sample-based manner: The coefficients qp,i(n) are determined such that the
instantaneous orthogonality property Eq. 7.124 holds. The vectors x

(p)
o (n),

however, are in general mutually orthogonal, i.e.,

E
{

x(i)
o (n)x(j)T

o (n)
}

= 0, for i �= j, (7.132)

only if x(n) is an IID random process. In case of correlated input, Eq. 7.132 is
generally not satisfied. Nevertheless, we assume for the following that in prac-
tice Eq. 7.132 is met sufficiently well. For illustration we consider a zero-mean,
first-order stationary Laplacian Markov process x(n) with an autocorrelation
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function E {x(n)x(n− k) } = 0.9|k|. The corresponding normalized crosscor-
relation function

c1,3(k) =
E
{
x(n)x3(n− k)}√

E
{
x2(n)

}
E
{
x6(n)

} (7.133)

between x(n) and x3(n) is shown in Fig. 7.15 together with the normalized
crosscorrelation function

co,1,3(k) =
E
{
x(1)

o (n)x(3)
o (n− k)

}
√

E
{(
x(1)

o (n)
)2
}

E
{(
x(3)

o (n)
)2
} (7.134)

between the orthogonalized signals x(1)
o (n) and x

(3)
o (n). As indicated by

Fig. 7.15. Normalized crosscorrelation functions c1,3(k) and co,1,3(k) between x(n),

x3(n) and x
(1)
o (n), x

(3)
o (n), respectively.

Fig. 7.15, the orthogonality property Eq. 7.132 is valid for the considered
example. Thus, it is also reasonable to assume that Eq. 7.132 is sufficiently
satisfied for speech input, since long-term properties of speech are commonly
modeled by a Laplacian process [4].

Note that, for correlated input, the orthogonalization according to Eq. 7.129
does not orthogonalize (’whiten’) the samples within each input vector x(p)

o (n):
Although the input vector of different channels are mutually orthogonal, in
general

E
{
x(p)

o (n)x(p)
o (n− k)

}
�= 0, 0 ≤ k < Np, (7.135)

holds as an immediate consequence of the (auto-)correlation of x(n). A quasi-
complete orthogonalization can be achieved by considering the asymptotic
orthogonalization property of the DFT for large transform lengths [10].

The DFT-domain correspondence of Eq. 7.128 and Eq. 7.129 yields
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X(1)
o (ν) = X(1)(ν), (7.136)

X(p)
o (ν) = X(p)(ν) +

p−1∑
i=1

Φp,i(ν)X(i)(ν), 1 < p ≤ P. (7.137)

Regarding the definition of the DFT-domain input vectors X(p)(ν) in Eq. 7.105,
the DFT-domain orthogonalization matrices Φp,i(ν) are given by

Φp,i(ν) = F M×M diag
{[
qp,i(νL−N), . . . , qp,i(νL+N − 1)

]}
F−1

M×M .

(7.138)
It is important to note that in contrast to the time-domain orthogonalization
matrices Qp,i(n), their DFT-domain counterparts Φp,i(ν) are in general not
diagonal. With the DFT-domain vectors X(p)

o (ν) we achieve a quasi-complete
orthogonalization of power filters: On the one hand, the above discussion of
Eq. 7.132 with respect to correlated input implies

E
{

X(i)
o (ν)X(j)H

o (ν)
}

= 0, for i �= j. (7.139)

On the other hand, the asymptotic orthogonalization property of the DFT
additionally implies orthogonality of the DFT-domain input vector elements
within each channel:

E
{
X(p)

o (ν, k)X(p)
o

∗
(ν,m)

}
≈ 0, for k �= m, (7.140)

if the DFT length M is sufficiently large.

Equivalent Orthogonalized Structure

When using the orthogonalized channel inputs x(p)
o (n) for computing the out-

put of power filters, the coefficients of the corresponding orthogonalized ver-
sions have to be adjusted accordingly. In the following we show the relation
between the coefficients of the original power filter and their orthogonalized
counterparts. Furthermore, we discuss how a time-variant orthogonalization
of the input affects the coefficients of the equivalent orthogonalized structure
of power filters.

The output d(n) of a P -th order power filter can be computed by using
the orthogonalized input vectors x

(p)
o (n), i.e.,

d(n) =
P∑

p=1

d(p)
o (n), (7.141)

d(p)
o (n) = h(p)T

o x(p)
o (n). (7.142)

Obviously, d(n) can equivalently be expressed by either using combinations
of h(p) and x(p)(n), or using the corresponding pairs of vectors h(p)

o (n) and
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x
(p)
o (n). Following [23], we refer to the combination of the orthogonalized

input vectors x
(p)
o (n) and the corresponding filter coefficient vectors h(p)

o (n)
as equivalent orthogonalized structure (EOS) of power filters. For determining
the coefficients of the EOS, we notice that the right hand sides of Eq. 7.97
and Eq. 7.141 have to be equal, implying

P∑
p=1

h(p)Tx(p)(n) =
P∑

p=1

h(p)T
o x(p)

o (n). (7.143)

Introducing the definition of the orthogonalized input vectors Eq. 7.128 and
Eq. 7.129 into Eq. 7.143 and solving for h(p)

o (n) for each p (starting with
p = P ) leads to the relation between the original filter coefficients h(p) and
the coefficients of the corresponding EOS:

h(P )
o = h(P ), (7.144)

h(p)
o (n) = h(p) −

P∑
i=p+1

Qi,p(n)h
(i)
o (n), 1 ≤ p < P. (7.145)

We notice that due to the orthogonalization of the input vectors, all channels
of order i > p contribute to the p-th channel of the corresponding EOS.
Note that Eq. 7.145 implies that for time-varying orthogonalization matrices
Qi,p(n) the coefficients of the EOS h(p)

o (n) will generally be time-variant,
although the coefficients h(p) may be constant in time.

For the discussion of the DFT-domain EOS of power filters we introduce
the diagonal matrix

H
(p)
diag = diag

{
H(p)

}
. (7.146)

Then, Eq. 7.107 can be rewritten according to

D(p)(ν) = H
(p)
diag X(p)(ν). (7.147)

Analogously to Eq. 7.108 and Eq. 7.147, the computation of the DFT-domain
output vector D(ν) can alternatively be expressed by using the orthogonalized
input vectors X(p)

o (ν):

D(ν) =
P∑

p=1

D(p)
o (ν), (7.148)

D(p)
o (ν) = H

(p)
diag,o X(p)

o (ν). (7.149)

The matrices H
(p)
diag,o represent the DFT-domain EOS of the corresponding

power filter. The relation between the coefficient matrices H
(p)
diag,o of the EOS

and the original coefficient matrices H
(p)
diag is given by
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H
(P )
diag,o = H

(P )
diag, (7.150)

H
(p)
diag,o(ν) = H

(p)
diag −

P∑
i=p+1

Φi,p(ν)H
(i)
diag,o(ν), 1 ≤ p < P. (7.151)

In accordance to the time-domain EOS, the DFT-domain EOS has to be
time-variant due to time-variant orthogonalization matrices Φi,p(ν).

Since the orthogonalization matrices Φi,p(ν) are in general not diagonal,
it follows from Eq. 7.151 that this is also true for the DFT-domain coefficient
matrices H

(p)
diag,o(ν). Thus, the DFT-domain EOS of a power filter requires a

set of M ×M coefficient matrices, although it can be completely described
by the original M × 1 DFT-domain coefficient vectors H(p). Obviously, this
DFT-domain EOS of power filters constitutes a very inefficient way to rep-
resent power filters. This problem can be circumvented by performing the
orthogonalization of the DFT-domain input vectors in a ’block time’-based
manner. Thereby, the orthogonalization coefficients qi,p(n) are updated only
once per block time index ν. Note that this implies the assumption of a short
time stationary input x(n). The desired diagonal orthogonalization matrices
are then obtained by modifying their definition Eq. 7.138 according to

Φp,i(ν) = F M×M diag
{[
qp,i(νL), . . . , qp,i(νL)

]}
F−1

M×M

= qp,i(νL) IM×M . (7.152)

With these diagonal orthogonalization matrices, we can simplify Eq. 7.150 and
Eq. 7.151 to a vector-based representation. The coefficient vectors of the DFT-
domain EOS corresponding to the original vectors H(p) are finally obtained
as

H(P )
o = H(P ), (7.153)

H(p)
o (ν) = H(p) −

P∑
i=p+1

qi,p(νL)H(i)
o (ν), 1 ≤ p < P. (7.154)

Obviously, the introduction of the block time index for determining the orthog-
onalization matrices is not only suggested by the inherent block processing of
DFT-domain approaches, but it also leads to a more efficient implementation.
Therefore, we restrict ourselves to diagonal orthogonalization matrices Φp,i(ν)
according to Eq. 7.152 throughout the rest of this chapter.

Accounting for the block processing of DFT-domain power filters, the esti-
mation of the k-th order moments m(k)

x can be performed via block averaging,
i.e.,

m̂(k)
x (νL+ l) =

1
M

M−1∑
i=0

xk(νL−N + i), for 0 ≤ l < L. (7.155)
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The estimates m̂(k)
x (νL+ l) are then introduced into Eq. 7.125 for computing

the orthogonalization coefficients qi,p(νL).
Let us now look at the inevitable adjustment of the filter coefficients of the

EOS arising from the time-varying input orthogonalization. For the derivation
of the required adjustment, we solve Eq. 7.145 for the time instant n− 1 with
respect to the original coefficient vector h(p):

h(p) = h(p)
o (n− 1) +

P∑
i=p+1

Qi,p(n− 1)h(i)
o (n− 1). (7.156)

Let us now consider the changes in Eq. 7.156 that occur for the next time in-
stant. Due to the time-variance of the EOS for time-variant orthogonalization
matrices, Eq. 7.156 becomes

h(p) = h(p)
o (n) +

P∑
i=p+1

Qi,p(n)h
(i)
o (n). (7.157)

Assuming that the original coefficients of the power filter are constant in time,
we can replace h(p) in Eq. 7.156 by the right hand side of Eq. 7.157. Solving for
h(p)

o (n) finally leads to the required coefficient adjustment: After each change
of the orthogonalization matrices Qi,p(n), the coefficients vectors h(p)

o (n) are
recursively recomputed according to

h(p)
o (n) = h(p)

o (n− 1) +
P∑

i=p+1

[
Qi,p(n− 1)h(i)

o (n− 1) − Qi,p(n)h
(i)
o (n)

]
,

(7.158)
starting with p = P − 1. From Eq. 7.144 we notice that no adjustment is
required for the P -th order channel, i.e., h(P )

o (n) = h(P )
o (n− 1).

The necessity of this coefficient adjustment becomes obvious when regard-
ing that each set of orthogonalization matrices Qi,p(n) yields a corresponding
EOS. This implies that after each change of the orthogonalization matrices
both, a new set of input vectors and a new set of associated coefficient vectors
have to be determined.

The above time-domain result can directly be used to obtain a correspond-
ing adjustment for the DFT-domain EOS. With the definition of the simplified
DFT-domain EOS according to Eq. 7.153 and Eq. 7.154, the DFT-domain
counterpart to Eq. 7.158 is given by

H(p)
o (ν) = H(p)

o (ν − 1) +
P∑

i=p+1

[
qi,p(νL− L)H(i)

o (ν − 1) − qi,p(νL)H(i)
o (ν)

]
,

(7.159)
where we start with p = P − 1. As in the time domain, no adjustment is
required for the channel with the highest order, i.e., H(P )

o (ν) = H(P )
o (ν − 1).
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Adaptation of Orthogonalized Power Filters

Since we consider the adaptation of orthogonalized power filters we express the
output d̂(n) of the adaptive power filter according to Eq. 7.141 and Eq. 7.142:

d̂(n) =
P∑

p=1

d̂(p)
o (n), (7.160)

d̂(p)
o (n) = ĥ

(p)T

o (n)x(p)
o (n). (7.161)

In the following we use the same notation for the signals as introduced in
Fig. 7.6, i.e., the observed signal y(n) is composed of the echo signal d(n), back-
ground noise b(n), and local speech s(n). The error signal e(n) = y(n)− d̂(n)
is the difference between the observed signal and the output of the adaptive
power filter. The LMS update equation for the coefficients of the adaptive
EOS is then given by

ĥ
(p)
o,k(n+ 1) = ĥ

(p)
o,k(n) + μ(p)

o,k(n) e(n)x(p)
o (n− k). (7.162)

The control of the adaptation by appropriately choosing the step size μ(p)
o,k(n)

is discussed later in this section.
Note that the coefficient adjustment according to Eq. 7.158 is carried out

first, and then the coefficients of the EOS are adapted subsequently by apply-
ing Eq. 7.162.

For deriving a DFT-domain adaptation of power filters we recall that they
can be considered as linear multichannel system. This interpretation obviously
also applies for the EOS of power filters. Thus, we can directly use the results
of Section 7.3.3 that have been obtained for DFT-domain Volterra filters in
DCR. Assuming diagonal orthogonalization matrices, the DFT-domain output
D̂(ν,m) of the adaptive power filter is given by

D̂(ν,m) =
P∑

p=1

D̂(p)
o (ν,m), (7.163)

D̂(p)
o (ν,m) = Ĥ(p)

o (ν,m)X(p)
o (ν,m). (7.164)

The adaptation algorithm for power filters immediately follows from the cor-
responding update equation Eq. 7.81 for multidelay Volterra filters:

Ĥ(p)
o (ν+1,m) = Ĥ(p)

o (ν,m)+μ(p)
o (ν,m)FM

{
wl F−1

M

{
E(ν,m)X(p)

o

∗
(ν,m)

}}
.

(7.165)
The time-domain window function wl is introduced to assure the zero-padding
of the time-domain coefficient vectors according to Eq. 7.106 and has been
defined in Eq. 7.84. Since we have assumed uniform memory length Np = N
for all channels, the same window function can be applied for each order p.
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Adaptation Control

First, we look at the control of the step size parameter μ(p)
o,n(n) of the time-

domain LMS algorithm according to Eq. 7.162 which corresponds to the
coefficient-dependent step size for P -th order Volterra filters presented in
Section 7.3.2. Due to the mutual orthogonality of all channel inputs of the
EOS, the reasoning applied in Section 7.3.2 for second-order Volterra filters
can correspondingly be applied for the derivation of an optimum coefficient-
dependent step size for the adaptive EOS of P -th order power filters.

The coefficient error m(p)
o,n(k) with respect to the time-domain EOS of

power filters is defined by

m(p)
o,n(n) = h

(p)
o,k(n) − ĥ(p)

o,k(n). (7.166)

Analogously to Section 7.3.2, we use the mean squared error between the
actual coefficient error and the corresponding LMS update term as optimality
criterion for determining the optimum value of the step size μ(p)

o,k(n), i.e.,

J
μ

(p)
o,k

(n) = E
{[
m

(p)
o,k(n) − μ(p)

o,k(n)e(n)x(p)
o (n− k)

]2}
. (7.167)

As in Section 7.3.2, we assume that the input x(n) is an IID random process
with an even PDF, i.e., the orthogonality property Eq. 7.132 holds. We further
assume that the adaptive coefficients ĥ(p)

o,k(n) are statistically independent of
the input. Applying the same reasoning as in [20] for Volterra filters, it is
straightforward to show that Eq. 7.42 correspondingly holds for orthogonal-
ized power filters:

μ
(p)
opt,o,k(n) =

E
{[
m

(p)
o,k(n)

]2}
E
{
ε2(n) + b2(n) + s2(n)

} . (7.168)

Aiming at a factorized version of Eq. 7.168, we introduce the residual echo
ε
(p)
o (n) of the p-th channel of the EOS according to

ε(p)
o (n) = d(p)

o (n) − d̂(p)
o (n). (7.169)

The overall residual echo ε(n) = d(n) − d̂(n) can then be written as

ε(n) =
P∑

p=1

ε(p)
o (n). (7.170)

Since the orthogonality property Eq. 7.132 holds for the assumed input, we
can express the mean square of the residual echo by

E
{
ε2(n)

}
=

P∑
p=1

E
{[
ε(p)
o (n)

]2}
. (7.171)
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The expression Eq. 7.171 for computing the mean squared residual echo can
be exploited to derive a factorized version of Eq. 7.168. The desired factorized
version of Eq. 7.168 is obtained as

μ
(p)
opt,o,k(n) = αdt(n)αbn(n)α(p)

εo
(n)α(p)

o,k(n). (7.172)

The auxiliary step sizes αdt(n) and αbn(n) have been defined in Eq. 7.51 and
Eq. 7.52, respectively, and account for double-talk and background noise. The
channel-dependent step size parameter α(p)

εo (n) is used to control the adap-
tation with respect to mutual interferences caused by misadjusted channel
filters. Analogously to Eq. 7.53, it is defined by

α(p)
εo

(n) =
E
{[
ε(p)
o (n)

]2}
P∑

i=1

E
{[
ε(i)o (n)

]2} . (7.173)

The coefficient-dependent step size parameter α(p)
o,k(n) is finally given by

α
(p)
o,k(n) =

E
{[
m

(p)
o,k(n)

]2}
Np−1∑
l=0

E
{[
m

(p)
o,l (n)

]2}
E
{[
x(p)

o (n− l)
]2} , (7.174)

which obviously corresponds to the coefficient-dependent step size for second-
order Volterra filters according to Eqs. 7.54 and 7.55, respectively.

Analogously to Eq. 7.57, the second-order moments of the residual echoes
ε
(p)
o (n) can be estimated using the model

E
{[
ε(p)
o (n)

]2}
≈ γε(n)

[
δεp

+
∣∣∣d̂(p)

o (n)
∣∣∣ ] . (7.175)

For realizing the coefficient-dependent step size α(p)
o,k(n), we apply the pro-

portionality model Eq. 7.58 for estimating the mean square of the coefficient
errors, i.e.,

E
{[
m

(p)
o,k(n)

]2}
≈ γm,p(n)

[
βm,p(n) +

∣∣∣ĥ(p)
o,k(n)

∣∣∣ ]. (7.176)

The meaning of the parameters appearing in the estimation models Eq. 7.175
and Eq. 7.176 have already been discussed in Section 7.3.2.

The derivation of a step-size control for the DFT-domain EOS of power
filters follows the kernel-dependent approach for DFT-domain Volterra fil-
ters according to Section 7.3.3. Thus, we first introduce a channel-dependent
normalization of μ(p)

o (ν,m) according to
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μ(p)
o (ν,m) =

α
(p)
o (ν,m)

Ŝ
(p)
o,X(ν,m)

. (7.177)

The normalization factor Ŝ(p)
o,X(ν,m) represents an estimate of

S
(p)
o,X(ν,m) = E

{ ∣∣∣X(p)
o (ν,m)

∣∣∣2} , (7.178)

i.e., of the PSD of the input signal of the p-th channel of the EOS. Ŝ(p)
o,X(ν,m)

can be obtained, e.g., analogously to Eq. 7.89.
The normalized step size α(p)

o (ν,m) is implemented by using a correspond-
ing factorized version according to

α(p)
o (ν,m) = αdt(νL) αbn(ν,m) α(p)

Eo
(ν,m). (7.179)

The auxiliary step-size parameters αdt(νL) and αbn(ν,m) have already been
discussed in Section 7.3.3 and are not further considered here.

The channel-dependent step size α(p)
Eo

(ν,m) represents the DFT-domain

correspondence of α(p)
εo (n). Regarding Eq. 7.139, it is obvious that the orthog-

onality property Eq. 7.171 also holds in the DFT-domain. The mean squared
magnitude of the DFT-domain residual echo can then be written as

E
{
|E(ν,m)|2

}
=

P∑
i=1

E
{ ∣∣∣E(i)

o (ν,m)
∣∣∣2} . (7.180)

Here, E(p)
o (ν,m) represents the DFT-domain correspondence of the time-

domain residual echo ε(p)
o (n). Consequently, the channel-dependent step size

α
(p)
Eo

(ν,m) can be defined correspondingly to Eq. 7.173:

α
(p)
Eo

(ν,m) =
E
{ ∣∣∣E(p)

o (ν,m)
∣∣∣2}

P∑
i=1

E
{ ∣∣∣E(i)

o (ν,m)
∣∣∣2} . (7.181)

As in case of DFT-domain Volterra filters, the assumption of uniform mean
squared magnitudes of the residual echoes for all p yields a good performance
for DFT-domain adaptive power filter, too. Then, Eq. 7.181 simplifies to

α
(p)
Eo

(ν,m) ≈ 1
P
, (7.182)

i.e., to its channel-independent form.
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Simulations

The following simulations illustrate the effect of time-variant orthogonaliza-
tion of adaptive power filters on their performance and show the necessity of
an appropriate adjustment of the coefficients of the EOS.

For the simulations, the echo path has been modeled by the cascade of a
third-order memoryless polynomial and a linear filter of length Nc = 200, i.e.,
it can exactly be represented by a third-order power filter. The input signal
has been a zero-mean, uncorrelated, non-stationary Laplacian process [4]. A
white noise signal b(n) has been added to the echo signal d(n), where the noise
variance yields an SNR of 30 dB with respect to the variance of d(n).

The echo canceller has been realized as a third-order time-domain power
filter, where the memory length of each channel has also been chosen to
Np = 200. Fig. 7.16 shows the ERLE graphs obtained for the EOS of the
power filter with coefficient adjustment (CA) according to Eq. 7.158, the EOS
without CA, and the corresponding non-orthogonalized power filter. The or-

Fig. 7.16. ERLE obtained for different implementations of third-order adaptive
power filters together with the uncorrelated, non-stationary input signal.

thogonalization of the input has been performed signal-adaptively, using the
recursive estimation of the moments according to Eq. 7.127 with a forgetting
factor λ = 0.97. The step-size control has been realized according to Eq. 7.172
with a fixed value of αdt(n)αbn(n) = 0.3. The models Eqs. 7.175, 7.176 have
been applied to approximate the channel-dependent step size α(p)

εo (n) and
the coefficient-dependent step size α(p)

o,k(n), respectively. The model parame-
ter δεp

for estimating the mean squared residual echoes has been chosen to
δεp

= 0.001 for all channels. The model for the coefficient-dependent auxil-
iary step sizes has been realized analogously to Eq. 7.59 and Eq. 7.60, where
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βc,1 = βc,2 = 1. To allow for a fair comparison of all approaches, the same
adaptation control has been applied to all algorithms. It should, however be
kept in mind that in case of non-orthogonalized power filters, this choice does
not assure stable convergence, although it is advantageous with respect to
convergence speed.

The limitation of achievable echo attenuation of the adaptive EOS without
coefficient adjustment can clearly be seen in Fig. 7.16. This result confirms
the importance of the coefficient adjustment required for time-variant orthog-
onalization matrices. We further notice from Fig. 7.16 that the EOS with
coefficient adjustment outperforms the non-orthogonalized version in both,
convergence speed and achievable echo attenuation.

7.4.3 Application to Real Systems

Power filters have been introduced as an approximation of the nonlinear cas-
caded model of the acoustic echo path according to Fig. 7.13. In this model, a
Taylor series expansion has been used to approximate the nonlinear behaviour
of the amplifier and the loudspeaker of a mobile phone, respectively. In this
section we examine the suitability of these approximations when modeling
real acoustic echo paths. Thereby, we look at the case of nonlinear distortion
introduced by the amplifier and also consider the influence of the nonlinear
behaviour of the loudspeaker of a mobile phone.

Nonlinear Amplifier

The experimental setup used for the following experiments consists of a com-
mercial one-chip amplifier connected to an electro-dynamic loudspeaker with
a diameter of six centimeters which has been placed in a room with low rever-
beration and a low background noise level. The power supply of the amplifier
has been adjusted such that for high input levels the amplifier causes nonlinear
distortion. Throughout the experiments, the nonlinear distortion introduced
by the loudspeaker is negligible at the considered excitation levels.

The nonlinear echo canceller has been implemented as the adaptive EOS
of a third-order power filter. The memory length of the linear kernel has been
N1 = 256 (implying a DFT length M = 512), whereas N2 = N3 = 100 has
been chosen for the quadratic and the cubic channel. The orthogonalization of
the channel inputs is performed block time-based, where the required moments
of the input are estimated via block averaging according to Eq. 7.155. The
DFT-domain EOS has been adapted applying using the fixed normalized step
size α(p)

o, (ν,m) = 0.1 for all channels. The input has been a speech signal
sampled at 8 kHz. To simulate a higher level of background noise, a white
Gaussian noise signal has been added to the recording of the real echo signal.
The noise variance has been adjusted to give an SNR of 30 dB with respect
to the measured microphone signal.



256 F. Küch, W. Kellermann

In Fig. 7.17, the ERLE obtained for the third-order adaptive EOS is com-
pared to a linear approach which corresponds to the linear channel of the
power filter. Except for the initial convergence phase, the adaptive power filter

Fig. 7.17. ERLE obtained for the adaptive EOS of a third-order power filter and
a linear approach together with the speech input.

continuously provides an improvement of the echo cancellation performance,
especially during periods of high excitation levels. Thereby, a gain of about
6 dB compared to the linear approach is well possible. Note that the applied
third-order power filter increases the required number of multiplications only
by a factor of 2.5 compared to the linear approach.

Nonlinear Loudspeaker of a Mobile Phone

The nonlinear behaviour of a moderately-sized electro-dynamic loudspeaker
has successfully been modeled by second-order Volterra filters. In this section
we examine the very small electro-dynamic loudspeaker of a mobile phone.
Due to its limited dimensions, the nonlinear behaviour of this type of loud-
speakers is different from that used in Section 7.3.4 [23].

For the recordings, the loudspeaker has been mounted in the handset,
while the microphone has been separated from it to avoid undesired vibration
effects due to physical coupling of the loudspeaker and the microphone. During
the measurements it has been assured that there is no nonlinear distortion
introduced by overloading of the amplifier, i.e., the nonlinearity in the acoustic
echo path is solely caused by the loudspeaker. The echo signal used for the
simulations has been recorded in a room with low reverberation. The input
has been a speech segment sampled at 8 kHz. A white Gaussian noise signal
has been added to the recording of the microphone signal in order to simulate
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a background noise level corresponding to an SNR of 30 dB with respect to
the acoustic echo. Since an algorithmic delay is not desirable in mobile phones,
we consider the time-domain implementation of the EOS, where the memory
length N1 = 250 for the linear channel. Here, the memory lengths N2 = N3 =
100 for both, the quadratic and cubic channel are already sufficient. The
orthogonalization of the channel inputs has been performed signal-adaptively,
where the moments are estimated recursively according to Eq. 7.127 with a
forgetting factor λ = 0.97.

In Fig. 7.18, the echo cancellation performance of the adaptive EOS of the
third-order power filter is compared to a linear approach which corresponds
to the linear channel of the power filter. As can be noticed, the performance

Fig. 7.18. ERLE obtained for the adaptive EOS of a third-order power filter and
a corresponding linear approach for speech input.

of the linear adaptive filter is clearly inferior due to the nonlinear distor-
tion introduced by the loudspeaker. The third-order power filter succeeds in
improving the level of echo attenuation during almost the whole simulation
period. Especially for speech segments that exhibit high excitation levels the
increase of the ERLE is significant. Note that due to the short filters in the
nonlinear channels, the computational complexity of the considered orthogo-
nalized power filter is only two times higher than that of the linear filter.

7.5 Conclusions

In todays telecommunication devices often cheap audio hardware is included
which introduces non-negligible nonlinear distortion into the loudspeaker sig-
nal. In case of hands-free telephone systems or mobile communication devices,
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these nonlinear audio components cause nonlinearly distorted acoustic echoes
that can not be sufficiently attenuated by purely linear AECs. In this chapter,
we have focused on special types of adaptive nonlinear filters which require
only little a priori knowledge about the audio hardware actually included in
the telecommunication device, i.e., Volterra filters and power filters.

If moderately-sized loudspeakers represent the only source of nonlinear dis-
tortion, second-order Volterra filters have been used to model the nonlinear
acoustic echo path. Due to the assumption that only the loudspeaker intro-
duces nonlinear distortion, the model of the acoustic echo path simplifies to a
cascade of a second-order Volterra filter followed by a linear filter. It has been
shown in Section 7.3 that the overall model of this cascade can be represented
by a corresponding second-order Volterra filter that has a reduced region of
support for the quadratic kernel. The DCR of Volterra filters allows for an
elegant way to exploit this a priori knowledge about the acoustic echo path:
The width of the quadratic kernel is simply chosen smaller than its memory
length. By doing so, coefficients that are known (or assumed) to be zero can
be explicitly excluded and inefficient system configurations can be avoided.

The DCR has also led to the interpretation of Volterra filters as a spe-
cial type of linear multichannel systems. Based on that, efficient DFT-domain
methods known from linear adaptive filtering could straightforwardly be ex-
tended to adaptive Volterra filters, too. The proposed MDVF does not affect
the multichannel structure of the DCR and, therefore, preserves its advanta-
geous features.

Experimental results obtained for a real loudspeaker system have been
presented in order to verify the suitability of adaptive Volterra filters. In a
realistic acoustic echo cancellation scenario, the echo attenuation has been
improved by about 5 up to 10 dB compared to a linear approach. Due to the
reduced width of the quadratic kernel, the computational complexity has only
been increased by a factor of approximately four compared to the linear ap-
proach. Thus, second-order Volterra filters can be considered as a well suited
approach to cope with nonlinear loudspeakers in hands-free telecommunica-
tion systems.

In Section 7.4 we have considered the case that only the amplifier or the
miniaturized loudspeaker of a mobile phone cause the nonlinear distortion in
the echo path. For this scenario, the model of the acoustic echo path simplifies
to the cascade of a linear filter, a memoryless nonlinearity (modeled by a Tay-
lor series expansion), and a second linear filter. It has been shown that power
filters represent an efficient parallelized approximation of this overall model
of the echo path. Since the saturation characteristics imply power filters of or-
ders higher than two, the input signals of different channels are not mutually
orthogonal anymore. In order to improve the performance of corresponding
adaptive implementations, a method to signal-adaptively orthogonalize the
inputs of the different channels of the power filter has been discussed.

Experimental results based on measurements with an overloaded amplifier
have shown that the considered adaptive third-order power filter has been able
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to improve the echo attenuation of a purely linear AEC by about 6 dB. For the
case that the loudspeaker of a mobile phone causes the nonlinear distortion
in the echo path, third-order power filters are able to increase the achievable
echo attenuation of a linear approach by approximately 5 dB.

Although the proposed nonlinear approaches provide significant improve-
ments over purely linear adaptive filters, the achieved level of echo attenuation
might not be sufficient in some applications. A common method in linear echo
cancellation is to further suppress the residual echo that remains after the
echo cancellation step. Usually, such methods apply postfiltering of the resid-
ual echo based on Wiener filtering techniques [12,13] which, however, have to
be appropriately extended to account for nonlinear acoustic echo paths.
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8.1 Introduction

In a system that is intended to improve the acoustic characteristics of a hands-
free telephone, there are two core issues from a scientific point of view: the
algorithms for noise reduction and those for echo control or echo cancellation.
A large number of both kinds of algorithms have been discussed together
in [17]. However, using these systems in industrial applications very often re-
quires a number of these algorithms to be applied in parallel. An acoustic echo
canceller cannot guarantee for the echo attenuation required in the ITU rec-
ommendations [24] when the filter has not yet been adapted or has diverged.
It might therefore be implemented together with an automatic loss control,
which can add the missing attenuation in those situations. In a car, noise
reduction will also most certainly be part of the system, maybe an indoor
communication unit is also added.

In themselves, these methods have critical states, such as double-talk in
echo cancellation, or local speech for noise estimation. A large number of scien-
tific publications deal with the problem of detecting these critical states, usu-
ally in order to improve one specific algorithm. However, if all the components
of a system are taken into account when it is designed, this knowledge can be
used to optimize the whole system with respect to both performance and com-
putational efficiency. In the case of a noise reduction algorithm, very detailed
information on the background noise characteristics is inherently available
and could be applied to control the step size in the echo canceller. Similarly,
the speech detection methods required for the echo canceller and loss con-
trol could be re-used in the noise estimator. The aim of this chapter is to
investigate possible methods to exploit these synergies.

8.1.1 State Representation of a Hands-Free Telephone

In general, a number of characteristics are of interest for the classification of
each speech sample:
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• Is there background noise?
• Is the local speaker talking?
• Is the far-end speaker talking?
• How much residual echo must be expected, i.e. has the echo canceller

reached sufficient convergence?

All these four characteristics are independent of each other. They can occur
in all possible combinations, e.g. there is background noise (car), the far-end
speaker is active, but the local speaker is mute, and the adaptation quality is
still bad (convergence not sufficient). The adaptive algorithm of an echo can-
celler would be working at low speed to take care of the noise and still achieve
convergence. A noise reduction unit would deduce that there is some noise to
be compensated, but that it will be mixed with contributions from the far-end
speech, so that the noise estimation update has to be done very carefully. A
loss control unit would use the information about the speech sources to open
the far-end speaker’s channel and insert the missing attenuation for the local
noise and echo. A speech recognition unit would be stopped in order to reduce
the probability of misinterpreting the far-end speech for commands, and so
on for additional speech processing algorithms that might be included.

The possible combination of states for a hands-free telephone is shown
in Fig. 8.1. In order to visualize the relationships between the states, we
reduced the four-dimensional representation to a three-dimensional cube. All
the states with inactive far-end speaker are displayed as an inner cube. This
is the typical reduction used in echo cancellation. The resulting step size for
each of the states is also qualitatively displayed in the form of the shading of
the states.

We can identify 24 = 16 possible states for the hands-free telephone. These
states, or sub-sets of them, have to be distinguished in order to control the
overall system in a satisfying manner. It seems to be straightforward to use one
centralized algorithm to derive the states and afterwards evaluate the state
information separately for each speech quality enhancement algorithm. Most
algorithms are more sensitive to some wrong state decisions than to others,
and these weak spots are different for each algorithm. An echo canceller must
immediately slow down the adaptation when a local speaker starts talking
(double-talk) because the high-power highly correlated interference of the local
speaker can spoil the attained adaptation quality in very short time. However,
if in a single-talk situation (no local speech) the state is not detected as fast,
the adaptation quality usually suffers less because the achieved attenuation is
maintained, only its increase is slowed down. However, in the case of an abrupt
change of the room impulse response (system change) in a rather short time,
a misclassification of the residual echo as local speech (erroneous double-talk
detection) will stop the adaptation. This can lead to freezing of the adaptation
or very slow recovery, and can keep the achieved attenuation too small for a
long time. For a noise estimation algorithm, priorities will be different: usually
the noise estimation shall only be adapted when there is no local speech signal
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adjustment
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Fig. 8.1. The states of a hands-free telecommunications unit displayed in the state
space. States with “no far-end speech” are located on the inner cube. The arrows are
only inserted between the “far-end speaker active” subset of states. This reduction
is useful for an application in echo cancellation. The bold arrows indicate transitions
that require fast actions of the control circuits.

and little residual echo. In case of a system change, the noise estimation should
be stopped. If this happens a little too late, the noise reduction will also reduce
parts of the speech signal, and the speech quality decrease. At least, the noise
reduction unit will not run into a deadlock situation like the echo canceller.

Therefore, a central control unit may collect possible state information
from various detection methods, but the distinction between the states will
have to be tailored for each algorithm separately, e.g. by using different thresh-
olds for the different algorithms. This means that several input data streams
serve to produce several outputs, and is called a multiple-input multiple-
output-(MIMO-)System.

A number of methods for state detections in the context of acoustic echo
cancellation and noise reduction have been presented in [17]. They are mostly
designed to detect only one transition, e.g. “noise” ↔ “no noise” or “single-
talk” ↔ “double-talk”. Since the components of local and far-end signals
(local /far-end speech, local/ far-end noise, echo) are not known, the detectors
assume underlying statistic processes and try to estimate their characteristics
in order to separate the components. These methods are obviously based on
statistical estimations and therefore prone to errors. Just as the original speech
quality enhancement algorithms, most of the estimation methods tend to fail
in certain states: a double-talk detection might be fooled by unstationary
background noise, or by a change of the room impulse response that increases
the residual microphone signal. Both will lead to the unwanted stop of the
adaptation (“freezing”) that had been mentioned before. For this reason, a
number of methods must be combined so that they can cover each other’s weak
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spots. Even knowing the state of the last sample can be used to improve the
parameters of the state estimation methods. Knowledge of the state will make
the estimation algorithm itself more reliable, e.g. if from the noise estimation
it can be deduced that the acoustic system is situated in a running car, the
double-talk detection can adapt its decision threshold to that background
noise.

8.1.2 Combination of Control Algorithms

The detection and estimation algorithms which are used for those control
tasks are often rather complicated, like the cepstral distance [17] or nonlinear
correlation methods. In most detectors, continuous estimation results are com-
pared to a threshold to distinguish between the states. For example, a noise
estimator calculates the background noise level which can have any value, but
after comparison with a threshold, this will be assigned to the states “noise”
↔ “no noise”. Normally, the algorithms and their parameters and thresholds
are manually optimized on a certain number of situations, either by simulation
or by analyzing a real-time implementation in a realistic (but still exemplary)
environment. This is possible for one algorithm, but it becomes tiresome when
several methods with a number of parameters each are combined. Moreover,
it can become almost impossible to achieve a sufficient solution in reasonable
time.

Most of the control methods have not been as deeply investigated in theory
as the main speech quality enhancement algorithms. One reason is that while
the performance of echo cancellation and noise reduction algorithms can be
calculated on the basis of ideal signal properties for benchmarking, the con-
trol algorithms often exploit the special characteristics of the speech and noise
signals, especially their spectral density and their non-stationarity. Moreover,
a large number of these methods employ nonlinearities and thresholds. This
makes theoretical analyzes extremely complicated. Therefore, the optimiza-
tion of the control algorithms has mostly been heuristic. This is obviously not
very satisfying, especially taking into account the amount of research that
went into the speech quality enhancement algorithms, which may lose a great
part of their performance due to badly tuned control units. This imbalance
becomes more significant as the original speech enhancement algorithms are
improved: the faster the adaptation algorithms get, the more crucial their
control becomes, and the faster its decision must be [14].

In today’s highly complex systems, a large part of the effort must be spent
on the control methods and their adaptation to the requirements defined for
that system. Dependent on the circumstances, a suitable set of control and
speech enhancement algorithms must be selected. This choice must be guided
by performance requirements on one hand, and by limitations on processing
time, computational cost, accuracy of the digital representation, or memory
space, on the other hand. Due to the number of possible requirements, this
very crucial and complex choice will be left to the system designer. In this
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chapter, we will focus on concepts about how such a given set of control
methods can be combined and evaluated. The following section discusses the
concept of fuzzy systems for that purpose.

8.2 Fuzzy Systems

Usually, knowledge about the behavior of control methods is available from
experience in qualitative linguistic rules, like “The better the adaptation qual-
ity, the lower the step size should be”.

When this kind of expert knowledge is supposed to enter a technical sys-
tem, these rules have to be formulated explicitly as mathematical functions.
Normally, the experts for the application try to find a mathematical repre-
sentation that approximates their experience and is at the same time easy to
use and implement. For complex systems, though, these relations may not be
very well known or too complicated to fulfill these requirements, which will
result in a loss of performance.

In order to come to a representative model without having to find the
mathematical description by hand, the theory of fuzzy logic and fuzzy systems
is a helpful tool.

Fuzzy logic has been invented especially for the purpose of representing
human reasoning [47,48]. In classic knowledge bases, the condition in the rules
can either be true or false. But fuzzy logic allows for in-between states, so that
a rule is true and false to a certain degree. This makes it suitable for the “the
higher-the lower” kind of rule, i.e. for continuous inputs and outputs of a
fuzzy system in contrast of binary inputs and outputs in a classic knowledge
based system. The system designer defines what inputs and outputs he wants
to be involved. He defines how many and which distinctions he wants to
make about the inputs and outputs, like “LOW”, “MEDIUM”, “HIGH”, the
so-called fuzzy sets. Fuzzy sets are defined by their membership functions,
the parameters of which are also set by the expert. Each input value has a
corresponding membership degree for each set. It can e.g. belong to “LOW”
with membership 0.1 and to “MEDIUM” with 0.9, meaning that it is “a bit
smaller than medium”. Determining these membership degrees is part of the
“fuzzification”. The designer also specifies a number of rules (“rule base”) that
characterize the relations between inputs and outputs. A certain situation,
represented by an input vector, will fulfill each of the given rules to some
degree. The calculation of these degrees is called “inference”, and includes
algorithms that represent the meaning of “AND”, “OR” and “NOT” in order
to combine the influence of the inputs. The degree by which the rule is fulfilled
determines how much the output of this rules influences the total output of
the fuzzy system. This is calculated in the so-called “defuzzification”.

Note that all possible input values must belong to at least one class and
be covered by at least one rule. The form of the membership function can
be defined by the user according to his needs, but it must be convex on
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the interval belonging to the class. It is common but not required to limit
membership degrees in [0, 1], and it helps for the interpretation of the rule base
to make the membership degrees of one input value sum up to 1. Triangles and
trapezoidal functions are widely in use for the membership functions, because
they make it easy to calculate the rule inference and results. However, in
some applications it might be more appropriate to use Gaussian functions or
other differentiable forms, which are also useful as the basis for automatic
optimization methods.

The idea has been very well elaborated [27, 47, 48, 50] and is often used
for automation and control applications. This chapter only shows one small
part of the complete concept. It can incorporate the experience of the experts
without requiring clear knowledge of the mathematical functionality that lies
behind the general concepts, and can thus speed up the modelling process.
Moreover, it makes algorithms robust both to noisy input data and to para-
meterization errors by eliminating fixed thresholds. And even a very complex
mathematical model will stay transparent to the user through its description
by linguistic rules.

8.2.1 Classic Versus Fuzzy Detector – Example: The Correlation
Coefficient

In the following section, the concept of fuzzy logic and fuzzy systems will
be explained on the example of the correlation coefficient as a double-talk
detection method. This coefficient is calculated from correlation between the
excitation signal x(n) and the microphone signal y(n) (see Fig. 8.2):

u(n) = max
l

[
M∑
i=0

x(n− i− l)y(n− i)
]2

M∑
i=0

[
x(n− i− l)y(n− i)]2 , (8.1)

where M is the length of the estimation window.
For cost-efficient implementation, the squares can be replaced by absolute

values [21]. The correlation coefficient can as well be calculated for excitation
and error signal. During the initial adaptation, its performance is worse, but
it becomes more reliable when good adaptation has been reached.

For a classic detector, a threshold is defined by which single-talk and
double-talk are distinguished. Depending on that decision, the adaptation
step size will be set to either a high or a low value. In that threshold system,
high correlation of the microphone and the loudspeaker signal would be stated
for values above 0.9, low correlation would then be from 0.9 downwards, in
order to avoid misclassifications of double-talk as single-talk.

As opposed to the threshold approach, a fuzzy system design might make
high correlation start from about 0.8, membership increasing for higher val-
ues. However, 0.8 would already represent the concept “LOW” with a high
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Fig. 8.2. Diagram of an echo cancelling system.

membership degree. “LOW” would then start at e.g. 0.9, with its membership
values increasing as the correlation decreases. Such a fuzzification is shown in
Fig. 8.3.

Our rule base consists of just one rule and its complementary rule in order
to cover all possible inputs:

IF correlation u(n) is LOW, THEN step size μ(n) is SMALL.
IF correlation u(n) is HIGH, THEN step size μ(n) is LARGE.
In our simple case, the degree to which a rule is fulfilled is equal to the

membership of the correlation value to the fuzzy sets “LOW” and “HIGH”.
Fig. 8.3 also visualizes two ways to apply this degree in the inference: the
max-min and the max-prod interference (for details see [50]). Both limit the
membership to the output sets. Defuzzification combines the resulting fuzzy
sets so that the space they occupy in these graphs represents the influence they
have on the output: in the center-of-gravity method, the center of gravity of
the weighted fuzzy sets is calculated, either taking the union of both fuzzy sets,
or averaging the centers of gravity of each set. Note that for these methods,
the fuzzy sets of the output need to be bounded. The upper bound needs
to be higher than the highest desired output, since that highest output is
equal to the center of gravity of the fuzzy set representing the highest values,
and vice versa for the lower bound. A special case is the assignment of just
one value to the output instead of a fuzzy set (“singleton”). This reduces the
degrees of freedom for the designer, but also facilitates parameterization and
defuzzification. This simplification will be used in Sec. 8.2.2.

In this fuzzy system, the correlation value of 1 still corresponds to a high
step size. In contrast to the classic rule base that discards the uncertainty
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information of the double-talk detection, we can even define the fuzzy sets so
that it corresponds to 1. For a correlation value between 0.8 and 0.9, how-
ever, we will have a membership smaller than 1 to the first rule, and also a
membership greater than 0 to the second rule. The actual value of that step
size will be somewhere in [0, 1], depending on the design of the fuzzy sets.

Step size

Output step size by max-min interference

Fuzzification of input value

Output step size by max-prod interference

Step size

Fig. 8.3. Fuzzification of the input value u0 (a). Inference by max-min (b) and
max-prod method (c). Output μ0 calculated with center-of-gravity method.

Obviously, the fuzzy system eliminates the threshold, so that the resulting
step size mirrors the uncertainty of the state decision and makes the adapta-
tion more robust. This effect becomes even more important when the system
is more complex, dealing with several complicated rules and multiple inputs.
If a hard decision, e.g. a state detection, is required as a result, it still helps
that the threshold can be introduced at the end of the algorithm instead of
in the beginning, so that the uncertainty information is available as long as
possible.
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8.2.2 Application of Fuzzy Systems in a step-size Control for an
Echo Canceller

As an example from the field of acoustic echo cancellation, we choose a very
cheap and simple set of just two control methods to construct a robust step-
size control.

Theoretically, the optimum adaptation step size is dependent on both the
interference level and the adaptation quality. The formula is quite simple
under some constraints, as derived in Sec. 8.4.1. It reduces to:

μopt(n) =
E
{
ε2(n)

}
E
{
e2(n)

} (8.2)

where ε(n) = d(n) − d̂(n) is the adaptation error due to the mismatch of
h(n) and ĥ(n) (see Fig. 8.2) at sample n, and e(n) = y(n)− d̂(n) is the error
plus interference term n(n) that is actually accessible. In an environment with
static background noise levels and without local speech, the step size should
decrease as the adaptation quality increases.

This step size can be estimated by means of the precursor coefficient
method as presented first in [46]. However, we need a couple of preconditions
to be met again:

1. The mismatches on all individual filter coefficients ĥi(n) at a given time
sample n have the same statistical characteristics.

2. The contribution of each filter coefficient to the variance of the residual
error is about equal.

3. The vector of the excitation signal

x(n) =
[
x(n) , x(n− 1) , . . . , x(n−N + 1)

]T
, (8.3)

where N is the number of coefficients of the echo cancelling filter, and the
remaining coefficient vector

hΔ(n) = h(n) − ĥ(n), (8.4)

with
h(n) =

[
h0(n) , h1(n) , . . . , hn−N+1(n)

]T
, (8.5)

and ĥ(n) respectively, of a given time sample n are uncorrelated.

If these assumptions are true, the excitation signal power and the mismatch
at any part of the coefficient vector indicates the residual error power:

E
{
ε2(n)

}
≈ 1
Nprec

E
{∥∥hΔ,prec(n)

∥∥2 ∥∥x(n)
∥∥2
}

(8.6)
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(for the meaning of “prec” see below). Since the excitation signal power is eas-
ily accessible, the only missing information is the mean coefficient mismatch.
For this purpose, we can use the fact that the audio signal needs some time to
be transmitted over the room between the loudspeaker and the microphone.
The coefficients of the LEM system corresponding to this span of time – here
marked by the index “prec” – are supposed to be always equal to zero. As-
suming a minimum distance between the loudspeaker and the microphone, we
can initialize the corresponding filter coefficients unequal to zero. The arte-
facts will be masked by the bad overall adaptation quality in the initial phase.
After a short time, the amplitudes of these coefficients, which are at the same
time their mismatch, will mirror the general adaptation state.

With no special knowledge about the system, the minimum delay of the
signal has to be assumed as very short, so that only few coefficients can
contribute to the estimation of the mismatch which makes it unreliable. There
are three possibilities to enlarge the number of precursor coefficients and thus
the quality of the estimation:

• Delay the acoustic signal on its way through the filter. This is the straight-
forward solution, but it is sometimes impossible due to the delay limits set
by the ITU [24].

• Store the outgoing error signal and delay it only internally in a parallel
internal filter in order to add some delay and thus enlarge the number of
precursor coefficients. This optimum solution avoids additional delay, but
at the cost of high computational effort [10,40].

• Use the latest (“tail”) coefficients as benchmark for mismatch estimation,
because the variance of the coefficients shrinks with their delay with re-
spect to the direct path. This workaround is easy and computationally
efficient, but since these coefficients are not supposed to converge to zero,
an offset compensation needs to be inserted, which introduces some qual-
ity loss due to an additional estimation process. The amount of quality
loss depends on how well the environment can be predicted, and is bigger
if the offset compensation must fit different kinds of enclosures [7].

It is up to the system designer to chose the appropriate method according
to the requirements for his system. In general, precursor/tail coefficients have
proven to be one of the most reliable step-size estimators. However, two effects
can be observed:

• In the beginning of the adaptation, the adaptation error estimation tends
to be exaggerated. For this reason, the conventional method foresees di-
viding the resulting step size by 2 and limiting it in [0, 1].

• In the case of an abrupt change in the room impulse response, this estima-
tor is likely to freeze the adaptation because the adaptation error is then
estimated much too low (see Fig. 8.4).

The performance of this step-size estimator could therefore be improved
considerably if we could scale the estimation according to the actual state.
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Fig. 8.4. Step size estimated by the precursor coefficients method and system
mismatch ‖hΔ(n)‖2 in dB for adaptation at a sudden change of the room impulse
response. Above: System recovers. Below: Adaptation freezes.

This requires a detector for sudden changes of the room impulse response,
especially when the system is well adapted. In that situation, the precursor
coefficients stay at very small amplitudes, so that the adaptation freezes. One
detector for system changes looks for a change in the frequency characteristics
of the error signal over periodic intervals [34]. A change of the LEM system
leads to more error power in the higher frequency band, but not so much in
the lower band, while local speech enhances the lower band of the error signal.
Therefore, we introduce the quotient

QLP(n) =
σ̂2

eLP
(n)

σ̂2
yLP

(n)
(8.7)

in order to distinguish between these two situations. This quotient is obtained
by lowpass filtering of the error e(n),

eLP(n) = e(n) ∗ hLP(n), (8.8)

and the microphone signal y(n),

yLP(n) = y(n) ∗ hLP(n), (8.9)

(where “∗” means convolution) and comparing the recursively smoothed power
of the resulting error signal
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σ̂2
eLP

(n) = λσ̂2
eLP

(n− 1) + (1 − λ)e2LP(n) (8.10)

to that of the lower-band microphone signal

σ̂2
yLP

(n) = λσ̂2
yLP

(n− 1) + (1 − λ)y2LP(n) (8.11)

with 0.9 < λ < 1.
For the complete detector as proposed in [34], a similar quotient for the

higher band would be required, and the filtering should be done by using
elliptic filters for a pass band of 500 Hz. Its impulse response is denoted here
as hLP(n). The full detector will be used later on in Sec. 8.3, but for this
low-cost step-size control, we use only the lower-band part.

We can now try and put these experimental results in a fuzzy system with
one rule and its complementary:

IF QLP(n) SMALL AND μopt(n) SMALL, THEN a(n) LARGE.
IF QLP(n) LARGE OR μopt(n) LARGE, THEN a(n) SMALL.

The resulting step size is then calculated as:

μres(n) = a(n) · μopt(n) (8.12)

QLP(n) and μopt(n) are assigned the membership functions as depicted in
Fig. 8.5, based on experience, and optimized according to experimental results
with training data. The resulting step-size control is applied to a different set
of speech data and room impulse response. The averaged system distance
obtained in four runs is shown in Fig. 8.6.

0.4
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0 0.03
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m(  )m

1
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1
am(   )

0 0.2 1.7 3.5 a

Fig. 8.5. Fuzzy sets for input and output of the fuzzy system for adaptation step-
size control of the echo canceller.

This very easy system helped improve the performance of an echo canceller
considerably, at only slightly increased processing power. Using a fuzzy system
instead of a fixed threshold helped a lot since the additional detector QLP(n)
has been shown to be rather unreliable and its threshold depends on the
background noise [5].

However, the fuzzy system that is obtained is as good as the expert who
designed it. A mathematical optimization is not incorporated in the concept.
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Fig. 8.6. Resulting system mismatch ||hΔ(n)||2 with the precursor coefficients
method (above) and the fuzzy control system (below), averaged over four adapta-
tions, with a different room and set of speakers.

Several approaches have been presented to put optimization on top of that
method [18]. In the following sections, we will discuss two of them that seem
appropriate for our original control problem: One is learning vector quanti-
zation which can deal with a large number of input values and which can
be enhanced by using fuzzy rules for the learning algorithm. The second is
a neural network which can be initialized based on expert knowledge as de-
scribed e.g. by a fuzzy rule base.
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8.3 Learning Vector Quantization

We already stated in the introduction to this chapter that the control of sev-
eral speech quality enhancement algorithms in one system can be regarded
as a classification problem. Classification problems are very common e.g. in
speech or speaker recognition or in image processing. The difference to nor-
mal detection problems is that there are usually multiple inputs that provide
information. In consequence, there are more resulting classes to be selected
from.

One widely used classification method is vector quantization [15]: the input
values are interpreted as anm-dimensional vector that describes a point in the
m-dimensional space spanned by the characteristics of the input sample. All
classes are described by a “typical” reference vector, or prototype. For the very
popular type of so-called nearest neighbor or Voronoi quantization, an input
vector is detected as belonging to the class to whose reference vector it has the
smallest distance. This reference vector is called the winner prototype. This
method divides the m-dimensional space into sub-spaces around the reference
vectors, also called Voronoi regions.

In the case of two input characteristics, the input vectors span a plain,
and the borders of the classes are defined by half the distance to the nearest
reference vector of another class, as can be seen in the left part of Fig. 8.7.
However, this is only correct if the representation of the characteristics are
chosen so that the border between the classes is located in the middle be-
tween the two prototypes. If the samples belonging to one class are very well
concentrated around their center, while those of the other class are not, the
border should be driven closer to the concentrated class in order to produce
the least cost for erroneous decisions. This is illustrated in the right part of
Fig. 8.7.

The correct placing of the reference vectors is a crucial point for the clas-
sification quality. The classic way to find these vectors is to analyze reference
data, where the class of each sample is known. This usually requires manual
labelling of the reference samples. The vectors belonging to the same class are
averaged in order to obtain the reference vector of that class. For this method,
a representative selection of these reference data is very important. Averaging
can be done at once over the complete set of reference data, or in the form of
a recursive first-order filtering, or exponential window method [45].

If such a set of representative reference data is not available, it is also
possible to start with an educated guess for the reference vectors. These are
adapted to the input vectors u(n) of the application during operation of the
system: When the vector u(n) has been assigned to a class w, the reference
vector pw(n) of that class is drawn a little bit – according to the value of μLVQ

– into the direction of that vector in order to incorporate it into its averaging
procedure – very similar to an exponential window in time:

pw(n+ 1) = pw(n) + μLVQ ·
(
u(n) − pw(n)

)
. (8.13)
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Fig. 8.7. Left: Input space spanned by u1 and u2 and its separation in so-called
Voronoi regions (classes). Right: These regions can be suboptimal if the vectors
of the classes have different distributions around their centers. The figure shows
the conditional probability density functions for two classes i and j. Broken line:
optimal border between the classes according to Bayes if all kinds of errors are
weighted equally and all classes have equal probability of occurrence. The Voronoi
region belonging to the right class is marked in grey.

The general concept of these algorithms is called learning vector quantiza-
tion (LVQ), if no information is at hand before the adaptation. The algorithms
have been described in several publications, e.g. [15, 29,45,49].

If the input data are uncorrelated and represent all possible input vectors
in realistic proportions, the resulting set of reference vectors is automatically
adapted to the situation under consideration. This condition is very impor-
tant, since otherwise all vectors are drawn to where most of the data are
located, even if these data do not properly represent the classes. This behav-
ior is similar to the signal adaptation problem in adaptive filtering, where for
real system adaptation a persistent excitation signal is required [20].

If there exists no idea whatsoever about the location of the classes in the
input space, it is possible to start from a sufficiently large set of arbitrarily
distributed vectors as initial reference vectors. This technique is known as self-
organizing map and belongs to the field of artificial intelligence and neural
networks. It was presented by Kohonen in [29] as a representation of the
human brain. The reference vectors will move to where most of the data
are clustered. In this approach, a class can possess more than one reference
vector. The concept also includes negative feedback learning, i.e. all non-
winning prototypes are pushed away slightly from the incoming vector. This
prevents the reference vectors from clustering as in LVQ.

The less we know about the system at the start, the more the adaptation
of the reference vectors becomes important to the quality of the classification.
In addition to the greater need for adaptation, errors with badly adapted ref-
erence vectors, i.e. misclassifications, influence future classifications. As clas-
sification in itself is highly nonlinear at the borders between the classes, small
deviations can lead to important errors.

In order to limit these effects, a fuzzy approach could be used which softens
the borders and thus the consequences of a misclassification. In that case,
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membership to a class decreases with the distance to that class: A vector found
at the same or very similar coordinates as a reference vector very probably
represents a sample belonging to the same class. Therefore, its membership
is high, whereas at the borders of that class or beyond, the membership is
low. In consequence, the output for an input vector on the border of a class
will also take into account the result for the neighboring classes, and thereby
reduce the impact of the erroneous classification.

If a membership grade is defined, then it is straightforward to adapt the
step size for the learning algorithm to that membership grade, as it describes
the certainty of the classification. The membership function shall be convex,
i.e. it shall decrease with increasing distance between the input vector and
the nearest reference vector, or winner prototype:

pw(n+ 1) = pw(n) + h
(
u(n),pw(n)

)
·
(
u(n) − pw(n)

)
(8.14)

where u(n) is the input vector, and pw(n) the winner prototype at time
n. h(i(n),pw(n)) can be chosen arbitrarily, but should decline monotonically
with increasing distance ‖u(n) − pw(n)‖, and for easier interpretation be
bounded by 1 as its maximum value [26].

In our hands-free telephone application, where the classes represent the
states as introduced in Sec. 8.1, states like single-talk stay the same for a
large number of samples during normal operation. In order to prevent all the
prototypes from being drawn into the single-talk cluster, which is bound to
happen with the presented algorithm, we modify the algorithms similarly to
Kohonen’s proposal [28] to move the prototypes of the other “non-winner”
classes away from the input vector:

pw(n+ 1) = pw(n) + μLVQ,w u(n), (8.15)

pi(n+ 1) = pi(n) − μLVQ,l

∥∥∥pw(n) − u(n)
∥∥∥2

∥∥∥pi(n) − u(n)
∥∥∥2 u(n) ∀ i �= w , (8.16)

with μLVQ,l � μLVQ,w. (8.17)

The corresponding step size is chosen much smaller than that for the win-
ner prototypes, as not winning is much more often for each prototype than
winning. The resulting behavior is illustrated in Fig. 8.8.

8.3.1 Example: Fuzzy LVQ for State Detection in a Hands-free
Telephone

We applied the presented method of modified fuzzy LVQ to the problem of
state detection for a hands-free telephone set, especially for the purpose of
echo cancellation. In that case, the state diagram of Fig. 8.1 applies, for which
we want to distinguish between eight states of activation and one of initial
adaptation required to start the adaptation with sufficient step size.
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Fig. 8.8. Step size of the prototypes for different distances to the input vector with
modified LVQ. The input vector (small white circle) belongs to the class of the left
prototype (reference vector marked with large white circle). The vertical line marks
the border, arrows visualize the objects’ direction and step size of movement.

States as shown in the following figures are denoted in discrete numbers
as shown in table 8.1. The state 0 without far-end speech is listed for com-
pleteness, but was cut out of our simulations in order to save time. Assuming
that the noise is sufficiently stationary, this is relatively easy to do even in a
real-time application.

Table 8.1. Notation for the states

State no.
Description of the state

Local speaker Local noise Filter adjustement

0 no far-end speech

1 inactive (single-talk) low sufficient

2 active (double-talk) low sufficient

3 inactive (single-talk) high sufficient

4 active (double-talk) high sufficient

5 inactive (single-talk) low insufficient

6 active (double-talk) low insufficient

7 inactive (single-talk) high insufficient

8 active (double-talk) high insufficient

9 beginning of the adaptation (initial condition)

The training of the states was carried out in several states. In a first step,
the states were defined based on an ideal adaptation with the optimum step
size. The samples were labelled so that supervised training could be performed.
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In a second step, the states were assigned corresponding step size, which were
then optimized according to the results shown by the cost function. It turned
out that the step size had to be changed very much because neighboring states
interfered considerably. In a third step, the resulting step size was used in an
unsupervised training session where the step size from the LVQ controlled the
adaptation. This third step was introduced in order to fine-tune the states, and
had to be carried out very carefully with low step sizes. The performance of the
state recognition is shown in Fig. 8.9. Single-talk can reliably be distinguished
from distorted situations. These, however, are not always clearly separated,
and the source of the interference is not reliably detected. This is partly due
to car noise being concentrated in low frequencies, similar to speech. The
double-talk detectors used for state detection have not designed with focus
on that distinction. Still, the adaptation is performed reasonably well, and
freezing was avoided in our experiments. The resulting adaptation quality is
displayed in Fig. 8.10.
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Fig. 8.9. State detection during adaptation with the optimum step size. Numbering
according to table 8.1
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Fig. 8.10. System mismatch ‖hΔ(n)‖2 for the precursor coefficients method (below)
and the modified LVQ system, after supervised training followed by unsupervised
training in adaptations using its own step size, averaged over four runs.

If the membership functions are continuous and differentiable mathemat-
ical functions, they can automatically be optimized by means of adaptive
algorithms. However, optimization needs input about the residual error and
its significance for the system. The following section will deal with deriving
this information with focus on echo cancellation control.



282 C. Breining, A. Mader

8.4 Prerequisites for Automatic Optimization of Control
Algorithms: Optimum Step Size and Cost Function

Automatic optimization is normally performed by some kind of neural net-
work. Generally speaking, the most commonly used neural networks can be
regarded as adaptation algorithms capable of approximating nonlinear rela-
tions between the input and the output signals. Similarly to the linear adaptive
algorithms, like e.g. LMS or RLS, the training procedure is derived from a
cost function based on the difference between the result of the network and
the optimal output.

In case of acoustic echo cancellation, which will serve as our example here,
the output of the network is supposed to be the step size of the adaptive filter.
We will train this network to calculate the best possible step size for each time
sample based on preprocessed speech, distortion, and error signals, i.e. results
from estimators and double-talk detectors, as in Sec. 8.3.1. In order to train
the network, we need to define the goal, in this case the reference or optimum
step size for that sample. The difference between the network-generated step
size and the optimum will be fed back into the network in order to control
further adaptation steps, just like in linear adaptation algorithms.

8.4.1 Optimum Step size for Network Training

We can derive the expected value of an optimal step size from maximizing the
improvement in expected convergence during the new adaptation step, based
on what has been achieved in the step before:

E
{
Δ(n)

}
= E

{∥∥h − ĥ(n)
∥∥2
}
− E

{∥∥h − ĥ(n+ 1)
∥∥2
}

(8.18)

= E
{∥∥hΔ(n)

∥∥2
}
− E

{∥∥hΔ(n+ 1)
∥∥2
}
→ max .

Replacing the newest coefficient vector by the adaptation equation of the
NLMS algorithm for step n+ 1,

hΔ(n+ 1) = hΔ(n) + 2μ(n)
e(n)x(n)∥∥x(n)

∥∥2 , (8.19)

and using the abbreviation ε(n) = hΔ(n)T x(n) it follows:
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∂E
{
Δ(n)

}
∂μ(n)

∣∣∣∣∣
μ(n)=μopt,1(n)

=
∂

∂μ(n)
E

{
− 2μ(n)

e(n)ε(n)∥∥x(n)
∥∥2 (8.20)

+μ2(n)
e2(n)∥∥x(n)

∥∥2

}∣∣∣∣∣
μ(n)=μopt,1(n)

= E

{
− 2

e(n)ε(n)∥∥x(n)
∥∥2 + 2μ(n)

e2(n)∥∥x(n)
∥∥2

}∣∣∣∣∣
μ=μopt,1(n)

= 0.

For this calculation, we can solve for the optimal step size as:

μopt,1(n) =

E

{
e(n)ε(n)∥∥x(n)

∥∥2

}

E

{
e2(n)∥∥x(n)

∥∥2

} . (8.21)

If the filter length can be assumed as sufficiently long, and if the input
signal is an ergodic process, we can suppose that the norm of the input vector
is nearly a constant, and exclude it from the calculation of the expected value:

μopt,2(n) =
e(n)ε(n)
e2(n)

(8.22)

Further assuming that the noise and the adaptation error, emitted by
different sources, are uncorrelated, we obtain the simplified optimum step
size:

μopt,3(n) =
ε2(n)
e2(n)

(8.23)

Although the conditions required to derive this step size are not very
realistic, this step size has the big advantage of being easy to interpret:

• The higher the noise and distortion level, the lower the step size.
• The smaller the remaining undistorted error ε(n) in relation to the noise

and distortion term, the lower the step size.

This knowledge is the basis for most common step size control methods, as
presented in Sec. 8.2.

In real applications, however, the expected values of the excitation, the
undistorted error, and the distortion signal are not known: first, the undis-
torted error is not accessible, since due to the nature of our problem we do
not know the real LEM system. It is only available in offline simulations. Sec-
ond, even if the signals are known, we do not know their expected values at a
given time n, since we do not know the process that lies beneath the signals.
Maybe it would be possible to describe some kinds of machine noise, like PC
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coolers, but already the motor noise of a car poses big problems for deriving
the statistics of the noise at a given time, due to the varying speed which is
usually unknown to the echo canceller. But the most difficult part are all the
involved speech signals: Their signals change a lot over time. The parts of the
signal that might be regarded as pseudo-stationary are usually very short, and
estimation on the statistical properties of these short signal parts is then quite
unreliable. Moreover, there are a lot of transient states, i.e. periods of time in
between two pseudo-stationary periods, like plosives between two vowels, for
which an estimation is almost impossible. In Fig. 8.11, it is shown that the
estimation method and its artefacts in nonstationary environment can spoil
the convergence, thus proving the impossibility of estimating the optimal step
size. For this demonstration, we used the step size μopt,1(n) which is theoret-
ically the best step size in a statistical sense without any restrictions about
signal properties.

In order to observe the impact of using averages instead of expected values
in a non-stationary environment, the expected values are estimated by first-
order recursive filtering of their arguments:

Ê

{
e(n)ε(n)∥∥x(n)

∥∥2

}
= λÊ

{
e(n− 1)ε(n− 1)∥∥x(n− 1)

∥∥2

}
+ (1 − λ)e(n− 1)ε(n− 1)∥∥x(n− 1)

∥∥2 (8.24)

and

Ê

{
e2(n)∥∥x(n)

∥∥2

}
= λÊ

{
e2(n− 1)∥∥x(n− 1)

∥∥2

}
+ (1 − λ) e2(n)∥∥x(n)

∥∥2 . (8.25)

Since this kind of filtering is computationally very efficient and yields sim-
ilar results as a linear average over a certain time interval in the case of
stationary processes, it is very common and is also used in Eq. 8.11.

In the case of the NLMS algorithm for the echo canceller, we have to guess
a step size for the coming time sample n + 1 from the past samples of the
signals. Therefore, we assume that the underlying processes are stationary, and
we derive a step size based on the characteristics of these processes. Therefore,
the result is based on expected values of the signals.

However, knowing that these expected values are difficult to obtain in the
real application, but that we can easily access all signal values all the time in
an offline simulation, we can as well concentrate on the real signals instead
of on their statistical properties. We can derive an optimal step size for the
NLMS algorithm as

μopt,4(n) =
ε(n)
e(n)

. (8.26)

and use this value at time n+ 1.
This optimal step size for time n+1 is now only dependent on the samples

of undistorted and distorted error at time n. This facilitates the definition of
it for a training algorithm, as estimation of the statistical properties of the
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Fig. 8.11. Comparison of the convergence in double-talk with speech signals (av-
eraged over 10 adaptations). The step size μopt,1(n) used for the adaptation was
calculated using recursive first-order filters as in 8.11 with forgetting factor λ for
the estimation of the expected values.

signals is not needed any longer. Moreover, we already show in Fig. 8.11 that
the convergence of an adaptation algorithm without filtering, i.e. with λ = 0,
is much faster than with the step size composed by the expected values –
μopt,4(n) is the special case of μopt,1(n).

8.4.2 Cost Function

It seems obvious to feed the difference between output and reference back to
the network in order to improve the results. This is proposed in the back-
propagation algorithm of [38] for the so-called multi-layer perceptrons. In the
linear world, it is very similar to the LMS algorithm.

However, we know that for speech processing, the NLMS algorithm has
proven much more effective. The reason is that for unstationary signals, the
LMS moves in bigger steps for signal periods with higher power levels. Un-
fortunately, higher power levels in speech signals normally indicate vowels
with large power concentration on the lower frequencies. The higher frequen-
cies are only present in fricatives and plosives, which have lower power levels.
Therefore, the echo attenuation for higher frequencies is worse with an LMS
algorithm. In contrast to this, the NLMS algorithm normalizes the step size
with respect to the input signal power level. This gives more importance to
the higher frequencies and speeds up the convergence of the filter.

We generated two input signals: x1(n) is white Gaussian noise, x2(n) con-
sists of periods of low-frequency signals with high power (“vowels”) and high-
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frequency signals with low power (“voiceless speech”), as depicted in Fig. 8.12.
These signals were used for the adaptation of a filter with Gaussian distrib-
uted coefficients and approximately constant transfer function. The results
are shown in Fig. 8.13 and support the explanation given above.
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Fig. 8.12. Input signals x1(n) and x2(n) over time (left) and in the frequency
domain (right).

The main differences between the LMS and the NLMS algorithms lie in
the constructions of the cost functions from which they are derived. For the
LMS algorithm, it is the simple function:

J = E
{
e2(n)

}
→ min . (8.27)

For the NLMS algorithm, however, the cost function is:

J = E

{
e2(n)∥∥x(n)

∥∥2

}
→ min . (8.28)

A cost function thus influences the way in which the convergence is
reached. In a real application, the convergence will never be perfect, and
convergence time will be of great importance. The cost function accounts for
the characteristics of the remaining error and for the convergence speed, and
should, therefore, be selected carefully.

These insights have to be taken into account for the design of the neural
network adaptation algorithm. In the echo cancellation application, we do not
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Fig. 8.13. Above: Transfer functions of the filters after 1800 samples. Below: system
mismatch ‖hΔ(n)‖2 in dB

care about the absolute or squared error of the adaptation step size, but about
what it does to the convergence of the NLMS algorithm in the given situation.
Therefore, we have a close look at the improvement of convergence that can
be achieved based on the latest state:

E
{
Δ(n)

}
= E

{∥∥hΔ(n)
∥∥2
}
− E

{∥∥hΔ(n+ 1)
∥∥2
}

(8.29)

= E

{
2μ(n)

ε(n)e(n)∥∥x(n)
∥∥2 − μ2(n)

e2(n)∥∥x(n)
∥∥2

}
.

Replacing the step size with

μ(n) = μopt(n) + δμ(n) (8.30)

yields

E
{
Δ(n)

}
= E

{
Δopt(n)

}
− (8.31)

E

{
2 δμ(n)

ε(n)e(n) − μopt(n)e2(n)∥∥x(n)
∥∥2 − δ2μ(n)

e2(n)∥∥x(n)
∥∥2

}
.

The term in the second expectation marks the deviation at sampling in-
stant n due to a non optimal step size. Its sum over M sampling instants can
serve as cost function:
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J =
M∑

n=1

Jn

=
M∑

n=1

δμ(n)
e2(n)∥∥x(n)

∥∥2

[
δμ(n) + 2μopt(n) − 2

ε(n)
e(n)

]
. (8.32)

Inserting the optimal step size μopt(n) = μopt,4(n) (Eq. 8.26) to simplify
interpretation of the cost function finally leads to

J =
M∑

n=1

Jn =
M∑

n=1

δ2μ(n)
e2(n)∥∥x(n)

∥∥2 . (8.33)

Beside its importance for the adaptation of a neural network that models
the step size, this cost function can also be used to analyze the weak points
of a step size control method. This is illustrated in Fig. 8.14. Whenever the
cost function is high, the step size is not well chosen for that situation.

The results of the cost function can now be used for the training of an
arbitrary kind of neural network, e.g. a multi-layer perceptron [5, 6]. In this
chapter, another approach will be investigated which combines the state de-
tection, fuzzy logic, and the automatic training in the form of a radial basis
function network.

8.5 Radial Basis Function Network for Step-Size Control

This section deals with the application of a radial basis function network for
automatic step-size control of an acoustic echo canceller as part of a hands-
free telephone set. The aim is to achieve a robust and generalized control
mechanism while automatically tuning the network parameters. That is, for
the step-size control no more optimization by hand is necessary. Further on,
the extraction of expert knowledge, like information on the current state,
should be supported. The RBF network combines the main advantages of the
learning vector quantization (LVQ) and the multilayer perceptron (MLP):
The state information of the LVQ approach is preserved while an automatic
tuning of parameters like the MLP approach can be achieved [30].

8.5.1 Radial Basis Function Network – A Short Overview

RBF networks are three layer neural networks [19], whereas all neurons of
one layer are directly connected to the neurons of the next layer (see Fig.
8.15). The only nonlinear functions are implemented in the RBF kernels in
the hidden layer, typically Gaussian functions are used [37].

The input-output mapping performed by a RBF network can be written
as
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Fig. 8.14. This figure shows the cost function J(n) during adaptation with a speech
signal for two different values for the step size μ.

f̃v(u) =
∑

i∈UH

wv,i hi(u, ci) v ∈ UO, (8.34)

where here we restrict hi(u, ci) to

hi

(∥∥u − ci

∥∥
M

)
= exp

(
−1

2
(
u − ci

)T
Σ−1

i

(
u − ci

))
,

with UH, UO the set of neurons in the hidden and the output layer. hi(u, ci)
is the nonlinear transfer function of RBF kernel i and calculates a “distance”
between the input vector u and center ci. ‖u − ci‖M is the Mahalanobis
distance [22], which is used for this application. In general, other RBF kernels
or distance measures can be applied. The matrix Σi influences the shape,
size and orientation of RBF kernel i. Finally, the output of the hidden layer
is linearly transformed to the output space by the weighting factors wv,i of
output neuron v and RBF kernel i.
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Fig. 8.15. General structure of a radial basis function (RBF) network. The network
consists of three layers, whereas the input layer includes T neurons, the one and only
hidden layer U neurons and the output layer V neurons. The hidden layer contains
the nonlinear radial basis function.

