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Modes of Sampling and Statistical Inference

As explained in Sect. 1.4 the methods for estimating global or local quantities
in space, time or space–time, are grouped in design-based and model-based
methods. With ‘method’ we mean a combination of a method for selecting
sampling units and a method for statistical inference, for instance estimation
of a spatial mean or prediction of the values at points. A design-based method
is defined as a method in which sampling units are selected by probability
sampling and in which statistical inference is based on the sampling design,
i.e., design-based inference, see Table 2.1. A model-based method is defined
as a method in which the statistical inference is based on the model. There
are no requirements on the selection of the sampling units, but in general
probability sampling is sub-optimal for model-based inference, and purposive
sampling of units is more efficient. Typical examples of purposive sampling for
model-based inference are Centred Grid Sampling, Spatial Coverage Sampling
and Geostatistical Sampling. In the following sections we elaborate on these
modes of sampling unit selection and on modes of statistical inference.

2.1 Modes of Sampling Unit Selection

Three possible modes of sampling unit selection can be distinguished: con-
venience sampling, purposive sampling and probability or random sampling.
The concept of convenience sampling is self-explanatory. An obvious example
is when sampling is limited to roadsides or other easily accessible spots. The
advantage of this mode is that it saves time and costs. The disadvantage is
that the statistical properties are inferior to those of the other modes. For
instance, estimates from a convenience sample have to be regarded as biased
unless one is willing to accept specific assumptions about the sampling process
and the spatial and temporal variation. These assumptions are often debat-
able, and this may or may not be acceptable, depending on the context of the
project.
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Table 2.1. Definition of design-based and model-based method as a combination
of a method for selection of sampling units and a method for statistical inference

Type of method Selection method Inference method

Design-based method Probability sampling Design-based
Model-based method Purposive sampling Model-based

Purposive sampling tries to select the sampling units such that a given
purpose is served best. An example is the ‘free survey’ method of mapping soil
classes, whereby the surveyor selects the sampling locations that are expected
to be most informative with respect to soil class delineation. In this example,
the locations are selected in a subjective manner, using experience, visible
landscape features and pedogenetic hypotheses, such that the surveyor expects
the most useful information from his observations. Another example is where
a centred regular grid or a zigzag transect is projected on a field in order to
obtain a ‘representative’ sample.

Purposive sampling can also be done by formally optimizing an objective
function related to the purpose. For instance, if the purpose is to map a spatial
distribution by kriging and if geographical boundary effects are disregarded,
it can be shown that the prediction-error variance is minimized by a centred
triangular grid of sampling locations, under assumptions of stationarity and
isotropy (McBratney et al., 1981).

If prior to the sampling a statistical model for the variation in the uni-
verse can be postulated and the prediction-error variance is a function of the
sampling events only, i.e., independent of the sample data, then one could
use this model to optimize the spacing of a regular grid, given a quality re-
quirement on the mean or maximum kriging variance. The model can also be
used to optimize the sampling events in the universe given the sample size.
Such samples are referred to as model-based samples, and more specific as
geostatistical samples when the postulated model is a geostatistical model.
These methods are discussed in Sects. 8.3.2 and 8.3.4, respectively. A tech-
nique of intermediate complexity is that of Spatial Coverage Sampling, which
optimizes an objective function of distances only (Sect. 8.3.3).

Probability sampling, unlike the other modes, selects sampling units at
random. If this is done properly (according to a well-defined sampling design)
the probabilities of selecting the units are known, and these probabilities pro-
vide the basis for statistical inference from the data. As discussed in Sects. 7.2
and 15.2, there are many techniques for random selection of sampling units.
Collectively, this approach to sampling is referred to as the design-based ap-
proach, as opposed to the model-based approach, where the sampling units
are fixed instead of random, and statistical inference is based on a model of
the variation in the universe. The difference between design-based and model-
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based inference is further explained in Sect. 2.2.1. The choice between these
two approaches is an important statistical issue, which is dealt with separately
in Sect. 4.1.

