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Preface

“Can you give me a reference to a book on monitoring?” is the kind of question
we are frequently asked by colleagues who are planning to design a monitoring
scheme. Although this is a perfectly reasonable question, we became increas-
ingly uneasy, because we had to admit that, to our knowledge, a book meeting
these researchers’ needs did not exist. More frustration built up as monitoring
projects grew in number, diversity and importance in our research environ-
ment. Therefore, after much hesitation, we decided to try and write such a
book ourselves. But why were we not satisfied with the existing literature? Let
us spell this out in some detail, because this explains largely why we wrote
this book the way we did.

There are several books and chapters of books dealing with the subject
of monitoring, i.e., sampling in space, time or space–time. These books fo-
cus on applications within a particular discipline, for instance hydrology or
vegetation science, and of course treat only the methodology relevant to that
discipline. In doing so, they normally use the scientific jargon common to that
field. However, scientists working in other fields may need different monitoring
methods and may also profit from a more generic presentation. Furthermore,
we disagree with some of the existing texts on statistical grounds. Our criti-
cism relates to misconceptions about the differences between the design-based
and the model-based approach to sampling.

Broadly speaking, monitoring draws on three distinct statistical method-
ologies: sampling theory, time-series analysis and geostatistics. Many books
are available on each of these fields, but they lack the methodological scope
that is generally needed in monitoring. Furthermore, they rarely give enough
help to practitioners who want to know how to make a proper selection of
methods from these fields, and how to integrate them into a monitoring
scheme. Books on sampling theory are usually written in the abstract and
generic terms of sampling from finite populations, while it is not always clear
how these methods should be adapted and applied to continuous space, time
or space–time. These books are usually written for statisticians. There are sev-
eral good, practical handbooks on geostatistics, but they do not cover classical
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sampling methodology, nor sampling in time, whereas books on time-series
analysis fail to discuss classical sampling methodology and sampling in space.

There is a host of research articles on statistical methods for monitoring,
scattered over a wide range of journals and proceedings, many of which are
highly specialized or theoretical. It would hardly be possible for a practitioner
to extract the relevant knowledge from this type of literature alone. Review
articles come closer to our purpose, but limitations of space prevent them
from offering full coverage of methods, and they often focus on a particular
field of application. Thus we identified a need for a handbook on the statistical
methodology of monitoring that gives applied scientists sufficient guidance in
how to design a monitoring scheme, rather than presenting a large collection
of methods.

Although we focus on practitioners in the field of natural resource mon-
itoring rather than statisticians, basic statistical knowledge is required for a
proper understanding of the methodologies described. If one decides, on the
basis of this book, to apply an advanced method of which the theoretical
basis is not fully fathomed, we advise to consult an applied statistician. In
general, such a consult is useful in the very beginning of a monitoring project.
This book may offer the kind of knowledge helpful in an efficient and fruitful
communication on statistical aspects of monitoring.

The following persons commented on an earlier version of the manuscript:
Prof. Jelke Bethlehem (Statistics Netherlands), Dr. Frans van Geer (Nether-
lands Institute of Applied Geoscience TNO), Dr. Gerard Heuvelink (Wagenin-
gen University, Soil Science Centre), Prof. Alex McBratney (The University
of Sydney, Agricultural Chemistry and Soil Science Dept.), Dr. Tony Olsen
(US Environmental Protection Agency’s Western Ecology Division), and Prof.
Scott Urquhart (Colorado State University, Statistics Dept.). We are grateful
for their constructive criticism and suggestions. Of course, all shortcomings
of this book remain the responsibility of the authors. We also thank Martin
Jansen (Alterra) for helping us to produce the figures, and Wybo Dekker
(Dutch TeX Users Group) for assistance with LATEX.

Financing was received from the Dutch Ministry of Agriculture, Nature
Management and Fisheries via research programs 317, 325, 328, 329, 358, 382,
394 and 395, and by Alterra (Wageningen University and Research Centre).

Last but not least we thank all colleagues who presented their sampling
problems to us in such a great variety, and who were patient enough to explain
why our initial perceptions and ideas were too simplistic. This helped us much
to deepen and widen our understanding of sampling.

Wageningen Jaap de Gruijter
August 2005 Dick Brus

Marc Bierkens
Martin Knotters
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1

Introduction

1.1 A View on Survey and Monitoring

Survey and monitoring of natural resources are becoming increasingly impor-
tant worldwide. Although we have no reliable figures, it is safe to say that
survey and monitoring activities have grown rapidly during the past 50 years,
both in number and diversity, and continue to do so. Two reasons for this are
apparent: human pressures on natural resources are increasing dramatically,
and public awareness of their vulnerability and the necessity of sustainable
use has risen sharply. Exhaustion of non-renewable resources (e.g., fossil fu-
els), and deterioration due to pollution, erosion, desertification and loss of
biodiversity are now widely recognized as threats to human life. The rational
management, protection, and use of natural resources at various decision lev-
els all need reliable information on these resources, and this information can
only be gathered by observation.

Definitions

Survey means collecting information on an object with a spatial extent
through observation, such that possible changes of the object during the ob-
servation are negligible. The result of a spatial survey may consist of one
or more statistics of the object as a whole, so-called ‘global quantities’, or
it may relate to the spatial distribution of properties within the object: so-
called ‘local quantities’. Examples of a survey aimed at global quantities are:
(a) establishing the mean clay content of the topsoil of an arable field, and
(b) establishing the areal fraction of a region occupied by a given vegetation
type. Examples of a survey aimed at local quantities are: (a) establishing the
mean clay content of the topsoil of sections of an arable field, and (b) mapping
the vegetation types in a region. Broadly speaking, the reason for survey is
to provide a factual basis for management (e.g., in the context of precision
agriculture or countryside stewardship), or for scientific research.



2 1 Introduction

Survey of the same object may or may not be repeated in time. If it is
repeated, and the reason for this lies in the need to keep track of possible
changes in the object, i.e., to update the existing information, this represents
an instance of ‘monitoring’.

According to Webster’s dictionary, monitoring is: “to watch, observe or
check for special purposes”. The good part of this definition is that it links
monitoring explicitly with ”special purposes”, to the extent that without a
special purpose we should not even speak of monitoring. Nevertheless, for the
purpose of this book, two essential elements are missing in this definition.
First, monitoring is repeated and continued for a shorter or longer period
of time. Second, observation is being done in a more-or-less systematic way.
Generally speaking, monitoring of natural resources should provide the in-
formation that is necessary for taking proper decisions on natural resources
management.

Hence our definition: monitoring is collecting information on an object
through repeated or continuous observation in order to determine possible
changes in the object. Note that the object of monitoring may or may not have
a spatial extent. If it has, observation can proceed via sampling in space–time.
An example of an object without spatial extent is a point in a river where
water levels are measured repeatedly: a case of sampling in time.

Not every sequence of surveys of the same object is regarded as monitor-
ing. For instance, the soil in a region may be surveyed at successively larger
cartographic scales (changing spatial resolution), starting with a ‘reconnais-
sance’ and then mapping at semi-detailed and detailed scales. In this case, the
reason for returning to the same object is not to update the information (as
the properties concerned are virtually constant in time), but rather the need
to upgrade the existing information. Apart from greater precision, the aim of
upgrading may also be to provide information on new properties. In practice,
combinations of updating and upgrading also occur. All in all, we distinguish
five situations with respect to observation:

1. Single observation on an object with spatial extent: ‘survey’;
2. Sequence of surveys for upgrading: collectively called ‘survey’;
3. Sequence of surveys for updating: collectively called ‘monitoring’;
4. Sequence of surveys for updating and upgrading: collectively called ‘mon-

itoring’;
5. Repeated observation on an object without spatial extent: ‘monitoring’.

In this section, we have made a distinction between survey and monitoring,
which necessarily stressed the difference between them. We made the distinc-
tion because it has important implications for the design of schemes and the
choice of methods. On the other hand, the reason why we treat these two kinds
of activity in one book lies not in their differences, but in their similarities.
The main similarity is that survey and monitoring are both based on sam-
pling: sampling in space for spatial survey and sampling in time or space–time
for monitoring. Many sampling-related methods and techniques are generally
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applicable: in space, in time and in space–time. Therefore it is economical to
cover both survey and monitoring in the same book. From the user’s point of
view, this is appropriate as well, because a common approach to monitoring
is to perform it as a more or less coordinated sequence of surveys.

