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Variograms

9.1 Introduction to Methods for Variograms

In model-based methods of spatial prediction (kriging) the values of the tar-
get variable at the sampling locations are considered to be realizations of
a Stochastic Function (see Appendix B). In a spatial context a Stochastic
Function (SF) is a field of spatially dependent random variables (RVs), and
therefore is also referred to as a Random Field (RF). In many cases it is as-
sumed that the mean difference of the RVs at two locations is zero (constant
mean), and the variance of this difference depends on the spatial separation
vector (lag) h only, not on the locations themselves:

E{Z(s2) − Z(s1)} = 0 (9.1)
E{Z(s2) − Z(s1)}2 = 2γ(s2 − s1) = 2γ(h) . (9.2)

A SF that meets these requirements is an intrinsic SF. The function γ(h) is
referred to as the (semi-)variogram. If this variogram is known, then one can
obtain Best Linear Unbiased Predictions (BLUP) of the values at points or
the means of blocks from sample data. One may also use the variogram for
geostatistical simulation of fields (realizations) that are used, for instance, as
input in a process-based simulation model. In this chapter we present sam-
pling designs appropriate for estimating the variogram. In many situations
the collected sample data are used both for estimating the variogram and for
geostatistical interpolation or simulation. In Sect. 8.3 appropriate designs for
sampling in one-phase are described. If the available time and budget allow for
sampling in two phases, then we recommend to focus the first phase sample
on estimating the variogram, and the second-phase sample on interpolation.
In general, this two-phase sampling is more efficient, because the variogram
estimated from the first phase sample can be used to optimize the sample
for the second phase. This chapter describes principles for designing efficient
samples for the first phase of such a phased sampling approach.

The first choice to be made is the size of the first phase sample. According
to Webster and Oliver (1992), 150 locations might suffice in many situations,
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and 225 locations would be almost certainly adequate in most applications
where spatial variation is equal in all directions (isotropic). These sample
sizes already make clear that for model-based prediction quite a few locations
must be sampled. This is usually only realistic when many local means or
the values at points must be predicted. Once one has decided on the number
of locations to estimate the variogram from, one must choose the locations
themselves. We distinguish two approaches for selecting the locations. In the
first approach clusters of locations are selected. The locations within a cluster
have a more or less regular, predetermined pattern. In this approach, one
must choose a pattern, and a method or principle for selecting the clusters.
In the second approach the sampling locations are optimized by minimizing
a quality measure. In general this approach will result in an irregular pattern
of locations. In this approach one must choose a quality measure and an
algorithm for minimizing it.

9.2 Regular Patterns

9.2.1 Transect and Grid Sampling

Due to its operational advantages, a commonly used cluster type for estimat-
ing variograms is the transect. When sampling on transects, one has to choose
the number of locations per transect, the distances between the locations, and
the location and orientation of the transects. The distance between neighbour-
ing locations on a given transect, i.e., the sampling interval, can be chosen
constant or varying. Pettit and McBratney (1993) recommend transects in
three directions, with the sampling locations in a given transect exponentially
spaced. For instance, one may select 25 transects of 6 locations with inter-
point distances of 0.2, 1, 5, 25 and 125 meter, i.e., each time the interval
increases by a factor five. The transects must be evenly spread over the target
area, for instance by dividing the area into squares or compact geographical
strata of equal area (Sect. 7.2.4), and selecting one transect from each square
(Fig. 9.1).

Transect sampling is appropriate when the average distance across the
study area is large compared to the range of the variogram. For such areas
sampling on a regular grid would give insufficient information on the semi-
variance at lags smaller than the range. If the distance across the area is
small compared to the range of the variogram, then an alternative for tran-
sect sampling is sampling on a regular grid, supplemented by locations at a
short distance of some grid nodes. To account for anisotropy, triangular grids
are more suitable than square grids (Yfantis et al., 1987).