2.2 Modes of Statistical Inference from Sample Data

2.2.1 Design-Based versus Model-Based Inference

There are two fundamentally different approaches to sampling: the design-
based approach, followed in classical survey sampling, and the model-based
approach, followed in geostatistics and in time series analysis. Differences
and relationships between these two approaches are extensively addressed
in Särndal et al. (1992). De Gruijter and ter Braak (1990) discuss the issue
in the spatial context, but the distinction also holds, and is equally relevant,
for sampling in time and in space–time. The difference between the two ap-
proaches is illustrated in Fig. 2.1 by a simple example (Brus and de Gruijter,
1997): a square area is sampled at 25 locations and a 0/1 indicator variable
z is measured to estimate the fraction of the area with value 1. Figure 2.1a
shows a spatial distribution of z and 25 sampling locations. Averaging the
observed values at these locations yields an estimate of the fraction.

Both approaches quantify the uncertainty of such an estimate by consider-
ing what would happen if sampling were repeated many times in a hypothet-
ical experiment. Obviously, if neither the pattern of values nor the sampling
locations were changed in this experiment, there would be no variation, so
one or the other has to be varied. The two approaches differ as to which one
is varied.

The design-based approach evaluates the uncertainty by repeated sampling
with different sets of sampling locations, while regarding the pattern of values
in the area as unknown but fixed. The sets of sampling locations are generated
according to a chosen random sampling design. The row of figures (a, b and
c) represents three possible outcomes.

By contrast, the model-based approach evaluates the uncertainty by re-
peated sampling with a fixed set of sampling locations, while varying the
pattern of values in the area according to a chosen random model of the spa-
tial variation. In this approach, the column of figures (a, d and e) represents
three possible outcomes.

The experiment can remain truly hypothetical in most instances, because
probability calculus enables one to determine what happens on average over all
possible realizations. In more intricate situations, however, this is infeasible
and repeated sampling has to be simulated numerically, varying either the
sampling locations or the pattern of values, or both.

The fact that the two approaches use a different source of randomness has
several important practical as well as theoretical consequences. Here we briefly
discuss three of them. The main consequence is that the statistical inference
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Fig. 2.1. Repeated sampling in the design-based approach (a, b, c) and in the
model-based approach (a, d, e). In the design-based approach, the pattern of values
is regarded as fixed and the sampling locations are random. In the model-based
approach, the sampling locations are fixed and the pattern of values is regarded as
random. (from Brus and de Gruijter, 1997)

from sample data is entirely different. In the design-based approach, inference
is based on the selection probabilities of sampling locations as determined by
the random sampling design. This means that in calculating weighted aver-
ages, for instance, the data are assigned weights that are determined by the
selection probabilities of the sampling locations, not by their geographical
coordinates. In the model-based approach, inference is based on a stochastic
model of the variation in the universe. Here the weights of the data are de-
termined by the covariances between the observations, which are given by the
model as a function of the coordinates of the sampling locations.
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Another important difference between design-based and model-based in-
ference, apart from weighting, is the way they consider the quantity about
which inference is made. This ‘target quantity’, a concept discussed in more
detail in Sect. 3.1, is regarded as unknown but fixed in design-based inference.
See, for instance, the constant areal fraction in Figs. 2.1a, b and c. In the
model-based approach, however, there are two kinds of target quantities that
can be chosen for inference: functions of parameters of the adopted stochastic
model, and functions of realizations from that model. Model parameters and
functions thereof are fixed by definition, while quantities of realizations are
random.

A common and practically relevant example is that the model-based ap-
proach allows inference to be made about the model mean, denoted as µ, or
about the mean defined by summation or integration over space and/or time,
denoted by Z. The former is fixed while the latter is random. For instance, the
realizations in Figs. 2.1a, d and e have different areal fractions but the same
underlying model mean. The difference between a fixed and a random target
quantity is not merely a theoretical subtlety, but has direct consequences for
the quantification and even the definition of the precision and reliability of
results, as will be explained later in this section.