Objects and Techniques

The object of survey or monitoring can be any natural or semi-natural system.
Examples include a river, a forest, the soil of a farm, the groundwater in
a region, the vegetation in a conservation area, the rainfall on a continent,
the atmosphere of the world. These examples illustrate the wide variety of
possible objects, in terms of both their nature and their spatial extent. The
temporal extent of monitoring also varies greatly: from a few months, e.g., a
growing season of a crop, to more than a century in the case of meteorological
monitoring.

With regard to soil, a traditional type of monitoring is for the nutrient
status of agricultural fields as a whole, while recently schemes are being de-
veloped to monitor variations within fields, to support precision agriculture.
Also, in the last decades schemes have been set up to monitor soil quality and
soil pollution at a regional or national scale.

Monitoring in hydrology shows a large variety of aims and scales. As for
soil, monitoring of open water as well as groundwater may be directed to
quality and pollution, or otherwise to quantity, with water level as an impor-
tant aspect. Monitoring in ecology has still a wider scope than in soil science
and hydrology; important objectives are evaluation of effects of environmental
changes on species abundances and occurrence of vegetation types.

A huge variety of observation techniques are used for survey and monitor-
ing, ranging from remote sensing to proximal sensing techniques, from simple
field observations to highly advanced laboratory analyses, from a single ob-
servation to hundreds of different observations made per sampling unit. The
observations can be made on a nominal, ordinal, interval or ratio scale. Ob-
servations can be made directly on the object, or indirectly, by pre-processing
the results of one or more direct observations.

Aims

With a view on designing monitoring schemes, it is useful to distinguish three
categories of monitoring according to its aim (Dixon and Chiswell, 1996;
Loaiciga et al., 1992):

• status monitoring for quantitative description of the universe as it changes
with time;

• trend monitoring to decide whether temporal trends are present in the
universe;

• regulatory or compliance monitoring to decide whether the universe satis-
fies regulatory conditions.
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In status or ambient monitoring, the aim is to characterize the status of
the object, and to follow this over time. Examples are: the timber volume of a
forest, the presence of indicator plant species in an ecosystem, the leaching of
nitrate to the groundwater from the soil of a farm, the emission of greenhouse
gases by a country, the climate in a given part of the world. The main reasons
for this type of monitoring are that information about the system is needed
for management, administration, regulation or scientific research.

In trend or effect monitoring, the aim is to study the possible effects of
a natural event or a human activity on the object, for instance the effect
of drinking water extraction by a pumping station on the water tables in a
region, the effect of a hydrologic measure against desiccation of an ecosystem
in a conservation area, the effect of a change in agricultural policy on the land
use in a country. Thus, the aim of effect monitoring is not only to find out
whether there has been a change, as in status monitoring, but also to establish
whether the change was caused by a specified event or measure. The reasons
for effect monitoring are similar to those for status monitoring.

In compliance or regulatory monitoring, the aim is to decide whether the
object complies with a given regulatory standard, e.g., to check whether a
system of obligatory crop rotation is actually being applied in an agricultural
region, or whether heavy metal concentrations in soil used for crop production
remain below specified maximum levels. The reason for compliance monitoring
is generally law enforcement.

The above broad distinction of aims is relevant to sampling, because for
status monitoring the sampling should allow efficient estimation or prediction
of descriptive parameters repeatedly, while for trend and regulatory moni-
toring it should provide statistical validity and sufficient power of hypothesis
testing or acceptable error rates in classifying the object into categories. (See
Sect. 2.2 for these modes of statistical inference.)

1.2 Aim and Scope

The aim of this book is to present to practitioners the statistical knowledge
and methodology needed for survey and monitoring of natural resources. We
intend to omit all theory not essential for applications or for basic understand-
ing. Where possible, we refer to the sampling and monitoring literature for
specific topics. In one respect, however, this presentation is broader than stan-
dard statistical texts: we pay much attention to how statistical methodology
can be employed and embedded in real-life survey and monitoring projects.
Thus, we discuss in detail how efficient schemes for survey and monitoring
can be designed in view of the aims and constraints of a project.

Our scope is limited to statistical methods, because these methods allow
the quality of results to be quantified, which is a prerequisite for optimization
of survey or monitoring schemes, as well as for risk management and quality
control. A further limitation is imposed by the assumption that complete
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observation of the object is not feasible, so that the survey or the monitoring
must be conducted by observations on one or more samples from the object.
Since budgets for survey and monitoring are and will remain limited, it is
important to know how to design cost-effective schemes.

The book presents statistical methods of sampling and inference from sam-
ple data. From a statistical point of view, the core of survey and monitoring
is first of all sampling, either in space (at a single instant but at multiple loca-
tions), or in time (at a single location but at several instants), or in space–time
(at multiple locations and times). Sampling is therefore the main focus of this
book. However, not all sampling in space and/or time is directly aimed at sur-
vey or monitoring purposes. For instance, in scientific research, the purpose
of sampling may be to generate a hypothesis about a physical or ecological
process, to calibrate a model, or to describe relationships via multivariate
analysis. Sampling for such purposes is not covered by this book. Obvious
exceptions are sampling for variogram modelling (Chap. 9) and time-series
modelling (Chap. 13), because such models are essential for model-based sur-
vey and monitoring. A borderline case is where a sample is taken to build
a regression model, which is then used to make predictions about the target
variable at grid nodes in space, as a method of survey. In this case, the sam-
ple is used only indirectly for survey and, from a statistical point of view,
sampling for regression modelling is quite different from sampling directly for
survey or monitoring. This is why we do not address this case.

We present methodologies that we consider to be generally useful for sur-
vey and monitoring of natural resources. We do not, however, cover highly
specialized methods of geologic, meteorologic and faunistic survey and mon-
itoring, nor do we treat sampling of lots of natural products or sampling for
detection of local critical conditions (Sect. 2.2.6).

The spatial scale varies from a single agricultural field, as in precision
agriculture, to continental, as in monitoring the water quality of large rivers.
The temporal extent in monitoring varies from, say, a growing season, to many
decades in long-term monitoring of variables such as water tables.

Although the methodology presented in this book is widely applicable
in natural resource monitoring, the examples that we present to illustrate
these methods are mostly taken from our own background knowledge: soil,
groundwater, land use, landscape and, to a lesser extent, vegetation.

1.3 Basic Concepts and Terminology

The natural resources about which survey or monitoring in a given application
intends to provide information are referred to as the universe of interest , or
briefly the universe. Universes in this context are biotic or a-biotic systems
varying in space and/or time. Some universes may, for the purpose of sampling,
be regarded as a physical continuum, e.g., the soil in a region at some moment,
the water of a river passing a point during a period, the crop on a field at some
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time1, or the natural vegetation in an area during a period2. The number of
dimensions of continuous universes may be 1, 2 or 3 for spatial universes, 1
for temporal universes, and 2, 3 or 4 for spatio-temporal universes. Discrete
universes are populations of individual entities, such as the trees in a forest,
the lakes in a province, the arable fields in a region, or the growing seasons
of a crop in a region. Although the individuals of a discrete population have
dimensions and positions in space and time, contrary to continuous universes,
a discrete universe itself has no measure of size other then the number of
individuals in it.

We use the term sampling in the usual broad sense of selecting parts from
a universe with the purpose of taking observations on them. The selected
parts may be observed in situ, or material may be taken out from them for
measurement in a laboratory. The collection 3 of selected parts is referred to
as the sample. To avoid confusion, a single part that is or could be selected is
called a sampling unit . The number of sampling units in a sample is referred to
as the sample size. The material possibly taken from a sampling unit is referred
to as an aliquot . Aliquots from different sampling units bulked together form
a composite aliquot or briefly a composite.