The RBF network is known to do a local classification due to the spatially
limited support of the RBF kernels. To improve the abilities of generalization
and extrapolation a normalized RBF network can be applied [9]. With Eq.
8.34 the normalized RBF network can be expressed as

fv(u) =

∑
i∈UH

wv,i hi(u, ci)∑
i∈UH

hi(u, ci)
v ∈ UO. (8.35)

Beside the basic RBF network we have researched two kinds of dynamic
RBF networks by the inclusion of memory – that are a feedback network and
a network using delay-units for the input signals. For this application, slight
advantages for the feedback network structure can be achieved [32]; hence we
confine to discuss only this nonlinear infinite impulse response (NIIR) network
structure here.

8.5.2 Applied Network Structure

As described in Sec. 8.1, the problem of step-size control can be regarded as
classification problem – that is the detection of the states of the system. Here, a
RBF network is applied for classification. Inputs of the network are the signals
of various detection and speech enhancement algorithms; in the following these
classification features are denoted as detectors. For this application of step-
size control and state classification considered here the following detectors are
used [17,31]:

• correlation analysis between excitation x(n) and microphone signal y(n)
[3, 21],
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• estimation of filter mismatch of the acoustic echo canceller using “delay”
coefficients [46],

• estimation of optimal step size using “delay” coefficients [46],
• cepstral analysis of microphone signal y(n) and output signal of the adap-

tive filter d̂(n) [13],
• lowpass power ratio of error e(n) and microphone signal y(n) [34],
• difference between logarithmic high- and lowpass power ratio of error and

microphone signal [34],
• slightly smoothed lowpass power ratio of error and microphone signal [8],
• background noise estimation based on minimum statistics [33],
• shadow filter in parallel to the existing echo cancelling filter for detecting

enclosure dislocations [39].

The outputs of the detectors are normalized to a range of 0 to 1 to simplify
the training of the network parameters and to allow extraction of meaningful
information.

The states which are supposed to characterize the system adequately are
listed in Table 8.1. Due to prior knowledge about the separation of the input
data into certain classes (states of the system), the RBF network can be setup
accordingly (Fig. 8.16): Each state (1−9) of the system is assigned to a single

Fig. 8.16. Applied structure of the radial basis function (RBF) network. Input of
the network are the different detectors. Output is a signal of the current state of the
communication system and the step size for the acoustic echo cancelling filter. By
adding a feedback-unit with the step size as NIIR-part, the network is extended to
include memory.

RBF neuron in the hidden layer. The far-end speech activity (corresponding
to state number 0) can be detected reliably using a separate speech activity
detector [17]. Therefore, only nine RBF neurons representing the nine states
of the system are necessary. The neurons of the input layer are assigned to
the output of the detectors – here, nine neurons plus one for the feedback



292 C. Breining, A. Mader

are necessary. The outputs of the network are used to calculate both a state
information and a step size for the adaptive echo cancelling filter; hence, nine
neurons are applied for state detection and one neuron delivers the step size.

For simplification, statistical independent input signals from the detectors
are assumed. Thereby, the orientation of the radial-basis functions coincides
with the direction of the axis of the input space and the covariance matrix
Σi simplifies to a diagonal matrix. The RBF network can be rewritten as in
Eq. 8.35 where

hi(u, ci) =
∏

t∈UI

exp

(
−1

2
(ut − ci,t)2

σ2
i,t

)
(8.36)

= exp

(
−1

2

∑
t∈UI

(ut − ci,t)2
σ2

i,t

)
,

with UI the set of neurons in the input layer. The remaining parameters of
the RBF network – that are the centers and widths for each RBF kernel and
the output weights – have to be adapted in a training process.

As already shown in Sec. 8.4.2, a cost function can be calculated that
takes into account the mismatch of the adaptive echo cancelling filter and the
difference between the actual step size μ(n) and its optimal value μopt(n). It
can be expanded to

Jn = δμ(n)
e2(n)

‖x(n)‖2

[
δμ(n) + 2μopt(n) − 2

ε(n)
e(n)

]
, (8.37)

with

δμ(n) = μ(n) − μopt(n) (8.38)

the deviance of the actual and an optimal step size. In order to utilize this
robust cost function, a supervised training process in applied for the RBF
network.

As depicted in Fig. 8.17, the whole system has a feedback loop – the step
size generated by the network influences the detectors and therefore itself. Due
to a poor initialized network in the beginning, a two-stage training is required:
In a first stage the adaptation of the acoustic echo canceller is driven by an
external step size – namely a pseudo-optimal step size (Sec. 8.4.1, [17]). This
leads to a reasonable initialization of the RBF network. In the second stage
the RBF network is trained with a closed feedback loop. Hence, the network is
adapted with representative input values. Due to the feedback loop, an online
training can be implemented only.

The following subsections mainly deal with the application of the RBF
network for step-size control – the emphasis is placed on the last output
neuron. In Sec. 8.6 the task of state classification will be discussed in more
detail.
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8.5.3 Training of Radial Basis Function Parameters

For the applied RBF network, three parameter sets have to be adapted: The
centers and widths of the Gaussian transfer functions (RBF kernels) and the
weight factors of the last output neuron (number V) utilized as step size (the
training process of the other output neurons utilized for state detection are
discussed in Sec. 8.6). The adaptation process of these network parameters
discussed in the following also contains network step sizes. These step sizes
have – quite similar to the acoustic echo canceller step size – a large impact
on the whole adaptation quality. Thus, we give a short outlook on the control
of the network step sizes at the end of this chapter.

In Sec. 8.5.2, the initialization of the RBF network with one RBF neuron
per class (that represents one state of the system) was shown. However, in
Sec. 8.5.4 a growing network approach will be presented, leading to more than
one RBF neuron per class. For this reason the training processes described in
this section are in general form taking several neurons per class into account,
in which the network with one neuron per class is a special case.

8.5.3.1 Centers of Radial Basis Function Neurons

Due to positive experiences for this application, the learning vector quanti-
zation (LVQ) and self-organizing maps (SOM) are applied for the adaptation
process of the centers (see also Sec. 8.3 and [5]).

First of all, the centers ci,t(n) for each RBF neuron i are initialized to the
center of the expected input space. Such an initialization seems reasonable

Fig. 8.17. Principle of the two-stage training. Depicted are the adaptive echo can-
celling filter, its adaptation process and the control structure given by the detectors
and the RBF network. The hatched area shows the feedback of the adaptive filter to
the detectors and therefore to the RBF network, too. In the first stage, the feedback
loop is open and the network is controlled by an external step size.
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since no prior knowledge of the position of the radial basis function exists.
Recalling that the detectors are normalized to a range of 0 to 1, we get

ci,t(0) = 0.5, i ∈ UH, t ∈ UI. (8.39)

With Ux ⊂ UH the subset of neurons belonging to the current class (recall:
supervised training) we have to determine the neuron w ∈ Ux with the smallest
distance to the current input vector u(n) (winner neuron):

w = arg min
i

{∥∥u(n) − ci(n)
∥∥2
}
, i ∈ Ux. (8.40)

Then, the centers of all RBF neurons are adapted with a modified LVQ-SOM-
approach [29]:

ci(n+ 1) = ci(n) + Δci(n)

= ci(n) +

⎧⎪⎪⎨⎪⎪⎩
η

(cw)
i (n) νwi(n)

[
u(n) − ci(n)

]
, i ∈ Ux

−η
(cl)
i (n) νwi(n)

[
u(n) − ci(n)

]
, i ∈ (UH \ Ux)

(8.41)

with η
(cl)
i (n) � η

(cw)
i (n) .

The amplitude of the adaptation steps are influenced by the network step
sizes

η
(cw)
i (n) =

[
η
(cw)
i,1 (n), η(cw)

i,2 (n), · · · , η(cw)
i,T (n)

]T
and (8.42)

η
(cl)
i (n) =

[
η
(cl)
i,1 (n), η(cl)

i,2 (n), · · · , η(cl)
i,T (n)

]T
, (8.43)

as well as the neighborhood function

νwi(n) =

∥∥cw(n) − u(n)
∥∥2∥∥ci(n) − u(n)
∥∥2 . (8.44)

Obviously the centers for the winner neurons are moved towards the current
input vector u(n), and the centers of all other (looser) neurons are slightly
moved into the opposite direction. The movement into the opposite direction
shout prohibit an accumulation of all neurons at the current class due to the
dispersion of the detectors [5].

8.5.3.2 Widths of Radial Basis Function Neurons

The widths of all RBF neurons are initialized to

σ2
i,t(0) = 0.04, i ∈ UH, t ∈ UI. (8.45)



8 Intelligent Control Strategies for Hands-Free Telephones 295

The Gaussian activation functions have an amplitude of 60% in a distance of
0.16 around the centers with this value. Due to this, the radial basis functions
do not overlap too much, considering the normalization of input values to a
range of 0 to 1.

Similar to the adaptation of the centers, the winner neuron w ∈ Ux with
the smallest distance to the current input vector u(n) is determined. Then, a
recursive smoothing of the width of this neuron towards the distance between
the current input vector and the center of this neuron is calculated:

σ2
w,t(n+ 1) = σ2

w,t(n) +Δσ2
w,t(n), t ∈ UI

= σ2
w,t(n) + η(σ)

w,t(n)
[(
ut(n) − cw,t(n)

)2

− σ2
w,t(n)

]
(8.46)

=
(
1 − η(σ)

w,t(n)
)
σ2

w,t(n) + η(σ)
w,t(n)

(
ut(n) − cw,t(n)

)2

.

Once again, the amplitude of the adaptation step is influenced by the time-
variant network step size η(σ)

w,t(n). An appropriate control mechanism will be
discussed in Sec. 8.5.3.4. The widths of all other (looser) neurons are not
adapted.

8.5.3.3 Weights of Output Neuron Number V

The adaptation process for the weights of the output neurons (1 to V − 1) for
state classification is discussed in 8.6. The last output neuron V (utilized as
step size for the acoustic echo cancelling filter) is initialized by

wV (0) =
[
0.3, 0, 0.2, 0.02, 0.8, 0.05, 0.7, 0.1, 1.0

]T
. (8.47)

These values are chosen according to prior knowledge of appropriate step
sizes for the several states of the system (that are represented by the RBF
neurons). E.g. for state number 9 (“initialization”), a large step size around
1.0 is supposed to be suitable. When generalizing the network to more than
one RBF neuron per class (state), all weights belonging to the RBF neurons
of the same state are initialized by the same values.

For the adaptation of weight wV (n) a gradient approach is used, in which
the cost function Jn (see Eq. 8.37) is minimized. The negative gradient of Jn

with respect to the weights wV,i(n), i ∈ UH can be expressed as

wV,i(n+ 1) = wV,i(n) +ΔwV,i(n), i ∈ UH

= wV,i(n) − η(w)
V,i (n)

∂Jn

∂ wV,i(n)
, (8.48)

with the network step size η(w)
V,i (n), that effects the amplitudes of the adapta-

tion steps. Using Eq. 8.37, the negative gradient reads as follows:
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− ∂Jn

∂ wV,i(n)
= − ∂

∂ wV,i(n)

[
δμ(n)

e2(n)∥∥x(n)
∥∥2

(
δμ(n) + 2μopt(n) − 2

ε(n)
e(n)

)]

= −2
e2(n)∥∥x(n)

∥∥2

[
δμ(n) + μopt(n) − ε(n)

e(n)

]
∂ δμ(n)
∂ wV,i(n)

(8.49)

= −2
e2(n)∥∥x(n)

∥∥2

[
μ(n) − ε(n)

e(n)

]
∂ μ(n)
∂ wV,i(n)

.

The step size μ(n) is given by the output fV (u) of the network. Therefore,
the partial derivative of the step size can be dissolved to:

∂ μ(n)
∂ wV,i(n)

=
∂

∂ wV,i(n)

⎡⎢⎣
∑

i′ ∈UH

wV,i′(n)hi′(u, ci′)∑
i′ ∈UH

hi′(u, ci′)

⎤⎥⎦ , i ∈ UO. (8.50)

Considering that hi(u, ci) does not depend on wV,i(n), the term can be sim-
plified to:

∂ μ(n)
∂ wV,i(n)

=
hi(u, ci)∑

i′ ∈UH

hi′(u, ci′)
. (8.51)

Taking Eq. 8.48 into account, the complete adaptation rule for the weights
wV (n) results in:

ΔwV,i(n) = −η(w)
V,i (n)

∂Jn

∂ wV,i(n)
(8.52)

= −2 η(w)
V,i (n)

e2(n)∥∥x(n)
∥∥2︸ ︷︷ ︸

1.

[
μ(n) − ε(n)

e(n)

]
︸ ︷︷ ︸

2.

hi(u, ci)∑
i′ ∈UH

hi′(u, ci′)︸ ︷︷ ︸
3.

.

The rule mainly consists of three terms, which can be interpreted as follows:

1. The first term considers the impact of a step size deviance on the adap-
tation quality of the acoustic echo canceller.

2. The second term qualifies the step size error itself.
3. The third term takes the normalized activation of the current RBF neuron
u into account. If the input vector u(n) is outside the sphere of this neuron,
the adaptation step of the corresponding weight is quite small.

8.5.3.4 Network Step size

The network step sizes η(cw)
i,t (n), η(cl)

i,t (n), η(σ)
i,t (n), and η

(w)
V,i (n) are locally

adapted, which means that each parameter is adapted for itself. Here, an
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approach based on the Super SAB (Super self-adjusting back-propagation al-
gorithm) [42] extended by an momentum term is applied; an likewise approach
in [11] is called Jacobs heuristic. For some general examinations the parameter
χ(n), which is representative for the network parameters ci,t(n), σ2

u,i(n) and
wV,i(n), is introduced. The adaptation rule is formulated:

• Every network parameter χ(n) has its own network step size η(χ)(n).
• The non-weighted adaptation step

Δ′χ(n) =
Δχ(n)
η(χ)(n)

(8.53)

is analyzed for each parameter.
• The network step size is enlarged if the non-weighted adaptation step
Δ′χ(n) has the same sign for several consecutive iterations.

• The network step size is decreased if the sign of the non-weighted adap-
tation step is alternating for several consecutive iterations. That is due to
the assumption, that the minima of the cost function is close by.

Taking these considerations into account, the adaptation rule can be expressed
as

η(χ)(n+ 1) =

⎧⎪⎪⎨⎪⎪⎩
η
(χ)
+ η(χ)(n), Δ′χ(n)Δ′χ(n) > 0,

η
(χ)
− η(χ)(n), Δ′χ(n)Δ′χ(n) < 0,

η(χ)(n), else,

(8.54)

with Δ′χ(n) the estimation of the mean adaptation step, calculated as first-
order recursive filter:

Δ′χ(n) =
(
1 − ϑ(χ)

)
Δ′χ(n− 1) + ϑ(χ)Δ′χ(n). (8.55)

The smoothing factor ϑ(χ) is proposed to range 0.3 < ϑ(χ) < 0.9 in [11]. Nev-
ertheless, for this application with very slow alternating classes (duration of
one state about 2000−8000 samples) a bigger smoothing factor is appropriate.

The network step sizes for adaptation of the centers of the winner neu-
rons η(cw)

i,t (n) are adapted according to Eq. 8.54, with χ(n) = η
(cw)
i,t (n). The

parameters are chosen to

η
(cw)
+ = 1.000001, (8.56)

η
(cw)
− = 0.99996, (8.57)

ϑ(cw) = 0.00005, (8.58)

and the step sizes are initialized by

η
(cw)
i,t (0) = 0.0005, i ∈ UH, t ∈ UI. (8.59)
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The network step sizes for the adaptation of the centers of all other (looser)
neurons η(cl)

i,t (n) are chosen proportional to the “winner” step size:

η
(cl)
i,t (n) =

η
(cw)
i,t (n)
κη

, (8.60)

with an proportional factor of κη = 2000 found adequately.
For the adaptation of the width step sizes η(σ)

i,t (n) not only the sign of
successive adaptation steps Δ′σ2

i,t(n), but also the amplitudes of these steps
are considered:

η
(σ)
i,t (n+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + (η(σ)

+ − 1)
[

Δ′σ2
i,t(n)

Δ′σ2
i,t

(n)

]10

−10

)
η
(σ)
i,t (n),

Δ′σ2
i,t(n)Δ

′σ2
i,t(n) > 0,(

1 − (η(σ)
− − 1)

[
Δ′σ2

i,t(n)

Δ′σ2
i,t

(n)

]10

−10

)
η
(σ)
i,t (n),

Δ′σ2
i,t(n)Δ

′σ2
i,t(n) < 0,

0, else,

(8.61)

i ∈ UH, t ∈ UI,

with the estimation for the mean adaptation step

Δ′σ2
i,t(n) =

(
1 − ϑ(σ)

)
Δ′σ2

i,t(n− 1) + ϑ(σ)Δ′σ2
i,t(n). (8.62)

The notation [ · ]ba denotes the limitation

[x]ba = min
{

max
{
x, a

}
, b
}
. (8.63)

For the free parameters, adequate values for this application yield to

η
(σ)
+ = 1.000005, (8.64)

η
(σ)
− = 0.99998, (8.65)

ϑ(σ) = 0.00005. (8.66)

The step size is initialized by

η
(σ)
i,t (0) = 0.0001, i ∈ UH, t ∈ UI. (8.67)

The output weight step sizes η(w)
V,i (n) are adapted similar to the width step

sizes η(σ)
i,t (n), despite the fact of different smoothing parameters



8 Intelligent Control Strategies for Hands-Free Telephones 299

η
(w)
+ = 1.000003, (8.68)

η
(w)
− = 0.999995, (8.69)

ϑ(w) = 0.00002, (8.70)

and a different initialization:

η
(w)
V,i (0) = 0.001, i ∈ UH. (8.71)

8.5.4 Growing Network Structure

Generally, the classification performance of RBF networks can be improved by
using more than one radial basis function per class. However, the number of
neurons per class mostly are unpredictable when initializing the network. For
this reason a growing network structure, automatically adding neurons [36],
is applied in this approach. Since the number of input and output ports are
constant, only RBF neurons in the hidden layer have to be added.

The procedure for adding RBF neurons can be split up into two steps:
First, the decision for expanding the network has to be made; secondly the
position and other parameters have to be assigned to the new neuron.

8.5.4.1 Decision for New Neurons

The decision for adding a neuron is based upon the quality measurement
function Jn in Eq. 8.37. The aim is to add new neurons at these positions
that are producing high cost.

For each hidden neuron z a decision (threshold) function ζ(th)
z (n) and a

position (center) function ζ(c)
z (n) is introduced. Illustrately, an RBF neuron is

added at position ζ(c)
z (n) when the decision function ζ(th)

z (n) exceeds a certain
threshold ζ̃(th). The new neuron then is assigned to class z which is producing
the highest cost. Both functions are updated in parallel to the adaptation of
the parameters of the hidden neurons representing the class Ku of the current
input vector u:

ζ(th)
z (n+ 1) =

(
1 − γζ(n)

)
ζ(th)
z (n) + γζ(n) ζ̂(th), z ∈ Ku (8.72)

ζ(c)
z (n+ 1) =

(
1 − γζ(n)

)
ζ(c)

z (n) + γζ(n)u(n), (8.73)

whereas the functions are not adapted for all other neurons z /∈ Ku. For ζ̂(th)

and ζ̃(th) see Eqs. 8.78 and 8.79.
Both functions are initialized by zero:

ζ(th)
z (0) = 0, (8.74)

ζ(c)
z (0) = 0. (8.75)
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The performance of the whole algorithm fundamentally depends on the
control of the time-variant smoothing factor γζ(n). For a large time factor
the position function is moving fast towards the input vector u of the current
class, meanwhile the decision function increases rapidly. Such a behavior is
desired for classes that cannot be adequately represented by the network.
Specifically these are the situations producing large cost measured by Jn. For
this reason the smoothing factor is chosen proportional to the cost function:

γζ(n) = κ1

[
Jn

]2·10−4

0︸ ︷︷ ︸
1.

[
κ

κ3 Δ(n)
2

]100
0.01︸ ︷︷ ︸

2.

(
1 − νz(n)

)
︸ ︷︷ ︸

3.

, (8.76)

with κ2 > 1,

in which Δ(n) denotes the change of the system mismatch vector (of the
acoustic echo cancelling filter)

Δ(n) =
∥∥hΔ(n+ 1)

∥∥2 − ∥∥hΔ(n)
∥∥2
, (8.77)

and νz(n) is the membership function for class z. This function is generated
by the first V − 1 output neurons and discussed in Sec. 8.6. [ · ]ba qualifies a
limitation (see Eq. 8.63). The adaptation rule for the smoothing factor consists
of three terms:

1. The cost function increases the smoothing factors when measuring large
costs. However, the influence on the smoothing factor is limited to a value
of 2 · 10−4 which is typical for a bad initialized acoustic echo cancelling
filter.

2. The second term accelerates the adding of new neurons for situations while
the acoustic echo cancelling filter diverges. Experiments yield to favorable
parameters of about κ3 ≈ 5000 and κ2 ≈ 1.1.

3. If the current class is already well represented by the network, a (large)
membership function close to one decreases the smoothing factor and
thereby slows down the process for adding neurons. By contrast a small
membership function suggests a poor representation of the current state
of the system; hence, a neuron should be added quite fast.

The parameter κ1 influences the overall dimension of the smoothing factor –
experiments yield to a reasonable value of κ1 ≈ 10. The threshold and the
final value of the decision function are chosen to

ζ̂(th) = 1.0, (8.78)

ζ̃(th) = 0.9. (8.79)

That means, a neuron is added if the decision function has reached 90% of
its final value.

In order to react only on the current situation of the acoustic echo can-
celling system, the adaptation of the decision function in Eq. 8.72 is extended
by a forgetting factor γ(down)

ζ
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ζ(th)
z (n+ 1) =

⎧⎨⎩γ
(down)
ζ

[(
1 − γζ(n)

)
ζ
(th)
z (n) + γζ(n) ζ̂(th)

]
, z ∈ Ku,

γ
(down)
ζ ζ

(th)
z (n), z ∈ (K \ Ku).

(8.80)

Previous situations, that are not sufficient enough for adding a new neuron,
are no longer taken into account. The forgetting factor is chosen according to
a time constant of about 10000 samples, which is approximately equivalent to
the duration of one situation:

γ
(down)
ζ = 0.9999 . (8.81)

The general functionality of the decision function is explained by a simulation
with an insufficiently adapted acoustic echo canceller in Fig. 8.18.

In Fig. 8.19, the algorithm for adding new neurons is illustrated by a flow
diagram.

8.5.4.2 Parameters of the New Neuron

The parameters of the new neuron should be chosen cleverly to keep the
impact on the other neurons slightly. Following, the neuron to be added is
denoted new.

• The center is initialized by the position function:

cnew(n) = ζ(c)
z (n) . (8.82)

Due to the same smoothing factor for the decision- and the position func-
tion the new neuron is added in a region where the input vector are gen-
erating large cost.

• The widths are chosen to minimize the overlapping with other radial basis
functions while improving the network output for the current situation.
Thus, we have found an adequate initialization

σnew,t(n) =
√
T

∣∣ccl,t(n) − cnew,t(n)
∣∣

4
, t ∈ UI, (8.83)

with the RBF neuron “cl” that has the smallest distance to neuron “new”
and T the dimension of the input space UT.

• The dimension of the weights of the output neurons wV (n) are enlarged
by one (for the new hidden neuron). The weight corresponding to the new
neuron is initialized by averaging all weights representing the class Ku of
the current input vector u:

wV ,new(n) =

∑
i∈Ku

wV,i(n)∑
i∈Ku

1
. (8.84)
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Fig. 8.18. Simulation to explain the operation of the decision function ζ
(th)
z (n) for

adding new neurons. Depicted are (top down): speech signal of local speaker, adap-
tation step size μ(n) of acoustic echo canceller, system mismatch of echo cancelling

filter, decision function ζ
(th)
5 (n) for state number 5 (“filter adjustment insufficient,

. . . ”). An enclosure dislocation occurs at sample 65000. The RBF network (for con-
trolling the step size) is not well adapted, hence the adaptive filter stalls. Following,
the decision function increases correctly at this point and a neuron is added at sam-
ple 70000. As a result of the new neuron the step size increases and the readaptation
of the acoustic echo canceller is induced.

• Likewise, the new network step sizes are initialized by averaging all existing
step sizes for the current class Ku

η
(cw)
new,t(n) =

∑
i∈Ku

η
(cw)
i,t (n)∑

i∈Ku

1
, t ∈ UI (8.85)

η
(σ)
new,t(n) =

∑
i∈Ku

η
(σ)
i,t (n)∑

i∈Ku

1
, t ∈ UI (8.86)

η
(w)
V ,new(n) =

∑
i∈Ku

η
(w)
V,i (n)∑

i∈Ku

1
. (8.87)
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Fig. 8.19. Flow diagram for adding neurons in the growing network. The algorithm
is shown for class i, nevertheless it is processed for all classes (that represent the
states of system) in parallel. The main path is passed for class Ku of the current

input vector u. When the decision function ζ
(th)
z (n) exceeds a certain threshold, a

new neuron for class Ku is added at position ζ(c)
z (n). The time argument is omitted

for sake of clarity.

8.5.5 Results

The system is trained and verified in a simulation environment; however, real-
world signals and systems are utilized. That are the speech signals recorded
by different speakers in different languages, the background noise signals from
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different environments (office, car, etc.) and the room impulse response mea-
sured in different enclosures. Here, a sampling frequency of fs = 8 kHz is
used. The room impulse response is simulated with the length of 2000 sam-
ples. For the adaptive echo cancelling filter 1024 plus 40 samples are applied
(40 samples for the delay coefficients [17]). In order to achieve meaningful
results for the presented algorithm, the whole simulation data is split up into
70% training data and 30% verification data. Hereby, an over-fitting of the
RBF network on the training data can be detected. Furthermore we achieve
an independent validation of the adaptation quality. Following, some selected
results of the verification simulation for the presented method are shown.

The main task of the acoustic echo cancelling filter is to match the impulse
response of the loudspeaker-enclosure-microphone system [17]. Hence, we eval-
uate the quality of the whole system by the system mismatch parameter. In
Fig. 8.20 the simulation result for a verification simulation with low noise level
is depicted (including the system mismatch). It should be mentioned that all
RBF network parameters are fixed in the verification simulations – the para-
meters are adapted only during the training process. A verification simulation
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System mism. (m
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)

System mism. (m
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0.6
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Iterations

Local speaker

Enclosure dislocations 

Fig. 8.20. Simulation example for 40dB SNR (low background noise). Depicted are
(top down): The system mismatch for a step-size control applying the RBF network
(μRBF(n)), a pseudo-optimal step-size control (μopt(n)) and a classical approach
utilizing the delay-coefficient method (μTK(n)). Beneath, the step size generated by
the RBF network is depicted. The excitation signal of the far-end speaker and the
disturbance signal of the local speaker are shown below. Two enclosure dislocations
occur at samples 65000 and 95000.



8 Intelligent Control Strategies for Hands-Free Telephones 305

-15

-10

-5

0

dB

System mism. (m
RBF

)
System mism. (m

opt
)

System mism. (m
TK

)

0
0.2
0.4
0.6
0.8

1 m
RBF

 -0.5
0

0.5
Far-end speaker

0 1 2 3 4 5 6 7 8 9 10

x 10
4

 -0.5
0

0.5

Iterations

Local speaker

Enclosure dislocations 

Fig. 8.21. Simulation example for 0 dB SNR (background noise level close to level of
local speech signal). Depicted are (top down): The system mismatch for a step-size
control applying the RBF network (μRBF(n)), a pseudo-optimal step-size control
(μopt(n)) and a classical approach utilizing the delay-coefficient method (μTK(n)).
Beneath, the step size generated by the RBF network is depicted. The excitation
signal of the far-end speaker and the disturbance signal of the local speaker are
shown below (note: the local background noise is not included in the local signal
shown here). Two enclosure dislocations occur at samples 65000 and 95000.

of the same system (particularly the RBF parameters are identical) with a
high local background noise level is shown in Fig. 8.21. It can be realized that
the RBF network satisfactorily handles with both situations and provides a
well adjusted step size for the acoustic echo canceller in almost all situations.
Specifically the enclosure dislocations are detected rapidly in contrast to the
“classical” approach utilizing the delay-coefficient method only. Also, the step
size is correctly reduced for situations with large background noise. Finally,
the system copes very well with double-talk situations (when both the local
and the far-end speaker are active), too: The step size is rapidly decreased for
theses situations in order to prohibit the adaptive filter from diverging.

8.6 Radial Basis Function Network for State Detection

In Sec. 8.5 the idea of a RBF network for step-size control of an acoustic echo
canceller is presented. The state-space representation of the whole hands-
free system and its application as prior-knowledge for the RBF network is
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introduced. That is, one Gaussian function represents a single class or state of
the system. In case of the growing network approach (Sec. 8.5.4) further RBF
neurons are added for each state leading to an improved state classification.
The state information is not only interesting for control of the echo canceller
but can be useful for all other speech enhancement algorithms of a hands-free
system. For example, a noise reduction can process the state information on
local background noise and adjust its parameters.

Here, the application of the RBF network for state detection is considered
in more detail. Further on, the decision for a certain state of the system is
analyzed using means of detection theory [44]. Theses results are used to
evaluate the reliability of the applied detectors.

8.6.1 State Classification

Classification problems can be regarded as follows: a feature space, whose axes
coincide with the rows of measurable feature vectors, can be partitioned into
several regions. These regions are denoted as classes. Measuring a new feature
or pattern vector u, the task is to make a decision to which class z ∈ K the
vector belongs. For this application, the classes are given by the states of the
system (as listed in Tab. 8.1). For classification, the conditional probability
P (z|u) of class z for given feature vector u is analyzed [2]. According to
Bayes theorem the association probability can be derived from the conditional
probability density function (PDF) fu(u|z) of the feature vector u conditioned
on class z and from the a priori probability P (z) of class z through

P (z|u) =
P (z) fu(u|z)

NZ∑
z′=1

P (z′) fu(u|z′)
, (8.88)

with NZ the number of classes (states). The denominator is the a priori PDF
fu(u) of feature vector u. The following section deals with the estimation of
the conditional PDF fu(u|z) and the decision for a certain state based on
Bayes theorem.

8.6.1.1 Estimation of Probability of States

For estimation of probability density functions parametric or non-parametric
methods can be utilized [4, 43]. For example, multidimensional histograms
measuring the frequency distribution are non-parametric approaches. How-
ever, the complexity increases by the square of the input dimension and is
not practicable for dimensions larger than two for this reason. For parametric
approaches mixture-models, calculated by the superposition of several func-
tions, can be applied. The estimation of the PDF is performed by estimating
the parameters of the underlying function – hence the method is called para-
metric. Assuming the functions are probability density functions for itself, the
mixture-model for estimation of f̂u(u|z) is given by



8 Intelligent Control Strategies for Hands-Free Telephones 307

f̂u(u|z) =
Nz∑
i=1

πiz f̂u(u|i, z), z ∈ K, (8.89)

with the mixing coefficient πiz stating the a priori probability that u is rep-
resented by the conditional PDF f̂u(u|i, z). Nz is the number of superposed
functions. The mixing coefficient has to fulfill the condition

Nz∑
i=1

πiz = 1, z ∈ K. (8.90)

Utilizing Gaussian functions for f̂u(u|i, z), Eq. 8.89 is called Gaussian mixture
model (GMM). With an adequately number of Gaussian functions the GMM
can be used to model arbitrary densities [1]. Here, we are using the GMM to
estimate the conditional PDF fu(u|z).

Regarding Eq. 8.89 a large similarity of the GMM with the RBF network
(Eq. 8.34) can be realized. Actually, a GMM can be implemented by an RBF
network [2,4,35,41]. Following, we analyze the applied growing RBF network
with respect to an estimation of the conditional PDF fu(u|z).

Inserting Gaussian functions into Eq. 8.89 and assuming uncorrelated el-
ements of the feature vector u, the GMM yields

f̂u(u|z) =
Nz∑
i=1

πiz

T∏
t=1

[
1√

2π σ(z,i),t

exp

(
−1

2

(
ut − c(z,i),t

)2
σ2

(z,i),t

)]
, (8.91)

which can be further expanded to

f̂u(u|z) =
Nz∑
i=1

πiz

T∏
t=1

[
1√

2π σ(z,i),t

]
T∏

t=1

[
exp

(
−1

2
(ut − c(z,i),t)2

σ2
(z,i),t

)]
.

(8.92)

The second product term can be interpreted as output hj(u) of RBF neuron
j, whereas the neuron j models the Gaussian function (z, i). With Uz the set
of all RBF neurons used for modelling the density f̂u(u|z) we obtain

f̂u(u|z) =
∑
j∈Uz

πjz

T∏
t=1

1√
2π σj,t

hj(u). (8.93)

Choosing the output weight wv,i of the RBF network according to the first
term in Eq. 8.92

wv,j =

⎧⎪⎪⎨⎪⎪⎩
πjz

T∏
t=1

1√
2π σj,t

, v = z, j ∈ Uz,

0, else,

v ∈ (UO \ V ), j ∈ UH, (8.94)
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the output neuron v can be utilized for estimation of the conditional PDF
f̂u(u|z). That is, only these weights wv,j corresponding to state z (represented
by neuron v) are chosen different to zero.

Hence, the structure of the RBF network can be used to estimate the
PDF f̂u(u|z) by modelling an GMM. However, it has to be ensured that the
given RBF network is able to model the statistical properties of the feature
vector adequately. Furthermore, the parameters of the RBF network have to
be adjusted. Here, we apply a recursive smoothing for the adaptation of the
centers and widths parameters (see Sec. 8.5.3.1 and Sec. 8.5.3.2). Assuming the
feature data to be obtained from a stationary random process, the adaptation
rule for the center in Eq. 8.41 complies with the estimation of the conditional
mean value given feature data belonging to neuron j:

cj,t(n)
n→∞≈ mut|j = E

{
ut(n)

∣∣j}. (8.95)

Likewise, the adaptation rule for the widths (Eq. 8.46) is an estimation for
the conditional variance of the feature data:

σ2
j,t(n)

n→∞≈ E

{(
ut(n) −mut|j

)2
∣∣∣∣j
}
. (8.96)

As shown above, neuron j models the Gaussian function (z, i), which means
the center and width parameters can be used for an estimation of the Gaussian
mean and variance parameters.

The mixing parameter πjz in Eq. 8.94 controls the influence of the super-
posed Gaussian function to the estimation of the conditional PDF f̂u(u|z).
Here, we estimate these mixing coefficients by measuring the accumulation of
the feature data close to the winner neurons. Neurons with high frequency of
occurrence get larger mixing parameters.

Due to the growing network structure, the given RBF network cannot
only fit Gaussian distributions but also models any distribution of the feature
data. That is, new superimposed Gaussian functions are added at the regions
where the feature data accumulates but the conditional PDF (calculated by
the RBF network) has no amplitude yet. Hence, further neurons are added
until the PDF can be modelled arbitrarily close.

With the presumption of reliable estimations of the conditional PDFs
f̂u(u|z), an estimation of the association probability for state z given fea-
ture vector u can be formulated:

P̂ (z|u) =
P̂ (z) f̂u(u|z)

NZ∑
z′=1

P̂ (z′) f̂u(u|z′)
. (8.97)

The a priori probability P̂ (z) can be estimated by the frequency of occurrence
of state z in a training set [41]
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P̂ (z) =
Lz

L
, z ∈ K, (8.98)

with L the total number of training data and Lz the number of training data
belonging to state z. Here, L is the number of iteration steps during training,
and Lz the number of iterations for adapting parameters of state z. However,
one has to ensure that the distribution of the training data with respect to
the states complies to the real-world distribution.

Following, the decision rule for a certain state z is deduced from detection
theory [44]. A hypothesis Hz ∈ {H1, H2, . . . , H9} is established for each
state z, whereas each hypothesis means that the related state appears. A
decision is made in accepting a single hypothesis and consequently rejecting
all other hypotheses. Several approaches are know for optimization of the
decision [44]. A decision with respect to the minimization of the mean cost is
the aim of a Bayes decision. The cost for all decision possibilities are defined
for this purpose, whereas cost Cij corresponds to a decision for hypothesis Hj

while hypothesis Hi is true. Presuming the a priori probability P (Hz) = P (z)
of each hypothesis, the total cost of a decision is given by

C =
NZ∑
i=1

P (i)
NZ∑
j=1

Cij

∫
Uj

fu(u|Hi) du, (8.99)

with U j being the region of the input space in which a decision for hypothesis
Hj is made. For representation of the decision rules Nz − 1 likelihood ratios
are defined:

Λ2 =
fu(u|H2)
fu(u|H1)

, (8.100)

Λ3 =
fu(u|H3)
fu(u|H1)

,

...
...

Λ9 =
fu(u|H9)
fu(u|H1)

,

with fu(u|Hi) = fu(u|zi). A (Nz − 1) dimensional decision space is spanned
up by the likelihood ratios Λi, segmented into several regions by the decision
rules. For simplification the same cost C = 1 for all false decisions and the
cost C = 0 for all correct decisions are assumed:

Cij =

{
0, i = j,

1, i �= j.
(8.101)

Hence, the decision rules can be formulated by (Nz−1)Nz/2 = 36 (forNz = 9)
different comparisons, each discarding one hypothesis [44]:
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Λi

H1
>
<
Hi

P (1)
P (i)

→ P (i) fu(u|Hi)
H1
>
<
Hi

P (1) fu(u|H1), i = 2, ..., 9 (8.102)

Λi

Λ2

H2
>
<
Hi

P (2)
P (i)

→ P (i) fu(u|Hi)
H2
>
<
Hi

P (2) fu(u|H2), i = 3, ..., 9

Λi

Λ3

H3
>
<
Hi

P (3)
P (i)

→ P (i) fu(u|Hi)
H3
>
<
Hi

P (3) fu(u|H3), i = 4, ..., 9

...
...

Λ9

Λ8

H8
>
<
H9

P (8)
P (9)

→ P (9) fu(u|H9)
H8
>
<
H9

P (8) fu(u|H8) ,

where Hi means rejection of Hi. Regarding the right hand side in Eq. 8.102,
the search of the maximum P (i) fu(u|Hi), i = 1, ..., 9 yields to an equivalent
decision for hypothesis Hz:

z = arg max
z∗ P (z∗) fu(u|Hz∗). (8.103)

If the statistical parameters are not available the decision has to be based on
estimated values:

ẑ = arg max
z∗ P̂ (z∗) f̂u(u|Hz∗). (8.104)

The right hand side can be multiplied by 1/
∑NZ

z′=1 P̂ (z′) f̂u(u|z′) without
restrictions of any kind. So finally we get the Bayes decision rule for hypothesis
Hz (and state z) with

z ≈ ẑ = arg max
z∗

P̂ (z∗) f̂u(u|z∗)
NZ∑

z′=1

P̂ (z′) f̂u(u|z′)

= arg max
z∗ P̂ (z∗|u), (8.105)

which is the maximum association probability for state z given feature vector
u (see Eq. 8.97).

The performance of the given state classification is shown by means of
an simulation example in Fig. 8.22. The constraints of the simulation are
similar to the ones specified in Sec. 8.5.5. Hence, a simulation example with
well adapted but fixed parameters is analyzed. When taking the definitions
of states in Tab. 8.1 into account, a reliable state detection for both low and
high local background noise can be noticed. The states for insufficient filter
convergence are correctly detected at the beginning of the adaptation and –
even more important – after the two enclosure dislocations. Likewise, the three
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double-talk situations during sufficient and insufficient filter convergence are
successfully passed. Some small outlier only occur during the first double-talk
situation for large background noise (at about sample 30000). Furthermore, a
small misclassification of the initialization-state at the very beginning of the
simulation can be noticed. This is no weakness of the classification rule but is
due to the fact that the RBF network is still optimized for step-size control
and not for state classification.
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Fig. 8.22. Simulation examples for classification of states. A well optimized RBF
network is used for both step-size control and state estimation. Two enclosure dislo-
cations occur at sample 65000 and 95000. Depicted are (top down): System mismatch
for simulations with low and high local background noise. The local speaker signal
is shown underneath. Beneath, the states detected for both simulations with low
and high background noise are depicted. The enumeration of states corresponds to
Tab. 8.1.

8.6.1.2 Probability of State Characteristics

For many speech enhancement algorithms not only the discrete state of the
system z but also the state characteristics z̃ are of interest. The state char-
acteristics are the axes (local speech activity, local background noise, filter
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convergence, initialization) of the state space. In contrast to the classification
problem we have to solve a binary decision problem here; e.g. local speaker
active: yes/no. With the notation of a state characteristic z̃ we introduce
distinct characteristics z̃1:

z̃1 ∈ K̃ = { “local speaker active”, “large background noise”, (8.106)
“good filter convergence”, “initialization” } .

The complementary state characteristics z̃0 denote non-distinct characteris-
tics:

z̃0 ∈ K̃ = { “local speaker inactive”, “low background noise”, (8.107)
“poor filter convergence”, “no initialization” } .

Assuming same cost and a priori probabilities for both characteristics z̃1
and z̃0, the activity of a certain characteristic can be decided according to
Bayes:

P̂ (z̃1|u) > P̂ (z̃0|u). (8.108)

Considering Bayes theorem (Eq. 8.88), the estimation of fu(u|z̃) has to be
determined for the calculation of P̂ (z̃|u). Likewise to Sec. 8.6.1.1, this can be
done by use of GMM. Replacing state z by state characteristic z̃ in Eq. 8.89
the PDF can be modelled as superposition of Nz̃ conditional PDFs:

f̂u(u|z̃) =
Nz̃∑
i=1

πiz̃ f̂u(u|i, z̃), z̃ ∈ K̃. (8.109)

For the implemented RBF network follows in like manner to Eq. 8.93:

f̂u(u|z̃) =
∑
j∈Uz̃

πjz̃

T∏
t=1

1√
2π σj,t

hj(u), (8.110)

with neuron j modelling Gaussian function (z̃, i). Uz̃ is the number of neurons
representing a given state characteristic z̃:

Uz̃ =
⋃

z∈Kz̃

Uz. (8.111)

Kz̃ is the set of states incorporating state characteristic z̃. The conditional
PDFs of the distinct and non-distinct characteristics z̃1 and z̃0 can be formu-
lated in the same way.

For calculation of the two characteristics z̃1 and z̃0 the output layer of the
implemented RBF network has to be enlarged by twice the number of state
characteristics. Hence, eight output neurons v ∈ U

Õ
with the weights
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wv,i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
πiz̃1

T∏
t=1

1√
2π σi,t

, v = z̃1, i ∈ Uz̃1 ,

πiz̃0

T∏
t=1

1√
2π σi,t

, v = z̃0, i ∈ Uz̃0 ,

0, else,

v ∈ U
Õ
, i ∈ UH , (8.112)

with UH the set of neurons in the hidden layer, have to be added. The imple-
mented RBF network can then be used for estimating conditional PDFs of
both characteristics:

f̂u(u|z̃1) = fz̃1(u) , z̃1 ∈ U
Õ
,

f̂u(u|z̃0) = fz̃0(u) , z̃0 ∈ U
Õ
.

Recalling Bayes theorem (Eq. 8.88)

P̂ (z̃1|u) =
P̂ (z̃1) f̂u(u|z̃1)

f̂u(u)
, (8.113)

P̂ (z̃0|u) =
P̂ (z̃0) f̂u(u|z̃0)

f̂u(u)
, (8.114)

with f̂u(u) = P̂ (z̃1) f̂u(u|z̃1) + P̂ (z̃0) f̂u(u|z̃0), z̃ ∈ K̃, (8.115)

and Eq. 8.108, a Bayes decision can be made by use of these estimates:

P̂ (z̃1|u)
H

(z̃)
1
>
<

H
(z̃)
0

P̂ (z̃0|u), z̃ ∈ K̃, (8.116)

with the two hypothesis H(z̃)
1 and H(z̃)

0 stating that state characteristic z̃ is
distinct or not:

z̃1 → H
(z̃)
1 true,

z̃0 → H
(z̃)
0 true,

z̃ ∈ K̃. (8.117)

Although a basic RBF network with one neuron per class can be used for the
estimation, obviously better approximations can be achieved with the growing
network structure.

For demonstration of the given Bayes estimator, a simulation of the a
posteriori probabilities P̂ (z̃|u) considering the two state characteristics “lo-
cal speaker active” and “poor filter convergence” as example is depicted in
Fig. 8.23. It can be noticed that both estimated probabilities are quite re-
liable, although the estimation of double talk for large background noise is
fairly disturbed.

The Bayes decision assuming the same cost for all decisions and the same
a priori probabilities for both characteristics is symmetric to P̂ (z̃|u) = 0.5.
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Fig. 8.23. Examples for probability of two state characteristics “local speaker ac-
tive” (together with far-end speech activity: DT – double talk) and “poor filter con-
vergence” (PFC). Enclosure dislocations occur at samples 65000 and 95000. Two
simulations for low and high background noise are performed. Depicted are the esti-
mated a posteriori probabilities P̂ (“DT”|u) and P̂ (“PFC”|u) for both background
noise levels, respectively.

However, other decision rules can be applied. A Minimax test can be used for
example if the a priori probabilities P̂ (z̃) cannot be obtained. Finally, if no
assumptions on the cost can be established, a Neyman-Pearson test will be
applicable [44].
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8.6.2 Reliability of Detectors

The previous sections deal with the application of RBF networks for nonlinear
mapping of detector outputs on a (reliable) step size. The network was ex-
tended to calculated some state information, too. However, all the information
processing can only use the detector signals for input. That is, the reliabilities
of the step size and state estimations are mainly based upon the reliabilities of
the detectors. For this reason it is quite helpful to obtain information on the
reliabilities of various detectors; more precisely, determine the reliability of a
certain detector for the interesting state characteristics. By this knowledge an
overall control strategy can be arranged by selecting and integrating those de-
tectors that perfectly fit together in mutually compensating their weaknesses
on certain state characteristics.

Consequently, it is the task to qualitatively benchmark the detectors con-
cerning the classification of the interesting state characteristics. The evalua-
tion of the receiver operating characteristics (ROC) for each detector is one
possibility we want to analyze here in more detail. First of all, the conditional
detection probability P (z̃)

D (detecting z̃1 correctly when z̃1 is true) and the
conditional false-alarm probability P (z̃)

F (detecting z̃0 when z̃1 is true) can be
defined:

P
(z̃)
D =

∫
U (z̃)

1

fu

(
u
∣∣H(z̃)

1

)
du, (8.118)

P
(z̃)
F =

∫
U (z̃)

1

fu

(
u
∣∣H(z̃)

0

)
du,

with U
(z̃)
1 the region in the feature space leading to a decision for H(z̃)

1 .
The reliability of detectors can be qualified in analyzing the ratio of the

two conditional probabilities. However, this ratio depends on the decision rules
and cannot be obtained directly. The approach of a ROC is to determine P (z̃)

D

in dependency of P (z̃)
F . According to Eq. 8.118, the interrelationship between

both probabilities is given by the discrimination threshold. The likelihood
ratio of a Bayes optimization [44] can be defined as threshold parameter λ
and leads to

Λ(z̃) =
fu

(
u
∣∣H(z̃)

1

)
fu

(
u
∣∣H(z̃)

0

) = λ, z̃ ∈ K̃. (8.119)

Remembering that we are not interested in the reliability of all detectors
together but in the reliability of each single detector yields to

fu

(
ut

∣∣H(z̃)
1

)
fu

(
ut

∣∣H(z̃)
0

) = λ, z̃ ∈ K̃, t ∈ UI. (8.120)
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Calculating P (z̃)
D as a function of P (z̃)

F for different values of λ leads to the
intended relation, whereas the two conditional PDFs can be estimated by
the given RBF network, as shown in Eq. 8.110. The ROCs for the given
RBF network and the applied nine detectors (see Sec. 8.5.2) are depicted in
Fig. 8.24. Four curves are drawn for the interesting state characteristics for
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Fig. 8.24. Receiver operating characteristics (ROCs) – conditional detection prob-

ability P
(z̃)

D as a function of the conditional false-alarm probability P
(z̃)

F – for all
nine applied detectors (see Sec. 8.5.2). Depicted are curves for the four state char-
acteristics “double talk” (DT), “background noise” (N), “filter convergence” (FC)
and “initialization” (INIT). Marked are the points for λ = 1, representing the op-
timal decision boundary according to Bayes for equal cost of false detections and
equal a priori probabilities. Note: in case of minimum statistics the ROC for state
characteristic “background noise” passes the (optimal) upper left corner.
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each detector, respectively. The position of λ = 1 is marked; it complies with
the Bayes decision bound for equal cost for all false detections and same a
priori probabilities (see Eq. 8.116). A ROC will ideally pass the upper left
corner of the diagram, that corresponds with the operating point of P (z̃)

D = 1
with no false alarms (P (z̃)

F = 0). By contrast, an unreliable detector features
the bisecting line as characteristic – which means P (z̃)

D = P
(z̃)
F and the decision

is purely random.
Analyzing the ROCs for the nine detectors in Fig. 8.24 shows large differ-

ences between the curves, as expected. Really high reliability can be achieved
for classifying background noise by use of the minimum statistics (detector
number 8) for example: 100% detection without false alarms. However, it is
obviously that this detector is not able to classify the other state characteris-
tics, since these curves are quite close to the bisection line. All other detectors
yield a more or less strong reliability for classification of the four state charac-
teristics, even though none of them passes the optimal operation point (which
is quite seldom). For instance, the detector “filter mismatch by delay coeffi-
cients” can be effectively used for detecting the initialization state and the
filter convergence. Conversely, reliable information on double-talk situations
can be achieved by use of the “step size by delay coefficients” detector. Quite
interesting is the fact, that the “correlation analysis” detector proves as mod-
erately reliable only, even though this detector is often (successfully) applied
for double-talk detection [21]. The reason can be found in the large dispersion
of the estimated signals. For application of double-talk detectors, some addi-
tional signal processing is performed on the noisy signals. In our simulation,
we only used the raw data of the detector.

8.6.3 Conclusions

In this chapter, we focussed on the control of speech quality improvement al-
gorithms in hands-free units. Analyzing past research on the subjects reveals
a huge number of approaches to that problem, which are justified by the con-
ditions under which the hands-free unit is to operate – regarding the acoustic
environment as well as customer requirements, such as low-cost in contrast
to high-end quality. But we also found that control is usually implemented
separately for each single algorithm, like noise-reduction, echo cancellation,
and loss control.

The aim of this chapter was therefore to discuss combinations of various
detectors and estimation normally in place for the various algorithms, in order
to make the control decisions more reliable. A state model was presented to
illustrate the synergies, and we applied fuzzy logic, which works from expert
knowledge but is no means for optimization itself.

We also presented generic methods to optimize this combination of de-
tectors and estimators, and the parameters for the control unit, for a given
application, focussing on acoustic echo cancellation as the algorithm most
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sensible to the quality of its control unit. A number of possibly optimum step
sizes was discussed, and from the result an evaluation of the quality of a step
size with respect to echo cancellation was derived, the so-called cost function.

These results were applied in the design of neural network-like combina-
tion methods, comprising multilayer perceptrons as well as learning vector
quantization.

The second part of the chapter showed the application of RBF networks
not only for step-size calculation but also for evaluating the reliability of the
applied detectors. The estimation of the receiver operating characteristics was
based on the conditional probability density functions for the state character-
istics. These PDFs could be reliably estimated by the RBF network, since a
growing network structure, that facilitates the representation of any density,
is applied. However, one has to keep in mind that the RBF network is learning
by training samples only. Hence, the overall quality of the system, including
its generalization ability, is mainly influenced by the compilation of train-
ing and verification data. We made a great effort to set up some generalized
training data and to compile several training samples, even though we did not
discuss this topic here. This cost some time during the design process, but it
payed off by optimized performance at reduced cost during the operation of
the hands-free unit.

This chapter should set the reader in the position of having a complete
tool set at hand in order to design an efficient control unit for his hands-free
unit, which is as indispensable as selecting and optimizing the audio algorithm
itself.
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9.1 Introduction

9.1.1 Noise and Speech

In a telephone connection, the microphones do not only capture the speakers’
voices, but also some of the surrounding acoustic signals, often summarized
as – implicitly: undesired – “noise”. The type of such disturbances may vary
considerably: A “classical” handset in a home or office might record some
standard, relatively low-level background events, like other people’s voices
(“babble”), fan noise from a computer nearby, or wind and remote-vehicle
humming, audible through an open window. Such effects are amplified, how-
ever, relative to the actual speech sound, when a hands-free telephone is used,
with a much larger distance between the speaker’s mouth and a microphone.
Even worse and stronger effects appear when the telephone is applied in more
open environments, e.g., a mobile phone in a hands-free mode inside a moving
car or beside a lively street. Furthermore, also the speakers’ voices themselves
may appear as an interference, in case of echos and reverberation due to a
corresponding acoustic environment.

The additional signals may, to a certain extent, also carry some information
for a listener, namely, on the actual conditions under which the speaker is
uttering her or his words. Nevertheless, the “noise” is mainly perceived as
a disturbance, since it causes difficulties in a telephone connection, as the
listener is, of course, interested mainly in the words of the speaker and not
in the sound of a car passing by. Even more problems arise for an automatic
speaker- or speech-recognition (ASR) system which is supposed to derive some
reaction from the spoken utterance.

The annoyance may be increased, if the speech-plus-noise signal is trans-
mitted through some data-compressing system, like in a mobile-radio channel
or also a modern wire-bound, low-rate link: Here, codecs reduce the data rate
from the well-known 64 kbit/s of PCM / ISDN down to the 13 kbit/s of
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“full-rate GSM”, to 5...6 kbit/s in more recent ITU-T standards for “multi-
media communication”, or even to 2 kbit/s like in some MPEG-4 variants
(see, e.g., [31]). Such codecs rely massively on models of the one speech sig-
nal to be encoded. This basis is destroyed by additive, completely different
components as well as by competing speech or speech-like parts, and this may
cause strongly non-linear effects due to the system’s malfunction.

A removal or, at least, reduction and control of additive disturbances is
therefore often highly desirable.

9.1.2 Types of Disturbances, Aim of Reduction

In this chapter, additive noise will be dealt with, only.
This includes more or less white noise, as produced, approximately, by

the wind through an open window in a moving car; it includes also coloured
noise, as generated by the car’s mechanical rolling (“lowpass noise”), or even
noise with some harmonic components, possibly stemming from the vehicle’s
engine. It may include “babble”, but not directly competing speech signals
of other speakers close to the same microphone: The so-called “cocktail-party
effect” (see, e.g., [4]) is not covered.

Echo reduction, as important as noise reduction, is dealt with in Chapters
2, 5, 6, and 7 of this book.

The effects of noise on an ASR can be quite strong: For example, the
recognition rate of a single-letter recognizer may drop, from some 87% with
“clean” speech, by some 10% even at relatively good noise conditions with
an average signal-to-noise ratio (SNR) of ∼ 15 dB, or even by some 70%
at SNR ≈ 0 dB (see, e.g., [50]). This problem will, however, not be in the
focus of this chapter: The central point of this section will be an enhanced
speech-signal reproduction for a human listener.

Still, this may be useful also for ASR, with the simple philosophy that
a “better-sounding” signal should also be “more understandable”, both for
a machine and for a listener. Although this is not necessarily true, sound-
optimized noise-reduction front-ends for ASR are quite commonly used.

With the same reasoning, such a pre-processing is used prior to data com-
pression: It is assumed that a speech signal with an improved sound is also
good for the codec. Therefore, in this section, we shall not look into the details
of noise influencing the coding parameters and the avoidance of especially bad
effects.

9.1.3 Noise-Reduction Approaches

There is a common discrimination of single-, two-, and multi-channel noise-
reduction techniques. These terms simply refer to the number of microphones.

The step from “two” to “multi” seems to be quite arbitrary. It has, how-
ever, a justification: Two microphones can be placed, with respect to the
speaker, either beside or behind each other, where any non-zero angle makes
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the difference vanish. An alternative is to use one microphone close to the
speaker, the other one “far enough away”, such that it catches mainly (or
only) the noise. (In this case, the latter microphone could also be exchanged
for some other sensor delivering information about the noise source - e.g.,
about the frequency and the amplitude of motor activities, allowing to esti-
mate the resulting motor noise in the cabin.) With at least three microphones,
however, a larger multitude of possible positions can be imagined, opening also
more variants of signal combinations in the processing scheme.

In this chapter, single-channel methods will be treated. In Sections 2, 3,
and 4 of this book, techniques with more sensors are covered in depth.

One classical single-microphone approach is based on a minimum-mean-
square error (MMSE), leading to a Wiener filter. Its generalization, the
Kalman filter, is out of this section’s scope; it is covered in Chapter 10. A
second, also classical approach is that of spectral subtraction; it is based on
the simple idea that a noise that is additive should be subtracted from the
disturbed signal, and as this turns out to be impossible in the time domain,
it is done in the spectrum.

9.1.4 Wiener Filter and Spectral Subtraction

In short, the above-named MMSE approach can be summarized as follows:
Let a microphone signal y(n) consist of a clean speech wave s(n) spoilt by
additive noise b(n):

y(n) = s(n) + b(n). (9.1)

Then design a filter with a frequency response H(ejΩ) and an impulse
response h(n) = F−1{H(ejΩ)} such that its output signal ŝ(n) approximates
s(n) in the MMSE sense (see Fig. 9.1).

Fig. 9.1. Basic structure of a Wiener filter.

The frequency variable

Ω
.= 2π · f

fs
= 2π · f · Ts (9.2)
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is the angular frequency 2π · f normalized to the sampling frequency fs =
1/Ts. The optimized filter is often termed Wiener filter, since its idea is already
found in a 1949 publication by N. Wiener [78]. It may not only be described,
but also realized both in the time and the frequency domains: The output
signal is found by the convolution

ŝ(n) = h(n) ∗ y(n) = h(n) ∗ [s(n) + b(n)
]

=
∞∑

κ=−∞
h(n− κ) · [s(κ) + b(κ)

]
=

∞∑
κ=−∞

h(κ) · [s(n− κ) + b(n− κ)], (9.3)

or by the inverse Fourier transformation of its spectrum

Ŝ
(
ejΩ

)
= H

(
ejΩ

) · Y (ejΩ
)

= H
(
ejΩ

) · [S (ejΩ
)

+B
(
ejΩ

) ]
, (9.4)

where Y (ejΩ), S(ejΩ), and B(ejΩ) are the Fourier transforms of the noisy
signal y(n), the clean signal s(n), and the noise b(n), respectively.

In practice, the filter is adapted to the short-time situation in blocks of
M data samples, and it is kept constant during corresponding time periods
of length

Tadapt = M · Ts = M/fs. (9.5)

For example, in a typical telephone case, we might have

fs = 8 kHz, (9.6)

M = 128, (9.7)

and, according to (9.5),
Tadapt = 16 ms. (9.8)

So, in (9.4), Y (ejΩ), S(ejΩ), and B(ejΩ) are to be understood as short-time
spectra, valid for M values and a duration Tadapt.

Starting from the (short-time) spectrum Y (ejΩ) = S(ejΩ)+B(ejΩ) of the
noisy signal y(n), a subtraction of B(ejΩ) is obviously equivalent to a removal
of the noise b(n). Since, however, only y(n) is available, B(ejΩ) is unknown,
a priori. But it can be assumed that, by some means to be discussed, at least
an approximate magnitude |B̃(ejΩ)| of the noise spectrum can be measured
or “estimated”. Assuming, furthermore, that a phase distortion is not too
important for speech signals [44], a modified subtraction can be applied:
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Ŝ
(
ejΩ

) .= Y
(
ejΩ

)− B̃ (ejΩ
)

.=
[∣∣∣Y (ejΩ

) ∣∣∣− ∣∣∣B̃ (ejΩ
) ∣∣∣] · ej·arg{Y (ejΩ)}. (9.9)

Here, only a spectral-magnitude subtraction is carried out, while the noisy
signal’s phase is left unchanged.

A slightly different argumentation starts from the assumption that s(n)
and b(n) are uncorrelated and that, therefore, their power (-density) spectra
(PDS) add:

Syy(Ω) = Sss(Ω) + Sbb(Ω).

Assuming again that spectra can be replaced by short-time measurements,
i.e. here: PDS terms by squared magnitudes of the above used descriptions,
an estimated noise-power spectrum |B̃(ejΩ)|2 has then to be subtracted from
|Y (ejΩ)|2. Variants using |B̃(ejΩ)|β and |Y (ejΩ)|β , with a suitably chosen
parameter β, are also known.

Eq. (9.9) may be re-written:

Ŝ
(
ejΩ

)
= Y

(
ejΩ

) · [1 − B̃ (ejΩ
)
/Y

(
ejΩ

) ] .= Y (ejΩ) ·Hsps(ejΩ) (9.10)

As Ŝ(ejΩ) maintains the phase arg{Y (ejΩ)}, according to (9.9), the fac-
tor Hsps(ejΩ) denotes a real-valued, even-symmetrical, zero-phase frequency
response:

Hsps

(
ejΩ

) .= Wo(Ω) = Wo(−Ω) ∈ R. (9.11)

This means that the spectral subtraction can be interpreted as a spectral
weighting. The close link to the Wiener-Filter description in (9.4) is evident;
of course, the relation between the optimized function H(ejΩ) and the “ab-
breviation” Hsps(ejΩ) in (9.10) has to be investigated.

The above two, closely linked approaches to speech enhancement will be in
this chapter’s focus. Variants of the “subtraction rule“ in (9.9) and the“noise
estimation” or, equivalently, “filter definition” according to (9.10) and (9.4)
are described. In particular, possible ways from the given signals to their
short-time spectra and back to time signals, i.e., various spectral-analysis and
spectral-synthesis systems are addressed.

9.2 Optimum-Filter Design in the Time Domain

9.2.1 Mean-Square Error Minimization

As stated in Sec. 9.1.4, the filter’s output signal shall approximate the clean-
speech signal s(n) in the MMSE sense. If all signals are viewed as random
sequences, the mean-square error is given by the expectation



330 U. Heute

ε = E
{[
ŝ(n) − s(n)]2}. (9.12)

With (9.3), ε depends on the infinitely many impulse-response samples h(κ).
Minimization of ε with regard to these degrees of freedom means that all
corresponding partial derivatives have to be zero:

∂ε/∂h(λ) = 0, λ ∈ Z. (9.13)

This leads to infinitely many linear equations with the unknown values h(n).
With the usual definition of a correlation sequence for two real-valued signals
u(n) and v(n), belonging to stationary processes, by

ruv(λ) = E
{
u(n) · v(n+ λ)

}
, (9.14)

these equations have the following form:

∞∑
κ=−∞

h(κ) · ryy(λ− κ) = rys(λ), λ ∈ Z. (9.15)

Based on (9.1), Eq. (9.15) is re-written as

∞∑
κ=−∞

h(κ) · [rss(λ− κ) + rbb(λ− κ) + rsb(λ− κ) + rbs(λ− κ)
]

= rss(λ) + rbs(λ), λ ∈ Z.

This can be simplified, if speech and noise are assumed to have zero mean
values and to be uncorrelated. Then, rsb(λ) = rbs(λ) ≡ 0 ∀λ holds, and we
have

∞∑
κ=−∞

h(κ) · [rss(λ− κ) + rbb(λ− κ)
]

= rss(λ), λ ∈ Z. (9.16)

9.2.2 Approximate FIR-Filter Solution

The filter can now be restricted to have a finite-length impulse response (FIR).
A simple choice is

h(κ) optimized for κ ∈ {−NF , . . . ,−1, 0, 1, . . . , NF

}
,

h(κ) = 0 else. (9.17)

Using now, for example, the central 2NF +1 equations of (9.16), with λ ∈
{−NF , . . . ,−1, 0, 1, . . . , NF }, a finite-dimension matrix / vector formulation
is found instead of (9.16):
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Ryy · h = rss. (9.18)

Due to the well-known symmetries of auto-correlation sequences, namely,
ruu(−λ) = ruu(λ), also Ryy and rss possess symmetries: The correlation vec-
tor rss is even with respect to its central point rss(0) according to

rss
.=
[
rss(NF ), . . . , rss(1), rss(0), rss(1), . . . , rss(NF )

]
,

and the correlation matrix Ryy is a symmetrical Toeplitz matrix:

Ryy =

⎡⎢⎢⎢⎢⎢⎣
ryy(0) ryy(1) . . . ryy(2NF − 1) ryy(2NF )
ryy(1) ryy(0) . . . ryy(2NF − 2) ryy(2NF − 1)

...
...

...
...

...
ryy(2NF − 1) ryy(2NF − 2) . . . ryy(0) ryy(−1)
ryy(2NF ) ryy(2NF − 1) . . . ryy(1) ryy(0)

⎤⎥⎥⎥⎥⎥⎦ .

Therefore, also the solution vector

h
.=
[
h(−NF ), . . . , h(0), . . . , h(NF )

]
=
[
Ryy

]−1 · rss (9.19)

of (9.18) is real-valued and symmetrical with respect to its center at κ = 0:

h(−κ) = h(κ).

Thus, the corresponding FIR filter has an even, real-valued, zero-phase fre-
quency response

H
(
ejΩ

)
= F{h(n)} .= HTD

o (Ω) = HTD
o (−Ω) ∈ R. (9.20)

A realizable, causal version of this filter is found by simply shifting h(n) ac-
cording to

h1(n)
.= h(n−NF), n ∈ {0, 1, 2, . . . , 2NF − 1, 2NF

}
, (9.21)

which leads to a linear-phase frequency response

H1

(
ejΩ

)
= F{h1(n)

}
= HTD

o (Ω) · e−jNFΩ .

The additional phase term says that the “approximately optimum” output
signal is now ŝ(n−NF ), delayed by NF samples.

For the solution (9.19), the knowledge or estimation of the auto-correlations
of both the noisy and the clean speech signals is needed – especially, the latter
being an obvious problem, as only y(n) is available. This question will be dealt
with in Sec. 9.7.
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9.3 Wiener-Filter Description in the Frequency Domain

9.3.1 Optimum Frequency Response

Eq. (9.16) describes a convolution:

h(λ) ∗ [rss(λ) + rbb(λ)
]

= rss(λ), λ ∈ Z.

With the PDS being a correlation’s Fourier transform, i.e., generally,

Suv(Ω) .= F{ruv(λ)
}
,

an equivalent description in the frequency domain is found by means of the
convolution theorem:

H
(
ejΩ

) · [Sss(Ω) + Sbb(Ω)
]

= H
(
ejΩ

) · Syy(Ω) = Sss(Ω).

This is easily solved for the Wiener-filter frequency response:

H
(
ejΩ

)
=
Sss(Ω)
Syy(Ω)

=
Sss(Ω)

Sss(Ω) + Sbb(Ω)
.= Ho(Ω). (9.22)

Due to the well-known symmetries of a PDS, also this function Ho(Ω) is
real-valued and even in Ω, and it describes a zero-phase system, like HTD

o (Ω)
in (9.20). It has to be noted, however, that, despite the striking similarity in
(9.22) and (9.19), the filters are not identical: For (9.19), an FIR filter was
assumed a priori, and an arbitrary, limited section of the autocorrelation was
used; here, the Fourier transformation is applied to infinitely long correlation
sequences. There is no justification to assume that H(ejΩ) of (9.22) corre-
sponds to a finite-length inverse transform. It is not even clear whether there
is any rational transfer function H(z) behind (9.22) to be realized in one of
the usual digital-filter structures.

9.3.2 Approximate FIR-Filter Solution

A relatively simple step, however, leads to an approximate, zero-phase FIR
filter: H(ejΩ) may be sampled inM equi-spaced frequencies Ωi = i·2π/M, i ∈
{0, 1, . . . ,M − 1}; then, a length-M inverse Discrete Fourier Transformation
(IDFT) yields a time sequence

ȟ2(n) = IDFTM

{
H
(
ejΩi

)}
=

1
M

·
M−1∑
i=0

H
(
ejΩi

) · ejni· 2π
M ,

n ∈ {0, 1, . . . ,M − 1}, (9.23)

which is real-valued and even-symmetrical:
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ȟ2(M − n) = ȟ2(n), n ∈ {0, 1, . . . ,M/2}.

Due to the implicit periodicity of DFT and IDFT, a realizable, causal
FIR filter is created, if ȟ2(n) is shifted by NF samples again and, then, the
resulting values for n ∈ {0, 1, . . . , 2NF} are used:

h2(n)
.= ȟ2(n−NF), n ∈ {0, 1, . . . , 2NF}. (9.24)

Again, the delayed result ŝ(n−NF) is only “approximately optimal”: The
impulse response h2(n) of (9.24) is a time-domain aliased, finite-length ver-
sion of the infinitely long inverse Fourier transform of the frequency response
H(ejΩ) in (9.22). It is, therefore, not the same approximate solution found as
h1(n) in (9.21) from a-priori time restrictions.

9.4 Examples and Filtering Effects

With the help of a few theoretical, constructed cases, the above filter design
and the general influences of Wiener filters shall be explained, for ease of
understanding.

9.4.1 “Low-Pass Signal” plus “Band-Stop Noise”

As a constructed example, a clean signal s(n) is assumed to have a constant,
but band-limited PDS Sss(Ω). It is spoilt by additive wide-band noise b(n)
with a band gap in its PDS Sbb(Ω) (see Fig. 9.2a). The resulting “stair-case”
PDS Syy(Ω) = Sss(Ω)+Sbb(Ω) as well as the Wiener-filter frequency response
according to (9.22) are shown in Fig. 9.2b.

Following the time-domain design of Sec. 9.2, by calculating the correlation
terms rss(λ) and ryy(λ) from the above spectra and choosing, e.g., NF = 30,
yields an impulse response h1(n) – see (9.21) – as depicted in Fig. 9.3a. The
real frequency response Ho(Ω) corresponding to h1(n) is depicted in Fig.
9.4a, together with the desired, theoretical Wiener filter. In Fig. 9.4b, Sss(Ω)
and Sbb(Ω) are shown once more, in comparison with the PDS Sŝŝ(Ω) =
Syy(Ω) · [HTD

o (Ω)]2 of the filter-output signal ŝ(n).
Obviously, the MMSE optimized filter yields a noise reduction indeed –

the upper band of Sbb(Ω) is “zeroed” in Fig. 9.4b! – but also a very noticeable
signal (-spectrum) distortion. We shall come back to this below.

Following the frequency-domain approach of Sec. 9.3 now, sampling the
ideal Wiener-filter frequency response of (9.22) and reordering the IDFT re-
sults as in (9.24), leads to the impulse response h2(n) given in Fig. 9.3b. It is
evident that h1(n) �= h2(n): As said in Sec. 9.3 already, the two FIR approx-
imations do not give identical filters. Also the filter frequency responses are
different as well as the results of the filtering processes, as can be seen from a
comparison between Fig. 9.4 and Fig. 9.5.
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Both Figs. 9.4 and 9.5 reveal that the above-named strong deviation be-
tween Sss(Ω) and Sŝŝ(Ω) has only to some extent to do with the FIR approx-
imations. The distortion is severe also in the low-frequency band in which
both approaches follow the ideal curve quite closely (see Figs. 9.4a and 9.5a).
In fact, a similar, large difference would even appear if the ideal filter was
applied. The reason lies in the fact that Syy(Ω) is multiplied by H2

WF(Ω):

Sŝŝ(Ω) = Syy(Ω) ·
[
Sss(Ω)
Syy(Ω)

]2

=
Sss(Ω)
Syy(Ω)

· Sss(Ω)

=
Sss(Ω)

Sss(Ω) + Sbb(Ω)
· Sss(Ω) (9.25)

Eq. (9.25) says that the original spectrum will be damped at all frequencies
wherever there is an additional noise component Sbb(Ω) > 0.

9.4.2 Decaying Spectrum plus Wide-Band Noise

The spectral attenuation of (9.25) is the stronger, the higher the noise PDS
is relative to the signal PDS, i.e., the lower the local SNR. This means that a
Wiener filter designed (by either of the above two approaches) for some white
noise and a signal with a PDS that decays towards higher frequencies (like,
e.g., speech!), will show a low-pass behaviour, and, thus, the resulting, filtered
signal ŝ(n) has a more pronounced decay in its PDS than s(n) (see Fig. 9.6).
If the disturbances exhibit some positive slope for increasing frequencies, the
spectral distortion is even stronger (see Fig. 9.7).

The observation, by the way, that, for signals like speech, an optimum
filter acts as a low-pass is a justification of the simplest noise-reduction idea:
If white noise is added to a low-pass signal, an appropriate low-pass filter will
reduce the noise more than the signal and, thus, improve the SNR. Since it is
known, however, that, for speech signals, the SNR is not a good estimate for
the perceived quality (see, e.g., [57, 61]), the resulting distortion may cause
problems; this has to be kept in mind.

A simple idea for a possibly “somewhat reduced” distortion at the price
of a “little more” noise slightly modifies the Wiener filter: Instead of H(ejΩ),
a power-η term Hη(ejΩ) is used:

Hη

(
ejΩ

) .= [
H
(
ejΩ

) ]η
, η ∈ (0, 1]. (9.26)

For η < 1, strong attenuations in regions of low SNR are reduced, leaving
a “little more” of the small signal PDS here.

9.5 Wiener-Filter Realizations

With either the time-domain or the frequency-domain approach, we have now
an FIR-filter impulse response h1(n) or h2(n) (or a zero-phase equivalent h(n))
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which approximately corresponds to the optimal filter. Causal FIR systems
can be simply realized in the time domain, as is well known, e.g., in the 2-nd
canonical (direct) form of a non-recursive digital filter, also termed “tapped
delay line” (see, e.g., [55, 65,73]).

It is well-known also, from the same literature, that an equivalent solution
takes the de-tour via the frequency domain: Both the input signal and the
impulse response are transformed by means of DFT’s, the spectral values
are then multiplied pointwise, and finally the product sequence is subject to
an IDFT creating the output signal. This de-tour can be computationally
attractive, i.e., faster than the direct way, if the DFT’s and the IDFT are
realized efficiently via a Fast Fourier Transformation (FFT), giving rise to the
notation as “fast convolution”.

In order to make this really functional, some additional measures have to
be taken. In our case, the procedure would be as follows:

• Define signal blocks of length L each:
{yn(κ) .= y(n− κ), κ ∈ {0, 1, . . . , L− 1}}

• Create signal blocks of length M > L each, by padding yn(κ) with M −L
zeros:
{ỹn(κ) = yn(κ), κ ∈ {0, 1, . . . , L− 1}, ỹn(κ) = 0 for κ ∈ {L, . . . ,M − 1}}.

• Create a length-M set h̃1,2(κ) from one of the FIR sequences h1,2(κ) by
zero-padding them with M − (2NF + 1) zeros:
{h̃1,2(κ) = h1,2(κ), κ ∈ {0, 1, . . . , 2NF}, h̃1,2(κ) = 0 for κ ∈ {2NF +
1, . . . ,M − 1}.

