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Global Quantities in Space–Time

15.1 Introduction to Methods for Global Quantities in
Space–Time

In monitoring studies with a temporal and a spatial dimension, a large va-
riety of global target quantities can be defined. Commonly estimated target
quantities are:

• the current mean, i.e., the spatial mean at the most recent sampling time;
• the change of the spatial mean from one sampling time to the other;
• the temporal trend of the spatial mean;
• the spatial mean of the temporal trend
• the spatio-temporal mean;
• the difference between the spatio-temporal means before and after an in-

tervention.

In some cases one is interested in totals rather than means, and means can be
interpreted as fractions when the target variable is a 0/1 indicator variable.
Also, one may be more interested in a change of the spatial mean from one
sampling time to the other than in the current level of the spatial mean.
This is because the change tells more about environmental processes than the
status of the environment. For instance, in a study on the greenhouse effect,
one may want to estimate the change in carbon stocks in soil between now
and 10 years hence. Or, to calculate the water balance of a watershed, one
may want to estimate the difference in groundwater storage at the beginning
and at the end of a year. The change in the spatial mean from one sampling
time to the other is defined as:

d̄2,1 =
1
|S|

∫

s∈S
z(s, t2) ds− 1

|S|
∫

s∈S
z(s, t1) ds =

1
|S|

∫

s∈S
{z(s,t2) − z(s,t1)}ds .

(15.1)
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(For model-based inference, the definition is of course the same, but the target
variable z(·) and the target quantity d̄2,1 are random instead of deterministic;
see (15.23).)

When sampling has been done at more than two sampling times, one may
be interested in the mean change per time unit, i.e., the temporal trend.
This trend may differ considerably between locations, and in that case one
may want to estimate the Spatial Cumulative Distribution Function of the
temporal trend, or one or more parameters of this SCDF. The spatial mean
temporal trend is defined as the spatial mean of the trend parameter β(s)
of a (linear) time-series model for the target variable at location s at time t,
Z(s, t)

Z(s, t) = α(s) + β(s) · (t − t0) + ε(s, t) , (15.2)

where t0 is the first time the target variable is measured.
It can be shown that this spatial mean temporal trend is equal to the

temporal trend of the spatial mean, i.e., the trend parameter β of a time-
series model for the spatial mean of Z at time t, Z(t) :

Z(t) = α + β · (t − t0) + ε(t) . (15.3)

A target quantity related to the spatial mean temporal trend is the tem-
poral trend of the areal fraction where the target variable meets certain con-
ditions, for instance the areal fraction where a quantitative target variable
exceeds a given threshold. Clearly, a static type of pattern is inappropriate
for estimating this quantity.

This target quantity should be distinguished from the areal fraction where
the temporal trend meets a given condition. In this case the condition is in
terms of the trend, whereas in the former it is in terms of the target variable.
This areal fraction can be estimated by the indicator technique described be-
fore (Sect. 7.2.3). The Spatial Cumulative Distribution Function of the tem-
poral trend is the most informative target quantity. This SCDF can simply
be estimated by repeated application of the indicator technique.

The spatio-temporal mean is defined as

zU =
1
|U|

∫

u∈U
z(u) du , (15.4)

and similarly the fraction in space and time that z(u) exceeds some critical
threshold) is defined as

FU (z) ≡ 1
|U|

∫

u∈U
i(u; z) du . (15.5)

with

i(u; z) =
{

1 if z(u) ≤ z
0 if z(u) > z

(15.6)

If a change in the environmental conditions is foreseen, for instance due
to the implementation of measures that have a positive or negative effect
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on the quality of the environment, then one may want to assess this effect.
One may choose one sampling time before and one after the intervention,
and estimate the change in the spatial mean, but the difference found may
strongly depend on the chosen times. Therefore this difference can be a very
imprecise estimate of the difference between the spatio-temporal means before
and after the intervention. Repeated measurements in time, both before and
after the intervention, will increase precision. When the putatively ‘disturbed’
area has such an extent that it is unreasonable to assume that the effect
is equal everywhere, it is also recommended to repeat the measurements in
space. For example, assume that in an agricultural area measures are planned
to reduce the leaching of nitrate to the ground and surface water. To assess the
effect of these measures one may want to estimate the total amount of leached
nitrate in the area where the measures are planned in the year before the
intervention B, and in the year after the intervention A. The target quantity
to be estimated is

dA,B =
∫

t∈A

∫

s∈S
z(s, t) dsdt −

∫

t∈B

∫

s∈S
z(s, t) dsdt

=
∫

s∈S

{∫

t∈A
z(s, t) dt −

∫

t∈B
z(s, t) dt

}

ds . (15.7)

As for global quantities in space and global quantities in time, design-
based methods are the most appropriate. Especially for regulatory monitoring,
objectivity of the method and validity of the results are of great importance.
For instance, if a regulation specifies a threshold value (Action Level) for
the spatio-temporal mean, then a valid interval estimate of this quantity is
important for statistical testing.

15.2 Design-Based Methods for Global Quantities in
Space–Time

15.2.1 Introduction

The typology of sampling patterns for monitoring presented in Sect. 14.1 is
equally relevant for design-based and model-based methods. In model-based
methods, however, the patterns are deterministic and in design-based methods
they are random, i.e., selected by probability sampling. A static-synchronous
sampling design, for instance, generates random static-synchronous patterns.
This section deals with sampling and estimation for spatio-temporal and cur-
rent global quantities, change of global quantities and spatial mean temporal
trends, by synchronous, static, static-synchronous and rotational designs.

With synchronous designs, at each sampling time one is free to choose
a spatial sampling design from Sect. 7.2 that seems most appropriate given
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the circumstances at that time. So one may adapt the sample size, possible
stratification, clusters and/or primary units, and even the very type of design.

Synchronous Sampling can be considered as a special case of Two-Stage
Random Sampling in space–time, using spatial sections of the universe at
given times as primary units, and sampling locations as secondary units (Vos,
1964). Therefore, the methods of inference for Two-Stage Random Sampling
in space, given in Sect. 7.2.5, can be applied. For instance, inference about
the spatio-temporal mean proceeds by first estimating the spatial mean at
each sampling time (using the method associated with the spatial design at
each time), and then estimating the spatio-temporal mean from these means
as ‘observations’ (using the method associated with the temporal design).
Inference on totals and trend parameters is similar.

With static designs the order of space and time in the two stages is re-
versed: sampling locations are selected as primary units and sampling times
as secondary units. Now the set of sampling locations remains fixed through
time, as with static-synchronous designs, which brings similar operational ad-
vantages. The difference with static-synchronous designs is that sampling is
not synchronized, so that correlation due to synchronized sampling is avoided.
Another difference is that the temporal design may be adapted to local cir-
cumstances. Static designs are attractive when considerable spatial variation
between time series is known to exist, and when the operational advantages
of fixed locations are real.

A static-synchronous design can be considered as a combination of a spatial
sampling design and a temporal sampling design, so that at each sampling
time all locations are sampled (see Fig. 14.4). The sampling locations can
be selected by the same designs as described in Sect. 7.2 on design-based
sampling in space, while the sampling times can be selected by the methods
discussed in Sect. 11.2 on design-based sampling in time. The inference for
static-synchronous designs depends primarily on these two constituting partial
designs.

Rotational Sampling or ‘sampling with partial replacement’ represents a
compromise between static and synchronous designs. The rationale is to avoid
on the one hand the unbalancedness of static designs that accumulate more
data only in time. On the other hand, the relative inefficiency of synchronous
designs for estimating temporal trends is partially avoided because repeated
measurements are made at the same locations.