The individuals of discrete universes naturally act as sampling units. Sam-
pling units from a continuous universe have to be defined more or less arbi-
trarily. However defined, any sampling unit has a shape and a size. Within
the universe it has an orientation (if the shape is not round) and a position.
Shape, size and orientation together are referred to as the sample support . The
dimensions of a sampling unit may be so small compared with the universe,
that they can be neglected. In that case the unit can be identified by a point
in space and/or time, and we speak of point support . In ecological monitoring
the sampling units are usually two-dimensional in space, and referred to as
quadrats.

We refer to the position of a sampling unit in space-time as a sampling
event , with a sampling location and a sampling time. Of course, when sam-
pling from a spatial universe, the sampling time is irrelevant from a statistical
point of view, and we shall speak about the sampling locations only. Similarly,
when sampling from a temporal universe, the sampling location is irrelevant,
and we shall speak about the sampling times only. However, a sampling event
in a spatio-temporal universe must identified by both location and time. For
instance, an observation taken at such an event could be the water-table ele-
vation at a given location and a given time. The same location and a different
sampling time would make a different sampling event, as would a different
1 A ‘continuum view’ of crop is appropriate if the interest lies in crop properties

per areal unit of the field. However, if the interest lies in properties per plant,
then the universe is to be regarded as a discrete population.

2 A monitoring period may or may not have a pre-defined end.
3 If each part occurs only once in the collection, as is usually the case, then it is

a set. In probability sampling, however, there are two forms of collection: sets in
sampling without replacement, and sequences in sampling with replacement
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location and the same sampling time. Also, when dealing with positions of
sampling units in a universe in general, without specifying whether this is
spatial, temporal or spatio-temporal, we shall use the generic term ‘sampling
event’.

The positions of all sampling units of a sample together form a pattern
in space and/or time, referred to as a sampling pattern. Selecting a sample
can thus be done by selecting a sampling pattern. Very often, the actual
selection of sampling units is not done in the field but in the office, using some
representation of the universe, such as a list or a map. This representation is
called a sampling frame.

More terms are explained elsewhere in this book, where they are first
introduced. A subject index is provided at the end.

1.4 Structure and Use of this Book

We tried to structure this book such that a scientist who has to set up a survey
or monitoring project, can find ample guidance in how to analyze his/her
particular monitoring or survey problem, and how to select the methods to
solve it. Part I is entirely devoted to this. Those who are looking for methods
which optimally fit their specific purpose, especially beginners in this field,
are advised to read this part before going to the methodological parts.

Part I is composed of four chapters. The preparatory Chap. 2 recapitulates
the various modes of sampling unit selection and of statistical inference from
sample data. Chapter 3 presents seven principles that we consider essential for
scheme design. Chapter 4 discusses three major design decisions: (1) the choice
between design-based and model-based inference, (2) the choice of sample
support, and (3) choices on composite sampling. Finally, Chap. 5 deals with
optimization of sample selection.

After the part on scheme design follows the presentation of sampling meth-
ods in Parts II, III and IV. We have structured this presentation broadly in
a problem-oriented rather than a method-oriented way, to make it as easy as
possible to find a suitable method, given the survey or monitoring problem at
hand. Therefore, we adopted the following hierarchy to structure the material:

1. at part level, a division according to the dimensions of universe: space,
time or space–time;

2. at chapter level, a division according to the kind of target quantity: global
or local ;

3. at section level, a division according to the approach to sampling: design-
based or model-based.

Although the latter distinction is method-oriented, it is strongly related to the
kind of results that are requested from survey or monitoring. The division into
design-based and model-based methods at this high level is also warranted be-
cause the choice between them has major consequences, both for the sampling
and the inference stages.
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Many methods dealt with in this book can be applied to spatial, as well as
temporal or spatio-temporal universes. Rather then re-iterating such methods
in all three parts, we treat them only in Part II on sampling in space. This part
therefore includes many generally applicable methods, thus forming a large
portion of the book. For example, Chap. 9 about methods for variograms
is placed in Part II, but these methods are equally relevant to survey and
monitoring. Similarly, time-series models are only presented in Part III on
sampling in time, but they are equally relevant to space–time monitoring.

The price for the above mentioned conciseness is, of course, that one may
have to go back to one or even two earlier parts. Thus the reference to parts
is as follows:

• sampling for survey: go to Part II on sampling in space;
• sampling for monitoring on a single location: go to Part III on sampling

in time, and go back to Part II when needed;
• sampling for monitoring in space and time: go to Part IV on sampling in

space–time, and go back to Part II and/or Part III when needed.

Referencing at a more detailed level is provided in the introductory chapter
at the beginning of each part.

1.5 Notation

The typographic conventions in this book are as follows.

• Variables: small or capital italic. Target variables, transformed target vari-
ables, and ancillary variables are generically denoted with the small letters
z, y and x, respectively, if they are deterministic. If they are stochastic,
then they are denoted with the capitals Z, Y and X.

• Errors or residuals: e if they are deterministic, and ε if they are stochastic.
• Vectors: bold upright small letters (s,λ)
• Matrices: bold upright capitals (S, C)
• Transposed vectors and matrices are denoted with a prime (s′,λ′)
• Sets: calligraphic capitals (S,U), but the usual R for the set of real numbers
• Size of sets: |U|, etc.

The following general symbolism is used throughout this book.

• Means over spatial, temporal and space–time universes are indicated by
bars, for instance: z̄U is the mean of deterministic variable z in universe
U .

• Estimators defined on the basis of sample data are indicated by a hat,
for instance: ˆ̄zU is an estimator of the mean of deterministic variable z in
universe U .
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• Predictors defined on the basis of sample data are indicated by a tilde, for
instance: ˜ZU is a predictor of the mean of stochastic variable Z in universe
U .

• Prior estimates or ‘guesses’ are indicated by a breve, for instance: ˘̄zU is a
prior estimate of the mean of deterministic variable z in universe U .

• Variances are either denoted with V (·) or S2(·) or σ2, depending on the
kind of variance. Variances between realizations of a stochastic process are
denoted with V (·). Such a process may be repeated sampling (as in the
design-based approach), or it may be hypothesized through a stochastic
model of spatial or temporal variation (as in the model-based approach).
For instance: V (Z(s)) is the variance of stochastic variable Z at location
s, as determined by a stochastic model.
Variances as a measure of dispersion in space, time or space–time are de-
noted with S2(·). For instance, S2(zD) is the variance between all values
of variable z within domain D. Variance as a parameter in stochastic mod-
els of the variation in space and/or time is denoted with σ2, also used as
short-hand for prediction-error variance in kriging and Kalman filtering.



Part I

DESIGNING SCHEMES FOR SURVEY AND
MONITORING



2

Modes of Sampling and Statistical Inference

As explained in Sect. 1.4 the methods for estimating global or local quantities
in space, time or space–time, are grouped in design-based and model-based
methods. With ‘method’ we mean a combination of a method for selecting
sampling units and a method for statistical inference, for instance estimation
of a spatial mean or prediction of the values at points. A design-based method
is defined as a method in which sampling units are selected by probability
sampling and in which statistical inference is based on the sampling design,
i.e., design-based inference, see Table 2.1. A model-based method is defined
as a method in which the statistical inference is based on the model. There
are no requirements on the selection of the sampling units, but in general
probability sampling is sub-optimal for model-based inference, and purposive
sampling of units is more efficient. Typical examples of purposive sampling for
model-based inference are Centred Grid Sampling, Spatial Coverage Sampling
and Geostatistical Sampling. In the following sections we elaborate on these
modes of sampling unit selection and on modes of statistical inference.

2.1 Modes of Sampling Unit Selection

Three possible modes of sampling unit selection can be distinguished: con-
venience sampling, purposive sampling and probability or random sampling.
The concept of convenience sampling is self-explanatory. An obvious example
is when sampling is limited to roadsides or other easily accessible spots. The
advantage of this mode is that it saves time and costs. The disadvantage is
that the statistical properties are inferior to those of the other modes. For
instance, estimates from a convenience sample have to be regarded as biased
unless one is willing to accept specific assumptions about the sampling process
and the spatial and temporal variation. These assumptions are often debat-
able, and this may or may not be acceptable, depending on the context of the
project.
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Table 2.1. Definition of design-based and model-based method as a combination
of a method for selection of sampling units and a method for statistical inference

Type of method Selection method Inference method

Design-based method Probability sampling Design-based
Model-based method Purposive sampling Model-based

Purposive sampling tries to select the sampling units such that a given
purpose is served best. An example is the ‘free survey’ method of mapping soil
classes, whereby the surveyor selects the sampling locations that are expected
to be most informative with respect to soil class delineation. In this example,
the locations are selected in a subjective manner, using experience, visible
landscape features and pedogenetic hypotheses, such that the surveyor expects
the most useful information from his observations. Another example is where
a centred regular grid or a zigzag transect is projected on a field in order to
obtain a ‘representative’ sample.

