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Time-Series Models

13.1 Introduction

Appendix C recapitulates the most commonly assumed linear stochastic pro-
cesses. In this chapter the sampling aspects of time-series modelling are
dealt with. Section 13.2 focuses on the sampling aspects of estimating pro-
cess parameters which characterize the dynamic behaviour of the process.
In Sect. 13.3 the estimation of model means, such as annual model means,
is elaborated upon. Finally, Sect. 13.4 discusses the sampling aspects in the
perspective of detecting trends in time series.

13.2 Estimation of Process Parameters

This section focuses on the development of monitoring strategies to obtain
parameters which give a general description of the temporal behaviour of a
physical phenomenon, i.e., status monitoring (Sect. 1.1). Statistical inference
is made by assuming that the temporal behaviour results from a stochastic
process which can be specified by a time-series model. Therefore, the main
question to be answered in this section is: How should samples be distributed in
time, in order to derive time-series models that describe the dynamic behaviour
of a physical phenomenon adequately? The answer to this question starts with
making assumptions about the stochastic processes, the most applied of which
are recapitulated in Appendix C. As is mentioned in Sect. C.1, stochastic
processes are data-based. The discrete-time stochastic processes described in
Sects. C.2 to C.4 reflect the dynamic behaviour of physical phenomena, given
the sampling frequency and the length of the monitoring period. Decisions
must be taken on the sampling frequency and the length of the monitoring
period. These decisions are discussed in this section.
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We restrict ourselves here to discrete-time stochastic processes with dis-
crete, constant time-intervals . Statistical inference for this type of processes is
possible by using relatively simple mathematical methods, as compared with
continuous-time processes. Box and Jenkins (1976) give a procedure of model
identification, fitting (calibration) and diagnostic checking (verification). In
Fig. 13.1 this procedure is summarized and extended for decisions on the
length of the monitoring period and the sampling frequency.

Important tools in both model identification and diagnostic checking are
the sample autocorrelation function (sample ACF), the sample partial auto-
correlation function (sample PACF) and the residual cross-correlation func-
tion (residual CCF), see Appendix C. As an alternative to the identification
procedure, automatic model selection can be applied, using a selection crite-
rion (e.g., Akaike’s Information Criterion, AIC, or Bayes Information Crite-
rion, BIC). The procedures of either model identification or automatic model
selection, fitting and diagnostic checking result in a model that describes the
data adequately. The next step is to analyze the extent to which the under-
lying physical processes are described adequately by the model. This can be
done by physical interpretation of the modelling results. Besides this, when-
ever possible validation is advised, which means that the model performance
is tested using independent validation data. Both physical interpretation and
validation results may not only give rise to further model improvements, but
also to extension of the monitoring period, and adjustment of the sampling
frequency. This is illustrated by the following two situations, which are given
without aiming to be complete:

1. A large value of the autoregressive parameter of a first-order autoregres-
sive model (Sect. C.2.1) is found. The validation results show large sys-
tematic errors. In this case the monitoring period may not fully cover
the correlation length, i.e., the time lag at which the autocorrelation is
(approximately) zero. In the case of a dynamic relationship between two
variables, the monitoring period may not cover the response time. The
monitoring should be continued at least until the correlation length or
the response time is completely covered;

2. Although autoregressive relationships were expected on the basis of phys-
ical insights, no significant autoregressive relationships were found. The
validation results show large random errors. In this case the sampling
interval may be larger than the correlation length or, in the case of a
dynamic relationship between two variables, than the response time.

13.3 Sampling Frequency for Estimation of Model Means

As is mentioned in Sect. 1.1 in status monitoring the status of a system is char-
acterized and followed in time. A general statistic of a system is the mean, for
instance the annual mean. If monitoring is restricted to systematic sampling
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Fig. 13.1. Flow chart for the procedure of time-series model identification, fitting
and diagnostic checking, extended with sampling aspects



194 13 Time-Series Models

in time, a sampling frequency needs to be chosen which enables estimates of
means which are sufficiently accurate given the purposes of monitoring.