The principle of Rotational Sampling is to divide the locations of an initial
spatial sample into different rotational groups, and to replace each time one
group by a new set of locations (see Fig. 14.5). Many different strategies of
Rotational Sampling have been developed, including improved estimation pro-
cedures. In some strategies a set of locations would be re-introduced into the
sample after having been rotated out for some time. See Binder and Hidiroglou
(1988) for a review on Rotational Sampling.

The suitabilities, from a statistical point of view, of the four design types
for estimating global quantities are summarized in Table 15.1.
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Table 15.1. Suitability of the four main types of design for estimating spatio-
temporal global quantities (StGQ), current global quantities (CuGQ), change of
global quantities (ChGQ), and spatial mean temporal trends (SMTT). A question
mark means that estimation of the standard error may be problematic.

Type of design StGQ CuGQ ChGQ SMTT

Synchronous + + + +
Static + − − ++
Static-Synchronous +? + ++ +?
Rotational +? ++ + +?

15.2.2 Spatio-Temporal Global Quantities

Spatio-temporal global quantities most relevant in practice are spatio-temporal
means, fractions and totals, and (parameters of) spatio-temporal Cumulative
Frequency Distributions. An example of a spatio-temporal total is the total
emission of a pollutant in a target area during a target period. The temporal
mean of the spatial fraction of the area where the emission rate exceeds a
given threshold is an example of a spatio-temporal fraction.

Synchronous Designs

Synchronous designs can be considered as two-stage designs, and therefore
the formulas of Sect. 7.2.5 can be used to calculate the number of sampling
locations and sampling times. The primary units are then spatial sections
of the universe at given times, and sampling locations are secondary units.
The (pooled) within-unit variance in this case is the (time-averaged) spatial
variance of the target variable at a given time, and the between-unit variance
is the variance of the spatial means over time. Note that (7.30 – 7.32) hold for
Simple Random Sampling in space and Simple Random Sampling in time, an
equal number of sampling locations at all sampling times, and a linear cost
function C = c0 + c1nt + c2ntns, where c0 is the fixed costs of installing the
monitoring design, for instance costs of preparing the sampling frame, c1 is
the variable costs per sampling time and c2 is the variable costs per sampling
location, and nt and ns, are the number of sampling times and locations,
respectively.

Usually, more efficient types of design than Simple Random Sampling will
be chosen for space and time, for instance, systematic in time and stratified
in space. In that case, the above formulas can still be used, either by adopting
the resulting sample sizes nt and ns, as conservative (safe) estimates, or by
dividing them by a prior estimate of the design-effects (accounting for the
higher efficiency), e.g., 1.1 or 1.2. Of course, after one or more sampling rounds
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the data then collected can be used as prior information for adapting parts of
the design that are still to be carried out.

Estimating the spatio-temporal mean (total, fraction) proceeds by first es-
timating the spatial mean at each sampling time (using the method associated
with the spatial design at that time), and then estimating the spatio-temporal
mean and its standard error from these means as ‘observations’ (using the
method associated with the temporal design). The spatio-temporal total is
obtained by multiplying the mean with the size of spatio-temporal universe
(|S| · |T |), and similarly for the standard error.

Static Designs

Like synchronous designs, static designs can be considered as two-stage de-
signs, but the role of space and time are interchanged. The primary units
are now temporal sections at given locations, and sampling times are sec-
ondary units. The same formulas for the number of locations and times
can be used. However, now the (pooled) within-unit variance is the (space-
averaged) temporal variance at a given location, and the between-unit variance
is the variance of the temporal means over space. The cost function is now
C = c0 + c1ns + c2ntns, where c1 is the variable costs per sampling location
and c2 is the variable costs per sampling time. The remark about using more
efficient designs than Simple Random Sampling, made for synchronous de-
signs, applies to static designs as well. Just as with synchronous designs, after
some time the sample data then collected can be used as prior information in
adapting parts of the design still to be carried out.

Inference about the spatio-temporal mean (total, fraction) proceeds by first
estimating the temporal mean at each sampling location (using the method
associated with the temporal design at that location), and then estimating
the spatio-temporal mean and its standard error from these means as ‘obser-
vations’ (using the method associated with the spatial design). The spatio-
temporal total is obtained by multiplying the mean with the size of spatio-
temporal universe (|S| · |T |), and similarly for the standard error.

Static-Synchronous Designs

Due to the two-fold alignment of the sampling events, sample optimization
for static-synchronous designs is more complicated than for synchronous and
static designs. With synchronous and static designs there are two variance
components to take into account: the variance between and the (pooled) vari-
ance within primary units, i.e., spatial and temporal sections, respectively.
With static-synchronous designs it appears that there are three variance com-
ponents. Building on the early work of Quenouille (1949), Koop (1990) worked
out the sampling variance in estimating (surface) areas for different combina-
tions of two designs of point sampling in the plane, one along the X-axis and
one along the Y-axis, with or without alignment of the sampling points in
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either direction. Taking time for the Y-axis and space for the X-axis (or vice
versa), one of Koop’s designs types, ‘random sampling with alignment in both
directions’, is analogous to static-synchronous sampling with Simple Random
Sampling in both space and time. Translating Koop’s variance formula for
this type of design to estimation of the spatio-temporal mean gives, cf. Koop
(1990, eq. 3.3.5):

V
(

ˆ̄z
)

=
S2(z)

n
+

(

1
nt

− 1
n

)

S2
t (z̄s) +

(

1
ns

− 1
n

)

S2
s (z̄t) , (15.8)

where S2(z) is the spatio-temporal variance of z over space and time, S2
t (z̄s)

is the variance over time of the spatial mean, and S2
s (z̄t) is the variance over

space of the temporal mean. This formula can be used for sample optimization
as follows.

1. Make prior estimates of the three variance components.
2. Make estimates of the cost components in a linear cost function such as

those mentioned under synchronous and static designs.
3. Choose relevant ranges for ns and nt and calculate for each combination

of ns and nt the expected sampling variance and costs.
4. In case of quality maximization under a given budget constraint, select

ns and nt for which the expected sampling variance is smallest and the
expected costs are still within the budget.

5. In case of costs minimization under a given quality requirement, select ns

and nt for which the expected costs is smallest and the expected sampling
variance still meets the requirement.

Estimation can be done in two steps, the order of which may be reversed.
First, for each sampling location the quantity over time is estimated from
the data at that location, using the method associated with the temporal de-
sign. Then the spatio-temporal quantity and its standard error are estimated
using these temporal values as ‘observations’, using the method associated
with the spatial design. This standard error accounts automatically for errors
due to sampling in space and sampling in time, but not for possible spatial
correlations between the estimated temporal quantities due to synchronized
sampling at the locations. This will generally lead to underestimation of the
standard error. Due to the two-fold alignment of the sampling events, there
is no unbiased estimator of the sampling variance available (Koop, 1990).
One option is to substitute posterior estimates of the variance components
in (15.8). Another possibility is to form, by random partioning, a number of
smaller static-synchronous subsamples. The variance between the means of
these subsamples could be then used as an estimate of the variance for the
original sample.
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15.2.3 Current Global Quantities

Synchronous Designs

The choice of the sampling design and the inference are as for global quantities
in space (see Sect. 7.2). The inference depends only on the current type of
spatial design. There is no overlap between the spatial samples at different
sampling times, and as a result, there is no simple way of exploiting the
information in the previous samples to estimate the current quantity. This is
a drawback of synchronous designs compared to rotational designs, which do
create such overlap, see Sect. 15.2.1.