Purposive sampling can also be done by formally optimizing an objective
function related to the purpose. For instance, if the purpose is to map a spatial
distribution by kriging and if geographical boundary effects are disregarded,
it can be shown that the prediction-error variance is minimized by a centred
triangular grid of sampling locations, under assumptions of stationarity and
isotropy (McBratney et al., 1981).

If prior to the sampling a statistical model for the variation in the uni-
verse can be postulated and the prediction-error variance is a function of the
sampling events only, i.e., independent of the sample data, then one could
use this model to optimize the spacing of a regular grid, given a quality re-
quirement on the mean or maximum kriging variance. The model can also be
used to optimize the sampling events in the universe given the sample size.
Such samples are referred to as model-based samples, and more specific as
geostatistical samples when the postulated model is a geostatistical model.
These methods are discussed in Sects. 8.3.2 and 8.3.4, respectively. A tech-
nique of intermediate complexity is that of Spatial Coverage Sampling, which
optimizes an objective function of distances only (Sect. 8.3.3).

Probability sampling, unlike the other modes, selects sampling units at
random. If this is done properly (according to a well-defined sampling design)
the probabilities of selecting the units are known, and these probabilities pro-
vide the basis for statistical inference from the data. As discussed in Sects. 7.2
and 15.2, there are many techniques for random selection of sampling units.
Collectively, this approach to sampling is referred to as the design-based ap-
proach, as opposed to the model-based approach, where the sampling units
are fixed instead of random, and statistical inference is based on a model of
the variation in the universe. The difference between design-based and model-
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based inference is further explained in Sect. 2.2.1. The choice between these
two approaches is an important statistical issue, which is dealt with separately
in Sect. 4.1.

2.2 Modes of Statistical Inference from Sample Data

2.2.1 Design-Based versus Model-Based Inference

There are two fundamentally different approaches to sampling: the design-
based approach, followed in classical survey sampling, and the model-based
approach, followed in geostatistics and in time series analysis. Differences
and relationships between these two approaches are extensively addressed
in Särndal et al. (1992). De Gruijter and ter Braak (1990) discuss the issue
in the spatial context, but the distinction also holds, and is equally relevant,
for sampling in time and in space–time. The difference between the two ap-
proaches is illustrated in Fig. 2.1 by a simple example (Brus and de Gruijter,
1997): a square area is sampled at 25 locations and a 0/1 indicator variable
z is measured to estimate the fraction of the area with value 1. Figure 2.1a
shows a spatial distribution of z and 25 sampling locations. Averaging the
observed values at these locations yields an estimate of the fraction.

Both approaches quantify the uncertainty of such an estimate by consider-
ing what would happen if sampling were repeated many times in a hypothet-
ical experiment. Obviously, if neither the pattern of values nor the sampling
locations were changed in this experiment, there would be no variation, so
one or the other has to be varied. The two approaches differ as to which one
is varied.

The design-based approach evaluates the uncertainty by repeated sampling
with different sets of sampling locations, while regarding the pattern of values
in the area as unknown but fixed. The sets of sampling locations are generated
according to a chosen random sampling design. The row of figures (a, b and
c) represents three possible outcomes.

By contrast, the model-based approach evaluates the uncertainty by re-
peated sampling with a fixed set of sampling locations, while varying the
pattern of values in the area according to a chosen random model of the spa-
tial variation. In this approach, the column of figures (a, d and e) represents
three possible outcomes.

The experiment can remain truly hypothetical in most instances, because
probability calculus enables one to determine what happens on average over all
possible realizations. In more intricate situations, however, this is infeasible
and repeated sampling has to be simulated numerically, varying either the
sampling locations or the pattern of values, or both.

The fact that the two approaches use a different source of randomness has
several important practical as well as theoretical consequences. Here we briefly
discuss three of them. The main consequence is that the statistical inference
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Fig. 2.1. Repeated sampling in the design-based approach (a, b, c) and in the
model-based approach (a, d, e). In the design-based approach, the pattern of values
is regarded as fixed and the sampling locations are random. In the model-based
approach, the sampling locations are fixed and the pattern of values is regarded as
random. (from Brus and de Gruijter, 1997)

from sample data is entirely different. In the design-based approach, inference
is based on the selection probabilities of sampling locations as determined by
the random sampling design. This means that in calculating weighted aver-
ages, for instance, the data are assigned weights that are determined by the
selection probabilities of the sampling locations, not by their geographical
coordinates. In the model-based approach, inference is based on a stochastic
model of the variation in the universe. Here the weights of the data are de-
termined by the covariances between the observations, which are given by the
model as a function of the coordinates of the sampling locations.
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Another important difference between design-based and model-based in-
ference, apart from weighting, is the way they consider the quantity about
which inference is made. This ‘target quantity’, a concept discussed in more
detail in Sect. 3.1, is regarded as unknown but fixed in design-based inference.
See, for instance, the constant areal fraction in Figs. 2.1a, b and c. In the
model-based approach, however, there are two kinds of target quantities that
can be chosen for inference: functions of parameters of the adopted stochastic
model, and functions of realizations from that model. Model parameters and
functions thereof are fixed by definition, while quantities of realizations are
random.

A common and practically relevant example is that the model-based ap-
proach allows inference to be made about the model mean, denoted as µ, or
about the mean defined by summation or integration over space and/or time,
denoted by Z. The former is fixed while the latter is random. For instance, the
realizations in Figs. 2.1a, d and e have different areal fractions but the same
underlying model mean. The difference between a fixed and a random target
quantity is not merely a theoretical subtlety, but has direct consequences for
the quantification and even the definition of the precision and reliability of
results, as will be explained later in this section.

Finally, the choice between design-based and model-based inference (dis-
cussed in Sect. 4.1) has major consequences for sampling. Design-based infer-
ence requires some form of probability (random) sampling, while model-based
inference typically builds on purposive sampling, and needs a model of the
spatial variation. Acquisition of such a model will usually require an extra
sampling effort. Furthermore, random sampling optimization is methodologi-
cally different from purposive sampling optimization, as discussed in Chap. 5.

It should also be realized that optimal sampling for model-based inference
on model parameters differs from optimal sampling for model-based inference
on realization quantities. For instance, inference about a model mean often
requires a considerably larger sample than inference about a spatial, temporal
or spatio–temporal mean with the same level of precision. Also, these two
target quantities generally require different sampling patterns. Hence, different
equations should be used to calculate sample sizes and different methods used
for sample optimization.

It is useful to distinguish between inference modes not only in terms of
whether the target quantity is considered as fixed or random, but also whether
the inference result is quantitative (number or interval) or qualitative, for
instance, that the target quantity exceeds a given level. Quantitative and
qualitative results need their own methods of inference, and have their own
quality measures for precision and reliability, so the sample size needed to
meet a quality requirement has to be determined in different ways.

Combining the distinctions ‘random versus fixed target quantity’ with
‘qualitative versus quantitative inference result’ yields four different modes
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Table 2.2. Summary of inference modes for different combinations of target quan-
tities and types of results

Basis of inference Target quantities Type of result Inference mode

Sampling design Statistics defined on a Quantitative Estimation
fixed field of z-values, Qualitative Testing
(e.g., the deterministic
spatial mean z̄)

Stochastic model Statistics defined on a Quantitative Prediction
random field of Z-values, Qualitative Classification
(e.g., the stochastic
spatial mean Z), or:

Model parameters or Quantitative Estimation
functions thereof Qualitative Testing
(fixed by definition)

of inference: estimation, prediction1, testing and classification. These modes
are summarized in Table 2.2. A fifth mode, detection, should be applied when
the question is whether at any point in the universe some critical condition is
present, without asking where or when. The answer to this type of question
can be coded as a 0/1 indicator variable. As this relates to the universe as a
whole, it is a global quantity.