Finally, the choice between design-based and model-based inference (dis-
cussed in Sect. 4.1) has major consequences for sampling. Design-based infer-
ence requires some form of probability (random) sampling, while model-based
inference typically builds on purposive sampling, and needs a model of the
spatial variation. Acquisition of such a model will usually require an extra
sampling effort. Furthermore, random sampling optimization is methodologi-
cally different from purposive sampling optimization, as discussed in Chap. 5.

It should also be realized that optimal sampling for model-based inference
on model parameters differs from optimal sampling for model-based inference
on realization quantities. For instance, inference about a model mean often
requires a considerably larger sample than inference about a spatial, temporal
or spatio–temporal mean with the same level of precision. Also, these two
target quantities generally require different sampling patterns. Hence, different
equations should be used to calculate sample sizes and different methods used
for sample optimization.

It is useful to distinguish between inference modes not only in terms of
whether the target quantity is considered as fixed or random, but also whether
the inference result is quantitative (number or interval) or qualitative, for
instance, that the target quantity exceeds a given level. Quantitative and
qualitative results need their own methods of inference, and have their own
quality measures for precision and reliability, so the sample size needed to
meet a quality requirement has to be determined in different ways.

Combining the distinctions ‘random versus fixed target quantity’ with
‘qualitative versus quantitative inference result’ yields four different modes
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Table 2.2. Summary of inference modes for different combinations of target quan-
tities and types of results

Basis of inference Target quantities Type of result Inference mode

Sampling design Statistics defined on a Quantitative Estimation
fixed field of z-values, Qualitative Testing
(e.g., the deterministic
spatial mean z̄)

Stochastic model Statistics defined on a Quantitative Prediction
random field of Z-values, Qualitative Classification
(e.g., the stochastic
spatial mean Z), or:

Model parameters or Quantitative Estimation
functions thereof Qualitative Testing
(fixed by definition)

of inference: estimation, prediction1, testing and classification. These modes
are summarized in Table 2.2. A fifth mode, detection, should be applied when
the question is whether at any point in the universe some critical condition is
present, without asking where or when. The answer to this type of question
can be coded as a 0/1 indicator variable. As this relates to the universe as a
whole, it is a global quantity.

It is important to choose carefully between estimation and prediction on
the one hand, and hypothesis testing, classification and detection on the other.
This choice should be made prior to the actual design of the sampling scheme,
because it is determined by the kind of information that is required. This
issue is therefore discussed in Sect. 3.1 as part of the design information.
Here we repeat as a guideline that whenever a choice must be made between
two alternatives, e.g., whether or not to take a particular action or to draw
a particular conclusion, and when this choice is to be made on the basis
of sample data, hypothesis testing, classification or detection is in order. In
all other cases, the original problem can be formulated as an estimation or
prediction problem.

The statistical literature provides a huge variety of inference methods.
In the following sections we only recapitulate the concepts that are most
relevant to sampling. We illustrate the four modes of inference with the mean
as target quantity, and the case depicted in Fig. 2.1 as an example. The
1 Prediction should not be confused with forecasting. Prediction is quantitative

inference on a random target quantity that may be spatial, temporal or spatio-
temporal. Forecasting is a special case of prediction, i.e., when a (spatio-)temporal
quantity is related to the future.
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target variable in Fig. 2.1 is a 0/1 variable, indicating the presence or absence
of some condition, e.g., the occurrence of a given pathogen in the soil. So in
this example the mean can be interpreted as the areal fraction of infected soil.