An observed series {zi}, i = 1 . . . n is considered to be a realization of a
second-order stationary stochastic process with a random fluctuation εi with
variance σ2

ε around a deterministic mean µ:

Zi = µ + εi . (13.1)

Note that µ is a model parameter, and not the average of z over the universe of
interest. Sanders and Adrian (1978) presented a sampling frequency criterion
based on the relationship between sampling frequency and the magnitude of
half the confidence interval of the model mean. Their approach will be followed
here.

Suppose that n second-order stationary, independent and identically dis-
tributed observations on z are available. To obey the stationarity assumption,
it may be necessary to remove seasonal nonstationarity first, for instance by
fitting a deterministic annual cycle to the data and to use the residuals in
further analysis. The variance σ2

ε can be estimated by:

̂σ2
ε =

1
n − 1

n
∑

i=1

(zi − z̄)2 , (13.2)

where z̄ is the calculated mean of zi, i = 1, . . . ,m. Confidence intervals for
estimates of µ are estimated using the Student’s t statistic:

t =
z̄ − µ

σε/
√

n
. (13.3)

The probability that t is within the confidence interval is given by the confi-
dence level 1 − α:

Pr
(

tα/2 <
z̄ − µ

σε/
√

n

)

, (13.4)

where tα/2 and t1−α/2 are constants from the Student’s t distribution for a
corresponding number of observations and confidence level. Since t1−α/2 =
−tα/2, the confidence interval of the model mean µ is given by

z̄ − tα/2 σε√
n

< µ < z̄ +
tα/2 σε√

n
. (13.5)

If σε has been estimated from prior information, and a decision on the con-
fidence level 1 − α has been taken, the width of the confidence interval can
be plotted against values of n. If annual means are considered, n is the yearly
number of observations.

Until now it was assumed that the values of z are mutually independent.
However, the presence of autocorrelation is often indicated in time series of
environmental variables. Dependency can be dealt with in two ways: (a) it is
avoided, or (b) it is accounted for.
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Avoiding dependency

To avoid dependency, the interval length should be larger than the length of
serial correlation. Thus, prior information is needed on the length of serial
correlation, but this is not always available. Alternatively, one could start to
measure with a high frequency to estimate the correlation length, and then
to continue at intervals longer than the estimated correlation length. Another
possibility is to take average values over sufficiently long periods. For instance,
if daily values appear to be correlated, one could calculate a series of monthly
averages which may possibly be uncorrelated.

The correlation length can be estimated from observed time series using
(C.8), provided that the interval length is shorter than the correlation length
and the series amply covers the correlation length. Once a sampling frequency
is found which provides serially uncorrelated observations on a target variable
zt, the maximum sampling frequency is known. Equation (13.5) is applied to
investigate lower frequencies.

Accounting for dependency

A first way to account for serial correlation in estimating model means µ
is by using the relationship between the actual number of observations and
the equivalent number of independent observations for an autocorrelated time
series, given by Bayley and Hammersley (1946):

V (µ̂) =
σ2

ε

n∗
b

, (13.6)

where n∗
b is the equivalent number of independent observations, µ̂ is the es-

timated mean of a process {Zt} and σ2 is the variance for the random fluc-
tuation εi in (13.1). For second-order stationary stochastic processes with n
observations, n∗

b can be calculated by

1
n∗

b

=
1
n

+
2
n2

n−1
∑

j=1

(n − j) ρj∆t , (13.7)

where ∆t is the observation interval and ρ(j∆t) is the correlation coefficient
for lag j∆t. For first-order autoregressive processes (AR(1), see Sect. C.2.1),
(13.7) reduces to

1
n∗

b

=
1
n

+
2
n2

· ρ(n+1) ∆t − n ρ2 ∆t + (n − 1) ρ∆t

(ρ∆t − 1)2
, (13.8)

(Matalas and Langbein, 1962), where ρ is the lag 1 correlation coefficient for a
selected base lag period. If the base lag period equals the observation interval
the AR(1) process is given by
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Fig. 13.2. Maximum equivalent number of independent observations as a function
of the daily lag 1 correlation coefficient ρ for a Markov process; no = 365 days. (Re-
produced from Lettenmaier (1976, Fig. 6) with permission of American Geophysical
Union.)