The ‘short distance locations’ are used to estimate the semivariance at lags
smaller than the grid distance. Accurate estimates of the semivariance at small
lags are important for estimating the nugget of the variogram, and for choosing
between alternative models, for instance a spherical or a Gaussian model. It is
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Fig. 9.1. Transect sampling from squares. After Pettit and McBratney (1993)

well known that if the variogram is used for geostatistical interpolation, then
it is especially important to have reliable information on the variogram near
the origin. We recommend to select at least 30 to 50 additional locations per
lag, because this results into 30 to 50 disjoint pairs of locations, which is the
minimum number of pairs mentioned by Journel and Huijbregts (1978).

To avoid spatial clustering of short distance locations in certain parts of
the area, we recommend to select the grid nodes that will receive a short
distance location purposively and not at random, for instance by subsampling
the regular grid systematically (see Fig. 9.2). Also, we recommend to locate
the additional locations on the sides of the grid cells, so that the directions
for the smallest lag coincide with those of the larger lags.

9.2.2 Nested Sampling

In Nested Sampling the sampling locations are selected in stages (batches)
in such a way that the distance between a randomly selected location of a
given stage to a location of a previous stage is controlled. Figure 9.3 shows a
nested design with four stages: in the first stage three locations with a mutual
distance of h1 m are randomly selected from the area. In the second stage at
each of these locations in a random direction a location is selected at a distance
of h2 = h1/3 m. We now have 3×2 = 6 locations. In the third stage at each of
these six locations in a random direction a locations is selected at a distance
of h2/3 m, which makes the total number of locations 3×2×2 = 12 locations.
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Fig. 9.2. Square grid sample with additional short distance locations for variogram
estimation

This procedure is repeated once more, leading to a total of 24 locations. Note
that in two dimensions it is impossible to select more than three mutually
equidistant locations.

In practice, in the first stage often more than three locations are selected,
for instance at the nodes of a square grid with a grid distance of h1 m (Oliver,
1984). However, in that case one must be aware that the largest lag at which
the semivariance is estimated is larger than h1 m. Note that in the design
of Fig. 9.3 the sample size doubles at each stage. So, if one has five stages
with 9 locations in the first stage, the size of the nested sample becomes
9×2×2×2×2 = 144. Adding a sixth stage implies an increase of the sample
size of 144 locations.

Clearly, with nested designs one generally cannot afford many stages, be-
cause that would imply a too large sample size. However, full replication
at each stage is unnecessary because with this design the variogram at the
smaller lags is estimated much more precisely than at the larger distances.
Therefore one may decide to replicate for the lower stages at only a pro-
portion of the units, leading to so-called unbalanced designs. For the nested
sample of Fig. 9.3 a 50% replication at the fourth stage leads to a total of 18
locations. For a nested design with five levels, 9 locations in the first stage,
and a 50% replication at the fifth stage the total sample size becomes 108.
One can now afford a sixth stage of 36 locations for the same budget, leading
to an estimate of the variogram at one extra lag near the origin.
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Fig. 9.3. Balanced nested sample with four stages. In the first stage three locations
are selected. In subsequent stages at each of the sampling locations of the previous
stages one additional location is selected

9.2.3 Independent Sampling of Pairs of Locations

If the method-of-moments is used to estimate the variogram (see Sect. 9.4.1),
then one must be aware that the estimated semivariances for the M lags are
logically correlated. These correlations should be taken into account when
fitting the variogram model, but calculating the correlations is cumbersome.
Moreover, from time-series analysis it is well known that due to these corre-
lations one may be misled as to the type of model. For instance, the experi-
mental variogram (the estimated semivariances for several lags) may show a
hole effect which does not exist in reality.