• Compute the length-M DFT’s {Ỹn(i)} from {ỹn(κ)} and {H̃(i)} from
{h̃1,2(κ)}.

• Multiply the two DFT sets pointwise, creating {X̃n(i), i ∈ {0, 1, . . . ,M −
1}}.

• Apply an IDFT of length M to {X̃(i)}, yielding time-signal blocks {x̃n(κ), κ ∈
{0, 1, . . . ,M − 1}}.

• Create output signal blocks {ŝn(κ), κ ∈ {0, 1, . . . , L− 1} from {xn(κ)} by
using an overlap-add process (see, e.g., [55, 65]).

• Also, input-signal blocks may consist of overlapping parts of y(n); this
must, of course, be taken into account in the overlap-add step.

This procedure is depicted graphically in Fig. 9.8.
Seemingly, there is a wasteful step in this realization, if h2(n) is used, as

found from the frequency-domain approach of Sec. 9.3: The inverse DFT in
(9.23) of the optimum frequency response (9.22) could be saved, since now
h2(n) undergoes a DFT. So, samples of H(ejΩ) could be directly used for the
spectral multiplication in Fig. 9.8. Seemingly also, the (I)DFT length M is
of less importance now, because no FIR sequence needs to be picked from a
longer signal ȟ2(n); M could simply be chosen such that it covers the signal-
block length L and is suitable in terms of the signal’s short-time stationarity
and the acceptable algorithmic delay of the system.
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Fig. 9.8. Block diagram of a Wiener filtering realized by a fast convolution, using
spectral weighting factors gi = H̃(i).

It has to be noted, however, that following these ideas is not the same as
the described fast convolution: For a “large” value ofM , the implicitly applied
impulse response is, in general, longer than some “chosen” number 2NF + 1
(namely, filling all M points with possibly small, but non-zero samples). For a
“small” choice ofM , time-domain aliasing of ȟ2(n) occurs, and the convolution
becomes noticeably cyclic.

Still, using weights gi
.= H(ejΩi), i ∈ {0, 1, . . . ,M − 1}, with a “suitably

chosen” number M , is a common realization. In fact, some investigations
concerning possible improvements by avoiding the circularity have shown only
marginal effects [2, 12].

Another problem, to be seen already in (9.22), is equivalent to that one
mentioned in Sec. 9.2, after finding the solution in (9.19): For (9.22), the
knowledge of Sss(Ω) and Sbb(Ω) is needed – both are not known a priori, as
only y(n) is available and, thereby, Syy(Ω). As said before, this question will
be dealt with in Section 9.7.

9.6 Spectral Subtraction: Principles and Realization

9.6.1 Definition and Variants

A basic definition was already given in (9.9), in the introduction, together with
a filtering interpretation by Eq. (9.10). It was also mentioned that the magni-
tude subtraction of (9.9) could be replaced by a power-spectral subtraction.
In a more general formulation, this reads:
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Ŝ
(
ejΩ

)
=
[∣∣∣Y (ejΩ

) ∣∣∣β −
∣∣∣B̃ (ejΩ

) ∣∣∣β]1/β

· ejarg{Y (ejΩ)}. (9.27)

With β = 1, Eq. (9.9) results, and with β = 2, power spectra are
subtracted. In the latter case, a subtraction of auto-correlations rŝŝ(λ) =
ryy(λ) − rbb(λ) would be equivalent, as addressed in [43].

Let us assume that squared-magnitude spectra denote, in practice, esti-
mated PDS functions, i.e.,∣∣∣Y (ejΩ

) ∣∣∣ ≈√
Syy(Ω),

∣∣∣B̃ (ejΩ
) ∣∣∣ ≈√

Sbb(Ω),∣∣∣S (ejΩ
) ∣∣∣ ≈√

Sss(Ω),
∣∣∣Ŝ (ejΩ

) ∣∣∣ ≈√
Sŝŝ(Ω);

then, the actual spectral-subtraction part of (9.27) reads:

S
1/2
ŝŝ (Ω) =

[
Sβ/2

yy (Ω) − Sβ/2
bb (Ω)

]1/β

. (9.28)

Once more, with β = 1, Eq. (9.9) results, and with β = 2, power spectra
are dealt with.

The corresponding zero-phase filter description, following (9.10) and (9.11),
is then written as

Wo(Ω) =

{
1 −

[
Sbb(Ω)
Syy(Ω)

]β/2
}1/β

. (9.29)

A further generalization may be introduced, following the thoughts leading
to (9.26): As the weighting factor Wo(Ω) becomes smaller with decreasing
local SNR, possibly resulting distortions may be diminished, at the expense
of more remaining noise, by applying

Wα
o (Ω) =

{
1 −

[
Sbb(Ω)
Syy(Ω)

]β/2
}α/β

.= Wα(Ω) (9.30)

9.6.2 Relation with Wiener Filtering

The qualitative similarity between the optimum-filter approach and the idea
of subtracting an additive disturbance in the spectral domain was already
observed in Sec. 9.1.4. Now, this relation can be formalized.

Let β .= 2. From (9.29) and with (9.22), we find:

Hsps(ejΩ) = Wo(Ω) =

√
1 − Sbb(Ω)

Syy(Ω)
=
√
Ho(Ω), (9.31)

and with α .= 2η, β .= 2, Eq. (9.30) gives
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W2η(Ω) = W 2η
o (Ω) = Hη(Ω); (9.32)

the choice of α = β = 2 yields

Wα(Ω) = W2(Ω) = 1 − Sbb(Ω)
Syy(Ω)

= Ho(Ω). (9.33)

So, the generalized spectral-subtraction description allows to include Wiener
filtering by Ho(Ω) as well as its generalization Hη(Ω) of Eq. (9.26).

Of special interest is the power-subtraction variant, i.e., the case with
β
.= 2, and α = η

.= 1, which leads to the “root-Wiener” filter of (9.31). If
this is applied to our theoretically constructed example of Sec. 9.4.1, Figs. 9.9
and 9.10 result.
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Fig. 9.9. a) Ideal and time-domain approximated Wiener filter; b) PDS of signal,
noise, and resulting output signal ŝ(n) after filtering with

√
HWF.

In parts b) of both figures, the resulting output PDS is compared to the ac-
tual input PDS Sss(Ω). A much closer match is to be seen now in comparison
to that of Figs. 9.4 and 9.5.

The comparison is generalized in Fig. 9.11: Here, the relation

Hsq(Ω) .=
Ss̃s̃(Ω)
Sss(Ω)

is displayed as a function of the local SNR at some arbitrary frequency Ω.
While the spectral-power subtraction indeed reconstructs the clean-signal
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PDS ideally, under the given assumptions, the Wiener filter leaves quite strong
deviations for SNR <∼ 10 dB; the spectral-magnitude subtraction, however,
is even worse in this respect, with strong differences at SNR <∼ 35 dB.

It has to be noted, however, that the improved PDS reconstruction is a
subjective observation – no optimality criterion is fulfilled by choosing some
combination of α, β, and η, in general.

Some further discussions on the variants achievable by changing the above
parameters are to be found in [73].

9.6.3 Realization

The notation of Wα(Ω) as a weighting function does, in fact, already show
how a spectral subtraction in any of its generalized forms can be realized:
For time intervals as described in (9.5) – (9.8), short-time spectra have to
be measured from b(n) and y(n), from which PDS values have to be derived,
they are inserted into (9.30), the noisy-signal spectrum has to be multiplied
by Wα(Ω), and a spectral re-synthesis yields the de-noised output signal ŝ(n),
finally.

For example, a length-M DFT can be applied to transform blocks of y(n).
The resulting spectral samples Ỹn(i) are multiplied by factors

gi
.= Wα(i · 2π/M), i ∈ 0, 1, . . . ,M − 1, (9.34)
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Fig. 9.11. Comparison of the PDS reconstruction capabilities of power-spectral and
magnitude-spectral subtractions and the Wiener filter.

and a length-M IDFT creates blocks of ŝ(n). This procedure is depicted graph-
ically in Fig. 9.12. The similarity with the Wiener-filter realization of Fig. 9.8
is evident, which is not surprising after Sec. 9.6.2. Differences exist in the
determination of the weighting factors gi and some “suitably chosen” para-
meters α, β, and η; but the principle function of optimal filtering and spectral
subtraction is the same.

Fig. 9.12. Block diagram of a spectral-subtraction realized by spectral weighting
with factors gi.

9.7 Noise Power Density Spectrum Estimation

In all variants of noise subtraction or filtering, some spectral or, equivalently,
correlation informations are needed which, as mentioned, are not available
directly, as only the noisy signal y(n) of Eq. (9.1) can be observed. This con-
cerns the (short-time estimated) power densities Sss(Ω) and Sbb(Ω) or the
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auto-correlations rss(λ) and rbb(λ). Based on the above assumed uncorrelat-
edness of speech and disturbance, however, the problem can be focussed on
one necessary information: With

Syy(Ω) = Sss(Ω) + Sbb(Ω), ryy(λ) = rss(λ) + rbb(λ),

the desired unavailable clean-signal characteristic can be replaced by

Sss(Ω) = Syy(Ω) − Sbb(Ω), rss(λ) = ryy(λ) − rbb(λ).

With available terms Syy(Ω) or ryy(λ), this leaves us with the task to measure
or estimate the noise-only description, as needed also in (9.30). A consider-
able part of the noise-reduction work of the past years has been devoted to
this problem, closely linked to the subtraction or weighting rules yielding the
factors gi in Fig. 9.12.

9.7.1 Noise Measurement in Speech Pauses

A straightforward solution is based on the fact that speech is interrupted by
pauses usually, some of which are longer than a common block length as given
in (9.5) or (9.8). In such segments, we have y(n) = b(n). So, if a speech pause
can be identified, the noise PDS can be estimated (e.g., by the squared mag-
nitudes |Ỹn(i)|2 of the block-DFT values, i.e., the periodogram), and this can
be used in the succeeding speech-plus-noise segments. A detection of breaks,
however, is not so easy; at least, in cannot be simply based on an energy
thresholding, especially in low-SNR situations, where the power in noise-only
blocks can be quite close to that in segments with speech and distortion. More
refined voice-activity detectors (VAD) are necessary, particularly with respect
to robustness against disturbing signals. Several variants were investigated, for
example, in [3]; here, it was found that the GSM-standard VAD algorithm [17]
is quite a good (and meanwhile wide-spread, well tested) choice. It can be
outperformed, however, to a certain extent, by special methods optimized for
special criteria [60].

An extremely simple idea foregoes a detection: It can be assumed that
before any speech communication really begins, there is a reasonably long
time without a signal, but with the noise already present.

All pause-based methods, however, have one severe drawback: Between
two (detected) breaks, there might be quite long pause-less speech-signal se-
quences. A constant estimate of Sbb(Ω) is applied during this time interval,
while the true noise behaviour might – at least: slowly – vary with time. This
means that a noise stationarity is presumed which perhaps does not hold. Es-
pecially, an estimation before the conversation onset, kept constant thereafter,
is useful only for strictly stationary conditions, given only in simple cases like
that of a fan near the microphone.
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9.7.2 Continuous Noise Measurements

The problems of both reliable VAD and – at least: slow – instationarity are
avoided by a number of techniques estimating the noise PDS continuously,
without waiting for a pause (e.g., [1, 18, 33]). In the simplest case, it is as-
sumed that noise is present at all times and its characteristics vary slowly,
while speech appears in “bursts”. Thus, a time-averaged spectral magnitude
at some frequency follows, more or less, the noise, and “speech-evoked peaks”
are smoothed out. This turns out to be too simplistic, and, therefore, mod-
ifications have been proposed, like a limitation of the influence of a newly
found value on the averaged size, an exclusion of values above some heuristic,
adaptive threshold, or a decision on the “true” estimate based on a histogram
of occurring values.

9.7.3 Minimum Statistics

One approach, following also the above ideas, but in an elaborate, statistically
substantiated way became a standard, with later amendments, within the past
ten years [51, 52]. The following reasoning includes some thoughts also used
in the methods named in Sec. 9.7.2:

While total speech-signal pauses may appear too seldom, some narrow fre-
quency bands may contain only noise more often, even during speech activity.
This holds particularly for voiced sounds with their periodicity and, there-
fore, line-spectral structure. The lines are separated by a distance f0, termed
“fundamental” or often “pitch frequency” of the speaker, such that there are
gaps in the spectrum with no (or, at least: low) signal components, but noise
contributions, if noise is present. If there is noise only, at some i-th frequency
point, then the spectral size will be smaller than or, at most, equal to that oc-
curring when a speech component is also present at this point. So, vice versa,
if a component is small compared to other time instances, it can be assumed
to describe the noise only. Since f0 varies with time, it is possible to update
the noise-PDS estimation at all frequencies more often, without waiting for
the next signal break, and some tracking becomes feasible.

One way of implementing this idea consists of the following steps:

• Calculate the short-time spectrum Ỹn(i), i ∈ {0, 1, . . . ,M − 1}, e.g.,
via a DFT, from (possibly overlapping and zero-padded) signal blocks
yn(κ), κ ∈ {0, 1, . . . ,M − 1}.

• Calculate time-smoothed estimations |Ỹn(i)|2 of the short-time spectral
powers in each frequency point i.

• Assume that the minimum min(|Ỹn(i)|2) of these values within a pre-
defined time window of duration Tw describes the short-time noise PDS.

• Scale this value by a constant “over-estimation” factor omin, correcting
an observed (and theoretically derived [51]) bias.
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• Apply the result, finally, to determine the weighting factor gi for the i-th
frequency according to Figs. 9.8 and 9.12.

The necessary correction factor omin depends on the smoothing time-
constant and the regarded time-window length Tw. An investigation in [24]
has shown that omin ∈ (1.0, 1.6) is useful, together with Tw ≥ 0.8 s, and a
smoothing over some 20 signal segments. An “optimal” combination can only
be derived theoretically with assumptions not truely fulfilled in practice; so,
a heuristical choice has to be made, based on listening experiments.

In Fig. 9.13, a result of the investigations in [24] is displayed.
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Fig. 9.13. Short-time power spectral values |Ỹn(i)|2 of noisy speech in a narrow

frequency band near 1 kHz, the time-averaged power |Ỹn(i)|2, and the PDS-value
estimation for the minimum-statistics approach.

On a log scale, the instantaneous power, the averaged power, and the
“minimum-tracking” result are plotted over time. There are some speech ac-
tivities visible at ca. 1.6 s, 3 s, and 5 s, where the smoothed-power con-
tour stays below the local peaks but still reaches high values, and there is
a speech pause at the end, with a strong growth of the noise, also leading
to a correspondingly large size of |Ỹn(i)|2. Obviously, the minimum- tracking
successfully suppresses the non-noise, speech-activity peaks and describes the
noise-PDS behaviour quite well – except for a delay of some 0.8 s ≈ Tw after
the noise growth. This can be explained by the fact that only after this time
Tw, the algorithm accepts large averaged spectral values as belonging to the
distortion, as, until then, there are smaller values inside the window.

Extensions of the original minimum-tracking approach were proposed in
[11], yielding smoother noise-PDS contours, and in [53], using adaptive over-
estimation and averaging. The above delay problem, however, remains.
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9.7.4 Improved Instationarity Tracking

The delayed reaction to sudden noise-power changes is caused by the smooth-
ing and delayed minimum decision in the above technique. Both are seem-
ingly necessary to avoid fast random fluctuations of the noise-PDS shape, as
expressed by min(|Ỹn(i)|2) over the frequency indices i ∈ {0, 1, . . . ,M − 1}.
Such fluctuations do certainly not reflect the noise characterisation in station-
ary situations, but they create unnatural artifacts also in cases with relatively
rapid changes, like in that of an accelerating car: The spectral shape would
often still vary quite gradually, while the main effect would be an increased
noise loudness, i.e., a growing size of the whole noise PDS.

Based on such considerations, a separation of a smooth-shape and a fast-
gain estimation was proposed in [23] and discussed thoroughly in [24].

For the first part, an enhanced version of the proposal [1] was chosen, with
“subjectively best results”; but also a minimum-tracking variant like those
in [11, 52] was found to be applicable. No over-estimation factor omin was
used. Instead, a “correction factor” Gn was introduced as the instantaneous
gain for the data block {ỹn(κ)}, taken at time n. The gain is determined in
the following steps:

• Assume that the present block’s PDS estimation |Ỹn(i)|2 has been calcu-
lated.

• Assume that an information on the smoothed noise-PDS shape |B′(i)|2
(

e.g.
= min(|Ỹn(i)|2)) is also available.

• Find the Lmin smallest values of |Ỹn(i)|2 at the frequency points il, l ∈
{1, 2, . . . , Lmin}.

• Assume that these minimum values mainly are due to the noise compo-

nents in this segment; calculate their (linear or nonlinear) mean ̂|Ỹn|2Lmin
.

• Compute the corresponding mean |̂B′|2Lmin
of the smoothed spectral shape

description in the same frequency points il, l ∈ {1, 2, . . . , Lmin}.
• Apply a corrected noise-PDS estimation Gn · |B′(i)|2 for the spectral sub-

traction or Wiener filtering, with the instantaneous gain

Gn = ̂|Ỹn|2Lmin
/|̂B′|2Lmin

. (9.35)

Because the position of the Lmin smallest contributions depends on the
type of the noise PDS, a modification of the gain determination was proposed
also in [24]. In Fig. 9.14, the successful application of the “fast-gain / slow-
shape” estimation approach, including the above modification, is evident: In
the same scenario as posed for Fig. 9.13, the speech-evoked peaks are still
avoided, though with less smoothing, while the sudden noise-power growth at
about t = 6.5 s is tracked without delay now.

A recent study showed that still some mis-detections of the local-spectrum
minima used for (9.35) are observed unless the type of the signal spectrum is
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Fig. 9.14. Short-time power spectral values |Ỹn(i)|2 of noisy speech in a narrow

frequency band near 1 kHz, the time-averaged power |Ỹn(i)|2, and the PDS-value
estimation for the “fast-gain / slow-shape” approach.

also taken into consideration. A modified derivation of Gn was proposed and
applied successfully, using an evaluation in separate subbands [35].

9.8 Subtraction and Weighting Rules

Now, it can be assumed that the noisy-signal a well as the noise PDS esti-
mation are available. For simplicity, we refer to them as Syy(Ω) and Sbb(Ω),
without detailing the actual type of spectral measurement or estimation; also,
the time index n, defining the position of the actual signal frame, is disre-
garded as far as possible.

The factors gi weighting the noisy-signal spectrum Y (ejΩ) in the equiva-
lent realizations of Figs. 9.8 and 9.12 can then be determined – according to
the considerations in Chap. 9.6.1, however, in different ways, to be explained
now.

9.8.1 Magnitude and Power Subtraction

There are two basic, well-known articles introducing spectral subtraction. In
[5], we find

gi
.= 1 −

√
Sbb(Ωi)
Syy(Ωi)

, (9.36)

i.e., spectral magnitudes are subtracted. In [2], power subtraction is proposed
instead, i.e.,

gi
.=

√
1 − Sbb(Ωi)

Syy(Ωi)
. (9.37)

Eq. (9.37) corresponds to the “root-Wiener filter” of Eq. (9.31) or to Hη(Ω)
in (9.26) with η .= 1/2.
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The difference between these weighting rules was discussed in Sec. 9.6.2, as
far as the reconstruction of the PDS Sss(Ω) is concerned. In terms of applica-
bility, however, both rules share a common difficulty: Since both Sbb(Ωi) and
Syy(Ωi) are in fact short-time estimations with different smoothings possibly
included, Sbb(Ωi) > Syy(Ωi) may happen. This can be imagined especially
well, if Sbb(Ωi) stems from a measurement in a pause some time before the
current signal block; but also tracking algorithms do not avoid this, in general.
The naive use of (9.36) or (9.37) is then impossible, since it would correspond
to a creation of negative magnitudes or powers.

Already in [5], a solution has been suggested: Instead of (9.36),

gi
.= 0, Sbb(Ωi) > Syy(Ωi) (9.38)

is used for these critical cases. Of course, the same “half-wave rectification”
can be combined with (9.37).

9.8.2 Musical Noise

Eq. (9.38), however, remedies only a mathematical problem: Frequently, gi = 0
will now set spectral values Sŝŝ(Ωi)

.= 0 for one block, while in the following
block small, but non-zero values may often appear. Such a block-wise “on-off”
switching of more or less randomly distributed small frequency components
creates signal blocks with sums of random tones. While the actual input noise
may be well reduced, tonal or so-called “musical noise” is artificially gener-
ated. Such artifacts can be much more annoying than the original, “natural”
disturbances. So, the avoidance or, at least, limitation of this effect is a rea-
son why so much work has been devoted for smoothly tracking, reliable noise
estimation (see Sec. 9.7) and on variations of the weighting or subtraction
rules.

9.8.3 Noise Floor, Over-Estimation, and Non-Linear Subtraction

The above effect can be diminished if, in cases of a very small factor gi ≈ 0,
the down-sizing is limited: A certain, small part of the original noise is kept,
termed the “spectral noise floor” [2].

As, on the other hand, in frequency points with large components Syy(Ωi)
there is no danger, normally, of creating tonal artifacts, and, as it can be
observed that simple as well as more refined estimations of Sbb(Ωi) often give
too small values (see Sec. 9.7.3), some heuristical “over-estimation” factor
may allow for a stronger reduction here.

A generalization of these considerations consists of a subtraction of [δ ·
Sbb(Ωi)], with a factor δ leaving a noise floor or over-estimating the noise
contribution in dependence of the local SNR value at frequency Ωi:

Sŝŝ(Ωi) = Syy(Ωi) − δ (SNRi) · Sbb(Ωi).
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Any adaptive subtraction of magnitudes or powers in the spectrum de-
fines actually a non-linear system; still, the above “extra-non-linearity” is the
reason why this has been called “non-linear spectral subtraction“, in the lit-
erature [2, 48].

Numerous, partly heuristic variants were proposed, including different
combinations of time and frequency smoothings and adaptation rules (see,
e.g., [46, 47,62]).

9.8.4 Approaches Based on Statistical Models of Signal and Noise

A non-heuristic approach to a modified spectral subtraction or weighting was
proposed in [6, 13, 14]. It aims at an MMSE approximation of the spectral
amplitudes |Ŝ(ejΩi)|, based on the assumption that both the noise and the
signal spectra consist of complex Gaussian random variables. The result is
a weighting factor gi which depends on the “a-priori SNR” ρ pri

i and the “a-
posteriori SNR” ρ post

i . The latter term describes, for a frequency point i, the
power ratio of the de-noised signal ŝ(n) and the noise b(n) by

ρ post
i

.=
Syy(Ωi) − Sbb(Ωi)

Sbb(Ωi)
=
Syy(Ωi)
Sbb(Ωi)

− 1,

using the PDS estimates for the current frame taken at time n. The a-priori
term takes the processing in the past blocks recursively into account, and it
also includes a “rectification” step in order to avoid negative weights. So, with
the variable n included explicitly now, we have to compute

ρ pri
i (n) .= (1 − ζ) · max

{
ρ post

i (n), 0
}

+ ζ · g2i (n− 1) ·
[
ρ post

i (n− 1) + 1
]
.

The “forgetting factor” ζ is chosen close to one, like ζ = 0.98 in [6]. From
these equations, the weighting factor (for the n-th frame) is finally found:

gi =
√
π

2
·
√

1
1 + ρ post

i

· ρ pri
i

1 + ρpri
i

·M
((

1 + ρ post
i

) ·( ρ pri
i

1 + ρ pri
i

))
.

The dependence M(·) is given as

M(x) .= e−x/2 ·
[
(1 + x) · I0(x/2) + x · I1(x/2)

]
,

with I0,1 denoting modified Bessel functions of orders 0 and 1, respectively.
This approach became a “base-line standard” for several years. It reduces

the input noise considerably and avoids musical noise, if combined with a
good noise estimation like minimum tracking. Therefore, it was often used for
investigations of other parts of the noise-reduction task, for example, when
different noise measurements or spectral-analysis / synthesis techniques had
to be compared for a fixed subtraction rule (see Sec. 9.10).
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A variant was proposed in [15] with an MMSE approximation of the log-
arithmic spectrum. Another, more recent variant, however, promises more
progress towards an even better new quasi-standard [49, 79]. Here, the fact
is taken into consideration that speech is not at all a Gaussian signal, and
that spectral values are closer to a Laplace or Gamma distribution [54]. This
is described by means of a parametric probability density function (PDF)
defining a general “super-gaussian” distribution; its parameters are fitted to
a measured PDF (i.e., a histogram). Due to the closed-form PDF, a theoret-
ical derivation can be carried through; it leads to a weighting factor which
maximizes the a-posteriori probability of the complex spectral value Ŝ(ejΩi),
given the observed components Y (ejΩi).

9.9 Spectral Analysis and Synthesis

9.9.1 DFT and IDFT

In our introduction, we addressed spectra S(Ω), B(Ω), and Y (Ω) as well as
PDS functions Sss(Ω), Sbb(Ω), and Syy(Ω) as Fourier transforms of infinitely
long signals or auto-correlation sequences. It was mentioned that, in practice,
they should be understood as short-time estimates: They result from some
short-time spectral analysis, and the output signal ŝ(n) is created by some
corresponding spectral synthesis.

The fast-convolution realization of the Wiener filter in Fig. 9.8 lead us to
the idea to generally assume a block-DFT / FFT and IDFT / IFFT system
in Fig. 9.12. This was, by the way, also the basis used first in [2, 5].

9.9.2 Generalizations

Of course, as also mentioned before, overlapping signal frames could be used,
and a suitable time weighting or “windowing” would help to avoid block-edge
effects: The spectral modification between analysis and synthesis transforma-
tions may evoke, in the time domain, largely differing signal samples close
to the beginning of a block and at the end of the preceding one, audible
as unnatural cracks at a distance of the frame length Tadapt [see Eqs. (9.5)
and (9.8)]. This can be mitigated by applying, e.g., triangular, trapezoidal, or
cosine-shaped windows w(n), n ∈ {0, 1, . . . ,M − 1}, to suitably overlapping
parts of the signal y(n), taken at a distance of r samples, with r ∈ N.

Fig. 9.15 shows some examples. Since the overlapping windows in all cases
sum up to a constant value 1.0, it is clear that the summation of the inverse
transforms will ideally yield y(n), if no spectral manipulation or weighting
has been done between analysis and synthesis. Such an arrangement is said to
have a “perfect-reconstruction” (PR) property. It is also clear from inspection
that the windowing may be distributed to the input-signal block before the
transformation and the output-signal block after the inverse transformation,
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e.g., by using the square-root of w(n) on both sides. Then the sum of the
window products has to give a constant value 1.0, in order to have a PR
system again.

Fig. 9.15. Examples of overlapping and adjacent windows adding up to a constant
value 1.0 (e.g., for M

.
= 100).

A choice of r > 1 means that the analysis is only carried out at every r-th
input clock, i.e., at a smaller rate; r is termed the “rate-reduction” or “deci-
mation” factor, in the following. For a classical block-by-block DFT without
overlap, we would have r = M .

Furthermore, the window sequences may be chosen to have a length Lw >
M . Then, more than M signal samples enter the calculation of M spectral
components. Fig. 9.16 shows the signal-flow graph (SFG) of a correspondingly
extended analysis system. With Lw

.= M , it contains the “windowed DFT
/ FFT”, and with, in addition, w(n) = 1 the simple DFT / FFT of the
segment is also included. The rate-reduction parameter r indicates here that
the DFT / FFT is started only every r clocks; obviously, also the preceding
multiplications and additions can be calculated at the reduced speed.

9.9.3 Complex-Modulated Filterbank

The network in front of the DFT / FFT in Fig. 9.16 sums products of signal
and window subsets. These subsets are found by sub-sampling the sequences
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y(n) and w(n) at a distance of M samples, and they differ from each other
by the index of their first element, i.e., the phase of the down-sampling. This
part of the SFG is therefore called a “polyphase network” (PPN), and the
whole analysis system is termed “PPN-FFT” [32,72,73].

Fig. 9.16. SFG of a complex-modulated analysis filterbank consisting of a poly-
phase network (PPN) and an FFT.

Its output values Yn(i) are found, after a few analysis steps, as

Yn(i) = eji(n+1) 2π
M ·

Lw−1∑
κ=0

y(i)(n− κ) · w(κ).

Disregarding the phase term eji(n+1) 2π
M , they result from a convolution of the

window w(n) with the sequences

y(i)(n) .= y(n) · ejin 2π
M .

This means that, in the i-th channel at a center frequency Ωi = i· 2π
M , the input

signal is de-modulated by Ωi and filtered thereafter. The filter’s frequency
response

H(i)
w

(
ejΩ

) ≡ Hw

(
ejΩ

)
= F{w(n)

} ∀i (9.39)

is identical for all channels. If w(n) is chosen as a low-pass FIR sequence, the
interpretation is that, in each channel no. i, a spectral component at frequency
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Ωi is shifted down to zero and then passed through the low-pass. Equivalently,
it can be said that each channel can be described by a band-pass filter which
is a copy of the “prototype” Hw(ejΩ) shifted up by Ωi. Therefore, the PPN-
FFT of Fig. 9.16 is called a “complex-modulated filterbank” with identically
shaped band-pass filters at equi-spaced center frequencies.

Now, the advantage of the DFT extensions in Sec. 9.9.2 becomes obvious:
For the pure DFT / FFT, with rectangular windowing, the well-known “poor”
sinc-type function defines the analysis quality; with a length-M window w(n),
at least the commonly used Hamming-, Hann-, or Bartlett-functions (or some
more variants) offer some choice; with Lw > M , however, some suitable
frequency-response shape may be designed with as many degrees of freedom
as desired (and affordable). Fig. 9.17 depicts a possible prototype’s frequency
response together with its shifted copies, i.e., the equivalent band-pass filters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-25

-20

-15

-10

-5

0

5

Normalized frequency / p

A
tte

nu
at

io
n 

in
 d

B

 

Fig. 9.17. Low-pass prototype filter attenuation 20 · log10 |Hw(ejΩ)| and its first
M/2 shifted, equivalent band-pass copies (for M = 16).

It has to be noted, however, that, in our application, an additional aspect
is important for the prototype design: The analysis filterbank is followed by
a spectral synthesis. It is carried out by the dual of the system in Fig. 9.16,
namely, an inverse transformation, a synthesis-window weighting, and (Lw−1)
delay-addition operations. If no weighting or other manipulations happen in-
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between, the whole analysis-synthesis system should deliver a replica of y(n)
at its output. So, as mentioned for the much simpler case of overlapping
length-M windows in Sec. 9.9.2, the windows on both sides have to be appro-
priately chosen. A really perfect reconstruction is, however, often unnecessary:
The small remaining (aliasing and linear) distortions of a “near-perfect recon-
struction“ (NPR) should just not dominate the residual noise, artifacts, or
distortions of the noise-reduction operations.

For more details concerning PR and NPR filterbanks, their theory, and
their realizations, the reader is referred to the literature (e.g., [21, 41, 55, 69,
73]).

9.9.4 Real-Valued Filterbanks

A variant of the above PPN-FFT replaces the DFT by a so-called Generalized
DFT (GDFT); here, the center-frequency grid is still equi-spaced, but shifted,
e.g., such that all filters become band-pass systems and there is no “low-pass
channel”.

Replacing the GDFT by a Generalized Discrete Cosine Transformation
(GDCT) leads to cosine-modulated filterbanks. Here, the prototype frequency
response Hw(ejΩ) appears in pairs of shifted copies at Ωi and at (2π − Ωi),
due to the real-valued modulation. Also cosine-modulated filterbanks are at-
tractive, since the DCT, like the DFT, can be realized by fast algorithms.

Other, also real-valued filterbanks may be built up by a repeated appli-
cation of half-band-filter pairs in a tree structure; the rate-reduction factor
r
.= 2μ is distributed, in this case, over the μ stages of the filterbank: A comple-

mentary pair of a low- and a high-pass filter can be realized efficiently as one
filtering block. The full frequency range of the input signal, with f ∈ [0, fs/2]
or Ω ∈ [0, π] for real-valued signals, is divided into two symmetrical halfs, with
Ω ∈ [0, π/2] and Ω ∈ [π/2, π], respectively. Because of the bandwidth-halving,
also a decimation by a factor r = 2 is allowed; in an appropriate (e.g., FIR)
realization structure, it can already be exploited within the filter operation.
Thereafter, on a newly normalized frequency axis

Ω′ = 2π ·
[
f/(fs/2)

]
= 2 ·Ω,

replacing Ω as defined by (9.2), each output signal covers the full bandwidth
Ω′ ∈ [0, π] again. Another pair of half-band filters will then separate two
symmetrical bands again, while operating at a clock fs/4, and so on. Fig. 9.18
depicts the principle, with μ = 3 stages and 23 = 8 frequency components.
With or without some weighting or other modification, they can then be
recombined by the dual structure of Fig. 9.18, to create an output signal with
possibly PR or NPR property.

Since the high-pass transfer function is related to that of the low-pass by

HHP(z) = HLP(−z),
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Fig. 9.18. Tree-structure filterbank built by successive band-halving low-pass /
high-pass filter pairs with inherent down-sampling by r = 2.

the impulse responses are coupled by

hHP(n) = (−1)n · hLP(n).

This corresponds to a modulation by (−1)n = ejnπ, i.e., the frequency shift by
Ω = π which transfers the low-pass into a high-pass filter. Thus, the structure
in Fig. 9.18 may well be also explained as a real-valued modulated filterbank; a
closer look into the one-block realization of the filter pair shows that, beyond,
it uses also the polyphase principle.

9.9.5 Non-Equispaced Frequency Bands

Up to now, spectral decompositions of y(n) into M components on a uniform
frequency grid were assumed, with Ωi = i · 2π/M . This is not necessary, and
there are reasons why one might prefer non-equally spaced frequency points,
with, accordingly, different bandwidths of the filterbank channels:

• Voiced sounds possess line spectra, as mentioned before. The line distance
is the “pitch” frequency f0, which varies during speech production, but
shows an average value f̄0 for a certain speaker. This mean frequency de-
pends on gender, age, anatomic details, and some other factors; in general,
however, we have f̄0 ∈ (50, 400)Hz.
Between the lines, the short-time spectra of disturbed voiced sounds con-
tain noise, which we want to remove. So, it would be good to have a narrow
frequency grid able to separate lines and gaps. On the other hand, the line
structure becomes less and less pronounced, if the higher-frequency range
is dealt with. Here, frequency points on a narrow grid would increase the
risk of “musical-noise” production. Thus, larger bandwidths would be good
for the upper frequency channels.
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• In the human hearing apparatus, the basilar membrane in the inner ear
acts as a filterbank. On sections with a constant length of ∼ 1.5 mm, com-
ponents within certain frequency bands are grouped and treated together.
The spacing and, correspondingly, the widths of these so-called “critical
bands” are, however, not uniform. A description due to [81] “numbers” the
bands by the Bark frequency Θ, which is related to the physical frequency
f by

Θ

Bark
= 13 · arctan

[
0.76 · f

kHz

]
+ 3.5 · arctan

[(
f

7.5 kHz

)2
]
. (9.40)

In Fig. 9.20, the solid line indicates that the channel numbers follow the
frequency in a log-type manner, according to (9.40).

So, using a filterbank which mimics the Bark scale would also be useful in
terms of the first observation.

There are various filterbanks realizing a non-uniform frequency resolution.
the simplest idea, namely, to use M separately designed and implemented
band-pass systems, is discarded: There are much more efficient approaches,
which is important especially if still a relatively large number of bands is to
be used, like M > 8.

9.9.5.1 Partial Recombination

After an analysis with a large number of – say: M = 256 – equispaced bands,
a spectral component with a higher bandwidth can be generated by a spectral
synthesis from Mi < M adjacent narrow components; this is exemplified in
Fig. 9.19 for the case of a DFT with partial IDFTs of different lengths. If
the first transformation is carried out at every rth clock, one sample appears
at every DFT output after a calculation cycle; the partial IDFTs, however,
deliver Mi ≥ 1 samples per cycle. This corresponds to the increased band-
widths at their outputs, i.e., the short-time spectral values, and it means that
a system with multi-rate signals has been defined. This is necessarily true for
all filterbanks with non-uniform bands.

Such a system was investigated, with a full PPN-FFT instead of the pure
DFT, in [26,27]. It was found to be too expensive computationally, if applied
within a PPN-FFT analysis / synthesis system with general values Mi, with-
out offering reasonable advantages on the other side. It was re-visited later,
however, from two different points of view; we shall come back to this below.

9.9.5.2 Warped PPN-FFT

If in an FIR low-pass transfer function H(z) the delay term z−1 is replaced
by an allpass transfer function A(z), we find that in the low-pass frequency
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Fig. 9.19. Analysis filterbank realized by an un-windowed length-32 DFT / FFT
and IDFT / IFFT, with intermediate partial syntheses of lengths M1 = M2 = 1,
M3 = 2, M4 = 4, M5 = 8, with correspondingly different numbers of time-signal
samples, and with the dual arrangement on the synthesis side.

response H(ejΩ) the frequency variable Ω is replaced: Due to the allpass
characteristic, namely,

A
(
ejΩ

)
= 1 · e−jφ(Ω),

we have
H
(
ejΩ

)
:= H

[
A−1

(
ejΩ

) ]
= H

[
ejφ(Ω)

]
.

So, the frequency-response type is unchanged, while the frequency axis
is “warped”, depending on the allpass coefficients. For instance, a first-order
allpass is described by A(z) = (az+1)/(a+z); its application gives an “allpass-
transformed” frequency

Ωwarp = φ(Ω) = 2 · arctan
[
1 − a
1 + a

· tan(Ω/2)
]
. (9.41)

A variation of the parameter a transforms, e.g., a low-pass filter into an-
other low-pass filter with a different cutoff frequency.

This well-known filter-design tool [7,8,64] was proposed for the implemen-
tation of variable filters in [66]: In a hardware filter, the delay elements were
to be replaced by allpass blocks with tunable coefficients. The idea was trans-
ferred to PPN-FFT realizations in [70]. Replacing the delay chain in Fig. 9.16
by a chain of allpass filters warps the filterbank-channel, i.e., the equivalent
band-pass filters of the spectral analysis according to
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Fig. 9.20. Normalized Bark-scale variable Θ over normalized frequency Ω (solid
line), compared with allpass-transformation frequency mappings Ωwarp.

H(i)
w

(
ejΩ

)
= Hw

(
ej(i· 2π

M +φ(Ω))
)
.

The band-pass filters are no more identical, shifted versions of the proto-
type, as was indicated in (9.39) for the standard PPN-FFT. Fig. 9.21 shows
the variation for a first-order allpass with a = −0.5 in contrast to the uniform
filterbank depicted in Fig. 9.17, with the same number of M = 16 channels.
If a .= −0.42 is chosen, a similar picture results, with a close approximation
of the “Bark-scale” warping in Eq. (9.40); this is demonstrated in Fig. 9.20.

It must be noted that, now, the modified PPN-FFT contains recursive
structures, namely, the allpass blocks. Such structures are also necessary in the
synthesis. Actually, the inverse allpass function A−1(ejΩ) is needed, which, for
a stable allpass, would become an unstable system. A synthesis with A(z) itself
is also found to be applicable; but this causes strong phase distortions for the
output signal of the whole filterbank system, due to the product A(Lw−1)(ejΩ)
on both sides. This can be taken care of by an approximate phase-equalizing
FIR filter, which, in turn, introduces a huge signal delay. Beyond, the trans-
formed PPN-FFT is less efficiently realized: The speed-reduction factor r is
limited by the largest channel bandwidth. So, some realization problems have
to be kept in mind if this analysis-synthesis system is to be used.

For more details about allpass-transformed filterbanks, the reader is re-
ferred to the literature, e.g., [19, 20,39,40].
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Fig. 9.21. First (M/2 + 1) equivalent band-pass frequency responses of a complex-
modulated, allpass-transformed filterbank with a first-order allpass, a = −0.5, and
M = 16.

9.9.5.3 Pruned Tree Structure

If, in Fig. 9.18, only the low-pass outputs of the filter pairs are processed
further by a succeeding filter pair and thereby split into two half bands again,
while the high-pass outputs are kept unchanged, Fig. 9.22 results. There are
two analysis channels of width (π/8) each, and one channel each covering (π/4)
and (π/2), on both sides of the frequency axis. Further stages may be added,
as also in Fig. 9.18, and with a continued “pruning”, i.e., deletion of high-
pass subdivisions, an “octave-band” filterbank is constructed; its bandwidths
essentially double from output to output index.

If such a fast exponential growth of the covered frequency ranges is reck-
oned inappropriate, e.g., in comparison to the “third-band” filtering observed
in the inner ear, other prunings are of course possible. Also, a sub-filtering
(equally or non-equally spaced) within the octaves may be applied.

9.9.5.4 Wavelet-Related Analysis-Synthesis Systems

The continuous wavelet transformation (CWT) of a general, continuous signal
xo(t) is defined by



9 Noise Reduction 361

Fig. 9.22. Pruned tree structure realizing an octave-band analysis.

Wψ
x (b, a) = |a|− 1

2

+∞∫
−∞

xo(t)ψ∗
(
t− b
a

)
dt , (9.42)

where ψ(t) is the chosen “prototype wavelet”, which has to satisfy some theo-
retical constraints [9]. ψ(t) can be imagined as an oscillation with some time-
limited envelope; the oscillation defines the center frequency, the duration the
bandwidth of the wavelet. By shifting and scaling ψ(t) with the parameters
a and b, all basis functions ψb,a(t) = |a|− 1

2ψ
(

t−b
a

)
for a signal decomposi-

tion are obtained. Varying a changes the time scale of ψb,a(t) and, thus, the
corresponding bandwidth and center frequency.

Because the continuous wavelet transformation given by equation (9.42) is
highly redundant, a discretization of a and b is necessary. Usually, a “dyadic
grid” is chosen with a as a power of 2 and b depending on a such that a = 2m

and b = k2mTs, m, k ∈ ZZ . For this choice, after time discretization of the
signal, the wavelet transformation described by equation (9.42) becomes

wψ
x (2mk, 2m) = 2−

m
2

∑
n

x(n)ψ∗ (2−mn− k) . (9.43)

Due to the factor-2 scaling with increasing m, it realizes an octave-band
analysis with different sampling rates in each octave. In practical realiza-
tions, mostly the so-called Á-Trous algorithm [68] is used, because of the high
computational load of the direct implementation of equation (9.43). It turns
out that, for correspondingly chosen wavelets, this algorithm has the form of
the pruned half-band filter tree structure of Fig. 9.22. The possible so-called
“voicing” is equivalent to the further sub-filtering mentioned in Sec. 9.9.5.3.

With an application to the analysis of vibration data, another realization
of the discrete wavelet transformation was proposed in [58, 59]: The convolu-
tion theorem of the Fourier transformation allows the formulation of equation
(9.42) in the frequency domain as

Wx(b, a) = |a| 12 1
2π

∞∫
−∞

Xo(ω)Ψ∗(aω)ejωb dω . (9.44)
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Therefore, the wavelet transformation can be calculated by a multiplica-
tion of the spectrum Xo(ω) with Ψ∗(aω) and an inverse Fourier transforma-
tion:

Wx(b, a) = |a| 12F−1
{
Xo(ω)Ψ∗(aω)

}
. (9.45)

Furthermore, the Fourier transform Ψ(ω) of the mother-wavelet ψ(t) can
be chosen to be constant in a limited frequency range and zero outside:

Ψ(ω) =
{

1, for ω0 − ωg < ω < ω0 + ωg ,
0, otherwise. (9.46)

The corresponding wavelet in the time-domain becomes

ψ(t) =
ωg

π

sin (ωgt)
ωgt

· ejω0t . (9.47)

For the transformation of discrete signals, Eq. (9.45) becomes

Ŵx(b, a) = |a| 12F−1
{
X
(
ejΩ

)
Ψ∗ (ejaΩ

)}
, (9.48)

where Ψ(eΩ) is the Fourier transform of the sampled wavelet ψ(kTs).
For visualization, Fig. 9.23 shows, on the left-hand side, the frequency

resolution as well as the real and imaginary parts of the prototype wavelet
ψ(n). On the right-hand side, the variations in frequency and time after scaling
the wavelet by a = 2 are demonstrated.

In a practical realization of the wavelet-transformation by equation (9.48),
for a finite block x(n), n ∈ {0, 1, . . . ,M−1}, the DFT of lengthM is used. The
spectral windowing is carried out by setting those discrete spectral values to
zero which are not in the passband of the corresponding wavelet. After that,
the modified spectrum will be transformed with the IDFT of the full length
M . In such a way, a redundant wavelet-transformation is generated, because
for every frequency band M wavelet coefficients are calculated.

For a wavelet-representation of x(n) with reduced redundancy, the sam-
pling rates can be fitted to the wavelet bandwidths. A simple way is to trans-
form only Mi non-zero values of the modified spectrum with an IDFT of
length Mi < M . A block diagram, realizing this wavelet transformation with
a block-length M = 32 and one frequency band per octave, however, has
already been shown in Fig. 9.19: This approach is equivalent to the “partial
recombination” idea discussed in Sec. 9.9.5.1. It was mentioned that, in [26], it
was found to be too expensive in terms of computational effort in the context
of a PPN-FFT and general band combinations; here, with a DFT / IDFT
only and a dyadic scaling, it is an attractive alternative to the above Á-Trous
tree structure [25].

Of course, the values Mi can be chosen such that smaller bandwidths re-
sult than from an octave grouping. This corresponds to the above-mentioned
“voicing” in the pruned-tree structure. A natural conclusion is, then, that one
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might also drop the pruning of the Á-Trous scheme. This is indeed possible,
and it leads us to the application of so-called “wavelet packets”. With the dig-
ital wavelet-packet analysis (DWPA) [75,77], nearly arbitrary time-frequency
resolutions are possible. Wavelet-packets are bases of a transformation which
arise from linear combinations of wavelets. They make it possible to process
the wavelet-coefficients Ŵx(k2m, 2m) of a DWT again, so that an octave can
be divided into several subbands.

A realization of the discrete wavelet-packet analysis (DWPA) is shown
in the upper part of Fig. 9.24, and it turns out to correspond indeed to a
tree-structured filterbank.

The input signal x(n) is processed with all possible cascades of the basic
element, consisting of a quadrature-mirror filter pair with the highpass analy-
sis filter G(z) and the complementary lowpass analysis filter H(z) followed by
a factor-2 subsampling. The synthesis is done in the dual, lower half of the
system.

9.9.6 Adaptive Bandwidths

9.9.6.1 Motivation

In Sec. 9.9.5, the step towards non-uniform frequency resolution was motivated
by the behaviour of the human ear, on one hand, with the monotonically
increasing bandwidths of the Bark-scale filters. A more refined model of the
cochlear processing contains, beyond this, a signal-adaptive shift of all center
frequencies. On the other hand, different frequency separations were explained
as being helpful for the removal of noise in pitch-line gaps within the lower-
frequency range and the avoidance of narrow-band, musical artifacts in the
upper range. Since the border between “higher” and “lower” frequencies is
certainly not well defined, since it varies with time as well as the line distance
f0, and since the existence and visibility of a line structure in the short-
time spectra will depend on both the signal and the noise behaviour in the
current time slot, it becomes evident that signal-adaptive bandwidths and
center frequencies should outperform a fixed non-linear distribution.

9.9.6.2 Possibilities

All above non-equally resolving spectral-analysis / synthesis schemes have
some parameter(s) which could be varied in time, controlled by some short-
time signal characteristics: The partial recombination of Fig. 9.19 is easily
imagined with variable numbers Mi of re-synthesized components; this will,
however, make it expensive. The warped PPN-FFT of Sec. 9.9.5.2 may adapt
the allpass coefficient a to the signal; this would, however, not change the
monotonicity of the bandwidths, either growing or decaying; higher-order all-
pass transformations could mitigate this restriction [39,40], at the expense of
a higher complexity. The non-pruned tree-structure in Fig. 9.18, i.e., also the
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Fig. 9.24. Realization of the discrete wavelet-packet analysis and synthesis (e.g. for
M = 8).

DWPA of Fig. 9.24, can be imagined with a succeeding signal-steered deletion
of certain blocks; for a sufficiently large number μ of half-band filter stages,
this is certainly a most flexible method. Also, in the pruned-tree structure, an
additional “voicing” may be switched on or off at appropriate points.
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9.9.6.3 Efficient Realization

Any of the above possibilities may be implemented with some minimized com-
putational effort. All of them suffer, however, from a common drawback of all
more sophisticated noise-reduction schemes: The number of parameters influ-
encing the achievable quality of the output signal ŝ(n) becomes very large.
Particularly, in non-uniform spectral-analysis systems, multi-rate signals ap-
pear, and in the adaptive-bandwidth case, these rates vary. The parameters
of the noise-estimation techniques and the subtraction rules, however, depend
on the signals’ time and frequency scales [24].

A simple solution was suggested in [24,25]: The actual spectral analysis and
synthesis are kept constant, i.e., non-adaptive. Instead, the spectral weights
gi in Fig. 9.12 are adaptively grouped in frequency bands; in each band, the
same factor ḡν is applied.

A varying number of K bands with variable lower and upper frequency
indices il,ν and iu,ν are simulated in this way. For the weights, a simple average
can be applied:

ḡν =
1

iu,ν − il,ν + 1
·

iu,ν∑
i=il,ν

gi, ν ∈ {1, 2, . . . ,K}. (9.49)

The adaptive channel number K and the edge indices are derived from a
tree-structured procedure, indicated in Fig. 9.25. In the first stage of the tree,
the whole frequency range is divided into a relative small number K � M

2

of bands with equal widths fs
2K . If the signal energy within the subband ν is

lower than the corresponding noise estimation, i.e., if

iu,ν∑
i=il,ν

Syy(Ωi) < η ·
iu,ν∑

i=il,ν

Sbb(Ωi) , ν ∈ {1, 2, . . . ,K}, (9.50)

the spectral weights are averaged for this subband, which will not be con-
sidered further in the next steps. If the signal energy is higher than the cor-
responding noise estimation, the resolution in this subband is increased by
a factor of 2. If Eq. (9.50) is at least not satisfied in one subband, the next
stage in the tree is reached, with an increased number K of channels. The
corresponding limits il,ν and iu,ν , ν ∈ {1, 2, . . . ,K}, are updated. Then the
condition (9.50) is checked again for every newly generated subband, and the
splitting procedure will be executed if necessary. The last stage in the tree
is reached for a subband if Eq. (9.50) is satisfied (white subbands on the
left-hand side of Fig. 9.25), or if the bandwidth corresponds to the original
resolution of the spectral analysis. The right-hand side of Fig. 9.25 symbolizes
the final resolution for the presented example: Depending on the local SNR,
quite arbitrary band configurations may be found, with only one weighting
factor each. In spectral regions with high SNR, the original high frequency
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resolution is reached, while low SNR-regions are smoothed, depending on the
stage reached in the tree.

It should be mentioned that the tree-structure can be implemented effi-
ciently by using a recursive algorithm. To avoid block effects in the frequency
direction, the subbands of the first stage can be initialized by using overlap-
add techniques.

0

0

Fig. 9.25. Schematic of the adaptation of the bandwidths for a signal block and
corresponding time-frequency resolution.

9.10 System Configurations, Experiments, and
Comparisons

9.10.1 Status

The first proposals around 1980 [2,5], began with block-DFT / FFT analysis /
synthesis systems, with magnitude or power subtraction, pause-noise estima-
tion, and some simple non-linearities to reduce artifacts. Later, around 1985,
with growing computer power, block-overlap or PPN-structures became fea-
sible, combined with more refined non-linearities and smoothing techniques
(e.g., [71]). Minimum-tracking noise estimation and signal-statistics-based
subtraction rules became a certain standard in the 1990-ies. Wavelets entered
the scene near the end of the century (e.g., [42, 67]), and other non-uniform
band separations were tested around 2000 (e.g., [80]).

A vast variety of combinations is available from the literature. An overview
of the earlier systems is found in [45], a somewhat later one in [74]. For in-
dustrial applications, with the limited resources available in a car, nowadays,
multi-rate PPN-FFT-based systems with further band-division and quite com-
plex noise estimation and subtraction algorithms are affordable and realizable
in fixed-point arithmetic [63].
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In the following, a few interesting configurations are to be described and
analysed, in order to give a feeling of what can be achieved at which ex-
pense. Comparisons are made on the basis of spectrograms and some results
of informal listening tests.

9.10.2 Examples

9.10.2.1 Uniform vs. Non-uniform Bandwidths

An earlier detailed study [56] confirmed that overlapping signal blocks in
a DFT / FFT system as well as the generalization by a PPN-FFT would
indeed enhance the smoothness of the synthesized output signal ŝ(n). In a later
investigation [12], therefore, many variants of uniformly and non-uniformly
resolving filterbanks, including wavelet-derived ones, were examined. Figs.
9.27 to 9.30 reflect some of the results.
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Fig. 9.26. Spectrogram of speech corrupted by noise from a moving car.
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Fig. 9.27. Spectrogram after application of a simple subtraction rule with a uniform
polyphase filterbank.
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Fig. 9.26 shows the noisy-speech spectrogram. The relatively strong speech
parts with their formants and pitch-harmonics, varying over time, are clearly
visible in front of the more or less grey noise background. The disturbed signal
was taken from the microphone of an hands-free telephone in a car moving at
a speed of 120 km/h, and it was sampled at a rate fs = 11.025 kHz. The noise
power was estimated using a minimum tracking. The de-noising was carried
out with a very simple magnitude subtraction, including only a “half-wave
rectification” and no other non-linearities, like over-estimation or noise floor,
in order to make the effects of different spectral analyses more visible.

Fig. 9.27 proves that, indeed, noise has been removed, as visible in the
zones which are “brighter” now than in Fig. 9.26. The small dark rectangles,
however, distributed randomly in these regions, indicate the residual, musical
artifacts. Their bandwidths and durations are more or less the same every-
where, defined by the channel number M = 256 and the prototype filter of
length Lw = 1024. Fig. 9.28 clarifies the effects of an allpass transformation
in the PPN: With a first-order allpass, chosen such that the Bark-scale res-
olution is approximated, the PPN-FFT with the same number of channels
and the same prototype low-pass filter creates longer, but more narrow-band
artifacts in the lower-frequency region, while the tonal effects become shorter
and more broad-band (i.e.: less tonal) in the upper frequency parts. The same
is visible also in Fig. 9.29. Here, an Á-Trous (i.e., pruned-tree) structure with
7 octaves and 10 voices per octave, i.e., only 70 channels, was chosen. The
similarity of the results indicates that in an allpass-transformed PPN-FFT
also a reduced channel number M < 256 could have been used, reducing the
extra-computational load somewhat.
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Fig. 9.28. Spectrogram after application of a simple subtraction rule with an
allpass-transformed PPN-FFT.

Replacing the above simple weighting rule by the “quasi-standard” of Sec.
9.8.4 “smeares” the little rectangles in all cases; still, some differentiation
between “long / narrow-band” and “short / wide-band” in lower and higher
spectral ranges remains visible (see Fig. 9.30, [22]).
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Fig. 9.29. Spectrogram after application of a simple subtraction rule with a pruned-
tree filterbank.
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Fig. 9.30. Spectrogram after application of a refined subtraction rule with a pruned-
tree filterbank.

Perceptually, both non-uniform filterbanks provide more pleasant residual
disturbances plus a more natural speech sound; this holds for the simple as
well as the more sophisticated subtraction rule.

Other variants of non-equispaced spectral decompositions were included
into another thorough study [24, 25]. Especially, the DFT-based realization
of the wavelet transformation by partial resynthesis was checked. Here, the
“voicing” or non-equally spaced sub-division of octaves can be realized by
grouping more, but smaller sets of original DFT lines in Fig. 9.19. For a first
comparison, the above-used simple rule was applied again. The noise-PDS
was now estimated in a one-step, initial-pause measurement, justified by the
fact that only artificial, stationary white noise was added to the clean speech
signal; the sampling rate is fs = 8 kHz now.

Fig. 9.31 shows the corresponding corrupted-signal spectrogram, Figs.
9.32, 9.33, and 9.34 the results of denoising with a tree-structure of 7 oc-
taves with 10 voices each, a DFT-based version with 9 octaves and 5 voices,
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Fig. 9.31. Spectrogram of the noise-corrupted speech signal.

and a DFT-based solution with 9 octaves and 10 voices, respectively.1 The
same inverse time-frequency effects are visible in all cases, and no difference
is observed perceptually. Due to the much smaller computational load, a pref-
erence of the DFT- / FFT-based realizations is concluded.
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Fig. 9.32. Spectrogram after application of a simple subtraction rule with a wavelet-
based tree structure.

The DWPA, exposed in Fig. 9.24, was said to offer a very high flexibility
in terms of band definitions. Therefore, some heuristically appealing configu-
rations were investigated, too, in [24, 25]. Figs. 9.35 and 9.36 give examples,
where the simple and the enhanced weighting are carried out in a system

1 The upper octave has a bandwidth of 2 kHz. If it is split into 5 voices, the
lowest band-width is 0.30 kHz, the four higher ones larger by factors ( 5

√
2)1, ...,

( 5
√

2)4, such that the highest band has a width of 0.52 kHz. In the octave below,
all bandwidths are halved. With 10 voices, a similar calculation is needed, with
factors ( 10

√
2)i. In a length-M DFT-based realization, the sub-division stops at

the DFT-line distance fs/M .
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Fig. 9.33. Spectrogram after application of a simple subtraction rule with a DFT-
based wavelet transformation: 9 octaves, 5 voices.
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Fig. 9.34. Spectrogram after application of a simple subtraction rule with a DFT-
based wavelet transformation: 9 octaves, 10 voices.

with 5 octaves, the upper 4 being sub-divided into 8 bands each, the lowest
octave having 16 channels; a total of only 48 components results, though with
a favourably narrow bandwidth in the lowest frequency range. As to be seen
from these spectrograms and the comparison with all earlier results, noise
reductions are achievable with obviously quite different residuals. No version
was found in this heuristical search which would clearly outperform others,
with also non-uniform, fixed bandwidths.

9.10.2.2 Fixed vs. Adaptive Bandwidths

In the investigations of [24, 25], also experiments with bandwidth-adaptation
were included. Additive white noise was used, and the sampling rate was
fs = 8 kHz again. For the spectral analysis, a simple DFT with M = 256
channels is used. So, the original spectral analysis has a resolution of ∼ 31 Hz.
For the initial bandwidths of the subbands in the first stage of the tree, 500
Hz (K = 8) are a good choice. To avoid block effects, two tree-structures with
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Fig. 9.35. Spectrogram after application of a simple subtraction rule with a DWPA,
choosing 5 octaves.
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Fig. 9.36. Spectrogram after application of a refined subtraction rule with a DWPA,
choosing 5 octaves.

50% overlap are used, with averaging the resulting weighting factors. First,
we explain the effect of the tree-structured post-processing for a single voiced
frame, as shown in Figs. 9.37, 9.38, and 9.39.

As expected, the algorithm smoothes the spectral weights in regions with
a low SNR and leaves them unchanged in high-SNR regions, especially in
pitch-structured regions.

The overall processing result is illustrated in Figs. 9.40, 9.41, and 9.42.
The first spectrogram contains the time-frequency representation of the en-

hanced signal after application of the basic spectral subtraction rule without
bandwidth adaptation. Especially in speech pauses, many randomly distrib-
uted spectral peaks occur, which produce undesirable tonal noise.

In contrast, the second spectrogram shows the time-frequency representa-
tion of the enhanced signal after application of the same subtraction rule, but
with tree-structured adaptivity for the subbands, as explained in Sec. 9.9.6.3.
The musical tones are completely suppressed by smoothing during non-speech
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Fig. 9.37. Short-time spectrum of a vowel.
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Fig. 9.38. Weighting factors gi before (dashed line) and ḡν after averaging (solid
line).

activities, while the speech itself is not disturbed additionally. Also informal
listening tests confirm this effect: The residual noise has now a nearly natural
character, while the speech is not affected by the smoothing process.

Fig. 9.42, finally, visualizes the resulting different bandwidths as a coded
plot: Each gray-tone symbolizes a different stage as reached in the tree-
structure; the black areas represent a very high frequency resolution, namely,
that of the original DFT (31 Hz), while the white areas correspond to the first
stage of the tree, where the weighting factors are smoothed over bandwidths
of 500 Hz. Between these two extrema, other stages in the tree occur, coded
as gray-levels. It can be seen that the algorithm detects the contours of the
speech activity and adapts the bandwidths.

It should be noted that no smoothing in time direction is done, so that
the speech quality is not disturbed by echoes.

Experiments with the above-used, more complex subtraction rule, are
found to offer no additional advantages.
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Fig. 9.39. Number of merged subbands.
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Fig. 9.40. Spectrogram after application of a simple subtraction rule with fixed-
bandwidth weighting.

9.10.2.3 Noise Instationarity

Beyond the instationarities of the signal, time-variant noise characteristics
are a known difficulty. Some experiments with the improved noise-tracking
method, introduced in Sec. 9.7.4, show that this problem can be solved [23].

In Fig. 9.43, a speech signal is depicted with additive, cosine-modulated
noise; Fig. 9.44 contains the corresponding spectrogram. As can be seen
from Fig. 9.45, the standard minimum-tracking method is unable to follow
the changing noise bahaviour; the gain-shape separation, however, tracks the
changes well. A more detailed analysis of the estimation errors in [23] shows
strong advantages oft this approach for different profiles of time-varying dis-
turbances. Figs. 9.46 and 9.47 back the above measurement: The spectrogram
(achieved with a very simple, DFT-based spectral subtraction) with the en-
hanced tracking shows much less unnatural signal deletions, distortions, and
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Fig. 9.41. Spectrogram after application of the simple subtraction rule with
variable-bandwidth weighting.
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Fig. 9.42. Visualization of the time-frequency regions with different bandwidths.

remaining noise-modulation than that found after a standard minimum track-
ing.

9.11 Further Problems and Ideas, Concluding Remarks

According to the experiments described above, two setups are a good choice
for single-channel noise reduction:

• Fixed, non-uniform-bandwidth spectral analysis / synthesis, favourably re-
alized by a DFT-based wavelet transformation, together with a minimum-
tracking noise-PDS shape estimation and a fast, separate gain tracking,
combined with a statistics-based subtraction rule.

• Fixed, uniform-bandwidth spectral analysis / synthesis, e.g., by a sim-
ple DFT / FFT, together with the same noise estimation as above, with a
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Fig. 9.43. Speech signal with additive, cosine-modulated noise.
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Fig. 9.44. Spectrogram of a speech signal corrupted with amplitude-modulated
white noise.

much simpler weighting rule, but with adaptive-bandwidth weight smooth-
ing.

In the former case, improvements are to be expected by applying more
advanced signal- and noise-statistic models; in the latter case, the simple DFT
should probably be replaced by a PPN-DFT.

A combination of non-uniform with adaptive bandwidth seems to be use-
less: The adaptivity would be hindered from finding the “best band separa-
tion” freely.

Above, also the combination of bandwidth adaptation with the enhanced
subtraction rule was found to be unfavourable up to now. This may, however,
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Fig. 9.46. Spectrogram after application of a simple subtraction rule with a
minimum-tracking noise estimation.

be due to the difficult optimization of too many algorithmic parameters with
strong interdependencies.

Some other aspects, not mentioned before, deserve some further attention.
One of them is the application of completely different definitions of “spectra”;
a signal can be decomposed into orthogonal bases which are not pre-defined
as exponentials or wavelets a priori, but found, instead, from the current
signal. Singular-value decomposition (SVD) is one possibility, as proposed
in [10, 12, 16, 29, 38]; there are interesting filterbank interpretations of these
analysis / synthesis systems, but no final break-through has been reported.
A more recent idea may be the use of intrinsic-mode functions, also derived
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Fig. 9.47. Spectrogram after application of a simple subtraction rule with the
adaptive-gain noise estimation.

adaptively from the given signal [34]. A second aspect is a practical one:
With the advent of possible wide-band speech transmission, e.g., in UMTS
or in voice-over-IP applications, noise reduction for speech with a bandwidth
of 7 kHz will become interesting, where the perceived quality will be of even
more importance than in the classical telephone-band case; it is an open ques-
tion whether the present methods can be simply transferred, or whether other
approaches are helpful; some experiments have shown that, e.g., in noise-PDS
estimation, modifications are needed [36] and that separate treatments in a
few subbands may help. As to perceived quality, finally, methods taking psy-
choacoustics into account have gained interest in recent years (e.g., [28, 30]);
perhaps they provide a way out of the “vicious triangle” still limiting the suc-
cess of single-channel noise reduction: “There is no noise suppression, there is
noise transformation” – from noise to artifacts, reduced at the price of distor-
tions, reduced at the expense of more noise... Hiding the residual effects for
the ear should provide the solution.

A final remark is necessary: The above thoughts and discussions do, of
course, rely to a large extent on the work done in the author’s group and
in some closely cooperating institutes. Ideas and publications of others may
have been overlooked or not seen in their true importance. So, this chapter is
certainly subjective – this is admitted, but probably unavoidable.
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Noise Reduction with Kalman-Filters for
Hands-Free Car Phones Based on Parametric
Spectral Speech and Noise Estimates

Henning Puder

Siemens Audiological Engineering Group, Erlangen, Germany

10.1 Introduction

For some years now, in many countries, the use of hands-free telephones in
cars is only allowed with hands-free mobile phones. Instead of the telephone
receiver, for these hands-free facilities, a loudspeaker and a microphone are
installed in the car. Thus, the telephone user has his hands free for driving
the car.

Besides the well-known and mostly solved echo problem of hands-free tele-
phones [4, 16] a major problem of hands-free car phones is the ambient noise
which superimposes to the desired speech signal and entails a less comfortable
telephone conversation. This noise problem is, compared to normal receiver
telephones, more severe due to the larger distance of the speaker and the
microphone of the hands-free unit.

The preferred method for reducing this interference noise, in this case, is
the utilization of beamformers (see Chapter 2) which perform a space selective
filtering and steer a beam in the direction of the desired speaker. However,
due to problems of installing several microphones which are required for beam-
forming or simply due to the related costs, often only one microphone can be
utilized. In this case, for noise reduction, one is restricted to single channel
noise reduction methods which manage with the only available noisy signal
being the superposition of the desired speech and noise.

But also when beamforming methods can be applied, signal channel noise
reduction methods can be utilized as additional noise reduction method ap-
plied to the single output signal of the beamformer. In Fig. 10.1 these two
applications of single channel noise reduction are illustrated.

Single channel noise reduction is a research topic for many years now.
Usually, Wiener filter based approaches are utilized to solve this task [3,13]. In
the case of Wiener filters, the noisy signal is decomposed into many frequency
components which are then weighted according to their individual signal-to-
noise ratio (SNR). Besides the Wiener filter rule, alternative weighting rules
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Fig. 10.1. Application of single channel noise reduction for enhancing a single noisy
speech source (left) or as post-processing unit in addition to a beamformer.

have been proposed, where surely the most prominent one is the Ephraim-
Malah approach [9, 10].

In this chapter we will introduce a complete alternative approach based
on Kalman filters. The motivation for applying this approach is twofold:

• The Kalman filter approach allows an optimal filter design for non-
stationary signals.

• The Kalman filter related parametric spectral estimation allows to incor-
porate a priori knowledge of speech and noise to make the estimation more
reliable.

Concerning the filter design for non-stationary signals, the Kalman filter is
optimum for non-stationary signals such as speech, whereas the Wiener filter
is designed such as to be optimum for stationary signals, only. In order to
be able to utilize this approach for noisy speech, anyhow, the Wiener filter
is subsequently applied to short speech segments of approximately 20 msec
which are supposed to be stationary. Nevertheless, the Wiener filter looses its
optimum performance for which it is designed for.

For the spectral estimation, the Wiener and Ephraim-Malah filter based
approaches estimate the power spectral density of speech and noise in de-
pendence of frequency. In contrast, Kalman filters utilize parametric spectral
models of speech and noise, for which mostly auto-recursive (AR) processes
are utilized:

s(n) =
p∑

l=1

al(n) s(n− l) + w(n) . (10.1)

The parametric spectral distribution of the signal s(n) is implicitly rep-
resented by the AR parameters al(n) and the power of the white excitation
signal w(n).

For estimating these AR parameters, different methods can be utilized
which will be explained in the next section. These parametric estimation meth-
ods allow to incorporate a priori knowledge of the signals for which the models
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have to be estimated – in our case speech and noise. This especially concerns
the choice of the AR model orders which are related to the required frequency
resolution. It will be shown that for speech a higher model order is required
than for noise. Especially, for a high-quality noise reduction, the pitch struc-
ture of the speech has to be resolved. In contrast to other publications [11,18]
of Kalman filters for speech enhancement, these relations were first published
in [22,23].

An additional advantage of this parametric estimation is that – compared
to direct spectral estimation methods – less unknowns have to be estimated.
Therefore, based on the same amount of information, these parameters can be
estimated more reliably which reduces the risk of non-desired musical tones [2].

This chapter is organized as follows: In the following section, first an analy-
sis of speech and car noise is performed and their main properties are extracted
which are required for the design of optimum Kalman filters.

In the third section, the necessary theoretic basics of Kalman filters and
the of required parametric spectral estimation are introduced.

Then, in the fourth section, a practical application of Kalman filters for
noise reduction will be proposed. Here, first, a subband Kalman filter approach
will be motivated based on the characteristic of speech. Then methods for the
parametric estimation of speech and noise models – only based on the noisy
speech signal – will be elaborated. And finally, methods will be sketched which
enhance the noise reduction performance based on the a-priori knowledge of
the pitch frequency.

The last section before the conclusions is dedicated to a detailed analysis of
the proposed Kalman filter noise reduction method, compared with alternative
approaches, i.e. methods based on direct spectral estimation such as Wiener
filter and Ephraim-Malah approaches.

10.2 Speech and Car Noise Analysis

10.2.1 Car Noise Analysis

Analyzing the spectral distribution of car noise, one first can observe that
car noise exhibits strong low-frequency components. After a steep decrease
the power spectral density (PSD) then decreases more slowly towards higher
frequency components.

These properties can, as an example, be observed in Fig. 10.2. On the left,
the power spectral densities of the car noise at 50 km/h and 110 km/h are
depicted.

For frequency components above approximately 300 Hz, a PSD increase of
about 10 dB can be noticed due to the higher car speed. Performing a spec-
trogram analysis, with a resolution of 32 Hz one obtains the result depicted
in Fig. 10.3.
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Fig. 10.2. Power spectral density at the beginning (50 km/h) and at the end
(110 km/h) of an acceleration (left) with the corresponding spectrogram (right).
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Fig. 10.3. Spectrogram of a car noise analyzed during an acceleration.

The spectral harmonics, one can observe, are harmonics of the engine noise
which, in particular, occur when accelerating the car. They vary faster with
the time than the other car noise components.

In total, car noise is mostly composed of several components:

• transmission,
• car body,
• engine,
• wind, and
• tyre noise,

where the last three ones are generally the dominant ones. These components
will be analyzed separately in the following. A special focus will be laid on
possibilities to predict the noise PSD in dependence of the car speed or the
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engine speed since the noise PSD is usually hard to estimate during speech
activity.

10.2.1.1 Engine Noise

Analyzing engine noise separately, one observes that strong spectral compo-
nents are present at multiples of half of the engine frequency. This can be
observed for the engine noise example depicted in Fig. 10.4.
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Fig. 10.4. Spectrogram of an engine noise with varying engine frequency.

This relation is valid for the usual four cycle engines independent of the
number of cylinders. The only property that depends on the number of cylin-
ders is the relative power of the spectral harmonics. For four cylinder engines
every second and for six cylinders every third engine harmonic has a higher
power than the others.

10.2.1.2 Wind Noise

Wind noise components mainly occur due to air turbulence at the car cabin.
The usually optimized design of car cabins help to avoid whistling noise
sounds.

Wind noise components depend on the car speed and change rather slowly
within the time. An example of the power spectral density of wind noise is
depicted in Fig. 10.5.

Since wind noise components are usually less powerful than tyre noise
components, a prediction of the power spectral density in dependence of the
car speed does not make sense.



390 H. Puder

0 1000 2000 3000 4000

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency in Hz

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 in

 d
B

140 km/h 

100 km/h 

Fig. 10.5. Power spectral densities of wind noise at two different speeds measured
in a wind tunnel.

10.2.1.3 Tyre Noise

Tyre noise is usually the most powerful noise component of car noise. It de-
pends mostly on the car speed and the road surface. The power spectral
density of tyre noise is depicted in Fig. 10.6 for two different road surfaces for
the same car. One especially notices differences below 1 kHz.

0 1000 2000 3000 4000

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency in Hz

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 in

 d
B

Fig. 10.6. Power spectral densities of tyre noise for two different road surfaces.

Investigating the dependence of the full-band power on the car speed, one
can observe an approximately linear relation between the the full-band noise
power PN in dB and the car speed



10 Noise Reduction with Kalman Filters for Hands-Free Car Phones 391

PN (v) = PN (v0) eKv [v−v0], (10.2)

which is also depicted in Fig. 10.7.
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Fig. 10.7. Mean power of the tyre noise in dependence of the car speed (black).
The gray graph depicts the approximately linear relation between the noise power
and the car speed according to Eq. 10.2.

Performing, however, a frequency dependent analysis, one observes that

• the strength of the power increase is frequency dependent and
• the linear increase is only valid for the strongly smoothed mean, the vari-

ance, however, is very high.

Thus, a prediction of the tyre noise power spectral density in dependence
of the car speed is very difficult.

Concluding, the main property of car noise is that its components show
a rather smooth dependence on time and frequency. Performing a detailed
analysis for the car noise components, this smoothness is especially valid for
wind and tyre noise.

Engine noise components show dominant harmonic components at multi-
ples of half of the engine frequency. This offers the potential for an special
harmonic engine harmonic cancellation procedure supposing the engine fre-
quency is available [21, 23], e.g. via the so-called controller area network bus
(CAN bus) of a usual modern car.

10.2.2 Speech Analysis

In contrast to car noise, speech signals strongly vary with time. They are
mainly composed of two different components:
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• Voiced and
• unvoiced

speech frames, as well as transition frames.
Typical frames of unvoiced and voiced speech are depicted in Fig. 10.8 and

Fig. 10.9, respectively.
Unvoiced speech frames occur when pronouncing phonemes such as ‘s’, ‘f’,

and ‘sh’. These fricatives exhibit a noise like characteristic with a remarkable
spectral contribution at frequency components above 2 kHz.
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Fig. 10.8. Unvoiced frame of a speech signal, ’sh’ sound (left) and corresponding
spectrogram (right).
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Fig. 10.9. Voiced speech frame of a ’u’ sound (left) and the corresponding power
spectral density (right). Pitch period, pitch frequency, and the formants are marked.

Voiced speech frames are characterized by the pitch frequency or the pitch
period, respectively, as well as the formants. The pitch frequency is the fre-
quency of the periodic excitation signal whereas the formants characterize the
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spectral envelope. Formants are formed by the vocal tract and are character-
istic for the different vowels.