Static-Synchronous Designs

Inference on a current global quantity, such as the spatial mean, fraction,
total or (a parameter of) the Spatial Cumulative Distribution Function at any
given sampling time, can be done by applying the appropriate method from
Sect. 7.2 on the data collected at that time. To estimate the current quantity,
only measurements taken at the current sampling time need to be used. There
is no additional information in the measurements from the previous sampling
times, because the locations coincide.

Rotational Designs

In Rotational Sampling there is partial overlap between samples of successive
sampling times, and consequently the sample of the previous sampling time
can be used in estimating a current spatial mean, fraction or total. We present
the procedure for the mean; fractions are estimated by applying the same
procedure to indicator variables, and totals are estimated by multiplying the
estimated mean and its standard error with the size of the spatial universe
(surface area in case of 2D).

To start with, two sampling times are considered. The sample of the first
sampling time is subsampled, and on the locations of this subsample the target
variable is also measured at the second sampling time. This subsample with
measurements at both sampling times is referred to as the matched sample;
the unmatched sample consists of the locations with measurements at the first
sampling time only. At the second sampling time, the target variable is also
measured on a set of new locations. The spatial mean at the second sampling
time z̄2, is estimated by the composite estimator (Cochran, 1977, p. 346)

ˆ̄z2c = ŵ1 ˆ̄z(m)
2gr + ŵ2 ˆ̄z(u)

2π , (15.9)

where ŵ1 and ŵ2 are weights summing to 1, ˆ̄z(u)
2π is the π-estimator for the

mean of z2 estimated from the unmatched sample, and ˆ̄z(m)
2gr is the Two-Phase
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Random Sampling regression estimator for the mean of z2 estimated from the
matched (remeasured) sample (see Sect. 7.2.12)

ˆ̄z(m)
2gr = ˆ̄z(m)

2π + b
(

ˆ̄z1π − ˆ̄z(m)
1π

)

, (15.10)

where ˆ̄z(m)
2π is the second sampling time mean estimated from the matched

sample, b is the estimated slope coefficient, ˆ̄z1π is the first sampling time mean
estimated from the entire first-phase sample (matched plus unmatched), and
ˆ̄z(m)
1π is the first sampling time mean estimated from the matched sample. The

estimated optimal weights ŵ1 and ŵ2 equal

ŵ1 = 1 − ŵ2 =
̂V

(

ˆ̄z(u)
2π

)

̂V
(

ˆ̄z(m)
2gr

)

+ ̂V
(

ˆ̄z(u)
2π

) , (15.11)

where ̂V
(

ˆ̄z(m)
2gr

)

is the estimated variance of the regression estimator, and

̂V
(

ˆ̄z(u)
2π

)

is the estimated variance of the π-estimator for the mean of z2 for
the unmatched sample. For Simple Random Sampling of n locations at both
sampling times and m matched (remeasured) locations this variance is given
by

̂V
(

ˆ̄z(m)
2gr

)

=
̂S2(e)

m
+

̂S2(z2) − ̂S2(e)
n

, (15.12)

where ̂S2(e) is the estimated variance of the residuals e = z2 − z1b, and

̂V
(

ˆ̄z(u)
2π

)

=
̂S2(z2)
n − m

. (15.13)

The variance of the composite estimator can be estimated by (Schreuder et al.,
1987):

̂V
(

ˆ̄z2c

)

=
1 + 4 ŵ1 ŵ2

(

1
m−1 + 1

n−m−1

)

ŵ1 + ŵ2
. (15.14)

The variance depends on the proportion of matched sampling locations. The
optimal matching proportion can be calculated with (Cochran, 1977)

m

n
=

√

1 − ρ2

1 +
√

1 − ρ2
, (15.15)

where ρ is the correlation coefficient between z1 and z2. For ρ = 0.9, 0.8 and
0.5 the optimum matching proportion equals 0.30, 0.38 and 0.48 respectively.
When ρ goes to 0, m/n approaches 0.5. Given these correlation coefficients
the gain in precision, calculated as the ratio of the variance with no match-
ing (Synchronous Sampling) and the variance with the optimum matching



228 15 Global Quantities in Space–Time

proportion, equals 1.39, 1.25 and 1.07, respectively. When the costs of remea-
suring a location are lower than the costs of measuring a new location, the
optimum matching proportion increases. When choosing a matching propor-
tion one must take care that the number of matched locations is large enough
to obtain reliable estimates of the regression coefficient and the variance of
the regression estimator, say m > 10.

With three or more sampling times, the current mean z̄0 is estimated by
substituting the composite estimator for the mean at the previous sampling
time, ˆ̄z′−1 (15.9), for the π-estimator for the previous mean, ˆ̄z1π, in the regres-
sion estimator (15.10):

ˆ̄z(m)
0gr = ˆ̄z(m)

0π + b
(

ˆ̄z−1c − ˆ̄z(m)
−1π

)

, (15.16)

and then weighting this regression estimator and the π-estimator for the
current mean inversely proportional to the variance (15.11). Cochran (1977)
shows that the optimal matching proportion increases rapidly with the sam-
pling time. For the fifth sampling time the optimal matching proportion is
close to 0.5 for a correlation coefficient ≤ 0.95.

Once the matching proportion is chosen, one can calculate the sample size
needed for a given precision (15.14). Prior estimates of the residual variance
and the variance of the target variable at the current time are needed to
calculate the weights.

15.2.4 Change of Global Quantities

Synchronous Designs

Change of the spatial mean (total, fraction) can be estimated as with static-
synchronous designs (Eq. 15.19). Because the samples taken at different times
are mutually independent, the estimated means ˆ̄z(t1) and ˆ̄z(t2) are uncorre-
lated. The sampling variance of ˆ̄d2,1 equals

V
(

ˆ̄d2,1

)

= V
(

ˆ̄z(t2)
)

+ V
(

ˆ̄z(t1)
)

, (15.17)

which can be simply estimated by:

̂V
(

ˆ̄d2,1

)

= ̂V
(

ˆ̄z(t2)
)

+ ̂V
(

ˆ̄z(t1)
)

. (15.18)

Note that, contrary to (15.20), there is no covariance-term, which makes syn-
chronous designs in general less efficient than static-synchronous designs. In
the case of classical testing, this procedure leads to the common two-sample
t-test. Change of spatial fractions and totals can be estimated in the same
way as change of spatial means.

If both sampling rounds are still to be designed, one has to decide on the
sampling design type and the sample size at both sampling times. In general
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there will be no reason for choosing different design types for the two sampling
times. Also, in general prior estimates of the spatial variance components for
the target variable will be equal for the two sampling times. In that case the
optimal ratio of sizes of the first and second sample will be 0.5. The sample size
per sampling time required to estimate the change with prescribed precision
can then be calculated by the formulas of Sect. 7.2, substituting half the
maximum allowed variance of the estimated change for the variance of the
estimated mean of the target variable.

After the first sampling time, one has new information that can be used to
redesign the sample of the second time. The estimated sampling variance of
the mean at the first sampling time can be subtracted from the variance of the
estimated change to obtain the variance of the mean at the second sampling
time. Also, estimates of the spatial variance components at the first sampling
time can be used as prior estimates to calculate the sample size needed to
meet this updated constraint on the sampling variance of the estimated mean
at the second sampling time.