These problems can be avoided by selecting pairs of locations indepen-
dently as proposed by Brus and de Gruijter (1994). They proposed a design-
based approach for estimating local (non-ergodic) variograms (Isaaks and Sri-
vastava, 1988). In this approach, first a number of lags and the numbers of
pairs per lag are chosen. To choose these lags and numbers the theory of ex-
perimental design can be used. Then for each lag the pairs of locations are
selected by some type of design. For instance, in Simple Random Sampling
(Sect. 7.2.3) of M(h) pairs of locations with lag h, M(h) locations are se-
lected at random, with equal probability and independently from each other.
Then for each location a counterpart is selected in a random or fixed direc-
tion at distance h from the starting location. If this counterpart is outside
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the target area, also the starting location is omitted, and a new starting lo-
cation is selected. Due to the independent selection of the pairs of locations,
the estimated semivariances at the selected lags are uncorrelated, and their
sampling variances can be estimated simply. The same holds for the sampling
variance and covariance of the parameters of the fitted model. These advan-
tages concerning the quantification of the uncertainty about the variogram
are at the expense of the precision, because only n/2 (n is total number of
locations) pairs of locations are used in the estimation, and the remaining
n (n−2)/2 pairs are neglected. It depends on the situation how large this loss
of information is and whether it is outweighed by the mentioned advantages.

9.3 Optimized Sampling Patterns

One may calculate the sampling pattern that explicitly has a minimum value
for some objective function. In this case a quality measure and an algorithm
to optimize it has to be selected. In the first papers on this subject a quality
measure is proposed that quantifies how close the numbers of location pairs
per lag class are to prespecified numbers (Warrick and Myers, 1987). However,
the problem then shifts to the choice of the numbers of location pairs, and
the question becomes what distribution of numbers of location pairs is best.
Müller and Zimmerman (1999) and Lark (2002) have shown that a uniform
distribution is sub-optimal; see also Müller (2001).

In subsequent papers it was proposed to base the quality measure on the
variance-covariance matrix of the estimated parameters of a variogram model
(Zimmerman and Homer, 1991; Bogaert and Russo, 1999; Müller and Zimmer-
man, 1999). For variograms that are non-linear functions of the parameters
this is not straightforward. If one approximates the non-linear function by a
first-order Taylor expansion, then the variance-covariance matrix of the pa-
rameters fitted by Generalized Least Squares to the estimated semivariances
can be approximated by

Vθ̂ ≈
(

G′
θ V−1

γ̂ Gθ

)−1

, (9.3)

where Gθ is the M × p matrix with the partial derivatives of the variogram,
evaluated at the true (but unknown) values of the parameters:

Gθ =

⎡

⎢

⎢

⎣

∂γ(h1;θ)
∂θ1

· · · ∂γ(hM ;θ)
∂θp

...
. . .

...
∂γ(hM ;θ)

∂θ1
· · · ∂γ(hM ;θ)

∂θp

⎤

⎥

⎥

⎦

, (9.4)

and Vγ̂ is the M × M variance–covariance matrix of the estimated semivari-
ances. Cressie (1993) shows how Vγ̂ can be calculated when the SF is assumed
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to be second-order stationary (Appendix B.1) and multivariate Gaussian. Bo-
gaert and Russo (1999) and Müller and Zimmerman (1999) proposed to opti-
mize the locations by minimizing the determinant of Vθ̂, which is equivalent to
maximizing the determinant of the so-called information matrix G′

θ V−1
γ̂ Gθ

in (9.3). Such designs are referred to as D-optimal designs. Note that both
Gθ and Vγ̂ depend on the parameters of the variogram, and therefore to
minimize det(Vθ̂) with respect to the sampling locations, one must know the
variogram. So, there is a circular problem.

A way out is to sample in two phases, and to use estimates of the parame-
ters from the relatively small first phase sample to optimize the sample of the
second phase. Bogaert and Russo (1999) optimized the pattern of 100 loca-
tions for an exponential variogram without nugget (sill = 1; effective range =
1/2 of side of square) and for an exponential variogram with nugget (nugget
= 0.5; sill = 1; effective range = 1/2 of side of square). For the exponential
variogram without nugget the gain in precision of the estimated parameters
compared to Simple Random Sampling was limited. For the exponential var-
iogram with nugget the optimized sample had many locations at very short
distance, and as a result the estimated nugget was considerably more precise
than for Simple Random Sampling. There was also gain for the sill, however
for the range parameter the gain was again limited. Müller and Zimmerman
(1999) and Boer et al. (2001) studied the effect of ignoring the correlations
between the location pairs. This implies that the variogram is estimated by
Weighted Least Squares (weights equal to n(h)/γ2(h;θ)) instead of General-
ized Least Squares (Cressie, 1985). The quality measure then slightly changes:
in the matrix Vγ̂ of (9.3) the off-diagonal elements are substituted by zeroes.
Müller and Zimmerman (1999) found that this simplification led to a very
similar pattern which was only slightly inferior to the optimal pattern. Boer
et al. (2001) found that ignoring correlations led to strong clustering of loca-
tions, even for a variogram without nugget. Boer et al. (2001) also found that
the value of the quality measure, det(Vγ̂), and the pattern of locations was
rather insensitive to changes in the parameters of the variogram, although
there was some influence of the range and (for large ranges) of the nugget.