A model for the speech excitation is depicted in Fig. 10.10.

Fig. 10.10. Speech excitation model. With the factors g1 and g2 one can continu-
ously switch between voiced and unvoiced exciation. The factor σs determines the
speech signal power and the vocal-tract filter models the human vocal tract.

The excitation signals are different for unvoiced frames (noise generator)
and voiced frames (impulse generator). With g1 and g2, both values ∈ [0, 1]
and g1 + g2 = 1, the ratio of the voiced and unvoiced components of the
speech sound can be chosen to model transition frames.

Finally, in Fig. 10.11 the spectrogram of a male speech signal is depicted.
One clearly observes unvoiced and voiced speech frames with their typical pe-
riodic pitch structure. The main property that the speech components change
rapidly with respect to time and frequency is obvious.

Concluding, the analysis of car noise and speech signals as well as having in
mind the noise reduction task, the following properties have to be emphasized:

• Typical car noise components exhibit dominant components at very low
frequencies.

• Their spectrum is rather smooth with respect to time and frequency.
• Thus, their spectral characteristics vary slowly.
• Typical speech components show a strongly time varying spectrum.
• The power dominant voiced speech frames are characterized by a pitch-

periodic spectrum.

10.3 Theoretical Basics

10.3.1 Kalman Filters for Colored Noise Signals

In this section, the Kalman filter equations are derived for the realistic case
where the desired signal as well as the noise are non-white signals such as
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Fig. 10.11. Spectrogram of a male speech signal with a pitch frequency around 140
Hz.

for our specific application of hands-free car phones. In this case, i.e. for car
noise, the usual assumption when deriving Kalman filter does not hold that
the disturbing noise is white.

Describing speech s(n) and noise b(n) as AR processes, the following re-
lation can be noted:

x(n) = s(n) + b(n), (10.3)

s(n) =
p∑

k=1

ak(n) s(n− k) + w(n), (10.4)

b(n) =
q∑

k=1

ck(n) b(n− k) + ν(n), (10.5)

with ν(n) and w(n) being white excitation signals.
In the state-space domain this may be denoted as follows:

s(n) = As(n− 1) s(n− 1) + gs w(n), (10.6)
b(n) = Ab(n− 1) b(n− 1) + gb ν(n), (10.7)
x(n) = hT

s s(n) + hT
b b(n) (10.8)

with
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s(n) =

⎡⎢⎢⎢⎣
s(n− p+ 1)
s(n− p+ 2)

...
s(n)

⎤⎥⎥⎥⎦
p×1

, hs = gs =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦
p×1

,

As(n) =

⎡⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

ap(n) ap−1(n) · · · a1(n)

⎤⎥⎥⎥⎦
p×p

, (10.9)

and

b(n) =

⎡⎢⎢⎢⎣
b(n− q + 1)
b(n− q + 2)

...
b(n)

⎤⎥⎥⎥⎦
q×1

, hb = gb =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦
q×1

,

Ab(n) =

⎡⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

cq(n) cq−1(n) · · · c1(n)

⎤⎥⎥⎥⎦
q×q

. (10.10)

Combining the state space equations, the following relations can be noted:

x(n) = Ax(n− 1)x(n− 1) + G v(n), (10.11)
x(n) = hT

x x(n), (10.12)

with:

x(n) =
[

s(n)
b(n)

]
, v(n) =

[
w(n)
ν(n)

]
, G =

[
gs 0
0 gb

]
,

Ax(n) =
[

As(n) 0
0 Ab(n)

]
,hx =

[
hs

hb

]
,V (n) =

[
σ2

w(n) 0
0 σ2

ν(n)

]
,(10.13)

where the noisy input can be noted as

x(n) = hT
x x(n),

= hT
s s(n) + hT

b b(n). (10.14)

These notations are visualized in Fig. 10.12.
The power of the zero-mean signals ν(n) and w(n) are denoted as σ2

w(n)
and σ2

ν(n).
In the following derivation of the Kalman filter, x̂(n|n − 1) and x̂(n|n)

are the estimates for the state x̂(n) on the basis of the measurements x(i) for
n− 1 and n signal values, respectively.
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Fig. 10.12. The excitation models in state-space domain notation.

The corresponding error signals and the covariance matrices can then be
noted as:

e(n|n) = x(n) − x̂(n|n), P (n|n) = E
{

e(n|n)eH(n|n)
}
,

e(n|n− 1) = x(n) − x̂(n|n− 1), P (n|n− 1) = E
{

e(n|n− 1)eH(n|n− 1)
}

The derivation of the Kalman filter may now be performed in two steps:
First, an estimate of the state x̂(n|n − 1) is determined based on the old
measurement values up to n − 1 and then the current input sample x(n) is
considered for the estimation of x̂(n|n).

10.3.1.1 Predicted Estimate

One possibility for predicting the current state estimate is a linear modification
based on the preceding estimate:

x̂(n|n− 1) = Ax(n− 1) x̂(n− 1|n− 1). (10.15)

In the following, it is shown that this is an appropriate approach since the
mean of the error is zero. Denoting the error as

e(n|n− 1) = x(n) − x̂(n|n− 1)
= Ax(n− 1)e(n− 1|n− 1) + G v(n), (10.16)

it is obvious that the expectation value of e(n|n − 1) is zero since the pre-
ceding estimate has been determined such as to be unbiased, i.e. the mean of
e(n− 1|n− 1) is zero and also the mean of v(n) is zero.

Therefore, the error covariance matrix can be determined as

P (n|n− 1) = Ax(n− 1)P (n− 1|n− 1)AH
x (n− 1) + G V (n)GT.(10.17)

10.3.1.2 Current Estimate

For estimating the current model state x̂(n|n), the approach is to linearly
combine the predicted estimate and current measurement value:



10 Noise Reduction with Kalman Filters for Hands-Free Car Phones 397

x̂(n|n) = K̃(n) x̂(n|n− 1) + k(n)x(n). (10.18)

The corresponding model error e(n|n) can then be determined as:

e(n|n) = x(n) − K̃(n) x̂(n|n− 1) − k(n)x(n),

= x(n) − K̃(n)
[
x(n) − e(n|n− 1)

]
− k(n)

[
hT

x x(n)
]
,

=
[
I − K̃(n) − k(n)hT

x

]
x(n) + K̃(n)e(n|n− 1), (10.19)

where the value K̃(n) is comprised of a matrix and the value k(n) denotes a
vector which will be called Kalman gain later on.

The estimate x̂(n|n) exhibits the desired zero-mean error if the following
equation is fulfilled:

K̃(n) = I − k(n)hT
x . (10.20)

Thus, the model state estimate can be written as

x̂(n|n) = x̂(n|n− 1) + k(n)
[
x(n) − hT

x x̂(n|n− 1)
]
. (10.21)

The remaining unknown is the Kalman gain k(n).
For determining this Kalman gain, the minimization of the mean square

error can be utilized as optimization criterion:

E
{

eH(n|n)e(n|n)
}

= tr
{

E{e(n|n)eH(n|n)}
}
,

= tr
{

P (n|n)
}

!= min, (10.22)

with:

e(n|n) = e(n|n− 1) + k(n)
[
x(n) − hT

x x̂(n|n− 1)
]
. (10.23)

Thus, the minimization of the mean square error is equivalent to the min-
imization of the trace of the covariance matrix P (n|n).

Writing this covariance matrix in dependence of the estimates based on
the n− 1 measurement signal values and the currently observed signal value
x(n), one obtains the following:

P (n|n) = P (n|n− 1)

+k(n) E
{[
x(n) − hT

x x̂(n|n− 1)
][
x∗(n) − hT

x x̂∗(n|n− 1)
]}

kH(n)

−E
{

e(n|n− 1)
[
x∗(n) − hT

x x̂∗(n|n− 1)
]}

kH(n)

−k(n)E
{[
x(n) − hT

x x̂(n|n− 1)
]
eH(n|n− 1)

}
. (10.24)
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Deriving the trace of this matrix with respect to the single elements of the
Kalman gain vector, one obtains the following condition [12]:

k(n) E
{ hT

x

[
x(n) − x̂(n|n− 1)

]︷ ︸︸ ︷[
x(n) − hT

x x̂(n|n− 1)
] [
x∗(n) − hT

x x̂∗(n|n− 1)
]}

−E
{

e(n|n− 1)︸ ︷︷ ︸
x(n) − x̂(n|n− 1)

[
x∗(n) − hT

x x̂∗(n|n− 1)
]}

!= 0, (10.25)

which can be written as[
I − k(n)hT

x

]
·E
{[

x(n) − x̂(n|n− 1)
]
hT

x

[
x∗(n) − x̂∗(n|n− 1)

]}
!= 0. (10.26)

This equation may be reordered and written as[
I − k(n)hT

x

]
E
{

e(n|n− 1)eH(n|n− 1)
}

︸ ︷︷ ︸
P (n|n− 1)

hx
!= 0. (10.27)

Thus, the optimum Kalman gain may be denoted as

k(n) = P (n|n− 1)hx

[
hT

x P (n|n− 1)hx

]−1

. (10.28)

Replacing this result in Eq. 10.24, after some reordering of the equations,
one obtains the following result for the covariance matrix:

P (n|n) =
[
I − k(n)hT

x

]
P (n|n− 1). (10.29)

Concluding, all equations necessary for the Kalman filtering may be de-
noted as

x̂(n|n− 1) = Ax(n− 1) x̂(n− 1|n− 1), (10.30)
P (n|n− 1) = Ax(n− 1)P (n− 1|n− 1)AH

x (n− 1) + GV (n)GT, (10.31)

x̂(n|n) = x̂(n|n− 1) + k(n)
[
x(n) − hT

x x̂(n|n− 1)
]
, (10.32)

k(n) = P (n|n− 1)hx

[
hT

x P (n|n− 1)hx

]−1

, (10.33)

P (n|n) =
[
I − k(n)hT

x

]
P (n|n− 1). (10.34)

And the estimation for the clean signal ŝ(n) can be written as follows:

ŝ(n) =
[
hT

s 01×q

]
x̂(n|n). (10.35)

Fig. 10.13 visualizes this result. Here, one clearly observes the close relation
of the state space model according to Fig. 10.12 and the Kalman equations.
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Fig. 10.13. Visualization of the Kalman filter equations when modeling speech and
noise with AR models.

10.3.2 Parametric Spectral Estimation

As mentioned in Sec. 10.1, the application of Kalman filters and the denoted
advantages are directly related to the description of speech and noise with
parametric models.

In this section, in a compact way, the two different methods will be in-
troduced which will be utilized for the parametric speech and noise model
estimation required for the application of the Kalman filter based noise re-
duction in Sec. 10.4.

These two estimation methods are

• the autocorrelation method and
• the Burg method.

The methods belong to two different groups of methods for the parametric
spectral estimation:

• Direct methods [12, 15] where the AR parameters of a signal’s model are
determined based on the estimation of the signal’s autocorrelation matrix
by solving the Yule-Walker equations.

• Recursive methods [12, 20] which determine the reflection coefficients of
a prediction error filter in Lattice structure. These reflection coefficients
can be used to easily determine the required AR parameters of the signal
models.

The signal models have to be determined for signals such as speech and
noise which are not stationary and can only be modeled as short-term sta-
tionary signals. Thus, the model coefficients can only be estimated for signal
frames of a limited length LAR for which the signal properties do not change
significantly. A time-dependence of the models is the consequence.



400 H. Puder

10.3.2.1 Direct Parametric Spectral Estimation Methods

For direct methods, the model coefficients for each signal frame are determined
based on one minimization step. The approach is based on the minimization
of the mean square output signal of the prediction error signal w(n) which is
depicted in Fig. 10.14.

Fig. 10.14. Structure of a predictor error filter.

The different direct estimation methods such as the autocorrelation, the
covariance and the modified covariance methods differ by the utilized min-
imization criterion. The autocorrelation method, which will be presented in
the following, shows – in contrast to the other before mentioned methods –
the advantage to determine AR models which are guaranteed to be stable.

The Autocorrelation Method

The autocorrelation method determines the prediction coefficients by min-
imizing the sum of the squared output signal samples w(n). First, one assumes
that the output w(n) is determined for n → ∞ samples. Since, however, the
models should only be determined in dependence of the windowed input signal
of length LAR, assumptions about the input signal values which are outside
of the window are required. The assumption of the autocorrelation method is
that these values are zero. Thus, the model coefficients are determined based
in the windowed signal, denoted as:

sn(ν) =

{
s(ν) : ν ∈

[
n− LAR/2 + 1, . . . , n+ LAR/2

]
∧ [ν > 0],

0 : else.
(10.36)

For this signal, one assumes, without loss of generality, that the signal sn(ν)
is zero for ν ≤ 0. The signal which has to be minimized can therefore be noted
as:

εAC
p =

∞∑
ν=0

∣∣w(ν)
∣∣2 =

∞∑
ν=0

∣∣∣∣sn(ν) −
p∑

i=1

ai(n) sn(ν − i)
∣∣∣∣2. (10.37)



10 Noise Reduction with Kalman Filters for Hands-Free Car Phones 401

Deriving this signal with respect to each coefficient, one obtains the fol-
lowing minimizing condition:

∂εAC
p

∂a∗j (n)
=

∞∑
ν=0

∂
[
w(ν)w∗(ν)

]
∂a∗j (n)

=
∞∑

ν=0

w(ν)
∂w∗(ν)
∂a∗j (n)

= −
∞∑

ν=0

w(ν) s∗n(ν − j) != 0, (10.38)

which can be reordered as:
p∑

i=1

ai(n)
∞∑

ν=0

sn(ν − i) s∗n(ν − j)︸ ︷︷ ︸
ŝAC

ss,n(j, i)

!=
∞∑

ν=0

sn(ν) s∗n(ν − j)︸ ︷︷ ︸
ŝAC

ss,n(j, 0)

. (10.39)

Noting

ŝAC
ss,n(j + 1, i+ 1) =

∞∑
ν=0

sn
(
ν − [i+ 1]

)
s∗n
(
ν − [j + 1]

)
,

=
∞∑

ν=−1

sn(ν − i) s∗n(ν − j),

= ŝAC
ss,n(j, i) + sn

(− [i+ 1]
)
s∗n
(− [j + 1]

)︸ ︷︷ ︸
= 0 for i, j > 0

(10.40)

one obtains the following property for the autocorrelation coefficients:

ŝAC
ss,n(j + 1, i+ 1) = ŝAC

ss,n(j, i). (10.41)

Thus, it is possible to note the condition of Eq. 10.39 with only with one
argument of the autocorrelation function:

p∑
i=1

ai(n) ŝAC
ss,n(j − i) = ŝAC

ss,n(j), (10.42)

with

ŝAC
ss,n(i) =

∞∑
ν=0

sn(ν) s∗n(ν − i) (10.43)

In matrix-vector notation this can be denoted as follows:
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ŝAC

ss,n(0) sAC,∗
ss,n (1) sAC,∗

ss,n (2) · · · sAC,∗
ss,n (p− 1)

ŝAC
ss,n(1) ŝAC

ss,n(0) sAC,∗
ss,n (1) · · · sAC,∗

ss,n (p− 2)
ŝAC

ss,n(2) ŝAC
ss,n(1) ŝAC

ss,n(0) · · · sAC,∗
ss,n (p− 3)

...
...

...
. . .

...
ŝAC

ss,n(p− 1) ŝAC
ss,n(p− 2) ŝAC

ss,n(p− 3) · · · ŝAC
ss,n(0)

⎤⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎢⎢⎢⎣
a1(n)
a2(n)
a3(n)

...
ap(n)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
ŝAC

ss,n(1)
ŝAC

ss,n(2)
ŝAC

ss,n(3)
...

ŝAC
ss,n(p)

⎤⎥⎥⎥⎥⎥⎦ . (10.44)

Using Eq. 10.36, the estimated autocorrelation values can be denoted based
on the input signal s(ν):

ŝAC
ss,n(i) =

n+LAR/2∑
ν=n−LAR/2+1+i

s(ν) s∗(ν − i) for i = 0, . . . , p . (10.45)

Based on Eq. 10.45 one observes that, dependent on the index i a different
number of elements is summed for estimating the autocorrelation values. On
the one hand, this causes an estimation bias which is equivalent to a reduced
estimation precision. On the other hand, based on these biased estimates,
the matrix of Eq. 10.44 exhibits a Toeplitz structure. With the help of the
Levinson-Durbin recursion [12] such a matrix can be inverted computationally
efficiently. Additionally, the matrix is positive definit. Thus, the stability of
the AR models determined by solving Eq. 10.44 is guaranteed.

10.3.2.2 Recursive Spectral Estimation Methods

The difference between recursive and direct spectral estimation methods is
that the model coefficients of the recursive method are not determined in one
step, but recursively in several minimization steps by increasing the model or-
der. Depicting the prediction error filter in the corresponding lattice structure
(see Fig. 10.15) the procedure becomes obvious.

Recursive methods successively minimize the sum of the squared error sig-
nals w+/−

j (n) of the different stages of the prediction error filter in lattice
structure in order to determine the reflection coefficients Γj(n) of the cor-
responding stage j. In each iteration step, only this reflection coefficient is
determined, the before determined reflection coefficients do not change.

Based on the reflection coefficients and with the help of the step-up recur-
sion, which is identical to the second part of the Levinson-Durbin recursion,
the AR coefficients aj(n) can be determined.

The step-up recursion is a recursion over the order. When increasing the
order from j−1 to j, the corresponding reflection coefficient Γj(n) is used for
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Fig. 10.15. Prediction error filter in lattice structure.

updating the AR parameters up to the chosen model order p for each value
i = 1, . . . , p.

The step-up recursion consists of the following two steps for each iteration
step j:

(1) Update of the preceding AR parameters:
ai(n) = ai(n) + Γj(n)a∗j−i(n) for i = 1, . . . , j − 1. (10.46)

(2) Setting the currently last AR coefficient as the reflection coefficient
aj(n) = Γj(n). (10.47)

The recursive methods differ by the utilized minimization criteria: utilizing
the forward or the backward covariance method, or the sum of the squared
forward w+

j (n) or the sum of the squared backward w−
j (n) prediction error

signals are minimized, respectively. The Burg method, however, utilizes the
sum of both squared error signals as minimization criterion for determining
the reflection coefficients.

As already mentioned, the Burg method exhibits – in contrast to the for-
ward and backward prediction method – the advantage that the AR corre-
sponding estimated models are stable.

The Burg Method

For determining the reflection coefficients with the Burg algorithm, the
sum of the squared forward and backward prediction error signal is utilized
as minimization criterion:

εBj = ε+j + ε−j =
LAR−1∑

n=j

∣∣∣w+
j (n)

∣∣∣2 +
LAR−1∑

n=j

∣∣∣w−
j (n)

∣∣∣2. (10.48)

Utilizing the relations of the signals according to Fig. 10.15 and deriving
εBj with respect to [Γ+

j (n)]∗ one obtains the following condition:
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LAR−1∑
n=j

[
w+

j−1(n) − Γj(n)w−
j−1(n− 1)

] [
w−

j−1(n− 1)
]∗

+
LAR−1∑

n=j

w+
j−1(n)

[
(w−

j−1(n− 1))∗ − Γj(n)
[
w+

j−1(n)
]∗] != 0.(10.49)

Resolving the above noted equation with respect to Γj(n) one obtains the
formula for determining the reflection coefficients optimized with the Burg
method:

ΓB
j (n) =

2
LAR−1∑

n=j

w+
j−1(n)

[
w−

j−1(n− 1)
]∗

LAR−1∑
n=j

{∣∣∣w+
j−1(n)

∣∣∣2 +
∣∣∣w−

j−1(n− 1)
∣∣∣2} . (10.50)

Noting the LAR − j elements of w+
j (n) and w−

j (n) as vectors w+
j (n) and

w−
j (n), respectively, ΓB

j (n) can be written as

ΓB
j (n) =

2|w+
j (n)T w−

j (n)|∥∥w+
j (n)

∥∥2 +
∥∥w−

j (n)
∥∥2 < 1. (10.51)

Since this result is, as indicated according to the Schwarz equation, always
smaller than one the corresponding AR model is guaranteed to be stable.

10.4 Application of Kalman Filters for Noise Reduction

The goal of this section is to develop a practical realization procedure for
Kalman filters based on the theoretical relations described in the preceding
section. Here, the main difficulty is the estimation of the parametric spectral
models for speech and noise based on the only available noisy speech samples.

This section is organized as follows: First a subband processing for the
Kalman filtering is proposed. Then, methods for the AR modeling of the
speech and noise subband signals are developed and their performances are
analyzed, respectively.

Based on these different methods, a combined estimation procedure is de-
veloped which combines the desired properties of the analyzed AR estimation
procedures. This combined procedure is able to avoid musical tones and mod-
els the spectral components of speech with high accuracy.

In a third step, it is shown that the parametric spectral estimation of-
fers the possibility to enhance the model estimation of speech with the help
of the a priori known pitch frequency. Of cause a reliable estimate for this
pitch frequency has to be available in this case. Methods for the estimation
of the pitch frequency were investigated in [24, 25] with the special focus on
noisy speech signals. This is the reason why these pitch frequency estimation
procedures are not further investigated in this chapter.
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10.4.1 Subband Processing

Investigating the required order of AR models for speech and noise, one ob-
serves that especially for speech the order has to be very large. The reason
is the pitch structure of the spectrum of voiced speech frames. For being
able to attenuate noise components in between these pitch components, the
pitch structure has to be modeled with an sufficient accuracy. This can only
by achieved when modeling each pitch component with one pole of the AR
model polynomial. The required order of the model is then approximately
fs/fpitch, i.e. the quotient of the sampling and the pitch frequency. For male
speech with a pitch frequency below 100 Hz this results in model orders larger
than 80 for the usual sampling frequency of 8 kHz. This is shown in Fig. 10.16
where the power spectral noise density (PSD) of a voiced speech frame with a
pitch frequency of 140 Hz is depicted. Only with the model order 60 or larger
one is able to resolve the pitch components appropriately.
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Fig. 10.16. Power spectral density of a voice speech frame (top) and the corre-
sponding AR models of order 30 (mid) and 60 (buttom).

AR models of such an order are difficult to be estimated precisely, espe-
cially when only the disturbed speech signal is available. Satisfactory results
can hardly be achieved. To reduce the model order, the noisy input signal
may first be decomposed into several subbands. Applying then the Kalman
filtering in these subbands (see Fig. 10.17), a reduction of the model order by
the sub-sampling rate is possible for each subband - compared to the required
order for the full-band signal.

For the subband decomposition, here, we propose a 16 channel filterbank
with a sub-sampling rate of 12 and a 64-samples-length prototype low-pass
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Fig. 10.17. Overview of the subband noise reduction procedure with Kalman filters.

filter which cause a delay of 8 msec. This allows to chose a reduced subband
AR model order for speech of 4 to 6 which will be shown in the following.

10.4.2 AR Model Estimation for Speech and Noise

The methods proposed in Sec. 10.3.2 for AR model estimation require a signal
frame of finite length. The length of this frame should not be chosen too large
in order

• for being able to model speech appropriately which is only short-term
stationary and in order

• to limit the processing delay of the algorithm.

On the other hand, the signal frames should be chosen large enough in
order

• to reduce the variance of the estimation.

Comparative simulations for an AR modeling of clean speech showed that
signal frames of length Nmodel = 32 samples of the sub-sampled signal (equiv-
alent to a frame length of 48 msec for a sub-sampling factor of 12) are appro-
priate for a reliable estimation while respecting that speech is only short-term
stationary.

For the update rate, we have chosen an update every 5th signal sample.
Thus, each model is valid for 5 samples of the Kalman filter. The best results
are obtained when these samples are located in the middle of the signal frame
which is utilized for the AR model estimation. This is shown in Fig. 10.18.
Since this estimation procedure requires for half of the signal frame “future”
samples with respect to the five samples for which the model is used, this is
equivalent to a half block length signal delay of 24 msec. Summing this with
the delay of the sub-sampling procedure of 8 msec, in total, the proposed
Kalman filter procedure causes a delay of 32 msec.
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n th
Signal frame

n+1 th
Signal fame

Samples for which the model
of the n th signal frame is applied

5

32

Fig. 10.18. Graph of two consecutive signal blocks of 32 samples which are utilized
for the AR model estimation. The models are utilized for the Kalman filtering of
the 5 signal samples located in the middle of the signal frame.

In Sec. 10.3.2 different methods for the AR modeling were analyzed, in
particular the autocorrelation and the Burg method since both guarantee
stable models. The Burg method exhibits the additional advantage to yield
unbiased estimates. Estimation examples of a voiced speech signal frame for
the second subband shown in Fig. 10.19 confirm this slight advantage. One
can observe that the Burg method allows a slight better resolution of the pitch
components.
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Fig. 10.19. Estimated AR models for the second subband of a voiced speech frame.
The solid graph shows the model estimated with the autocorrelation method whereas
the dashed graph is the result of the Burg method estimation which models the pitch
components slightly better. One has to consider that due to the non-critical sub-
sampling rate of 12 for 16 subbands the subband spectra overlap. Thus, the second
subband covers a frequency range between 166 and 833 Hz.
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In the following, it is shown how both methods can be successfully com-
bined for a speech and noise model estimation.

The model estimation is performed for each subband separately and inde-
pendently. In the following, for the sake of simplicity, the different subband
signals are not marked explicitly.

10.4.2.1 Estimation of Speech Models Based on Noisy Speech
Signals

Before developing model estimation procedures, the model orders for each
subband have to be fixed. For being able to resolve the pitch components,
which in particular show a dominant contribution for low subbands, it is
necessary to choose a high model order. For the higher frequency bands, the
model order can be successively reduced to 2 (see Tab. 10.1). Due to the
conjugate-complex localization of the poles for the real-valued lowest subband,
an even number of the poles has to be chosen for which four is sufficient.

Table 10.1. Chosen model orders for speech in dependence of the subbands. For
the chosen conjugate-complex filterbank, the model orders for subband 10-16 can
be derived based on the given figures.

Sub- Frequency Model
band frame order

1 0 – 250 Hz 4
2 250 – 750 Hz 5
3 750 – 1250 Hz 5
4 1250 – 1750 Hz 5
5 1750 – 2250 Hz 4
6 2250 – 2750 Hz 4
7 2750 – 3250 Hz 3
8 3250 – 3750 Hz 3
9 3750 – 4000 Hz 2

The next step is then the actual estimation of the clean speech models for
each subband. This is rather challenging since only disturbed speech signals
are available. The goal of the model estimation is to determine the AR models
coefficients ai(n) as well as the speech excitation power σ2

w(n) under these ad-
verse conditions. In the following, first, methods for the AR model estimation
are presented and compared. Then, possibilities for determining the speech
signal excitation power are considered.

In this contribution, we do not further investigate methods that

• can only be applied for estimating models of very low order [26] or
• exhibit too strong requirements on the SNR of the input signal [7, 8].
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One possibility for estimating the AR parameters of speech is simply to
utilize the noisy speech as input. Since usually the power spectral density of
the superimposing car noise – except for the lowest subband – is smooth with
respect to the frequency, with this approach, the AR models of speech can be
well modelled for a high SNR down to a medium SNR. For this estimation pro-
cedure the Burg method is first choice, since this method models the spectral
maxima (pitch components) better compared to the alternative autocorrela-
tion method. Results of this estimation procedure are depicted in Fig. 10.20 in
comparison with results of the competing EM method which is presented next.

Iterative EM Algorithm

The iterative EM (estimate maximize) method according to [11] is based
on the EM method [5, 6] and enhances the AR model estimation iteratively,
starting with an initial estimate. For determining this initial estimate, the
before explained Burg estimation method can be utilized.

The iterative EM method applies the Kalman filter equations several times,
iteratively. The goal is to utilize the enhanced model estimates for iterative
Kalman filtering of the same signal frame. The enhanced speech and noise
model estimates are determined based on the matrix:

Q(n) =
n+Nmodel/2∑

n0=n−Nmodel/2+1

P (n0|n0) + x̂(n0|n0) x̂T(n0|n0) (10.52)

determined as the sum of the covariance matrix P (n|n) and the state vector
x̂(n|n) of the Kalman equations (see Eqs. 10.30-10.34) over the current signal
frame for the previous iteration step.

The upper left and the lower right quarter of the matrix Q(n) are estimates
for the autocorrelation matrices of speech and noise and can be utilized for
determining enhanced estimates for the speech and noise models with the help
of the Yule-Walker equations.

The iterative algorithm converges after 10 – 15 iterations. The results show
– compared to the initial estimate – higher maxima at multiples of the pitch
frequency. For this reason, the pitch components are better resolved and the
enhanced speech signal sounds more rich.

However, the algorithm also tends to increase local maxima in speech
sections without speech excitation which often causes musical tones. Another
disadvantage of the EM method is the strongly increased complexity due to the
iterative procedure. In Fig. 10.20 the described properties are clearly shown:
The depicted speech models on the right are modified with the EM method.
Especially, in the lowest subband, the results of the iterative EM method are
better compared to the initial Burg estimate because the pitch components
are better resolved. Nevertheless, the model estimates of the iterative EM
method vary stronger, especially during speech pauses which causes musical
tones.
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Fig. 10.20. Comparison of the model estimates of the Burg algorithm (left) and
the iterative EM method (right). The upper graphs show the estimation results
for the lowest subband and below the results for the second subband are depicted,
respectively.

Autocorrelation Method Based on the Estimated Autocorrela-
tion Function of Speech

An alternative procedure for an enhanced model estimation of speech is to
estimate the autocorrelation of the noisy speech signal and noise to subtract
these estimates.

ŝss,n(i) = ŝxx,n(i) − ŝbb,n(i). (10.53)

Using the estimates of the clean speech, in the next step, the speech model co-
efficients may be estimated with the autocorrelation method (see Sec. 10.3.2.1).
However, this procedure can not be applied. The reason is that only strongly
smoothed estimates of the noise autocorrelation function ŝbb,n(i) can be esti-
mated in speech pauses whereas ŝxx,n(i) has to be estimated with low smooth-
ing in order to follow fast changing speech properties. For this reason, the
estimation variance of ŝxx,n(i) is higher than for ŝbb,n(i). The difference then
may lead to estimates for ŝss,n(i) for which the corresponding autocorrela-
tion matrix is not positive definite. Determining AR models based on these
estimates, they are not guaranteed to be stable.

The problem can be avoided by calculating the difference in the frequency
domain when assuring that these values are larger than zero:

Ŝss(k, n) = max
{
Ŝxx(k, n) − Ŝbb(k, n), 0

}
. (10.54)
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Thus, it is guaranteed that the corresponding autocorrelation function

ŝss,n(i) = IDFT
{
Ŝss(k, n)

}
, (10.55)

determined as the Fourier inverse of the speech power spectral density ex-
hibits a corresponding autocorrelation matrix which is positive-definite. The
procedure thus allows to estimate stable AR speech models. The required es-
timates of the power spectral densities of speech and noise are determined via
recursively smoothed periodograms [15].

The following steps have to be performed for estimating the power spectral
densities of speech and noise:

1. Transformation of the n-th signal frame of length Nmodel into the fre-
quency domain with zero-padding for avoiding cyclic convolution distor-
tion:

X(k, n) = DFT
{[
x(n−Nmodel/2 + 1),

. . . , x(n+Nmodel/2), 0, . . . , 0
]}
. (10.56)

2. Estimation of the power spectral density of the noisy input signal and
noise:

Ŝxx(k, n) =
∣∣X(k, n)

∣∣2, (10.57)

B(k, n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αbB(k, n− 1)

+(1 − αb)
∣∣X(k, n)

∣∣ :

[
V AD(n) = 0

]
∨[

|X(k, n)| < βB B(k, n− 1)
]
,

B(k, n− 1) : else,

Ŝbb(k, n) = B
2
(k, n). (10.58)

Here, the noise estimation is enabled during speech pauses and for time
frames where the current spectral amplitude is not larger the βB times the
current mean noise amplitude.

Since the spectral components X(k, n) are determined for a signal frame
of length 48 msec, no further smoothing has to be applied for estimating
Ŝxx(k, n).

The advantage of this procedure compared to the model estimates based
on the disturbed speech signal is that speech components are better modeled.
However, this procedure tends to generate – such as the iterative EM method
– local maxima of the estimated speech model which cause musical tones.
Results are depicted in Fig. 10.22.

Combined and Optimized Estimation Procedure

In this section, so far, three different methods for the speech model esti-
mation have been presented with specific advantages and disadvantages:
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• The estimation with the Burg algorithm, on the basis of the disturbed
speech signal leads to models which, in general, do not provoke musical
tones. However, this procedure only models those spectral components
with an appropriate accuracy which exhibit a sufficient SNR.

• The iterative EM method shows a high computational complexity and is,
mainly for this reason, no further considered in this chapter. Additionally,
the obtained results are not remarkably better compared to other methods
that were examined since the method shows an increased tendency to
musical tones.

• The autocorrelation method, i.e. determining the speech models with the
help of the difference of the power spectral densities of the input signal
and noise, finally allows to obtain better speech model estimates. The ac-
curacy of this method is approximately comparable to the iterative EM
method, showing a comparable tendency to musical tones, nevertheless,
with a reduced computational complexity. This method is called differen-
tial autocorrelation (DACF) method in the following.

Comparing the estimates of the Burg algorithm and the DACF method,
one observes that both show different advantages which can be usefully com-
bined: The DACF method models speech components better, whereas the
Burg method shows a smaller tendency to musical tones.

Examinations showed that both methods can be advantageously combined
as follows:

• The musical tones, which are mainly provoked by the DACF method, can
be reduced so far such that the remaining ones can be masked by a residual
noise (see Sec. 10.4.2.3).

• Additionally, the combined methods allow a better modeling of speech
components compared to the Burg algorithm especially for the subbands
with a low SNR.

The combined estimation procedure consists of the following steps:

1. Estimation of the reflection coefficients ΓB
j (n) of the speech model with

the Burg algorithm based on the noisy speech signal according to Eq. 10.50.
2. Calculation of the reflection coefficients ΓDACF

j (n) with the Schur recur-
sion [12] based on the estimated autocorrelation function ŝss,n(i) accord-
ing to Eqs. 10.55 - 10.58.

3. Calculation of the combined reflection coefficients by the weighted sum of
the two estimates: Γj(n) = gBΓ

B
j (n) + gDACFΓ

DACF
j (n). By choosing the

weights such that the condition gB + gDACF = 1 is fulfilled, one assures
that the combined model is also stable.

4. Determining the combined AR parameters of the speech model with the
Step-up recursion [12].

In the latter procedure, Schur recursion and Step-up recursion describe
the first and the second part of the Levinson-Durbin recursion, respectively.
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Ŝss(k, n)
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Fig. 10.21. Diagram for estimating the speech model ai(n) and the power σ2
w(n)

of the white speech excitation signal.

The weights gB and gDACF can be chosen differently for each subband.
Since for speech disturbed by car noise, the SNR for the lowest subband is
usually low, estimates with the Burg method are much worse than with the
DACF method. The reason is that the Burg method models the disturbed
speech. Additionally, the human hearing is less sensitive to musical tones
for low frequencies. For these reasons, the model estimation for the lowest
subband is performed only based on the DACF method, i.e. gDACF = 1 and
gB = 0. For the other subbands, a weighting accorings to gDACF = 0.7 and
gB = 0.3 showed good results. This procedure is shown in Fig. 10.21.

Estimation results according to this procedure are depicted in Fig. 10.22.
The two upper graphs show the model estimate for the lowest subband. One
clearly observes that the DACF method (right) is able to model the pitch
components better than the Burg method (left).

The problems occurring when utilizing only the DACF method for model
estimates are depicted below, for the second subband, as an example: strong
fluctuations in speech pauses (0 - 0.8 sec) can be observed. Considering both
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Fig. 10.22. Results of the different speech model estimation methods. For the
lowest subband, the DACF method shows the best results, whereas for the second
and the higher subbands, the combination of the Burg and DACF methods shows
the best results. In the lower two graphs, estimation results for one voiced speech
frame are depicted. Here, it is getting obvious that the proposed estimation method
gives results which are close to the optimum estimate based on the clean speech
signal.
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estimation methods, according to the procedure of Fig. 10.21 results in the
combined estimate. The deficits of both estimation methods can be well com-
pensated: The fluctuations are well reduced, but the pitch components are still
well resolved. This is especially shown on the two lower graphs of Fig. 10.22.

Estimation of the White Speech Model Excitation Signal Power

The excitation signal power can be estimated according to

σ2
w(n) = E

{∣∣∣s(n) − p∑
i=1

a∗i (n) s(n− i)
∣∣∣2},

= ŝss,n(0) − 2Re
{ p∑

i=1

a∗i (n)ŝss,n(i)
}

+
p∑

i=1

p∑
j=1

a∗i (n)aj(n) ŝss,n(i− j), (10.59)

where ŝss,n(i) is the estimate of the speech autocorrelation function ac-
cording to Eq. 10.55. The model parameters are determined according to the
before mentioned procedure. The block for determining the excitation signal
power is also shown in Fig. 10.21. To avoid misunderstandings: The excita-
tion signal power estimate which is implicitly obtained when determining the
Burg model estimates cannot be utilized since the noise excitation provokes
an estimation bias. An example comparing results of the proposed method
and the estimate obtained with the Burg method is shown in Fig. 10.23. In
contrast to the Burg estimate, the proposed method shows the desired low
estimation power during speech pauses. And, as desired, during speech activ-
ity, speech components are not under-estimated. The low fluctuations during
speech pauses correspond to the low sensitivity of this estimation procedure
towards musical tones.

Time in seconds
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Fig. 10.23. Estimated excitation power of the speech model σ2
w(n) determined with

the Burg method (gray) and according to Eq. 10.59 (black), respectively.
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10.4.2.2 Estimation of Noise Models

Since car noise spectra, especially after suppressing harmonic engine compo-
nents [21, 23], are typically smooth and do not exhibit strong local maxima
at certain frequency components, model order of p = 2 are sufficient for each
subband. Utilizing the estimation of the power spectral density according to
Eq. 10.58, the first three values of the autocorrelation function ŝbb,n(i) can be
determined via the Inverse Fourier Transform. Then, utilizing the autocorre-
lation method, the two model coefficients c1(n) and c2(n) of the noise model
are calculated via:[

c1(n)
c2(n)

]
=
[
ŝbb,n(0) ŝ∗bb,n(1)
ŝbb,n(1) ŝbb,n(0)

]−1 [
ŝbb,n(1)
ŝbb,n(2)

]
. (10.60)

The noise model excitation power σ2
η(n) can be computed comparably to

Eq. 10.59:

σ2
η(n) = ŝbb,n(0) − 2Re

{ q∑
i=1

c∗i (n)ŝbb,n(i)
}

+
q∑

i=1

q∑
j=1

c∗i (n)cj(n) ŝbb,n(i− j). (10.61)

10.4.2.3 Overestimation of the Noise Model’s Excitation Power

When applying the Kalman filtering for real signals, one also observes musical
tones which, however, are less powerful compared to the classical Wiener
filters. For suppressing these musical tones, the Wiener filter typically utilizes
an overestimation of the noise and a limit of the noise suppression. This is
also a good measure for Kalman filtering.

The overestimation of noise should be done in two steps for the Kalman
filtering:

1. When calculating the speech power spectral density Ŝss(k, n) according to
Eq. 10.54, Ŝbb(k, n) should be overestimated by a factor of approximately
1.5:

Ŝss(k, n) = max
{
Ŝxx(k, n) − 1.5 Ŝbb(k, n), 0

}
. (10.62)

2. When applying the Kalman equations, the estimated excitation power of
the noise σ2

η(n) should also be raised by a factor βKalman(n):

σ̃2
η(n) = βKalman(n)σ2

η(n). (10.63)

When determining βKalman(n), speech pauses and speech activity should
be treated differently. For the differentiation, the same speech activity detector
can be utilized as for the noise power spectral density estimate (see Eq. 10.58).
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In speech pauses, an overestimation factor around βKalman(n) = 3 and
during speech activity a factor of 1.5 allows to obtain good results:

βKalman(n) =
{

3 : V AD(n) = 0,
1.5 : else. (10.64)

A limitation with a spectral floor such as it is usually applied for Wiener
filtering cannot directly be incorporated in the Kalman filter. A possible al-
ternative it to add a portion of the noisy input signal to the output according
to Fig. 10.24.

+Kalman
filter

x(n) ŝ(n)

vres(n)

Fig. 10.24. Summation of a portion of the noisy input signal to the output of the
Kalman filter. This measure is equivalent to the Spectral Floor of the Wiener filter
and preserves the natural sound of speech.

For the factor vres(n), we obtained good results with 0.08 for the two
lowest subbands and 0.15 for the other subbands. The lower value for the
low frequencies makes sense since here the car noise exhibits especially large
components. Thus, subjectively a higher noise suppression can be obtained.
Additionally, mostly the higher subbands are related to a subjectively high
speech quality impression.

10.4.3 Pitch-Adaptive Enhanced Speech Model Estimation

The proposed combined speech model estimation method already allows to ob-
tain good noise reduction results with the Kalman filter approach. Comparing,
however, the estimated speech models with the true values (see Fig. 10.22) one
observes that especially the pitch components for the low-frequency subbands
with a low SNR are partly insufficiently resolved.

Considering speech models for the lower subbands, one observes that the
pitch components are modeled with poles of the AR models close to the unit
circle. Additionally, methods for the pitch frequency estimation [1, 14], also
based on disturbed speech signals [25], are known.

Utilizing these relations, methods can be designed which allow the AR
model reconstruction or enhancement for voiced speech frames based on the
pitch frequency.
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The presentation of possibilities for such a pitch-adaptive speech model
enhancement is the goal of this section. However, pitch frequency estimation
methods are not analyzed here. For them, we refer to the above cited literature
references.

One observes that especially in frequency ranges up to 750 Hz one can
obtain enhanced model estimates when incorporating the knowledge of the
pitch frequency. This for the following reasons:

• Here, pitch components are particularly dominant,
• pitch components are located exactly at multiples of the pitch frequency

(in contrast to higher frequencies), and
• the estimation of speech models is especially disturbed for these frequency

components.

The presented relations describe the potential for an improvement of the
model estimation for the two lower subbands of the proposed subband Kalman
noise reduction procedure. In the following, for these two subbands, two dif-
ferent procedures will be described.

10.4.3.1 Speech Model Enhancement for the Lowest Subband

The initial estimate for the lowest subband can be so bad that it may be
appropriate to severely modify this estimate. The basis for this modification is
the estimated pitch frequency. The enhanced model estimate is then obtained
by first determining the poles of the initial AR model and then shifting these
poles via the unit circle.

The task of determining the poles, which is equivalent to calculating the
zeros of a polynomial, can be written as an Eigenvalue problem for which
solution approaches are known [19].

For the AR model modification, we obtained the best results when per-
forming the following two steps:

1. Poles which are located at angles corresponding to frequency components
below the current estimate of the pitch frequency are suppressed by re-
ducing their radius, i.e. shifting them far into the unit circle.

2. For voiced frequency frames with pitch components, poles are shifted to-
wards the unit circle.

These two steps are further explained in the following.

Suppression of Poles Below the Detected Pitch Frequency

Poles below the pitch frequency model only noise components and should
be suppressed. This can be obtained by multiplying these poles with a factor
of 0.1 which corresponds to a shift into the unit circle:

p̃i = pi · 0.1, if arg(pi) <
fpitch

fs
· 2π · 0.8 . (10.65)
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Here, fpitch denotes the latest detected pitch frequency and fs the sam-
pling frequency of the subband signals. With the factor 0.8, one assures a
low risk to attenuate true pitch components close to the estimated pitch fre-
quency. It is important that these pole shifts are performed continuously in
order to guarantee a good suppression of the low-frequency noise components
also during non-voiced speech frames.

Shifting Poles Towards Multiples of the Pitch Frequency

Here, the goal is to place conjugate-complex pole pairs at multiples of the
pitch frequency according to the following equation:

p̃±i = exp
(
±j i fpitch

fs
2π
)

1 + rpitch

2
. (10.66)

The pole radius has been chosen as (1+ rpitch)/2, where rpitch is the max-
imum radius of the poles of the second subband.

The used procedure is the following: First, poles in proximity of the pitch
frequency (±20 Hz) are localized, with a pole radius larger than 0.6. These
poles are then replaced by the poles according to Eq. 10.66. Thus, one avoids
double pole pairs of the AR model at multiples of the pitch frequency.

If necessary, then, the missing pitch components, according to Eq. 10.66,
are generated by poles which have not yet been shifted. This procedure makes
sense, since their original location far away from pitch components does not
contribute to an appropriate speech model. A result obtained with this proce-
dure is depicted in Fig. 10.25 on the left side. The improvement of the model
estimation in comparison with the original estimate in Fig. 10.22 is obvious.

10.4.3.2 Speech Model Enhancement for the Second Subband

The speech model estimated for the second subband usually better match the
correct models. When comparing, the estimates only exhibit smaller maxima
at the pitch frequency. Model enhancements are possible by shifting the poles
at multiples of the estimated pitch frequency closer to the unit circle, according
to the following formula:

p̃i = pi

(
1

2 |pi| +
1
2

)
. (10.67)

The shift is only performed when the difference of the frequency of poles
and the corresponding multiple of the pitch frequency is not larger than 10 Hz
and the original magnitude of the poles is larger than 0.8. The angles of the
poles are not modified, since the pitch components are not exactly periodic.
An artificially generated periodic relation could provoke signal distortion.

In Fig. 10.25, on the right, the enhanced model estimation for the second
subband is depicted. In comparison to the original estimate, especially the
strong pitch components can be well observed.
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Fig. 10.25. Results of the enhanced model estimates for the first (left) and second
(right) subband. The pitch frequency has been estimated with a procedure compa-
rable the method proposed in [1].

When applying this kind of pitch-frequency based model enhancement also
to the higher subbands, however, only small model enhancements are possible.
Weighing the computational complexity against, in particular provoked by
the determination of the poles, it makes no sense to utilize the pitch-adaptive
enhancement procedure also for the third and higher subbands.

10.5 Comparison of the Results with Classical Frequency
Domain Noise Reduction Approaches

The goal of this section is to compare the proposed Kalman filter noise reduc-
tion approach against classical frequency domain Wiener and Ephraim-Malah
methods with respect to speech quality and the sound properties of residual
noise.

For both frequency domain methods, a filter bank analysis is performed
utilizing a prototype low-pass filter with 512 taps in order to decompose the
input signal into 256 spectral components. The sub-sampling rate has been
chosen to 64. For the estimation of the noise power spectral density the cal-
culation is performed according to Eq. 10.58

B(k, n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αbB(k, n− 1)

+(1 − αb) |X(k, n)| :
[
V AD(n) = 0

]
∨[∣∣X(k, n)

∣∣ < βB B(k, n− 1)
]
,

B(k, n− 1) : else,

Ŝbb(k, n) = B
2
(k, n), (10.68)

with αb = 0.985 and βB = 2.15.
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Wiener Filter Approach

For the Wiener filter approach, the spectral weighting coefficients are cho-
sen according to the modified Wiener formula:

GWiener,para(k, n) = max
{

1 − βOV
Sbb(k, n)
Sxx(k, n)

, spfl

}
, (10.69)

where βOV denotes the overestimation factor and spfl the spectral floor. Here,
the overestimation factor has been chosen to βOV = 5 and spectral floor to
spfl = 0.1.

Ephraim-Malah Approach

The utilized formula for the Ephraim-Malah approach is based on the
minimization of the log-spectral amplitudes:

Ŝ(k, n) =
ξ(k, n)

1 + ξ(k, n)
exp

⎡⎢⎣1
2

∞∫
v(k,n)

exp(−z)
z

dz

⎤⎥⎦
· p
(
H1(k, n)

∣∣X(k, n)
)
X(k, n), (10.70)

with

ξ(k, n) =
Sss(k, n)
Sbb(k, n)

, (10.71)

γ(k, n) =

∣∣X(k, n)
∣∣2

Sbb(k, n)
, (10.72)

v(k, n) =
ξ(k, n)

1 + ξ(k, n)
γ(k, n), (10.73)

where ξ(k, n) is estimated with the decision directed approach. Here, the
smoothing constant has been chosen to αDDA = 0.98. In order to avoid musical
tones, the estimated a-priori SNR is limited to ξmin = −13 dB:

ξ̂(k, n) = αDDA
|Ŝ(k, n− 1)|2
Sbb(k, n− 1)

+
(
1 − αDDA

)
max

{
γk(k, n) − 1, ξmin

}
. (10.74)

The term p(H1(k, n)|X(k, n)) which considers the conditional probability
for speech activity is determined with the following formula:
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p
(
H1(k, n)

∣∣X(k, n)
)

=

1 − p
(
H0(k, n)

)
p
(
H0(k, n)

)(
1 − ξ(k, n)

) exp
[
v(k, n)

]

1 +
1 − p

(
H0(k, n)

)
p
(
H0(k, n)

)(
1 − ξ(k, n)

) exp
[
v(k, n)

] . (10.75)

The required value p(H0(k, n)), i.e. the probability for a speech pause of
the k-th spectral component is based on γ(k, n) [17], where γ(k, n)−1 denotes
the a-posteriori SNR. First, γ(k, n) is compared with a fixed threshold. Based
on this comparisons, one obtains a binary, time-frequency dependent decision
pB(k, n), which can be utilized to determine, with a recursive smoothing, the
required frequency dependent probability for speech pauses:

pB(k, n) =
{

1 : γ(k, n) < 0.8 ,
0 : else , (10.76)

p
(
H0(k, n)

)
= 0.95 p

(
H0(k, n− 1)

)
+ 0.05 pB(k, n). (10.77)

In the following, the noise reduction approaches are compared with respect
to speech quality and the natural sound of the residual noise. The comparison
is done by a description of the subjective impression and objective spectral
analyses.

For the spectral analysis, in particular, pitch components and the formant
structure are analyzed. Pitch components are required for a full, rich, and
natural sound. The formant structure, especially the attenuation between the
formants is an indication for speech distortion [24].

The algorithms were evaluated with different speech and noise signals. For
the detailed objective spectral comparison, a male speech signal has been cho-
sen.

Residual Noise

The parameters of the algorithms were chosen such that the residual noise
sounds natural and the musical tones are suppressed. Only for the Wiener
filter approach, sometimes slight musical tones are audible. With a higher
overestimation factor, they could also be completely suppressed, however, with
the disadvantage to further reduce the natural speech sound.

The residual noise of the Ephraim-Malah algorithm is very smooth and
natural, which is also the case for the Kalman filter. Additionally, the residual
noise for the Kalman filter can be chosen a little lower without risking speech
distortion or musical tones.
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Speech Quality

The Wiener filter shows the undesirable property to attenuate speech com-
ponents rather strongly which provokes audible signal distortion and a dull
speech sound.

The output of the Ephraim-Malah filter sounds natural, in speech frames
with low speech excitation, however, speech attenuation is audible.

The Kalman filter provides a speech output with the most natural sound.
A slight reverberant sound can be observed by trained listeners which is, how-
ever, hardly disturbing. This is a tribute to the speech model estimation based
on frames of the length 48 ms which is necessary for a reliable estimation. A
very small speech distortion can be observed rather for female speech signals.
A possible reason is the good modeling of pitch components. Especially male
speech with a high number of pitch components may profit from this.

In Fig. 10.26 spectrograms of the three compared methods are depicted
which show the described properties, although acoustic differences are usually
only partly represented by spectrograms.
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Fig. 10.26. Spectrograms of the output signals of the compared noise reduction
algorithms. With ‘1’ and ‘2’ different spectral components are marked which are
compared in detail in Figs. 10.27 und 10.28.
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Comparing the pitch structure of the signals at 1.4 s (see Fig. 10.27)
marked with ’1’ in Fig. 10.26, one observes that the Kalman filter resolves
best the pitch structure and is able to selectively attenuate the signals in
between.
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Fig. 10.27. Comparison of the pitch components of the enhanced speech signals at
1.4 s.

The Wiener filter shows a strong attenuation of the pitch components
which provokes signal distortion. Much better is the Ephraim-Malah filter
output which also resolves well the pitch components. However, the attenua-
tion in between is not as large.

A second indication for speech distortion is the attenuation between for-
mants [24] which is equivalent to a modification of the signal’s spectral enve-
lope. In Fig. 10.28 the signal frame is depicted which is marked with ’2’ in
Fig. 10.26. One observes that the attenuation between the formants is lowest
for the Kalman filter and strongest for the Ephraim-Malah algorithm. This
result coincides with the impression that the Kalman filter provokes the lowest
signal distortion.

So far, the comparisons were done with stationary interference noise. For
non-stationary noise suppression, especially, the noise power spectral density
estimation is the crucial point. Supposing good noise power spectral density
estimates are available, the compared noise reduction methods show compa-
rable performance differences as for stationary noise. In the other case, the
non-reliable spectral density estimation dominates the signal distortion.

In order to reduce the non-stationary properties of car noise, as mentioned,
an interesting possibility for a noise reduction preprocessing unit is to perform
a suppression of engine noise harmonics [21, 23] to pre-enhance the SNR and
reduce to non-stationary components.

A final remark is dedicated to the performance limit of these kinds of
single noise reduction methods. All methods show a reduced performance
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Fig. 10.28. Comparison of the formant structure of the enhanced speech signals at
1.0 s.

for SNRs below approximately 0 dB. In this case, the Kalman filter exhibits
increased problems to perform the parametric spectral estimation based on
the disturbed speech signal. Also the pitch-adaptive model enhancement shows
problems since the pitch frequency estimation is less reliable for a low SNR.
In case of a low SNR, best choice is to increase the portion of residual noise
in order to avoid non-acceptable speech distortion.

10.6 Conclusions

In this chapter, a subband Kalman filter method was presented in order to
enhance speech signals disturbed by car noise, with the specific application
focus on hands-free car phones.

After an introduction, this chapter started with a detailed speech and car
noise analysis. The important properties of both signals were described which
are required for an optimum Kalman filter design. These main important
properties are that car noise is a signal with slowly changing signal charac-
teristics, car noise exhibits dominant low-frequency components and shows a
rather smooth spectrum. Speech, in contrast, exhibits fast time-varying sig-
nal characteristics and a typical spectral structure with pitch components and
formants.

In the third section, the theoretical basis of Kalman filters and the required
parametric spectral estimation procedures are presented.
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The fourth section, then, is dedicated to the presentation of a Kalman
filter noise reduction method tailored specifically to the application for speech
signals disturbed by car noise. The number of subbands, the orders of the
parametric speech and noise models and the methods that are utilized for
the estimation of these parametric models were chosen based on sophisticated
analyses and with respect to the basis of the speech signal and car noise
properties analyzed in the second section.

Finally, in the fifth section, the proposed subband Kalman filter noise re-
duction procedure was compared to other well-known frequency domain noise
reduction procedures, such as Wiener-filter and Ephraim-Malah noise reduc-
tion procedures. Here, it could be shown that down to a SNR of approximately
0 dB, the proposed Kalman filter method outperforms the other methods es-
pecially with respect to the natural sound. Objective comparisons with respect
to the pitch and formant structure confirm these subjective observations.
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In many situations and particularly in the context of developing and improving
speech enhancement algorithms, performance measures are needed to evaluate
whether one algorithm or one algorithmic version is in some sense superior to
another algorithm or to its preceding version. Speech enhancement systems
are often evaluated utilizing objective measures, such as distance measures
[13] between the clean and the enhanced signal or segmental signal-to-noise
ratios. These measures can be quantified in straightforward objective terms.
During the optimization of existing algorithms and for parameter optimization
this kind of evaluation is certainly appropriate. We will therefore present a
few objective measures and how they are designed and trained for specific
applications. However, due to the complexity of speech quality these methods
usually do not deliver an estimate for the quality that comprises all the various
aspects of a high quality speech signal when a new application has to be tested.

A more general – but also more expensive and time consuming – way to
evaluate the speech intelligibility and quality are subjective listening tests.
These tests are the most reliable tool available for the evaluation of speech
enhancement algorithms [39]. The challenge of these tests is to design them
in such a way that the quality of the enhancement system can be measured
in a reliable and reproducable manner.

11.1 The Focus of this Chapter

For several well-established applications such as hands-free telephony a variety
of measurement standards [22] have been established. Within these standards
subjective [25] and objective [12,25] evaluation tools such as TOSQA, PAMS,
or PESQ [11] are specified.3 Describing the details of only the most important

3 TOSQA abbreviates Telecommunication Objective Speech Quality Assessment,
PAMS is short for Perceptual Analysis/Measurement System, and PESQ stands
for Perceptual Evaluation of Speech Quality.
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ones would go far beyond the scope of this chapter. The focus of this contribu-
tion is on the evaluation of new speech enhancement algorithms – especially
on the evaluation of the (speech) quality improvement during the design and
optimization of an algorithm.

In the first part of this chapter we will introduce objective tests that can
be applied for algorithms that suppress background noise. Since we focus on
the design and optimization stage we assume that we have in addition to the
noisy input signal also the clean speech signal as a reference. In this case we
can apply several distance measures between the clean speech signal and the
output of the noise suppression system.

Afterwards we will concentrate on the subjective evaluation of algorithms
for speech enhancement. A variety of listening tests have been published,
each of them optimized for a special purpose. We will focus here only on two
different listening tests:

• comparison mean opinion scores (CMOS), and
• rhyme tests (diagnostic and modified rhyme tests).

For these two kinds of subjective tests standards have been published by
the International Telecommunication Union (ITU) [24] and by the American
National Standards Association (ANSI) [1]. We will apply CMOS tests for
evaluating the speech quality and rhyme tests for investigating the speech
intelligibility. For this reason, we will use common phrases such as popular
song refrains or well-known proverbs as audio examples for CMOS tests. In
this case it is sufficient to understand only a part of the utterance to get the
meaning of it and one can concentrate on the quality of the presented sounds.
On the other hand we will use word groups which differ only in one vowel
or consonant, such as meat, need, feed, and heat, when evaluating the speech
intelligibility with diagnostic or modified rhyme tests.

The subjective tests are described in the second part of this chapter. We
will utilize rather new applications such as bandwidth extension and in-car
communication systems as examples and show how subjective tests are de-
signed, applied, and analyzed.

11.2 Objective Tests for Noise Suppression

In most communication applications the recording of a speech signal takes
place in a noisy environment. In case of hands-free telephony, e.g., the local
speech signal s(n) is corrupted by background noise b(n) and echo components
d(n) (see Fig. 11.1). The level of the background noise depends on the area
of application. While a moderate noise level can be assumed in quiet offices,
a signal-to-noise ratio (SNR) up to 0 dB might be expected if a phone call is
made out of a car, a train, or an airplane.

The aim of noise suppression systems is to reduce the distorting back-
ground noise component while keeping the local speech signal as natural as
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Fig. 11.1. Basic structure of the processing units within a hands-free telephone.

possible. Thus, the desired and the distorting components of the microphone
signal ỹ(n) need to be separated. To achieve this, the input signal is split into
overlapping blocks of appropriate size (e.g. 32 ms). Within such a block all sig-
nals are assumed to be stationary. Each block is transformed via a filter bank
or a DFT into the frequency domain. In order to remove the distorting echo
and noise components each subband or frequency bin is weighted with an at-
tenuation factor G(ejΩμ, n), that depends on the current signal-to-noise ratio.
Additionally, postprocessing such as pitch-adaptive filtering [43] or automatic
gain control can be applied. The resulting representation of the enhanced sig-
nal spectrum is transformed back into the time domain (see Fig. 11.2). This
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Spectral
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(Nonlinear)
Postpro-
cessing

Synthesis
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Fig. 11.2. Basic units of a noise suppression system.

basic principle is common to most systems for noise suppression. A detailed
description of noise suppression systems can be found in Chapters 9 and 10
of this book.

Since the spectral power subtraction rule is the most straight forward and
easiest noise reduction method and it is well-known, it is used in this chapter
as a reference for speech enhancement. The transfer function of the spectral
power subtraction rule follows:

G
(
ejΩ, n

)
= max

{
β, 1 − α Ŝbb(Ω,n)

Ŝyy(Ω,n)

}
, (11.1)
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where Ŝyy(Ω,n) and Ŝbb(Ω,n) are the estimated short-term power spectral
densities of the distorted input signal and the background noise, respectively.
The parameters α and β denote an overestimation factor for the power spec-
trum of the background noise and a limitation of the attenuation, called spec-
tral floor. The algorithm shows a well-known behavior concerning these two
parameters which will be evaluated later. The typical performance of a spec-
tral subtraction rule is depicted in Figs. 11.3 (progression of the input power
and the estimated noise power) and 11.4 (time-frequency analyses of the input
and output signals).
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Fig. 11.3. Spectral subtraction for one spectral (subband) magnitude with a steady
background noise level, indicated with the straight line.

It can be seen that without the introduction of a limitation of the transfer
function towards zero or another small value (parameter β) the result of a
spectral subtraction could be negative and that without an overestimation
of the background noise level (parameter α) the spectral estimation leaves
noise parts in the remaining signal which cause unnatural sounding tonal
distortions. In a time-frequency plot the effect of a spectral subtraction rule
on heavily distorted speech is clearly visible (see Fig. 11.4). Here the clean
speech signal, the distorted input signal, and the output signal after spectral
subtraction can be compared. A clear attenuation of the background noise
is visible even though the quality of the noise reduction algorithm depicted
here does not show satisfying results due to the tonal distortions. The speech
signal, however, shows a good quality.

11.2.1 Measuring the Quality of Noise Suppression Systems

As far as a quality measure for noise reduction algorithms is concerned, very
often only the attenuation of the background noise is taken as a measure.
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Fig. 11.4. Sample time-frequency analyses of a clean speech signal (top), of a dis-
torted speech signal (center), and of an output signal after noise reduction (bottom).
Tonal distortions are clearly visible as dots in the time-frequency domain within the
lowest diagram (noise reduction was performed without spectral floor).
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Sometimes two properties of the signal are under investigation: the degra-
dation of the speech signal and the attenuation of the background noise [3].
However, this appears not to be sufficient. We propose three different signal
properties instead:

• variations in the pure speech signal (negative),
• variations in the noise characteristics (negative), and
• attenuation of the background noise (positive).4

All of these classes can be examined by a large number of distance measures.
Examples for the respective measures will be given later in this chapter. It
seems to be obvious that different noise reduction systems affect the symptoms
in different ways leading to a different performance. We want to find out which
of the symptoms above are relevant for a general quality measure.

After extensive listening tests for a subjective quality measure (thirty test
persons had to listen to sixty sequences each), an opinion poll about speech
enhancement systems was carried out. The listeners were asked about their
impression of what was most important for a speech enhancement system.
The poll results are depicted in Fig. 11.5. It may be a bit astonishing that
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nor unimportant  
for the quality  

Mostly unimportant
for the quality   

Not important   
for the quality 

Fig. 11.5. Results of an opinion poll after an extensive listening test. Speech quality
appears to be the most crucial property of speech quality concerning noise suppres-
sion algorithms.

the actual noise attenuation is the least crucial point of the noise reduction

4 The terms positive or negative should indicate whether a better or a worse sig-
nal quality is expected when increasing the amount of variation or attenuation,
respectively.
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system. Speech degradation or an unnatural characteristic of the remaining
noise is far more important to the overall judgement. Because of the outcome
of this opinion poll the attempt of measuring the different effects separately
becomes more and more promising.

11.2.2 Distance Measures

As we learnt from Fig. 11.5, the speech quality of the output signal is the most
crucial part of a noise reduction system. Therefore we start with investigating
the speech quality separately. Speech quality degradation again can occur
in different ways. While phase distortions are usually neglected, nonlinear
distortions or attenuation of parts of the speech signal change the speech
quality significantly. Typical measures for speech quality, known from speech
coding, were used for the speech quality evaluation [40].

Before details on objective measurements are presented in the next few
sections we will introduce the notation for a few artificially generated signals
that are required for the following investigations. In a real noise suppression
system one can usually monitor only the microphone signal5

y(n) = s(n) + b(n) (11.2)

(but not the input speech signal s(n) or the background noise b(n)) and the
output signal of the system ŝ(n). During the development stage of a noise
suppression system, however, one has access to all internal parameters as well
as to individual components of the microphone signal. This allows to split the
output signal ŝ(n) into speech s̃(n) and noise b̃(n) components:

ŝ(n) = s̃(n) + b̃(n) . (11.3)

This can be achieved by applying the spectral weights (see Eq. 11.1) that are
computed with the noisy input signal y(n) separately to the noise components
b(n) and to the speech components s(n) (see Fig. 11.6).

11.2.2.1 Cepstral Distance

The cepstral distance is based on the logarithmic separation of sinusoids in
the frequency range due to the pitch frequency and its harmonics from the
spectral envelope of the speech signal. The cepstrum of a speech signal s(n)
is defined as

ci =
1
2π

π∫
Ω=−π

log
∣∣∣S (ejΩ

) ∣∣∣ ejΩi dΩ. (11.4)

5 For the sake of simplicity we assume here and in the following that we have no
echo components. Thus, we can omit any echo suppression device. In this case
the signal y(n) is equal to the microphone signal ỹ(n) (see Fig. 11.1).
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Fig. 11.6. Generation of the output signal of a noise suppression system ŝ(n) as
well as the individual signal components: output noise b̃(n) and output speech s̃(n).

The comparison between two cepstra is a widely used tool for the investiga-
tion of speech signals. For a short frame of a speech signal and its estimated
counterpart the cepstral distance is computed according to

dcep(n) =

C∑
i=1

[
cs,i(n) − cŝ,i(n)

]2
C∑

i=1

c2s,i(n)
. (11.5)

The cepstral coefficients cs,i(n) and cŝ,i(n) can be also obtained from predictor
coefficients. In general, a finite number of predictor coefficients is transformed
into an infinite number of cepstral parameters. However, the resulting cepstral
series has only very limited energy at coefficients with large indices. Thus, the
series is often truncated after computing C = 1.5P coefficients, whereas P
is denoting the predictor order. A computationally effective, order recursive
method for transforming predictor coefficients ai(n) into cepstral coefficients
ci(n) is given by6

6 Note that Eqs. 11.6 and 11.7 are denoted for the reason of brevity only for the
speech components within the microphone signal s(n). The predictor coefficients
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cs,i(n)=

⎧⎪⎪⎨⎪⎪⎩
as,i(n) + 1

i

i−1∑
k=1

k cs,k(n) as,i−k(n), for i = 1 ... P,

1
i ·

i−1∑
k=1

k cs,k(n) as,i−k(n), else.
(11.6)

The predictor coefficients ai(n) can be computed by solving the so-called
Yule-Walker equation system [17]⎡⎢⎢⎢⎣

rss,0(n) rss,1(n) . . . rss,P−1(n)
rss,1(n) rss,0(n) . . . rss,P−2(n)

...
...

. . .
...

rss,P−1(n) rss,P−2(n) . . . rss,0(0)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Rss(n)

⎡⎢⎢⎢⎣
a1(n)
a2(n)

...
aP (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

as(n)

=

⎡⎢⎢⎢⎣
rss,1(n)
rss,2(n)

...
rss,P (n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

rss(n)

. (11.7)

The coefficients rss,i(n) represent the short-term autocorrelation at lag i es-
timated around the time index n. Due to the special character of the matrix
Rss(n) Eq. 11.7 can be solved in an order-recursive manner by using, e.g., the
Levinson-Durbin recursion [10,32]. Since speech can be assumed to have sta-
tionary character only for short periods of time, the parameters of the model
need to be estimated periodically every 5 to 10 ms. However, by utilizing
about K = 10 ... 20 coefficients ai(n) (resulting in about C = 15 ... 30 cepstral
coefficients) one is able to estimate the spectral envelope of a speech signal in
a reliable manner.

Finally, all distances resulting from each frame are averaged

dcep =
1
NF

NF−1∑
n=0

dcep(nL) , (11.8)

with L being the frameshift in samples between two adjacent frames. The
parameter NF denotes the total number of frames within the analysis.

The objective quality measures were tested with a reference noise reduc-
tion algorithm where well-known parameter modifications were performed. It
is known that increasing the overestimation factor lowers the amount of mu-
sical noise, leads to a better noise attenuation, but also distorts the speech
signal [6]. Increasing the input signal-to-noise ratio also delivers a known be-
havior: the speech signal becomes less distorted and also the background noise
characteristic becomes more natural. In the lower plot of Fig. 11.7 we see that
the speech quality is related to the overestimation factor. The dashed line
shows the cepstral distance between the original speech signal and the esti-
mated speech signal at the output of the system. The two signals are most
similar for an overestimation factor α = 1.25 (see Eq. 11.1). If only the changes
in the speech signal are of interest, the overestimation factor α should be as

aŝ,i(n) and the cepstral coefficients cŝ,i(n) for the output signal of the noise
suppression system ŝ(n) are computed accordingly.
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Fig. 11.7. Cepstral distance versus overestimation factor or input signal-to-noise
ratio. The solid line compares the clean speech signal s(n) with the processed speech
signal s̃(n). The dashed line compares the clean speech signal s(n) to the output
including the remaining noise ŝ(n). For the definitions of the signals s(n), s̃(n), and
ŝ(n) see Fig. 11.6.

small as necessary since this means little processing. As expected we see in
the upper plot of Fig. 11.7 that the distance between the clean speech signal
and the processed speech or the output signal becomes smaller for a better
input SNR.

11.2.2.2 Itakura Measure

Another distance measure for speech signals is the so-called Itakura measure
which is also a measure looking for differences in the spectral envelope by
linear prediction:

dIta(n) = ln
(
Eŝ(n)
Es(n)

)
= ln

(
aT

ŝ (n)Rss(n)aŝ(n)
aT

s (n)Rss(n)as(n)

)
. (11.9)

The quantities as(n) and aŝ(n) are denoting the coefficients of a predictor
error filter trained with the two signals to be compared:
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as(n) = R−1
ss (n) rss(n) , (11.10)

aŝ(n) = R−1
ŝŝ (n) rŝŝ(n) . (11.11)

Both predictors, however, are excited with the same input signal. Thus, Eŝ(n)
is the output power of a predictor that is excited with the clean speech signal
s(n) but the coefficients are adjusted according to the short-term autocorrela-
tion of the output signal of the noise suppression system ŝ(n). Fig. 11.8 shows
the signal flow graph for the computation of the distance measure according
to Itakura.

Frame extraction

Predictor error
filter

Predictor error
filter

Frame extraction

LPC analysis

Computation of
frame energy

Computation
of frame energy

LPC analysis Distance
measure

( )s n

ˆ( )s n

Ita ( )d n( )s na

ˆ( )s na

( )sE n

ˆ( )sE n

Fig. 11.8. Computation of the distance measure according to Itakura.

It is important to note that the output of the Itakura measure is not
symmetric because there is a difference if the linear predictors are used with
the clean signal or with the output signal.

As in Sec. 11.2.2.1 all distances dIta(n) that are computed for individual
frames are averaged over the entire test sequence:

dIta =
1
NF

NF−1∑
n=0

dIta(nL) . (11.12)

Again, the parameter L describes the frameshift in samples between two ad-
jacent frames and NF denotes the total number of frames within the analysis.

It can be seen in Fig. 11.9 that the outcome of the Itakura measure over the
overestimation factor is similar to that of the cepstral distance. For a change
in the input SNR, however, the Itakura measure sees hardly any differences
in the speech signals.
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Fig. 11.9. Itakura measure versus overestimation factor or input signal to noise
ratio. While for the change of the input SNR almost no change in the Itakura
measure appears, the signal differences over the overestimation factor are clearly
visible.

11.2.2.3 Itakura-Saito Measure

A similar measure is the Itakura-Saito measure which uses the difference be-
tween the two vectors of prediction coefficients instead of the single vector in
the numerator leading to the following measure rule

dIS(n) = ln

⎛⎜⎝
[
as(n) − aŝ(n)

]T
Rss(n)

[
as(n) − aŝ(n)

]
aT

s (n)Rss(n)as(n)

⎞⎟⎠ , (11.13)

and its time-averaged version

dIS =
1
NF

NF−1∑
n=0

dIS(nL) , (11.14)

where as(n) and aŝ(n) are again the coefficients of a predictor error filter
trained with the two signals to be compared. More speech quality measures
are also discussed in [15,36,45].
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11.2.3 Noise Characteristics

Early listening tests and also various publications of speech enhancement algo-
rithms point out a typical deficiency of noise reduction or speech enhancement
algorithms. They tend to change the characteristics of the background noise. If
human listeners are asked for their preferences they want the remaining noise
to sound natural. For a hands-free telephone installed in a car, the remaining
noise should sound like car noise.

11.2.3.1 Noise Attenuation

The actual goal of a noise reduction algorithm is the attenuation of the back-
ground noise without attenuation of the speech signal. A simple measure for
the performance of a speech enhancement system is therefore the average at-
tenuation of the background noise or in other words the enhancement of the
signal-to-noise ratio which can be defined by the following equation:

datt =
P b̃

P b

. (11.15)

Both the noise power before (P b) and after processing (P b̃) are averaged over
time:

P b =
1
NS

NS−1∑
n=0

b2(n) , (11.16)

P b̃ =
1
NS

NS−1∑
n=0

b̃2(n) , (11.17)

with NS denoting the length of the sequence that is tested.
When applying this measure one should be aware that non-stationary noise

components usually are misinterpreted by most noise suppression systems as
desired signal components. This leads to small attenuation values of the noise
suppression characteristics. If such a noise component has also more power
than the residual noise the non-stationary noise burst will dominate within
the sums of Eqs. 11.16 and 11.17. As a result the measure datt will show values
close to one, no matter how much noise attenuation is achieved in all other
situations. For this reason, noise bursts should be excluded before applying
this measure.

11.2.3.2 Musical Noise

Especially the tonal parts in the remaining noise disqualify a noise reduction
system. The measure denoted in the following equations gives a hint about
the tonal distortions present in the outgoing signal. Since tonal distortions are
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visible as short-term variations in the periodogram, we compare the short-term
spectrum to a model-based spectrum estimation

dtonal(n) =

2π∫
Ω=0

∣∣∣Ŝb̃b̃, LPC(Ω,n) − ∣∣B̃ (ejΩ, n
) ∣∣2∣∣∣ dΩ

2π∫
Ω=0

∣∣∣Ŝbb, LPC(Ω,n) − ∣∣B (ejΩ, n
) ∣∣2∣∣∣ dΩ

. (11.18)

The integration in Eq. 11.18 is usually approximated by a sum over dis-
crete frequency supporting points. For the model based spectrum estimations
Sb̃b̃, LPC(Ω,n) and Sbb, LPC(Ω,n) linear prediction based models of order 10
to 20 are usually applied. The quatities B̃(ejΩ, n) and B(ejΩ, n) represent the
current short-term spectra of the residual noise b̃(n) and the original noise
b(n). As in the computation of the other quality measures dtonal(n) is aver-
aged on a frame by frame basis over time:

dtonal =
1
NF

NF−1∑
n=0

dtonal(nL) . (11.19)

The performance follows the expected behavior. For an increasing overesti-
mation factor (lower plot Fig. 11.10) and for an increasing input SNR (upper
plot Fig. 11.10) the outcome of the distortion measure decreases.