2.2.2 Estimation

Estimation is quantitative inference on a fixed target quantity, however, as ex-
plained in the previous section, there are two kinds of fixed quantities: statis-
tics defined on a fixed field of z-values, and (functions of) model parameters
(Table 2.2). So, in the example of the areal fraction of infected soil, one first
has to decide what is to be estimated: the spatial mean or a model mean. If
the interest is focused on the infection actually present in the particular study
region, then one would estimate the spatial mean. If, on the other hand, the
interest is broader and relates to infection that may be present on average in
a hypothetical ensemble of similar regions (of which the study region is only
one example), then one would estimate a model mean.

Estimation of the Spatial Mean

When estimating the spatial mean, we consider this as fixed, as in the row of
Figs. 2.1a, b, and c. The true value of the mean, denoted by z̄, equals 0.30,
but is unknown in practice. The design-based estimator of z̄, denoted by ˆ̄z,
is generally a function of the sample data without their coordinates in space
and/or time. If the sample is drawn according to Simple Random Sampling
(see Sect. 7.2.3), the usual estimator is the unweighted sample mean (un-
weighted because the sampling locations were selected with equal probability,
not because of a model assumption):

ˆ̄z =
1
n

n
∑

i=1

zi , (2.1)

where n denotes the sample size (here 25), and zi denotes the value measured
at the i-th sampling location.

The data of the random sample depicted in Fig. 2.1a are: 8 ‘infected’ out
of 25, giving an estimate ˆ̄z = 0.32, with estimation error ˆ̄z − z̄ = 0.02. The
other, equally probable samples depicted in Figs. 2.1b and c would yield 0.40
and 0.32, respectively, with estimation errors 0.10 and 0.02. In practice, the
estimation error is unknown for any specific sample (otherwise there would be
no need for sampling), but probability theory enables us to make statements
about the estimation error in terms of averages.

First, it can be shown that the estimator, averaged over samples, equals
the true value. In other words, ˆ̄z is p-unbiased :

Ep

(

ˆ̄z
)

= z̄ , (2.2)
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where Ep(·) denotes the p-expectation, i.e., the average over a large (strictly:
infinite) number of samples drawn according to the random sampling design
p, here Simple Random Sampling with n = 25.

Second, the p-expectation of the squared estimation error equals the sam-
pling variance of the estimator:

Vp

(

ˆ̄z
)

= Ep

{

ˆ̄z − Ep

(

ˆ̄z
)}2 = Ep

(

ˆ̄z − z̄
)2

. (2.3)

Because the sampling locations were selected independently from each other,
the number of ‘infected’ in the data follows a binomial distribution, and the
sampling variance equals

Vp

(

ˆ̄z
)

=
z̄ (1 − z̄)

n
. (2.4)

The standard error of the estimator is a usual statistical quality measure. It
equals the square root of the sampling variance:

Sp

(

ˆ̄z
)

=

√

z̄ (1 − z̄)
n

. (2.5)

In our example Vp equals 0.30 × 0.70/25 = 0.0084, and Sp equals 0.0917.
In practice these true values would be unknown because z̄ is unknown but,

from data obtained by Simple Random Sampling, the sampling variance can
be estimated (again p-unbiased) by

̂Vp

(

ˆ̄z
)

=
1

n (n − 1)

n
∑

i=1

(

zi − ˆ̄z
)2

. (2.6)

In our example, with 0/1 data, this results in:

̂Vp

(

ˆ̄z
)

=
ˆ̄z
(

1 − ˆ̄z
)

n − 1
. (2.7)

The estimated standard error follows as its square root:

̂Sp

(

ˆ̄z
)

=

√

ˆ̄z
(

1 − ˆ̄z
)

n − 1
. (2.8)

From the sample data in Fig. 2.1a we calculate ̂Vp = 0.00907, and ̂Sp = 0.0952.
Apart from point estimation as discussed above, giving a single number

or point on the scale of possible values, one can also perform interval estima-
tion. The result is a confidence interval . Confidence intervals are constructed
in such a way that they contain the true value of the target quantity with
probability (1− α), referred to as the confidence level . For instance, the data
from the sample in Fig. 2.1a, 8 ‘infected’ out of 25, result in (0.14; 0.54) as
a 95% confidence interval for the areal fraction of infected soil. (This interval
is based on the fact that the number of ‘infected’ follows a binomial distri-
bution, but a Normal or Student distribution is usually applicable, especially
with quantitative target variables and medium size or large samples.)
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Estimation of the Model Mean

In practical applications one usually has to choose a model for the inference on
the basis of sample data and possibly ancillary data. In the present example,
however, we happen to have exact knowledge a priori of the model underlying
the patterns of Figs. 2.1a, b and c, simply because we used this model to
generate those patterns.