Finally, Lark (2002) proposed a quality measure based on the suitability of
the estimated variogram for geostatistical interpolation. This seems rational
because in many cases the ultimate goal is not the variogram itself, but a map
obtained by kriging with the variogram. It is well-known that the kriging vari-
ance is more sensitive to changes in the variogram than the kriging prediction
itself, and this is the main reason why Lark proposed to look at the kriging
variance (Appendix B, equation B.19). Due to uncertainty about the vari-
ogram, there is also uncertainty about this kriging variance, and Lark (2002)
proposed to use as a quality measure the variance of the kriging variance. This
variance is approximated by a first-order Taylor expansion:

V (VK) ≈ g′
V Vθ̂ gV , (9.5)
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where gV is the p-vector with partial derivatives of the kriging variance to the
variogram parameters:

gV =

⎡

⎢

⎣

∂VK
∂θ1
...

∂VK
∂θp

⎤

⎥

⎦
, (9.6)

and Vθ̂ is the p × p variance–covariance matrix of the estimated variogram
parameters. Lark (2002) optimized 49 sampling locations assuming an ex-
ponential variogram with nugget, γ(h) = c0 + c1{1 − exp(−h/a)}, at three
levels for the distance parameter a, and for the ratio of spatial dependence
c1/(c0+c1), resulting into nine combinations. Lark (2002) considered the krig-
ing variance at the centre of a square grid of 5 units. Figure 9.4 shows the
optimized sampling locations. For a small ratio of spatial dependence (large
nugget-to-sill ratio) and/or a small range the optimized sample showed several
clusters of locations. For the intermediate ratio of spatial dependence com-
bined with the two largest ranges the optimized sample showed a more or less
regular distribution with some of the locations supplemented by an additional
location at short distance. For the largest ratio of spatial dependence and the
two largest ranges the optimized sample has a more or less regular pattern
with several chains of locations. Lark (2002) compared the optimized sam-
ples with 7 randomly selected transects of 7 locations with a regular spacing.
He found comparable values for the quality measure, and therefore concluded
that when one is ignorant about the variogram, then the most robust ap-
proach is to sample on transects. In an experiment where a first phase sample
of 7 randomly selected transects of 7 locations each was supplemented by an
optimized sample of 31 locations, there was a benefit from the optimization
compared to sampling entirely on transects.

9.4 Estimating the Variogram

We shall now describe how the variogram can be estimated from the sample
data. The most widely used method for variogram estimation is the method-
of-moments. Alternatively, the variogram can be estimated by the maximum
likelihood method. In principle for all sampling designs described above both
estimation methods can be used. For nested designs the natural way of es-
timating the variogram is ANOVA. By summing the variance components
associated with the stages we get the variogram for the chosen lags (Webster
and Oliver, 1990). Miesch (1975) and Corsten and Stein (1994) have shown
that for balanced designs ANOVA and the method-of-moments are equivalent
and lead to identical experimental variograms. For unbalanced designs these
two methods lead to different estimates.
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Fig. 9.4. 49 sampling locations optimized for the kriging variance of predictions at
the centre of the square grid cells with a spacing of 5 distance units. An exponen-
tial variogram is assumed, with varying distance parameters, and ratios of spatial
dependence. (Reproduced from Lark (2002, p. 69) with permission from Elsevier.)