Note that musical noise is one of the most annoying artifacts within noise-
only periods for a human listener. A lot of the speech recognition systems are,
however, quite insensitive to this kind of distortion.

11.2.3.3 Difference in Power Level

Not really surprisingly, the difference in the noise power compared in sequences
with or without speech activity also gives a hint of the noise reduction quality.
A high power level in speech sequences and at the same time a very low power
level in speech pauses leads to a low subjective mark.7 Therefore we evaluate
the signal with the following rule:

dpow =

∣∣∣P b̃,speech − P b̃

∣∣∣
P b̃

+

∣∣∣P b̃,pause − P b̃

∣∣∣
P b̃

, (11.20)

with P b̃,pause and P b̃,speech being the current values of background noise in
pauses

7 The term low subjective mark should indicate a bad signal quality. A detailed
mapping between marks and quality descriptions can be found in Tab. 11.3.
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Fig. 11.10. Simulation results for the tonal distortion measure with input signals
of well-known behavior. Note that for the change in the overestimation factor the
amount of input tonal distortions is equal for all overestimation factors.

P b̃,pause =
1

NS,pause

∑
Pauses

b̃2(n) (11.21)

or speech activity,

P b̃,speech =
1

NS,speech

∑
Speech

b̃2(n) (11.22)

respectively and P b̃ the average value of the residual background noise over all
samples (see Eq. 11.17). The parameters NS,pause and NS,speech are denoting
the amount of samples within pauses and during speech activity, respectively.
It is recommended to label the periods of speech and pause manually, espe-
cially for low SNR conditions.

11.2.4 Psycho-Acoustic Methods

There are many other quality measures available. A very common approach
is to evaluate the psycho-acoustical masking properties of the human hear-
ing system, which is also tested here for improving the signal-to-noise ratio
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enhancement. Only audible parts of the speech and noise signals are com-
pared [46]. Typically psychoacoustic methods outperform simple signal-to-
noise ratio enhancement measures. But since the discussion of psychoacoustic
methods opens a completely new field, we restrict ourselves to the ideas above.

11.2.5 Coherence Between Instrumental Measures and Listening
Tests

If the coherence between the subjective and the objective quality measures
is required, usually the correlation coefficient is used. Since objective quality
measures are typically not on the same scale as subjective measures, usually
a nonlinear fitting is performed beforehand. However, the amount of training
data is usually not very large, due to the enormous effort that listening tests
require. This causes the results to be heavily related with the fitting curves.
One can avoid this problem by using the so-called rank correlation.

11.2.5.1 Rank Correlation

For the rank correlation [19, 30] the data under investigation (subjective as
well as objective) is put in a rising order. Assuming that we have made four
simulations leading to four different output samples, the quality of which we
have compared both subjectively and objectively getting the results VΣ,1 to
VΣ,4 for the subjective and dt,1 to dt,4 for the objective evaluation.8 Writing
both results in increasing order leads to

dt,3 < dt,2 < dt,1 < dt,4 (objective)
and VΣ,1 < VΣ,2 < VΣ,4 < VΣ,3 (subjective)

and we get the following ranks:

R(dt,3) = R(VΣ,1) = 1, R(dt,2) = R(VΣ,2) = 2,
R(dt,1) = R(VΣ,4) = 3, R(dt,4) = R(VΣ,3) = 4,

where R(VΣ,n) denotes the rank of a subjective quality measure for algo-
rithm n, R(dt,n) that of an objective quality measure, respectively. Analo-
gous to the correlation coefficient, we calculate the Spearman rank correlation
coefficient ρt:

ρt =

N∑
n=1

[
R(VΣ,n) −R(VΣ)

][
R(dt,n) −R(dt)

]
√

N∑
n=1

[
R(VΣ,n) −R(VΣ)

]2 N∑
n=1

[
R(dt,n) −R(dt)

]2 , (11.23)

8 The quantities dt,n are abbreviating one of the objective distance measures pre-
sented before. Thus, the variable t could be one of the subscripts cep, Ita, IS, att,
tonal, or P.
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where R(dt) and R(VΣ) denote the respective average rank and have the same
value, namely (N+1)/2. If the two input sequences are both strictly increasing
or both decreasing the rank correlation delivers one as output. The Spearman
correlation coefficient can therefore be used like its traditional counterpart.

11.2.5.2 Judging Quotient

In order to compute rank correlation coefficients according to Eq. 11.23 sub-
jective tests have to be performed. Therefore, a listening test with 35 persons
was carried out. The test persons were asked to mark the speech signal and
the background noise separately, and to say if they have the impression that
the speech enhancement is a general improvement. Various speech enhance-
ment schemes were used as test sequences. For the speech and noise signal,
respectively marks9 between one and five had to be given (very poor to very
good) and for the general opinion a mark between minus two and plus two. A
smaller value always represents a lower quality. We will not describe the de-
tails about the subjective tests right now10 since we will focus on the question
about the quality of the objective measures in this and in the next section.
For details about the boundary conditions of the noise suppression tests the
interested reader is referred to [8].

In contrast to the widely used mean opinion scores, we do not average
directly the outcomings of an opinion poll. To achieve a scaled outcome of the
listening tests we use a judgement quotient similar to quantiles as known in
statistics:

Qi =
No. of judgements ≥ level i
Total number of judgements

. (11.24)

This gives the highest results to the best sequences. However, the question
arises which of the possible quotients gives the best result. We average over
all levels for the evaluation:

QΣ =
1

Nmax −Nmin

Nmax∑
i=Nmin+1

Qi . (11.25)

The summation starts at i = Nmin + 1 because for i = Nmin we receive
Q(Nmin) = 1 which only leads to a global offset. Due to the normalization we
ensure that the average judgement quotient stays within the interval

0 ≤ QΣ ≤ 1 . (11.26)

9 In the following the terms mark and level are used in an equivalent manner. The
lowest possible level is denoted by Nmin, the highest one by Nmax.

10 Two types of subjective tests will be introduced in detail in Sec. 11.3 (CMOS)
and Sec. 11.4 (DRT), respectively.
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If all listeners vote in all tests with the worst judgement all judgement quo-
tients will be Qi = 0, except for the first quotient which will be QNmin = 1.
As a result the average judgement quotient will be

QΣ

∣∣∣
All listeners vote with most negative judgement.

= 0 . (11.27)

On the other hand, if all listeners give in all tests best marks all judgement
quotients will be Qi = 1. The average judgement quotient in this case will be

QΣ

∣∣∣
All listeners vote with most positive judgement.

= 1 . (11.28)

11.2.5.3 Results

Tab. 11.1 shows the rank correlation between the distance measures for the
speech signal and the subjective quality of the speech signal. If the quality of
the speech signal alone is required, the cepstral distance shows the best correla-
tion.11 However, all distance measures show only a small rank correlation with
the subjective evaluation. By applying a linear combination of all presented
distance measures a rank correlation coefficient of about ρcombined|QΣ

= 0.81
can be achieved [9].

Table 11.1. Rank correlation coefficients of subjective judgement and speech qual-
ity measures.

Judging Quotients Rank correlation coefficients

Cepstral dist. Itakura Itakura-Saito

Q2 ρceps

∣∣
Q2

= 0.61 ρIta

∣∣
Q2

= 0.50 ρIS

∣∣
Q2

= 0.50

Q3 ρceps

∣∣
Q3

= 0.62 ρIta

∣∣
Q3

= 0.47 ρIS

∣∣
Q3

= 0.47

Q4 ρceps

∣∣
Q4

= 0.60 ρIta

∣∣
Q4

= 0.47 ρIS

∣∣
Q4

= 0.47

Q5 ρceps

∣∣
Q5

= 0.60 ρIta

∣∣
Q5

= 0.51 ρIS

∣∣
Q5

= 0.52

QΣ ρceps

∣∣
QΣ

= 0.62 ρIta

∣∣
QΣ

= 0.48 ρIS

∣∣
QΣ

= 0.48

For the analysis of the change in the noise characteristics, we also com-
pare the objective measures for the background noise with the results of the
11 Note that negative values for the rank correlation coefficients would be obtained

for most distance measures since on one hand larger subjective ranks indicate
better quality but smaller distance measures on the other hand. For this reason
the rank correlations were computed using the negative distance measures.
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listening test (see Tab. 11.2). The measure for the tonal distortions deliv-
ers the highest agreement with the human listeners, while the actual noise
attenuation is not suitable for a prediction of the noise quality.

Table 11.2. Rank correlation coefficients of subjective judgement and noise quality
measures.

Judging Quotients Rank correlation coefficients

Noise att. Tonal noise Power diff.

Q2 ρatt

∣∣
Q2

= 0.20 ρtonal

∣∣
Q2

= 0.40 ρpow

∣∣
Q2

= 0.49

Q3 ρatt

∣∣
Q3

= 0.34 ρtonal

∣∣
Q3

= 0.67 ρpow

∣∣
Q3

= 0.60

Q4 ρatt

∣∣
Q4

= 0.36 ρtonal

∣∣
Q4

= 0.66 ρpow

∣∣
Q4

= 0.64

Q5 ρatt

∣∣
Q5

= 0.32 ρtonal

∣∣
Q5

= 0.45 ρpow

∣∣
Q5

= 0.53

QΣ ρatt

∣∣
QΣ

= 0.35 ρtonal

∣∣
QΣ

= 0.67 ρpow

∣∣
QΣ

= 0.60

As we see from the results a perfect correspondence between subjective
and objective quality measures is still not possible. However, for the design
of a new noise reduction algorithm the proposed quality measures help to
yield information for tuning and comparing noise reduction systems. Human
listeners tend to put their main emphasis on the speech quality and only a
minor emphasis on the actual noise attenuation.

11.3 Comparison Mean Opinion Scores (CMOS)

When evaluating the quality of speech coding and decoding systems mean
opinion scores (MOS) are often applied. In these tests audio examples which
have been coded and decoded with a specific algorithm are presented to lis-
teners. They have to evaluate the quality of each signal in terms of marks
from 5 (excellent) down to 1 (bad). Tab. 11.3 gives an overview of the entire
listening scale.

The disadvantages of MOS tests are the limited repeatability and the
variable interpretation of scores such as excellent, good, fair, etc. For this
reason MOS tests should be performed only with trained listeners. The quality
or reliability of the listeners can be measured using quantities called intra-
person and inter-person deviation. For the first quantity a few audio examples
are presented twice within a test, randomly distributed within the sequences.
If the listeners vote in a reliable manner the difference between the two ratings
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Table 11.3. Listening scale of MOS tests.

Speech quality Score

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

should be very small or even zero. If we denote the number of equal audio
examples by Neq and the voting result according to Tab. 11.3 of the first
example with Vm(k, 1) and the one of the second example with Vm(k, 2) the
intra-person deviation is defined as

Um =

√√√√ 1
Neq

Neq−1∑
k=0

[
Vm(k, 1) − Vm(k, 2)

]2
(11.29)

This quantity is evaluated for each listener (denoted by the subscript m) and
only those individuals with a small intra-person deviation should be selected
for performing a MOS test. To test how precise the adjectives excellent, good,
etc. (see Tab. 11.3) describe a certain type of quality to different listeners12

the inter-person deviation

T (k) =

√√√√ 1
Nlis − 1

Nlis−1∑
m=0

[
Vm(k) − V (k)

]2
(11.30)

can be evaluated. Again Vm(k) denotes the vote of listener m for the audio
example k. The quantity

V (k) =
1
Nlis

Nlis−1∑
m=0

Vm(k) (11.31)

estimates the average voting for audio example k. In [8] a test with Nlis =
36 untrained listeners has been performed for the purpose of evaluating the
quality of different noise suppression schemes. During each testNeq = 12 equal
audio examples have been presented twice. The listeners were mostly students
of an electrical engineering faculty. An average intra-person deviation (mean
over all listeners) of about

12 We assume that a pre-selection of the listeners in order to achieve a small average
intra-person deviation was already made.
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U =
Nlis−1∑
m=0

Um ≈ 1.3 (11.32)

was measured. For these reasons it is more reliable to compare between two
signals and evaluate the difference of both. These tests are called comparison
mean opinion scores (CMOS). In its simplest form the listeners evaluate only
which of the two examples sounds better (see Tab. 11.4). The speech samples

Table 11.4. Listening scale of simple CMOS tests.

Voting Score

A is better than B 1
A is worse than B −1

are presented to the listeners by pairs (version A – version B) or by repeated
pairs (version A – version B – version A – version B). In half of the trials
the order of presentation should be reversed. Between the audio examples
a pause of about 0.5 to 1 second should be inserted. After each trial the
listeners have to evaluate which algorithmic version produces the better result.
Note that in this test with only two choices it is not possible to rate the
quality of the two approaches under test as equal. For some tests it is very
desirable to force the listeners to decide for one version. However, if a more
detailed analysis is preferred a seven score CMOS test with scores according
to Tab. 11.5 can be performed. The intra-person and inter-person deviation in

Table 11.5. Listening scale of extended CMOS tests.

Voting Score

A is much worse than B −3
A is worse than B −2
A is slightly worse than B −1
A and B are about the same 0
A is slightly better than B 1
A is better than B 2
A is much better than B 3

CMOS tests is usually smaller than in MOS tests, especially with untrained
listeners. However, to test the intra-person deviation a few of the trials in
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seven score CMOS tests can be performed with equal audio examples (version
A = version B). These pairs of audio examples are called null pairs.

Furthermore, the selection of the listeners has influence on the result of the
test. On one hand trained listeners, such as professional audio reviewers, have a
much better reliability than untrained listeners [2]. In [37] it was reported that
for loudspeaker evaluation the number of untrained listeners that is required
to achieve a certain reliability was about 7 times higher than the number
of trained listeners. On the other hand trained listeners tend to rate with a
lower average quality level [37]. However, this is important only for absolute
category ratings as they appear in MOS tests. For comparison ratings the
effect is not very critical. As a consequence it is suggested that untrained
listeners should be trained using a short supervised training phase before the
actual subjective test is started.

When CMOS tests are performed to investigate (and to improve) the qual-
ity of speech enhancement algorithms they are usually accomplished more
than once, e.g., once to investigate the influence on the overall quality of an
enhanced background noise estimation, the second time to find out the best
attenuation characteristic, and so forth. In this case one has to ensure that
the boundary conditions, such as the audio presentation equipment, the char-
acteristics (reverberation time) of the listening room, or the environmental
background noise in the listening room, are equal for each test. Furthermore,
the boundary conditions should be as close as possible to the final applica-
tion. If, for example, a noise reduction is developed for the receiving path of
a mobile phone, then the audio examples should be presented via this mobile
phone.

11.3.1 Example

To show how a CMOS test is realized in detail we will present the following
example where two versions of a bandwidth extension algorithm were eval-
uated. This was part of a pilot study for investigating the potential of both
algorithmic approaches. For those readers who are not familiar with band-
width extension algorithms a brief introduction in this topic is given in the
next section. The others may continue with Sec. 11.3.1.2.

11.3.1.1 Basics of Bandwidth Extension Algorithms

Speech signals that are transmitted over current public telephone networks
exhibit only a very limited bandwidth, e.g. 300 Hz up to 3400 Hz for analog
lines. When comparing those speech signals to other audio sources such as
radio or CD the quality difference is obvious and bothersome. Thus, great
efforts have been made to increase the quality of telephone speech signals
in recent years. Wideband codecs are able to increase the bandwidth up to
7 kHz or even higher at only moderate complexity. Nevertheless, applying
these codecs would mean to exchange current networks. Another (cheaper)
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possibility is to extend the bandwidth after transmission over the unchanged
network [27,28]. The basic idea of these enhancements is to estimate the speech
signal components above 3400 Hz and below 300 Hz and to complement the
signal in the new frequency bands with this estimate. In Fig. 11.11 the basic
structure of a system for bandwidth extension of telephony speech is depicted.

Block extraction
and FFT

Bandpass filter
(e.g. 200 ... 3700 Hz)

Bandstop filter
(e.g. 200 ... 3700 Hz)

Spectral
weighting

Generation
of the excitation

signal

Estimation of the
broadband

spectral envelope

ext ( )x n

tel ( )x n

Block concentration
and IFFT

( )x n
enh( )x n

e( )x n

Fig. 11.11. Structure of a system for bandwidth extension of speech signals, which
have been transmitted over a public telephone network.

The generation of this estimate can be divided into two separate tasks
assuming that the well-known source-filter model of speech generation [4] is
applied. First, a so-called excitation signal is required. This excitation sig-
nal corresponds to the signal that can be observed directly behind the vocal
chords, which means that this signal contains information about voicing and
pitch but not about formant structures or the spectral shaping in general.
Consequently, this excitation signal has to be weighted with the spectral en-
velope of the speech signal. Thus, one key element in bandwidth extension
of speech signals is the estimation of the spectral envelope. Two methods for
this estimation were investigated with a CMOS test: mapping the narrow-
band envelope to a broad-band envelope by either using a codebook or a
neural network.

After generating the excitation signal xe(n) and weighting xe(n) with the
spectral envelope, power adjustment of the synthesized signal to the input
signal x(n) is necessary. Before adding the complementary signals the phase
of the extended frequency bands can be manipulated. Both, power adjustment
and phase manipulation, are not depicted in Fig. 11.11. For computing the
bandwidth extension block processing in the frequency domain is applied. The
input signal is divided into overlapping blocks of length NB = 256 (sampling
rate = 11025 Hz). The blocks are overlapping by 75 percent resulting in a
frameshift of 64 samples. Further details about the specific algorithms can be
found in [20].
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Fig. 11.12. Time-frequency analysis of wideband speech (top), bandlimited speech
(middle), and reconstructed speech (bottom).
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In Fig. 11.12 three time-frequency analyses are presented. The upper most
analysis depicts a wideband speech signal xorig(n) as it would be recorded close
to the mouth of the communication partner on the remote side. If we assume
not to have any kind of errors or distortions on the transmission a bandlimited
signal x(n) as depicted in the center diagram would be received at the local
side. The truncation of the frequency range is clearly visible. Without any
additional processing the local communication partner would be listening to
this signal. If bandwidth extension is applied a signal xenh(n) as depicted in
the lowest part of Fig. 11.12 would be reconstructed. Even if the signal is
not exactly the same as the original one, it sounds more natural and - as a
variety of listening test indicate - the speech quality in general is increased as
well [20].

11.3.1.2 Performing the CMOS Test

When designing a system for bandwidth extension it is quite interesting which
method for generating the broadband envelope should be chosen. Codebooks
are quite easy to train, e.g., using the LBG algorithm [33]. However, if a large
codebook is required the search for the optimal entry is quite expensive in
terms of computational complexity. On the other hand, the utilization of a
codebook means some kind of discretization and algorithms which take past
input vectors into account are quite simple to realize. Furthermore, stability
can be guaranteed if the training of the codebook is performed carefully. A
neural network on the other hand can generate the broadband spectral en-
velope in a computationally more effective manner. However, if the desired
outputs are cepstral coefficients or predictor error filter coefficients, the result-
ing filters have to be checked for stability and a correction might be necessary.

In order to make this design decision the subjective quality of the differ-
ently extended signals have been evaluated by a CMOS test. About 20 people
of different age and gender have participated in the test. At the beginning
of each test the listeners were asked to complete the fields of a first program
window. Within a comments field the age and the gender of the subjects
were noted. Furthermore, it was made sure that none of the listeners had any
hearing impairment.

After completing the fields of the first window the listeners were asked to
compare the quality of two signals (pairs of bandlimited and extended signals)
by choosing one of the statements listed in Tab. 11.5. This decision (extended
signal versus original telephone signal) was requested for the extended signal
using a codebook and for the neural network extension. Finally, the listeners
were asked whether they preferred the signal which was extended by the neural
network or the one which was extended with the codebook (choice according
to Tab. 11.4). During a test 20 groups of audio signals (two extended signals
and the bandlimited reference) were presented to each listener. The program
window of this part of the CMOS test is depicted in Fig. 11.13.
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Fig. 11.13. Program windows of a CMOS test – part II.

The listeners were allowed to play the signals as often as they wanted un-
til they were able to make their decisions. This way of audio presentation is
not common in CMOS tests. However, because of the larger number of com-
parisons (two times reference against extended signal and once a comparison
between the two extended signals) the possibility of repeated audio presen-
tation was given to the listeners. During all tests the same audio equipment
(computer, soundcard and loudspeakers) was utilized. Also the individuals
did not know which path in Fig. 11.13 belonged to the codebook version and
which to the neural network version. The connection of both approaches to
pathes A and C was chosen randomly for each triple of audio signals. Only
version B corresponds always to the telephone bandlimited (not extended)



11 Evaluation of Algorithms for Speech Enhancement 457

signal. Note furthermore, that the extended signals have not been used for
network training or codebook generation, respectively.

11.3.1.3 Evaluation of the Test

Tab. 11.6 shows the absolute results of the seven score parts of the CMOS
test. As already described the tests were performed by Nlis = 20 individuals,
each voted Nt = 20 times during a test. This means that the sum of each
column in Tab. 11.6 is 400. When choosing which approach produces better
results 80 percent (320 of 400 trials) voted for the codebook based scheme.
Fig. 11.14 shows the relative results of the CMOS test.
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Fig. 11.14. Results of the CMOS test. The abbreviations CB, NN, and ref. stand
for codebook, neural network, and reference, respectively.
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Table 11.6. Results of the bandwidth extension CMOS tests (CB abbreviates code-
book, NN stands for neural network).

Statement Amount of Amount of Statement
(... than reference) results results (... than reference)

CB is much worse ... 0 5 NN is much worse ...
CB is worse ... 15 70 NN is worse ...
CB is slightly worse ... 64 55 NN is slightly worse ...
CB is about the same ... 27 35 NN is about the same ...
CB is slightly better ... 71 80 NN is slightly better ...
CB is better ... 146 110 NN is better ...
CB is much better ... 77 45 NN is much better ...

When analyzing the results of CMOS tests often the average rating VΣ in
terms of summing all scores (see Tabs. 11.4 and 11.5) and dividing it by the
number of votings

VΣ =
1

NtNlis

Nlis−1∑
m=0

Nt−1∑
k=0

Vm(k) (11.33)

is computed. Vm(k) denotes the vote of listener m for audio example k (see
Sec. 11.3). In our example this would lead to an average mark of

VΣ,NN ≈ 0.56

(between equal and slightly better than the bandlimited signals) for the net-
work approach and to

VΣ,CB = 1.25

for the codebook scheme (between slightly better and better than the band-
limited signals). This evaluation method has the drawback that statements
and especially the differences between statements are mapped onto a linear
scale. To avoid this linearization we prefer the quantile based evaluation that
was presented in Sec. 11.2.5.2. The so-called judging quotients are listed in
Tab. 11.7.

Before we start comparing both methods for envelope estimation an im-
portant question is whether each of the methods is able to improve the speech
quality (compared to the pure telephone signal). To answer this question the
judging quotient Q0 should be analyzed. A large value indicates that most
of the listeners are of the opinion that the extended signals sound at least as
good as the original signals. The codebook approach achieves

Q0,CB ≈ 0.80 .
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Table 11.7. Judgement quotients obtained with the CMOS test (for the definitions
of Qi and QΣ see Sec. 11.2.5.2).

Voting Judging Quotients

Codebook Neural network

CB/NN is much worse than ref. Q−3 = 1.000 Q−3 = 1.000
CB/NN is worse than ref. Q−2 = 1.000 Q−2 = 0.988
CB/NN is slightly worse than ref. Q−1 = 0.963 Q−1 = 0.813
CB/NN and ref. are about the same Q0 = 0.803 Q0 = 0.675
CB/NN is slightly better than ref. Q1 = 0.735 Q1 = 0.588
CB/NN is better than ref. Q2 = 0.556 Q2 = 0.388
CB/NN is much better than ref. Q3 = 0.193 Q3 = 0.113

Average judging quotient QΣ = 0.708 QΣ = 0.594

This means that 80 percent of the tests result in equal quality or in quality
improvement. Taking the judgement quotient

Q−1,CB ≈ 0.96

into account shows that for most of the residual sound examples (20 percent)
only a slight degradation can be observed (only 4 percent of the examples
sound worse or much worse).

Even if the neural network approach performs slightly worse the method is
also able to improve most of the sound examples considerably, since judgement
quotients

Q0,NN ≈ 0.68 and Q−1,NN ≈ 0.81

have been achieved. However, a judgement ratio Q−1,NN = 0.81 indicates
that a non-negligible amount of the presented examples (19 percent) were
degraded in quality. Fig. 11.15 shows the judgement quotients for both 7-
level CMOS tests. When computing the average judgement quotient for the
codebook approach according to Eq. 11.25 we obtain

QΣ,CB ≈ 0.71 .

The neural network performs slightly worse with an average judgement quo-
tient of about

QΣ,NN ≈ 0.59 .

Note, that the average judgement quotient QΣ can be easily transformed for
a 7-level CMOS test into the average voting VΣ (and vice versa):
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Fig. 11.15. Judgement quotients of both 7-level CMOS tests.

VΣ = 6QΣ − 3 , (11.34)

where N = NlisNt denotes the total number of votings (in our example we
have N = 400). Since both average judgement ratios are larger than 0.5 both
methods seem to enhance the speech quality.13

As a second result, the test indicates that the codebook approach outper-
forms the neural network scheme:

• On one hand the average judgement ratio of the codebook scheme is larger
than that of the neural network approach

QΣ,CB > QΣ,NN .

• On the other hand and even more important, in 80 percent of the tests
the listeners voted for the codebook approach.

After receiving these absolute and relative results that indicate which of the
two versions is the better one, the question about statistical significance of the
test comes up. Before this subject is treated in Sec. 11.3.2 allow us a few final
remarks about the comparison between the two schemes for spectral envelope
estimation in bandwidth extension systems in the next section.

11.3.1.4 Remark

Note that this test does not mean that codebook approaches are in general the
better choice for bandwidth extension systems. The results depend crucially
13 If all listeners had voted with “CB/NN and ref. are about the same” the first four

judgement quotients would have been Q−3 = Q−2 = Q−1 = Q0 = 1, and the last
three Q1 = Q2 = Q3 = 0. This results in an average judging ratio of QΣ = 0.5.



11 Evaluation of Algorithms for Speech Enhancement 461

on the stabilization method that is applied as a necessary postprocessing unit
to the output of the neural network.14 The main problem of the neural network
approach was that it has produced quite rarely audible artifacts. This resulted
in lower votings. However, the examples without artifacts were scored rather
high. As a result the neural network approach was evaluated undecidedly.

11.3.2 Statistical Analysis

When investigating statistical significance of the results of the subjective tests
we will start for simplicity reasons with the analysis of the question which of
the two extension schemes produces the better result. The analysis of this
kind of test will be done in Sec. 11.3.2.2.

11.3.2.1 Analysis of the Two-Level Test

For the following statistical analysis we assume that one of the schemes (or
algorithmic versions) was rated better than the other. This scheme, in our
example the codebook approach, is denoted with version 1, the one which had
produced a lower result is called version 2. The results of the CMOS test were
grouped into two categories:

a−
Number of results in which version 1 was rated worse
than version 2.

a+
Number of results in which version 1 was rated better
than version 2.

The total number of tests is denoted by

N = a+ + a− . (11.35)

We further assume all tests to be mutually independent and that results indi-
cating that version 1 is better than version 2 will be produced with probability
p+. Worse quality is voted with probability p−.

Under the assumptions and definitions given above the probability of get-
ting ā+ positive and ā− negative results is given by15

p
(
(a+ = ā+) ∧ (a− = ā−)

)
=
(
N
ā+

)
p

ā+
+ p

ā−
− . (11.36)

14 The spectral envelope is coded in terms of an inverse predictor error filter. Since
the network approach does not necessarily generate a minimum phase predictor
error filter, stability can not be guaranteed for the inverse all-pole filter.

15 The term positive indicates here that version 1 is rated better than version 2.
Analogously, negative means that version 1 is rated worse than version 2. Fur-
thermore, a+ and a− are denoting the possible results of the test. The quantities
ā+ and ā− are describing the actually achieved results of the test.
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Both probabilities, p+ and p− sum up to 1

p+ + p− = 1 . (11.37)

Thus, one of the parameters in Eq. 11.36, e.g. a−, can be omitted:

p(a+ = ā+) =
(
N
ā+

)
p

ā+
+ (1 − p+)(N−ā+) . (11.38)

For the following derivation we will make use of the fact that all possible
probabilities p(a+ = 0), ..., p(a+ = N) also sum up to one:

N∑
k=0

p(a+ = k) =
N∑

k=0

(
N
k

)
pk
+ (1 − p+)(N−k) = 1 . (11.39)

Thus, we can write the probability p(a+ = ā+) also as

p(a+ = ā+) =

(
N
ā+

)
p

ā+
+ (1 − p+)(N−ā+)

N∑
k=0

(
N
k

)
pk
+ (1 − p+)(N−k)

. (11.40)

The probability for achieving ā+ or even more positive results can be com-
puted as

p(a+ ≥ ā+) =
N∑

k=ā+

p(a+ = k)

=

N∑
k=ā+

(
N
k

)
pk
+ (1 − p+)(N−k)

N∑
k=0

(
N
k

)
pk
+ (1 − p+)(N−k)

=

N∑
k=ā+

(
N
k

) (
p+

1 − p+

)k

N∑
k=0

(
N
k

) (
p+

1 − p+

)k
. (11.41)

Writing

r =
p+
p−

=
p+

1 − p+ , (11.42)

and inserting the definition of the binomial coefficient(
N
k

)
=

N !
k! (N − k)! , (11.43)
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we can write Eq. 11.41 shortly as

p(a+ ≥ ā+) =

N∑
k=ā+

rk

k! (N − k)!
N∑

k=0

rk

k! (N − k)!
. (11.44)

In the following we will utilize Eq. 11.44 to compute an upper limit for the
probability to obtain ā+ or more positive results under certain assumptions.
In particular, these assumptions are:

Hypothesis H0 : We assume that p+ ≤ p−, meaning that version 2
produces better or at least equal results as version 1.

Hypothesis H1 : We assume that p+ > p−, meaning that version 1
produces better results as version 2.

If H0 is true our convention at the beginning of this section for version 1 has
proved wrong. We compute an upper limit for the conditional probability

p(a+ ≥ ā+)|H0
≤ p0. (11.45)

If this upper limit is sufficiently small we can discard hypothesis H0 and use
H1 instead.

In Fig. 11.16 four density examples are depicted. We assume to have per-
formed N = 400 tests. The upper left diagram shows the density according to
Eq. 11.44 for equal probabilities p+ = p− = 0.5, resulting in a ratio r = 1. In
this case and under the restriction H0, meaning that p− ≥ p+, the conditional
probability p(a+ ≥ 210) to obtain 210 positive results or even more reaches
its maximum value.16 In the upper right diagram of Fig. 11.16 the density
obtained for p+ = 0.49 and p− = 0.51 is depicted. The highlighted area rep-
resenting p(a+ ≥ 210) is clearly smaller than the one for p+ = p− = 0.5. This
trend holds for even smaller ratios r (depicted in the lower two diagrams).

The trend can be explained analytically by analyzing Eq. 11.41. The sum in
the denominator of Eq. 11.41 originates from adding all probabilities according
to the distribution given in Eq. 11.36 with respect to all restrictions given until
now. Furthermore, the terms

ak =
1

k! (N − k)! (11.46)

16 We have chosen ā+ = 210 (instead of ā+ = 320 as achieved with the test) in
order to obtain results that are clearly visible. The shaded areas in Fig. 11.16
representing the probabilities p(a+ ≥ ā+) would be hardly visible for the case
ā+ = 320.
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Fig. 11.16. Binomial density functions for different values of r. For the sake of
better visibility, the discrete density functions have been plotted using continuous
lines.

are symmetric with respect to the center of the summation interval if the term
rk is neglected:

ak = aN−k . (11.47)

If the ratio r is smaller than 1 the summands ak of the higher order half of the
summation interval are attenuated more than the lower order half. Fig. 11.17
shows in the upper diagram the addends for the ratios r = 1 (depicted by
circles) and r = 0.8 (depicted by squares) for a survey with just N = 10
examples. The attenuation of the higher order terms (compared to their lower
order counterpart) is clearly visible. The attenuation itself (rk) is depicted in
the lower diagram (the curve has been interpolated for better visibility for
non-integer values of k).
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Fig. 11.17. Weighted (with rk) and non-weighted summation terms.

In the numerator of Eq. 11.44 only a subset of these terms is added. This
subset contains – according to the start index k = ā+ – only the higher order
values. For this reason the conditional probability p(a+ ≥ ā+) is bounded if
r is restricted to r ≥ 1:

p(a+ ≥ ā+)
∣∣∣
p+≤p−

≤ p(a+ ≥ ā+)
∣∣∣
p+=p−

=

N∑
k=ā+

1
k! (N − k)!

N∑
k=0

1
k! (N − k)!

= p0 . (11.48)

This result is important since we are able now to compute an upper limit for
the probability p0 that hypothesis H0 is true. In our case (N = 400, ā+ = 320)
we obtain an upper limit for
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p0
∣∣
N=400,ā+=320

< 10−10 . (11.49)

This means that we can discard hypothesis H0 – meaning that the neural
network scheme produces better results than the codebook approach – since
H0 is true only with a probability of at most 10−10. As a result we can conclude
that codebooks produce better results than neural networks (at least with the
algorithmic setup utilized within our tests).

The computation of Eq. 11.48 is often difficult due to numerical inaccura-
cies the binomial distribution can be approximated for large N by a normal
distribution of appropriate mean and variance. In this case the probability
can be approximated by [31]

p0(ā+, N)
∣∣∣
N
1

≈ 1 − Φ
(

2ā+ −N√
N

)
(11.50)

with

Φ(x) =
1√
2π

x∫
−∞

e−
1
2 t2dt . (11.51)

11.3.2.2 Analysis of the Seven-Level Test

The analysis of the seven-level CMOS test is very much related to the analysis
of the two-level test. For this reason, the derivation is rather brief and we will
focus on the differences compared to the previous section. We will group the
results of the seven-level CMOS test into three (respectively two) categories:

a−
Number of results in which version 1 was rated slightly worse,
worse, or much worse than version 2.

a0
Number of results in which version 1 was rated about the same
as version 2.

a+
Number of results in which version 1 was rated slightly better,
better, or much better than version 2.

This kind of grouping takes the difficulty of mapping adjectives such as slightly
better, better, and much better onto numbers such as 1, 2, and 3 into account.
Furthermore, we will combine equal and worse results within the category

a0,− = a0 + a− .

This means that we distinguish in the following only between the categories
“better” and “equal or worse”. As in the last analysis we will denote the
amount of votings that have been achieved in the test as ā+ for positive results,
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respectively ā0,− for equal or negative results.17 In the test we obtained for
the codebook approach

ā+,CB = 294 , (11.52)
ā0,−,CB = 106 , (11.53)

and for the network scheme

ā+,NN = 235 , (11.54)
ā0,−,NN = 165 . (11.55)

As a next step we postulate – as in the previous section – two hypotheses:

Hypothesis H0 : We assume that p+ ≤ p0,−, meaning that the
reference (the non-processed signal) produces better
or at least equal results as the codebook / neural
network approach.

Hypothesis H1 : We assume that p+ > p0,−, meaning that the
codebook / neural network approach produces better
results than the reference.

Assuming that H0 is true we can compute an upper limit for the conditional
probability to obtain more than ā+ positive results:

p(a+ ≥ ā+)
∣∣∣
p+≤p0,−

≤ p(a+ ≥ ā+)
∣∣∣
p+=p0,−

=

N∑
k=ā+

1
k! (N − k)!

N∑
k=0

1
k! (N − k)!

= p0 . (11.56)

Again, we have abbreviated the upper limit of the conditional probability
defined in Eq. 11.56 with p0. In our test we obtained for the codebook approach

p0,CB

∣∣∣
N=400,ā+,CB=294

< 10−10 (11.57)

and

p0,NN

∣∣∣
N=400,ā+,NN=235

< 0.00027 (11.58)

for the neural network scheme. Both conditional probabilities are sufficiently
small to discard hypothesis H0 and assume instead that the extended signals
have better sound quality on average.
17 Again, the term positive indicates votings such as “much better”, “better”, or

“slightly better” – negative summarizes “much worse”, “worse”, and “slightly
worse”.
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11.4 Rhyme Tests

In the previous tests well-known phrases such as popular song texts or
proverbs were used for evaluating the speech quality. The speech intelligi-
bility, also an important part of the speech quality, is usually underweighted.

If the speech intelligibility of a speech enhancement system is examined
segmental evaluation methods are the better choice. In these tests, the so-
called rhyme tests, several lists with homophone sounding (rhyming) words,
such as “west”, “test”, and “best”, are presented to the listeners. Presenting
means here that all words are displayed, e.g., on a computer monitor or on a
sheet of paper. One of the words is presented also acoustically and the listeners
have to decide which item on the list was actually played.

The stimulus word lists have to be designed individually for each language.
In Tab. 11.8 and Tab. 11.9 an English stimulus list as published in the Amer-
ican National Standard ANSI S3.2-1989 [1] is presented. The list consists of
50 sets of six monosyllable words, resulting in a total set of 300 words. Half
of the sets can be used to evaluate the intelligibility of the initial consonants,
the other half was designed to test the final consonant. Besides this list, sev-
eral institutes and vendors such as Bellcore and AT&T have also designed
word lists for their individual applications, e.g. for the evaluation of speech
synthesis systems [5].

Such a test is called a modified rhyme test (MRT). When the listeners had
made their choices which of the six words was the one that was acoustically
presented, average error rates can be computed. Usually, the total error rate
is of main interest but also single consonants and how they are confused with
each other can be investigated. However, usually the test material is rather
limited and not all possible confusion cases might appear. Thus, confusions
presented in terms of matrices are not easy to evaluate.

The one-out-of-six choice per stimulus yields to an amount of information
of about log2(6) = 2.59 bits per selection.18 On average it takes a human
listener about 4 seconds to make such a decision [44]. Thus, one can obtain
about 0.65 bit/s of information using a modified rhyme test. Another well-
known rhyme test is the so-called diagnostic rhyme test (DRT). In this test the
listeners are provided with lists that contain only two items. Thus, an informa-
tion of only one bit per selection is obtained. However, a human listener needs
on average only 1.33 seconds for such a one-out-of-two choice. As a result the
average information rate of a diagnostic rhyme test is about 0.75 bit/s. As
for the modified rhyme test, stimulus lists for the DRT are published in the
American National Standard ANSI S3.2-1989 [1] (see Tab. 11.10).

Even if the diagnostic rhyme test is in some ways only a subset of the
modified rhyme test (word pairs of the MRT could be taken as a stimulus ba-
sis for the DRT), it is also an extension of the MRT in terms of its evaluation

18 Here and in the following example it is assumed that all stimulus words appear
with the same a priori probability.
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Table 11.8. Examples for stimulus words used in a modified rhyme test [1] – part 1.

List with 50 groups of homophone sounding (rhyming) words (part 1)

went – sent – bent – dent – tent – rent
hold – cold – told – fold – sold – gold
pat – pad – pan – path – pack – pass
lane – lay – late – lake – lace – lame
kit – bit – fit – hit – wit – sit

must – bust – gust – rust – dust – just
teak – team – teal – teach – tear – tease
din – dill – dim – dig – dip – did
bed – led – fed – red – wed – shed
pin – sin – tin – fin – din – win
dug – dung – duck – dud – dub – dun
sum – sun – sung – sup – sub – sud
seep – seen – seethe – seek – seem – seed
not – tot – got – pot – hot – lot
vest – test – rest – best – west – nest
pig – pill – pin – pip – pit – pick

back – bath – bad – bass – bat – ban
way – may – say – pay – day – gay
pig – big – dig – wig – rig – fig
pale – pace – page – pane – pay – pave
cane – case – cape – cake – came – cave
shop – mop – cop – top – hop – pop
coil – oil – soil – toil – boil – foil
tan – tang – tap – tack – tam – tab
fit – fib – fizz – fill – fig – fin

depth. As one can see in Tab. 11.10 the pairs of stimulus words in a diagnostic
rhyme test as proposed by W. Voiers in 1965 [44] are grouped into six cat-
egories: voicing, nasality, sustention, sibilation, graveness, and compactness.
If a speech transmission or speech enhancement system has, e.g., problems in
terms of maintaining the periodicity of a signal the amount of errors within the
voicing category will be higher than in the other categories. Thus, analyzing
the error rates individually for each category of a diagnostic rhyme test does
not only give information about the speech intelligibility in general but also
about the specific weaknesses of the system or algorithm under test.
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Table 11.9. Examples for stimulus words used in a modified rhyme test [1] – part 2.

List with 50 groups of homophone sounding (rhyming) words (part 2)

same – name – game – tame – came – fame
peel – reel – feel – eel – keel – heel
hark – dark – mark – bark – park – lark
heave – hear – heat – heal – heap – heath
cup – cut – cud – cuff – cuss – cub
thaw – law – raw – paw – jaw – saw
pen – hen – men – then – den – ten
puff – puck – pub – pus – pup – pun
bean – beach – beat – beak – bead – beam
heat – neat – feat – seat – meat – beat
dip – sip – hip – tip – lip – rip
kill – kin – kit – kick – king – kid

hang – sang – bang – rang – fang – gang
took – cook – look – hook – shook – book
mass – math – map – mat – man – mad
ray – raze – rate – rave – rake – race
save – same – sale – sane – sake – safe
fill – kill – will – hill – till – bill
sill – sick – sip – sing – sit – sin
bale – gale – sale – tale – pale – male
wick – sick – kick – lick – pick – tick
peace – peas – peak – peach – peat – peal
bun – bus – but – bug – buck – buff
sag – sat – sass – sack – sad – sap
fun – sun – bun – gun – run – nun

11.4.1 Performing a Rhyme Test

When performing a rhyme test – either a DRT or an MRT – several boundary
conditions should be considered:

• The recording conditions of the stimulus words should be as close as
possible to the final application. If, for example, a speech enhancement
system should be tested under several noise conditions the Lombard ef-
fect19 [16, 35] should be taken into account within the recording session.
Also the electro-acoustic transducers (microphones, AD and DA convert-

19 People alter their way of speaking according to the level and type of background
noise. This behavior is called Lombard effect.
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Table 11.10. Stimulus words used in a diagnostic rhyme test [1, 44].

Voicing Nasality Sustention

veal – feel meat – beat vee – bee
bean – peen need – deed sheet – cheat

gin – chin mitt – bit vill – bill
dint – tint nip – dip thick – tick
zoo – Sue moot – boot foo – pooh

dune – tune news – dues shoes – choose
voal – foal moan – bone those – doze
goat – coat note – dote though – dough
zed – said mend – bend then – den

dense – tense neck – deck fence – pence
vast – fast mad – bad than – Dan
gaff – calf nab – dab shad – chad

vault – fault moss – boss thong – tong
daunt – taunt gnaw – daw shaw – chaw

jock – chock mom – bomb von – bon
bond – pond knock – dock vox – box

Sibilation Graveness Compactness

zee – thee weed – reed yield – wield
cheep – keep peak – teak key – tea

jilt – gilt bid – did hit – fit
sing – thing fin – thin gill – dill
juice – goose moon – noon coop – poop
chew – coo pool – tool you – rue
Joe – go bowl – dole ghost – boast
sole – thole fore – thor show – so
jest – guest met – net keg – peg

chair – care pent – tent yen – wren
jab – dab bank – dank gat – bat

sank – thank fad – thad shag – sag
jaws – gauze fought – thought yawl – wall
saw – thaw bond – dong caught – taught
jot – got wad – rod hop – fop

chop – cop pot – tot got – dot
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ers, loudspeakers) should possibly be the same as in the final application.
This could be achieved either by using, e.g., the same microphone or a cal-
ibrated microphone and applying a correction filter. The latter approach
has the advantage that the recorded data base can be used for several
applications.

• The presentation of the stimulus words to the listeners should also be as
close to the final application as possible. If, for example, a noise reduction
scheme for a hands-free telephone is tested, the listeners should listen to
the audio examples after appropriate coding and decoding as well as via
an appropriate amount of different mobile phones, hand-sets, or hands-free
telephones.
If, for example, a noise suppression scheme for hands-free telephones has to
be tested, the input signals should be connected to the system with a high
sampling rate even if the output sampling rate is only 8 kHz. A few noise
suppression or speech coding systems include so-called fricative spreading
[14, 18] that is able to increase the speech intelligibility by downmixing
frequency components above 4 kHz.20

• The order of the visual and acoustical presentation of the word alternatives
should be randomized. Without randomization the listeners quickly get
a preference depending on the order of the visual presentation (learning
effect). It is also important to note that at least two systems or algorithmic
approaches should be tested. Also the amount of examples that have been
processed by one version should be spread randomly over the whole test. If
only one system is tested it should be compared with a nearly ideal system
that is free from noise or distortion. The intelligibility of such a system
serves as a reference. Note, that the error rate of such an ideal system is
usually not zero!

• After performing the test the results should be analyzed. According to,
e.g., Voiers [44] the estimated probability of correct answers, adjusted for
the effects of contents, is given by

p̂c =
Ncorrect − Nwrong

M − 1
N

, (11.59)

with the following abbreviations:
20 In most current voice transmission systems, the bandwidth is still limited to 3.4

or 4 kHz. This bandwidth is sufficiently large for vowels as spoken by a majority
of speakers. However, for consonants, especially for fricatives like /s/ or /f/, this
is not always true because their spectral energy is often located above 4 kHz. To
improve the quality of the narrowband signal, techniques to shift the spectrum of
fricatives below the cutoff frequency of the transmission system can be applied.
To achieve this, the signal is recorded first at a high sample rate (e.g., 11.025
or 16 kHz) and noise suppression is applied to the wideband signal. Afterwards
frequencies above 4 kHz are shifted down according to various rules [18]. An
increase of the speech intelligibility from 90.2% (without fricative spreading) to
94.3% (with fricative spreading) was measured.
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Ncorrect : total number of correct answers,
Nwrong : total number of wrong answers,
M : number of alternatives (6 for an MRT, 2 for a DRT),
N : total number of answers.

The right side of Eq. 11.59 leads to a good approximation of the true
probability pc only if the entire set of permissible responses are equally
attractive. A set consisting of the stimulus words went, sent, bent, and
subjective would obviously not fulfill the assumption. Furthermore, it is
assumed that the listeners respond to all lists, meaning that

Ncorrect +Nwrong = N . (11.60)

Additionally, a statistical analysis about the significance of the test should
be made. Details about such an analysis will be given in Sec. 11.4.3.

11.4.2 Example

As in Sec. 11.3.1 we will show further details about the realization of a rhyme
test for evaluating the speech intelligibility by using an example. In contrast
to Sec. 11.3.1 where two bandwidth extension algorithms have been compared
we will evaluate the quality of in-car communication systems (intercom) here.
For those readers who are not familiar with in-car communication systems a
brief introduction is given in the next section. Further details can be found
in Chapter 14 of this book. Those readers that have already basic knowledge
about intercom systems may continue with Sec. 11.4.2.2.

11.4.2.1 Basics of In-Car Communication Systems

In limousines and vans communication between passengers in the front and
in the rear may be difficult. Driver and front passengers speak towards the
windshield. Thus, they are hardly intelligible for those sitting behind them. In
the directions rear-to-front and left-to-right the acoustic loss is smaller. This
can be measured by placing a so-called artificial mouth loudspeaker21 at the
driver’s seat and torsos with earmicrophones [23] at the passenger’s seat and
at the backseats, respectively. On average the acoustic loss is 5 to 15 dB larger
to the backseat passenger (as compared to the front passenger).

Fig. 11.18 sketches the structure of a simple car interior communication
system [34,38] aimed to support only front-to-rear conversations with one mi-
crophone and one loudspeaker. Since driver and front passenger are located at
well defined positions, fixed microphone arrays (not depicted in Fig. 11.18) can
point towards each of them. Feedback suppression by means of an adaptive
notch filter can improve the system. Thus, the howling margin is improved. A
21 This is a loudspeaker which has (nearly) the same radiation pattern as the human

speech apparatus.
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device with nonlinear characteristic attenuates large signal amplitudes. The
output gain of a car interior communication system needs to be adjusted con-
tinuously according to the current driving condition. While only a moderate
gain is required whenever the car does not drive a large gain is required and
more artifacts will be tolerated at high speed.
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Fig. 11.18. Structure of a car interior communication system. Further details about
such systems can be found in Chapter 14 of this book.

Fig. 11.19 shows the results of a car interior communication system. The
system utilizes 8 microphones (2 per passenger) and 6 loudspeaker channels
(standard car loudspeakers). To obtain high speech intelligibility beamform-
ing, feedback cancellation, loss control and dynamic processing are applied.
Especially at high speeds (90 km/h or more) a clear improvement of the com-
munication quality can be achieved. To visualize this gain a binaural record-
ing was made with a torso located on the seat behind the front passenger.
Fig. 11.19 shows a time-frequency analysis of the output signal of the micro-
phone located in the torso’s left ear. The car was driving at about 160 km/h.
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The driver was talking with the same loudness during the entire recording.
After 16 seconds the system was deactivated for about 7 seconds to demon-
strate the system performance. Within the time-frequency analysis the speech
components of the driver are recognizable whenever the system is activated.
During deactivation, however, the driver’s speech is mostly masked by the
driving noise.
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Fig. 11.19. Time-frequency analysis of the left channel of a binaural recording made
on the right backseat.

As mentioned before, further details about in-car communication systems
can be found in Chapter 14 of this book.

11.4.2.2 Rhyme Test for In-Car Communication Systems

For evaluating the improvement in terms of speech intelligibility of the inter-
com system two pairs of rhyme tests were performed – each pair consisted
of one test with an activated system and another one without the system.
In order to have best reliability of the tests prerecorded speech instead of
spontaneous was utilized within the tests.

For the recordings a list containing 100 groups (six words per group) of
monosyllable, rhyming words [41, 42] was used – resulting in 600 stimulus
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words. Since the way of speaking is changing with the amount of background
noise (Lombard effect [16, 35]) the recordings were made in different simu-
lated noise conditions.22 To achieve this, first several binaural recordings of
real background noise were made within a car driving at different speeds. By
using a calibrated combined recording and playback device we were able to
achieve a high fidelity when presenting the recorded background noises to the
speakers via headphones (see Fig. 11.20). After a short period of getting ac-
customed to each of the noise scenarios the speakers read the list containing
600 stimulus words. For recording the stimulus words two microphones were
used – a reference microphone (omnidirectional, located at a distance of about
15 cm in front of the mouth reference point [21]) and a close talking micro-
phone (located about 5 cm left of the mouth reference point in order to get
rid of the effects of breathing). In Fig. 11.20 two photos depict the setup of
the microphones and the headphones.

Calibrated
headphones

Close-talking
microphone

Close-talking
microphone

Close-talking
microphone

Calibrated
headphones

Reference
microphone

Reference
microphone

Fig. 11.20. Setup for recording of the stimulus words for the rhyme tests.

The recordings were made in an acoustically dry environment, meaning
that the walls and the ceiling of the recording room were covered with sound
absorbing panels. The signals recorded by the close talking microphone were
used – after calibrating it according to the mouth reference point – for finally
playing the stimulus words within the car. Since the test was performed with
German listeners also the stimulus words were German. In contrast to the
word lists presented before we have used stimulus words that differ either
within their initial consonant, their center vowel, or their final consonant.

For obtaining the audio examples that were presented to the listeners
finally a so-called artificial mouth loudspeaker was placed on the front passen-
ger’s seat (see upper two photos in Fig. 11.21). This loudspeaker had (nearly)

22 Note that the recordings differ significantly – both in terms of power as well as
in the way how the speakers articulate vowels, etc. – between the different noise
conditions.
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the same radiation pattern as a human head. Rhyme tests were performed in
two scenarios:

• during stand-still at a parking area and
• at a speed of about 130 km/h (about 80 miles/h) on a motorway.

For each scenario all utterances that belong – in terms of their Lombard level
– to the appropriate noise conditions were selected and played via the arti-
ficial mouth loudspeaker. The playback was calibrated such that a reference
microphone located about 15 cm in front of the loudspeaker23 records the
same power as during the recording of the stimulus words.

Due to changing environmental conditions like weather and traffic, the
background noise would have changed too from listener to listener. Thus, the
rhyme test was carried out in a laboratory instead of the actual motorway. For
this reason, we have used again the binaural recording device worn by one of
the backseat passengers (see lower two photos in Fig. 11.21). With this device
all stimulus words that were played via the artificial mouth loudspeaker were
recorded binaurally and the resulting stereo signals were utilized as sound
examples for the rhyme test that was performed in the laboratory.

After performing the playback of the stimulus words for one speaker with
an activated intercom system the car was driven back to the entry point of
the motorway and the same part of the road was driven again. All recordings

Artifical mouth
loudspeaker

Binaural recording
and playback device

(NoiseBook from
HEAD acoustics)

Fig. 11.21. Setup for recording the sound examples for the rhyme test.

23 To be precise: in front of the mouth reference point of the loudspeaker.
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were repeated but then with a deactivated system.24 Even though this way
of obtaining the audio examples is more reliable and less time-consuming
compared to putting each listener into the driving car one major drawback
still exists: when comparing the binaural recordings for the individual stimulus
word with and without the intercom system the background noise level varies
slightly. It might happen that, e.g., during the recording with the intercom
system another car overtook but not when the recording without the system
was carried out. However, we assume that the amount of audio examples was
large enough in order to average out those effects.

After having finished the recordings the actual rhyme tests were performed
in the laboratory. For each of the four conditions (intercom system off at 0
km/h, intercom on at 0 km/h, intercom off at 130 km/h, and intercom on at
130 km/h) 10 to 15 listeners of different ages and genders participated in the
tests. For each listener 40 pairs of rhyming words were selected randomly from
the recorded data bases. Both words were presented visually first. After that,
one of the examples was selected (again randomly) and played via headphones.
Afterwards the listeners had to decide which of the two stimulus words was
acoustically presented. In Fig. 11.22 the amount of correct answers for each
rhyme test is depicted.

0 10 20 30 40 50 60 70 80 90 100 110
Percent

Percentage of correct answers
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100-130 kmh 

System deactivated,
100-130 kmh 

System deactivated,
0 kmh 

System activated,
0 kmh 
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95.0 % 

85.4 % 

92.1 % 

Fig. 11.22. Results of the rhyme tests.

Since the intercom system adjusts its gain automatically according to the
background noise it is not surprising that no or nearly no difference was mea-
sured at 0 km/h (95.0 % for the activated system and 95.2 % for the deacti-

24 Since more than one speaker was used for speaking the 600 rhyming words under
different simulated noise condition, the process of doing the binaural recordings
within the car took about 2 days.
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vated system). The conditions of those two tests were more or less optimum
– meaning that all stimulus words were clearly understandable. Most of the
errors were made such that the word that was presented on the left of the
computer monitor (that was read first) was also selected by the listeners even
if the second was actually presented acoustically. As a result of the first two
rhyme tests one can conclude the following:

• The tested intercom system did not improve the speech intelligibility when
the car is in stand-still.

• Even under optimum conditions the listeners do not achieve a correctness
of 100 %.

As a result of the last point one can conclude further that an intercom system
that is able to improve the word correctness under high noise conditions such
that the same correctness as during stand still is achieved works perfectly.

Even though the system under test did not achieve such a high rate of
correct results, the amount of correct results could still be increased impres-
sively: from 85.4% without the intercom system to 92.1% with an activated
system.

In Table 11.11 the detailed results in terms of absolute numbers are pre-
sented. Furthermore, separate analysis of the correctness concerning stimulus
words that differ within the initial or final consonant or within their center
vowel are presented. In all cases the rates do not change much at a speed of
0 km/h, but large improvements can be observed at a higher speed.

11.4.3 Statistical Analysis

As in the case of CMOS tests we will end this section with answering the
question about the statistical significance of the obtained DRT results. A
detailed analysis – comparable with the analysis performed in Sec. 11.3.2
– would lead in this case to a so-called exact Fisher test [29]. With a few
approximations, however, a simpler hypothesis test can be performed. If we
assume the results of each rhyme test to be Gaussian distributed and to be
statistically independent of the other tests, then a single sided so-called t-test
[31] can be performed. Due to the Gaussian assumption the probability density
function is fully described by the mean μ and the standard deviation σ. Within
a t-test both quantities are assumed to be unknown.

When comparing the DRT results with and without the intercom system
the main question is whether the mean μon obtained with the activated system
is larger than the mean μoff without the system. The corresponding standard
deviations σon and σoff need not necessarily to be equal.

11.4.3.1 Hypotheses

Under these assumptions the following hypotheses are set up:
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Table 11.11. Results of the rhyme tests.

Driving speed: 0 km/h 130 km/h
Intercom system: on off on off

Correct
456 457 479 410

All utterances
(95.0 %) (95.2 %) (92.1 %) (85.4 %)

Wrong
24 23 41 70

(5.0 %) (4.8 %) (7.9 %) (14.6 %)

Correct
96 97 104 79

Difference within (92.3 %) (91.5 %) (85.2 %) (73.8 %)
the first consonant

Wrong
8 9 18 28

(7.7 %) (8.5 %) (14.8 %) (26.2 %)

Correct
190 188 198 178

Difference within (98.4 %) (97.4 %) (99.0 %) (92.7 %)
the center vowel

Wrong
3 5 2 14

(1.6 %) (2.6 %) (1.0 %) (7.3 %)

Correct
170 172 177 153

Difference within (92.9 %) (95.0 %) (89.4 %) (84.5 %)
the final consonant

Wrong
13 9 21 28

(7.1 %) (5.0 %) (10.6 %) (15.5 %)

Hypothesis H0 : We assume that μoff > μon, meaning that better DRT
results are obtained without the intercom system.

Hypothesis H1 : We assume that μoff ≤ μon, meaning that better or
equal DRT results are obtained when the intercom
system is activated.

11.4.3.2 Results

When testing the Hypothesis H0 with a t-test we obtain the results that are
depicted in Tab. 11.12. Since the intercom system contained an automatic gain
unit that adjusted the output gain according to the background noise level it
is not surprising that no or nearly no difference can be detected during stand
still. Also the probability for rejecting H0 is only 0.01 (if all utterances are
taken into account).

At high speed (130 km/h), however, the improvement was clearly signifi-
cant. Taking all tests into account leads to a probability smaller than 10−10

that H0 is true. Since a lower number of tests has been performed for the
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individual differences at the beginning, in the middle, or at the end of the
stimulus words the probabilities of H0 are larger too. Nevertheless, a maxi-
mum probability of 0.02 is obtained for the differences in the first consonant.

During stand still the communication within a car is possible without any
support by in-car communication systems since the speech intelligibility is
sufficiently high. This result is also obtained with the statistical analysis – the
probability p(H0) is bounded by p(H0) ≤ 0.99.

Table 11.12. Results of the rhyme tests.

Driving speed: 0 km/h 130 km/h
Intercom system: on off on off

Correct 456 457 479 410

All utterances
Wrong 24 23 41 70

p(H0 is true) ≤ 0.99 ≤ 10−10

Correct 96 97 104 79
Difference within

Wrong 8 9 18 28
the first consonant

p(H0 is true) ≤ 0.41 ≤ 0.02

Difference within
Correct 190 188 198 178

the center vowel
Wrong 3 5 2 14

p(H0 is true) ≤ 0.23 ≤ 10−3

Correct 170 172 177 153
Difference within

Wrong 13 9 21 28
the final consonant

p(H0 is true) ≤ 0.80 ≤ 10−3

11.5 Outlook

In this chapter we have presented some details about objective tests for noise
reduction systems and subjective tests for new applications. It was not our aim
to cover all current algorithms and tests in this topic. We have focussed on how
these tests can be applied for new applications where no standard evaluation
methods have been successfully introduced, yet. We hope that the readers are
encouraged now to modify current objective and subjective tests in order to
evaluate algorithms and systems for new speech and audio applications.
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verfahren zur Verbesserung gestörter Sprache, Aachen, Germany:
Shaker, 2001 (in German).

[9] P. Dreiseitel: Hybrid quality measures for single-channel speech enhance-
ment algorithms, European Transactions on Telecommunication, 13(2),
159–166, 2002.

[10] J. Durbin: The fitting of time series models, Rev. Int. Stat. Inst., 28,
233–244, 1960.

[11] ETSI recommendation EG 201 377-1: Speech processing transmission
and quality aspects, ETSI, France, 2002.

[12] H. W. Gierlich: The auditory perceived quality of hands-free telephones:
auditory judgements, instrumental measurements and their relationship,
Speech Communication, 20(3-4), 241–254, 1996.

[13] A. H. Gray, J. D. Markel: Distance measures for speech processing, IEEE
Trans. Acoust. Speech Signal Process., ASSP-24(5), 380–391, 1976.
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A human listener has the remarkable ability to segregate an acoustic mixture
and attend to a target sound. This perceptual process is called auditory scene
analysis (ASA). Moreover, the listener can accomplish much of auditory scene
analysis with only one ear. Research in ASA has inspired many studies in
computational auditory scene analysis (CASA) for sound segregation. In this
chapter we introduce a CASA approach to monaural speech segregation. After
a brief overview of CASA, we present in detail a CASA system that segregates
both voiced and unvoiced speech. Our description covers the major stages of
CASA, including feature extraction, auditory segmentation, and grouping.

12.1 Introduction

We live in an environment rich in sound from many sources. The presence of
multiple sound sources complicates the processing of the target sound we are
interested in, and often causes serious problems for many applications, such as
automatic speech recognition and voice communication. There has been ex-
tensive effort to develop computational systems that automatically separate
target sound or attenuate background interference. When target and interfer-
ence come from different directions and multiple microphones are available,
one may remove interference using spatial filtering that extracts the signal
from the target direction or cancels the signals from the interfering direc-
tions [29], or independent component analysis [26]. These approaches do not
apply to the situations when target and interference originate from the same
direction or only mono-recordings are available. In the monaural (one mi-
crophone) situation, one must consider the intrinsic properties of target or
interference to distinguish and separate them.

As a special case of monaural separation, monaural speech segregation is
of particular importance. Here a major challenge is the variety of interference;
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Fig. 12.1. Schematic diagram of a typical CASA system.

the interference can change in time and space in an unpredictable manner.
For decades, various methods have been proposed for monaural speech en-
hancement, such as spectral subtraction [5], subspace analysis [17], hidden
Markov modeling [46], and sinusoidal modeling [28]. These methods usually
assume certain properties (or models) of interference and then enhance speech
or attenuate interference based on these assumptions. Their capacity for deal-
ing with the variability of interference is much limited in comparison with
human speech segregation. This contrast has motivated a different approach
to monaural speech segregation – mimicking the auditory process of source
separation.

The auditory segregation process is termed by Bregman as auditory scene
analysis (ASA) [6], which is considered to take place in two main stages: Seg-
mentation and grouping. In segmentation, the acoustic input is decomposed
into segments or sensory elements, each of which should originate from a sin-
gle source. In grouping, the segments that likely arise from the same source
are grouped together. Segmentation and grouping are guided by perceptual
principles that determine how the auditory scene is organized according to
ASA cues. These cues characterize intrinsic sound properties, including har-
monicity, onset and offset, location, and prior knowledge of specific sounds.

Research in ASA has inspired considerable work to build CASA (compu-
tational auditory scene analysis) systems for sound segregation (for reviews
see [8, 44]). A main advantage is that CASA does not make strong assump-
tions about interference. A typical CASA system is shown in Fig. 12.1. It
contains four stages: Peripheral analysis, feature extraction, segmentation,
and grouping. The peripheral processing decomposes the auditory scene into
a time-frequency (T-F) representation via bandpass filtering and time win-
dowing. The second stage extracts auditory features corresponding to ASA
cues, which will be used in subsequent segmentation and grouping. In seg-
mentation and grouping, the system generates segments for both target and
interference and groups the segments originating from the target into a target
stream. A stream corresponds to a sound source. The waveform of segregated
target can then be resynthesized from the target stream [7,52,53].

As an illustration, Figs. 12.2(a) and 12.2(b) show a T-F decomposition
and the waveform of a male utterance, “Her right hand aches whenever the
barometric pressure changes,” from the TIMIT database [18]. Figs. 12.2(c)
and 12.2(d) show a T-F decomposition and the waveform of this utterance
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Fig. 12.2. Signal representation. (a) T-F decomposion of a male utterance, “Her
right hand aches whenever the barometric pressure changes.” (b) Waveform of the
utterance. (c) T-F decomposition of the utterance mixed with a crowd noise in
playground. (d) Waveform of the mixture. (e) Target stream composed of all the
T-F units (black regions) dominated by the target (ideal binary mask). (f) The
waveform resynthesized from the target stream.

mixed with a crowd noise in playground, at the overall SNR of 0 dB. Here
the input is decomposed using a filterbank with 128 gammatone filters [36]
and 20-ms rectangular time windows with 10-ms window shift (see Sec. 12.3
for implementation details). The small T-F area within each filter channel
and time window is referred to as a T-F unit. Figs. 12.2(a) and 12.2(c) show
the energy within each T-F unit, where a brighter pixel indicates stronger
energy. Fig. 12.2(e) shows the target stream we aim to segregate, which con-
tains all the T-F units dominated by the target. To obtain this stream, a
typical CASA system first merges neighboring T-F units dominated by target
speech into segments, shown as the contiguous black regions in the figure, in
the stage of segmentation. In this stage, the system may also generate seg-
ments for interference. Then in the stage of grouping, the system determines
for each segment whether it belongs to the target and groups them accord-
ingly. Fig. 12.2(f) shows the waveform resynthesized from the target stream
in Fig. 12.2(e).

Brown and Wang have recently written a review chapter on CASA for
speech segregation, also included in a Springer volume [8]. Instead of another
review, this chapter mainly describes our systematic effort on monaural speech
segregation. The chapter is organized as follows. In Sec. 12.2, we give a brief
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overview of other CASA studies on monaural speech segregation. We then
describe in depth the major stages of our CASA system in the subsequent
four sections. Sec. 12.7 concludes the chapter.

12.2 Computational Auditory Scene Analysis

Natural speech contains both voiced and unvoiced portions. Voiced speech is
periodic or quasi-periodic. Periodicity and temporal continuity are two ma-
jor ASA cues for voiced speech. A well-established representation for peri-
odicity and pitch perception is a correlogram - a running autocorrelation of
each filter response across an auditory filterbank [31, 48]. The correlogram
has been adopted by many CASA systems for monaural segregation of voiced
speech [7, 13, 16, 23, 52, 53]. In what is regarded as the first CASA model,
Weintraub used a coincidence function, a version of autocorrelation, to cap-
ture periodicity as well as amplitude modulation (AM) [53]. He then used the
coincidence function to track pitch contours of multiple utterances. Sounds
from different speakers are separated by using iterative spectral estimation
according to pitch and temporal continuity. Cooke proposed a model that
first generates local segments based on filter response frequencies and temporal
continuity [13]. These segments are merged into groups based on common har-
monicity and common AM. A pitch contour is then obtained for each group,
and groups with similar pitch contours are put into the same stream. Brown
and Cooke proposed to form segments based on correlation of filter responses
across frequency and frequency transition across time [7]. These segments are
grouped by common periodicity and common onset and offset. Wang and
Brown used a two-layer oscillator network for speech segregation [52]. In the
first layer, segments are formed based on cross-channel correlation and tem-
poral continuity. In the second layer, segments are grouped into two streams,
one for the target and the other its background on the basis of dominant pitch
in each time frame. The above systems are mainly data-driven approaches.
Ellis developed a prediction-driven system which generates predictions using
a world model and compares the predictions against the input [16]. The world
model includes three types of sound elements: Noise cloud, transient click,
and harmonic sound.

12.2.1 Computational Goal of CASA

A critical issue in developing a CASA system is to determine its computational
goal [32]. With the initial analysis into T-F units described in Sec. 12.1, we
have suggested that the computational goal of CASA should be to retain the
T-F units where target speech is more intense than interference and remove
others [21, 23]. In other words, the goal is to identify a binary T-F mask, re-
ferred to as the ideal binary mask, where 1 indicates that target is stronger
than interference in the corresponding T-F unit and 0 otherwise. Target speech
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can then be resynthesized with the ideal mask by retaining the acoustic energy
from T-F regions corresponding to 1’s and rejecting other energy. This com-
putational goal is supported by the auditory masking phenomenon: Within a
critical band, a weaker signal tends to be masked by a stronger one [35]. In
addition, there is considerable evidence supporting the ideal binary mask as
the CASA objective from both human speech intelligibility [9,12,42] and auto-
matic speech recognition [14,42] studies (for an extensive discussion see [51]).
What Fig. 12.2(e) shows, in fact, is an ideal binary mask for the mixture in
Fig. 12.2(c). As shown in Fig. 12.2(f), the speech resynthesized from the ideal
binary mask is close to the original clean utterance in Fig. 12.2(b).

12.2.2 Motivation and Overview of the Approach

A common problem in earlier CASA systems is that they do not separate
voiced speech well in the high-frequency range from broadband interference.
This problem is closely related to the peripheral analysis of the input scene.
Most CASA systems perform initial frequency analysis with an auditory filter-
bank, where the bandwidth of a filter increases quasi-logarithmically with its
center frequency. These filters are usually derived from psychophysical data
and mimic cochlear filtering. An important observation is that the structure
of cochlear filtering limits the ability of human listeners to resolve harmon-
ics [38,40]. In the low-frequency range, harmonics are resolved since the corre-
sponding auditory filters have narrow passbands including only one harmonic.
In the high-frequency range, harmonics are generally unresolved since the cor-
responding auditory filters have wide passbands including multiple harmonics.
In addition, psychophysical evidence suggests that the human auditory sys-
tem processes resolved and unresolved harmonics differently [3, 11]. Hence,
one should carefully consider the distinctions between resolved and unresolved
harmonics. The earlier CASA systems employ the same strategy to segregate
all the harmonics, which works reasonably well for resolved harmonics but
poorly for unresolved ones.

A basic fact of acoustic interaction is that the filter responses to multiple
harmonics are amplitude-modulated and the response envelopes fluctuate at
the fundamental frequency (f0) of target speech [19]. Fig. 12.3 shows the re-
sponse and its envelope of a gammatone filter centered at 2.5 kHz within a time
frame (from 0.7 s to 0.72 s). The input is the clean utterance in Fig. 12.2(b).
The response in Fig. 12.3 is strongly amplitude-modulated, and its envelope
fluctuates at the f0 rate in this frame.

Motivated by the above considerations, we have proposed to employ dif-
ferent methods to segregate resolved and unresolved harmonics of target
speech [23]. For resolved harmonics, we generate segments based on temporal
continuity and cross-channel correlation, and these segments are grouped ac-
cording to common periodicity, similar to [52]. For unresolved harmonics, we
generate segments based on common AM in addition to temporal continuity.



490 G. Hu, D.L. Wang

0.70 0.71 0.72

500

0

500

A
m

pl
itu

de

Time in seconds

Fig. 12.3. AM effects for filter responses to multiple harmonics. The input is the
utterance in Fig. 12.2(b). The filter is centered at 2.5 kHz.

These segments are further grouped based on AM rates, which are obtained
from the temporal fluctuations of the corresponding response envelopes.

So far the discussion is focused on voiced speech. Compared with voiced
speech, unvoiced speech is generally much weaker and more susceptible to
interfering sounds. In addition, unvoiced speech lacks harmonic structure and
is noise-like itself. As a result, segregating unvoiced speech is significantly
more challenging and little previous work has addressed this problem.

We have proposed to segment unvoiced speech based on onset and offset
analysis [24]. Onsets and offsets are important ASA cues [6] because different
sound sources in an environment seldom start and end simultaneously. In
addition, there is strong evidence for onset detection by auditory neurons
[37]. In the time domain, onsets and offsets likely form boundaries between
sounds from different sources. Common onsets and offsets also provide natural
cues to integrate sounds from the same source across frequency. In addition,
onset/offset based segmentation is applicable to both voiced and unvoiced
speech.

Given segments, the next task is to group segments of unvoiced speech.
When interference is non-speech, we may formulate this as a classification
task, i.e., to classify segments as unvoiced speech or interference. Since each
segment should belong to one source, segments dominated by unvoiced speech
are likely to have similar acoustic-phonetic characteristics as those of clean
speech, whereas segments dominated by interference are likely to be different.
Therefore, we can group segments for unvoiced speech by analyzing their
acoustic-phonetic features [25].

In the following sections, we describe our systematic investigation into
segregation of both voiced and unvoiced speech. Our model includes all the
major stages of a typical CASA system shown in Fig. 12.1.

12.3 Peripheral Analysis and Feature Extraction

We describe below early auditory processing that first decomposes the input
in the T-F domain, and then extracts auditory features corresponding to ASA
cues.
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12.3.1 Auditory Periphery

Cochlear filtering is commonly modeled by a gammatone filterbank that de-
composes the input in the frequency domain [36]. The impulse response of a
gammatone filter centered at frequency f is:

g(f, t) =
{
bata−1e−2πbt cos(2πft), t ≥ 0,
0, else, (12.1)

where a = 4 is the order of the filter. b is the equivalent rectangular bandwidth,
which increases as the center frequency f increases. For a filter channel c, let
fc be the center frequency. Let x(t) be the input signal, the response from
channel c, x(c, t), is then

x(c, t) = x(t) ∗ g(fc, t), (12.2)

where “∗” denotes convolution. The response is shifted backwards by (a −
1)/(2πb) to compensate for the filter delay [20]. We find that this delay com-
pensation gives a small but consistent performance improvement. In addition,
the gain of each filter is adjusted according to equal loudness contours [27] in
order to simulate the pressure gains of the outer and middle ears.

The response of a filter channel can be further processed by the Meddis
model of auditory nerve transduction [33]. This model simulates the nonlinear
processes of the auditory nerve, such as rectification, saturation, and phase
locking. Its output represents the firing rate of an auditory nerve fiber, denoted
by h(c, t).

In each filter channel, the output is divided into 20-ms time frames with
10-ms overlapping between consecutive frames. This frame size is commonly
used for speech analysis. Examples of this T-F decomposition are shown in
Figs. 12.2(a) and 12.2(c). The resulting time-frequency representation is called
a cochleagram.

12.3.2 Correlogram and Cross-Channel Correlation

As discussed in Sec. 12.2, a correlogram is a commonly used periodicity repre-
sentation, which consists of autocorrelations of filter responses across all the
filter channels. Let ucm denote a T-F unit for frequency channel c and time
frame m, the corresponding normalized autocorrelation of the filter response
is given by

AH(c,m, τ) =

∑
n
h
(
c,mTf − nTs

)
h
(
c,mTf − nTs − τTs

)
∑
n
h2
(
c,mTf − nTs

) . (12.3)

Here, τ is the delay and n denotes digitized time. Tf = 10 ms, the time shift
from one frame to the next and Ts is denoting the sampling time. The above
summation is over the period of a time frame.
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As shown in [7, 52], cross-channel correlation measures the similarity be-
tween the responses of two adjacent filter channels and indicates whether the
filters respond to the same sound component. For T-F unit ucm, its cross-
channel correlation with uc+1,m is given by

CH(c,m) =
L∑

τ=0

ÃH(c,m, τ) ÃH(c+ 1,m, τ) , (12.4)

where ÃH(c,m, τ) denotes AH(c,m, τ) normalized to 0 mean and unity vari-
ance and LTs = 12.5 ms - the maximum delay for AH.