Zi − µ = φ (Zi−1 − µ) + εi , (13.9)

and ρ∆t in (13.8) can be replaced by φ. The width of the confidence interval
can be estimated by (13.5), replacing n by n∗

b.
Within a specified period no a maximum number of equivalent independent

observations may be collected:

nmax =
no

2
· (ln ρ)2

ρno − no ln ρ − 1
, (13.10)

(Lettenmaier, 1976), where no is the specified period, for example 365 days,
and ρ is the daily lag 1 correlation coefficient. Thus, if the number of ob-
servations n goes to infinity within the period no, the equivalent number of
independent observations will not exceed a certain nmax.

In Fig. 13.2 nmax is given as a function of the lag 1 correlation coefficient
ρ. Figure 13.2 shows that nmax decreases with an increasing lag 1 correlation
coefficient. If the number of actual samples were infinite and ρ were 0.14, then
from (13.10) and Fig. 13.2 it follows that the equivalent number of independent
observations equals 365.

Figure 13.3 gives the ratio n∗
b/nmax as a function of the normalized sam-

pling frequency n/no, for various values of the daily lag 1 correlation coefficient
ρ. It can be seen that nmax is approached quite rapidly for large values of ρ. If
observations are taken weekly (n/no = 0.14) and ρ = 0.85, then from Fig. 13.3
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Fig. 13.3. Ratio of equivalent and maximum equivalent number of independent ob-
servations, as a function of the normalized sampling frequency; n/no = 1 corresponds
to daily sampling. (Reproduced from Lettenmaier (1976, Fig. 7) with permission of
American Geophysical Union.)

follows that n∗
b/nmax equals 0.9. Thus, 90 % of the information that may be

collected in a period of 365 days is already provided by weekly sampling.

13.4 Sampling Frequency for Detecting Trends

In the previous section second-order stationarity of Z in (13.1) was assumed,
which implies a time invariant model mean µ. This section focuses on the
detection of temporal changes in the model mean µ. In Sect. 13.4.1 sampling
aspects of tests for step trends and linear trends are discussed. Section 13.4.2
deals with sampling aspects of intervention analysis. Note that the methods
described here are based on model means, in contrast to the method for trend
testing described in Sect. 11.2 which is based on temporal means.

13.4.1 Tests for Step Trends and Linear Trends

If temporal sampling is restricted to systematic sampling, then the choice of
an appropriate sampling design reduces to choosing an appropriate sampling
frequency. Analogous to Sect. 13.3, serial correlation in regularly spaced series
is either prevented for or accounted for.
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Avoiding dependency

In Sect. 13.3 it was discussed how the sampling frequency can be found below
which observations are practically serially uncorrelated. Once a sampling fre-
quency is found which provides serially uncorrelated observations on a target
variable Z, the minimum sample size and thus the minimum length of the
monitoring period must be decided on. Lettenmaier (1976) gives criteria for
the minimum sample size if trend detection is the purpose of the monitor-
ing. The trend can concern either a step trend or a linear trend. Lettenmaier
(1976) considers trend detection as a testing problem, with H0: a trend is
not present in the underlying process and H1: a trend is present. Following
Lettenmaier (1976), it is explained below how the minimum length of series
can be determined for testing on step trends and linear trends, respectively.

Sampling Frequency for Detecting Step Trends

A step trend is defined here as a sudden change in the mean level of a process.
Suppose that this sudden change occurs halfway a series with an even number
of n measurements. Furthermore, let µ1 and µ2 be the mean levels of the series
before and after the abrupt change. The underlying process is now defined as

Zi =
{

µ1 + εi if i ≤ n/2
µ2 + εi if i > n/2 ,

(13.11)

where i = 1, . . . , n indicates the ith element of an equidistant series of length
n. In (13.11) the ε’s are independent identically distributed random variables
with zero mean and variance σ2

ε .
The test chooses between

H0 : µ1 = µ2

H1 : µ1 �= µ2 .