Static-Synchronous Designs

The change of the spatial mean or fraction from one sampling time to the
other, d̄2,1 (15.1), can be estimated straightforwardly by

ˆ̄d2,1 = ˆ̄z(t2) − ˆ̄z(t1) . (15.19)

In static-synchronous samples, the locations of the first and the second sam-
pling time coincide. This implies that in estimating the sampling variance of
the change, a possible temporal correlation between the estimated means ˆ̄z(t1)
and ˆ̄z(t2) must be taken into account. The true sampling variance equals

V
(

ˆ̄d2,1

)

= V
(

ˆ̄z(t2)
)

+ V
(

ˆ̄z(t1)
) − 2C

(

ˆ̄z(t2), ˆ̄z(t1)
)

. (15.20)

So, the stronger (more positive) the temporal correlation between the two
estimated spatial means, the smaller the sampling variance of the change. In
general this correlation will be largest when the sampling locations at the
first and second sampling time coincide, as is the case with static designs and
nondestructive sampling. With destructive sampling, the shifts should be kept
as small as possible. Also, if a spatial trend is suspected, then the direction of
the separation vector must be randomized to avoid bias (Papritz and Flühler,
1994). A simple way to estimate the variance (15.20) is first calculating the
difference di = zi(t2) − zi(t1) at each sampling location i, and then applying
the appropriate method of inference from Sect. 7.2 to those differences. (If
change of a fraction is to be estimated, z is an indicator variable, and d can
take the values -1, 0 or 1.) In the case of classical testing, this procedure leads
to the common t-test for paired observations.

The change of a spatial total from one sampling time to the other can be
estimated by multiplying the estimated change of the spatial mean with the
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size of the target universe (area in case of 2D), and similarly for the standard
error.

The required sample size can be calculated with the formulas from Sect. 7.2,
substituting spatial variances of the differences for the spatial variances of the
target variable. From the third sampling time onwards, these variance com-
ponents can be estimated from the data of the previous sampling times.

Rotational Designs

The change of the spatial mean from the previous to the latest sampling time
can be estimated by:

ˆ̄d = ˆ̄z0c − ˆ̄z−1c , (15.21)

where ˆ̄z0c and ˆ̄z−1c are the composite estimators at the latest and the previous
sampling time, respectively (see (15.9)). An alternative, more precise but more
complicated estimator of the change is to combine two estimators of change,
one built on the matched sample and one built on the unmatched sample,
into a composite estimator with optimized weights (Schreuder et al., 1993, p.
180). Change fractions can be estimated by applying this method to indicator
variables, and change of totals are obtained by multiplying estimated change
of means with the size of the spatial universe.

15.2.5 Spatial Mean Temporal Trend

Synchronous Designs

With synchronous designs the spatial mean temporal trend (temporal trend
of spatial mean) is estimated by first estimating the spatial means at time t,
z̄(t), and then estimating the model parameter β in (15.3) and the variance
of β̂ by Weighted Least Squares fitting, with weights inversely proportional to
the variances of spatial means. The variance accounts for uncertainty about
β due to the residual term ε(t), and for uncertainty about the spatial means
due to sampling errors.

Static Designs

Compared with synchronous designs, the inference proceeds in reversed order.
First the temporal trend parameters are estimated for each sampling location
separately, then these estimates are averaged to a spatial mean, using the
method associated with the spatial design. To estimate the temporal trend of
an areal fraction static designs are inappropriate.
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Static-Synchronous Designs

To estimate the spatial mean temporal trend, first the model parameter β(s)
is estimated at all sampling locations, and then these estimates are used to
estimate the spatial mean of the model parameter, β̄. The variance of the
estimated spatial mean temporal trend can be estimated straightforwardly by
the estimators of Sect. 7.2. This variance accounts automatically for uncer-
tainty about β̄ due to sampling error, and for uncertainty about the model
parameters due to the residual term ε(s, ti), but not for spatial correlations
(due to synchronized sampling) between these two error-components.

If systematic sampling in time, i.e., sampling at constant time-intervals
is applied, then the sampling frequency to be optimized, see Fig. 15.4. For
the required number of sampling locations the formulas from Sect. 7.2 can
be used. A prior estimate of the spatial variance of the temporal trend at
locations (within the target area, strata, primary units or clusters) is needed.
The (averaged) estimation variance of the temporal trend at locations must
be added to this spatial variance, see (13.20).

Rotational Designs

Similarly to static designs, the spatial mean temporal trend can be estimated
by first estimating the temporal trend β(s) at the sampling locations, and then
estimating the spatial mean of the model parameter, β̄. However, compared
to static designs, considerable time elapses before all sampling locations have
been observed repeatedly. For instance, in the 4-period rotational sample of
Fig. 14.7 one must wait for the seventh sampling time until all locations
have been sampled three times. The alternative is to estimate the spatial
means (areal fractions, totals) first, and then the trend of the spatial mean
(areal fraction, total). With this procedure an estimate of the spatial mean
temporal trend (trend of areal fraction or total) can already be obtained
after the third sampling time. Successive estimates of the current mean (areal
faction, total) estimated by the composite estimator evidently are correlated
because measurements of the previous time are used to estimate the current
global quantity. Therefore, it is recommendable not to use the measurements
of the previous sampling time to estimate the current status of the global
quantity, i.e., use the π-estimator. Due to overlap of successive samples the
estimated global quantities at successive times still can be correlated, but this
correlation will be much less serious a problem.

15.2.6 Estimating Effects with BACI designs

Figure 15.1 shows a monitoring design composed of two independent syn-
chronous designs, one before and one after an intervention. The difference
in spatio-temporal means before and after the intervention d̄A,B can be es-
timated by estimating the two space–time means with the design-based es-
timators mentioned in the previous sections. The sampling variance of the
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Fig. 15.1. Notional example of a synchronous sample before and after an interven-
tion

estimated difference can be estimated simply by the sum of the variances
of the two estimated space–time means. As stated above, Synchronous Sam-
pling can be considered as a special case of Two-Stage Random Sampling in
space–time, using spatial sections of the universe at given times as primary
units, and sampling locations as secondary units. Assuming that the variance
within and between primary units before and after the intervention are equal,
the formulas of Sect. 7.2.5 can be used to determine the optimal number of
sampling times and sampling locations before and after the intervention.

Suppose that the target variable shows a linear trend in time due to pro-
cesses working in an area that is much larger than the area where the measures
are planned. Then one will find a difference between the space–time means
before and after the intervention which has nothing to do with the interven-
tion. To overcome this problem, one can measure the target variable at one or
more reference (control) sites, i.e., locations more or less similar to the impact
sites but outside the area with the planned measures. The target quantity is
now defined as

δ̄A,B =
1

|S × A|
∫

t∈A

∫

s∈S
δ(s,t) dsdt− 1

|S × B|
∫

t∈B

∫

s∈S
δ(s,t) dsdt , (15.22)

where δ(s, t) = z(s, t) − z̄C(t), with z̄C(t) being equal to the mean of z at
the control sites at time t. The control sites can be restricted to one or more
purposively selected locations outside the impact area. In that case the mean
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Fig. 15.2. Notional example of a synchronous sample before and after an interven-
tion, with simultaneous sampling of a control site (a BACI design)

z̄C(t) is known without error. It is convenient to measure the impact and
control sites simultaneously, because then estimating or testing the quantity
(15.22) is analogous to that of (15.7). Figure 15.2 shows an example of a
synchronous sampling pattern in the impact area, and one purposively selected
control site. One may also select the control sites randomly from a bounded
control area. In that case one can account for uncertainty in the spatial means
z̄C(t). Random sampling in the control area can be synchronized with the
sampling in the impact-area. Besides possible operational advantages, this
also leads to higher precision when the estimated spatial means at time t in
the control area and in the impact area are positively correlated.