The AM information is carried by the response envelope. A general way to
obtain response envelope is to perform half-wave rectification followed by low-
pass filtering. Since we are interested in the envelope fluctuations correspond-
ing to target pitch, here we perform a bandpass filtering instead, where the
passband corresponds to the plausible f0 range of target speech. Let hE(c, t)
denote the resulting envelope.

Similar to Eqs. 12.3 and 12.4, we can compute a normalized envelope
autocorrelation to represent AM rates:

AE(c,m, τ) =

∑
n
hE

(
c,mTf − nTs

)
hE

(
c,mTf − nTs − τTs

)
∑
n
h2

E

(
c,mTf − nTs

) (12.5)

and cross-channel correlation of response envelopes,

CE(c,m) =
L∑

τ=0

ÃE(c,m, τ) ÃE(c+ 1,m, τ) . (12.6)

Figs. 12.4(a) and 12.4(b) illustrate the correlogram and the envelope
correlogram as well as the cross-channel correlation at time frame 70 (i.e.,
0.7 s from the beginning of the stimulus) for the utterance in Fig. 12.2(b),
and Figs. 12.4(c) and 12.4(d) the corresponding responses to the mixture in
Fig. 12.2(d). As shown in the figure, the autocorrelation of filter response
generally reflects the periodicity of a single harmonic for a channel in the
low-frequency range where harmonics are resolved. The autocorrelation is
amplitude-modulated in high-frequency channels where harmonics are unre-
solved. As a result, these autocorrelations are not as highly correlated between
adjacent channels. On the other hand, the corresponding autocorrelations of
response envelopes are more correlated, as shown in the cross-channel corre-
lations of response envelopes, since they have similar fluctuation patterns.

12.3.3 Onset and Offset

Onsets and offsets correspond to sudden amplitude increases and decreases.
A standard way to identify such intensity changes is to take the first-order
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Fig. 12.4. Auditory features. (a) Correlogram at frame 70 (i.e. 0.7 second after the
onset) for the utterance in Fig. 12.2(b). For clarity, every third channel is displayed.
The corresponding cross-channel correlation is given in the right panel, and the sum-
mary correlogram in the bottom panel. (b) Envelope correlogram for the utterance.
The corresponding cross-channel envelope correlation is shown in the right panel.
(c) Correlogram and cross-channel correlation for the mixture in Fig. 12.2(d). (d)
Envelope correlogram and cross-channel envelope correlation for the mixture.

derivative of intensity with respect to time and then find the peaks and valleys
of the derivative. Because of intrinsic intensity fluctuations, many peaks and
valleys of the derivative do not correspond to actual onsets and offsets. To
reduce such fluctuations, we smooth the intensity over time, as is commonly
done in edge detection for image analysis. The intensity is basically the square
of the envelope of filter response. Smoothing can be performed through either
a diffusion process [43] or lowpass filtering. Here we consider a special case of
Gaussian smoothing. First we calculate the response envelope with half-wave
rectification and lowpass filtering. Since here we are interested in low-rate
fluctuations of envelope, the cutoff frequency of the lowpass filter should be
set smaller than 30 Hz. The obtained low-rate envelope is denoted by xE(c, t).
The smoothed intensity is obtained by the convolution of the intensity (in
decibels) and a Gaussian kernel with mean 0 and variance σ2. The derivative
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Fig. 12.5. Onset and offset detection. The input is the response of a gammatone
filter to the mixture in Fig. 12.2(d). The upper panel shows the response intensity,
and the lower panel shows the results of onset and offset detection using Gaussian
smoothing (σ = 16). The threshold for onset detection is 0.05 and for offset detection
is -0.05, indicated by the dash lines. Detected onsets are marked by downward arrows
and offsets by upward arrows.

of the smoothed response is:

d

dt

{
10
[

log10 x
2
E(c, t)

]
∗
[

1√
2π σ

exp
(
− t2

2σ2

)]}

= −20 log10

∣∣xE(c, t)
∣∣ ∗ [ t√

2π σ3
exp

(
− t2

2σ2

)]
.

Onsets correspond to the peaks of the derivative above a certain threshold, and
offsets the valleys below a certain threshold. The purpose of thresholding is to
remove peaks and valleys corresponding to insignificant intensity fluctuations.
The above procedure is very similar to the standard Canny edge detector
in image processing [10]. An example of the above procedure is shown in
Fig. 12.5.

12.3.4 Pitch Determination

A periodic sound consists of a harmonic series, each harmonic having a fre-
quency that equals or is a multiple of f0. A frequently-used method for pitch
determination is to simply pool autocorrelations across all the channels and
then identify a global peak in the summary correlogram [34]. When a har-
monic sound is presented, the autocorrelations of the activated filters in a
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correlogram all exhibit a peak at the delay corresponding to the pitch period.
Let AH(m, τ) be the summary correlogram at frame m, that is,

AH(m, τ) =
∑

c

AH(c,m, τ) . (12.7)

The estimated pitch period at frame m, τS(m), is the lag corresponding to
the maximum of AH(m, τ) in the plausible pitch range of target speech. The
bottom panels of Figs. 12.4(a) and 12.4(c) shows examples of summary correl-
ogram. The peak at 7.21 ms in Fig. 12.4(c), representing the estimated pitch
period, turns out to equal that of target speech (indicated by the peak in
Fig. 12.4(a)).

There are several problems with the above method. First, it gives a pitch
value at each frame no matter whether the signal at a particular frame is pe-
riodic or not. Second, detected pitches in neighboring frames may correspond
to different sound sources. Third, it may not give a reliable estimate of target
pitch even if it exists, when the signal-to-noise ratio (SNR) is low. This is
because the autocorrelations in many channels exhibit peaks not correspond-
ing to the periodicity of the target. To address these problems, we apply the
Wang and Brown algorithm [52] in an initial grouping stage. The grouping
in their algorithm is based on the dominant pitch of each time frame, and
can eliminate many T-F units that unlikely belong to the target. With this
initial grouping, we track a target pitch contour by pooling autocorrelations
from the remaining T-F units. The initial grouping is not accurate in the high-
frequency range; however, this stage is employed only for the purpose of pitch
tracking. Note that pitch detection requires only a portion of harmonics; the
fact that the Wang and Brown algorithm works reasonably well in the low-
frequency range accords well with the perceptual evidence that human pitch
detection primarily relies on lower harmonics [39]. To deal with the third
problem, we take advantage of the pitch continuity to enhance the reliability
of target pitch tracking [23]. Specifically, we first determine the reliability of
an estimated pitch based on its coherence with the periodicity patterns of
the retained T-F units in initial grouping, and then use pitch continuity to
interpolate for unreliable pitch points on the basis of reliable ones.

The algorithm given in [23] assumes that the target has a continuous pitch
contour throughout the whole utterance. We note that it can be applied itera-
tively to handle the general situation when the target utterance contains mul-
tiple pitch contours separated by unvoiced speech or silence. This is because
the initial grouping by the Wang-Brown algorithm is based on the longest seg-
ment. Specifically, after extracting the first pitch contour based on the longest
segment, the algorithm can then be applied to extract the next longest pitch
contour from remaining time frames where no target pitch has been detected.
This process can repeat until no more significant pitch contour is detected.
However, when interference also contains periodic signal, the above proce-
dure may generate pitch contours for interference as well. To determine the
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Fig. 12.6. Results of pitch tracking for the mixture in Fig. 12.2(d). Solid lines
indicate estimated target pitch contours. True pitch points are marked by circles.
For clarity, every other frame is displayed.

source for each pitch contour is the task of sequential grouping, which is not
addressed by this algorithm.

Fig. 12.6 shows several estimated pitch contours from the mixture in
Fig. 12.2(d) obtained iteratively as described above. For most time frames,
the detected contours well match the reference pitch contours generated from
the clean utterance using Praat - a standard pitch determination algorithm
for clean speech [4].

The above algorithm only tracks one pitch at a frame. When interference
also contains a harmonic component, e.g., another utterance, it is probably
more helpful to track multiple pitch contours from different sources simulta-
neously. Wu et al. [54] proposed a robust multipitch tracking algorithm, which
works as follows. After a T-F analysis and computing the correlogram, their
algorithm selects channels that likely contain signals dominated by harmonic
sources. The other channels mostly contain aperiodic sounds and therefore are
ignored in subsequent processing. Within each channel, the algorithm treats
a peak in the auto-correlation as a pitch hypothesis. Then it integrates pe-
riodicity information across the selected channels in order to formulate the
conditional probabilities of multiple pitch hypotheses given the periodicity
information in these channels. Finally, a continuous hidden Markov model
(HMM) is used to model pitch dynamics across successive time frames and
the Viterbi algorithm is then used to find optimal pitch contours. The Wu
et al. algorithm is illustrated in Fig. 12.7 for pitch tracking of two simultane-
ous utterances. The algorithm successfully tracks the pitch contours of both
utterances at most time frames.
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Fig. 12.7. Results of multipitch tracking by the Wu et al. algorithm. The input is
the mixture of the utterance in Fig. 12.2(b) and a female utterance: “That noise
problem grows more annoying each day.” Solid lines indicate estimated target pitch
contours. True pitch points of the male utterance are marked by circles, and those
of the female utterance are marked by diamonds. For clarity, every other frame is
displayed.

12.4 Auditory Segmentation

In addition to the conceptual importance of segmentation in ASA, a segment
as a region of T-F units contains more global information of the source that
is missing from individual T-F units, such as spectral and temporal envelope.
This information could be key for distinguishing sounds from different sources.
One may skip the stage of segmentation by grouping individual T-F units
directly. However, such grouping based on local information will not be very
robust. In our view, auditory segmentation provides a foundation for grouping
and is essential for successful CASA.

12.4.1 Segmentation for Voiced Speech

Speech signal lasts for a period of time, within which it has good temporal
continuity. Therefore, T-F units neighboring in time tend to originate from
the same source. In addition, because the passbands of adjacent channels
have significant overlap, a harmonic usually activates a number of adjacent
channels, which leads to high cross-channel correlation. Therefore, we perform
segmentation by merging T-F units based on temporal continuity and cross-
channel correlation [52]. More specifically, only units with sufficiently high
cross-channel correlation of correlogram responses are marked, and neigh-
boring marked units are iteratively merged into segments. To account for AM
effects of unresolved harmonics, we separately mark and merge high-frequency
units on the basis of cross-channel correlation of response envelopes.
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Fig. 12.8. The bounding contours of estimated segments based on cross-channel
correlation and temporal continuity. The background is represented by gray.

Fig. 12.8 shows the segments generated in this process for the mixture in
Fig. 12.2(d). Compared with Fig. 12.2(e), computed segments cover most T-F
regions dominated by voiced speech. In addition, T-F regions dominated by
target and interference are well separated into different segments. If desired,
very small segments can be easily removed [23]. Note that the correlogram is
a periodicity representation, and correlogram-based segmentation therefore is
not expected to work well for aperiodic signal, such as unvoiced speech.

12.4.2 Segmentation Based on Onset/Offset Analysis

Unvoiced speech lacks the harmonic structure, and as a result is more diffi-
cult to segment. We have proposed a general method for segmentation based
on analysis of event onset and offset. This method has three stages: Smooth-
ing, onset/offset detection, and multiscale integration [24], and it works for
both voiced and unvoiced speech since onsets and offsets are generic sound
properties.

As discussed in Sec. 12.3.3, onsets and offsets correspond to sudden inten-
sity increases and decreases, or the peaks and valleys of the time derivative
of the intensity. In smoothing, the intensity is first smoothed over time in
order to reduce insignificant fluctuations. We then perform smoothing over
frequency to enhance synchronized onsets and offsets across frequency. The
degree of smoothing is referred to as the scale [43]. A larger scale leads to
smoother intensity.

In the stage of onset/offset detection and matching, our system detects
onsets and offsets in each filter channel and merges them into onset and offset
fronts if they are sufficiently close. A front corresponds to a boundary along
the frequency (vertical) axis in a 2-D cochleagram representation. Individual
onset and offset fronts are matched, and a matching pair encloses a segment.

Smoothing with a large scale may blur onsets and offsets of a short acoustic
event. Consequently, segmentation may miss short events or combine different
events into one segment. On the other hand, smoothing with a small (fine)
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Fig. 12.9. Bounding contours of estimated segments from multiscale analysis of
onset and offset. (a) One scale analysis. (b) Two-scale analysis. (c) Three-scale
analysis. (d) Four-scale analysis. The input is the mixture shown in Fig. 12.2(d).
The background is represented by gray.

scale may not adequately remove insignificant intensity fluctuations. Conse-
quently, segmentation may separate a continuous event into several segments.
In general, it is difficult to obtain satisfactory segmentation with a single
scale. The multiscale analysis stage is designed to detect and localize different
events at appropriate scales. In this stage, we start at a large scale and then
gradually move to the finest scale. At each scale, the system generates new
segments from within the current background and locates more accurate onset
and offset positions for existing segments.

Figs. 12.9(a), 12.9(b), 12.9(c), and 12.9(d) show the bounding contours of
obtained segments by integrating 1, 2, 3, and, 4 scales, respectively (see [24] for
implementation details). The input is the mixture in Fig. 12.2(d). Comparing
it with Fig. 12.2(e), we can see that at the largest scale, the system captures
most of the speech events, but misses some small segments. As the system
integrates more fine scales, more segments for speech as well as for interference
appear.

12.5 Voiced Speech Grouping

To group voiced speech, we use the segments obtained by the simple algo-
rithm described in Sec. 12.4.1. Given pitch contours from the target pitch
tracking described in Sec. 12.3.4, we label each T-F unit as target dominant
or interference dominant according to target pitch. To label a T-F unit, we
first compare the periodicity of its response with the estimated pitch. Specif-
ically, a T-F unit ucm is labeled as target if the correlogram response at the
estimated pitch period τS(m) is close to the maximum of the autocorrelation
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Fig. 12.10. Results of T-F unit labeling for the mixture in Fig. 12.2(d). Black re-
gions: units labeled as target by the periodicity criterion; gray regions: units labeled
as target by the AM criterion.

within the plausible pitch range, Γ :

AH

(
c,m, τS(m)

)
max
τ∈Γ

AH

(
c, m, τ

) > θT . (12.8)

The above criterion, referred to as the periodicity criterion, works well for
resolved harmonics.

For units responding to multiple harmonics, their responses are amplitude-
modulated. We have found that the periodicity criterion does not work well
for such units. Observe that the envelope of such a response fluctuates at the
f0 rate of the source. Therefore, we label these T-F units by comparing their
AM rates with the estimated pitch. A straightforward way is to check the
autocorrelation of response envelopes:

AE

(
c,m, τS(m)

)
max
τ∈Γ

AE

(
c,m, τ

) > θA . (12.9)

This criterion is referred to as the AM criterion.
In practice, we use the periodicity criterion to label T-F units that belong

to segments formed on the basis of high cross-channel correlation of filter
responses. Such units correspond to resolved harmonics. The remaining units
are labeled by the AM criterion.

Fig. 12.10 shows the T-F units labeled as target for the mixture in
Fig. 12.2(d). Compared with Fig. 12.2(e), one can see that most units dom-
inated by target voiced speech are correctly labeled. However, some units
containing stronger intrusion are also labeled as target speech, especially in
the high-frequency range.

With unit labels, we group a segment into the target stream if the acoustic
energy corresponding to its T-F units labeled as target exceeds half of the
total energy of the segment. Furthermore, significant T-F regions labeled as
inference are removed from the target stream. Finally, to group more target
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Fig. 12.11. Results of segregation for the mixture in Fig. 12.2(d). (a) Segregated
voiced target. (b) The corresponding resynthesized voiced target. (c) Segregated
final target. The arrows indicate the segregated fricatives and affricates. (d) Corre-
sponding resynthesized final target.

energy we expand each target segment by iteratively grouping its neighboring
units that are labeled as target and do not belong to any segment. When this
expansion ends, the system yields a target stream and its background that
consists of the remaining T-F units.

Figs. 12.11(a) and 12.11(b) shows the final target stream and the corre-
sponding resynthesized speech for the mixture in Fig. 12.2(d). Compared with
Fig. 12.2(e), this stream contains a majority of the T-F units where voiced
target speech dominates. In addition, only a small number of units where in-
trusion dominates are incorrectly included. The segregated speech waveform
in Fig. 12.11(b) within voiced speech sections is much more similar to that of
the clean speech in Fig. 12.2(b) than the mixture waveform in Fig. 12.2(d).

The performance of the system on voiced speech segregation has been eval-
uated using a corpus of 100 mixtures composed of 10 voiced utterances mixed
with 10 intrusions collected by Cooke [13]. This corpus has been used to test
previous CASA systems [7, 13, 15, 16, 52]. The intrusions have a considerable
variety; specifically they are described in Tab. 12.1.

As discussed in Sec. 12.2, our computational goal is to estimate the ideal
binary mask. Therefore, our evaluation compares the segregated speech, ŝ(n),
against the speech waveform resynthesized from the ideal binary mask, s(n).
Let e1(n) denote the signal present in s(n) but missing from ŝ(n), and e2(n)
the signal present in ŝ(n) but missing from s(n). Then, we measure the per-
centage of energy loss, PEL, and the percentage of noise residue, PNR:
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Table 12.1. Types of intrusions.

Intrusion Description

N0 1kHz pure tone
N1 white noise
N2 noise bursts
N3 “cocktail party” noise
N4 rock music
N5 siren
N6 trill telephone
N7 female speech
N8 male speech
N9 female speech

PEL =
∑

n

e21(n)

/∑
n

s2(n) , (12.10)

PNR =
∑

n

e22(n)

/∑
n

ŝ2(n) . (12.11)

PEL indicates the percentage of target speech excluded from segregated speech,
and PNR the percentage of intrusion included. They provide complementary er-
ror measures of a segregation system and a successful system needs to achieve
low errors in both measures.

The results from our model are shown in Tab. 12.2. Each value in the table
represents the average result of one intrusion with 10 voiced utterances, and
a further average across all intrusions is also shown. On average, our system
retains 96.28% of target speech energy, and the percentage of noise residue
is kept at 2.81%. The percentage of noise residue for the original mixtures is
36.05%, also shown in the table; energy loss is obviously zero for the original
mixtures. As indicated by the table, our model achieves very good performance
across the noise types. In particular, the errors measured by PEL and PNR are
balanced in our system.

Since our model applies different mechanisms to segregate resolved and
unresolved harmonics, it is instructive to present the performance in the high-
frequency range separately. For this purpose, we calculate the percentages of
energy loss and noise residue for only the filter channels with center frequencies
greater than 1 kHz, denoted by PH

EL and PH
NR, respectively. Note that for the

evaluation corpus, target harmonics in the frequency range above 1 kHz are
generally unresolved. The corresponding results are shown in Tab. 12.2. Most
of the voiced energy in the high-frequency range is recovered and not much
interference is included. The performance in high-frequency range is not as
good as that in the low-frequency range since intrusions are relatively much
stronger in the high-frequency range, which is clear from the average noise
residue of the original mixtures and that in the high-frequency range.
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Table 12.2. PEL and PNR for segregation of voiced speech.

Intrusion
Segregated target Mixture

PEL(%) PH
EL(%) PNR(%) PH

NR(%) PNR(%) PH
NR(%)

N0 1.47 14.97 0.05 0.52 67.76 96.82
N1 4.61 32.48 3.78 61.00 57.16 96.00
N2 1.01 8.18 0.42 7.98 5.04 44.02
N3 4.04 12.90 2.14 6.44 18.15 42.57
N4 2.81 21.42 3.58 43.28 27.17 81.31
N5 1.32 7.47 0.06 0.46 78.84 97.90
N6 0.95 8.99 0.94 16.27 39.24 91.26
N7 2.01 9.76 2.25 8.68 16.68 43.49
N8 1.16 8.59 0.65 4.32 7.37 31.07
N9 17.80 19.25 14.22 5.47 43.09 27.72

Average 3.72 14.40 2.81 15.44 36.05 65.22

To compare waveforms directly we can measure SNR in decibels:

SNR = 10 log10

∑
n
s2(n)∑

n

[
s(n) − ŝ(n)]2 . (12.12)

The SNR for each intrusion averaged across 10 target utterances is shown in
Fig. 12.12, together with the SNR of the original mixtures and the results
from the Wang-Brown system [52], whose performance is representative of
previous CASA systems, and a spectral subtraction method [5], a standard
method for speech enhancement. Our system shows substantial improvements.
In particular, it yields a 12.1 dB gain on average over the original mixtures,
a 5.8 dB gain over the Wang-Brown model, and a 7.0 dB gain over spectral
subtraction.

We point out that, although the above algorithm for voiced speech seg-
regation is similar to that presented in [23], it is simplified a good deal. The
guiding principle for the algorithm presented in this chapter is to simplify that
in [23] as much as possible without sacrificing the segregation performance.
Also the delay compensation for gammatone filters discussed in Sec. 12.3.1
is not implemented in [23]. Indeed, the SNR performance for the simplified
version is even slightly better than that in [23]. For completeness, we give the
entire algorithm in the Appendix along with a few further notes.

12.6 Unvoiced Speech Grouping

Unvoiced speech lacks the periodicity feature, which plays the primary role in
voiced speech segregation, and segregation of unvoiced speech is particularly
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Fig. 12.12. Signal-to-noise ratio (SNR) results against the ideal binary mask for
segregated speech and original mixtures. White bars show the results from our sys-
tem, gray bars those from the Wang-Brown system, cross bars those from a spectral
subtraction method, and black bars those of original mixtures.

challenging. Unvoiced speech in English contains three categories of conso-
nants: Stops, fricatives, and affricates [30]. Stops consist of /t/, /d/, /p/, /b/,
/k/, and /g/, and fricatives consist of /s/, /z/, /f/, /v/, /T/, /D/, /S/, /Z/, and
/h/. There are two affricates, /tS/ and /dZ/, each of which is a stop followed by
a fricative. Although about half of these consonants are phonetically voiced,
their acoustic realizations often contain weak voicing [50], and they cannot
be reliably segregated with pitch-based analysis. Hence all these consonants
are treated in this section. As stated in Sec. 12.2, here we only deal with non-
speech interference. Because of the similarity between fricatives and affricates,
we consider them together. In this section, we first describe segregation of stop
consonants and then segregation of fricatives and affricates.

12.6.1 Segregation of Stop Consonants

A stop consonant starts with a closure corresponding to the stop of airflow in
the vocal tract, followed by a burst corresponding to a sudden release of air-
flow. The closure contains little energy and is usually masked by interference.
The focus here is to segregate stop bursts.

In a previous study, we have proposed to segregate stop consonants in two
steps: Stop detection and stop grouping [22]. In the first step, onset detec-
tion is performed in each frequency channel, and onset fronts are formed by
connecting close onsets at neighboring channels. We distinguish onset fronts
belonging to stop consonants from others via featured-based classification.
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Table 12.3. PEL and PNR for stop consonants.

Overall SNR (dB) PEL(%) PNR(%)

0 84.79 9.62
10 70.68 2.81
20 41.56 0.81
30 28.01 0.04

Stop bursts are characterized by the following features: Spectral envelope, in-
tensity, duration, and formant transition (see [1] for example). However, the
formant transition from a stop to its neighboring voiced phoneme is very dif-
ficult to obtain; moreover, it is closely related to the spectrum. Therefore we
use the following features for classification: Spectral envelope, intensity, and
duration.

Stop consonants are grouped based on onset synchrony. Specifically, for
each detected stop, the frequency channels that contain onsets synchronous
with the onset of the stop burst are grouped together. The temporal boundary
within each such channel is determined as from the minimum filter response
immediately before the burst duration to the minimum point immediately
after the burst. This pair of minima approximately marks the onset and the
offset of the stop for the filter channel. The T-F units within this interval are
hence labeled as belonging to the stop consonant.

The above method has been tested with 10 utterances from the TIMIT
database mixed with the following 10 interference: White noise, pink noise,
airplane noise, car noise, factory noise, noise burst, clicks, bar noise, fireworks,
and rain. Average PEL and PNR for stop consonants at different SNR levels are
shown in Tab. 12.3. The system performs well when SNR is relatively high. As
SNR decreases, PEL increases significantly while PNR remains relatively low.

12.6.2 Grouping of Fricatives and Affricates

We group fricatives and affricatives with the segments obtained by the seg-
mentation algorithm described in Sec. 12.4.2. Because fricatives and affricates
are relatively steady acoustically [50], most T-F units dominated by these
consonants are well organized into obtained segments. The task here is to
distinguish these segments from those corresponding to interference. This is
performed in two steps [25]. First, we remove those segments dominated by
non-fricative and non-affricate sounds within voiced sections. Then we apply
a Bayesian classifier to determine whether each remaining segment belongs to
a fricative, an affricate, or interference.

The motivation of the first step is to take advantage of segregated voiced
speech. In the segmentation stage described in Sec. 12.4.2, obtained segments
containing significant portions of fricatives and affricates tend to contain little
signal from other phonemes or interference. Therefore, segments overlapping



506 G. Hu, D.L. Wang

significantly with non-fricative and non-affricate sounds are removed. To iden-
tify these segments, our system first uses the segregated voiced speech to de-
termine time frames containing phonemes other than fricatives and affricates
as follows.

Let H0 be the hypothesis that a T-F region is dominated by interference,
H1,k a T-F region dominated by a fricative or an affricate, indexed by k, and
H2,l a T-F region dominated by another phoneme, indexed by l. Let X(m)
be the power spectrum of the input mixture at frame m, and XS(m) be the
corresponding power spectrum within segregated target stream. Frame m is
labeled as non-fricative and non-affricate if

max
k
P
(
H1,k

∣∣XS(m)
)
< max

l
P
(
H2,l

∣∣XS(m)
)
. (12.13)

By applying the Bayesian rule, we have

max
k

[
p
(
XS(m)

∣∣H1,k

)
P
(
H1,k

)]
< max

l

[
p
(
XS(m)

∣∣H2,l

)
P (H2,l)

]
. (12.14)

Note that frames not occupied by the segregated target are not considered.
The segments whose energy is dominated by such frames are removed.

For each remaining segment, which lasts from frame m1 to m2, let Y (m)
be the power spectrum within the segment at frame m, and

Y =
[
Y (m1), Y (m1 + 1), . . ., Y (m2)

]
. (12.15)

This segment is classified as dominated by a fricative or an affricate if:

max
k

[
p
(
Y
∣∣H1,k

)
P
(
H1,k

)]
> p

(
Y
∣∣H0

)
P
(
H0

)
. (12.16)

Because segments have varied sizes, the complexity for computing p(Y |H1,k)
and p(Y |H0) directly is very high. Fortunately, we find that, by consider-
ing only the dependence between two consecutive frames, a good estimate of
p(Y |H0) can be obtained,

p
(
Y
∣∣H0

)
= p

(
Y (m1)

∣∣H0

) m2−1∏
m=m1

p
(
Y (m+ 1)

∣∣Y (m), H0

)
. (12.17)

This observation holds for p(Y |H1,k) also. Then Eq. 12.16 becomes

max
k

[
p
(
Y (m1)

∣∣H1,k)P
(
H1,k

) m2−1∏
m=m1

p
(
Y (m+ 1)

∣∣Y (m), H1,k

)]
> p

(
Y (m1)

∣∣H0

)
P
(
H0

) m2−1∏
m=m1

p
(
Y (m+ 1)

∣∣Y (m), H0

)
.

(12.18)

In Eq. 12.18, segment duration is implicitly given. To emphasize the contribu-
tion of duration in classification, we insert duration D as an additional feature
into Eq. 12.18:
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max
k

[
p
(
Y (m1), D

∣∣H1,k

)
P
(
H1,k

) m2−1∏
m=m1

p
(
Y (m+ 1), D

∣∣Y (m), H1,k

)]
> p

(
Y (m1), D

∣∣H0

)
P
(
H0

) m2−1∏
m=m1

p
(
Y (m+ 1), D

∣∣Y (m), H0

)
,

(12.19)
so that the contributions from spectrum and duration are well balanced.

We use the two features of spectrum (including the spectral envelope and
intensity) and duration for the classification task in both of the steps. The
formant transition is another feature for identifying fricatives and affricates.
As discussed in Sec. 12.6.1, the formant transition is partly captured by the
spectrum. In addition, it is very difficult to extract. Therefore, it is not utilized
here.

The prior distributions and probabilities required for calculating Eq. 12.14
and Eq. 12.19 are obtained from training using the training part of the TIMIT
database and 90 environmental intrusions, including crowd noise, traffic noise,
and wind, etc. A Gaussian mixture model with 8 components and a full covari-
ance matrix for each mixture is used for training the probability density func-
tion for all the spectral features and duration. Then in calculating Eq. 12.14
and Eq. 12.19, we use marginal distribution since only a subset of spectral
features is included in the formula.

All the segments identified as dominated by fricatives or affricates are
added to the segregated voiced target. As an illustration, Figs. 12.11(c) and
12.11(d) show the final target stream and the corresponding resynthesized
speech for the mixture in Fig. 12.2(d). The target utterance, “Her right hand
aches whenever the barometric pressure changes” contains 7 fricatives and
2 affricates, italicized in the sentence. Among them, /h/ in “hand”, /v/ in
“whenever”, and /D/ in “the” are mainly voiced and portions of their en-
ergy are recovered in voiced speech segregation (see Fig. 12.11(a)). /h/ in
“her” is mostly masked by the intrusion, hence not recoverable. The remain-
ing 5 are successfully segregated by the system, as indicated by the arrows in
Fig. 12.11(c). At the same time, some intrusion-dominated T-F regions are
also included in the segregated target.

The performance of fricative and affricate segregation is systematically
evaluated with 20 utterances from the testing part of the TIMIT database,
mixed with 10 intrusions at different SNR levels. The intrusions are white
noise, electrical fan, rooster crowing and clock alarm, traffic noise, crowd noise
in playground, crowd noise with music, crowd noise with clapping, bird chirp-
ing and water flow, wind, and rain.

Tab. 12.4 shows the average PEL and PNR for segregation of fricatives and
affricates. As shown in the table, our system extracts about 70% of the frica-
tive and affricate energy from the mixture under different SNR situations. On
the other hand, it retains certain amounts of interference, which are much
less than those included in the original mixture. Our system performs sig-
nificantly better than a spectral subtraction method, especially in low SNR
situations [25].
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Table 12.4. PEL and PNR for fricatives and affricates.

Overall SNR (dB)
Segregated target Mixture
PEL(%) PNR(%) PNR(%)

0 33.48 35.11 82.17
5 32.39 21.19 61.38
10 29.39 8.47 36.05
15 29.60 5.34 16.39
20 29.88 3.30 6.21

12.7 Concluding Remarks

We should point out that our approach is primarily feature-based. The features
used by the system, such as periodicity, AM, and onset, are general properties.
Our system does not employ specific prior knowledge of target or interference,
except in unvoiced speech grouping where we perform phonetic classification.
Prior knowledge helps human ASA in the form of schema-based grouping [6].
Schema-based organization has been emphasized by Ellis [16], and is a subject
of several recent studies. Roweis trained HMMs to separate mixtures from
two speakers [45]. Barker et al. coupled segmentation with explicit speech
models [2]. Srinivasan and Wang used word models to restore phonemes that
are masked by interference [49]. These model-based approaches should help
to improve the performance of a feature-based system.

A natural speech utterance contains silent gaps and other sections masked
by interference. In practice, one needs to group the utterance across such time
intervals. This is the problem of sequential grouping, which is not addressed in
this chapter. One way of grouping segments across time uses speech recogni-
tion in a top-down manner [2]. Recently, Shao and Wang proposed to perform
sequential grouping [47] using trained speaker models. Such methods can be
integrated with simultaneous grouping addressed in this chapter. Room re-
verberation is another important issue that must be addressed before speech
segregation systems can be deployed in real world environments (see [41] for
a recent study on pitch-based segregation of reverberant speech).

To conclude, we have described a CASA approach to monaural speech seg-
regation. Our system segregates voiced speech based on periodicity and AM
as well as temporal continuity. Unvoiced speech is segregated via onset/offset
analysis and feature-based classification. Evaluation results show that the sys-
tem performs well on both voiced and unvoiced speech. Note that unvoiced
speech is particularly challenging for monaural speech segregation, and our
research is the first systematic study on separating unvoiced speech.
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Appendix: Voiced Speech Segregation Algorithm

In this appendix, we provide the complete algorithm for voiced speech seg-
regation along with several notes. To facilitate the reader’s use of this al-
gorithm, we also post the C++ code for the algorithm on the website
(http://www.cse.ohio-state.edu/pnl/software.html). See text for notations.
The parameter values used in our implementation are: θC = 0.99, θP = 0.95,
θT = 0.85, and θA = 0.7. The plausible pitch period range, Γ , is [2 ms, 12.5
ms]. The algorithm is given below.

1. Cochlear filtering. A bank of 128 gammatone filters centered from 80
Hz to 5000 Hz is used.

2. Auditory nerve transduction. The Meddis model is used.

3. Feature extraction. The following features are extracted: Correlogram,
envelope correlogram, cross-channel correlation, and dominant pitch. The
envelope is obtained through half-wave rectification and bandpass filtering
with the passband from 50 Hz to 550 Hz.

4. Segmentation

4.1. Mark two adjacent T-F units, ucm and uc+1,m, according to their
cross-channel correlation:

4.1.1. If CH(c,m) > θC, both units are marked as 1.
4.1.2. Else if CE(c,m) > θC and the center frequency of channel c is

above 1 kHz, both units are marked as 2.
4.2. Neighboring T-F units with the same mark are merged into segments.

Two types of segments are obtained, type 1 and type 2, according
to their marks. Two units are considered neighbors if they share the
same channel and appear in consecutive time frames, or if they share
the same frame and appear in adjacent filter channels. Note that there
are unmarked units.

5. Target pitch tracking

5.1. Initial grouping. Only type-1 segments are considered.
5.1.1. ucm is labeled as the dominant source if

AH

(
c,m, τS(m)

)
max
τ∈Γ

AH

(
c,m, τ

) > θP .
τS(m) initially indicates the dominant pitch period at frame m.

5.1.2. At a frame of a segment, the segment is labeled as the dominant
source if its T-F units labeled as the dominant source contain
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more than half of the total energy of the segment at the frame;
otherwise, it is labeled as the background.

5.1.3. Find a seed segment that has the largest number of frames labeled
as the dominant source.

5.1.4. Determine whether a segment agrees with the seed segment. A
segment agrees with the seed segment if they share the same la-
bel (either dominant source or background) for more than 2/3 of
their overlapping frames. All the segments agreeing with the seed
segment form an initial estimate of the target stream, S0.

5.2. Estimate the target pitch contour from S0 for every frame of the seed
segment. For each such frame, m, the estimated target pitch period,
τS(m), is the lag corresponding to the maximum of

∑
c,ucm∈S0

AH(c,m, τ)

in Γ .
5.3. Label individual T-F units and check the reliability of the estimated

pitch against the consistency constraint: A reliable target pitch is con-
sistent with the periodicity of S0.

5.3.1. Label a T-F unit at frame m with an estimated pitch as target if

AH

(
c,m, τS(m)

)
max
τ∈Γ

AH

(
c,m, τ

) > θP .
Otherwise, label it interference.

5.3.2. If less than half of the T-F units of S0 at frame m are labeled as
target, the estimated pitch, τS(m), is considered inconsistent and
all the T-F units of frame m are labeled as interference.

5.4. Re-estimate target stream with labeled T-F units. A segment is labeled
as target if its T-F units labeled as target contain more than half of its
total energy. All the segments labeled as target form a new estimate
of target, S1.

5.5. Estimate target pitch for all the frames of S1 as done in Step 5.2.
Label individual T-F units and check the consistency of the estimated
pitch as done in Step 5.3.

5.6. Pitch interpolation for frames with unreliable pitch:
5.6.1. Consistent pitch points in consecutive frames are connected to

form a set of smooth contours. A smooth contour is the one where
consecutive frames on the contour satisfy the smoothness con-
straint: The pitch contour of speech changes slowly. Specifically,
the change from a pitch period to the one at the next frame is
considered smooth if the change is less than 20% of both pitch
periods.

5.6.2. Find the longest smooth contour and denote it the seed contour.
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5.6.3. Re-estimate the pitch periods for the frames before the seed con-
tour. Set m to the first frame of the seed contour. Iterate until m
is the first frame of S1:
i. Denote the current frame, m, as a reliable frame (i.e. it has a

reliable pitch estimate) and denote c as a selected channel if
ucm ∈ S1 and is labeled as target.

ii. Decrease m by 1.
iii. Check if τS(m) satisfies both the consistency and the smooth-

ness constraints. If yes, go directly to Step 5.6.3.i.
iv. Summate the autocorrelations of ucm’s at frame m where

ucm ∈ S1 and c is a selected channel of the nearest reliable
frame. Replace τS(m) by the lag corresponding to the maxi-
mum of the summation in the range [0.65τR, 1.55τR], where
τR indicates the estimated pitch period at the nearest reliable
frame.

v. Check if the new τS(m) satisfies the smoothness constraint.
If not, τS(m) is considered unreliable, and then go directly to
Step 5.6.3.ii.

5.6.4. Re-estimate the pitch periods for the frames after the seed contour
in a symmetric way, until the last frame of S1.

5.6.5. For any interval of unreliable pitch estimates between two inter-
vals of reliable estimates, the pitch periods within this interval are
obtained by linear interpolation from the last frame of the preced-
ing reliable interval and the first frame of the succeeding one.

6. T-F unit labeling

6.1. For unit ucm belonging to a type-1 segment, label it as target if

AH

(
c,m, τS(m)

)
max
τ∈Γ

AH

(
c,m, τ

) > θT .
Otherwise, label it as interference.

6.2. For a remaining unit, ucm, label it as target if

AE

(
c,m, τS(m)

)
max
τ∈Γ

AE

(
c,m, τ

) > θA .
Otherwise, label it as interference.

7. Grouping

7.1. A segment is labeled as target if its T-F units labeled as target contain
more than half of its total energy. These segments form S2.

7.2. In S2, find all the contiguous T-F regions that are all labeled as in-
terference, and remove those regions longer than 40 ms.
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7.3. Expand S2 by iteratively grouping neighboring unmarked T-F units
that are labeled as target.

The resulting S2 represents the segregated target speech by the algorithm.
A few further notes are in order. Regarding Step 2 – the modeling of the
auditory nerve transduction – we find that the performance without the step
is similar for all intrusions except N9, a female utterance. Step 2 helps the
system to obtain a better target pitch estimate with the N9 intrusion.

Note also that the algorithm segregates only one continuous section of
voiced speech since the pitch determination algorithm provides one pitch con-
tour. If multiple pitch contours are given, one can easily use the given contours
instead of Step 5. As discussed in Sec. 12.3.4, we can also apply Step 5 it-
eratively to estimate multiple pitch contours. However, there is no guarantee
that a pitch contour generated this way corresponds to target speech. As men-
tioned in Sec. 12.7, to determine whether a pitch contour is a target contour
is the task of sequential grouping, not addressed here. Step 5.6 in the above
algorithm performs pitch interpolation and is relatively complicated. A sim-
pler way is to perform linear interpolation between smooth contours obtained
in Step 5.6.1. However, we find this simple method does not work as well for
two reasons. First, our tracking algorithm attempts to re-estimate unreliable
pitch points from selected frequency channels at the nearest reliable frame,
an instance of applying temporal continuity. Second, some smooth contours
are inaccurate – e.g. reflecting doubles of pitch frequencies – and when this
happens, the smoothness of the overall pitch contour tends to be violated.
The tracking algorithm from a seed contour guarantees the smoothness of an
overall pitch contour.

Acknowledgments

The preparation of this chapter was supported in part by an AFOSR grant
(FA9550-04-01-0117) and an AFRL grant (FA8750-04-1-0093).

References

[1] A.M.A. Ali, J. Van der Spiegel: Acoustic-phonetic features for the au-
tomatic classification of stop consonants, IEEE Trans. Speech Audio
Process., 9, 833–841, 2001.

[2] J.P. Barker, M.P. Cooke, D.P.W. Ellis: Decoding speech in the presence
of other sources, Speech Comm., 45, 5–25, 2005.

[3] J. Bird, C.J. Darwin: Effects of a difference in fundamental frequency
inseparating two sentences, in A.R. Palmer, A. Rees, A.Q. Summerfield,
R. Meddis (eds.), Psychophysical and Physiological Advances in Hearing,
London, UK: Whurr, 263–269, 1998.



12 An Auditory Scene Analysis Approach 513

[4] P. Boersma, D. Weenink: Praat: Doing Phonetics by Computer, Version
4.2.31, http://www.fon.hum.uva.nl/praat/, 2004.

[5] S.F. Boll: Suppression of acoustic noise in speech using spectral subtrac-
tion, IEEE Trans. Acoust. Speech Signal Process., 27, 113–120, 1979.

[6] A.S. Bregman: Auditory Scene Analysis, Cambridge, MA, USA: MIT
Press, 1990.

[7] G.J. Brown, M.P. Cooke: Computational auditory scene analysis, Com-
put. Speech and Language, 8, 297–336, 1994.

[8] G.J. Brown, D.L. Wang: Separation of speech by computational au-
ditory scene analysis, J. Benesty, S. Makino, J. Chen (eds.), Speech
Enhancement, Berlin, Germany: Springer, 371–402, 2005.

[9] D.S. Brungart, P.S. Chang, B.D. Simpson, D.L. Wang: Isolating the
energetic component of speech-on-speech masking with an ideal binary
mask, Submitted for journal publication, 2005.

[10] J. Canny: A computational approach to edge detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8, 679–698, 1986.

[11] R.P. Carlyon, T.M. Shackleton: Comparing the fundamental frequen-
cies of resolved and unresolved harmonics: evidence for two pitch mech-
anisms? J. Acoust. Soc. Am., 95, 3541–3554, 1994.

[12] P.S. Chang: Exploration of Behavioral, Physiological, and Compu-
tational Approaches to Auditory Scene Analysis, M.S. Thesis, The
Ohio State University Dept. Comput. Sci. & Eng., 2004 (available at
http://www.cse.ohio-state.edu/pnl/theses).

[13] M.P. Cooke: Modelling Auditory Processing and Organisation, Cam-
bridge, UK: Cambridge University Press, 1993.

[14] M.P. Cooke, P. Green, L. Josifovski, A. Vizinho: Robust automatic
speech recognition with missing and unreliable acoustic data, Speech
Comm., 34, 267–285, 2001.

[15] L.A. Drake: Sound Source Separation via Computational Auditory Scene
Analysis (CASA) – Enhanced Beamforming, Ph.D. Dissertation, North-
western University Dept. Elec. Eng., 2001.

[16] D.P.W. Ellis: Prediction-driven Computational Auditory Scene Analy-
sis, Ph.D. Dissertation, MIT Dept. Elec. Eng. & Comput. Sci., 1996.

[17] Y. Ephraim, H.L. van Trees: A signal subspace approach for speech
enhancement, IEEE Trans. Speech Audio Process., 3, 251–266, 1995.

[18] J. Garofolo, L. Lamel, et al.: Darpa TIMIT acoustic-phonetic continuous
speech corpus, NISTIR 4930, 1993.

[19] H. Helmholtz: On the Sensation of Tone, 2nd English ed., New York,
NY, USA: Dover Publishers, 1863.

[20] J. Holdsworth, I. Nimmo-Smith, R.D. Patterson, P. Rice: Implementing
a gammatone filter bank, MRC Applied Psych. Unit, 1988.

[21] G. Hu, D.L. Wang: Speech segregation based on pitch tracking and am-
plitude modulation, Proc. WASPAA ’01, 79–82, New Paltz, New York,
USA, 2001.



514 G. Hu, D.L. Wang

[22] G. Hu, D.L. Wang: Separation of stop consonants, Proc. ICASSP ’03,
2, 749–752, 2003.

[23] G. Hu, D.L. Wang: Monaural speech segregation based on pitch tracking
and amplitude modulation, IEEE Trans. Neural Net., 15, 1135–1150,
2004.

[24] G. Hu, D.L. Wang: Auditory segmentation based on event detection,
Proc. ISCA Tutorial and Research Workshop on Stat. & Percept. Audio
Process., 2004.

[25] G. Hu, D.L. Wang: Separation of fricatives and affricates, Proc. ICASSP
’05, 1, 1101–1104, Philadelphia, PA, USA, 2005.

[26] A. Hyvärinen, J. Karhunen, E. Oja: Independent Component Analysis,
New York, NY, USA: Wiley, 2001.

[27] ISO: Normal Equal-loudness Level Contours for Pure Tones under Free-
field Listening Conditions (ISO 226), International standards organiza-
tion.

[28] J. Jensen, J.H.L. Hansen: Speech enhancement using a constrained iter-
ative sinusoidal model, IEEE Trans. Speech Audio Process., 9, 731–740,
2001.

[29] H. Krim, M. Viberg: Two decades of array signal processing research:
The parametric approach, IEEE Signal Process. Mag., 13, 67–94, 1996.

[30] P. Ladefoged: Vowels and Consonants, Oxford, UK: Blackwell, 2001.
[31] J.C.R. Licklider: A duplex theory of pitch perception, Experientia, 7,

128–134, 1951.
[32] D. Marr: Vision, New York, NY, USA: Freeman, 1982.
[33] R. Meddis: Simulation of auditory-neural transduction: Further studies,

J. Acoust. Soc. Am., 83, 1056–1063, 1988.
[34] R. Meddis, M. Hewitt: Modelling the identification of concurrent vowels

with different fundamental frequencies, J. Acoust. Soc. Am., 91, 233–
245, 1992.

[35] B.C.J. Moore: An Introduction to the Psychology of Hearing, 5th ed.,
San Diego, CA, USA: Academic Press, 2003.

[36] R.D. Patterson, I. Nimmo-Smith, J. Holdsworth, P. Rice: An efficient
auditory filterbank based on the gammatone function, MRC Applied
Psych. Unit. 2341, 1988.

[37] J.O. Pickles: An Introduction to the Physiology of Hearing, 2nd ed.,
London, UK: Academic Press, 1988.

[38] R. Plomp: The Ear as a Frequency Analyzer, J. Acoust. Soc. Am., 36,
1628–1636, 1964.

[39] R. Plomp: The Intelligent Ear, Mahwah, NJ, USA: Lawrence Erlbaum
Associates, 2002.

[40] R. Plomp, A.M. Mimpen: The ear as a frequency analyzer II, J. Acoust.
Soc. Am., 43, 764–767, 1968.

[41] N. Roman, D.L. Wang: A pitch-based model for separation of reverber-
ant speech, Proc. INTERSPEECH ’05, 2109–2112, Lisbon, Portugal,
2005.



12 An Auditory Scene Analysis Approach 515

[42] N. Roman, D.L. Wang, G.J. Brown: Speech segregation based on sound
localization, J. Acoust. Soc. Am., 114, 2236–2252, 2003.

[43] B.H. Romeny, L. Florack, J. Koenderink, M. Viergever (eds.): Scale-
space Theory in Computer Vision, Berlin, Germany: Springer, 1997.

[44] D.F. Rosenthald, H.G. Okuno (eds.): Computational Auditory Scene
Analysis, Mahwah, NJ: Lawrence Erlbaum Associates, 1998.

[45] S.T. Roweis: One microphone source separation, Proceedings of the An-
nual Neural Information Processing Systems (NIPS 2000) Conference,
2001.

[46] H. Sameti, H. Sheikhzadeh, L. Deng, R.L. Brennan: HMM-based strate-
gies for enhancement of speech signals embedded in nonstationary noise,
IEEE Trans. Speech Audio Process., 6, 445–455, 1998.

[47] Y. Shao, D.L. Wang: Model-based sequential organization in cochannel
speech, IEEE Trans. Speech Audio Process., in press, 2005.

[48] M. Slaney, R.F. Lyons: A perceptual pitch detector, Proc. ICASSP ’90,
1, 357–360, Albuquerque, NM, USA, 1990.

[49] S. Srinivasan, D.L. Wang: A schema-based model for phonemic restora-
tion, Speech Comm., 45, 63–87, 2005.

[50] K.N. Stevens: Acoustic Phonetics, Cambridge, MA, USA: MIT Press,
1998.

[51] D.L. Wang: On ideal binary mask as the computational goal of audi-
tory scene analysis, P. Divenyi (ed.), Speech Separation by Humans and
Machines, Norwell, MA, USA: Kluwer, 181–197, 2005.

[52] D.L. Wang, G.J. Brown: Separation of speech from interfering sounds
based on oscillatory correlation, IEEE Trans. Neural Net., 10, 684–697,
1999.

[53] M. Weintraub: A Theory and Computational Model of Auditory Monau-
ral Sound Separation, Ph.D. Dissertation, Stanford University Dept.
Elec. Eng., 1985.

[54] M. Wu, D.L. Wang, G.J. Brown: A multipitch tracking algorithm for
noisy speech, IEEE Trans. Speech Audio Process., 11, 229–241, 2003.



13

Wave Field Synthesis Techniques for Spatial
Sound Reproduction

Rudolf Rabenstein, Sascha Spors, and Peter Steffen

Telecommunications Laboratory, University Erlangen-Nuremberg, Germany

13.1 Introduction

Wave field synthesis (WFS) is a sound reproduction technique which over-
comes certain limitations of conventional surround sound methods. It is based
on a physical description of the propagation of acoustic waves. Wave field syn-
thesis uses loudspeaker array technology to correctly reproduce sound fields
without the ”sweet spot” limitation well-known from stereophonic surround
sound methods.

The main applications of wave field synthesis are in the areas of enter-
tainment and the performing arts. Due to its rigorous physical foundations,
wave field synthesis is also used for reproduction of sound fields caused by
room reverberation or for the creation of virtual noise fields. It may not only
recreate sound fields of virtual theaters and concert halls, but also acoustic en-
vironments for human communication. This way, wave field synthesis provides
acoustical testbeds for echo and noise control solutions.

Wave field synthesis techniques are formulated in terms of the acoustic
wave equation and the description of its solutions by Green’s functions. These
foundations have been initially developed by the Technical University of
Delft [3,6,11,18,22–25] and were later extended within the European project
CARROUSO [5].

This chapter discusses the signal processing aspects of state-of-the-art wave
field synthesis systems. The most important of these aspects is the generation
of the correct driving signals for each loudspeaker by suitable digital signal
processing. Sec. 13.2 presents the notation and some elements from the foun-
dations of acoustics. They are required for the presentation of the concept of
wave field synthesis and the resulting signal processing structure in Sec. 13.3.
Finally, an implementation example is given in Sec. 13.4.
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13.2 Elements from the Foundations of Acoustics

This section starts with a review of some elements from the foundations of
acoustics. At first the notation of the required coordinate systems is pre-
sented. Then follows a short discussion of the acoustical wave equation and
the representation of its solutions in terms of plane waves and Green’s func-
tions. Finally the Kirchhoff-Helmholtz integral is introduced for later refer-
ence. These foundations of acoustics and wave physics are found in more detail
e.g. in [4, 8, 14,16,26].

13.2.1 Coordinate Systems

The correct description of sound propagation in space requires a three-
dimensional (3D) formulation of the respective acoustical processes. On the
other hand, in many applications the source and receiver positions are located
in a plane, e.g. a horizontal plane at the height of the listeners’ ears. In these
cases, a two-dimensional (2D) description is appropriate. The notation for 2D
and 3D coordinates is shown in Fig. 13.1 and is introduced below.

Fig. 13.1. Illustration of Cartesian and polar coordinates.

13.2.1.1 Two-Dimensional Coordinates

Cartesian and polar coordinates in two dimensions are denoted by

x =
[
x
y

]
, r =

[
r
α

]
. (13.1)

Their components are related by[
x
y

]
= r

[
cosα
sinα

]
,

[
r
α

]
=

⎡⎣ √
x2 + y2

tan−1

(
x

y

)⎤⎦ . (13.2)

The 2D volume elements used for integration are

dx = dx dy , dr = r dr dα . (13.3)
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13.2.1.2 Three-Dimensional Coordinates

The position vector z in Cartesian coordinates is defined as

z =
[

x
z

]
=

⎡⎣xy
z

⎤⎦ . (13.4)

The volume element for 3D integration is

dz = dx dy dz . (13.5)

The assignment p0(z) = p1(x) means that p0(z) is independent of the z-
coordinate.

13.2.2 The Wave Equation

The wave equation is given by [14,16,26]

Δp(t,z) − 1
c2
∂2

∂t2
p(t,z) = 0 . (13.6)

p(t,z) is the sound pressure at time t and at the location z. Δ = ∇2 denotes
the Laplace operator [2,9,10], i.e. second order spatial derivation and c is the
propagation speed. Possible solutions of the wave equation are constrained to
signals with equal second order partial derivatives in time and space. Solutions
of the wave equation are also called wave fields or sound fields.

Application of the Fourier transform with respect to time turns the wave
equation into the Helmholtz equation

ΔP (ω,z) +
(ω
c

)2

P (ω,z) = 0 . (13.7)

Here the differentiation theorem of the Fourier transform has been applied to
substitute the second order time derivative in (13.6) by (jω)2 in (13.7). The
validity of the conditions for the application of the differentiation theorem have
been tacitly assumed. The relation between the temporal frequency variable
ω and the propagation speed c is frequently called the wave number k = ω/c.

13.2.2.1 Plane Wave Solution

A plane wave is a special solution of the wave equation, which has a very simple
form for Cartesian coordinates. It is determined by its wave form and by the
direction from which the wave form emanates. The wave form is given by a
time function f(t, θ) and the direction is given by the unit vector nθ. Later,
only plane waves with a zero component in the z-direction are considered.
Then nθ is a vector in the xy-plane and it is uniquely determined by its x-
and y-components
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nθ =
[

cos θ
sin θ

]
. (13.8)

The plane wave solution of Eq. 13.6 is the 3D signal

p(t,x) = f

(
t+

1
c

〈
x,nθ

〉
, θ

)
, (13.9)

where 〈x,nθ〉 is the scalar product between x and nθ. It describes a planar
wave front which propagates through space from the direction of nθ with
speed c. In the origin x = 0, the wave form f(t, θ) is observed directly as
p(t,0) = f(t, θ). The Fourier transform with respect to time gives

P (ω,x) = F (ω, θ) e
j
ω

c
〈x,nθ〉

(13.10)

as the plane wave solution of Eq. 13.7.
A more general wave field is obtained by superposition of plane wave so-

lutions from all possible directions θ

P (ω, r) =

2π∫
0

F (ω, θ) e
j
ω

c
r cos(θ − α)

dθ , (13.11)

where the scalar product 〈x,nθ〉 has been expressed in polar coordinates〈
x,nθ

〉
= r cos(θ − α) . (13.12)

The relation 13.11 is closely related to the plane wave decomposition of a wave
field [12].

13.2.2.2 Green’s Functions

Arbitrary solutions of the wave equation with homogeneous boundary condi-
tions are described in terms of Green’s functions. They can be regarded as
the response of a sound field to an impulse in time and space. Since there are
various kinds of impulse functions in 3D space, also the possible forms of the
corresponding Green’s functions differ. Here, the Green’s functions of point
sources and line sources are considered.

Point Source

A point source in 3D space is defined by the 3D Dirac-impulse function in
Cartesian coordinates [4, 8]

δ3D(z) = δ(x) δ(y) δ(z) , (13.13)

where δ(x) denotes the 1D Dirac-impulse. The 3D Dirac-impulse can also be
defined for cylindrical and other 3D coordinates. A point source at the location
z′ with time varying source strength is described by
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q0(t,z) = q0(t,z′) δ3D(z − z′) (13.14)

or after Fourier transform with respect to time by

Q0(ω,z) = Q0(ω,z′) δ3D(z − z′) . (13.15)

The index zero indicates a point sources with dimension zero. An arbitrary
spatial distribution of point sources is given by

Q0(ω,z) =
�
V

Q0(ω,z′) δ3D(z − z′) dz′ . (13.16)

The spatial sound field P0(ω,z) caused by a spatially distributed source
Q0(ω,z) is given by

P0(ω,z) =
�
V

G0(ω,z|z′)Q0(ω,z′) dz′ . (13.17)

The Green’s function G0(ω,z|z′) describes the contribution of a point source
at position z′ to the sound field at position z. The integration is carried out
on the volume V where the solution of the wave equation is considered. The
position z is also referred to as the listener position.

The form of the Green’s function G0(ω,z|z′) depends on the shape of
the volume V and on the kind of the boundary condition on its surface. In
the free-field, i. e. V = R3 the Green’s function for all kinds of boundary
conditions is given by [14]

Gf
0(ω,z|z′) =

1
4π

e
−j ω
c
‖z − z′‖

‖z − z′‖ . (13.18)

It describes a spherical wave and is also called the free-field Green’s function.
The denominator accounts for the decay of the amplitude over distance and
the exponential term accounts for the time delay of the propagating spherical
wave.

Line Source

A line source consists of a superposition of equal point sources along a line.
When the line is oriented in parallel to the z-axis then all point sources with
the same xy-coordinates have equal source strength Q0(ω,z). Consequently,
Q0(ω,z) does not depend on z and the integration in Eq. 13.17 degenerates
to an integration in the xy-plane

Q0(ω,z) =
�
V

Q0(ω,z′) δ3D(z − z′) dz′

=
�
L

Q1(ω,x′) δ2D(x − x′)

∞∫
−∞

δ(z − z′) dz′

︸ ︷︷ ︸
=1

dx′

= Q1(ω,x) , (13.19)
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where
δ2D(x) = δ(x) δ(y) (13.20)

denotes a 2D Dirac-impulse in Cartesian coordinates and L a horizontal cut
through the volume V . This result may be interpreted in two ways:

• As before, Q0(ω,z) describes a collection of point sources (index zero).
The three components of z denote the location of each point source in 3D
space. However, the source strength is constant in z-direction and therefore
the result does not depend on the z-coordinate.

• Q1(ω,x) describes a collection of line sources parallel to the z-axis. The
index one denotes the one-dimensional character of the line sources. The
two components of x denote the coordinates of the root points of each line
in the xy-plane.

Note that Q0(ω,z) is a function of three spatial variables (x, y, z) which
denote the location of a zero-dimensional entity (a point source) in 3D space.
On the other hand, Q1(ω,x) is a function of two variables (x, y) which denote
the location of a one-dimensional entity (a line source parallel to the z-axis). So
both Q0(ω,z) and Q1(ω,x) describe a 3D sound field with a special structure,
i.e. without dependence on the z-coordinate.

The sound field caused by a collection of line sources Q1(ω,x) can be ob-
tained from Eq.13.17 when Q0(ω,z) does not depend on z. Then the integra-
tion with respect to z′ is only performed for the Green’s function G0(ω,z|z′)
and yields the Green’s function G1(ω,x|x′) of a line source in parallel to the
z-axis

G1(ω,x|x′) =

∞∫
−∞

G0(ω,x|z′) dz′ . (13.21)

The resulting sound field is also constant in z-direction and is described by a
function P1(ω,x) depending only on x and y

P1(ω,x) =
�
L

G1(ω,x|x′)Q1(ω,x′)dx′ . (13.22)

The interpretation of Q0(ω,z) and Q1(ω,x) in Eq. 13.19 applies in a similar
fashion also to P0(ω,z) and P1(ω,x).

Evaluating the integral in Eq. 13.21 for the integrand from Eq. 13.18
gives [9, 3.876]

Gf
1(ω,x|x′) = − j

4
H

(2)
0

(ω
c
ρ
)
. (13.23)

where H(2)
0 (ω

c ρ) is the Hankel function of the second kind and order zero. Due
to the circular symmetry, Gf

1(ω,x|x′) depends only on the distance ρ between
the listener position x and the line source at x′. It is given by (see Fig. 13.2)

ρ = ‖x − x′‖ =
√

(x− x′)2 + (y − y′)2 . (13.24)
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Thus the notation for the Green’s function of the line source may be shortened
to

Gf
1(ω,x|x′) = G̃f

1 (ω, ρ) = − j
4
H

(2)
0

(ω
c
ρ
)
. (13.25)

In this notation, the Hankel function H(2)
0 is given by [9]

H
(2)
0

(ω
c
ρ
)

= J0

(ω
c
ρ
)
− jN0

(ω
c
ρ
)
, (13.26)

where J0(ω
c ρ) and N0(ω

c ρ) are the Bessel and Neumann functions of the first
kind and order zero.

13.2.2.3 Relation Between the Green’s Functions for Line and
Point Sources for the Free Field Case

Now the relation between a line source parallel to the z-axis and a point source
at the root point of the line source is investigated for the free-field case. The
orientation of the line source and the position of the point source are shown in
Fig. 13.2. The effect of both sources on the sound field in the xy-plane is now
compared. The effect of the line source is described by G̃f

1(ω, ρ) introduced in
Eq. 13.25. The effect of the point source is described by its Green’s function
(Eq. 13.18) for z = 0 and z′ = 0, i.e. by

Gf
0(ω,z|z′)

∣∣∣∣ z = 0
z′ = 0

= G̃f
0(ω, ρ) =

1
4π ρ

e
−j
(ω
c
ρ
)
. (13.27)

Fig. 13.2. Line source parallel to the z-axis and point source at the root point of
the line source in the xy-plane.

The relation between the sound field of a point source in the xy-plane
Gf

0(ω, ρ) and a line source parallel to the z-axis Gf
1(ω, ρ) is established by an

approximation. This approximation can be derived in two different ways, i.e.
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through the method of stationary phase [26] for the integral in Eq. 13.21 and
by the far-field approximation [1] for the Green’s function Gf

l(ω, ρ).
The method of stationary phase allows to express certain integrals by the

value of their integrand at a fixed argument, the so-called stationary phase
point zs through

∞∫
−∞

f(ζ) ejφ(ζ)dζ ≈
√

2πj
φ′′(zs)

f(zs) ejφ(zs) (13.28)

where φ′′(ζ) denotes the second derivative of φ(ζ). This approximation holds
for φ(ζ) � 1. The stationary phase point is found by setting the first derivative
φ′(ζ) of φ(ζ) to zero, i.e. φ′(zs) = 0.

Applying the method of stationary phase to Gf
0(ω,z|z′) with z = 0, z′ = ζ,

and
φρ(ζ) = −ω

c

√
ρ2 + ζ2 , fρ(ζ) =

1

4π
√
ρ2 + ζ2

(13.29)

leads to zs = 0 and

G̃f
1(ω, ρ) =

∞∫
∞
fρ(ζ) ejφρ(ζ) dζ ≈ 1√

j8π
(ω
c
ρ
) e

−j
(ω
c
ρ
)
. (13.30)

The same approximation can also be obtained from the asymptotic expan-
sion of the Hankel function for large |ρ| [1]

H
(2)
0

(ω
c
ρ
)
≈
√√√√ 2

π
(ω
c
ρ
) e

−j
((ω

c
ρ
)
− π

4

)
. (13.31)

In acoustics, this expansion is called the far-field approximation of the Hankel
function.

Comparing Eqs. 13.25 and 13.30 shows that the effect of a line source on
the sound field in the xy-plane may be approximated by the effect of a point
source. In particular, Gf

1(ω, ρ) may be approximated by

G̃f
1(ω, ρ) = H(ω) A(ρ) G̃f

0(ω, ρ) , (13.32)

where

H(ω) =
√
c

jω
(13.33)

causes a spectral shaping and

A(ρ) =
√

2π ρ (13.34)

causes an amplitude modification of G̃f
0(ω, ρ).

The derivation from Eq. 13.23 to Eq. 13.34 on the relation between line
sources and point sources may be summarized as follows:
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• The evaluation of the integral in Eq. 13.21 with the stationary phase
method leads to the far-field approximation of the Green’s function of
a line source.

• The effect of a line source on the xy-plane can be approximated by a
point source at the root point of the line source. The sound field of the
point source has to be corrected by spectral shaping and an amplitude
modification. This approximation is valid in the far-field of the line source.

13.2.3 Kirchhoff-Helmholtz Integral

The Kirchhoff-Helmholtz integral is the key element of the wave field synthesis
principle. It provides the relation between the sound field inside a volume of
arbitrary shape and on the enclosing boundary. The Kirchhoff-Helmholtz-
Integral is presented first for a general 3D volume and then specialized to a
3D prism.

13.2.3.1 Kirchhoff-Helmholtz Integral for a General 3D Volume

The Kirchhoff-Helmholtz integral or Helmholtz integral equation expresses the
values P0(ω,z) inside a volume V by an integral on the surface ∂V [14,16,26]

−
�
∂V

(
G0(ω,z|z′)

∂

∂n
P0(ω,z′) − P0(ω,z′)

∂

∂n
G0(ω,z|z′)

)
dz′ =

=
{
P0(ω,z) , z ∈ V
0 , z /∈ V . (13.35)

G0(ω,z|z′) is a Green’s function which satisfies suitable boundary conditions
on ∂V .

The Kirchhoff-Helmholtz integral states that at any point within the
source-free region V the sound pressure P0(ω, z) can be calculated if both the
sound pressure P0(ω,z′) and its directional gradient ∂

∂nP0(ω,z′) are known on
the boundary ∂V enclosing the volume. The boundary ∂V does not necessary
have to be a real physical existing surface. The Kirchhoff-Helmholtz integral
is typically used in three areas: (1) the calculation of a sound field emitted
by a vibrating surface into a region, (2) the calculation of a sound field inside
a finite region produced by a source outside the volume from measurements
on the surface and (3) the acoustic control over the sound field within a vol-
ume. The third application area leads to sound reproduction according to the
principle of wave field synthesis [22,24].

13.2.3.2 Kirchhoff-Helmholtz Integral for a Prism

The Kirchhoff-Helmholtz integral is now specialized to sound fields which do
not depend on the z-coordinate. The shape of the volume for the integra-
tion in Eq. 13.35 turns into a prism oriented in parallel to the z-axis (see
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Fig. 13.3). This rather special spatial arrangement allows the transition to a
2D description of the Kirchhoff-Helmholtz integral. The stages of this transi-
tion are shown for the first term in Eq. 13.35. The presented procedure applies
equally to the second term.

Fig. 13.3. Illustration of a sound field with does not depend on the z-coordinate.

Since the sound field is assumed to be independent of z, P0(ω,z) depends
only on x and y. Furthermore, any vector normal to the surface ∂V has no
component in the z-direction and also the normal derivative of P0(ω,z) is
independent of z. Thus the surface integration with respect to z′ in Eq. 13.35
can be split into a contour integration with respect to x′ and an integration
with respect to z′. The contour ∂L is defined by the intersection of the prism
with the xy-plane. This procedure turns the first term of Eq. 13.35 into

�
∂V

G0(ω,z|z′)
∂

∂n
P0(ω,z′) dz′

=
∮
∂L

∞∫
−∞

G0(ω,z|z′)
∂

∂n
P0(ω,z′) dz′ dx′

=
∮
∂L

⎡⎣ ∞∫
−∞

G0(ω,z|z′) dz′

⎤⎦ ∂

∂n
P0(ω,z′) dx′ . (13.36)

With Eq. 13.21 follows a 2D version of the Kirchhoff-Helmholtz-Integral
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P1(ω,z) = −
∮
∂L

(
G1(ω,x|x′)

∂

∂n
P1(ω,x′) − P1(ω,x′)

∂

∂n
G1(ω,x|x′)

)
dx′.

(13.37)

13.3 Wave Field Synthesis

13.3.1 Introduction

In the following the sound reproduction scenario depicted in Fig. 13.4 will be
considered. The wave field emitted by an arbitrary virtual source Q0(ω,z)

Fig. 13.4. Reproduction of the spatial wave field emitted by the virtual source inside
the bounded region V and parameters used for the Kirchhoff-Helmholtz integral
(Eq. 13.35).

should be reproduced in the bounded region V . This region will be termed as
listening region in the following, since the listeners reside there. The virtual
source Q0(ω,z) may not have contributions in V . The limitation to one virtual
source poses no constraints on the wave field to be reproduced, since this
source may have arbitrary shape and frequency characteristics. Additionally,
multiple sources can be reproduced by the principle of superposition.

The basic principle of sound reproduction can be illustrated with the prin-
ciple of Huygens [14]. Huygens stated that any point of a propagating wave
front at any time-instant conforms to the envelope of spherical waves ema-
nating from every point on the wavefront at the prior instant. This principle
can be used to synthesize acoustic wavefronts of arbitrary shape. Of course,
it is not very practical to position the acoustic sources on the wavefronts
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for synthesis. By placing the loudspeakers on an arbitrary fixed curve and
by weighting and delaying the driving signals, an acoustic wavefront can be
synthesized with a loudspeaker array. Fig. 13.5 illustrates this principle. The

Fig. 13.5. Application of Huygens principle to perform sound reproduction.

mathematical foundation of this more illustrative description to sound repro-
duction is given by the Kirchhoff-Helmholtz integral. It was introduced in
Sec. 13.2.3 and will be utilized in the following to derive a generic theory of
sound reproduction systems.

13.3.2 Kirchhoff-Helmholtz Integral based Sound Reproduction

The Kirchhoff-Helmholtz integral (Eq. 13.35) comprises a number of differ-
ent problems as already addressed in Sec. 13.2.3.1. Each of these issues is
characterized by its specific type of boundary conditions and thus by the
corresponding Green’s function.

For the sound reproduction scenario according to Fig. 13.4 the Green’s
function G0(ω,z|z′) and its directional gradient can be understood as the field
emitted by sources placed on ∂V . These sources will be termed as secondary
sources in the following. The strength of these sources is determined by the
pressure P0(ω,z′) and the directional pressure gradient ∂

∂nP0(ω,z′) of the
virtual source field Q0(ω,x′) on ∂V .

Thus, this specialized Kirchhoff-Helmholtz integral can be interpreted as
follows: If appropriately chosen secondary sources are driven by the sound
pressure and the directional pressure gradient of the wave field emitted by the
virtual source Q0(ω,x′) on the boundary ∂V , then the wave field within the
region V is equivalent to the wave field which would have been produced by
the virtual source inside V . Thus, the theoretical basis of sound reproduction
is described by the Kirchhoff-Helmholtz integral (Eq. 13.35).

The three-dimensional free-field Green’s function is given by Eq. 13.18.
In the context of sound reproduction it can be interpreted as the field of
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a monopole point source distribution on the surface ∂V . The Kirchhoff-
Helmholtz integral (Eq. 13.35) also involves the directional gradient of the
Green’s function. The directional gradient of the three-dimensional free-field
Green’s function can be interpreted as the field of a dipole source whose main
axis lies in direction of the normal vector n. Thus, the Kirchhoff-Helmholtz
integral states in this case, that the acoustic pressure inside the volume V
can be controlled by a monopole and a dipole point source distribution on the
surface ∂V enclosing the volume V .

This interpretation of the Kirchhoff-Helmholtz integral sketches a first
draft of a technical system for spatial sound reproduction. In rough terms, such
a system would consist of technical approximations of acoustical monopoles
and dipoles by appropriate loudspeakers. These loudspeakers cover the surface
of a suitably chosen volume around the possible listener positions. They are
excited by appropriate driving functions to reproduce the desired sound field
inside the volume.

However, there remain a number of fundamental questions to be resolved
on the way to a technical realization. Four major areas can be identified. They
are listed below and are discussed in detail in the following sections.

Monopole and Dipole Sources.

Technical approximations of acoustical monopoles and dipoles consist of loud-
speakers with different types of enclosures. A restriction to only one type of
sources would be of advantage for a technical realization. For example the use
of monopole sources only facilitates a technical solution with small loudspeak-
ers in closed cabinets.

Reduction to Two Spatial Dimensions.

The volume V certainly has to be large enough to enclose at least a small
audience or to give a single listener room to move within the sound field.
Covering the whole surface with suitable sound sources appears to be a tech-
nological and economical challenge. Furthermore, it may not be required to
reproduce the sound field within the entire volume. A correct reproduction in
a horizontal plane at the level of the listeners’ ears may be sufficient. Such a
simplification requires to reduce the 3D problem to two spatial dimensions.

Spatial Sampling.

The Kirchhoff-Helmholtz integral prescribes a continuous source distribution
over the surface ∂V . However, an approximation of sound sources by loud-
speakers results in a spatially discrete source distribution. The resulting dis-
cretization effects may be described in terms of spatial sampling.

Driving Signals.

Once the source distribution is approximated by a sufficiently dense grid of
loudspeakers, their driving signals have to be generated by signal processing
hardware and digital-to-analog converters.
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13.3.3 Monopole and Dipole Sources

The use of monopole and dipole sources in Eq. 13.35 allows a very precise re-
production of the desired wave field: It is recreated as P0(ω, z) for all positions
inside of V and it is zero outside. Such a restriction is usually not required for
spatial sound reproduction. As long as the reproduction is correct inside of V ,
almost arbitrary sound fields outside may be tolerated, as long as their repro-
duction volume is moderate. This situation suggests the following trade-off:
Use one type of sound sources only and tolerate some sound pressure outside
of V .

To realize this trade-off, a Green’s function G0(ω,z|z′) is constructed
which satisfies boundary conditions of the first or second kind on the surface
∂V . Since it is desirable to drop the dipoles and to keep the monopole sources,
the Green’s function of a point source Gf

0(ω,z|z′) according to Eq. 13.18 is
chosen as the basic building block. Then for each position z′ on the boundary,
the Green’s function Gf

0(ω,z|z′) for a position z inside of V and the Green’s
function Gf

0(ω, z̄(z)|z′) for a position z̄(z) outside of V are superposed

G0(ω,z|z′) = Gf
0(ω,z|z′) +Gf

0(ω, z̄(z)|z′) . (13.38)

The position z̄(z) is chosen as the mirror image of z with respect to the
tangent plane in z′ on the surface ∂V (see Fig. 13.6). The tangent plane is
characterized by the unit vector n. The notation z̄(z) indicates that z̄ depends
on z.

Fig. 13.6. Illustration of the geometry used for the derivation of the modified
Green’s function for a sound reproduction system using monopole secondary sources
only.