The test statistic is

T =
|z̄1 − z̄2|

√
n

2 σ̂ε
− t1−α/2, ν , (13.12)

with

z̄1 =
1

n/2

n/2
∑

i=1

zi, z̄2 =
1

n/2

n
∑

i=n/2+1

zi , (13.13)

being estimators for µ1 and µ2, respectively, t1−α/2,ν is the quantile of the
Student’s t distribution at confidence level 1− α/2 and for ν = n− 2 degrees
of freedom, and with σ̂ε being the sample standard deviation,

σ̂2
ε =

1
n − 2

⎛

⎝

n/2
∑

i=1

(zi − z̄1)2 +
n

∑

i=n/2+1

(zi − z̄2)2

⎞

⎠ . (13.14)
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If T ≤ 0 then H0 is accepted, otherwise H0 is rejected.
Now, for the purpose of sample design, the absolute value of the true

difference between µ1 and µ2 is assumed to be known: Tr = |µ1 − µ2|, as well
as the variance σ2

ε . Then, the following population statistic can be formed:

NT =
√

n

2 σε
Tr . (13.15)

The power of the test is now given by

1 − β = F (NT − t1−α/2, ν) , (13.16)

where F is the cumulative distribution of a standard Student’s t distribution
with ν = n − 2 degrees of freedom.

If prior information on the variance σ2
ε is available, a guess can be made

of the minimum length of the series needed for the detection of a step trend
which occurs halfway this series, for a given α and β. Figure 13.4 shows a
diagram for the relationship between the normalized magnitude of the step
trend (Tr/σε) and the minimum length of the series needed for given values of
β and with α = 0.05. The step trend is assumed to occur halfway the series,
and n = n1 + n2, where n1 = n2 are the numbers of observations before and
after the step change, respectively. The effect on the sample size of a decision
for a lower confidence level 1 − α is illustrated by Fig. 13.5, where α = 0.10.

Minimum Sample Size for Detecting Linear Trends

According to Lettenmaier (1976, p. 1038), a linear trend is parameterized as

Zi = εi + i τ + γ , (13.17)

where εi is a series of random disturbances from a normal distribution with
mean zero and variance σ2

ε , τ is the trend magnitude, and γ is the process
base level. The parameter τ is estimated by

τ̂ =

n
∑

i=1

i′ z′i
n
∑

i=1

i′2
, (13.18)

where

i′ = i − n + 1
2

, z′i = zi − 1
n

n
∑

i=1

zi . (13.19)

The estimate τ̂ has variance

V (τ̂) =
σ2

ε
n
∑

i=1

i′2
. (13.20)
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Fig. 13.4. Sample size against normalized step trend for β = 0.5, 0.4, 0.35, 0.3,
0.25, 0.2, 0.15, 0.1, 0.05, 0.01 (from left to right) and α = 0.05. Tr: the magnitude
of the step trend, σ: the standard deviation, n = n1 +n2, with n1 = n2: the number
of equidistant observations before and after the step change, respectively.

Fig. 13.5. Sample size against normalized step trend for given values of β, and
α = 0.1. See Fig. 13.4
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Assuming normality of τ̂ , a test statistic T is given by

T = |τ̂ | − t1−α/2, ν · σ̂ε
√

n
∑

i=1

i′2
, (13.21)

with ν = n − 2 degrees of freedom. The sample estimate σ̂ε is calculated by

σ̂ε =
1

n − 2

n
∑

i=1

(zi − i τ̂ − γ̂)2 , (13.22)

and the sample estimate γ̂ is calculated by

γ̂ =
1
n

n
∑

i=1

zi − τ̂
n + 1

2
. (13.23)

The test statistic T in (13.21) can be normalized as follows:

T ′ =
|τ̂ | (∑n

i=1 i2
)1/2

σ̂ε
− t1−α/2, ν . (13.24)

Given the identity
n

∑

i=1

i2 =
1
6
n (n + 1) (2n + 1) , (13.25)

Lettenmaier (1976) derives the following dimensionless statistic for the exis-
tence of a linear trend, assuming that the population trend magnitude τ is
known:

N ′
T =

{n (n + 1) (n − 1)}1/2
τ√

12σε

. (13.26)

If n τ is substituted by T ′
r , then N ′

T becomes

N ′
T =

{n (n + 1) (n − 1)}1/2
T ′

r

n
√

12σε

. (13.27)

The power of the test for linear trend can be calculated by (13.16), with NT

replaced by N ′
T . Figures 13.6 and 13.7 give minimum series lengths needed

for given values of β and for α = 0.05 and 0.1, respectively, to detect linear
trends with normalized magnitudes T ′/σε.