Note that if the estimator of (15.22) differs significantly from zero, then still
one cannot conclude that this is caused by the intervention. The treatment
levels (impact versus control) are not randomly allocated to the sites as in
experimental design, and as a consequence one must be careful to interpret
the estimated target quantity as the effect of the treatment (intervention).

Underwood (1994) considers the case of a single impact location that is not
randomly selected, but predetermined by the source of the disturbance. To
introduce randomness, Underwood proposes selecting the control sites ran-
domly. However, Stewart-Oaten and Bence (2001) pointed out that in this
case the estimation of the effect of the intervention at the impact site must
be based necessarily on a geostatistical model. The measurements after the
intervention at the control sites are used to predict the target variable at the
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impact site. These predictions are used as possible values if no intervention
would have occurred at the impact site. Note that this strategy can be used
if before-measurements at the impact site are unavailable. If one does have
measurements before the intervention at the impact site, the alternative is to
describe the temporal variation at the impact site with a time-series model
and use the synchronized measurements at the control sites as covariates.

15.3 Model-Based Methods for Global Quantities in
Space–Time

15.3.1 Introduction

This section describes sampling in space and time for prediction of global
quantities (e.g., spatio-temporal means or spatio-temporal cumulative distri-
bution functions), where a model is used for statistical inference. If prior to
sampling a reasonable model can be postulated, then this model can also be
used to guide the sampling, i.e., to optimize the pattern of sampling events.
Although design-based methods generally are well suited for global quantities,
there may be reasons to prefer model-based methods. An example is where one
has prior monitoring data from purposive samples in space–time that need to
be extended with additional data. Another example is where the global target
quantity is related to a detection problem (Sect. 2.2.6).

The first two sections deal with optimization of the sampling locations at
two given sampling times. The target quantities considered are the change
of the mean between two successive sampling times (Sect. 15.3.2), and the
current mean, i.e., the mean at the latest sampling time (Sect. 15.3.3). Both
target quantities are predicted by co-kriging. The optimal patterns for the
two target quantities will generally be different.

The following two sections deal with the situation where more than two
sampling times are to be considered. In that case co-kriging becomes cum-
bersome, because a co-regionalization model for more than two co-variables
is hard to obtain. The alternative is then to postulate a relatively simple geo-
statistical model for the variation in space–time. In Sect. 15.3.4 such a model
is used to optimize the spacing and interval length of a space–time grid for
predicting the spatio-temporal mean. Sect. 15.3.5 elaborates on optimization
of the sample pattern for the current mean with this model.

Finally, Sect. 15.3.6 deals with sampling for predicting the spatial mean
temporal trend. A simple model is postulated for the residuals of the temporal
trend, which is used to optimize the spacing and interval length of a space–
time grid.

In some situations one may have knowledge about the dynamics of the
target variable, described by a process model. If this model can be used to
predict the spatio-temporal evolution of the target variable, then the predicted
spatio-temporal images can be used to direct sampling effort in space and
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time. For instance, a groundwater flow and transport model could be used to
describe the development of a contaminant plume by a series of concentration
maps that are subsequently used to determine where and when concentrations
can best be measured. Examples of the use of a process model for sampling
in space–time can be found in Meyer and Bril (1988), Cieniawski et al. (1995)
and Bierkens (2002). When a realistic process model is available, its use in
sampling is recommendable because this is likely to increase the efficiency.
The reason that we do not treat this type of model-based sampling is that it
is highly application-specific and therefore beyond the scope of this book.

15.3.2 Co-Kriging the Change of Spatial Mean

This section deals with sampling for predicting the change of the spatial mean
between two sampling times. What should be optimized are the sampling loca-
tions at these two times. The target quantity is predicted by block co-kriging.
In co-kriging the change of the mean, there is not a primary variable and a
secondary variable, but the cross-correlation between the random variable at
sampling time 1, Z(s, t1), and at sampling time 2, Z(s, t2) is used to improve
the predicted change of the spatial means.

Hereafter, we denote Z1(s) = Z(s, t1) and Z2(s) = Z(s, t2), and as-
sume that Z1(s) and Z2(s) are two second-order stationary functions with
unknown means µ1 and µ2 and with the following covariance functions:
C11(h) = Cov[Z1(s), Z1(s + h)], C22(h) = Cov[Z2(s), Z2(s + h)] and cross-
covariance function C12(h) = Cov[Z1(s), Z2(s + h)].

Here we use covariances rather than semivariances, because the estimation
of the cross-variogram requires that data at two sampling times are observed
at the same location1 (see Goovaerts, 1997).

The change of the spatial mean

D2,1 =
1
|S|

∫
s∈S

Z2(s) ds− 1
|S|

∫
s∈S

Z1(s) ds , (15.23)

is predicted by (Papritz and Flühler, 1994)

D̃2,1 =
n2∑
i=1

λ2i Z2(s2i)−
n1∑
i=1

λ1i Z1(s1i) , (15.24)

where n1 and n2 are the number of sampling locations at t1 and t2, respec-
tively. The co-kriging weights λ1i and λ2i are obtained by solving the following
sets of linear equations:
1 An alternative formulation in terms of so-called pseudo cross-variograms is possi-

ble, which is also suitable for intrinsic Stochastic Functions. This however yields
much more complicated expressions (see Papritz and Flühler, 1994).
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n1
∑

j=1

λ1j C11(s1j − s1i) −
n2
∑

j=1

λ2j C21(s2j − s1i) − ν1

= C11(S, s1i) − C21(S, s1i) i = 1, . . . , n1
n2
∑

j=1

λ2j C22(s2i − s2j) −
n1
∑

j=1

λ1j C21(s2i − s1j) − ν2

= C22(s2i,S) − C21(s2i,S) i = 1, . . . , n2
n1
∑

i=1

λ1i = 1
n2
∑

i=1

λ2i = 1 ,

(15.25)

where ν1 and ν2 are Lagrange multipliers, and where two unbiasedness
constraints are included to assure that the predictor (15.24) is unbiased.
C11(S, s1i), C21(S, s1i), C21(s2i,S) and C22(s2i,S) are point-to-block aver-
aged covariances. With C11(S,S), C21(S,S) and C22(S,S), the within-block
(S-averaged) (cross-)covariances, the variance of the prediction error (block
co-kriging variance) can be calculated as

V (˜D2,1 − D2,1) = C11(S,S) + C22(S,S) − 2C21(S,S) + ν1 + ν2

−
n1
∑

i=1

λ1i[C11(S, s1i) − C21(S, s1i)] −
n2
∑

i=1

λ2i[C22(s2i,S) − C21(s2i,S)] .

(15.26)
As can be seen from (15.26), the prediction-error variance depends only on
the sampling locations at the sampling times t2 and t1 and can thus be used
for optimization of the sampling locations. Papritz and Webster (1995) have
shown that if the observations at the two times are positively correlated, then
the prediction-error variance is minimal when the sampling locations at the
two times coincide. When sampling is destructive (e.g., soil sampling), it is
impossible to exactly sample the same location. In that case it is advisable to
sample at sampling time t2 as closely as possible to the sampling locations at
sampling time t1.