From the symmetry of the mirror images follows∥∥z − z′∥∥ =
∥∥z̄(z) − z′∥∥ = ρz , (13.39)

and thus the functional dependence of Gf
0(ω,z|z′) and Gf

0(ω, z̄(z)|z′) on z
and z′ is identical
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Gf
0(ω,z|z′) = Gf

0(ω, z̄(z)|z′) . (13.40)

However, Gf
0(ω,z|z′) and Gf

0(ω, z̄(z)|z′) have to be carefully distinguished as
Green’s functions for positions inside of V and outside of V , respectively. This
difference becomes apparent for the gradients

∇Gf
0(ω,z|z′) = −1 + jkρz

ρz
Gf

0(ω,z|z′) nz

∇Gf
0(ω, z̄|z′) = −1 + jkρz

ρz
Gf

0(ω, z̄|z′) nz̄ , (13.41)

with the unit vectors

nz =
z − z′∥∥z − z′∥∥ , nz̄ =

z̄ − z′∥∥z̄ − z′∥∥ . (13.42)

The derivative with respect to n is given by

∂

∂n
Gf

0(ω,z|z′) =
〈
∇Gf

0(ω,z|z′),n
〉

= −1 + jkρz

ρz
Gf

0(ω,z|z′)
〈
nz,n

〉
(13.43)

and similarly for the derivative of Gf
0(ω, z̄|z′). With Eq. 13.40 and (see

Fig. 13.6) 〈
nz,n

〉
+
〈
nz̄,n

〉
= 0 (13.44)

follows

∂

∂n
G0(ω,z|z′) =

∂

∂n
Gf

0(ω,z|z′) +
∂

∂n
Gf

0(ω, z̄|z′) = 0 , z′ ∈ ∂V . (13.45)

In summary, the Green’s function G0(ω,z|z′) according to Eq. 13.38 in-
duces a sound field not only inside of V but also on the outside. On the
other hand, the normal derivative of G0(ω,z|z′) is zero for all positions z′

on the boundary ∂V . Thus inserting G0(ω,z|z′) as Green’s function into the
Kirchhoff-Helmholtz integral (Eq. 13.35) leads to

P0(ω,z) = −
�
∂V

G0(ω,z|z′)
∂

∂n
P0(ω,z′) dz′ , z ∈ V . (13.46)

Since G0(ω,z|z′) is equal to Gf
0(ω,z|z′) for sources inside of V , the result of

Eq. 13.46 is equal to the desired wave field P0(ω,z) inside of V . Outside of
V the wave field consists of a mirrored version of the wave field inside of V .
An example is shown in Fig. 13.8. The result (Eq. 13.46) is also known as the
type-I Raleigh integral [22].

It states that the sound field inside of a volume V may be reproduced
by a distribution of point sources if a mirrored version of this sound field is
tolerated outside of V . If only the monopole properties of this Green’s function
are or interest, then Eq. 13.21 may be expressed with Eq. 13.40 as
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G0(ω,z|z′) = 2Gf
0(ω,z|z′) , (13.47)

i.e. the boundary sources as free-field point sources with double strength.
The factor of two follows from the fact that these point sources describe the
contribution inside and outside of V in equal terms.

These considerations are summarized by Eq. 13.48 below. The sound field
inside P0(ω,z) of a volume V can be generated by a distribution of mono-
pole sources on the surface ∂V . The field outside of V will not vanish as in
Eq. 13.35, since no more dipole sources are involved. Furthermore, the con-
struction of the Green’s function according to Eq. 13.38 induces boundary
conditions of the second kind (Neumann) on the surface ∂V

P0(ω,z) = −
�
∂V

2Gf
0(ω,z|z′)

∂

∂n
P0(ω,z′) dz′ , z ∈ V . (13.48)

The effects of these boundary conditions are considered for the determination
of the driving signals in Sec. 13.3.6.

13.3.4 Reduction to Two Spatial Dimensions

The requirement of creating a distribution of sources on a whole surface
around a listening space may be impractical for many sound reproduction
systems. This section shows how to reduce the source distribution from a sur-
face around the listeners to a closed curve in a horizontal plane preferably
in the height of the listeners’ ears. For convenience this height is denoted by
z = 0.

The mathematical tools for the reduction of the source distribution have
already been presented by considering the Kirchhoff-Helmholtz integral for
a prism in Sec. 13.2.3.2 and the relations between line and point sources
in Sec. 13.2.2.3. These considerations are now applied in two steps to the
representation of a spatial sound field in Eq. 13.48.

The first step is the conversion of the general surface ∂V to a prism.
Performing the mathematical operations in Eq. 13.36 on Eq. 13.48 results in
a representation of the 3D sound field in a prism which is independent of z
(compare Eq. 13.37)

P1(ω,x) = −
∮
∂L

2Gf
1(ω, (x|x′)

∂

∂n
P1(ω,x′) dx′ , x ∈ L . (13.49)

This relation describes a distribution of line sources parallel to the z-axis.
However, a technical realization would not be easy to implement.

To arrive at a model for a practical solution, a second step replaces the
line sources by point sources according to Sec. 13.2.2.3. With Eq. 13.32 follows
from Eq. 13.49
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P1(ω,x) = −
∮
∂L

Gf
0(ω,x|x′)D(ω,x|x′) dx′ , x ∈ L , (13.50)

with
D(ω,x|x′) = 2A

(‖x − x′‖)H(ω)
∂

∂n
P1(ω,x′) . (13.51)

To show the dependence on x and x′, ρ in Eq. 13.32 has been expanded by
Eq. 13.24.

In Eq. 13.50, Gf
0(ω,x|x′) denotes the Green’s function of the monopole

sources on the contour ∂L in the xy-plane. It describes the wave propagation
in 3D space, however, the receiver locations x (the listeners’ ears) are assumed
to reside in the xy-plane as well. D(ω,x|x′) denotes the source signal of the
monopoles.

13.3.5 Spatial Sampling

The previous sections showed how the rather general statement of the Kirch-
hoff-Helmholtz integral can be narrowed down to a model for a spatial repro-
duction system. A hypothetical distribution of monopole and dipole sources
on a 2D surface around the listener has been replaced by a distribution of
monopoles on a 1D contour in a horizontal plane in the height of the listeners’
ears.

For a technical solution, this spatially continuous source distribution has
to be replaced by an arrangement of a finite number of loudspeakers with a
monopole-like source directivity. The resulting wave field is given by a mod-
ification of Eq. 13.50, where the integral is substituted by a sum over the
discrete loudspeaker positions x′

n

P1(ω,x) ≈ −
∑

n

Gf
0(ω,x|x′

n)D(ω,x|x′
n)Δx′n . (13.52)

Δx′n is the length of the spatial increment Δx′
n between the samples. It is not

required to be equidistant.
The representation of a continuous function by a finite number of spatially

discrete sources is known as spatial sampling in terms of signal theory. Un-
fortunately, spatial sampling of wave fields is not yet satisfactorily described
in the technical literature. Therefore, some general remarks have to suffice at
this point.

Sampling of multidimensional functions is well understood, e.g. in image
or video processing. However, deriving a suitable loudspeaker spacing from
the requirement of the sampling theorem demands to place two loudspeakers
per shortest permissible wavelength. For the usual audio range up to 20 kHz,
loudspeakers would have to be placed at a distance of less than 1 cm. Such
a loudspeaker array is not technically feasible, considering both the size of
available loudspeakers as well es their total number.
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It appears that there are two factors of influence, which allow to reduce the
number of loudspeakers significantly. At first, a wave field is not an arbitrary
signal restricted only by an upper bound of its frequency range. Instead, all
signals in acoustics are solutions of the wave equation. This special property
restricts the frequency domain representations of wave fields significantly [17].
The consequences for sampling of wave fields have been described e.g. in [7].

The second factor is the human perception of spatial aliasing effects. Ex-
perience with existing wave field synthesis implementations with loudspeaker
spacing between 10 cm and 20 cm suggests that aliasing terms in sound fields
are subject to effective masking by other sound components. However, work-
ing knowledge in human perception of spatial aliasing seems to be still rather
restricted. For some further comments on spatial sampling see e.g. [21]. In
short, spatial sampling seems to be a useful approach for spatial reproduc-
tion, although the human perception of its effects is largely unexplored.

13.3.6 Driving Signals

It remains to determine the driving signals of the loudspeakers. They follow
from an analysis of D(ω,x|x′) according to Eq. 13.51. This analysis has to
take the nature of the desired wave field into account. Wave fields may be
modeled by arrangements of different types of sources, e.g. monopoles and
dipoles, and by plane waves. The determination of the driving signals from a
model of the wave field is called model based rendering. On the other hand, a
wave field can be recorded in a natural environment like a concert hall or a
church. Obtaining the driving signals from a recorded wave field is called data
based rendering.

The determination of the driving signals is shown here for a rather general
case of model based rendering, where the desired wave field is given by a de-
composition into plane waves according to Eq. 13.11. The discussion focusses
on three major points:

1. The correct consideration of the boundary conditions (Eq. 13.45) induced
by the choice of the Green’s function for the elimination of the dipole
sources in Sec. 13.3.3.

2. The determination of the normal derivative in Eq. 13.51.
3. The independence of the driving signals from the listener position.

13.3.6.1 Boundary Conditions

The elimination of the dipole sources in Sec. 13.3.3 was based on the choice
of a Green’s function with homogeneous boundary conditions of the second
kind (Neumann), i.e. a vanishing normal derivative on the boundary (see
Eq. 13.45). Boundary conditions of this kind are known to produce reflections
on the boundary. At first sight it is not clear, how these reflections should
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occur, since the boundary ∂L is only an arbitrary contour for the placement
of point sources and not a solid wall.

For a better understanding of the situation, consider Fig. 13.7. It shows a
contour ∂L in a plane with two different monopole positions. These positions
are spatial samples x′

n of the coordinate x′ on ∂L. Since these positions are
arbitrary, the indication of the sample number n will be suppressed for ease
of notation. Note that the monopole positions are not only characterized by
their coordinates x′ but also by the normal vector n on the contour ∂L at x′

and by the angle γ according to

n =
[

cos γ
sin γ

]
. (13.53)

The monopoles shall be driven such that they produce a plane wave in
the direction nθ. Obviously the contour ∂L exhibits two different sections
separated by circles in Fig. 13.7. Monopoles in the left section emanate waves
into the domain L with a component in the direction nθ of the plane wave.
Producing circular waves, they also radiate a component into the direction
opposite to nθ, but it does not effect the domain L. However a monopole in
the right section emanates into L a component opposite to nθ. The superpo-
sition of monopoles and dipoles required by the Kirchhoff-Helmholtz integral
creates a directivity which prevents source components in the wrong direction.
But with monopoles only, there is no other way than accepting equal sound
radiation in all directions.

Fig. 13.7. Reproduction of a plane wave by a monopoles on a contour ∂L.

On the other hand, the radiation of the monopoles in the right section
of Fig. 13.7 into the domain L equals the reflections that would have been
produced by a hard surface at ∂L. Although such a reflecting wall is not
physically present, its reflections are produced by the monopoles in the right
section. However these components travelling in the direction opposite to nθ

do not belong to the desired wave field. Since dipoles are no more available
to solve the problem in the domain of acoustics, the reflections in the right
section have to be counteracted by suitable processing of the driving signals.
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A simple but effective way to prevent sound radiation in the wrong direc-
tion is to cancel the driving signals of the loudspeakers in the right section.
This measure is described by a rectangular window function v(x′, θ) which
determines the source activity for each location x′ on the contour ∂L and
for each possible direction θ of a plane wave. The values of the window func-
tion depend on the scalar product 〈n,nθ〉 between the direction nθ of plane
wave propagation and the normal vector n in each position x′ on ∂L. Since
〈n,nθ〉 = cos(θ − γ), the window function is defined as

v(x′, θ) =

{
1, if 〈n,nθ〉 > 0 or |θ − γ| < π

2
,

0, else.
(13.54)

With this window function, the source signal for the monopoles from Eq. 13.51
can be written as

D(ω,x|x′) = 2v(x′, θ)A
(‖x − x′‖)H(ω)

∂

∂n
P1(ω,x′) . (13.55)

As an example, the wave field reproduced by a circular distribution of
monopole sources is shown in Fig. 13.8. The radius of the circular region was
chosen as R = 1.50 m. Two cases where evaluated: (1) the left row shows
the results when the window function v(x′, θ) is discarded, (2) the right row
shows the results when incorporating the window function.

From the results it can be clearly seen that the window function elimi-
nates the reflections introduced by the Neumann boundary conditions. The
wave field is reproduced correctly within the circular distribution of secondary
monopole sources. The wave field outside of that region does not vanish, as
this would be the case when using both monopole and dipole sources. Instead
it is a mirrored version of the plane wave within the circle (see Fig. 13.6).

13.3.6.2 Determination of the Normal Derivative

To calculate the driving signal from Eq. 13.55 requires to express the nor-
mal derivative of P1(ω,x′) by a suitable characterization of the wave field.
Here, wave fields with a representation as a plane wave decomposition are
considered. Then the normal derivative has to be expressed by the plane wave
coefficients (see Sec. 13.2.2.1), i.e. by the wave forms of the individual plane
wave components.

First, only a single plane wave is investigated. According to Eq. 13.10 its
influence at the loudspeaker position x′ is given by

P1(ω,x′) = F (ω, θ) e
j
ω

c
〈x′,nθ〉

, (13.56)

For the gradient ∇P1(ω,x′) follows

∇P1(ω,x′) = j
ω

c
P1(ω,x′)nθ (13.57)
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Fig. 13.8. Reproduction of a plane wave with a two-dimensional circular distrib-
ution of monopole sources. The left row shows the wave field when discarding the
window function v(x′, θ), the right row when taking it into account.
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and for the normal derivative

∂

∂n
P1(ω,x′) =

〈
∇P1(ω,x′),n

〉
= j

ω

c
P1(ω,x′) 〈nθ,n〉

= j
ω

c
P1(ω,x′) cos(θ − γ). (13.58)

Inserting the normal derivative (Eq. 13.58) into Eq. 13.55 gives the driving
signal Dθ(ω,x|x′) for a plane wave with the angle of incidence θ. After some
manipulations, the result may be written as

Dθ(ω,x|x′) = 2w(x′, θ)A
(‖x − x′‖)K(ω) e

j
ω

c
〈x′,nθ〉

F (ω, θ) . (13.59)

The various terms of Dθ(ω,x|x′) are now discussed in detail.

• The window function w(x′, θ) combines the effects of the rectangular win-
dow function v(x′, θ) from Eq. 13.54 and the cos-term from the normal
derivative in Eq. 13.58

w(x′, θ) =

{
cos(θ − γ), if |θ − γ| < π

2
,

0, else.
(13.60)

• The spectrum F (ω, θ) is the Fourier transform of the wave form f(t, θ).
The wave form is observed directly at the origin of the coordinate system
(see Sec. 13.2.2.1).

• The exponential term describes the delay of the plane wave from the origin
to the position x′ of the monopole. It can be realized by a time delay of
the wave form f(t, θ).

• The high-pass frequency response K(ω) combines the term H(ω) from the
approximation of a line source by a point source in Eq. 13.33 and the effect
of the differentiation in Eq. 13.58

K(ω) =
√
ω

c
ej3π/4 . (13.61)

It can be realized by filtering the wave form f(t, θ).
• The amplitude modification A(‖x − x′‖) comes from the approximation

of a line source by a point source in Eq. 13.34. It is discussed in detail in
Sec. 13.3.6.3.

Finally, the driving signals for a wave field that is composed of various plane
waves are obtained by superposition of the individual plane wave driving
signals Dθ

D(ω,x|x′) =

2π∫
0

Dθ(ω,x|x′) dθ . (13.62)



13 Wave Field Synthesis Techniques for Spatial Sound Reproduction 539

13.3.6.3 Independence of the Driving Signals from the Listener
Position

The driving signals for a plane wave in Eq. 13.59 or for a wave field composed
of plane waves in Eq. 13.62 formally depend on time t or frequency ω, the
loudspeaker position x′ on the contour ∂L and on the listener position x
within the area L. Time dependence is a necessary feature, dependence on the
loudspeaker position is manageable by multichannel filtering, but dependence
on the position of a listener is highly undesirable. Even if the position of a
listener was known at all times, e.g. by a tracking system, this would not solve
the problem of sound reproduction for multiple listeners in a larger audience.

Fortunately, the dependence on the listener position is rather mild and is
not at all comparable with the well-known sweet spot limitation of stereo-
phonic systems. The only component of Dθ(ω,x|x′) which depends on x is
the amplitude modification A(‖x−x′‖) due to the approximation of the line
sources. A less drastic approximation, e.g. by multiple point sources, would
result in less amplitude modification. However, most important, all the other
components of Dθ(ω,x|x′) do not depend on the listener position at all. Delay
and filtering of the wave form are correct for the total area L.

For practical realizations, the amplitude correction is set to a fixed listener
position A(‖x0 − x′‖). Then the resulting modified driving signals D0,θ are
independent of the listener position x

D0,θ(ω,x′) = Dθ(ω,x0|x′) . (13.63)

They cause a slight deviation in the reproduction volume, but delay and filter-
ing operations remain unaffected. The amount of this deviation and its spatial
distribution can be controlled by suitable choice of x0 [18].

13.3.7 Signal Processing Structure

Now that the driving signals for the loudspeakers are determined, the signal
processing structure for their production is investigated. From now on, only
the listener independent driving signals D0,θ(ω,x′) are used. They are the
output of a signal processing chain with the wave forms F (ω, θ) of the plain
wave components as input. In short form this processing chain is written as

D0,θ(ω,x′) = M(ω,x′, θ)F (ω, θ) (13.64)

with

M(ω,x′, θ) = 2w(x′, θ)A
(‖x0 − x′‖)K(ω) e

j
ω

c
〈x′,nθ〉

. (13.65)

Complex wave fields can be represented by a superposition of plane waves
as shown in Eq. 13.62. In practical spatial reproduction systems the number
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of plane wave components is limited. Then the driving signals contain con-
tributions from a finite number of plane waves from a discrete set of angles
denoted by θm with m = 1, 2, . . .

D0(ω,x′) =
∑
m

D0,θm
(ω,x′) =

∑
m

M(ω,x′, θm)F (ω, θm) . (13.66)

Furthermore, from this finite number of plane wave components, driving sig-
nals for each discrete loudspeaker position x′

n have to be generated. The
resulting structure is best formulated in vector notation with

D0(ω) =

⎡⎢⎢⎣
...

D0(ω,x′
n)

...

⎤⎥⎥⎦ , F (ω) =

⎡⎢⎢⎣
...

F (ω, θm)
...

⎤⎥⎥⎦ , (13.67)

M(ω) =

⎡⎢⎢⎣
...

. . . M(ω,x′
n, θm) . . .

...

⎤⎥⎥⎦ . (13.68)

Then the vector of driving signals for each loudspeaker is calculated from the
vector of wave forms for each plane wave component by

D0(ω) = M(ω)F (ω) . (13.69)

In the time domain the driving signals are the result of a multichannel con-
volution

d0(t) = m(t) ∗ f(t) . (13.70)

In short, the signal processing structure for the calculation of the loud-
speaker driving signals is a multiple-input, multiple-output (MIMO) system
which performs a multichannel convolution with the wave forms of the plane
wave components. The convolution filters comprise various operations in time
and space as discussed in Sec. 13.3.6.2 and 13.3.6.3.

13.4 Implementation of a Wave Field Synthesis System

Finally, the implementation of a wave field synthesis system is shown by an
example. Fig. 13.9 sketches a typical configuration of a virtual acoustical scene.
The grey background shows the floor plan of a church with the apsis on the
right. Here a singer or a musician is placed as a primary sound source. Its
sound waves propagate through the church via a direct path and multiple
reflections (indicated by dashed lines). The intention is now to reproduce the
sound field in the center part of the church by a wave field synthesis system
installed at a remote location. To this end, the sound waves arriving at the
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Fig. 13.9. Reproduction of a virtual environment with a wave field system.

boundary of the listening area serve as source signals for the loudspeakers of
the wave field synthesis system.

There are different ways to obtain these loudspeaker signals corresponding
to model based and data based rendering techniques (see Sec. 13.3.6). In this
example, a virtual scene model based on a decomposition into plane waves is
used for simplicity. For more advanced approaches using data based rendering
see e.g. [12,21].

The acoustical scene inside the church can be simplified e.g. by an image
source model. It starts from a point source model for the primary source in the
apsis and approximates the reflections by sources mirrored on the reflecting
surfaces. The total sound field is then represented by a multitude of point
sources. Each of these point sources can be decomposed into a superposition
of plane waves. The directions for two selected reflections to an arbitrary
listener position are indicated by the dashed lines in Fig. 13.9. Varying the
secondary source position along the boundary ∂L of the listening area gives
the normal directions nθ for the determination of the driving signals e.g.
in Eqs. 13.59 and 13.60. Playing back the driving signals with a wave field
installation in a remote listening room (indicated by the solid line in Fig. 13.9)
then reproduces the sound field within the listening area.

An implementation of a wave field synthesis system with a circular loud-
speaker array is shown in Fig. 13.10. Here the planar area L is a disc with
a radius of 1.5 m. A total of 48 two-way loudspeakers are mounted on the
circumference ∂L with a spacing of about 20 cm. The analog driving signals
are delivered by three 16-channel audio amplifiers with digital inputs shown in
Fig. 13.11. The digital input signals are the result of the multichannel convo-
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lution (Eq. 13.70). It is realized by fast convolution techniques in real-time on
a personal computer. The system described here is located at the Telecommu-
nications Laboratory (Multimedia Communications and Signal Processing) of
the University of Erlangen-Nuremberg in Germany [13].

Fig. 13.10. Circular loudspeaker array with a radius of 1.5 m and 48 channels.

Fig. 13.11. Three 16-channel audio amplifiers for the array in Fig. 13.10 mounted
in a 19 inch rack.

13.5 Conclusions

This chapter has given an introduction to wave field synthesis. It is based on
the acoustic wave equation and the representation of its solutions by plane
waves and Green’s functions. Starting from these physical foundations, it has
been shown how to derive the driving signals for the loudspeaker array of the
resulting wave field synthesis systems.
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The derivation is valid for rather general geometries and sizes of loud-
speaker arrays. Furthermore, no assumption on the position of the listener is
required. Then the reproduced sound field is physically correct within the lim-
itations imposed by amplitude deviation and by spatial discretization effects.
The computation of the loudspeaker driving signals is conceptually simple
and is performed by a multichannel convolution. In short, the realizing tech-
nique of wave field synthesis systems is obtained by mapping the acoustic
wave equation to a multiple-input, multiple-output system (MIMO) system.

However, the practical realization of wave field synthesis has some pitfalls,
which can be avoided by further signal processing techniques. These pertain
the simplified monopole model of the loudspeakers and the acoustical reflec-
tions of the loudspeakers within the listening room.

So far it has been assumed that acoustical monopoles can be approximated
well by small loudspeakers with closed enclosures. If required, this approxi-
mation can be improved with digital compensation of non-ideal loudspeaker
properties [20]. The second pitfall consists of the reflections of the loudspeaker
array signals in the listening room. They may degrade the performance level
predicted from theory. Countermeasures are passive or active cancellation of
these reflections. Especially, active cancellation seems promising by using the
loudspeaker arrays for reproduction also for the cancellation of room reflec-
tions [19].

The presentation here has been focussed on the determination of the
driving signals, once a representation of an existing or virtual sound field
is given in terms of plane waves. Such a representation is always possible
through the so-called plane wave decomposition [12]. How to obtain this de-
composition from microphone array measurements in a real room belongs to
the area of wave field analysis. This area has not been discussed here in de-
tail. For more information see e.g. [12, 21]. Also not discussed here were the
relations of wave field synthesis to other spatial reproduction techniques. For
a comparison with Ambisonics see [15].
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Signal Processing for In-Car Communication
Systems

Gerhard Schmidt and Tim Haulick

Harman/Becker Automotive Systems, Ulm, Germany

In limousines and vans communication between passengers in the front and
in the rear may be difficult – especially if the car is driven at medium or high
speed, resulting in a large background noise level. Furthermore, driver and
front passenger speak towards the windshield. Thus, they are hardly intelli-
gible for those sitting behind them. To improve the speech intelligibility the
passengers start speaking louder and lean or turn towards their communica-
tion partners (see Fig. 14.1). For longer conversations this is usually tiring
and uncomfortable.

Passenger compartment

Driving
direction

– –5 ... 15 dB*

Fig. 14.1. Communication between passengers in a car (∗acoustic loss, referred to
the right ear of the driver).

A way to improve the speech intelligibility within a passenger compart-
ment is to use an in-car communication system [31, 35] – often shortly called
intercom system. These systems record the speech of the speaking passen-
gers by means of microphones and improve the communication by playing the
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recorded signals via those loudspeakers located close to the listening passen-
gers. Fig. 14.2 sketches the structure of a simple car interior communication
system aimed to support front-to-rear conversations with one microphone and
one loudspeaker.

( )s t ( )u t

Driver Back seat
passenger

Echo (feedback)
cancellation

Gain
adjustment

Nonlinear
processing

Echo (feedback)
suppression

LM( )th

LM
ˆ ( )nh

FM( )th

Passenger compartment

Micro-
phone

Loud-
speaker

LR( )th
FR( )th

Ampli-
fier

Ampli-
fier

DA con-
verter

AD con-
verter

LsVMicV

AA
DD

+ ( )nc∼
( )x n( )y n

Fig. 14.2. Structure of a basic car interior communication system.

As it is clearly visible in Fig. 14.2, intercom systems operate in a closed
electro-acoustic loop. The microphone picks up at least a portion of the loud-
speaker signal. If this portion is not sufficiently small sustained oscillations
appear – which can be heard as howling or whistling. The howling threshold
depends on the output gain of the intercom system as well as on the gains
of the analog amplifiers VMic and VLs. For this reason all gain settings within
the system need to be adjusted carefully.

To improve the stability margin signal processing, such as beamforming,
feedback and echo cancellation, adaptive notch filtering, adaptive gain adjust-
ment, and nonlinear processing can be applied. A few basic processing units
are already depicted in Fig. 14.2.

Before we will describe the signal processing units in more detail in
Sec. 14.2, we will discuss the boundary conditions we have to fulfill when
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designing communication systems for passenger compartments in the next
section. In contrast to hands-free telephones or speech recognition engines no
methods for evaluating the quality of intercom systems have been standard-
ized or even published yet.1 Thus, evaluation is not as easy as in other speech
and audio applications. However, a few measurements (binaural recordings)
as well as subjective tests (performed in a car equipped with an intercom
system) are presented at the end of this contribution.

14.1 Basics

When designing an intercom system a variety of limiting conditions and sys-
tem demands will appear. In order to understand the origin of these demands
a few – mostly physical or psychoacoustic – phenomena will be described
within this section. Furthermore, models for all important transmission paths
are introduced. This allows to give a first motivation for some of the signal
processing units, such as feedback cancellation and beamforming.

14.1.1 Communication without Intercom Systems

We will start with the analysis of the acoustic scenario within a passenger
compartment without an intercom system. Comparisons of communication
channels between standing vehicle and high speed as well as between passen-
gers sitting side by side and behind each other allow to get an impression of
the required gain or SNR improvement of intercom systems.

Because of the directionality of a human head2 – depicted for two fre-
quency ranges in Fig. 14.3 – it is harder to understand someone from behind
than it is during an eye-to-eye conversation. In contrast to the rear passen-
gers, driver and front passenger do not speak towards their communication
partners. Thus, they are less intelligible. The frequency range from 1400 to
2000 Hz, for example, is attenuated by more than 10 dB when listening to
someone from behind (φ = 180o) compared to an eye-to-eye communication.
For this reason, it might be sufficient to enhance only the communication from
front to rear within a passenger compartment. However, this is only true for
cars with only two rows of seats. In minibusses or very large limousines an
intercom system should support both directions.

Another important question is how much “enhancement” (in terms of am-
plification) is required. In most cars the speech intelligibility is good or at
least sufficient if the car is not driving. In such a scenario an intercom system

1 For hands-free telephones, e.g., a variety of measurements including test signals
[24], measurement procedures, as well as system requirements, such as minimal
echo attenuation or maximum delay [21] have been standardized.

2 Here the directionality of the human speaking apparatus (mouth, head) – not of
the listening system – is meant.
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Fig. 14.3. Average directionality of a human mouth and head (according to [29]).

would make the car sound more reverberant and, thus, reduce the communi-
cation quality. However, at medium or high speed things are changing and an
intercom system is able to enhance the speech intelligibility considerably.

Fortunately, an in-car communication system does not have to compensate
– in terms of loudspeaker gain – the full amount of the noise power difference
between standing car and high speed. Car noise results from a large number
of sources. The main components are engine noise, wind noise, tire noise, and
noise from devices (e.g., fans) inside the passenger compartment. Fig. 14.4
shows estimates of power spectral densities of noises measured in a car at
various speeds.

As one can see in Fig. 14.4 the power of the background noise increases
by more than 30 dB at nearly all frequencies when the car accelerates from 0
to 150 km/h. However, because of the so-called Lombard effect [33] it is not
necessary to increase the amplification of an intercom system by the same
amount. Any person who speaks in a noisy environment will automatically
alter the speech characteristics in order to increase the efficiency of communi-
cation over the noisy channel. This effect can be described in more detail by
the following statements [14]:

• The average bandwidth of most phonemes decreases.
• The formant frequencies of vowels are increased.
• The first formant frequency of most phonemes increases.
• The formant amplitudes increase, leading to an increased spectral tilt.
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Fig. 14.4. Estimates of the power spectral densities of noise measured in a car.
For the analysis the same part of motorway was driven at various speeds (with
permission from [13]).

As a result of the last point, the overall speech level rises with increasing
background noise power. Rates of about 0.3–1 dB of speech power increment
per decibel of background noise increment have been reported [14]. Thus, the
power of the same speech sequence recorded in a car can vary by about 10–30
dB, depending on whether the car is parked or moving at high speed.

In Fig. 14.5 the results of an analysis of the speech power in dependence
of the noise power (A-weighted) are depicted. About 2000 utterances were
recorded in a car driven at different speeds including standstill. For the record-
ings a close-talking microphone has been utilized. By using a correction filter
the microphone was calibrated such that the same power was measured as
in the mouth reference point (MRP).3 The speakers were sitting on the front
passengers seat and the car was driven at a speed of either 0 km/h, 90 km/h,
130 km/h, or 160 km/h. Furthermore, the speakers were asked to spell city
names and to command a speech recognition system in terms of speaking a
phone number. In order to get also natural utterances the speakers were asked
what they had eaten for breakfast and what kind of electronic devices they
own. Each of these answers results in one of the entries in terms of pairs of
speech power and A-weighted noise power in Fig. 14.5.

3 The mouth reference point (MRP) is defined as the point that is about 25 mm
in front of the center of the lips. Further details about the definition of this point
can be found in the ITU-T recommendation P.64 [22].
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Fig. 14.5. Analysis of the Lombard effect. About 2000 utterances were recorded in
a car driven at different speeds. At higher speed (noise power > 55 dBA) an increase
of the average speech power of about 0.84 dB per dB noise power increment was
measured.

In order to get a model for the dependency between the speech power and
the background noise level the data set was split in two categories. It has
been assumed that the speech power is not dependent on the noise level if the
latter is below a certain threshold. For this reason, we put each speech-noise-
power pair with an A-weighted noise level below 55 dBA into the first category
and the others into a second. For the first category we modelled the speech
power simply by the average over all measurement points (horizontal lines in
Fig. 14.5). For the second category we computed a regression model of first
order (lines in the right part of the diagrams in Fig. 14.5). The gradient of this
regression line was about 0.3 for both male and female. That means that an
increase of the noise level (A-weighted) by one decibel results in an increase
of the speech power by about 0.3 dB. However, also the large variations of the
speech power within this analysis should be mentioned. As a result one can
conclude that the gain of an intercom system should be computed adaptively
from both the measured noise power as well as the average speech power.

For further answering the question about the required gain of intercom
systems an analysis of the mouth-to-ear transfer functions within a car with-
out such a system is helpful. These frequency responses can be measured by
placing a so-called artificial mouth loudspeaker4 at the speaker’s seat and tor-
sos with earmicrophones [25] at the listeners seats. In Fig. 14.6 the frequency
responses measured between the driver’s mouth and the left ear of the second

4 This is a loudspeaker which has (nearly) the same radiation pattern as the human
speech apparatus.
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front passenger, respectively the left ear of the rear passenger behind the front
passenger are depicted. On average the acoustic loss to the rear passenger is
5 to 15 dB larger (compared to the front passenger).

If we assume that even at high speed the communication quality between
two passengers sitting in the same row of seats within a car is at least sufficient,
such measurements give a first hint about the required gain of intercom sys-
tems enhancing front-to-rear communications. Of course, whenever the power
of the speech components is increased the noise level should be kept constant –
otherwise the signal-to-noise ratio (SNR) will not be increased and the speech
quality will not be enhanced.

Finally, two further aspects should be mentioned. An SNR improvement
of about 10 dB is only an average value. The amount of required gain varies
in relation to the distance of the front and rear seat rows and is dependent
on the materials which cover the passenger compartment. Diffuse field dis-
tances measured in various cars indicate that up to a distance of 1.5 m the
radiated acoustic power decreases with 1/r2, if r describes the distance from
the sound source. Thus, the larger the distance between speaking and listen-
ing passenger is, the more gain is required. Furthermore, most materials used
for lining passenger compartments absorb high frequency sound energy better
than low frequency energy. As a consequence it is more important to enhance
medium and high frequencies than low ones if the speech intelligibility should
be increased.
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Fig. 14.6. Frequency responses of different (driver to right front passenger and
driver to right rear passenger) communication directions within a passenger com-
partment.
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14.1.2 Communication with Intercom Systems

In Sec. 14.1.1 we have analyzed the communication within a passenger com-
partment without an intercom system. In this section we will analyze the
effects that appear if a communication system is activated. For reason of sim-
plicity we will model all impulse responses that appear within the passenger
compartment as time discrete systems. Furthermore, all systems are consid-
ered time-invariant. Thus, all time indices, denoted by (n), can be omitted:5

hXY,i(n) = hXY,i. (14.1)

In this notation the subscript i denotes the coefficient index of the impulse
response. The terms X and Y describe the source and the sink of the trans-
mission. Table 14.1 shows an overview about the utilized abbreviations.

Table 14.1. Abbreviations utilized for description of impulse responses.

Abbreviation Meaning

F Front
L Loudspeaker
M Microphone
R Rear
S Speaking person
I Intercom system

Whenever necessary we will assume further that the impulse responses
are causal and can be modeled with finite memory. Thus, vector notation is
utilized:

hXY =
[
hXY,0, hXY,1, ..., hXY,NXY − 1

]T
. (14.2)

Finally, we will assume that the intercom system with input y(n) and output
x(n) (see Fig. 14.7) can be modeled as a linear, time-invariant system with
frequency response

HI

(
ejΩ

)
=
X
(
ejΩ

)
Y (ejΩ)

. (14.3)

This last assumption is surely not true in reality. However, it allows to apply
the theory of linear, time-invariant (LTI) systems, that gives us a deeper
insight into a few basic problems of intercom systems.
5 Within the figures of this section the time dependency—denoted by (n)—has not

been dropped.
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14.1.2.1 Frequency Response of the Closed-Loop System

An important issue for intercom systems is to guarantee stability. Due to the
closed-loop operation an upper bound for the gain |HI(ejΩ)| of the stable
system exists. If we define the signal of the speaking passenger s(n) received
at the microphone

s̃(n) =
NFM−1∑

i=0

hFM,i s(n− i) (14.4)

as the input (see Fig. 14.7) and the signal of the loudspeaker x(n) as the

( )s n ( )u n

Driver Back seat
passenger

Intercom system

LM( )nh

FM( )nh

Passenger compartment

Micro-
phone

Loud-
speaker

LR( )nh
FR( )nh

( )x n( )y n
I( )nh

Fig. 14.7. Impulse responses within a passenger compartment equipped with an
intercom system.

output of the closed-loop system, we can write the frequency response as

HML

(
ejΩ

)
=

HI

(
ejΩ

)
1 −HI(ejΩ) HLM(ejΩ)

. (14.5)

The term HI(ejΩ)HLM(ejΩ) is often called the open loop gain [29] of the
system. In order to assure a stable system, the open loop gain has to be
smaller than unity at all frequencies:∣∣∣HI

(
ejΩ

)
HLM

(
ejΩ

) ∣∣∣ < 1. (14.6)

By rearranging Eq. 14.6 we can specify an upper bound for the system gain
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(
ejΩ

)∣∣ ≤ ∣∣HLM

(
ejΩ

)∣∣−1
(14.7)

As we can see the upper limit for |HI(ejΩ)| is directly bounded by the inverse
of |HLM(ejΩ)|. This motivates the application of a feedback cancellation filter.
An adaptive filter ĥLM(n) is placed in parallel to the loudspeaker-enclosure-
microphone (LEM) system hLM and its output d̂(n) is subtracted from the
microphone signal. Fig. 14.8 shows the structure of an intercom system con-
sisting of an adaptive feedback cancellation filter and residual processing.

Feedback
cancellation

Residual
system

( )x n

( )x n

( )y n

( )y n

LM
ˆ ( )nh

I( )nh

I( )nh
∼

ˆ( )d n

Fig. 14.8. Structure of a basic intercom system consisting of a feedback cancellation
filter ĥ LM(n) and a residual system h̃ I(n).

The frequency response of an intercom system as depicted in Fig. 14.8 can
be described as:

HI

(
ejΩ

)
=

H̃I

(
ejΩ

)
1 + H̃I(ejΩ) ĤLM(ejΩ)

. (14.8)

Inserting this result into Eq. 14.5 leads to

HML

(
ejΩ

)
=

H̃I

(
ejΩ

)
1−H̃I(ejΩ)

[
HLM(ejΩ) − ĤLM(ejΩ)

]. (14.9)

As we can see the maximum gain of the stable intercom system is bounded
now by the difference of the real and the estimated transmission from the
loudspeaker to the microphone. Whenever an optimal match between both
frequency responses is achieved,

ĤLM, opt

(
ejΩ

)
= HLM

(
ejΩ

)
, (14.10)

the stability problem does not exist any more and the frequency response of
the residual system
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HML

(
ejΩ

)∣∣
opt

= H̃I

(
ejΩ

)
(14.11)

can be designed arbitrarily. However, a perfect match of the feedback can-
cellation filter according to Eq. 14.10 cannot be guaranteed in reality for all
situations, since the LEM system is strongly time-variant (e.g., the system
changes whenever one of the passengers moves) and the convergence speed
of every adaptation algorithm is limited. Furthermore, most adaptive algo-
rithms converge towards the Wiener solution [42]. Unfortunately, this is not
the desired solution here, as we will see in Sec. 14.2.5.

14.1.2.2 Transmission from Speaking to Listening Passenger

Besides analyzing the stability and the closed-loop gain of an intercom system
it is also important to set up a model for the transmission from the speaking
to the listening person. According to the notation of the impulse responses
depicted in Fig. 14.7 we can describe this transmission in terms of a frequency
response as (see Fig. 14.9)

( )s n ( )u n

Additional coupling caused by the intercom system

Transmission from
front passenger
to microphone

Transmission from
loudspeaker to
rear passenger

Direct coupling

LM( )nh

FM( )nh LR( )nh

FR( )nh

I( )nh

Fig. 14.9. Transmission from the speaking to the listening passenger.

HSR

(
ejΩ

)
= HFR

(
ejΩ

)︸ ︷︷ ︸
Direct coupling

+HFM

(
ejΩ

)
HML

(
ejΩ

)
HLR

(
ejΩ

)︸ ︷︷ ︸
Coupling caused by the intercom system

. (14.12)

The first term on the right side of Eq. 14.12 HFR

(
ejΩ

)
describes the direct

coupling from the speaking to the listening passenger. The second term, in
the following abbreviated by

H̃FR(ejΩ) = HFM

(
ejΩ

)
HML

(
ejΩ

)
HLR

(
ejΩ

)
, (14.13)

describes the additional coupling caused by the intercom system. With these
definitions we can set up a basic rule for designing intercom systems:
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• Maximize the ratio

RFR(Ω)=

∣∣∣HFR

(
ejΩ

)
+H̃FR

(
ejΩ

)∣∣∣∣∣∣HFR(ejΩ)
∣∣∣ → max, (14.14)

with respect to Eq. 14.7.

It is important to note that besides the stability margin (Eq. 14.7) a few
other limiting conditions have to be considered. One of these is that visual
and acoustic source localization should match. This is especially a problem for
the rear passengers as they see the front passengers in front of them. However,
if the rear loudspeakers are installed behind the rear seats and the gain of these
loudspeakers is too high, the acoustic localization indicates that the speaking
person is behind the listening one. This mismatch of different senses causes a
very unnatural impression of the communication. To overcome this problem
the gain of the rear loudspeakers has to be limited according to the delay
between the primary source (e.g., the driver) and the secondary source (e.g.,
loudspeaker in the rear). The amount of amplification until the localization
mismatch effect appears is given by the so-called precedence effect also called
Haas effect or law of the first wave front [11].

In Fig. 14.10 the results of a psycho-acoustic experiment [34] are depicted.
Two loudspeakers were placed at angles of 40◦ and −40◦ in front of a lis-
tener. Both loudspeakers emit a prerecorded speech signal but one of the
loudspeakers was delayed. About 20 subjects were asked to adjust the gain of
the delayed loudspeaker until they have the impression that a) the loudness of
both loudspeakers is about the same, b) the signal of the earlier loudspeaker
is not audible any more, and c) the delayed loudspeaker is not audible any
more. As one can see in Fig. 14.10, a second loudspeaker, which emits a 15
ms delayed signal, can be amplified by 10 to 12 dB until the equal loudness
impression from both directions is achieved. The overall loudness, however,
could be enlarged by 10 to 12 dB. These results correspond very well with
experiments made within cars. Rear loudspeakers in an intercom system can
significantly improve the loudness without changing the acoustically perceived
localization of the source. At a delay of 10 to 20 ms best results were achieved.
However, the maximum gain has to be adjusted carefully and individually for
each type of car.

14.1.2.3 Transmission from Speaking to Speaking Passenger

In the preceding section the restriction of the system gain with respect to
localization mismatch was discussed. However, there are further and some-
times even stricter constraints to the system gain. If the loudspeaker signals
are amplified too much the speaking passenger becomes aware of his or her
own echo. This is very annoying for the speaking person and usually leads
to non-acceptance of the intercom system. The coupling from the speaking



14 Signal Processing for In-Car Communication 559

0 5 10 15 20 25 30 35 40 45 50
-15

-10

-5

0

5

10

15

20

25

30

dB

Delay in ms

Level differences between the first and the second wave front (angle difference = 80o)

First wave front is not audible
Equal loudness of both wave fronts
Second wave front is not audible

Fig. 14.10. Results of a psycho-acoustic experiment (according to [34]) for deter-
mining the relationship between the loudness of different loudspeakers and human
auditory source localization.

person back to him or herself can be described in a similar manner as the
coupling from the speaking to the listening passenger. We will assume for
simplicity that all coupling components are linear and time-invariant – thus
we can describe the coupling in terms of the frequency response

HSS

(
ejΩ

)
= HFF

(
ejΩ

)︸ ︷︷ ︸
Direct coupling

+HFM

(
ejΩ

)
HML

(
ejΩ

)
HLF

(
ejΩ

)︸ ︷︷ ︸
Coupling caused by the intercom system

. (14.15)

Fig. 14.11 shows the underlying structure. The term HFF(ejΩ) denotes the
natural coupling from the mouth over the air into the ears when someone is
speaking (nonlinear characteristics such as coupling over the bones, etc. are
not treated here). The second term on the right side of Eq. 14.15 describes the
additional coupling caused by the intercom system. This coupling component
should be kept below a threshold which originates in self-masking effects of
the human auditory system. At a delay of about 10 ms the ratio

RSS(Ω) =

∣∣∣HFM

(
ejΩ

)
HML

(
ejΩ

)
HLF

(
ejΩ

) ∣∣∣∣∣∣HFF(ejΩ)
∣∣∣ (14.16)

should be smaller than -15 dB. If the intercom system introduces more delay
an even smaller ratio is required. According to a study of AT&T [37] each
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Fig. 14.11. Transmission from the speaking to the speaking passenger.

doubling of the delay results in a 6 to 8 dB lower maximum playback volume.
Combining these results with the other boundary conditions, it turns out that
the overall delay introduced by the system (AD and DA converters, processing
delay, and delay caused by the acoustic paths) should not exceed 10 ms.

When comparing the last terms on the right sides of Eqs. 14.12 and 14.15
one realizes that the only difference is the acoustic transmission from the loud-
speaker to either the listening or the speaking person. In order to get best
intelligibility for the listening passenger one would like to make |HLR(ejΩ)| as
large as possible. On the other hand |HLF(ejΩ)| should be as small as possible
in order not to disturb the speaking passenger. One way of achieving both is
to place the loudspeaker as close as possible to the listeners ears and as far as
possible from the ears of the speaking person. Another possibility is the usage
of a loudspeaker array which should be designed for achieving maximum out-
put into the direction of the listening passengers while blocking the direction
to the speaking passengers. However, due to the size of typical loudspeakers
compared to the involved wave lengths beamforming with loudspeakers is not
as simple and effective as using an array of microphones.

14.2 Signal Processing for Intercom Systems

Fig. 14.12 sketches the structure of an intercom system aimed to support front-
to-rear conversations (for the opposite direction a similar structure is applied).
Compared to the basic system depicted in Fig. 14.2 now much more details
are shown. Since driver and front passenger are located at well defined posi-
tions, specially designed microphone arrays can point towards each of them,
which allows to use fixed beamformers. This allows to start with the echo and
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Fig. 14.12. Structure of a car interior communication system aimed to support
front-to-rear conversations.

feedback cancellation after the beamformer (and to reduce the computational
complexity because only one echo cancellation filter per reference channel is
required). Feedback suppression by means of an adaptive notch filter can im-
prove the system stability by rising the howling margin. A mixer combines the
signals of driver and second front passenger according to the detected speech
activity. A device with nonlinear characteristic attenuates large signal ampli-
tudes before the signals are played back via the loudspeakers. The output gain
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of a car intercom system needs to be adjusted continuously according to the
current driving situation. While only a moderate gain is required whenever the
car is in low noise conditions, a large gain is required and more artifacts will
be tolerated at high speed. Finally, loudspeaker equalization (either adaptive
or fixed) can be applied.

In this section we will introduce the basic building blocks of an in-car
communication system as described above (and depicted in Fig. 14.12). Going
into the details of each block would go far beyond the scope of this chapter.
For this reason, the interested reader is referred to the references cited within
the corresponding sections.

14.2.1 Processing Structures

Beside selecting adaptive algorithms [9] like NLMS, affine projection, RLS,
etc., the system designer also has the freedom to choose between different
processing structures. The most popular ones are broadband processing, block
processing6, and subband processing. The special challenge in in-car commu-
nication systems consists in designing a system with an overall delay of not
more than 10 ms. Signals from the loudspeakers delayed for more than that
will be perceived as echoes and reduce the subjective quality of the system.
For this reason, only broadband processing or block processing with very small
block sizes can be applied if a high system quality should be achieved.

14.2.2 Preprocessing

The signals picked up by the front microphones are highpass filtered first as
the energy of the background noise in a car is typically concentrated in the low
frequency range (see Fig. 14.4). Furthermore, the attenuation of the speech
signal resulting from the directionality of the human head at low frequencies
is not as high as at medium or high frequencies (see Fig. 14.3). For this reason
low order Butterworth highpass filters with a 3 dB cut-off frequency of about
300 Hz have been applied.

Additionally it is checked whether the signals at the AD converters are
clipped – in this case the assumption of a linear relationship between loud-
speaker and microphone signals is no longer valid. As a result, any adaptive
algorithm (echo and feedback cancellation) which relies on this assumption
is paused. Clipping of the AD converters can appear if, for example, a loud-
speaker located close to the microphones emits loud radio signals.

6 By block processing we mean performing the convolution and/or the adaptation
in the frequency domain and using overlap-add or overlap-save techniques.
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14.2.3 Beamforming

If more than one microphone is installed array processing – in terms of beam-
forming – can be utilized for enhancing the incoming signals.7 The output
signal u(n) of a beamformer is given by the addition of the (FIR) filtered
microphone signals (see Fig. 14.13):

u(n) =
L−1∑
i=0

yT
i (n) gi(n) , (14.17)

where L and M denote the number of microphones and the length of the FIR
filters, respectively. The vectors yi(n) and gi(n) are defined as

yi(n) =
[
yi(n), yi(n− 1), ..., yi(n−M + 1)

]T
, (14.18)

gi(n) =
[
gi,0(n), gi,1(n), ..., gi,M−1(n)

]T
. (14.19)

The simplest type of beamformer is the delay-and-sum beamformer. In this
case the filters are time-invariant (gi(n) = gi) and designed such that

Gi

(
ejΩ

) ≈ 1
L
e−jΩτifs , (14.20)

where τi represents the delay of the ith microphone channel for time-aligning
the signals from a predefined source direction [30]. If this direction is not
known a priori it has to be estimated [20, 28]. The so-called beampattern for
linear arrays (all microphones are located within one line and are equally
spaced) is defined as the squared magnitude of

B(Ω,φ) =
L−1∑
i=0

Gi

(
ejΩ

)
e
−jΩid fs

c
sinφ

. (14.21)

It is depicted in the right part of Fig. 14.13 for an array consisting of L = 4
cardioid sensors with a distance of d = 5 cm between two adjacent micro-
phones. The quantity c is denoting the speed of sound (c ≈ 340 m/s), the
angle φ describes the angle of incidence, and fs is denoting the sampling rate.
If a better directivity at low frequencies should be achieved the delay-and-sum
principle can be extended to a filter-and-sum approach. In this case the filters
gi are designed such that the output power of the beamformer is minimized
while keeping the receiving characteristic of the desired direction φ0 as a pure
delay of K0 samples:

E
{
u2(n)

}→ min , with B(Ω,φ0) = e−jΩ K0 . (14.22)

7 In Fig. 14.12 the same microphones are used to record the speech of the driver
and the second front passenger.
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When minimizing the output power according to Eq. 14.22 the temporal and
spatial correlation properties of the noise need to be known. A superposition
of the correlation properties of a diffuse noise field, of one or more directional
noise sources (those loudspeakers which emit the signals for the rear seat
passengers) and of sensor noise is often utilized. For the design depicted in
Fig. 14.13 a desired source was assumed at 22◦ and an undesired source (a
loudspeaker for the rear passengers) at an angle of −22◦. Each filter gi consists
of M = 48 coefficients. Additionally more constraints can be added to the
design process, making the result more robust against positioning tolerances
and sensor imperfections [17].
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Fig. 14.13. Characteristics of a microphone array.

If the temporal and spatial correlation properties are not known a priori
adaptive beamforming is usually applied. The most popular approach is the
so-called generalized sidelobe cancellation (GSC) according to [10]. In order to
make the adaptive approach more robust against several kinds of distortions,
a variety of extensions such as an adaptive blocking matrix [19] or adaptive
microphone calibration have been proposed. Because of reverberation effects it
is very important to adapt a beamformer in GSC structure only during speech
pauses of the desired speaker [18] – otherwise signal cancellation may occur.
The signal cancellation is caused by delayed versions of the desired signal. This
restriction in particular makes it very difficult to use adaptive beamformers
for in-car communication systems. For this reason it is assumed that only non-
adaptive beamformers are utilized here. In this case echo cancellation can be
applied after the beamformer (see Fig. 14.12). This reduces the computational
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complexity since only one echo cancellation filter has to be computed for each
beamformer output (instead of one echo canceller per microphone).

If we recall a few of the definitions that were introduced in Secs. 14.1.2.1 –
14.1.2.3 one can see the influence of beamforming on the system parameters.
In Sec. 14.1.2.1 the stability of the entire system was analyzed. As long as the
gain of the entire intercom system |HI(ejΩ)| is smaller than the inverse gain
of the transmission from the loudspeaker to the microphone∣∣∣HI

(
ejΩ

) ∣∣∣ ≤ ∣∣∣HLM

(
ejΩ

) ∣∣∣−1

(14.23)

the system is stable. By applying beamforming we have now several LEM
systems – one for each microphone.8 The stability condition changes to∣∣∣∣HI

(
ejΩ

) ∣∣∣∣ ≤ ∣∣∣∣ L−1∑
i=0

Gi

(
ejΩ

)
HLM,i

(
ejΩ

) ∣∣∣∣−1

. (14.24)

As long as we make sure that the weighted sum of the individual LEM fre-
quency responses is smaller than the frequency response that we get with just
one microphone ∣∣∣∣ L−1∑

i=0

Gi

(
ejΩ

)
HLM,i

(
ejΩ

) ∣∣∣∣ ≤ ∣∣∣∣HLM

(
ejΩ

) ∣∣∣∣ , (14.25)

the maximal gain of the intercom system can be increased. As a result a larger
ratio RFR(Ω) can be achieved.

Finally, an important feature of multi-microphone processing should be
considered. By using more than one microphone it becomes possible to esti-
mate the direction of a sound source. With this information it is possible to
distinguish between different sound sources (e.g. front passengers and loud-
speakers which emit the signals for the rear passengers) which are very similar
in their statistical properties. This spatial information can be exploited for en-
hanced system control [7].

14.2.4 Echo Cancellation

As depicted in Fig. 14.12 echo cancellation might be performed for two kinds
of echoes: on one hand the car radio (or the CD player, etc.) might be activated
and on the other hand the enhanced signals from the rear passengers, emitted
via the front loudspeakers, are coupling into the front microphones. For both
kinds of sources, echo cancellation can be applied in order to remove those
signal components from the microphone signals. We will start with a descrip-
tion of the cancellation of the radio signals in the next section. Cancellation
of the output signals of the rear-to-front enhancement system is principally a
very basic approach. This will be described briefly in Sec. 14.2.4.2.
8 For the reason of simplicity we assume here again that we have only one loud-

speaker.
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14.2.4.1 Cancellation of the Output Signal of the Car Radio

If the car radio as well as the intercom system are activated at the same time
the front microphones do not pick up only the speech of speaking passengers
but also the radio signals (convolved with the corresponding loudspeaker-
enclosure-microphone impulse responses). Those latter components are also
processed by the intercom system and played back via the output loudspeak-
ers. Due to the delay of the system the sound impression of the radio signals
becomes reverberant. The degree of reverberation depends on the gain and
the delay of the in-car communication system. Usually such a behavior is very
undesired. For this reason multichannel echo cancellation is applied to remove
the reverberant impression. In the following we will assume to have a stereo
car radio. However, if more than two output signals are produced, e.g., by a
DVD player, the number of channels need to be increased.

The radio signals of the left loudspeaker xL(n) and of the right loudspeaker
xR(n) are transmitted via two different impulse responses, hL(n) and hR(n),
to the microphones (see Fig. 14.14).9 Two adaptive filters with impulse re-
sponses ĥL(n) and ĥR(n), respectively, try to replicate the echo signal u(n)
by appropriate outputs d̂L(n) and d̂R(n), in order to cancel the echo of the
car radio.

A dual-channel structure as depicted in Fig. 14.14 poses the following
problems with regard to the adaptation of the echo cancellation filters [2]:

• For certain types of radio signals, such as news presentations or interviews
without background music, the signals xL(n) and xR(n) are strongly cross-
correlated since they are filtered versions of a common source signal. For
this reason, the correlation matrix

Rxx(n) = E
{[

xL(n)
xR(n)

] [
xT

L (n) xT
R(n)

]}
(14.26)

is ill-conditioned and consequently, the performance of the adaptation al-
gorithm is degraded. However, noise components in the excitation signals
xL(n) and xR(n) help reduce this effect to a certain but limited amount.
The signal vectors xL(n) and xR(n) contain the last N input signals of
the left and right radio signal, respectively. The quantity N is denoting
the filter length.

• With an ill-conditioned correlation matrix Rxx(n), the misalignment of
the echo cancellation filters is much worse for the dual-channel case than
for the single-channel case.

9 Note that for the reason of simplicity the notation of this section is not consistent
with the rest of the paper. The subscripts L and R abbreviate left and right here
(instead of loudspeaker and rear as introduced in Sec. 14.1.1). Furthermore, the
impulse responses describe the transmission between the loudspeakers and the
output of the beamformer.
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Fig. 14.14. Basic scheme for stereophonic acoustic echo cancellation of the radio
signals. The subscripts L and R abbreviate left and right here.

• Since xL(n) and xR(n) might be fully correlated, the optimal impulse
responses ĥL(n) and ĥR(n) are not uniquely defined [38] (in terms of
minimizing the power of the output signal).

In general, any imaginable method should avoid affecting stereophonic per-
ception. Several proposals for a solution of the problems listed above have
been made. According to Benesty et al. [1], any adaptive algorithm should be
backed up by a decorrelating component, in order to enhance the conditioning
of the correlation matrix Rxx(n) and to get a robust solution that is no longer
dependent on cross correlation properties. Recently a variety of methods for
reducing the correlation between left and right channel have been proposed:

• The addition of independent random noise to each channel may help re-
duce the correlation of the stereo signals and therefore enhance the per-
formance of the echo cancellation filters. Unfortunately, an improvement
of the conditioning of the correlation matrix requires rather high and thus
disturbing noise levels [38]. A possible solution to this dilemma may be to
use the auditory masking properties of the human ear. The idea consists of
adding spectrally shaped random noise that is masked by the loudspeaker
input signals to each channel [8]. The additional costs for this method can
be kept relatively low when frequency-domain adaptive algorithms for the
echo cancellation filters are applied.

• Further research has been directed towards the application of nonlinear
transformations [1]. In principle, a small signal is added to the excitation
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signals. The added signal is derived by a nonlinear function, such as half-
wave rectification, from the excitation signal itself:

x̃L(n) = xL(n) , (14.27)

x̃R(n) =

⎧⎨⎩xR(n), if xR(n) > 0,

(1 + α)xR(n), else.
(14.28)

For small amplifications (0 ≥ α > 0.3), the distortion introduced by the
use of such nonlinearities is hardly perceptible.

• Another method for decorrelating stereo signals proposes a periodically
changing delay of the excitation signal in one channel by a simple filter with
time-variable coefficients [26]. The time-variant filter consists of a 2-tap
FIR filter whose coefficients ãi(n), i ∈ {0, 1}, are controlled by a periodic
function t(n), ã0(n) = t(n), ã1(n) = 1 − t(n), with period Q. For the first
Q/2 iterations t(n) = 1, meaning that the filter output x̃R(n) is equal to
the input signal xR(n). When t(n) = 0 for the following Q/2 iterations, the
filter output is a one-sample delayed version x̃R(n− 1) of the input signal.
This alternating procedure is repeated every Q samples. Unfortunately,
the sudden change of the coefficient t(n) every Q/2 iterations leads to
audible distortions, clicks, in the processed signal x̃R(n). To avoid these
clicks, t(n) can be varied smoothly between zero and one over L samples.
For a sampling rate of 16 kHz, the parameters Q and L were suggested to
be Q = 4000 and L = 400 [39].

Note that in practice the short-term coherence between the left and right
channel is not close to one for most types of radio signals. This means that
the above mentioned decorrelation methods should only be applied for certain
types of signals, such as newscasts. For all other signal types, such as music
or advertisements, preprocessing should not be applied in order to avoid any
distortion of the audio presentation. For not completely correlated signals
selective coefficient update schemes can be applied [27]. On one hand, these
schemes decrease the computational complexity and on the other hand, the
convergence speed is improved by further decorrelation of the input signals.

Fig. 14.15 shows the results of a radio echo canceller within a car. The
driver’s speech was recorded with a 4 element microphone array integrated
in the rear view mirror. Besides the front door loudspeakers the radio signal
was also emitted via a center speaker integrated within the dashboard of the
car. Due to the closeness to the microphone array the coupling of the radio
signals into the microphone array of the in-car communication system was
very high. For this reason speech activity of the driver is hard to detect. By
applying stereo echo cancellation the short-term power of the received signal
can be reduced by about 20 dB (compare output power of the beamformer and
short-term power after subtracting the estimated radio signal in Fig. 14.15). A
detection of the periods containing speech activity of the driver is now easily
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Fig. 14.15. Results of radio echo cancellation within a car.

possible. Furthermore, the reverberant impression of the music presentation
can be reduced to a non-audible level.

14.2.4.2 Cancellation of the Output Signal of the Intercom System

In contrast to the cancellation of the radio signal the elimination of echoes
dF(n) resulting from the output of the intercom system is rather simple. Be-
cause the echo components dF(n) within the front microphone signals are
caused by the output signals of the enhancement branch rear-to-front (and
vice versa), this kind of echo cancellation is only necessary if both directions
are supported by the intercom system. Fig. 14.16 shows the basic structure of
the front echo cancellation (driver’s side) of a two-way system. Note that for
the reason of clarity not all signal processing units of each branch are depicted
in Fig. 14.16. For the adaptation of the filter ĥF(n) standard algorithms such
as the NLMS or low order affine projection can be utilized. Due to the low
signal-to-noise ratio (caused by a large amount of background noise as well as
by speech activity of the front passengers) a reliable adaptation control scheme
is required. An overview about those schemes can be found in [13, Chapter
13].

Comparable to the cancellation of the radio signals, cancellation of the out-
put signals of the reverse branches of an intercom system is rather important,
since the error rate of speech activity detection would be much higher without
it. Usually each intercom system has a loss control which opens only those mi-
crophone channels where speech activity was detected (see Sec. 14.2.8). This
improves not only the system stability, but also reduces the correlation be-
tween the excitation signal xF(n) of the adaptive filter hF(n) and those signal
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Fig. 14.16. Basic scheme for echo cancellation of output of the rear-to-front inter-
com branch.

components which disturb the adaptation process (here the output signals of
the rear loudspeakers). This correlation, however, is a severe problem for the
adaptation of feedback cancellation filters as described in the next section.

14.2.5 Feedback Cancellation

The feedback cancellation turns out to be extremely difficult since the adap-
tation of the filter ĥLM(n) is disturbed by the strong correlation between the
excitation signal of the adaptive filter x(n) and the speech signals of the driver
and second front passenger s(n):10

E {x(n)s(n+ l) } �= 0 . (14.29)

Algorithms which are converging towards the Wiener solution [16] will con-
verge towards

ĤLM,opt

(
ejΩ

)
=
Sxy(Ω)
Sxx(Ω)

= HLM

(
ejΩ

)
+
Sxs(Ω)
Sxx(Ω)

HFM

(
ejΩ

)
, (14.30)

which is not the desired solution (ĤLM,opt(ejΩ) = HLM(ejΩ)). For this reason,
the adaptation is usually carried out only at falling signal edges of the excita-
tion signal (whenever the speaking person stops talking for a short moment).
10 For the definitions of the signals, impulse and frequency responses see Fig. 14.2.
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During such periods the correlation between the excitation signal and the echo
component is much stronger than the correlation between x(n) and s(n). Fur-
thermore, during noise only periods (none of the passengers is speaking) the
output signal consists only of background noise. By replacing the output signal
with artificially generated noise the undesired cross-correlations can be forced
to become zero. However, in this case only a low excitation-to-noise ratio can
be expected and the convergence speed is slowed down. Another approach
uses nonlinear or time-variant procedures – as described in Sec. 14.2.4.1 –
applied on the system output signal x(n) in order to reduce the correlation
with the signal s(n). In current systems for feedback cancellation a combined
approach consisting of nonlinear preprocessing, comfort noise injection, and
time-variant filtering is often applied.

Even if the adaptation of the feedback cancellation filters turns out to be
rather difficult, the resulting enhancements on one hand, in terms of dere-
verberation of the system, especially in case of large gain values and on the
other hand, regarding the improvement of the system stability are of major
importance. Note the close relationship with the feedback problem in hearing
aids and public address systems.

14.2.6 Feedback Suppression

Whenever closed-loop acoustic echo control systems are operating close to
the stability margin, some sort of “emergency brake” should be implemented.
One possibility to realize this is to implement a feedback suppression filter
according to Fig. 14.17. For α = 0 the structure resembles a predictor error
filter. The FIR filter c(n) is an adaptive filter which is adjusted such that
the power of the output signal e(n) is minimized – e.g., by using the NLMS
algorithm. If howling occurs at a certain frequency the feedback suppression
filter tries to attenuate this frequency. According to the filter structure this
is possible as long as the inverse of the howling frequency is larger than ND

and smaller than ND +NC sample intervals, where NC is denoting the length
of the filter c(n).

+

+ DNz− ( )nc

( )x n ( )e n

ˆ( )n n

α

1 α−

Fig. 14.17. Structure of a basic feedback suppression system.
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Delaying the incoming signal before filtering is necessary because otherwise
the short-term correlation within the speech signal would be removed. In
this case the spectral envelope would be flattened. A delay of about 2 ms
is sufficient to avoid this. Due to periodic components of speech signals the
memory of the adaptive filter should not exceed a time interval equivalent to
the pitch period11. For this reason the filter should not contain more than 80 to
120 coefficients (at 16 kHz sampling rate). Otherwise, the periodic components
of the speech signal would be suppressed as well.

Due to short-term correlated speech components the filter also tries to
suppress parts of the speech signal. By using a small step size μ this behavior
can be avoided and only periodic distortions which are present for a longer
time interval are cancelled. A small step size, on the other hand, leads to
a slow convergence. Sudden (periodic) distortions would be attenuated only
after a non-negligible period of time. For this reason a compromise for the
step size has to be found. Usually, the NLMS algorithm with a fixed, but
small step size μ ∈ {0.01, 0.00001} is utilized. It is needless to say that other
adaptation algorithms can be used as well. Besides the ones suitable for echo
cancellation, algorithms that use higher order statistics have also been applied
to this problem [5].

Fig. 14.18 shows time-frequency analyses of output signals of an intercom
system consisting only of an amplifier and a feedback suppression filter. In a
first stage the feedback suppression unit was switched off and the gain of the
system was adjusted such that it operates close to the stability margin. The
slow decay of several formerly excited frequencies is clearly visible in the upper
diagram. The lower analysis depicts the output of the intercom system with
activated feedback suppression. All boundary conditions of the measurement
were exactly the same as in the previous experiment. Even if the decay rate
is still not as good as in the case without the additional feedback path a
significant improvement is visible (and audible). The application of feedback
suppression can improve the maximum system gain by a few decibels [32].

The basic FIR structure of a feedback suppression filter can be extended by
a weighted feedback path [3] as depicted in Fig. 14.17. By varying the feedback
gain α it is possible to modify the filter from an FIR structure (α = 0) to
an adaptive oscillator (α = 1). The motivation behind this IIR configuration
is to achieve some of the benefits of a noise canceller with a separate pure
periodic reference. With the extended structure it is possible to achieve very
narrow notches. Nevertheless, due to the IIR structure the filter might become
instable if the adaptation process forces the poles to move out of the unit circle
within the z-domain. For this reason, the stability of the structure needs to
be checked periodically.

11 The specification is only true for FIR structures. In case of IIR schemes the group
delay should not exceed the specified range.
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Fig. 14.18. Time-frequency analysis of the output signals of an intercom system
(without and with feedback suppression).

14.2.7 Combining Feedback Cancellation and Feedback
Suppression

Even though both algorithms that have been described in the last two sections
are able to reduce the feedback problem still several drawbacks exist:

• The feedback cancellation on one hand can adapt only very slowly due to
the correlation between the loudspeaker signal x(n) and the speech signals
of the driver and front passenger s(n). For this reason, the achievable
feedback reduction as well as the required adaptation time are much worse
compared to standard echo cancellation approaches known from hands-free
telephone systems.

• The feedback suppression as described in Sec. 14.2.6, on the other hand,
is able to attenuate feedback components much faster. This approach,
however, suffers from the fact that each time a certain feedback component
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is suppressed it does no longer contribute to the cost function.12 This
leads to a release of the once achieved attenuation and the component
(respectively its center frequency) can pass the feedback suppression filter.
After a short period of time the whole system might start howling or
whistling again. As soon as this happens the filter is able to attenuate this
component again.

The drawbacks of both approaches can be avoided if feedback cancellation
and feedback suppression are combined (see Fig. 14.19). The basic building
block of such a combined system is again a predictor like feedback suppres-
sion filter c(n) without a feedback path (α = 0). The adaptation of the filter,
however, is not performed with the input signal x(n) – as before – but with
an artificially generated signal x̃(n). This signal consists not only of the input
components but also of those components that the basic structure according
to Fig. 14.17 subtracts from the input signals. With this mechanism the prob-
lem with the cost function of the pure suppression approach can be avoided.
Since the artificially added components should not be audible the structure
of the feedback suppression is split into an adaptation branch (with backward
addition of the feedback components) and a filtering branch (without these
signal components).

Before adding the estimated feedback components n̂(n) to the input sig-
nal they are filtered such that the amplitude and phase modifications of the
loudspeaker-enclosure-microphone system are also considered. This is achieved
by applying a copy of the feedback cancellation filter ĥLM(n) before adding
the signal n̂(n) to the input signal.

A slow adaptation of the feedback cancellation filter is not as critical as in
the direct approach (described in Sec. 14.2.5) since the filter is only used to
modify the estimated feedback components. It is only important that the filter
adapts at those frequencies where large feedback components appear – and
that is exactly the behavior of the filter. Mismatch at the other frequencies
is not as critical as before because the filter is not used within a signal path
that is connected to a loudspeaker.

To show the advantages of the combined structure versus the basic struc-
ture that has been described in Sec. 14.2.6 three time-frequency analyses are
depicted in Fig. 14.20. The lowest diagram shows an analysis of the output sig-
nal of the intercom system without any processing at all (u(n) = x(n)). How-
ever, due to the digital-to-analog conversion the signal is limited to the max-
imum range of the converter. Only a very low signal quality can be achieved
and howling starts at several frequencies, e.g. at 800 Hz or 2500 Hz.

If a feedback suppression scheme according to Sec. 14.2.6 is applied it is
possible to avoid instabilities (see center diagram of Fig. 14.20). However,
due to the problems with the cost function of the basic structure the output
signal contains several artifacts. A few of these artifacts – slowly decaying

12 Remember that for adjusting the coefficients ci(n) of the feedback suppression
filter the output power E{e2(n)} was minimized.
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Fig. 14.19. Structure of a system that combines feedback suppression and cancel-
lation.

oscillations – are marked by circles in the center diagram. If the combined
scheme is applied it is possible to reduce the amount of artifacts significantly,
especially after convergence of the feedback suppression filter ĥLM(n). After
a convergence time of about one second the oscillations disappear mostly (see
upper diagram of Fig. 14.20).

Beside the improvements of the new scheme also the drawbacks should
be mentioned. When comparing the basic and the extended structure (see
Figs. 14.17 and 14.20) it is obvious that the new scheme requires much more
computational power as well as memory. Furthermore, it is much more com-
plicated to analyze the convergence and stability of the new scheme since two
adaptive filters operate in an interlocked manner.
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tems. Bottom: system without feedback suppression, center: system with feedback
suppression according to Sec. 14.2.6, top: system with feedback suppression and
cancellation as presented in this section.

14.2.7.1 Extensions

Beside the basic combination of feedback cancellation and feedback suppres-
sion that was presented in the last section several extensions are possible:

• The feedback suppression part can be extended from FIR (α = 0) to
IIR structure (as presented in Sec. 14.2.6). The advantages but also the
disadvantages of the additional feedback path are still the same as in the
basic scheme.

• To improve the adaptation speed fixed decorrelation filters (also called
prewhitening filters) can be inserted at the inputs of the system and in-
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verse counterparts at the outputs [13]. Due to the foreground-background
structure of both algorithmic parts it is very simple to realize the decorrela-
tion filters in an adaptive manner. This leads to an even higher convergence
speed.

• If the feedback cancellation filter performs very well13 it is also possible to
place it directly into the signal path (see Fig. 14.21). In this case most of
the feedback components would be cancelled and only the residual signals
would be suppressed. However, this structure requires a highly sophisti-
cated and reliable control of the feedback cancellation part.
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Fig. 14.21. Structure of the enhanced combined feedback cancellation and suppres-
sion system. This time the echo cancellation is performed within the signal path of
the intercom system.

13 This depends most crucially on the residual parts of the intercom system.
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14.2.8 Gain Control

An adaptive gain control is the central element of an in-car communication
system. Its task can be split into three subunits:

• At first, a speech activity detection has to be performed for each seat
position. Only if the passenger on a specific seat really speaks, then his or
her signals are played back via those loudspeakers which are close to the
other communication partners.

• Since the exact seat position and thus also the exact distance to the micro-
phones is a priori known only approximately, a gain control is computed
adaptively for each beamformer output signal. This gain compensates not
only for gain variation according to the mouth-microphone distance, but
also for different speech levels.

• Finally, an individual playback volume for each seat position is computed.
This loudspeaker gain depends on the individual background noise level
and varies according to the driving situation (standstill, city traffic, or
motorway driving). If, for example, one of the passengers opens a window,
the playback volume of the loudspeakers close to this seat will be increased
more than that of the other loudspeakers.

Fig. 14.22 depicts an overview of the loss control unit. Details about the three
sub-units introduced above will be given in the next sections.
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Fig. 14.22. Basic structure of a loss control unit.

14.2.8.1 Basic Control Structure

The front and rear mixing matrices AF(n) and AR(n) contain the weights
that are applied to the beamformer output signals. These signals are mixed,
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resulting in the output signals rF(n) and rR(n) for postprocessing (as depicted
in Fig. 14.22). The mixing process of each channel can be described as[

rleft(n)
rright(n)

]
︸ ︷︷ ︸

r(n)

=
[
a11(n) a12(n)
a21(n) a22(n)

]
︸ ︷︷ ︸

A(n)

[
uleft(n)
uright(n)

]
︸ ︷︷ ︸

u(n)

. (14.31)

For better readability the subscripts R and F, indicating whether the vectors
are denoting the front (F) or rear (R) mixing process, have been omitted. For
the determination of the mixing weights aij(n) short-term powers of highpass
filtered versions of the output signals ũ(n) = hHP(n)∗u(n) of each beamformer
are computed:14

σ̂(n) = β σ̂(n− 1) + (1 − β) |ũ(n)| . (14.32)

The time constant β of this first order IIR filter is usually chosen from the
interval [0.98, 0.998]. As we will see later each of the before mentioned subtasks
contributes its own part to the entire weighting factor:

• During speech activity the peak power is estimated and compared with a
predefined reference level. If the current peak power (corrected by its peak
power correction gain) is smaller than the reference value the gain value
responsible for the peak power adjustment is increased slowly. In the other
case a slow decrease is applied.

• A second stage detects which passenger currently speaks. Only those beam-
former output signals are passed to the loudspeakers without attenuation,
where speech activity was detected. In this stage only front-to-rear and
rear-to-front enhancement is supported. Recording the left passenger and
playing the recorded signals via the right loudspeaker in the same seat row
(and vice versa) is not necessary, since in these directions communication
is usually possible with sufficient quality.

• In a third stage the playback volume of each loudspeaker group is adjusted
according to individually estimated noise levels. A group of loudspeakers
may consist of only one transducer but usually all loudspeakers that are
located close to one seat position are grouped together.

If we denote the gains resulting from peak power adjustment by ap,i(n), the
attenuations caused by the speech activity detection by aa,i(n), and the loud-
ness settings by al,i(n) the computation of the mixing weights can be described
by15

14 Again for the reason of simplicity we have omitted here all subscripts that would
indicate whether front or rear as well as left or right is addressed.

