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Introduction to Sampling in Space

As regards ‘space’, it is assumed that in the structured approach to designing
survey and monitoring schemes (Chap. 3.2), the design information speci-
fies that the universe of interest is purely spatial, i.e., no time dimension is
involved. This part therefore deals with the situation in which a once-only sur-
vey can deliver the required information. Of course, the methods presented
here can be applied more than once in the same area. That would, however,
constitute a form of monitoring, the implications of which are dealt with in
Part IV ’Sampling in Space–Time’.

Sampling for survey of natural resources can be done in 1D, 2D or 3D
space. Although the spatial universe of interest is often a three-dimensional
body, sampling is mostly carried out in the horizontal plane, i.e., in 2D space,
so that the sampling locations have only two coordinates. Therefore we present
the methods in terms of 2D sampling; for instance, we will use the term
‘area’ rather than ‘spatial universe’. Sampling in 1D or 3D space is discussed
separately, in Sect. 7.2.16.

In Sect. 4.1 we already stressed the importance of the choice between
design-based or model-based inference because design-based inference requires
probability sampling, whereas for model-based inference non-probability sam-
pling is most appropriate. We shall discuss the pros and cons of these two
approaches to sampling and inference now in more detail in the context of
spatial survey. Broadly speaking, the suitability of design-based methods, rel-
ative to model-based methods, is greatest for global quantities such as the
spatial mean, and diminishes as one moves to smaller and smaller sub-areas,
and finally to estimation at specific points. Neither of the two approaches has
a monopoly, not even at the extremes of the spatial resolution continuum,
viz. the area as a whole and individual point locations. This broad picture is
illustrated in Fig. 6.1. It should be noted that the relative suitability func-
tions depicted in this figure only reflect our global expectations of suitabilities,
‘averaged’ over a broad class of different cases that could be encountered in
practice.
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Fig. 6.1. Relative suitability of the design-based and model-based approaches to
sampling, as a function of the spatial resolution at which estimates are required

In reality there are more factors that determine the suitability than spatial
resolution alone. These factors relate to the following questions.

1. Should the estimation or the test of the global quantity be ‘design-
unbiased’, i.e., correct on average over repetitions of the sampling process
using the same sampling design? Design-unbiasedness can be regarded as a
strict guarantee against bias in sampling, such as may arise in convenience
or purposive sampling. If this guarantee is required, then a design-based
method is the only option.

2. Should the accuracy of the estimate or the power of the test be quantified
objectively, i.e., without recourse to assumptions on the spatial variation?
A positive answer to this question rules out model-based methods.

3. Is random sampling in the field practically feasible? If not, then some
form of convenience or purposive sampling combined with model-based
inference is the obvious choice.

4. Is a reliable model of the spatial variation available? Only if this is the
case, can the model-based approach be sensibly applied.
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5. Do substantial spatial autocorrelations exist between sampling locations
and prediction locations? If not, then the computational effort involved in
model-based inference will be fruitless.

6. Is composite sampling acceptable and would it reduce costs significantly?
The conditions under which composite sampling is acceptable are dis-
cussed in Sect. 4.3. In principle, costs can be significantly reduced by
compositing if laboratory analyses of individual aliquots would consume
a considerable portion of the total budget. If composite sampling is an at-
tractive option, this could be a reason to prefer a design-based method over
a model-based one. The reason is that design-based methods allow com-
positing of aliquots taken at large mutual distances, possibly across the
entire area, whereas with model-based methods, compositing is in practice
always limited to aliquots from within small neighbourhoods. In general,
compositing of aliquots that are wider apart yields a greater reduction of
sampling variances, hence greater precision of the final estimates.

7. Are multiple realizations of a random field needed for the inference about
the target quantity? Such realizations are to generated by simulation with
a stochastic model of the variation, hence a model-based method must be
used. A condition that makes simulation inevitable is when the target
quantity is a nonlinear function of multiple values of the target variable.
This is the case, for instance, with detection problems (the target quantity
being the maximum of a 0/1 indicator variable), and with target quanti-
ties defined by neighbourhood operations, such as the (surface) area of a
watershed.

As there are several misconceptions in the literature on this issue, we repeat
from Sect. 4.1 that the design-based methods presented in Sect. 7.2 are valid,
regardless of the structure of the spatial variation, because they do not make
any assumption about that structure.

A typical application of design-based sampling strategies is to estimate the
areal mean of a directly measured quantitative variable. However, the scope
of these strategies is much wider than this, and can be expanded in three
directions: derived variables, other parameters and smaller areas or sub-areas.