Lettenmaier (1976) gives power curves for nonparametric trend tests.
These tests are appropriate if the assumptions of parametric tests are vio-
lated. Lettenmaier (1976) shows that Mann–Witney’s test and Spearman’s
rho test are adequate for testing against a step trend and a linear trend,
respectively.
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Fig. 13.6. Sample size against normalized linear trend for given values of β (See
Fig. 13.4), and α = 0.05. T ′

r : magnitude of the linear trend, σε: the residual standard
deviation of the linear trend model, n: the number of equidistant observations

Fig. 13.7. Sample size against normalized linear trend for given values of β (See
Fig. 13.4), and α = 0.1. T ′

r : magnitude of the linear trend, σε: the residual standard
deviation of the linear trend model, n: the number of equidistant observations
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Accounting for dependency

The trend tests described above are based on the assumption that the ob-
servations are mutually independent. This is the case if the interval length
is larger than the correlation length. However, in many cases the assumption
of mutual independence is not very useful. The required minimum interval
length implies extensive monitoring periods in order to obtain a sufficiently
large number of observations to execute powerful tests. Furthermore, if serial
correlation is removed by extending the interval length or by calculating av-
erages over sufficiently long periods, information gets lost. Therefore, it may
be attractive to use methods for trend detection that account for serial cor-
relation.

Serial correlation can be accounted for in trend tests by using the relation-
ship between the actual number of observations and the equivalent number of
independent observations for an autocorrelated time series, given in (13.6) to
(13.8). Tests for step trends or linear trends in autocorrelated series can be
performed using the equations given before for independent series, replacing
n by n∗

b.
Within a specified period no a maximum number of equivalent independent

observations may be collected, see (13.10). This is important in deciding on
the sampling frequency and the length of the observation period: the power of
trend tests may increase more by observing longer than by observing more fre-
quently. Lettenmaier (1976) made an extension of nonparametric trend tests
to dependent time series, and gives diagrams of maximum power and power to
maximum power ratio for Mann–Whitney’s test against a step trend. Similar
diagrams for parametric t-tests are given in Figs. 13.8 and 13.9. As compared
to the diagrams for Mann–Whitney’s test against step trend, the diagrams for
t-tests given in Fig. 13.8 indicate that t-tests have smaller maximum power
for given daily lag 1 correlation coefficient and trend to standard deviation
ratio. For the application of nonparametric trend tests to hydrological time
series we refer to Hirsch et al. (1982), van Belle and Hughes (1984), Hirsch
and Slack (1984) and Yue et al. (2002).

Lettenmaier (1978) compared the statistical power of trend tests for uni-
formly collected time series (i.e., equidistant observation times) and for ‘strat-
ified’ or unequally spaced time series, resulting from rotational monitoring
designs (Sect. 14.1). In the latter case observations are taken, for instance,
during one year in three, which may be more travel-economical than col-
lecting equidistant time series in a monitoring network. It was concluded that
equidistant time series are preferred over unequally spaced time series in trend
detection. In the rotational design 2–3 times as many samples need to be taken
to achieve the same power as in trend tests for equidistant time series.

13.4.2 Intervention Analysis

Methods accounting for serial correlation include the intervention models,
described by Hipel et al. (1975) and Hipel and McLeod (1994). Intervention
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Fig. 13.8. Maximum power of a t-test against a step trend, as a function of the
daily lag 1 correlation coefficient ρ and the trend to standard deviation ratio Tr/σ
for a Markov process. Analogous to Lettenmaier (1976)

models form a special class of transfer function-noise models, see Sect. C.4.
The intervention model for a step trend is given by

Zt = It + Nt , (13.28)

where t = 1, . . . , n indicates the t-th element of a series of length n, Zt is
the process of interest, It is the trend component and Nt is a noise compo-
nent describing the part of Zt that cannot be explained from the trend. The
noise component is usually taken as an ARMA model, see (C.23). The trend
component It is a transfer function with the following general form:

It = δ1It−1 + δ2It−2 + · · · + δrIt−r + ω0S
(T )
t−b − ω1S

(T )
t−1−b − · · · − ωmS

(T )
t−m−b ,
(13.29)

where δ1 . . . δr are autoregressive parameters up to order r, ω0 . . . ωm are mov-
ing average parameters up to order m, b is a pure delay parameter. Using the
backward shift operator B, (13.29) can be written as

It =
ω(B)
δ(B)

BbS
(T )
t , (13.30)

with Bkzt = zt−k and k is a positive integer.
S

(T )
t is an input series indicating the step intervention:
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Fig. 13.9. Power to maximum power ratio as a function of relative sampling fre-
quency for t-tests against a step trend in time series following a Markov process. ρ
is the daily lag 1 correlation coefficient. no = 365. Analogous to Lettenmaier (1976).

S
(T )
t = 0 if t < T,

S
(T )
t = 1 if t ≥ T .

(13.31)

Step interventions influence processes in different ways, which can be ex-
pressed by different forms of the transfer function, see Fig. 13.10. As com-
pared to the testing procedures described before, intervention modelling has
the advantage that the effect of interventions can be separated from other
independent influences. The model in (13.28) can be extended with other
transfer components besides the intervention:

Zt = It + Xi,t + Nt, ı = 1, . . . ,m , (13.32)

where Xi,t, i = 1, . . . ,m are m transfer components of m independent in-
puts. Lettenmaier et al. (1978) discussed the sampling aspects of intervention
analysis. They considered intervention analysis as a hypothesis test with H0:
no intervention has taken place, which means that ωB/δB = 0 in (13.30).
Based on knowledge of the covariance matrix of the model parameters, they
constructed power functions for several specified intervention models. These
models do not include models containing other inputs besides the interven-
tion, as in (13.32). Nevertheless, the power curves presented by Lettenmaier
et al. (1978) provide an indication of required sample sizes and the ratio of
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the number of observations collected before and after the intervention took
place. In summary, their conclusions on the sampling aspects of intervention
analysis are:

1. For the step decay model, the linear model and the impulse decay model
(Figs. 13.10c, d and e, respectively), relatively small pre-intervention se-
ries lengths are required. For the step model (Fig. 13.10a, b) it is indicated
that equal pre- and post-intervention series lengths are optimal;

2. For the impulse decay model, it is important that data are collected fre-
quently during the period that the intervention response is non-constant;

3. It is indicated that the minimum detectable intervention effect depends
on the complexity of the intervention model: more complex models re-
quire a larger number of observations. Let ω be the intervention response
magnitude. Furthermore, let γ be the pre-intervention series length rel-
ative to the total series length. For a step model and an impulse decay
model ω equals ω0. For a step decay model ω equals ω0/(1 − δ1). For a
linear model ω = mω0/(1−γ) where m is the number of post-intervention
observations. It is indicated that a minimum level of change, relative to
the process standard deviation, ω/σZ , of about 0.5 can be detected for
the step model. For the linear model the minimum level of ω/σZ that can
be detected is at about 0.75, and 1.0 for the impulse decay model. For the
step decay model a higher minimum level is indicated. Below these values
intervention effects cannot be detected with reasonable sample sizes.

Additional to these conclusions Lettenmaier et al. (1978) suggest:

1. If the fitted parameter values for a hypothesized intervention model are
not significant, a simpler model should be fitted (e.g., a step model instead
of a step–decay model);

2. Seasonality should be removed from the data. However, seasonal differenc-
ing will lead to substantial loss of power. Therefore alternative methods
of deseasonalization are recommended (for instance differencing against a
control time series, or removing seasonal means);

3. If the process variance varies seasonally, homoscedasticity (i.e., constant
variance) should be achieved by an appropriate Box–Cox transformation;

4. Data should be collected uniformly, i.e., at constant time-intervals. How-
ever, Kalman filter methods for modelling irregularly spaced time series,
as proposed by Bierkens et al. (1999), could be extended to intervention
analysis.
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Fig. 13.10. Responses to a step intervention. T = 5, S
(T )
t = 0 for t < T , S

(T )
t = 1

for t ≥ T , ω0 = 3, δ1 = 0.7, b = 1. a: step model, b: delayed step model, c: step
decay model, d: linear model, e: impulse decay model.