It is important to choose carefully between estimation and prediction on
the one hand, and hypothesis testing, classification and detection on the other.
This choice should be made prior to the actual design of the sampling scheme,
because it is determined by the kind of information that is required. This
issue is therefore discussed in Sect. 3.1 as part of the design information.
Here we repeat as a guideline that whenever a choice must be made between
two alternatives, e.g., whether or not to take a particular action or to draw
a particular conclusion, and when this choice is to be made on the basis
of sample data, hypothesis testing, classification or detection is in order. In
all other cases, the original problem can be formulated as an estimation or
prediction problem.

The statistical literature provides a huge variety of inference methods.
In the following sections we only recapitulate the concepts that are most
relevant to sampling. We illustrate the four modes of inference with the mean
as target quantity, and the case depicted in Fig. 2.1 as an example. The
1 Prediction should not be confused with forecasting. Prediction is quantitative

inference on a random target quantity that may be spatial, temporal or spatio-
temporal. Forecasting is a special case of prediction, i.e., when a (spatio-)temporal
quantity is related to the future.
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target variable in Fig. 2.1 is a 0/1 variable, indicating the presence or absence
of some condition, e.g., the occurrence of a given pathogen in the soil. So in
this example the mean can be interpreted as the areal fraction of infected soil.

2.2.2 Estimation

Estimation is quantitative inference on a fixed target quantity, however, as ex-
plained in the previous section, there are two kinds of fixed quantities: statis-
tics defined on a fixed field of z-values, and (functions of) model parameters
(Table 2.2). So, in the example of the areal fraction of infected soil, one first
has to decide what is to be estimated: the spatial mean or a model mean. If
the interest is focused on the infection actually present in the particular study
region, then one would estimate the spatial mean. If, on the other hand, the
interest is broader and relates to infection that may be present on average in
a hypothetical ensemble of similar regions (of which the study region is only
one example), then one would estimate a model mean.

Estimation of the Spatial Mean

When estimating the spatial mean, we consider this as fixed, as in the row of
Figs. 2.1a, b, and c. The true value of the mean, denoted by z̄, equals 0.30,
but is unknown in practice. The design-based estimator of z̄, denoted by ˆ̄z,
is generally a function of the sample data without their coordinates in space
and/or time. If the sample is drawn according to Simple Random Sampling
(see Sect. 7.2.3), the usual estimator is the unweighted sample mean (un-
weighted because the sampling locations were selected with equal probability,
not because of a model assumption):

ˆ̄z =
1
n

n
∑

i=1

zi , (2.1)

where n denotes the sample size (here 25), and zi denotes the value measured
at the i-th sampling location.

The data of the random sample depicted in Fig. 2.1a are: 8 ‘infected’ out
of 25, giving an estimate ˆ̄z = 0.32, with estimation error ˆ̄z − z̄ = 0.02. The
other, equally probable samples depicted in Figs. 2.1b and c would yield 0.40
and 0.32, respectively, with estimation errors 0.10 and 0.02. In practice, the
estimation error is unknown for any specific sample (otherwise there would be
no need for sampling), but probability theory enables us to make statements
about the estimation error in terms of averages.

First, it can be shown that the estimator, averaged over samples, equals
the true value. In other words, ˆ̄z is p-unbiased :

Ep

(

ˆ̄z
)

= z̄ , (2.2)
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where Ep(·) denotes the p-expectation, i.e., the average over a large (strictly:
infinite) number of samples drawn according to the random sampling design
p, here Simple Random Sampling with n = 25.

Second, the p-expectation of the squared estimation error equals the sam-
pling variance of the estimator:

Vp

(

ˆ̄z
)

= Ep

{

ˆ̄z − Ep

(

ˆ̄z
)}2 = Ep

(

ˆ̄z − z̄
)2

. (2.3)

Because the sampling locations were selected independently from each other,
the number of ‘infected’ in the data follows a binomial distribution, and the
sampling variance equals

Vp

(

ˆ̄z
)

=
z̄ (1 − z̄)

n
. (2.4)

The standard error of the estimator is a usual statistical quality measure. It
equals the square root of the sampling variance:

Sp

(

ˆ̄z
)

=

√

z̄ (1 − z̄)
n

. (2.5)

In our example Vp equals 0.30 × 0.70/25 = 0.0084, and Sp equals 0.0917.
In practice these true values would be unknown because z̄ is unknown but,

from data obtained by Simple Random Sampling, the sampling variance can
be estimated (again p-unbiased) by

̂Vp

(

ˆ̄z
)

=
1

n (n − 1)

n
∑

i=1

(

zi − ˆ̄z
)2

. (2.6)

In our example, with 0/1 data, this results in:

̂Vp

(

ˆ̄z
)

=
ˆ̄z
(

1 − ˆ̄z
)

n − 1
. (2.7)

The estimated standard error follows as its square root:

̂Sp

(

ˆ̄z
)

=

√

ˆ̄z
(

1 − ˆ̄z
)

n − 1
. (2.8)

From the sample data in Fig. 2.1a we calculate ̂Vp = 0.00907, and ̂Sp = 0.0952.
Apart from point estimation as discussed above, giving a single number

or point on the scale of possible values, one can also perform interval estima-
tion. The result is a confidence interval . Confidence intervals are constructed
in such a way that they contain the true value of the target quantity with
probability (1− α), referred to as the confidence level . For instance, the data
from the sample in Fig. 2.1a, 8 ‘infected’ out of 25, result in (0.14; 0.54) as
a 95% confidence interval for the areal fraction of infected soil. (This interval
is based on the fact that the number of ‘infected’ follows a binomial distri-
bution, but a Normal or Student distribution is usually applicable, especially
with quantitative target variables and medium size or large samples.)
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Estimation of the Model Mean

In practical applications one usually has to choose a model for the inference on
the basis of sample data and possibly ancillary data. In the present example,
however, we happen to have exact knowledge a priori of the model underlying
the patterns of Figs. 2.1a, b and c, simply because we used this model to
generate those patterns.

The model was discussed by Matérn (1986) in the context of the so-called
‘bombing problem’: bombs are dropped at random over a region and each
bomb devastates the area within a given distance r from the point of impact. It
can be shown (Matérn, 1986, Eq. 3.4.2) that under this model the expectation
of the 0/1 variable Z at location s equals:

Eξ{Z(s)} = 1 − e−λπr2
, (2.9)

where Eξ(·) denotes the ξ-expectation, i.e., the average over a large (strictly:
infinite) number of random realizations from the chosen model, and where λ is
the intensity of the assumed stationary Poisson process by which the centres
of the infection circles are spread over the region.

Because of the spatial stationarity, meaning that the expectation at loca-
tions is constant over the region, the model mean µ equals Eξ[Z(s)]. For our
example we have chosen λ = 6 and r = 0.15. From (2.9) we calculate for the
true value of the model mean: µ = 0.346, which is the areal fraction ‘infected’
averaged over a large (strictly infinite) number of realizations.

To estimate the model mean, we need the covariance between any two
observations on Z. The covariance between two observations at locations h
apart equals (Matérn, 1986, Eq. 3.4.3):

C(h) = e−2λπr2
(

eλ A(h,r) − 1
)

, (2.10)

where A(h, r) is the area of the intersection common to two circles with radius
r and centres h apart. This area equals:

A(h, r) = r2

[

2 arccos
(

h

2r

)

− sin
{

2 arccos
(

h

2r

)}]

. (2.11)

The model mean can be estimated with the so-called Best Linear Unbiased
Estimator (Searle, 1997):

µ̂ =
(

1′C−11
)−1

1′C−1z , (2.12)

where z is a vector of n observations, Z(si), C is the matrix of their variances
and covariances, and 1 is the n-vector of ones. This estimator is ξ-unbiased,
a property defined by averaging over model realizations (given the sampling
locations), not over the sampling process, i.e., Eξ(µ̂) = µ. The variance of µ̂
equals:
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Vξ(µ̂) =
(

1′C−11
)−1

. (2.13)

From the sample depicted in Fig. 2.1a, and Eqs. 2.10 – 2.13, we calculate
µ̂ = 0.353 with standard error Sξ(µ̂) =

√

Vξ(µ̂) = 0.132. Note that, although
the estimation error in this case is only 0.007, the standard error of estimation
of the model mean is 44% larger than the standard error of estimation of the
spatial mean.