Some additional remarks about co-kriging of differences are in order. First,
if the sampling locations at the two sampling times do not coincide, then co-
kriging always yields more accurate predictions than first ordinary kriging
separately at both sampling times and then subtracting the two predicted
means. If the observations at the two sampling times coincide and the cross-
covariance structure is intrinsic, i.e., C11(h) = α C22(h) = β C12(h), where α
and β are positive real valued constants for all lags h, then co-kriging yields
the same results as kriging for each sampling time first and then obtaining
differences. The system is called ‘autokrigeable’. If the system is autokrigeable,
the kriging weights will also be the same for each sampling time. In this case,
D2,1 can simply be estimated by direct ordinary block-kriging of differences:

˜D2,1 =
ns
∑

i=1

λi [Z2(si) − Z1(si)] =
ns
∑

i=1

λi D2,1(si) , (15.27)

with λi obtained from solving the ordinary block-kriging equations (see Ap-
pendix B)
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ns
∑

j=1

λj γD(hij) + ν = γD(si,S) i = 1, . . . , ns

ns
∑

i=1

λi = 1 ,
(15.28)

with γD(hij) the variogram of D2,1, which should be estimated directly from
the differences. The block-kriging variance of the predicted mean difference is
given by:

V
(

˜D2,1 − D2,1

)

=
ns
∑

i=1

λi γD(si,S) + ν − γD(S,S) . (15.29)

In conclusion, model-based sampling for predicting the change of the mean
can be treated as a special case of model-based sampling in space because it
is optimal to sample the same locations at the two times. The pattern with
minimum block co-kriging variance (15.26) can be searched for by simulated
annealing, see Sect. 7.3.3 for further details. Optimization becomes even more
simple when an intrinsic covariance model is postulated. In that case block
co-kriging is equivalent to block-kriging the differences, and the pattern can
be optimized by minimization of the block-kriging variance of the predicted
mean difference (15.29). A simple alternative for situations where one is not
able to postulate a model for the variation in space–time, is to design a spatial
coverage sample (Sect. 8.3.3) or a regular grid (Sect. 7.3.2).

15.3.3 Co-Kriging Current Means

In co-kriging the current mean, the measurement of the target variable at the
previous sampling time is used as a secondary variable, i.e., a co-variable. The
current mean is predicted by the ordinary block co-kriging predictor:

˜Z2 =
n2
∑

i=1

λ2i Z2(s2i) +
n1
∑

i=1

λ1i Z1(s1i) , (15.30)

The co-kriging weights λ1i and λ2i are obtained by solving the following
sets of linear equations:

n2
∑

j=1

λ2j C22(s2i − s2j) +
n1
∑

j=1

λ1j C21(s2i − s1j) + ν1

= C22(s2i,S) i = 1, . . . , n2
n2
∑

j=1

λ2j C12(s1i − s2j) +
n1
∑

j=1

λ1j C11(s1i − s1j) + ν2

= C12(s1i,S) i = 1, . . . , n1
n2
∑

j=1

λ2j = 1
n1
∑

j=1

λ1j = 0 ,

(15.31)

Finally, the block co-kriging variance of the predicted current mean equals
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V
(

˜Z2

)

= C22(S,S) − ν1

−
n2
∑

i=1

λ2iC22(s2i,S) −
n1
∑

i=1

λ1iC12(s1i,S) .
(15.32)

The optimal sampling pattern for the current mean may differ from the
change of the mean. Whereas for the change of mean it is optimal to sample
the same locations at the two times, for the current mean this will be opti-
mal only when the spatial autocorrelation strongly dominates the temporal
autocorrelation.

In the reverse case, it is optimal to sample at time t2 at locations farthest
from those at time t1. This is because at these intermediate locations one has
the least information on the current values, whereas at or near to a location
sampled at t1 a more precise estimate of the current value could be obtained
with the observation at time t1. In this case a simple solution is two interpene-
trating grids, one for each sampling time. An alternative for irregularly shaped
areas is to optimize the locations at time t2 with k-means using the locations
of time t1 as prior locations, leading to a spatial infill sample (Sect. 8.3.3).

If neither the temporal nor the spatial autocorrelation is dominant, then
the pattern of the locations might be optimized with simulated annealing,
using the locations at the previous sampling time as prior data. The quality
measure to be minimized is the block co-kriging variance of the predicted
current mean.

15.3.4 Space–Time Kriging the Spatio-Temporal Mean

This section deals with the design of a space–time sample for the whole moni-
toring period, to predict the spatio-temporal mean. The sampling pattern will
be optimized for the space–time block-kriging predictor.

Space–time kriging is a simple extension to spatial kriging, treating time
as an extra dimension (e.g., Heuvelink et al., 1997). The spatio-temporal vari-
ation is modelled with a Stochastic Function Z(s, t), s ∈ S and t ∈ T , which
is assumed to be second-order stationary in both space and time. We model
the space–time semivariance between Z(si, ti) and Z(sj , tj) with the follow-
ing variogram model, assuming isotropy in space and space–time geometric
anisotropy (see Heuvelink et al., 1997):

γ(ui,uj) = γ(si−sj , ti − tj) = γ(hij , τij) = γ

⎛

⎝

√

|hij |2
a2
s

+
τ2
ij

a2
t

⎞

⎠ , (15.33)

with |hij | = |si − sj | and τij = |ti − tj | the Euclidian distances in space and
time, respectively, and as and at the variogram range parameters in space
and time, respectively. The target quantity is the spatio-temporal mean ZU
of Z(s, t) over U (15.4).

If the mean value µ = E[Z(u)] is not known, ZU can be predicted with
ordinary block-kriging:
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˜ZU =
n

∑

i=1

λi Z(ui) , (15.34)

where the weights λi are obtained by solving the following set of equations

n
∑

j=1

λj γ(ui,uj) + ν = γ(ui,U) i = 1, . . . , n

n
∑

i=1

λi = 1

(15.35)

and the variance of the prediction error is given by

V [˜ZU − ZU ] = σ2
obk =

n
∑

i=1

λi γ(ui,U) + ν − γ(U ,U) , (15.36)

with
γ(ui,U) =

1
|U|

∫

u∈U
γ(ui,u) du (15.37)

γ(U ,U) =
1

|U|2
∫

u2∈U

∫

u1∈U
γ(u1,u2) du1 du2 . (15.38)

In practice, the integrals (15.37) and (15.38) are approximated by discretizing
U with a grid and averaging semivariances between locations on the grid (see
Appendix B). The prediction-error variance (15.36) can be used as a quality
measure to be minimized through sampling. It can be seen that this depends
only on the projected n sampling locations. Thus, it can be used for sample
optimization when new sampling locations are projected.

A simple and practical type of sampling pattern for space–time kriging
the spatio-temporal mean is a space–time grid. The trade-off between the
sampling effort in space and in time, and the effect of grid spacing and the
interval length on the prediction-error variance will be evaluated for a square
grid pattern in space, in a block-shaped universe S × T .

From analysis of the prediction-error variance (15.36) it follows that for
grid sampling the ratio σ2

obk/σ2 with σ2 = V [Z(s, t)] can be represented by
the following function r(·):

σ2
obk

σ2
= r

(

ns, nt,
as

√|S| ,
at

|T |

)

, (15.39)

where ns and nt are the number of sampling locations and sampling times,
respectively. Figure 15.3 shows isolines of the ratio σ2

obk/σ2 as a function of
ns and nt for as/

√|S| = 1 and at/|T | = 1, using a spherical model (with zero
nugget) for the variogram (see Appendix B). Appendix D shows similar figures
for other combinations of a2

s/
√|S| and at/|T |. These figures can be used to

determine the required grid spacing and interval length for grid sampling in
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Fig. 15.3. Sampling on a centred space–time grid (square grid pattern in space) for
predicting the spatio-temporal mean by space–time kriging. The figure shows the
variance ratio σ2

obk/σ2 for as/
p
|S| = 1 and at/|T | = 1 as a function of the number

of sampling locations ns and sampling times nt. Figures for other combinations of
as/

p
|S| and at/|T | are given in Appendix D.

space and time, given values of area |S|, length of monitoring period |T | and
the statistical parameters σ2, as and at.