15 The subscript i stands for either left or right.
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a11(n) = ap,left(n) aa,left(n) al,left(n) , (14.33)
a12(n) = ap,right(n) aa,right(n) al,left(n) , (14.34)
a21(n) = ap,left(n) aa,left(n) al,right(n) , (14.35)
a22(n) = ap,right(n) aa,right(n) al,right(n) . (14.36)

Details about the computation of the coefficients ap,i(n), aa,i(n), and al,i(n)
are presented in the next three sections.

14.2.8.2 Automatic Gain Control

For determining the coefficient ap,i(n) the average peak power σ̂p(n) of each
recorded signal is estimated during speech activity using a multiplicative cor-
rection approach:

σ̂p(n) =

⎧⎨⎩ σ̂p(n− 1)K(n), during speech activity,

σ̂p(n− 1), else.
(14.37)

The correcting factor is computed as

K(n) =

⎧⎨⎩Kr, if σ̂p(n− 1) < σ̂(n),

Kf, else,
(14.38)

with 0 < Kf < 1 < Kr. If the current peak power (corrected by its peak
power correction gain) is smaller than the reference value σp,ref the current
gain correction is increased slowly. In the other case a slow decrease is applied:

ap,i(n)=

⎧⎨⎩min{ap,i(n− 1) (1 +Δ), ap,max} , if σ̂p(n) ap,i(n− 1) < σp,ref,

max{ap,i(n− 1) (1 −Δ), ap,min} , else.
(14.39)

The quantityΔ is adjusted such that gain modifications of about 2 to 4 dB per
second are possible. Additionally, the gain values are limited to a maximum
and a minimum threshold. To determine periods with speech activity the
background noise level for each highpass filtered beamformer output signal is
computed according to

σ̂n(n) = min
{
σ̂n(n− 1), σ̂(n)

}
(1 + ε) , (14.40)

with ε being a small positive value. Fig. 14.23 shows an example of a back-
ground noise estimation according to Eq. 14.40. Besides the estimated noise
level σ̂n(n) the input signal is depicted as well. To detect speech activity
(Eq. 14.37) the following condition has to be fulfilled:

σ̂(n) > Kn σ̂n(n) , (14.41)
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Fig. 14.23. Output signal of a beamformer and estimated background noise level.

with Kn being an appropriately chosen constant. Furthermore, spatial condi-
tions – in terms of the ratio between short-term powers of a summing and a
blocking beamformer [7] – can be utilized. However, especially at high back-
ground noise levels spatial criteria turn out to be very robust. Spatial speech
activity detection is only possible if more than one microphone is used per
passenger.

14.2.8.3 Speech Activity Controlled Attenuation

For the adjustment of the attenuation factors aa,i(n) first a so-called tar-
get state is determined. This target state defines which of the passengers are
assumed to speak. Determining the state is done as in the last section: condi-
tion 14.41 is checked and spatial criteria are evaluated. If both criteria indicate
speech activity for more than one seat position the loudest passenger is de-
tected by comparing the individual beamformer output powers. For this seat
position the target attenuation is set to 0 dB, all other target attenuations
are set to a certain attenuation level, e.g., −10 dB. The current attenuation
values aa,i(n) are computed by IIR smoothing of the target values. If two or
more people speak simultaneously the detection of the loudest speaker will
vary over time (according to the current speaking loudness). Due to the re-
cursive smoothing the beamformer output signals of the active passengers
will be attenuated only slightly, while the beamformer output signals where
speech activity was not detected are attenuated strongly. Thus, it is possible
to support more than one communication direction at the same time.

14.2.8.4 Adjustment of the Playback Volume

Finally, an individual playback volume correction al,i(n) is computed for each
seat position. The coefficients al,i(n) are normalized to 0 dB for the non-
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driving and engine-off scenario. With increasing speed of the car noise result-
ing from the engine and from wind as well as tire hiss is also increasing. To
take this into account the playback volume is increased accordingly. To de-
termine the amount of gain increment, the estimated background noise levels
according to Eq. 14.40 are compared with several thresholds. As soon as one of
the thresholds is exceeded a slow increment of the playback volume is applied.
The gain corrections should be varied within an interval of 0 to 10 dB. Since
the background noise estimation is performed for each beamformer output an
individual volume adjustment can be computed for each seat position. Note
that the estimated background noise levels of the rear beamformer outputs
are mapped on the gains of the front beamformer outputs and vice versa.

14.2.9 Loudspeaker Equalization

Before the signals are radiated via the loudspeakers, equalization filters should
be applied. The objective of these filters is twofold: on one hand the output
sound should be optimized from a subjective perspective. If certain frequency
ranges are attenuated during the transmission from the mouth of the speaking
passenger to the ears of the listening passengers, e.g. by superposition of
several paths within the passenger compartment, an amplification of these
frequencies should be applied. On the other hand the stability threshold of
the entire system can be increased if those frequencies that have the highest
coupling (from the loudspeakers to the microphones) are attenuated.

A simple and delay optimized approach for equalization are cascades of
so-called peak filters [6]. Peak filters are able to attenuate or amplify certain
frequency bands while keeping the residual frequency range unaffected. These
filters are second order IIR filters with a transfer function

HEq,i(z) = 1 + γi

(
1 −Ai(z)

)
. (14.42)

The term Ai(z) is denoting a second order allpass filter with transfer function

Ai(z) =
αi + βi z

−1 + z−2

1 + βi z−1 + αi z−2
. (14.43)

The structure of one stage of the equalizer cascade is depicted in Fig. 14.24.
It is important to note that due to the special structure of the IIR filters it is
possible to adjust the center frequencies, the bandwidths, and the gain factors
independently.

If we define the following parameters

fs : sampling frequency,
fc : center frequency of the notch or peak filter,
fw : 3-dB-width of the filter,
V : gain or attenuation at the frequency fc,
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Fig. 14.24. Structure of one stage of the equalizer cascade.

the parameter αi is adjusted according to

αi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
tan

(
π fw

fs

)
− 1

tan
(
π fw

fs

)
+ 1

, if V > 1,

−
tan

(
π fw

fs

)
− V

tan
(
π fw

fs

)
+ V

, else.

(14.44)

With this parameter the 3-dB-bandwidth of the filters is mainly controlled.
With the second parameter of the allpass filter βi the center frequency can be
set:

βi = − cos
(

2π
f c

f s

)
(1 + αi) . (14.45)

Finally, the depth of the notch or the peak is adjusted mainly via the last
parameter

γi =
V − 1

2
. (14.46)

In Fig. 14.25 the frequency response of a single equalization unit is depicted
for several variation of either the depth of the notch (left diagram) or of the
3-dB-bandwidth (right diagram).

To show an example for an entire loudspeaker equalization the squared
magnitude of a frequency response measured between the loudspeaker located
on the left side of the hat rack and the output of the driver’s beamformer is
depicted in the upper diagram of Fig. 14.26 (solid gray line). If the system
gain is increased close to the stability margin howling starts first at frequencies
around 3 kHz and 4.7 kHz. At those frequencies the frequency response also
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Fig. 14.25. Frequency responses of several notch and peak filters. Left: variations of
the depth of the notch via the parameter V , right: variation of the 3-dB-bandwidth
via the parameter fw.

has local maxima. If the transmission is equalized using a five-stage equaliza-
tion filter with two attenuation stages (around 3 kHz and 4.7 kHz) and three
amplification stages (around 1.2 kHz, 1.7 kHz, and 2.3 kHz) the stability
margin can be increased by about 4 dB. Additionally due to the amplification
stages the system sounds broader and slightly louder. The frequency response
of the entire equalization filter is depicted in the lower diagram of Fig. 14.26.
The frequency response of the equalized system is plotted in the upper dia-
gram (solid black line).

Adjustment of the equalization parameters can be done off-line using ad-
equate impulse response measurements. However, in this case only those fre-
quencies which show a certain behavior (attenuation or gain) under various
conditions (all or just two seats are occupied, different seat adjustments,
different temperatures, etc.) should be equalized. Further improvement can
be achieved by adaptive equalization. In this case the coefficients should be
changed only very slowly and the gain and attenuation should be limited
carefully.

14.2.10 Further Signal Processing Units

Besides the schemes described above there is a variety of additional processing
components. Not all of these processing units have been described so far. A
description of a noise suppression, for example, was omitted. The reason for
this omission was that traditional noise suppression schemes are usually intro-
ducing a small delay due to a spectral analysis-synthesis stage. As described in
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Fig. 14.26. Equalization of the loudspeakers.

Sec. 14.1.2.3 intercom systems are very restrictive concerning the delay intro-
duced by signal processing. Thus, only noise suppression approaches with no
or nearly no delay should be applied. Within the system presented in Sec. 14.4
a noise reduction was not implemented, since the noise played via the loud-
speakers is typically masked by the environmental noise within the passenger
compartment even at maximum output gain. However, if the microphones
cannot be placed close to the speaking passengers and the loudspeakers are
not located close to the listening passenger some kind of noise reduction is
required.

Beside noise reduction several other algorithmic parts have not been de-
scribed in this section. This should not indicate that additional processing
units might not enhance the overall system quality.

14.3 Evaluation of Intercom Systems

After presenting algorithms or algorithmic parts of intercom systems, the ques-
tion arises how to evaluate the quality of these algorithms and how to compare
two competing approaches.16 The fairest way of answering this question are,
of course, subjective tests. For this reason we will present two subjective tests

16 By algorithm or approach usually the entire intercom system is meant here.
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in the next section: a rhyme test and a comparison mean opinion score. These
tests are, however, quite expensive and time consuming since a lot of test sub-
jects need to be involved. Objective tests, on the other hand, are much simpler
and – if well designed – can give also a good indication about the quality of
intercom systems. These kind of tests are presented in Sec. 14.3.4. All tests
presented in the following are based on a real intercom system. Details about
this system are described in Sec. 14.4.

14.3.1 Subjective Methods

For evaluating the improvements concerning speech quality and speech intel-
ligibility two subjective tests can be utilized. Improvements or degradations
of the speech intelligibility can be measured with a so-called diagnostic or
modified rhyme test [41]. In that test pairs or even larger groups of rhyming
words are used to focus on the intelligibility of each syllable or even on each
phoneme of a word. A good speech intelligibility is one of the basic require-
ments of any communication system. If this quantity has reached a certain
level communication is possible and people focus also on other aspects such as
the naturalness of speech or the amount of reverberation. These aspects can
be analyzed with a so-called comparison mean opinion score (CMOS) [23]. In
order not to focus again on the speech intelligibility often very well known
phrases such as popular song texts or proverbs are utilized within a CMOS
test. In that case the listeners are able to get the full meaning of an utterance
even if they understand just a few parts of it. Both subjective tests are used
here to compare between two different situations: communication within a car
that has an activated intercom system and one that is not equipped with such
a system.

The next two sections give only a brief overview about both subjective
tests. We are more focussed on the results here. If the reader is interested in
more details about the tests, Chapter 11 (especially Sec. 11.4 and 11.3) of
this book as well as the references cited herein are recommended for further
reading.

14.3.2 Rhyme Tests

Let us describe first the boundary conditions of the rhyme test. We performed
four tests at the following conditions:

• intercom system off at 0 km/h,
• intercom system on at 0 km/h,
• intercom system off at 130 km/h,
• intercom system on at 130 km/h.

10 to 15 listeners of different age and gender participated in each test. For
each listener 40 pairs of rhyming words, such as game and name or peace and
peach, were selected randomly from a prerecorded database. Both words were
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presented visually first. Secondly, one of the examples was selected (again
randomly) and played via a headset.17 Afterwards the listeners had to decide
which of the two stimulus words was acoustically presented. In Fig. 14.27 the
amount of correct results for each rhyme test is depicted.

0 10 20 30 40 50 60 70 80 90 100 110
Percent

Percentage of correct answers

System activated,
100 - 130 km/h 

System deactivated,
100 - 130 km/h 

System deactivated,
0 km/h 

System activated,
    0 km/h 

95.2 % 

95.0 % 

85.4 % 

92.2 % 

Fig. 14.27. Results of the rhyme tests.

Since the intercom system adjusts its gain automatically according to the
background noise it is not surprising that no or nearly no difference (95.0 % for
the activated system and 95.2 % for the deactivated system) was measured
at 0 km/h. The conditions of those two tests were more or less optimal –
meaning that all stimulus words were clearly understandable. Most of the
errors were made such that the word that was presented on the left of the
computer monitor (that was read first) was also selected by the listeners even
if the second was actually presented acoustically.

As a result one can conclude that the intercom system that was tested
does not improve the speech intelligibility when the car is in stand-still. This
was not surprising since the intelligibility of the speech was already quite
high. Under noisy conditions (130 km/h on a German autobahn), however,
the amount of correct results could be increased impressively: from 85.4 %
without the intercom system to 92.1 % with an activated system. The relative
error rate has been reduced by about 50 %. Having in mind that rhyme tests
do not achieve a rate of correct answers of 100 % even under ideal conditions
the error rate improvement would be even larger.

17 The recording and playback devices were calibrated in such a way that a true
binaural impression with calibrated output levels could be achieved.
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14.3.3 Comparison Mean Opinion Scores

In contrast to the rhyme test in which short and very similar stimulus words
have been used longer and well known phrases are utilized for a CMOS test.
For evaluation of the intercom system a list with 50 German phrases con-
sisting of popular song texts, proverbs, and advertisements was used. Each
sentence was played back using an artificial mouth loudspeaker (loudspeaker
with approximately the same radiation pattern as a human mouth) at the
passenger’s seat in two different noise environments (0 km/h and 130 km/h)
with activated and deactivated intercom system. As in the previous section
binaural recordings were made on one of the back seats. These recordings were
used as audio examples for all participants of the CMOS test.

Per scenario 10 to 15 subjects were asked about the speech quality of the
presented signals. Per subject 25 pairs of audio examples were presented. Each
pair consists of the same stimulus sentence – once recorded with an activated
intercom system and once without. The order of presentation was chosen
randomly. After listening to each pair of signals the subjects were asked to
rate the differences between both signals on a scale consisting of seven levels:

• A is much better than B,
• A is better than B,
• A is slightly better than B,
• A and B are about the same,
• A is slightly worse than B,
• A is worse than B,
• A is much worse than B.

Before starting a short introduction was given by a supervisor to the listeners
and a few examples were presented. Each test lasts about 4 to 8 minutes.

In Fig. 14.28 the detailed results of the CMOS test are depicted. As in the
rhyme test no significant difference in the speech quality was observed for the
low noise condition (0 km/h, within a parking area). In this scenario

• 19.7 % of the subjects preferred the system to be switched off,
• 29.7 % of the subjects had no preference, and
• 50.6 % of the subjects preferred an activated system.

Even though more than 50 % prefer the intercom system to be activated
this result is far away from having statistical significance (see Chapter 11).
However, in noisy driving conditions (130 km/h, on a German autobahn)

• only 4.3 % of the subjects preferred the system to be switched off,
• 7.1 % of the subjects had no preference, and
• 88.6 % of the subjects preferred an activated intercom system.

This shows a clear (and significant) preference for the intercom system.
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Fig. 14.28. Results of the comparison mean opinion score.

14.3.4 Objective Methods

Subjective tests have two main drawbacks: on one hand they are quite time
consuming – and thus expensive – and on the other hand small differences
between different systems or algorithmic versions are quite hard to evaluate
with a small group of listeners. For this reason, objective evaluation methods
should be applied not for replacing but for extending subjective tests. In this
section we will focus on two measurements: the frequency response (respec-
tively its absolute value) of the transmission from the speaking to the listening
passenger and the impulse response from the mouth of the speaking passenger
to his or her ears.

14.3.4.1 Improvements for the Listening Passengers

One way of measuring the improvement of the speech quality due to an inter-
com system is to measure the impulse or frequency responses from the mouth
of the speaking passenger, say the driver, to the ears of the listening passenger,
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e.g. the left rear passenger. Such measurements should be performed with and
without the intercom system. If the background noise is not increased due to
the intercom system the ratio between the absolute values of the frequency
responses is a good indicator for the signal-to-noise ratio improvement. If we
denote – according to the definitions in Sec. 14.1.2.2 – the frequency responses
with HSR,i(ejΩ) we can compute for each measurement pair i the ratio

RSR,i

(
ejΩ

)
=

∣∣∣HSR,i

(
ejΩ

)∣∣∣
on∣∣∣HSR,i

(
ejΩ

)∣∣∣
off

+ ε
. (14.47)

The subscripts on and off indicate whether the intercom system should be
activated or not. The constant ε avoids division by zero. In Fig. 14.29 two fre-
quency responses are depicted. Both have been measured at a speed of about
70 km/h18 between the front passenger’s mouth reference point and the right
ear of the right rear passenger. The upper curve shows the measurement with
an activated intercom system, the lower curve shows the frequency response
without an intercom system. The index i is used for distinguishing between
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Fig. 14.29. Frequency responses that were measured at a speed of about 70 km/h.
The measurement was made once with an activated intercom system (upper curve)
and once without the system (lower curve).

18 The speed, respectively the corresponding background noise level, has influence
on the output gain of the system and thus on the frequency response.



14 Signal Processing for In-Car Communication 591

different measurement points such as the left or right ear, and left or right
passenger, respectively:

i = 1 : left passenger, left ear,
i = 2 : left passenger, right ear,
i = 3 : right passenger, left ear,
i = 4 : right passenger, right ear.

Usually four measurements are made for each frequency response and the
corresponding ratios are averaged afterwards:

RSR

(
ejΩ

)
=

1
4

4∑
i=1

RSR,i

(
ejΩ

)
(14.48)

Additionally the average ratio can be smoothed along the frequency axis.
For the measurements an artificial mouth loudspeaker and a head-and-torso
simulator with ear-microphones should be used. Both is depicted in Fig. 14.30.
As a measurement signal artificial voice [24] should be utilized. This is mainly
because the intercom system should operate as in normal conditions during
the measurement.

Fig. 14.30. Head-and-torso simulator (left) and artificial mouth loudspeaker (right).

With a real system installed in a limousine-type car (for further details
see Sec. 14.4) ratios of about 5 to 15 dB were measured. In all cases the
background noise level was not affected by the intercom system. The amount
of improvement depends on many influences such as the size of the car, the
position of the microphones and loudspeakers and of course on the adjusted
output gain of the system. Usually more improvement is achieved at higher
frequencies since several of the processing units, such as beamforming, are not
very effective at low frequencies and also the directivity pattern of a human
mouth is not as distinctive at low frequencies as it is at high ones.
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14.3.4.2 Distortions for the Speaking Passenger

A large ratio RSL(ejΩ) indicates an improvement of the communication qual-
ity for the listening passenger. The communication quality from the point-
of-view of the speaking passenger, on the other hand, cannot be measured
by RSL(ejΩ). If the gain of the intercom system is rather large the speaking
passenger might be disturbed by getting aware of his own echo. This might
happen even before reaching the stability margin.19 The longer the delay of
the system is the more disturbing is a certain amount of echo.

At a system delay of about 5 ms and a coupling of about −10 dB from the
mouth of a speaker to his ears, for example, most people do not realize any
echo due to the self masking effect of the human auditory system [43]. If the
delay exceeds 30 ms (again with a coupling of about −10 dB) nearly everyone
gets aware of the echo and is disturbed by it.

These disturbing echo effects can be detected – at least approximately – by
measuring the impulse response between the mouth of a speaker and his ears.
Again a head-and-torso simulator (see left part of Fig. 14.30) can be utilized
for this purpose. By comparing the absolute value of the impulse response
with a masking envelope curve audible echoes can be detected. In the upper
part of Fig. 14.31 an impulse response that was measured in a car with a
well-adjusted intercom system was measured. The first coefficients represent
the natural coupling from the mouth to the ears. Coefficients with an index
larger than 50 are also influenced by the feedback caused by the intercom
system. All coefficients stay, however, within the threshold (dotted line).

If the gain of the intercom system was increased by a few decibels an im-
pulse response as depicted in the lower diagram of Fig. 14.31 was measured.20

In this setup most of the speaking passengers reported that they get aware of
their own echo. In the lower diagram one can see that the impulse response is
above the threshold at several time lags.

The problem with this kind of analysis is the determination of the mar-
gin envelopes. These envelopes depend on many boundary conditions. For
example, different slopes are necessary for different types and levels of the
background noise. For this reason, a large amount of research is required until
an appropriate echo masking model will be set up for this special purpose.

14.4 A Real System

In this last section the intercom system that has been used for most of the
measurements and analyses of the previous sections will be described. The
system was realized on a floating-point digital signal processor. It supports
both directions (front-to-rear and rear-to-front) und makes use of the standard
19 This means that the listening passenger might have a good impression of the

system, while the speaking passenger is really disturbed by the intercom system.
20 Note that only the coefficients with an index larger than 50 should have changed.
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Fig. 14.31. Impulse responses measured between the mouth and the ears of a
head-and-torso simulator for two different gain adjustments of an intercom system
(solid lines). The dotted lines depict masking envelopes. If the impulse responses
stay within the masking envelopes the speaking passengers should not be disturbed
by their own echoes.

car loudspeakers (see Fig. 14.32). The loudspeaker setup consists of midrange-
tweeter combinations within each door and two tweeters on the hat rack. The
subwoofer, also integrated within the hat rack, was not used for the intercom
system (but for playing the signals of the radio or CD player).

The intercom system can be integrated in several cars, but most of the
tests were performed in a Mercedes S-Class (see again Fig. 14.32). Several mi-
crophone positions have been evaluated. Finally, four microphones, integrated
within the front top control unit (two for each front passenger) were used. For
the rear seat passengers also two microphones per passenger were utilized.
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Driver microphonesMicrophones for front passenger

Rear loudspeakers (tweeter-midrange combination,
integrated within the rear doors)

Rear
view
mirror

Fig. 14.32. Some pictures of the intercom system. Left: car in which the system
was installed, top right: front microphones, bottom right: rear loudspeakers.

The microphones were integrated within the grab handles above the rear side
windows. Standard cardioid microphones with a maximum sensitivity of 102
dB SPL were chosen for the system.

Enhancement from the left to right seat of the same seat row was not
supported. All algorithmic parts that were described in Sec. 14.2 were im-
plemented. It was possible to activate and deactivate each part. This made it
possible to operate the system from pure amplification to highly sophisticated
signal processing.

During the last three years the intercom system has been used for extensive
testing, demonstrations, subjective evaluations, and measurements. Virtually
all people who have tested the system on one of the back seats can attest a
clear improvement of the communication quality. On the front seats usually
the impression of a broader sound was reported but the improvements in terms
of speech quality and speech intelligibility were not as large as for the rear
seat passengers.

To visualize the improvement three binaural recordings that were made
with a torso located on the seat behind the driver are depicted in Fig. 14.33.
At the beginning of each recording the intercom system was activated. After
a few seconds the system was switched off for a couple of seconds to show the
difference of the speech quality. Finally the system was activated again. In all
diagrams time-frequency analysis of the right ear are depicted.

To emphasize on the differences between the periods with enhancement
and periods without any enhancement, all signals were normalized concerning
their average power. Additionally, for better visualization, all signals were
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Fig. 14.33. Time-frequency analysis of the right channels of three binaural record-
ings made on the left back seat.

predictor error filtered. The adjustment of the prediction filters of order 8 were
performed such that the background noise of each recording was whitened. In
all diagrams only the lower frequency range (up to 4 kHz) is depicted.
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Within the time-frequency analyses the speech components of the driver
are recognizable in a much better way whenever the system is activated.
During deactivation, however, the driver’s speech is mostly masked by the
driving noise.21 Furthermore, the characteristics of the background noise do
not change during the deactivation period. This means that the noise impres-
sion of the rear passenger is not affected – in terms of a higher noise level –
when the intercom system is activated.

14.5 Conclusions and Outlook

In this chapter the basic signal processing components of an in-car communi-
cation system have been described. Even if most algorithms are already known
for other applications such as hands-free telephones, public address system,
or hearing aids, the specific conditions in which intercom systems have to op-
erate require several modifications of the standard algorithms. For this reason
the boundary conditions have been described in detail at the beginning of this
contribution.

Undoubtedly, in-car communication systems are able to significantly en-
hance the quality of a conversation in a car driven at moderate or even high
speed. In current automobiles all hardware components that are necessary to
build such systems – microphones, loudspeakers, and powerful signal process-
ing devices – are often already installed. Thus, the step for building such
systems is really small. For this reason, we believe that intercom systems
will soon satisfy the needs of customers for enhanced communication quality
within a passenger compartment on a broad range.
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Applications of Adaptive Signal Processing
Methods in High-End Hearing Aids

Volkmar Hamacher, Eghart Fischer, Ulrich Kornagel, Henning Puder

Siemens Audiological Engineering Group, Erlangen, Germany

15.1 Introduction

In the past ten years the technical capabilities of hearing aids have consid-
erably increased. One important mile stone was the changeover from analog
to digital technology enabled by the continuous progress in semi-conductor
technology. This chapter focuses on the powerful digital signal processing of
modern high-end hearing aids.

In principal, the development of hearing aids incorporates two aspects,
namely the audiological and the technical point of view. The former focuses
on items like the recruitment phenomenon, the speech intelligibility of hear-
ing impaired persons or just on the question of hearing comfort. Concerning
these topics different algorithms intending to improve the hearing ability are
presented in this chapter. These are automatic gain controls, directional mi-
crophones and noise reduction algorithms. Besides the audiological point of
view there are several purely technical problems which have to be solved.
An important one is the acoustic feedback. Another instance is the proper
automatic control of all hearing aid components by means of a classification
unit.

Fig. 15.1 schematically shows the main signal processing units of a high-
end hearing aid [23, 24]. We will follow the depicted signal flow and discuss
the state-of-the-art and the challenges for the different components. A coarse
overview is given below.

First, the acoustic signal is captured by up to three microphones. The
microphone signals are processed into a single signal within the directional
microphone unit which will be discussed in Sec. 15.2.

The obtained mono-signal is further processed separately for different fre-
quency ranges. In general this requires an analysis filterbank and a correspond-
ing signal synthesis. The main frequency band dependent processing steps are
noise reduction as detailed in Sec. 15.3 and signal amplification combined with
dynamic compression as discussed in Sec. 15.4.
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Fig. 15.1. Processing stages of a high-end hearing aid.

A technically challenging problem of hearing aids is the risk of acoustic
feedback that is provoked by strong signal amplification in combination with
microphones and receiver being close to each other. The two major alternatives
to remedy feedback are the feedback suppression approach and the feedback
compensation approach. Details regarding the feedback problem and possible
solutions are discussed in Sec. 15.5. Note that feedback suppression can be
applied at different stages of the signal flow dependent on the chosen strategy.
One reasonable solution is shown in Fig. 15.1, where feedback suppression is
applied right after the (directional) microphone unit.

Almost all mentioned hearing aid components can be tuned differently
for optimal behavior in various listening situations. Providing different ”pro-
grams” that can be selected by the hearing impaired is a simple means to
account for this difficulty. However, the usability of the hearing aid can be
significantly improved if control of the signal processing algorithms can be
handled by the hearing aid itself. Thus, a classification and control unit, as
shown in the upper part of Fig. 15.1 and described in Sec. 15.6, is required
and offered by advanced hearing aids. In binaural use, the effectiveness of
this unit can be significantly improved by means of wireless coupling of both
hearing aids.

15.2 Directional Microphones

One of the main problems for the hearing impaired is the reduction of speech
intelligibility in noisy environments, which is mainly caused by the loss of
temporal and spectral resolution in the auditory processing of the impaired
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ear. The loss in signal-to-noise ratio (SNR) is estimated to be about 4-10
dB [12]. Additionally, the natural directivity of the outer ear is not effective
when BTE (behind-the-ear) instruments are used. To compensate for these
disadvantages, directional microphones have been used in hearing aids for
several years and have proved to significantly increase speech intelligibility in
various noisy environments [61].

15.2.1 First-Order Differential Arrays

In advanced hearing aids, directivity is achieved by differential processing
of two nearby omni-directional microphones in endfire geometry (first-order
differential array) to create a direction-dependent sensitivity. The directivity
pattern of the system is defined by the ratio r of the internal delay Ti and the
external delay due to the microphone spacing d (typically 7-16 mm). In this
example the ratio was set to r = 0.57 resulting in a super-cardioid pattern also
shown in Fig. 15.2. To compensate for the high-pass characteristic introduced
by the differential processing, an appropriate low-pass filter (LPF) is usually
added to the system.
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Fig. 15.2. Signal processing of a first order differential microphone.

The performance of a directional microphone is quantified by the directiv-
ity index (DI),

DI
(
ejΩ

)
= 10 log10

⎛⎜⎜⎜⎜⎝
∣∣H (ejΩ , ϕ0, θ0

)∣∣2
1
4π

π/2∫
−π/2

2π∫
0

|H (ejΩ , ϕ, θ)|2 sin (θ) dϕdθ

⎞⎟⎟⎟⎟⎠ (15.1)

where H
(
ejΩ , ϕ, θ

)
denotes the spatial-temporal transfer function of the

array depending on azimuth ϕ and elevation θ in a spherical coordinate sys-
tem.

The DI is defined by the power ratio of the output signal (in dB) between
sound incidence only from the front and the diffuse case, i.e. sound coming
equally from all directions. Consequently, the DI can be interpreted as the
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improvement in SNR that can be achieved for frontal target sources in a
diffuse noise field. The hyper-cardioid pattern (r = 0.34) provides the best
directivity with a DI of 6 dB, which is the theoretical limit for any two-
microphone array processing [4]. However, in practical use these DI values
cannot be reached due to shading and diffraction effects caused by the human
head. Fig. 15.3 illustrates the impact of the human head on the directivity of
a BTE hearing aid with a two-microphone array. The most remarkable point
is that the direction of maximum sensitivity is shifted aside by approximately
40◦, if the device is mounted behind the ear of a KEMAR (Knowles Electronic
Manikin for Acoustic Research). Consequently, the DI which is related to the
0◦ front direction, decreases typically by 1.5 dB compared to the free-field
condition.
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Fig. 15.3. Impact of head shadow and diffraction on the directivity pattern of a
BTE hearing aid with a two-microphone differential array in free field (left plot)
and mounted behind the left ear of a KEMAR (right plot). The black, dark gray
and light gray curves show the directivity pattern for 2 kHz, 1 kHz, and 500 Hz,
respectively (10 dB grid).

The performance related to speech intelligibility is quantified by a weighted
average of the DI across frequency, commonly referred to as the AI-DI. The
weighting function is the importance function used in the Articulation Index
(AI) method [46] and takes into account that SNR improvements in different
frequency bands contribute differently to the speech intelligibility. As shown
in Fig. 15.4 for a hyper-cardioid pattern, the AI-DI (as measured on KEMAR)
of two-microphone arrays in BTE instruments ranges from 3.5 to 4.5 dB. For
speech intelligibility tests in mainly diffuse noise the effect of directional mi-
crophones typically leads to improvements of the Speech-Reception-Threshold
(SRT) in the range from 2 to 4 dB (e.g. [53]).

In high-end hearing aids, the directivity is normally adaptive in order to
achieve a higher noise suppression effect in coherent noise, i.e. in situations
with one dominant noise source [12,50]. As depicted in Fig. 15.6, the primary
direction from which the noise arrives is continually estimated and the direc-
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Fig. 15.4. DI and AI-DI for a fist-order array (Siemens Triano S) and the com-
bination with a second-order array (see Sec. 15.2.2) in the upper frequency range
(Siemens Triano 3).

tivity pattern is automatically adjusted so that the directivity notch matches
the main direction of noise arrival. Instead of implementing computationally
expensive fractional delay filters, the efficient method proposed by Elko and
Pong [15] can be used. In this approach, the shape of the directivity pattern
is steered by a weighted sum of the output signals of two cardioid patterns,
one facing to the front (0◦), the other one facing to the back (180◦). The
position of the directivity notch is monotonically related to the weighting
factor. Great demands are made on the adaptation algorithm. The steering
of the directional notch has to be reliable and accurate and should not in-
troduce artifacts or perceivable changes in the frequency response for the
0◦-target direction, which would be annoying for the user. The adaptation
process must be fast enough (< 100 ms) to compensate for head movements
and to track moving sources in common listening situations, such as conver-
sation in a street-cafe with interfering traffic noise. To ensure that no target
sources from the front hemisphere are suppressed, the directivity notches are
limited to the back hemisphere (90◦−270◦). Finally, the depth of the notches
is limited to prevent hazardous situations for the user, e.g. when crossing the
street while a car is approaching.

Fig. 15.5 shows a measurement in an anechoic test chamber with an adap-
tive directional microphone BTE instrument mounted on the left KEMAR ear.
A noise source was moved around the head and the output level of the hear-
ing aid was recorded (dashed line). Compared to the same measurement for
a non-adaptive super-cardioid directional microphone (solid line), the higher
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Fig. 15.5. Suppression of a noise source moving around the KEMAR for a BTE
instrument (mounted on left ear) with directional microphone in adaptive mode
(dashed line) and non-adaptive mode (solid line).

suppression effect for noise incidence from the back hemisphere is clearly vis-
ible.

In order to achieve optimum performance also for natural sound fields
with non-diffuse spatial and non-white frequency distribution, it is advanta-
geous to use a frequency specific implementation of the adaptive directional
microphone principle. Fig. 15.6 shows the principle of a four-channel adaptive
differential microphone with four directional characteristics that can indepen-
dently adapt to the main direction of incidence of the interferer within the
corresponding frequency band.

Studies have shown the advantage of using adaptive directional processing
instead of static directivity. For a situation with three interferers from 90,
180 and 270◦, as shown in Fig. 15.7 an improvement of 1.5 dB for the SRT
could be achieved, see Fig. 15.8. The speech reception threshold SRT is a
measure from speech audiometry, which determines the lowest intensity level
of speech, presented in noise, at which the patient can correctly identify 50%
of the words.

15.2.2 Second-Order Differential Arrays

Using second order arrays that are using three omnidirectional microphones [4]
instead of two, generally a significantly higher DI can be achieved. (6-8 dB
instead of 4-5 dB for hearing aids worn on the head.)

Unfortunately, this increase in DI has to be payed by a higher self induced
noise with second order differential processing compared to first order process-
ing. Fig. 15.9 and Fig. 15.10 compare directivity and the self induced noise
for first vs. second order processing.
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Fig. 15.7. Setup with one speaker and three interferers.

There are different possibilities to deal with the noise problem for higher
order differential microphones.

One is the realization of a combined first- and second-order directional
processing in a hearing aid with three microphones [50], which is shown in
Fig. 15.11. Due to the high sensitivity to microphone noise especially in the
low frequency range the second-order processing is limited to the frequencies
above approx. 1 kHz which are most important for speech intelligibility.
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As shown in Fig. 15.4 calculation of the AI-DI leads to values of 6.2 dB,
i.e. an improvement in AI-DI of about 2 dB compared to a first-order sys-
tem worn at the head. It should be noted that for many listening situations,
improvements of 2 dB in the AI-DI can have a significant impact on speech
intelligibility [54].

Another possibility to handle the noise problem is to make the directional
microphone system not only adaptive in terms of spatial shape of the direc-
tivity but also adaptive in terms of adaptation to the level of the target input
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signal: If the input level is high enough, more directivity with more self in-
duced noise may be applied in the considered frequency band as the noise is
to a large extent masked by the target signal. If the input level is low, less
directivity with less self induced noise would be used in order to avoid audible
noise. Fig. 15.12 illustrates the principle of this approach.

The differential approach for directional microphones as described above
is of course just one - though very effective - method of generating directivity.
There are several other ways with their specific advantages and disadvantages
to build directional systems in hearing aids, e.g. adaptive beamformers (e.g.
[13, 29, 30, 33, 34, 62]), beamformers, taking head shadow effects into account
[44] and blind source separation techniques (e.g. [1, 14]).
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15.3 Noise Reduction

Directional microphones, as described in the preceding section are usually
not applicable to small ear canal instruments for reasons of size constraints
and the assumption of a free sound field which is not met inside the ear
canal. Consequently, one-microphone noise reduction algorithms became an
essential signal processing stage of today’s high-end hearing aids. Due to the
lack of spatial information, these approaches are based on the different signal
characteristics of speech and noise. Usually, despite of the fact that these
methods may improve the SNR, they could yet not prove to enhance the
speech intelligibility.

In the following, we will focus on two noise reduction methods which both
showed their suitability for hearing aids. The first method is also one of the
early ones in the field. It decomposes the noisy signal into many subbands
and applies a long-term smoothed attenuation to those subbands for which
the average SNR is very low. The second, a Wiener-filter based method applies
a short-term attenuation to the subband signals and is thus able to enhance
the SNR even for those signals for which the desired signal and the noise
cover the same frequency range. Both methods can also be well combined:
During speech activity, the Wiener filter approach exhibits the stronger impact
whereas during speech pauses or for frequency bands with a very low long-term
SNR the long-term noise reduction shows the stronger impact. Both effects
are desired and by choosing the maximum noise reduction of both methods
they can be both achieved.

At the end of this section, we will have an outlook to the application of
Ephraim-Malah based short-term noise reduction approaches for hearing aids.
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15.3.1 Long-Term Smoothed, Modulation Frequency Based Noise
Reduction

Supposing a noisy input signal which has been decomposed into several fre-
quency bands, the task of this noise reduction unit is to apply a long-term
smoothed attenuation to frequency bands with a very low SNR which do not
contain any remarkable speech components.

15.3.1.1 Theoretical Basis

The theoretical basis for distinguishing speech components from others is that
speech signals exhibit a characteristic modulation frequency at 4 Hz [47].

For calculating this characteristic modulation frequency,

• first the envelope of a speech signal is determined according to Fig. 15.13,

Band-pass:

200 -1500 Hz

Low-pass:

64 Hz

Sub-

sampling

100

s(n) senv(n)

|s|

Fig. 15.13. Processing for determining the signal envelope.

• then DC component is removed by an IIR filter of first order:

senv,AC(n) =
1 + β

2

[
senv(n) − senv(n− 1)

]
+ β senv,AC(n− 1) (15.2)

with a typical value for β = 0.995.
• The power spectral density (PSD) of the envelope has to be calculated,

normalized by the mean power m(2)
s = E{senv

2(n)}:
Sss(Ω) = PSD

{
senv,AC(n)

}
. (15.3)

Sss,norm(Ω) =
Sss(Ω)

m
(2)
s

, (15.4)

• and finally the PSD is summed over Terz-bands for determining the mod-
ulation spectrum at a logarithmic scale:

Smod spec(i) =
1
2π

Ωi+1∫
Ω=Ωi

Sss,norm(Ω) dΩ, (15.5)

where Ωi are the limits of the Terz-bands.
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Fig. 15.14. Modulation spectrum of clean speech (solid), noisy speech (dash) and
noise (dash-dot).

Such a spectrum is depicted in Fig. 15.14 for three types of signals: clean
speech, noisy speech and noise.

One clearly observes that the quantity of the modulation spectrum at
4 Hz is directly related to the SNR of the corresponding signal: For the given
example this values decreases form 0.6 for clean speech to 0.3 for noisy speech
and to nearly zero for pure noise.

Based on the discussed properties of the modulation spectrum, a long-
term noise reduction method can be designed: After the decomposition of the
noisy input signal into several frequency subbands, the modulation spectrum
at 4 Hz is determined for each subband. Then, this value has to be mapped
to a noise reduction gain value, e.g. by

g = max
[

min
{
v · [Smod spec(4 Hz) − b], 1}, spfl]. (15.6)

Here, the additive constant b and the gain v map the time-frequency depen-
dent 4 Hz-modulation spectrum to the range of the noise-reduction gains,
limited between the Spectral Floor (spfl) and 1. The Spectral Floor assures
that the attenuation does not exceed an adjustable maximum attenuation of
approximately 10 to 15 dB, i.e.

max atten = −20 log10(spfl). (15.7)

15.3.1.2 Computational Efficient Realization

Since the procedure for determining the modulation spectrum around 4 Hz is
computationally expensive, it would be advantageous to provide an alternative
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calculation method which also shows the desired relation without explicitly
determining the modulation spectrum.

A very simple method which fulfills these requirements mainly consists of
two short-term average magnitude (SAM) units, which perform a calculation
according to:

sSAM(n) =

⎧⎨⎩αr sSAM(n− 1) + (1 − αr) |s(n)| : |s(n)| > sSAM(n− 1) ,

αf sSAM(n− 1) + (1 − αf ) |s(n)| : |s(n)| ≤ sSAM(n− 1) .
(15.8)

For the two SAM units different settings αr and αf are chosen. One unit
estimates the long-term smoothed average magnitude by setting αr = αf ,
whereas the other estimator is parametrized by αr < αf , i.e. the output
follows a raising signal power faster than a falling signal power.

With an appropriate choice of the smoothing parameters αr and αf for
both units, the ratio of these two SAM units is equivalent to the quantity
of the modulation spectrum around 4 Hz, but computationally clearly less
consuming. The equivalence of the approach utilizing SAM units and the
modulation spectrum around 4 Hz is shown in Fig. 15.15. Here the ratio of
these two SAM units is depicted in dependence of the modulation frequency of
the input signal. It can be well observed that this ratio reaches its maximum
around 4 Hz.
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Fig. 15.15. Ratio of two SAM units with different parameter settings.

That the computational efficient approach can be well utilized for deter-
mining the long-term modulation-based noise reduction is also obvious by
the results depicted in Fig. 15.16. Here, a clean and noisy speech, as well a
pure noise signal are depicted in the top. Below, the corresponding modula-
tion spectra and the applied attenuation is depicted, determined based on the
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SAM-unit approach. The desired dependence of the applied attenuation on
the the modulation spectrum around 4 Hz is obvious.
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Fig. 15.16. Above: Clean speech (left), noisy speech (mid) and noise (right); Mid:
Corresponding modulation spectrum; Below: Long-term noise reduction gain.

15.3.2 Wiener-Filter Based, Short-Term Smoothed Noise
Reduction Methods

The aim of these noise reduction procedures is to obtain significant noise
reduction performance even for signals whose desired signal and noise compo-
nents are located in the same frequency range.

Applying the Wiener-filter attenuation:

H(Ω,n) =
Sss(Ω,n)

Sss(Ω,n) + Sbb(Ω,n)
= 1 − Sbb(Ω,n)

Syy(Ω,n)
(15.9)

where n denotes the time indices and Ω the normalized frequency. Utiliz-
ing short-term estimates for the required power spectral densities Sss(Ω,n),
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Sbb(Ω,n) and Syy(Ω,n) of speech, noise, and noisy speech, respectively, no-
ticeable noise reduction can be obtained. In these cases, the filter coefficients
H(Ω,n) directly follow short-term fluctuations of the desired signal.

However, a high audio quality noise-reduced signal cannot be easily ob-
tained with this method. The main reason is the non-optimal estimation of
power spectral densities which are required in Eq. 15.9. Here, especially the
estimation of the noise power spectral density poses problems since the noise
signal alone is not available.

In order to obtain reliable estimates, despite of these problems, well-known
methods can be utilized. These are:

• Estimating the noise power spectral density in pauses of the desired signal
which requires an algorithm to detect these pauses.

• Estimating the noise power spectral density with the Minimum Statistics
Method [38] or its modifications [39].

Both methods, however, exhibit a major disadvantage: They only provide
long-term smoothed noise power estimates.

However, for power spectral density estimation of the noisy signal, Syy(Ω,n),
which can easily be obtained by smoothing the subband input signal power,
short-term smoothing has to be applied in order that the Wiener-filter gains
can follow short-term fluctuations of the desired signal.

Calculating the Wiener-filter gain with differently smoothed power spec-
tral density estimates causes the well-known Musical Tones phenomenon [5].

To avoid this unpleasant noise, a large number of procedures have been
investigated of which the most widely used are

• Overestimating the noise power spectral density and
• Lower-limiting the Wiener-filter values to a minimum, the so-called Spec-

tral Floor.

With the overestimation of the noise power spectral density, short-time
fluctuations of the noise no more provoke a random ”opening” of the Wiener-
filter coefficients – the cause of Musical Tones.

However, this overestimation reduces the audio quality of the desired sig-
nal since especially low power signal components are more strongly attenuated
or vanish due to the overestimation. Limiting the noise reduction to the Spec-
tral Floor reduces this problem but, unfortunately, also reduces the overall
noise reduction performance. Nevertheless, this reduced noise reduction per-
formance is generally preferred against strong audio quality distortion. More
sophisticated methods utilize, e.g., speech characteristics [51] or masking prop-
erties [21] of the ear to limit the Wiener attenuation and thus reduce the signal
distortion without compromising the noise reduction effect too much.

The noise reduction gain one obtains with the Wiener-filter approach are
depicted in Fig. 15.17 for the same signal section which had been chosen to
show the long-term noise reduction in Fig. 15.16. One clearly observes that
the signal attenuation follows the short-term signal power variations of the
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input signal: The attenuation is only reduced when short-term speech signal
components are present.
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Fig. 15.17. Above: Clean speech (left), noisy speech (mid) and noise (right); Below:
Short-term Wiener-filter based noise reduction gain.

However the noise attenuation has to be limited to a smaller value than the
long-term noise reduction in order not to reduce speech quality. By combining
the noise reduction methods one can profit by the advantages of both: the
short-term selective noise reduction during speech presence of the Wiener-
filter approach and the stronger noise reduction of the modulation frequency
based approach during speech pauses and for frequency bands with negligible
SNR. The combination is simply possible by choosing the minimum noise gain
which, for the selected signal samples, is shown in Fig. 15.18.

0 2 4

-10

-5

0

Time in seconds

A
tte

nu
at

io
n 

in
 d

B

0 2 4

-10

-5

0

Time in seconds

A
tte

nu
at

io
n 

in
 d

B

0 2 4

-10

-5

0

Time in seconds

A
tte

nu
at

io
n 

in
 d

B

Fig. 15.18. Combined short and long-term noise reduction gain.
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15.3.3 Ephraim-Malah Based, Short-Term Smoothed Noise
Reduction Methods

An alternative approach to the above outlined Wiener-based noise reduction
procedures is the MMSE (Minimum Mean Square Estimation) spectrum am-
plitude estimator which was initially proposed by Ephraim and Malah [16].

This single channel noise reduction framework is depicted in Fig. 15.19.

Fig. 15.19. Structure of an Ephraim-Malah based noise reduction method. After the
spectral analysis, first the noise power spectral density Sbb(k, n) has to be estimated.
Then, the a-priori SNR ξ(k, n) is estimated. Optionally, also the probability of speech
activity p(H1|X) may be considered.

First the power spectral density Sbb(k, n) of the background noise has to
be estimated, e.g., by the Minimum Statistics approach. Then the a-priori
SNR is estimated, e.g. by the Decision directed approach. Additionally, ac-
cording [36,43,59] the probability for speech activity may be incorporated, by
the additional factor p(H1(k, n)|X(k, n)).

Based on these three estimates the noise reduction gain G(k, n) is deter-
mined according to

G(k, n) =
ξ(k, n)

1 + ξ(k, n)
exp

⎡⎢⎣1
2

∞∫
v(k,n)

exp(−z)
z

dz

⎤⎥⎦
· p(H1(k, n)

∣∣X(k, n)
)
, (15.10)

with: v(k, n) =
ξ(k, n)

1 + ξ(k, n)
γ(k, n); γ(k, n) =

|X(k, n)|2
Sbb(k, n)

.
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For the deriving the calculation formula for the filter weights G(k, n) ac-
cording to Eqn. 15.10, the knowledge of the distribution of the real and imag-
inary parts of the speech and noise components is required. They are often
assumed as Gaussian [16].

This assumption holds for many noise signals in everyday acoustic envi-
ronments, but it is not exactly true for speech. A performance investigation
for the application in hearing aids can be found, e.g., in [42]. More appropriate
models for speech are mentioned in the next section.

15.3.4 Future Trends

So far, the application of well-known noise reduction methods for hearing
aids has been explained. Now, we want to outline some methods and ideas for
further enhancing the quality of noise reduction.

A big problem of noise reduction procedures is addressed by the first pro-
posal: The estimation of the noise PSD. The basis of this proposal is to utilize
both hearing aids on each side of the head for obtaining a more reliable noise
PSD estimate, in particular during speech activity. The theoretical basis is
the cross-correlation property of the signals of both hearing aids [14]. It is
different for speech and noise components. Due to the diffuse character of
noise, its components are less correlated than speech components, especially
for high frequencies.

The calculation of the cross-correlation requires a full rate audio signal
transmission between both hearing aids. When only lower data rate trans-
mission is possible, also some binaural enhancements are possible: Supposing
a voice activity detector is utilized for determining the time instances when
the noise PSD is preferably estimated, a combined and more reliable activity
detector can be obtained by logically combining the detection results of both
sides.

As mentioned before, another possibility for a better noise reduction meth-
ods is to further advance the Ephraim-Malah noise reduction method by uti-
lizing more appropriate models for the probability density of speech than the
Gaussian model. One possibility is to utilize supergaussian statistical mod-
elling for the speech DFT coefficients [32, 40, 41]. Noise reduction algorithms
based on this modified estimator outperform the classical approaches using the
Gaussian assumption. The noise reduction effect can be increased at an equal
target signal distortion level. A computationally efficient realization has been
published [32, 33] which allows a parametrization of the probability density
function for speech spectral amplitudes so that an implementation in hearing
aids is feasible in the near future.

Also model based noise reduction methods such as proposed in Chapter 10
are a promising idea in particular for the enhancement of speech. Since the
proposed approach is optimized for car noise as disturbing signal, it has to be
further generalized for other kinds of noise signals.
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However, independent of the different rules for calculating the filter
weights, the estimation quality of the power spectral density shows the
strongest impact on the noise reduction quality. Since hearing impaired people
wear their hearing aids during the whole day they are very sensitive to signal
distortion which is therefore a more critical issue compared to noise reduction
for hands-free telephones. For strictly avoiding desired signal distortion, for
all noise reduction methods the noise attenuation has to be strongly limited.
Unfortunately, for most short-term noise reduction approaches, alternative to
the Wiener-filter, the gain of the acceptable noise reduction limit is not very
high but has to be paid by a strongly increased computational complexity.

15.4 Multi-Band Compression

Whereas most signal processing algorithms in hearing aids can also be useful
for normal hearing (e.g. noise reduction in telecommunications), multi-band
compression directly addresses the individual hearing loss. A phenomenon
typically observed in sensorineaural hearing loss is ”recruitment” [60], which
can be measured by categorical loudness scaling procedures (e.g. ”Würzburger
Hörfeld” [25]) and also could be demonstrated in physiological measurements
of basilar membrane velocity [55]. Fig. 15.20 shows the growth of loudness as
a function of level for a typical hearing impaired listener in comparison to the
normal hearing reference.

With increasing frequency the level difference between normal and hearing-
impaired listeners for soft sounds (< 10 CU; CU = Categorical Loudness
Unit) increases, whereas curves cross at high levels. The arrows in the right
bottom graph indicate the necessary level dependent gain to achieve the same
loudness perception at 4 kHz for normal and hearing-impaired listeners. Thus,
this measurement directly calls for the need of a frequency specific and level
dependent gain - if loudness shall be restored to normal. Since more gain is
needed for low input levels than for high input levels, the resulting input-
output curves of an appropriate automatic gain control (AGC) system have
a compressive characteristic.

Restoration of loudness - often also called ”loudness normalization” - has
been shown, both theoretically [10] and empirically [56], to be capable of also
restoring temporal and spectral resolution (as measured by masking patterns)
to normal. However, despite many years of research related to loudness nor-
malization [31, 60], the benefits of this approach are difficult to prove [45].
Thus, over the years, many alternative rationales and design goals have been
developed resulting in a large variety of AGC systems.

15.4.1 State-of-the-Art

Practically every modern hearing aid employs some form of AGC. The first
stage of a multi-band AGC is a spectral analysis. In order to restore loudness,
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Fig. 15.20. Loudness as a function of level for a hearing-impaired listener (right
curve, surrounded by circles) and normal listeners (left curve).

this spectral analysis should be similar to the human auditory system (for
details see [65]). Therefore, often non-uniform filterbanks are used: constant
bandwidth of about 100 Hz up to 500 Hz and approximately 1/3-octave fil-
ters above 500 Hz. In each channel the envelope is extracted as input to the
nonlinear input-output function.

Depending on the time constants used for envelope extraction, different
rationales can be realized. With very slow attack and release times (several
seconds) the gain is adjusted to varying listening environments. These systems
are often referred to as automatic volume control (AVC), whereas systems with
fast time constants (several milliseconds) are called ”syllabic compression” as
they are able to adjust the gain for vowels and consonants within a syllable. For
loudness normalization (also of time varying sounds) gains must be adjusted
quasi-instantaneously, i.e., the gains follow the magnitude of the complex band
pass signals. Moreover, combinations of both slow and fast time constants
(”dual compression”) have been developed [57].

To avoid a flattening of the spectral structure of speech signals - which
is regarded to be important for speech intelligibility - neighboring channels
are coupled or the control signal is calculated as a weighted sum of narrow-
band and broadband level [57]. The input-output function (see component
in Fig. 15.21) calculates a time-varying gain which is multiplied by the band
pass signal or the magnitude of the complex bandpass signal prior to the spec-
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Fig. 15.21. Signal-flow for multi-band AGC processing.

tral resynthesis stage. There are many rationales to determine the frequency
specific input-output functions from an individual audiogram, e.g. loudness
restoration (see above), restoration of audibility (DSL i/o [11]) or optimization
of speech intelligibility without exceeding normal loudness (NAL-NL1 [9]).
The optimum rationale usually depends on many variables like hearing loss,
age, hearing aid experience and actual acoustical situation.

Whereas the above mentioned AGC systems branch off the control signal
before the multiplication of bandpass signal by nonlinear gain (”AGC-i”), out-
put controlled systems (”AGC-o”) get the control signal afterwards. AGC-o is
often used to ensure that the maximum comfortable level is not exceeded and
is thus typically implemented subsequent to an AGC-i. Recently, an AGC-o
system has been proposed which is based on percentile levels and keeps the
output not only below a maximum level but also above a minimum level in
order to optimize audibility [37].

15.4.2 Future Trends

A possibility to cope with situation dependent fitting rationales is to control
the AGC parameters (e.g. attack and release time, input-output function) by
the classifier. In a situation where speech intelligibility is most important,
e.g. a conversation in a crowded restaurant, the appropriate parameters for
realizing NAL-NL1 are loaded, whereas when listening to music a setting
with optimized sound quality is activated. A wireless link between hearing
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aids might be beneficial to synchronize the settings on both sides in order to
avoid localization problems.

Another promising scenario is to implement psychoacoustic models (e.g.
speech intelligibility, loudness, pleasantness) and use them for a continuous
and situation dependent constrained optimization of the AGC parameters or
directly of the time-varying gain. The latter can be realized by estimating the
spectra of noise, speech and the composite signal block by block, similar to
the Wiener-filter approach. The speech and noise spectra are used to calcu-
late speech intelligibility (e.g. according to the SII [2]), whereas the overall
spectrum is used to determine the current loudness (e.g. according to [10]).
Then the channel gains are optimized for each block with the goal to maxi-
mize speech intelligibility and the constrained that the aided loudness for the
individual hearing impaired listener does not exceed the unaided loudness for
a normal listener. In this case, the hearing aid setting is not optimized for the
average male speaker in a quiet surrounding (as is done with NAL-NL1), but
for the individual speaker in the given acoustical situation.

15.5 Feedback Cancellation

Acoustic feedback (”whistling”) is a major problem when fitting hearing aids
because it limits the maximum amplification. Feedback describes the situation
when output signal components are fed back to the hearing aid microphone
and are again amplified. In cases where the hearing aid amplification is larger
than the attenuation of the feedback path, and the feedback signal is in phase,
instabilities occur and whistling is provoked. The feedback path describes
the frequency response of the acoustic coupling between the receiver and the
microphones as depicted in Fig. 15.22.

Fig. 15.22. On the left, the acoustic coupling between the hearing aid output and
its microphone is shown and on the right the corresponding signal model where the
acoustic path is modelled as a FIR filter with impulse response h(n). (HA: hearing
aid).

Increasing the ear mold venting or even using open-fitting hearing aids, is
more and more preferred by hearing aid users. The reason is that the occlu-
sion effect [12] is usually reduced and the open fitting hearing aids are very
comfortable to wear. However, increasing the vent diameter or even using
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open fitting hearing aids automatically increases the feedback risk and low-
ers the achievable amplification of the hearing aid. Therefore, well-performing
feedback cancellation systems are becoming more and more important.
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Fig. 15.23. Impulse (top) and frequency (bottom) responses of a typical hearing
aid feedback path sampled at 20 kHz.

A typical hearing aid feedback path is depicted in Fig. 15.23. Here, one can
observe that generally the paths exhibit a band-pass characteristic with the
highest amount of coupling at frequency components between 1 and 5 kHz.
The typical length of feedback paths which has to be modelled be a feedback
cancellation system is approximately 64 coefficients long for a sampling rate of
20 kHz. Additionally, the current feedback path is highly dependent on many
parameters of which the three most important are:

• the type of the hearing aid: BTE (behind-the-ear) or ITE (in-the-ear),
• the vent size,
• obstacles around the hearing aid (hands, hats, telephone receivers),
• the physical fit in the ear canal and leaks from jaw movements.

The first two parameters are static whereas the third is highly time-varying
during the operation of the hearing aid. In Fig. 15.24 the variance of the feed-
back paths can be observed in dependence for the above given parameters.

Corresponding to the time-dependent or static parameters, fixed and dy-
namic measures are utilized in today’s hearing aids to avoid feedback.
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Fig. 15.24. Typical feedback paths for different types of hearing aids (top), different
vent sizes (middle), and obstacles, i.e. a hand near the hearing aid compared to the
normal situation (bottom).

A static method is to measure the normal feedback path (without ob-
stacles) once after the hearing aid has been fitted. Limiting the gain of the
hearing aid so that the closed loop gain is smaller than one for all frequency
components, generally can prevent feedback.

Nevertheless, a totally feedback-free performance of the hearing aid can
usually not be obtained without additional measures, especially when the
closed-loop gain of the hearing aid in normal situations is close to one. Re-
flection obstacles such as a hand may then provoke feedback. To avoid this,
dynamic methods are necessary for cancelling feedback adaptively when it
appears.

For these dynamic measures, two methods are widely spread:

1. Selectively attenuating the frequency components for which feedback oc-
curs is utilized in today’s hearing aids. This method is normally efficient
to avoid feedback. However, it is equivalent to a narrow-band hearing aid
gain reduction.

2. Another method is the feedback compensation method where the feedback
path is modelled with an internal filter in parallel to the feedback path
and which subtracts the feedback signal. Thus, the hearing aid gain is
not affected by this method. Additionally, it even allows hearing aid gain
settings with closed-loop gains larger than one. This method is currently
becoming state-of-the-art for hearing aids.
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15.5.1 Feedback Suppression: Dynamic and Selective Attenuation
of Feedback Components

An effective and selective attenuation of feedback components can be reached
by notch filters. These notch filters are generally characterized by three pa-
rameters: the notch frequency, the notch width and the notch depth. It is
most important to choose the appropriate notch frequency, i.e. when feedback
occurs, the feedback frequency has to be determined fast and precisely.

Different methods, in the time and frequency domains, are applicable for
the estimation of the feedback frequency. These are comparable to methods
which can also be found for pitch frequency estimation [63]. These methods
are, e.g., the zero crossing rate, the autocorrelation function and the linear
predictive analysis. Most important is the fast reaction to feedback but also
to apply the notch filters only where and as long as necessary in order to
minimize the negative effect of the reduced hearing aid gain.

15.5.2 Feedback Compensation

The reduced hearing aid gain can be totally avoided by the compensation
approach. Here, a filter is internally put in parallel to the external acoustic
feedback path, as shown in Fig. 15.25. The output of the filter models the
feedback signal.

Fig. 15.25. General setup of a feedback cancellation system with SP modeling the
hearing aid signal processing, h(n) the external feedback path, ĥ(n) the adaptive
filter.

The challenge of this approach is to properly estimate the external feed-
back path with an adaptive filter. This is hard to realize due to the correlation
of the input signal and the signal which is acoustically fed back to the micro-
phones. For reliable estimates of the feedback path, the adaptation has to be
controlled by sophisticated methods.
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Adaptive algorithms generally estimate the filter coefficients, based on
an optimization criterion. The criterion which is very often utilized is the
minimization of the mean square error signal, i.e., the signal e(n) after the
subtraction of the adaptive filter’s output signal. Writing e(n) as

e(n) = x(n) +
N−1∑
l=0

[
hl(n) − ĥl(n)

]
v(n− l), (15.11)

where the adaptive filter is assumed to model the complete feedback path of
length N , and deriving the mean square error E{e2(n)} with respect to ĥl(n),
one obtains the following relation:

E

{
e(n)

[
v(n− ν) −

N−1∑
l=0

[
hl(n) − ĥl(n)

] ∂v(n− l)
∂ĥν(n)

]}
!= 0 (15.12)

∀ ν ∈ [0, N − 1] (15.13)

Under the assumption that the adaptive filter is nearly converged to the feed-
back path, one obtains the well-known orthogonality theorem:

E
{
v(n− l) e(n)} != 0 ∀ l ∈ [0, N − 1]. (15.14)

Writing Eqn. 15.11 in vector notation as

e(n) = x(n) +
[
h(n) − ĥ(n)

]T
v(n) (15.15)

with v(n) = [v(n), . . . , v(n − N + 1)]T , ĥ(n) = [ĥ0(n), . . . , ĥN−1(n)]T and
h(n) = [h0(n), . . . , hN−1(n)]T and deriving the mean square error with respect
to ĥ(n), one obtains the following equation:

rxv(n) + Rvv(n)
[
h(n) − ĥ(n)

]
=
[
0, . . . , 0

]T
, (15.16)

with the cross-correlation vector rxv(n) = E{x(n)v(n)} and the autocorrela-
tion matrix Rvv(n) = E{v(n)vT (n)}, respectively.

Resolving this equation with respect to ĥ(n), it becomes obvious that
the optimum solution which minimizes the mean square error shows a bias
compared to the true feedback path:

ĥopt(n) = h(n) + R−1
vv(n) rxv(n). (15.17)

The second term R−1
vv(n) rxv(n) distorts the input signal x(n) as the signal

v(n) is filtered such that all predictable components of x(n) are subtracted,
i.e. x(n) is whitened. For an alternative derivation of correlation effects, see
e.g. [58].

To demonstrate the relations, simulations were performed where the SP
block of Fig. 15.25 was simply set to a gain g. The filter ĥ(n) was adapted
under three different conditions:
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1. for a white input signal,
2. for a colored input signal with the external feedback path turned to zero:

h = [0, . . . , 0]T , and
3. for a colored input signal with an activated model of the external feedback

path.

For the feedback path, a very simple model was used with h = [ 0 0 0
1 −0.6 0.1 −0.3 −0.2]T . The colored input signal was generated by a MA
(moving average) process: x(n) = u(n) +

∑L
l=0 a(l)u(n− l− 1), with a white

signal u(l) and L = 20.

0 5 10 15 20

-0.5

0

0.5

1

0 5 10 15 20

-0.5

0

0.5

1

0 5 10 15 20

-0.5

0

0.5

1

Coefficient index

Fig. 15.26. Results for ĥ(n) for white (above) and colored excitation with external
feedback path off (middle) and on (below). In the lower graph it is shown that the
filter (solid line) nearly converges to the sum of the upper and middle graph (dashed
line).

The results are depicted in Fig. 15.26. For the white input signal, the filter
ĥ(n) adapts – as desired – to the feedback path (upper graph). When the
feedback path is turned off and the colored signal is used as input, however,
the filter acts as a decorrelation filter: If the SP block simply is a gain g = 1
the filter coefficients model the coefficients a(l) of the input signal’s model
(middle graph). The result, which is obtained for the case when a colored
signal is used to identify the feedback path, shows the superposition of both,
the true feedback path and the FIR model of the input signal (lower graph).

Unfortunately, the last case corresponds to the general application for
which the decorrelating effect of the feedback cancellation filter can hardly be
avoided. This bias causes a distortion of the hearing aid output and has to be
reduced as much as possible.
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Thus, the main objective for enhancing the adaptation should be to reduce
this correlation. Here, different methods exist [52]:

• Decorrelating the input signal with fast-adaptive decorrelation filters,
• delaying the output signal, or
• putting a nonlinear processing unit before the output stage of the hearing

aid.

However, none of these methods is a straight-forward solution to the given
problem, since many problems occur while implementing the proposals.

We made good experiences with three main settings:

• We reduce the step size, when music is detected as excitation signal,
• we utilize an internal feedback detector which allows a fast feedback re-

duction when suddenly the external feedback signal decreases, and
• we avoid gain settings of the hearing aid which provoke a closed loop gain

setting strongly larger the critical gain.

The music detection is based on the decision of the classificator (see
Sec. 15.6). In case when music is present as excitation signal, the risk of a
correlated input and thus a biased adaptation of the filter is high. Therefore,
to avoid this the step size is reduced. The drawback that the tracking of the
filter is reduced can be accepted since when listening to music people usually
move less and thus the risk of feedback provoked by feedback path changes is
not very high.

The internal feedback detector steadily compares the input signal of the
feedback cancellation system and the output signal of the adaptive filter which
is the estimated feedback signal. In case the estimated feedback signal is larger
than the input signal, this is a clear indication of a mis-adjustment of the
adaptive filter. Either an increased step size or a complete reset of the filter
coefficients can assure a fast readaptation of the filter coefficients. Usually this
case occurs when a obstacle near the hearing aid (hand, telephone receiver,
hat, etc.) which provokes a larger feedback path is suddenly removed.

Finally, one has to be aware of the limits of a feedback compensation
system: The larger the hearing aid gain exceeds the critical gain, i.e. the
gain when feedback occurs without feedback cancellation, the higher are the
demands for the feedback compensator, and the more accurately the feedback
path has to be estimated to avoid feedback. In other words, only slight mis-
adjustment of the feedback path may already provoke strong feedback. This
also has a direct impact to the adaption control: Only weak correlations of
the input signal and thus a small bias of the estimated filter coefficients may
provoke feedback in case of hearing aid gains that exceed the critical gain
strongly, i.e. more than 10-15 dB.
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15.6 Classification

Hearing aid users encounter a lot of different hearing situations in every day
life, e.g. conversation in quiet or in noise, telephone calls, being in a theater
or in road traffic noise. They expect real benefits from a hearing aid in each
of the mentioned situations. As was shown in the previous part of this paper,
modern digital hearing aids provide multiple signal processing algorithms and
possible parameter settings, e.g. concerning directivity, noise reduction and
dynamic compression. This portfolio of algorithms is expected to still grow
with increasing IC computational power. Single algorithms and their multi-
tude of possible parameter settings are mostly working in a situation specific
way, i.e. these algorithms are beneficial in certain hearing situations whereas
they have no or even negative impact in other situations. For example noise
reduction algorithms as described in Sec. 15.3 reduce stationary background
noise efficiently, whereas they may have some negative influence on the sound
of music and should therefore be disabled in such situations. Even if the opti-
mal signal processing algorithm for any relevant situation would be available,
the problem to activate it reliably in the current specific hearing situation re-
mains. A promising solution for this problem is to use a classification system,
which can be understood as a superordinate, intelligent algorithm that contin-
uously analyzes the hearing situation and automatically enables the optimal
hearing aid setting. The alternative would be a great number of situation
specific hearing aid programs, which have to be chosen manually. However,
this approach would certainly overextend the mental and motor abilities of
many hearing aid users, especially for the small ITE (in-the-ear) devices, and
therefore, seems not to be a very attractive alternative [22].

15.6.1 Basic Structure of Monaural Classification

Fig. 15.1 shows the basic structure of a digital hearing aid with a superordi-
nated classification system controlling the different signal processing blocks
like directional microphone, noise reduction, shaping of the frequency response
and dynamic compression. Classification systems consist of different functional
stages:

As a first step, ”features” are extracted from the microphone signal. ”Fea-
tures” are certain properties of the signals, whose magnitude is as different
as possible for selected situation classes like ”speech in quiet”, ”(speech in)
noise” or ”music” and can therefore be used to distinguish between situation
classes. In literature several spectral and temporal features have been pro-
posed, mostly in the context of separation of ”speech in quiet” and ”speech
in noise”: profile and temporal changes of the frequency spectrum [7, 17, 27],
statistical distribution of signal amplitudes [35] or analysis of modulation fre-
quencies [48].
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To illustrate the principle of feature extraction, Fig. 15.27 shows the ex-
traction of a modulation feature from three different signals belonging to the
classes ”speech in quiet”, ”speech in noise” and ”music”.
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Fig. 15.27. Example for the calculation of an envelope-modulation feature.

The fluctuations of the signal envelope which are calculated by taking
the absolute value and lowpass filtering are called ”modulation”. Typical for
speech are strong modulations in the range of 1-4 Hz. The magnitude curves of
this feature for the three examples as depicted in Fig. 15.27, show that values
of this feature are obviously higher for ”speech in quiet” than for the other
signals. Consequently, the modulation feature allows to separate ”speech in
quiet” from ”speech in noise” and ”music”, whereas separation of ”speech in
noise” and ”music” is not possible due to similar feature values. Therefore,
most applications of classification techniques require the simultaneous evalua-
tion of a larger number of features to ensure sufficient decision reliability. The
assignment of feature values and their combinations to the different classes can
be achieved with standard approaches like the Bayes Classifier [48] or Neural
Networks [17]. These algorithms learn the necessary a-priori knowledge about
the relationship between feature values and situation classes in appropriate
training procedures, which have to be based on large and representative data-
bases of every-day life signals.

Fig. 15.28 demonstrates the performance of a classification system in a
commercially available high-end hearing aid, which uses a Bayes classification
system based on two envelope-modulation and a rhythm features to detect
the four classes ”speech”, ”speech in noise”, ”noise” and ”music”.
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Fig. 15.28. Performance evaluation of a classification system of a modern hearing
aid, based on classification of 15 hours of recorded hearing aid microphone signals
comprising 500 hearing-situations in total.

Following the Bayes approach, for each detected value of the three features
the probability of the four different classes is calculated. After summing up
the probabilites across the three different features, the decision is made for
the class with the highest cumulated probability. The underlying probability
density functions, which are shown in Fig. 15.29, were derived in training with
a large training database.

They can be implemented in hearing aids as look-up table or more effi-
ciently in terms of hearing aid memory as polynomial approximations.

Every second a classification decision was made finally leading to the de-
tection and error rates calculated for each of the four classes. Obviously, de-
tection rates between 75 and 90 percent can be achieved, which have shown
to be sufficient for a robust and beneficial control of the hearing aid signal
processing. The perceptual influence of the misdetections can be reduced to
a negligible level by nonlinear temporal averaging of the classification results
and, as described in the next section, by smooth transitions between different
operation states.

The adaption of the hearing aid signal processing to the detected listening
situation is divided into two parts as shown in Fig. 15.1. The block ”selection
of algorithm and parameters” contains an ”action matrix” describing which
of the settings for the algorithms and parameters are optimal in each situ-
ation. The definition of the action matrix is based on detailed knowledge of
the properties of the particular algorithms in the different situations. Exten-
sive investigations and tests are the base for this knowledge. Every time the
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detected situation class is updated, the next block generates ”on/off”-control
signals for each hearing aid algorithm. Sudden ”off/on”-switching of signal
processing components like the directional microphone are considered as irri-
tating and unpleasant. Thus, appropriate fading mechanisms which realize a
gliding smooth transition from one state of operation to another are advan-
tageous. In many cases, this can easily be achieved by low pass filtering of
the control signals. Fig. 15.30 illustrates the fading from omnidirectional to
directional microphone mode.
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15.6.2 Binaural Classification

A problem in bilateral fittings of hearing aids with classification systems is
that different classes can be detected in the left and right hearing aid resulting
in different processing schemes. These differences, e.g. if the directional micro-
phone is activated only on one side, can temporarily reduce the sound quality
as well as the speech intelligibility and in addition to that, introduce artificial
interaural time and level differences reducing the localization ability of the
hearing impaired, which is mainly based on analyzing these signal cues [28].

Differences in classification results are mainly caused by head shading ef-
fects in asymmetrical hearing situation, e.g. a hearing situation with a music
source on one side of the head and a talker on the other side, would lead to
local classification decisions dominated by the ispilateral source, since the con-
tralateral source is shaded, i.e. attenuated, by the head. Real-life evaluations
with BTE (behind-the-ear) hearing aids showed that the percentage of asym-
metrical classification results can reach up to 20 %. To overcome the problems
described above, a binaural synchronization of the classification systems based
on a bidirectional low-power wireless link between both hearing aids was in-
troduced recently. In this realization both hearing aids first analyze the sound
field independently, then exchange information of the local classification re-
sults and then follow exactly the same procedure in parallel to determine the
global ”binaural” class, see Fig. 15.1. Finally, both hearing aids are adapted
synchronously to the signal processing and parameter settings prescribed for
the common class. Doing so, the above mentioned disadvantages in unsym-
metrical hearing situations can be avoided.

15.6.3 Future Trends

Using multi-microphone signals is the most important step from classifica-
tion based on the statistical information of one microphone signal towards a
future sound scene classification [49]. Typical situations where single-signal
based classification systems fail are, for example, listening to music from the
car radio while driving or conversing in a cafe with background music. To
classify these situations correctly so that the algorithms can take advantage
of the result requires information about the sound incidence direction, and the
number, distance and type of sound sources in the room. This information can
be derived from future multi-microphone localization and classification algo-
rithms. Methods known from the Computational Auditory Scene Analysis
(CASA) [6] can be used to further develop today’s classification systems. For
example, simultaneous speech sources in noisy environment can be recognized
by pitch tracking [64].
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15.7 Summary

The development of hearing aids covers a wide range of different signal process-
ing components. They are mainly motivated by audiological questions. This
chapter focuses on algorithms dealing with the compensation of the recruit-
ment phenomenon, the improvement of speech intelligibility and the enhance-
ment of comfort while using the hearing aid in everyday life.

As one important component of hearing aids, the directional microphone
and its effect on the improvement of speech intelligibility is discussed. Di-
rectional microphones of different complexities are investigated starting with
simple methods like first-order and second-order differential arrays. A descrip-
tion of a four-channel adaptive beamformer closes this topic.

One component which mainly focuses on the improvement of comfort is
the noise reduction unit. Algorithms of different complexities, with different
amounts of statistical a priori knowledge concerning the computed signal and
different speeds of reaction are described. Noise reduction algorithms which
exploit the binaural wireless link of future high-end digital hearing aids are
discussed as well.

A significant unit in hearing aids is the AGC which compensates the re-
cruitment phenomenon. This chapter discusses state-of-the-art systems and
future trends.

Another important aspect is the feedback phenomenon which may occur
at high levels of amplification in the hearing aid. This chapter presents two
concepts to reduce feedback, namely the feedback compensation approach and
the feedback suppression approach.

Finally, the ability of modern hearing aids to detect different hearing sit-
uations on the basis of binaurally coupled classification algorithms using a
wireless link and to properly adapt to the optimal processing for the specific
situation is discussed.
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