2.2.3 Prediction

With the example of Section 2.2.2 we illustrated design-based estimation of
the spatial mean z̄ and model-based estimation of the model mean µ, both
means considered as fixed. Using the same data and the same model, we now
illustrate model-based prediction of the spatial mean Z̄, considered as random.
Analogous to the Best Linear Unbiased Estimator of µ, one can predict Z with
the Best Linear Unbiased Predictor:

˜Z = λ′z , (2.14)

where λ is a vector of optimal weights, and z is again the vector of observa-
tions. These weights are chosen such that the prediction is ξ-unbiased, i.e.,

Eξ

(

˜Z − Z
)

= 0, and the variance of the prediction error, Eξ

(

˜Z − Z
)2

, is
minimized. These optimal weights can be calculated by:

λ = C−1r − C−11
(

1′C−11
)−1

1′C−1r +
(

1′C−11
)−1

C−11 , (2.15)

where r is the vector of mean covariances between each of the actual sampling
locations and all potential locations in the region. This can be approximated
numerically by the mean covariances between the sampling locations and the
nodes of a fine grid.

The variance of the prediction error equals

Vξ

(

˜Z − Z
)

= Eξ

(

˜Z − Z
)2

= CG,G + λ′Cλ − 2λ′r , (2.16)

where CG,G is the mean covariance between all potential sampling locations
of the region, which can be approximated numerically by the mean covariance
between the nodes of a fine grid.

From the sample depicted in Fig. 2.1a and Eqs. 2.14 – 2.16 we calculate
˜Z = 0.386, with standard error (square root of the prediction-error variance)
0.078. Note that this standard error of the spatial mean is only 59% of the
standard error of the model mean, using the same data and the same model.
(A considerably larger sample would be needed to estimate the model mean
with the same precision as for predicting the spatial mean.)

Apart from point prediction as discussed above, one can also perform in-
terval prediction. Just as an estimation interval (Sect. 2.2.2), a prediction
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interval is constructed in such a way that it contains the true value of the
target quantity with probability (1 − α). If on the basis of the Central Limit
Theorem it can be assumed that the prediction error is approximately nor-
mally distributed, then for the boundaries of a 95% prediction interval, for
instance, one can simply take the prediction plus and minus 1.96 times the
standard error. The data from the sample in Fig. 2.1a, 8 ‘infected’ out of 25,
then give (0.233; 0.538) as 95% prediction interval for the areal fraction of
infected soil. Note that this model-based prediction interval is 25% narrower
than the design-based estimation interval calculated in Sect. 2.2.2 for the same
target quantity, using the same sample data and the same confidence level.
(One should realize, however, that in practical applications the variogram is
not known and must be estimated, which is an additional source of error.)

In cases where the assumption of approximate normality does not hold, the
distribution of Z may be evaluated numerically by Monte Carlo simulation of
realizations from the chosen model. Deutsch and Journel (1998) and Pebesma
(2004) provide simulation software.

2.2.4 Testing

When decisions are based on an estimate of the global mean, the areal fraction
or a percentile (e.g., median or P95), one must take account of the uncertainty
in the estimate. For instance, in environmental studies a threshold value for
the concentration of a pollutant is often defined on the basis of regulatory
requirements, risk assessments or a reference standard for deciding whether
or not to take action. The threshold value is referred to as the Action Level.
Due to sampling and measurement error, there is always some degree of uncer-
tainty whether the true value is above or below the Action Level, which means
that there is a chance of taking a wrong decision. A statistical tool for deci-
sion making in the presence of uncertainty is statistical testing of hypotheses.
A distinction can be made between one-sample tests and two-sample tests.
In one-sample tests, sample data from a target area are compared with an
absolute criterion such as a regulatory threshold. In two-sample tests sample
data from a target area are compared with other sample data, for instance
from another region or from another period for the same target area. In the
two-sample case, the target quantity is usually the difference between the two
(spatial or temporal) means, and the Action Level is often zero.

For an example of a one-sample test we go back to Fig. 2.1 and suppose
that some remediation action is to be taken if the areal fraction of infected soil,
z̄, is larger than Action Level 0.2. The null-hypothesis, H0, is then: z̄ ≤ 0.2,
which is tested against the alternative hypothesis H1: z̄ > 0.2. Acceptance
or rejection of H0 is determined by the value of a test statistic, in this case
the sample mean ˆ̄z, in the following way. If the value of the test statistic falls
in a specific interval, called the critical region, then H0 is rejected, otherwise
it is accepted. This critical region is constructed such that the probability of
falsely rejecting H0 is limited to a value α, chosen by the user.
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Table 2.3. The four possible combinations of the state of nature and test results.

Test result

State of nature H0 H1

H0 No error Type I error
Prob= 1 − α Prob= α
Confidence

H1 Type II error No error
Prob= β Prob= 1 − β

Power

Table 2.3 shows the four possible combinations of the state of nature and
test results. Wrongly accepting H1 is called a type I error, the probability
of which is α. The probability of accepting H0 when H0 is true is called the
confidence level of the test, (1 − α). Wrongly accepting H0 is called a type II
error, the probability of which is denoted by β. The probability of accepting
H1 when H1 is true is called the power of the test, 1− β. Given the sampling
design, the power is a function of the sample size, the confidence level (1−α),
and the H1 hypothesis itself.

When we use the data from the sample in Fig. 2.1a for a one-sided binomial
test of H0: z̄ ≤ 0.2 at confidence level 0.95, we find as critical region [0.36; 1],
which does not include the value of the test statistic (0.32), so that H0 is not
rejected.

There is a close connection between estimation and testing: a confidence
interval contains all possible values of the target quantity that would not
be rejected on testing at the same confidence level. However, the statistical
quality measures differ (standard error or half-width of confidence interval
versus confidence level and power), and so do methods to determine the sample
size needed to reach a given quality level.

2.2.5 Classification

The term classification is used here for assigning an object to a class under
uncertainty about the properties of the object. In the present context the
object is the universe of interest or a part of it, and the uncertainty about
its properties is represented by a stochastic model. For a simple illustration
we take once more the case of Fig. 2.1a. Suppose that the region is to be
classified in one of two classes: ‘low infection’ defined as Z ≤ 0.5, and ‘high
infection’ defined as Z > 0.5. After sampling and measuring one could decide
to classify the region simply by comparing the predicted spatial mean with
the class boundary 0.5. However, due to the uncertainty about the true value
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of the spatial mean, there will be a risk of false ‘low’ classification and a risk of
false ‘high’ classification. So, just as in testing, there are two types of possible
errors, and in view of the consequences of either one it may be appropriate
to classify in such a way that the probability of the most important error
type, for instance false ‘low’, is not too high. This can be done by classifying
according to a rule in terms of error probability instead of the prediction itself.

For example, the rule could be that the region will only be classified as ‘low’
if the probability of false ‘low’ is smaller than 0.05, and otherwise as ‘high’.
Assuming that the prediction error is normally distributed, the probability
of false ‘low’ can be calculated from the prediction (0.386) and its standard
error (0.078; see Sect. 2.2.3). This turns out to be 0.07, which is larger than
the chosen threshold 0.05, hence the region is classified as ‘high’, although the
predicted value falls in class ‘low’.

As with prediction, if the assumption of normality does not hold, the dis-
tribution of Z must be evaluated numerically by Monte Carlo (geostatistical)
simulation of realizations from the chosen model (Deutsch and Journel, 1998;
Pebesma, 2004).

2.2.6 Detection

An example of a detection problem in the case of Fig. 2.1a is the question
whether there is soil infection at all in the area, regardless where. The assess-
ment method is often designed such that if the critical condition is observed
in any of the sampling units, then it surely exists. In that case the probability
of a false positive is zero, and inference only needs to quantify the probability
of a false negative or its complement, the detection probability. Sampling for
detection should therefore aim at maximizing the detection probability for a
given budget, or minimizing the sampling costs under the condition of a given
minimal detection probability. This will naturally lead to grid sampling or
spatial coverage sampling.