Suppose that the aim is to predict the spatio-temporal mean for a block-
shaped universe, square in space, and that a variance reduction of 90 per-
cent is required, i.e., σ2

obk/σ2 = 0.1. Further, suppose that as/
√
|S| = 1 and

at/|T | = 1, so that we can use Fig. 15.3. One possible combination of sam-
ple sizes in space and time is log(

√
ns) = 0.47 and log(nt) = 0.82. Rounding

fractions upwards to integers, this leads to 9 sampling locations and 7 sam-
pling times. Alternatively, one could choose the combination log(

√
ns) = 0.70

and log(nt) = 0.40, leading to 25 sampling locations and 3 sampling times.
The number of sampling events is 63 for the first combination and 75 for the
second. To determine which combination is preferable, a costs model can be
used. If the total costs of sampling (c) is dominated by the costs per event
(co), for instance due to lengthy observation times or an expensive method of
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determination, then the total sample size is leading. This implies that taking
a number of observations in space at a single time costs the same as taking
the same number of observations at a single location at multiple times, i.e.,
c = nsntco. Given this costs model, the first combination is least expensive
and therefore preferable.

Repeated sampling is often more expensive than taking the same number
of observations in one sampling round. A linear costs model accounting for this
effect is c = nsntco+ntct, where ct is the fixed costs per sampling round. Given
a required variance reduction, the optimal combination can be determined by
evaluating this cost function for all combinations on the corresponding isoline
in Fig. 15.3, and selecting the least expensive combination.

Alternatively, for quality optimization the aim is to find the sample size
combination that results in the smallest prediction error variance for a given
budget B, i.e., nsntco + ntct ≤ B. In this case the optimal combination can
be found by plotting the line nsntco + ntct = B in Fig. 15.3. The point on
this line for which the variance ratio is minimal is the optimal combination.

Figures D.1 to D.4 in Appendix D show that if as/
√|S| and at/|T | are

similar in magnitude, then the lines run roughly diagonal with a slope of ap-
proximately -2. Note that if we would have plotted log(ns) instead of log(

√
ns)

the slope would have been -1, indicating that the effect on the prediction error
variance of adding one sampling location with nt observations is equal to the
effect of adding one sampling time at which ns = nt locations are observed.
In case as/

√|S| � at/|T |, the lines run roughly vertical (bottom diagrams
in Fig. D.1), showing that much more can be gained by adding sampling lo-
cations, while for as/

√|S| � at/|T | (upper left diagram in Fig. D.4) adding
sampling times is much more efficient.

Although Figs. D.1 to D.4 are based on a square area, these figures can
also be used to obtain rough estimates for irregularly shaped areas. Note that
for such areas the number of sampling locations is not restricted to squares
of integers (4, 9, 16, 25 etc.), but can be any integer. For irregularly shaped
areas a regular grid can be too restrictive. Alternatives are a spatial coverage
pattern type (Sect. 8.3.3) or a geostatistical pattern type (Sect. 8.3.4).

Figures D.1 to D.4 are based on variograms without nugget. For vari-
ograms with nugget a different set of figures is required. First, substituting
part of the structured variance by unstructured variance (nugget variance)
leads to smaller variance ratios σ2

obk/σ2. The larger the nugget-to-sill ratio,
the smaller the ratio σ2

obk/σ2, i.e., the stronger the variance reduction. This
implies that less observations are required to achieve the same variance re-
duction as depicted in these figures.

Second, it turns out that the nugget has an effect on the optimal sample-
size combination, i.e., the optimal grid spacing and interval length. The larger
the nugget-to-sill ratio, the smaller the difference between the number of sam-
pling locations per spatial correlation length and the number of sampling times
per temporal correlation length.
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In case the universe S × T is irregular or observations have already been
made, other spatial patterns such as those of spatial coverage samples may
be preferable. Even a different type of space–time pattern, such as interpene-
trating space–time grids, could be in order.

A standard reference in model-based sampling design for spatio-temporal
means is the paper by Rodŕıguez-Iturbe and Méıja (1974) on the design of
rainfall networks. Here, the target is the long term spatial mean (|T | → ∞)
and the sampling is exhaustive in time (rainfall is measured as cumulative
amounts) such that the length of the monitoring period and the number of
rain gauges are the variables to be optimized.

15.3.5 Space–Time Kriging Current Means

The previous section treats the design of space–time samples for the whole
monitoring period, simultaneously for all sampling times. This section deals
with the situation where a spatial sample is designed for the next sampling
time only, in other words spatial samples are designed sequentially.

As with co-kriging, static-synchronous patterns such as space–time grids
is a good choice only when the spatial autocorrelation strongly dominates the
temporal autocorrelation. In this case the sampling problem can be treated
as one of sampling in space, see Sect. 7.3.

In the reverse case, there are two simple solutions. The first solution is an
interpenetrating space–time grid. The required spacing of the grids at each
sampling time might be approximated by calculating the space–time block-
kriging variance for a range of grid spacings. The second solution is to design
a spatial infill sample with k-means, using the locations of all sampling times
that are temporally autocorrelated as prior locations (Sect. 8.3.3).

If neither the temporal nor the spatial autocorrelation is dominant, then
the pattern of the locations might be optimized with simulated annealing,
using the previous sampling events as prior data. The quality measure to be
minimized is the block-kriging variance of the predicted current mean.

15.3.6 Kriging the Spatial Mean Temporal Trend

A question such as ‘has the surface temperature increased over the last 30
years?’ is quite common in environmental research. Usually such a question
has to be answered based on a small number of time series of the variable
involved (e.g. temperature) scattered around the area of interest. If the time
series are long enough it is possible to estimate a trend at each sampling
location, see Sect. 13.4.1. Of course, the magnitude and sign of the trend may
be different at different locations, so that the question whether the average
temperature has increased in a certain area cannot be answered by looking
at time series only. The real question to be answered is therefore whether the
spatial mean of the temporal trend in temperature is positive and significantly
different from zero. Consequently, the goal of this section is sampling for



15.3 Model-Based Methods for Global Quantities in Space–Time 243

predicting spatial mean temporal trends. A general space–time model for this
purpose has been developed by Sølna and Switzer (1996). Here we will use a
much simpler model for designing a sample in space–time.

This model has the following form:

Z(s, t) = α(s) + β(s) · (t − t0) + ε(s, t) , (15.40)

where α(s) and β(s) are level and trend coefficients respectively, that are
Stochastic Functions of location in space and, for a given location s, parame-
ters in time, t0 is the initial time and ε(s, t) is a zero-mean residual which is
assumed to have the following properties:

E[ε(s1, t1) · ε(s2, t2)] =
{

σ2
ε exp(−|t2 − t1|/at) if s1 = s2

0 if s1 �= s2
(15.41)

In words, we assume that the residuals are correlated in time, but are uncor-
related in space.

Equation (15.40) can be reformulated in matrix–vector form as:

z(s) =

⎡

⎢

⎢

⎢

⎣

z(s, t1)
z(s, t2)

...
z(s, tnt)

⎤

⎥

⎥

⎥

⎦

β(s) =
[

α(s)
β(s)

]

T(s) =

⎡

⎢

⎢

⎢

⎣

1 t1 − t0
1 t2 − t0
...