9.4.1 Method-of-Moments

With the method-of-moments, the variogram is estimated in two steps. In the
first step, the data are used to form pairs of locations. Then we estimate the
variogram for a given lag h by selecting all pairs of sampling locations h apart,
and calculating:

γ̂(h) =
1

2M(h)

M(h)
∑

i=1

{z(si) − z(si + h)}2
, (9.7)
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where M(h) is the number of pairs separated by lag h. Unless locations are
chosen at regular intervals along transects or on grids, it is necessary to group
the lags by distance and direction, i.e., to use tolerance intervals both for the
length and for the direction of the vector. If it is assumed that the variogram is
independent of direction, i.e., an omnidirectional or isotropic variogram, then
one may group all lags with (approximately) the same length, and estimate
the experimental variogram for these lags. For kriging one needs a continuous
function, and therefore in the second step a continuous model is fitted to the
experimental variogram. Only models are permitted which ensure that the
variances of the prediction errors are non-negative. Permissible models that
are commonly used are the spherical, the exponential, and the Gaussian model
(Appendix B). The estimates γ̂(h) are correlated, and therefore the parame-
ters of the model must be estimated by taking into account the variances and
covariances of the values in the experimental variogram. In statistical litera-
ture this is referred to as Generalized Least Squares estimation. This implies
that the parameters must be estimated iteratively, because the variances and
covariances depend on the variogram itself. Cressie (1985) recommended to
neglect the covariances, and to fit the model by Weighted Least Squares, us-
ing the number of pairs divided by the squared semivariance in the previous
iteration as weights.

9.4.2 Maximum Likelihood Estimation

Contrary to the method-of-moments, with the maximum likelihood method
the data are not paired into couples, and the variogram is estimated in one
step. To apply this method one typically assumes that the n sample data
are a realization of a second-order stationary n-variate Gaussian Stochastic
Function. Second-order stationarity is a slightly stronger assumption than
the intrinsic hypothesis because the variance of the process is assumed fi-
nite (Appendix B). Especially the assumption that the process is multivariate
Gaussian is a rather strong assumption. When the Spatial Cumulative Dis-
tribution Function is clearly non-Gaussian, we recommend transforming the
data first, for instance by taking logarithms or square roots, and to estimate
the variogram of the transformed data.

One needs the assumption of a multivariate Gaussian process, because
then the joint probability density of the sample data can be calculated by:

P (z, µ,p) = (2π)−
n
2 |V|− 1

2 exp
{

−1
2
(z − µ)′ V−1 (z − µ)

}

, (9.8)

where z is the vector with the n sample data, µ is the vector with means (all
values are equal), p is the vector with parameters of the covariance function,
and V is the n × n matrix with variances and covariances of the sample
data. This equation may not be familiar to the reader, however rewriting this
equation for n = 1 gives
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P (z, µ, σ2) =
1

σ
√

2π
exp

{

−1
2

(

z − µ

σ

)2
}

, (9.9)

the univariate normal density function. Note that there is a matrix with co-
variances in the equation, and not a matrix with semivariances, however for
second-order stationary Stochastic Functions the variogram can be obtained
from the covariance function (Appendix B, equation B.15). If the values at
the sampling locations are considered as fixed, then (9.8) can be used to cal-
culate the probability of finding these values for any combination of values
for µ and for the parameters of the covariance function. The parameters of
the covariance function can now be estimated by maximizing this probability.
The estimates thus obtained are referred to as maximum likelihood estimates.
Usually the logarithm of the probability is taken and multiplied by -1, and
this negative log-likelihood is minimized, which is equivalent to maximizing
the likelihood itself. Lark (2000) compared the method-of-moments and the
maximum likelihood method. In general the maximum likelihood estimates
were better than the method-of-moments estimates, especially for small sam-
ple sizes (say n < 75) and when spatial structure is moderate to strong (small
nugget, large range). Lark (2000) also found that, although the method-of-
moments does not make the multivariate Gaussian assumption, this method
is equally sensitive to skewness of data as the maximum likelihood method.
For larger sample sizes (n > 150) ML estimation becomes impractical because
a huge number of computations are then required. For more information on
this method we refer to Pardo-Igúzquiza and Dowd (1998).