The detection probability can in principle be calculated from the geometry
of the sampling pattern used, and certain assumptions about the occurrence
and extent of the condition in space and/or time. These assumptions may be
captured in a stochastic model of the variation, e.g., the second-order station-
ary model with covariance function (2.10) underlying Fig. 2.1. The detection
probability for any sampling pattern can then be calculated by geostatistical
simulation (Deutsch and Journel, 1998; Pebesma, 2004). Alternatively, knowl-
edge about the occurrence and extent of the critical condition in space and/or
time may be embodied in a physical process model.

Detection of critical conditions sometimes asks for highly specialized and
application-dependent sampling and inference methods. Such methods are not
treated in this book.
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Basic Design Principles

The aim of this chapter is to offer help in designing schemes for survey or
monitoring. To this end, we present in the following sections seven principles
that we consider essential for good design. These principles are:

1. Develop a complete scheme (Sect. 3.1).
2. Structure the design process (Sect. 3.2).
3. Pay ample attention to practical issues (Sect. 3.3).
4. Employ prior information on variation (Sect. 3.4).
5. Balance the various sources of error (Sect. 3.5).
6. Anticipate changing conditions during monitoring (Sect. 3.6).
7. Calculate the sample size appropriately (Sect. 3.7).

3.1 Develop a Complete Scheme

Survey and monitoring of natural resources often involves the following activ-
ities.

• Planning field activities: given the purpose of the project, the budget and
possible logistical constraints, it is decided how many samples and/or field
measurements are to be taken, as well as where, how and when.

• Field activities: taking samples and/or field measurements.
• Laboratory work: sample preparation and analyses.
• Data recording.
• Data processing.
• Reporting.

Roughly speaking, these activities can be thought of as the consecutive stages
of a survey project. In the case of monitoring, field and laboratory work,
as well as data recording and processing are obviously done in some cyclic
or continuous fashion. The activities mentioned above may overlap in time.
For instance, data recording and field work are often done simultaneously.
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Also, the process may involve switching back and forth between activities. For
instance, if some deficiency is discovered during data processing, additional
field work may be needed. Laboratory work is optional, as measurements may
be taken in the field.

The main purpose of this section is to argue that, although the above
sequence of activities may seem reasonable, it does not make good sampling
practice. The reason is that an essential element is missing at the beginning
of the sequence: the element of planning the whole chain of activities, includ-
ing the statistical procedure to be used in data processing. Careful planning
of the entire project is a prerequisite of good sampling practice and should
precede any other activity. Whereas researchers usually invest enough effort
and ingenuity in deciding how, where and when to take samples and measure-
ments, their ideas about how to analyze the data very often remain rather
vague until the data are there and crisp decisions must be made about what
to do with them. In that case, more likely than not, data analysis and data
acquisition will not be properly attuned to each other. Due to this mismatch,
the potential qualities that a data acquisition plan might have are not fully
exploited, and sub-optimal results are obtained. One example is where a strat-
ified random sample has been taken, but this sample is analyzed as if it were a
simple random sample. Another example is where the data are to be analyzed
by some form of kriging, but it is found that the variogram needed for this
cannot be reliably estimated from the data. Finally, a common situation is
where the conclusions to be drawn from the sample data can only be based on
questionable assumptions because the sample was not properly randomized,
like most legacy soil survey data. These examples will be discussed in greater
detail in the next sections.

Apart from attuning data acquisition to data processing and vice versa,
there is a more general reason why the project should be planned as a whole
rather than by optimizing parts of it in isolation: the consequences of a decision
about a particular issue, in terms of quality and costs, depend on the decisions
taken on other issues. A simple example is where two assessment methods are
available for the target variable: an inexpensive but inaccurate method and
an expensive but accurate method. The choice between the two affects both
the costs and the accuracy of the final result, and these effects depend on the
sample size. Given a fixed budget, choosing the inexpensive method implies
that a larger sample size can be used, which may or may not lead to a better
result.

In summary, we recommend planning not only the data acquisition but
the entire project, paying special attention to the agreement between data
acquisition and data processing. Proper planning of the entire project will
most likely pay itself back by increased efficacy and efficiency. We want to
emphasize this principle by referring to the entire plan as the scheme. Our
broad concept of scheme covers much more than just how, where and when
to sample and measure. A scheme captures explicitly all the decisions and
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information pertinent to data acquisition, data recording and data processing.
It consists of the following items.

1. Detailed analysis and specification of the objective.
a) Target universe: a precise definition of the universe of interest, with

boundaries in space and/or time, and possibly a specification of exclu-
sions. (Note that, for various reasons, the target universe may differ
from the actually sampled universe.) In case of ecological populations,
a decision on how the universe will be treated, as continuous or as
discrete (Sect. 4.2).

b) Domain(s) of interest: a specification of the part(s) of the universe
for which a separate result is required. At one extreme (in terms of
extent), this is the entire universe, at the other extreme it is a point
or a set of points in the universe (e.g., grid nodes used to prepare a
contour map). In between these extremes, there may be a number of
domains with smaller or larger extents in space and/or time. Examples
include sub-areas within a spatial universe, or spatial cross-sections
through a space–time universe (i.e., the space at given points in time).

c) Target variable(s): a precise definition of the variable(s) to be deter-
mined for each of the sampling units. (Note that target variables are
generally not identical with actually measured variables, because of
measurement errors or transformations of measured variables prior to
statistical inference.)

d) Target parameter : the type of statistic for which a result is needed,
given the target variable(s) and the domain(s). Examples include to-
tal, mean, fraction, median, standard deviation or trend parameter.

e) Target quantity : the combination of a domain, target variable and
target parameter is referred to in this book as a target quantity. An
example is the mean (parameter) phosphate content in the topsoil
(target variable) of the agricultural soils in the Netherlands (domain).
A target quantity that is related to the entire universe is referred to
as a ‘global quantity’; in all other cases it is referred to as a ‘local
quantity’.

f) Type of result : quantitative or qualitative. If a quantitative result is
desired, then the mode of inference has to be estimation or prediction.
If a qualitative result is needed, e.g., an answer to the question whether
or not the target quantity exceeds a given level, then the mode of
inference has to be testing, classification or detection (Sect. 2.2).

2. Quality measure: the quantity used to express numerically the statistical
quality of the survey or monitoring result (Sect. 5.1). Examples include the
half-width of a 95% confidence interval in estimation, the error variance in
prediction, the power in hypothesis testing, the error rate in classification.

3. Constraints: the allocated budget and/or minimum quality of the result,
fieldwork (optional), transport (optional) and laboratory capacity (op-
tional).
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4. Prior information (Sect. 3.4).
a) Sampling frame: the list, file or map identifying the sampling units

from which the sample is selected.
b) Miscellaneous information: general knowledge, experience and infor-

mation from comparable projects, existing sample data, maps or GIS
files.

c) Model of the variation of the target variable within the universe (even-
tually needed if model-based inference is chosen; see item 8). Exam-
ples include a variogram adopted from a comparable case or estimated
from a preliminary sampling round (Chap. 9).

5. Sample support , in the case of a continuous universe (Sect. 4.2); physical
sampling devices for taking aliquots (optional).

6. Assessment method : field and/or laboratory measurement procedures (ref-
erence to existing protocols where possible); method of data pre-processing
to calculate the target variable from measured variables (optional).

7. Whether and how to use composite sampling, i.e., bulking aliquots (Sect. 4.3).
8. Choice between design-based and model-based inference from sample data

(Sect. 4.1).
9. For design-based inference: choice of random sampling design type and

attributes of the chosen design type (Sect. 5).
10. For model-based inference: choice of sampling pattern type and optimiza-

tion algorithm and restrictions (optional), (Sect. 5).
11. Identification of the actually selected sample: a list of sampling unit labels,

a map with sampling locations, a table of sampling times or coordinates
of sampling events in space–time.

12. Protocols on data recording and field work (Sect. 3.3).
13. Method to be used for statistical inference.
14. Prediction of operational costs and quality of results: ex-ante evaluation

(Sect. 3.3).