...
1 tnt − t0

⎤

⎥

⎥

⎥

⎦

ε(s) =

⎡

⎢

⎢

⎢

⎣

ε(s, t1)
ε(s, t2)

...
ε(s, tnt)

⎤

⎥

⎥

⎥

⎦

,

so that
z(s) = T(s) · β(s) + ε(s) . (15.42)

Using (15.41) the covariance matrix C(s) = ε(s) ·ε(s)′ can be constructed.
With the help of this covariance matrix and the above matrix–vector defi-
nitions the Generalized Least Squares estimate of β(s) can be obtained as
(Cressie, 1993):

̂β(s) =
[

T′(s) · C−1(s) · T(s)
]−1 · T′(s) · z(s) , (15.43)

and the estimation covariance matrix as

V[̂β(s)] =
[

T′(s) · C−1(s) · T(s)
]−1

. (15.44)

From application of (15.43) and (15.44) to all ns locations one obtains esti-
mates of trends ̂β(si) and the variances of the estimation errors V [̂β(si)].

Next, the spatial average β can be predicted using block-kriging of the
̂β(si), where the estimation errors ̂β(si) − β(si) of the temporal estimation
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problem are now treated as ‘observation’ errors in a spatial context. Thus,
ordinary block-kriging with uncertain data is used (de Marsily, 1986). The
prediction and prediction-error variance have the same form as with the reg-
ular ordinary kriging system:

˜β =
ns
∑

i=1

λi
̂β(si) (15.45)

V
(

˜β − β
)

=
ns
∑

i=1

λi γβ(si,S) + ν − γβ(U , U) , (15.46)

but the normal equations to obtain the weights and the value of the Lagrange
multiplier have additional terms containing the estimation variances: V [̂β(si)]:

ns
∑

j=1

λj γβ(hij) − λiV [̂β(si)] + ν = γβ(si,S) i = 1, . . . , ns

ns
∑

i=1

λi = 1

(15.47)

The function γβ(hij) is the variogram of the real trend coefficients β. Of
course this is unknown. What can be estimated from the estimates ̂β(si) at
the sampling locations is the variogram γ

bβ(hij). An approximation of the true
variogram γβ(hij) may be obtained as follows (nti is the number of sampling
times at sampling location i; the sampling interval length is assumed to be
constant and equal for all sampling locations):

γβ(hij) ≈ γ
bβ(hij) −

ns
∑

i=1

ntiV [̂β(si)]

ns
∑

i=1

nti

. (15.48)

In practice, the prediction of the spatial mean temporal trend consists of the
following steps:

1. perform a Generalized Least Squares estimate of the trend parameter at
each location with a time series. This entails:
a) start with an Ordinary Least Squares regression of α + β(t − t0) to

the time series;
b) calculate the residuals εt;
c) estimate the covariance of the residuals (using the variogram estimator

if observations are not equally spaced in time; see Chap. 9);
d) fit relation (15.41) to the estimated covariance function;
e) build the covariance matrix C with (15.42) and perform the General-

ized Least Squares estimate with (15.43);
f) repeat steps b to e until the estimate ̂β(si) converges;
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g) evaluate (15.44) to obtain the estimation variance V [̂β(si)];
2. estimate the variogram γ

bβ(si − sj) from the estimated trend coefficients
̂β(si) at the locations and fit a permissible variogram function (see
Chap. 9);

3. approximate the true variogram γβ(hij) with (15.48), making sure that
γβ(hij) is positive for all lags;

4. solve (15.47) and evaluate (15.45) and (15.46) to obtain the prediction ˜β

and the prediction error variance V (˜β − β).

The prediction and the prediction-error variance can then be used to calculate
a prediction interval for the spatial mean temporal trend β. Assuming nor-

mality and a confidence level of 0.95, the interval equals ˜β ± 1.96
√

V (˜β − β).
If this interval does not include zero, one can conclude that a spatial mean
temporal trend exists.

In this context, the smallest relevant trend βmin that can still be detected,
can be used to assess the sample size needed. To this end, a quality requirement
related to the half-width of the 95% prediction interval can be used:

V (˜β − β) ≤
(

βmin

1.96

)2

. (15.49)

The sampling problem is then to assess the required length of the time series,
and the number and locations of these time series to make sure that the quality
requirement (15.49) is met.

In the following we consider the case of sampling on a space–time grid,
with a square grid pattern in space. Some figures are presented that can
be used to determine the optimal interval length and grid spacing required
to estimate the spatial mean temporal trend with prescribed precision. The
assumptions are that the temporal covariance parameters in (15.41) are equal
for all locations, and that the variogram γβ(hij) is of spherical form with
zero nugget. Given these assumptions, the parameters that must be known
are: length of the time series |T |, size of the area |S|, temporal covariance
parameters σ2

ε and at and semivariance parameters σ2
β and as.

Figure 15.4 shows the relation between the ratio V (̂β)|T |2/σ2
ε and the

number of sampling times nt, for several ratios at/|T |. Note that the trend
estimation variance has been normalized both by the residual variance as well
as by the length of the monitoring period to obtain a dimensionless parameter.
Given the residual variance σ2

ε and the length of monitoring period |T |, the
estimation variance V (̂β) decreases with the number of sampling times nt. The
smaller temporal autocorrelation length, the stronger this sampling-frequency
effect is. Figure 15.5 shows isolines of the variance ratio V (˜β − β)/σ2

β for
combinations of the ratio V (̂β)/σ2

β and the number of sampling locations ns,
for as/

√|S| = 0.1, 0.5, 1.0, 2.0 (σ2
β is the sill of the variogram of the real
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Fig. 15.4. Systematic sampling for estimating the temporal trend at a given location
with Generalized Least Squares, assuming an exponential temporal covariance of the
residuals. The figure shows the relationship between the dimensionless estimation
variance V (bβ)|T |2/σ2

ε and the number of sampling times nt, for five ratios at/|T |.

trend coefficient). Figures 15.4 and 15.5 can be used to evaluate the effect of
the number of sampling times and the number of sampling locations on the
prediction-error variance V (β̃−β). First, for a proposed nt the value of V (β̂)
is determined from Fig. 15.4. Next, using the value of V (β̂) to determine the

ratio V (β̂)/σ2
β , the variance ratio V (β̃ − β)/σ2

β , and thus V (β̃ − β) can be
obtained from Fig. 15.5 for a given number of sampling locations ns. This
way, combinations of numbers of sampling locations and sampling times can
be sought that are in accordance with quality requirement (15.49).

Although space–time grids clearly have operational advantages, we would
like to stress that for predicting spatial mean temporal trend this type of
pattern will not always be optimal. In situations with a large temporal range
of the variogram of the residuals, an r-period synchronous pattern may be
more efficient.

The assumption that the spatio-temporal residual ε(s, t) is spatially in-
dependent, leading to spatially independent estimation errors β̂(s) − β(s) is
rather strong. However, it leads to relatively simple equations and is therefore
suitable for sampling design. If, after data have been collected, it turns out
that these assumptions are not supported by the data, then a more general
model for inference and prediction may be in order. One option is the statisti-
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cal space–time model and prediction method described by Sølna and Switzer
(1996).

A special case of a temporal trend is a step trend, a sudden change in the
model mean due to an intervention, see Sect. 13.4.1. If one wants to account for
changes in the model mean not related to the intervention, then one may also
sample synchronously one or more purposively selected control sites outside
the intervention area, and postulate a time model for the pairwise differences
between the impact and control sites, see Sect. 15.2.6.
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Fig. 15.5. Sampling on a centred space–time grid (square grid pattern in space) for
predicting the spatial mean temporal trend by kriging with uncertain data, assuming

a spherical spatial covariance model. The figure shows the ratio V (bβ − β)/σ2
β as a

function of the ratio V (bβ)/σ2
β and the number of sampling locations ns, for four

different ratios as/
p
|S|.