The model was discussed by Matérn (1986) in the context of the so-called
‘bombing problem’: bombs are dropped at random over a region and each
bomb devastates the area within a given distance r from the point of impact. It
can be shown (Matérn, 1986, Eq. 3.4.2) that under this model the expectation
of the 0/1 variable Z at location s equals:

Eξ{Z(s)} = 1 − e−λπr2
, (2.9)

where Eξ(·) denotes the ξ-expectation, i.e., the average over a large (strictly:
infinite) number of random realizations from the chosen model, and where λ is
the intensity of the assumed stationary Poisson process by which the centres
of the infection circles are spread over the region.

Because of the spatial stationarity, meaning that the expectation at loca-
tions is constant over the region, the model mean µ equals Eξ[Z(s)]. For our
example we have chosen λ = 6 and r = 0.15. From (2.9) we calculate for the
true value of the model mean: µ = 0.346, which is the areal fraction ‘infected’
averaged over a large (strictly infinite) number of realizations.

To estimate the model mean, we need the covariance between any two
observations on Z. The covariance between two observations at locations h
apart equals (Matérn, 1986, Eq. 3.4.3):

C(h) = e−2λπr2
(

eλ A(h,r) − 1
)

, (2.10)

where A(h, r) is the area of the intersection common to two circles with radius
r and centres h apart. This area equals:

A(h, r) = r2

[

2 arccos
(

h

2r

)

− sin
{

2 arccos
(

h

2r

)}]

. (2.11)

The model mean can be estimated with the so-called Best Linear Unbiased
Estimator (Searle, 1997):

µ̂ =
(

1′C−11
)−1

1′C−1z , (2.12)

where z is a vector of n observations, Z(si), C is the matrix of their variances
and covariances, and 1 is the n-vector of ones. This estimator is ξ-unbiased,
a property defined by averaging over model realizations (given the sampling
locations), not over the sampling process, i.e., Eξ(µ̂) = µ. The variance of µ̂
equals:
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Vξ(µ̂) =
(

1′C−11
)−1

. (2.13)

From the sample depicted in Fig. 2.1a, and Eqs. 2.10 – 2.13, we calculate
µ̂ = 0.353 with standard error Sξ(µ̂) =

√

Vξ(µ̂) = 0.132. Note that, although
the estimation error in this case is only 0.007, the standard error of estimation
of the model mean is 44% larger than the standard error of estimation of the
spatial mean.

2.2.3 Prediction

With the example of Section 2.2.2 we illustrated design-based estimation of
the spatial mean z̄ and model-based estimation of the model mean µ, both
means considered as fixed. Using the same data and the same model, we now
illustrate model-based prediction of the spatial mean Z̄, considered as random.
Analogous to the Best Linear Unbiased Estimator of µ, one can predict Z with
the Best Linear Unbiased Predictor:

˜Z = λ′z , (2.14)

where λ is a vector of optimal weights, and z is again the vector of observa-
tions. These weights are chosen such that the prediction is ξ-unbiased, i.e.,

Eξ

(

˜Z − Z
)

= 0, and the variance of the prediction error, Eξ

(

˜Z − Z
)2

, is
minimized. These optimal weights can be calculated by:

λ = C−1r − C−11
(

1′C−11
)−1

1′C−1r +
(

1′C−11
)−1

C−11 , (2.15)

where r is the vector of mean covariances between each of the actual sampling
locations and all potential locations in the region. This can be approximated
numerically by the mean covariances between the sampling locations and the
nodes of a fine grid.