First, the target variable need neither be quantitative, nor directly mea-
sured. If the target variable is measured on a nominal or ordinal scale, the
sample data consist of class labels, and these can be analyzed statistically
by first transforming them into 0/1 indicator variables. The presence and ab-
sence of a given class are thereby re-coded as 1 and 0, respectively. Of course,
if there are k mutually exclusive classes, only k − 1 indicator variables are
needed. The mean of an indicator variable can be interpreted as the fraction
of the area in which the class occurs. Transformation into indicator variables
can also be applied to quantitative variables in order to estimate the areal
fraction in which the variable exceeds a given threshold. This technique can
be extended to estimate the entire Spatial Cumulative Distribution Function
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(SCDF) of a quantitative variable. In that case, areal fractions are estimated
for a series of threshold values.

Apart from the simple 0/1 transformations, the target variable may be
the output of a more or less complicated model for which the input data
are collected at the sampling locations. Another important case of indirect
determination is in validation studies, where the target variable represents an
error, i.e., the difference between a measured value and a value predicted by
a process model or a spatial distribution model, such as a thematic map. A
common example is the error resulting from a classification algorithm applied
to remotely sensed images. The errors determined at the sampling locations
can be used to estimate their spatial mean (which equals the bias), the mean
absolute error, the mean squared error or the entire SCDF of the errors.

Second, the target parameter does not need be the spatial mean. For in-
stance, it may also be a quantile, such as the 90th percentile, the spatial
variance, a tolerance interval or a parameter of a model relating one or more
predictor variables to a variable of interest. See Krishnaiah and Rao (1988)
and Patil and Rao (1994) for design-based statistical inference on these and
other target parameters.

Third, the region for which estimation or hypothesis testing is required
need not be the entire area sampled; interest may also focus on one or more
sub-areas, or in estimation at points. This subject is dealt with in Sect. 8.2.

Traditionally, the design-based method focused on discrete populations,
and therefore representation of the universe is discrete in this approach. For
instance, the mean is defined as an average over all N population elements.
In this book we adhere to this usage in most cases, even when the universe is
continuous. The continuous universe is first discretized by a fine grid of which
the nodes represent the possible sampling locations. These methods are thus
presented in a finite population mode, whereby the size of the universe is a
dimensionless quantity (the number of nodes). In the model-based approach,
on the other hand, the universe consists of an infinite number of possible
sampling locations, and its size is measured in units of length, (surface) area
or volume.

6.1 Contents

This part is divided into three chapters, according to what the aim of the sam-
pling is: sampling for global quantities in space (Chap. 7), for local quantities
in space (Chap. 8), or for variograms to model the spatial variation (Chap. 9).
The chapters 7 and 8 form the main body of this part. They are each divided
into a section on design-based methods and a section on model-based methods.

The section on design-based methods for global quantities (7.2) is the
largest section of this part. It contains not only subsections on basic and
advanced types of sampling designs and on how to choose from them (7.2.2–
7.2.8), but also subsections on special sampling techniques like Probabilities-
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Proportional-to-Size Sampling (7.2.9), Sequential Random Sampling (7.2.10),
Line-Transect Random Sampling (7.2.13), and Line-Intercept Random Sam-
pling (7.2.14). Two subsections deal explicitly with the use of ancillary infor-
mation in sampling and in inference from sample data (7.2.11 and 7.2.12).
Finally, there is a special subsection on model-based optimization of sample
sizes for design-based sampling (7.2.15), and one on sampling in 1D or 3D
space (7.2.16).

The section on model-based methods for global quantities (7.3) treats Cen-
tred Grid Sampling (7.3.2) and Geostatistical Sampling (7.3.3), i.e., optimiz-
ing the sampling pattern with the aid of a geostatistical model. The section
on model-based methods for local quantities (8.3) in addition contains a sub-
section on Spatial Coverage Sampling (8.3.3). Both sections (7.3) and (8.3)
contain a separate subsection on sampling of hot spots. Sampling for answering
the question ’Is there a hot spot?’ is treated in Sect. (7.3.4), while the question
’Where is the critical threshold exceeded?’ is dealt with in Sect. 8.3.5).

The section on design-based methods for local quantities (8.2) deals with
probability sampling for quantities defined on sub-areas (8.2.2) and for esti-
mation of values at points (8.2.3).

Finally, Chap. 9 presents sampling and inference methods for variogram
estimation. The sampling methods entail regular patterns (9.2) and optimized
patterns (9.3). The inference methods are the method-of-moments (9.4.1) and
maximum likelihood estimation (9.4.2).