The variance of the prediction error equals

Vξ

(

˜Z − Z
)

= Eξ

(

˜Z − Z
)2

= CG,G + λ′Cλ − 2λ′r , (2.16)

where CG,G is the mean covariance between all potential sampling locations
of the region, which can be approximated numerically by the mean covariance
between the nodes of a fine grid.

From the sample depicted in Fig. 2.1a and Eqs. 2.14 – 2.16 we calculate
˜Z = 0.386, with standard error (square root of the prediction-error variance)
0.078. Note that this standard error of the spatial mean is only 59% of the
standard error of the model mean, using the same data and the same model.
(A considerably larger sample would be needed to estimate the model mean
with the same precision as for predicting the spatial mean.)

Apart from point prediction as discussed above, one can also perform in-
terval prediction. Just as an estimation interval (Sect. 2.2.2), a prediction
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interval is constructed in such a way that it contains the true value of the
target quantity with probability (1 − α). If on the basis of the Central Limit
Theorem it can be assumed that the prediction error is approximately nor-
mally distributed, then for the boundaries of a 95% prediction interval, for
instance, one can simply take the prediction plus and minus 1.96 times the
standard error. The data from the sample in Fig. 2.1a, 8 ‘infected’ out of 25,
then give (0.233; 0.538) as 95% prediction interval for the areal fraction of
infected soil. Note that this model-based prediction interval is 25% narrower
than the design-based estimation interval calculated in Sect. 2.2.2 for the same
target quantity, using the same sample data and the same confidence level.
(One should realize, however, that in practical applications the variogram is
not known and must be estimated, which is an additional source of error.)

In cases where the assumption of approximate normality does not hold, the
distribution of Z may be evaluated numerically by Monte Carlo simulation of
realizations from the chosen model. Deutsch and Journel (1998) and Pebesma
(2004) provide simulation software.

2.2.4 Testing

When decisions are based on an estimate of the global mean, the areal fraction
or a percentile (e.g., median or P95), one must take account of the uncertainty
in the estimate. For instance, in environmental studies a threshold value for
the concentration of a pollutant is often defined on the basis of regulatory
requirements, risk assessments or a reference standard for deciding whether
or not to take action. The threshold value is referred to as the Action Level.
Due to sampling and measurement error, there is always some degree of uncer-
tainty whether the true value is above or below the Action Level, which means
that there is a chance of taking a wrong decision. A statistical tool for deci-
sion making in the presence of uncertainty is statistical testing of hypotheses.
A distinction can be made between one-sample tests and two-sample tests.
In one-sample tests, sample data from a target area are compared with an
absolute criterion such as a regulatory threshold. In two-sample tests sample
data from a target area are compared with other sample data, for instance
from another region or from another period for the same target area. In the
two-sample case, the target quantity is usually the difference between the two
(spatial or temporal) means, and the Action Level is often zero.

For an example of a one-sample test we go back to Fig. 2.1 and suppose
that some remediation action is to be taken if the areal fraction of infected soil,
z̄, is larger than Action Level 0.2. The null-hypothesis, H0, is then: z̄ ≤ 0.2,
which is tested against the alternative hypothesis H1: z̄ > 0.2. Acceptance
or rejection of H0 is determined by the value of a test statistic, in this case
the sample mean ˆ̄z, in the following way. If the value of the test statistic falls
in a specific interval, called the critical region, then H0 is rejected, otherwise
it is accepted. This critical region is constructed such that the probability of
falsely rejecting H0 is limited to a value α, chosen by the user.
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Table 2.3. The four possible combinations of the state of nature and test results.

Test result

State of nature H0 H1

H0 No error Type I error
Prob= 1 − α Prob= α
Confidence

H1 Type II error No error
Prob= β Prob= 1 − β

Power

Table 2.3 shows the four possible combinations of the state of nature and
test results. Wrongly accepting H1 is called a type I error, the probability
of which is α. The probability of accepting H0 when H0 is true is called the
confidence level of the test, (1 − α). Wrongly accepting H0 is called a type II
error, the probability of which is denoted by β. The probability of accepting
H1 when H1 is true is called the power of the test, 1− β. Given the sampling
design, the power is a function of the sample size, the confidence level (1−α),
and the H1 hypothesis itself.

When we use the data from the sample in Fig. 2.1a for a one-sided binomial
test of H0: z̄ ≤ 0.2 at confidence level 0.95, we find as critical region [0.36; 1],
which does not include the value of the test statistic (0.32), so that H0 is not
rejected.

There is a close connection between estimation and testing: a confidence
interval contains all possible values of the target quantity that would not
be rejected on testing at the same confidence level. However, the statistical
quality measures differ (standard error or half-width of confidence interval
versus confidence level and power), and so do methods to determine the sample
size needed to reach a given quality level.

2.2.5 Classification

The term classification is used here for assigning an object to a class under
uncertainty about the properties of the object. In the present context the
object is the universe of interest or a part of it, and the uncertainty about
its properties is represented by a stochastic model. For a simple illustration
we take once more the case of Fig. 2.1a. Suppose that the region is to be
classified in one of two classes: ‘low infection’ defined as Z ≤ 0.5, and ‘high
infection’ defined as Z > 0.5. After sampling and measuring one could decide
to classify the region simply by comparing the predicted spatial mean with
the class boundary 0.5. However, due to the uncertainty about the true value
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of the spatial mean, there will be a risk of false ‘low’ classification and a risk of
false ‘high’ classification. So, just as in testing, there are two types of possible
errors, and in view of the consequences of either one it may be appropriate
to classify in such a way that the probability of the most important error
type, for instance false ‘low’, is not too high. This can be done by classifying
according to a rule in terms of error probability instead of the prediction itself.

For example, the rule could be that the region will only be classified as ‘low’
if the probability of false ‘low’ is smaller than 0.05, and otherwise as ‘high’.
Assuming that the prediction error is normally distributed, the probability
of false ‘low’ can be calculated from the prediction (0.386) and its standard
error (0.078; see Sect. 2.2.3). This turns out to be 0.07, which is larger than
the chosen threshold 0.05, hence the region is classified as ‘high’, although the
predicted value falls in class ‘low’.

As with prediction, if the assumption of normality does not hold, the dis-
tribution of Z must be evaluated numerically by Monte Carlo (geostatistical)
simulation of realizations from the chosen model (Deutsch and Journel, 1998;
Pebesma, 2004).

2.2.6 Detection

An example of a detection problem in the case of Fig. 2.1a is the question
whether there is soil infection at all in the area, regardless where. The assess-
ment method is often designed such that if the critical condition is observed
in any of the sampling units, then it surely exists. In that case the probability
of a false positive is zero, and inference only needs to quantify the probability
of a false negative or its complement, the detection probability. Sampling for
detection should therefore aim at maximizing the detection probability for a
given budget, or minimizing the sampling costs under the condition of a given
minimal detection probability. This will naturally lead to grid sampling or
spatial coverage sampling.

The detection probability can in principle be calculated from the geometry
of the sampling pattern used, and certain assumptions about the occurrence
and extent of the condition in space and/or time. These assumptions may be
captured in a stochastic model of the variation, e.g., the second-order station-
ary model with covariance function (2.10) underlying Fig. 2.1. The detection
probability for any sampling pattern can then be calculated by geostatistical
simulation (Deutsch and Journel, 1998; Pebesma, 2004). Alternatively, knowl-
edge about the occurrence and extent of the critical condition in space and/or
time may be embodied in a physical process model.

Detection of critical conditions sometimes asks for highly specialized and
application-dependent sampling and inference methods. Such methods are not
treated in this book.