The scheme item ‘target parameter’ deserves more attention before we
continue with examples of a scheme. Parameters may be related to either a
frequency distribution or a probability distribution. Frequency distributions
are integrals over space and/or time, which of course applies only to non-point
domains, i.e., domains with an extent. Parameters related to frequency distri-
butions are the total, mean, mode, standard deviation, percentiles (e.g., the
median) and fractions. (A fraction is the relative size of that part of the do-
main where a given state is present, such as exceedance of a threshold value).
Examples include an areal fraction, a temporal mean and a spatio-temporal
total. We refer to such parameters as ‘frequential parameters’. Probability
distributions, on the other hand, are integrals of probabilities defined by a
stochastic model. Parameters usually related to probability distributions are
the expected value, mode, standard deviation, percentiles (e.g., the median)
and probabilities of exceedance. Such parameters are referred to as ‘proba-
bilistic parameters’. They may be defined for the target variable at a given
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point of the universe but also for frequential parameters, which unfortunately
complicates matters. For instance, the chosen parameter may be the probabil-
ity that the spatio–temporal total of the target variable over a given domain
exceeds a given threshold value.

To illustrate our concept of a survey or monitoring scheme, we give two
hypothetical examples. In order to avoid lengthy descriptions and details not
required for a correct understanding, we present the examples in a concise
form. In a real project, they should of course include the full details.

Example I, 2D survey

1. Objective.
a) Target universe: the topsoil of all arable fields of a specified class in

region R at time T , a continuous universe.
b) Domain: the entire region.
c) Target variable: a variable indicating whether or not the (true) mean

cadmium concentration in the topsoil at a location in the region ex-
ceeds critical concentration level C (0 means ‘no’; 1 means ‘yes’). This
‘indicator variable’ is needed because the corresponding areal fraction
is to be used as the target quantity (see item 1e).

d) Target parameter : the spatial mean.
e) Target quantity : the areal fraction of the arable fields in region R where

at time T the (true) cadmium concentration in the topsoil exceeds
level C. (Note: sampling is done over a relatively short period, during
which the concentrations are assumed to be constant.)

f) Type of result : qualitative result, accepting or rejecting the null-
hypothesis that the areal fraction is below a given critical level F ,
by testing at the 95% confidence level.

2. Quality measure: the power of the test (the probability of rightly rejecting
the null-hypothesis), when the actual areal fraction exceeds the critical
level F by a given amount.

3. Constraints: the power must not be less than a given value (a quality
requirement). This implies that the scheme should aim to minimize the
costs while satisfying the quality requirement.

4. Prior information:
a) Sampling frame: a GIS file containing the boundaries of the arable

fields in region R. (Note that this may not be an error-free represen-
tation of the target universe.)

b) Miscellaneous information: a map showing expected cadmium con-
centrations, compiled from local knowledge of pollution sources.

c) Model of the spatial variation: not available.
5. Sample support : standard auger core from the topsoil.
6. Assessment method : a specified laboratory method for concentration (the

measured variable), followed by 0/1 transformation of the cadmium con-
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centrations, with 0 for no exceedance and 1 for exceedance of critical level
C.

7. Composite sampling? No Composite sampling. (Note: bulking aliquots
would in this case lead to biased estimates of the target variable; see
Sect. 4.3.)

8. Design-based or model-based inference? Design-based inference.
9. Design type and design attributes: Stratified Simple Random Sampling

(design type), with specified strata (attribute 1) derived from the map of
expected concentrations, and specified sample sizes in the strata (attribute
2) chosen to ensure that costs are minimized while the quality requirement
is satisfied.

10. (For model-based inference: not applicable)
11. Sample: reference to a map indicating the sampling locations, selected

according to the chosen design type and design attributes.
12. Protocols: reference to documents.
13. Method of inference: standard one-sided test of the null-hypothesis, with

the assumption that the estimated areal fraction is approximately nor-
mally distributed (the sample size should be large enough).

14. Ex-ante evaluation: reference to a document.

Example II, monitoring in 2D space and time

1. Objective.
a) Target universe: the water passing through a cross-section S of a river

during year Y , a continuous universe.
b) Domains: the water passing through the cross-section during the sum-

mer and during the winter.
c) Target variable: the (true) amount of salt passing through 1 m2 of the

cross-section during 1 min.
d) Target parameter : spatio–temporal total.
e) Target quantities: the total salt loads passing through cross-section S

during the summer and the winter of year Y .
f) Type of result : quantitative, as 95% prediction intervals.

2. Quality measure: half-width of the widest of the two prediction intervals.
3. Constraints: a limited budget is available, which implies that the scheme

should aim at minimizing the half-width of the widest prediction interval
while keeping the costs within budget; due to shipping traffic on the river,
sampling is confined to a specified acceptable zone of the cross-section.

4. Prior information:
a) Sampling frame: a map of cross-section S, conceptually combined with

the continuous time scale of a year with 365 days.
b) Miscellaneous information: sample data from the same river but for

previous years.
c) Model of the variation: a space–time variogram of the salt flux was

developed from the available sample data.
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5. Sample support : implicitly defined by the assessment method.
6. Assessment method : a specified sensing method to measure salt concentra-

tion and a specified sensing method to measure water flux (two measured
variables), followed by multiplication of the salt concentrations with the
water fluxes to calculate the target variable.

7. Composite sampling? No composite sampling (measurement in situ; no
aliquots are taken).

8. Design-based or model-based inference? Model-based inference.
9. (For design-based inference: not applicable)

10. Sampling pattern type and optimization: a number of fixed sampling loca-
tions where measurements are taken simultaneously at equidistant sam-
pling times (sampling pattern type: regular grid in space–time); optimiza-
tion through evaluation of costs and quality measure for all combinations
of eligible sampling locations (e.g., from a 1× 1 m2 grid on the acceptable
zone of the cross-section) and eligible sampling time intervals (e.g., in a
series of one day, one week, two weeks, four weeks, 13 weeks).

11. Sample: a map indicating the sampling locations in the cross-section and
a table of sampling times.

12. Protocols: reference to documents.
13. Method of inference: calculation of the 95% prediction interval for the salt

loads from space–time block-kriging predictions and associated kriging
variances.

14. Ex-ante evaluation: reference to a document.

3.2 Structure the Design Process

If designing a scheme is regarded as an instance of problem solving, items 1–4
can be seen as the information which is used to find a solution: the ‘design
information’. From this strict perspective, items 5–13 together constitute the
selected solution, and the final item (14) is an ex-ante evaluation of that solu-
tion. From a broader perspective, the design information, especially the items
‘objective’, ‘quality measure’ and ‘constraints’ will already be the result of a
‘translation’ of an initial, more general description of the aim of the project.
This translation typically settles various details that were left undecided until
then. This can usually be done in different ways, the alternatives having a
potential effect on the costs and quality of the results. Therefore, we consider
it to be a fundamental part of the design process as a whole. Clearly, the
translation requires close interaction with and agreement from the stakehold-
ers. It is probably not unusual that, at some point in the design process, parts
of the translation will have to be reconsidered and repeated.

A safe way to obtain a good scheme is based on the following principle:
‘Start at the end, then reason backwards’. This means that one should first
determine precisely what information is needed. Only when the information
need has been defined it does become useful to search for a scheme that



34 3 Basic Design Principles

satisfies this need in an efficient way. The reason for this is that different
information needs generally ask for different schemes. Although this is one of
the most important facts in sampling, it does not seem to be always clearly
acknowledged. We shall therefore discuss this in more detail.

Information needs in the context of survey or monitoring can be divided
into two broad groups. In the first group, the purpose may be to estimate a
global quantity, i.e., a parameter of the cumulative distribution function of the
target variable over the entire universe. Examples are ‘location’1 parameters
such as the mean, quantiles (e.g., the median) and the mode, and ‘dispersion’
parameters such as the standard deviation, range and tolerance intervals.

In the second group, the purpose may be some kind of description of the
spatial and/or temporal distribution of the target variable within the universe.
Examples are prediction of values at specific points within the universe, es-
timation of means within parts of the universe and construction of contour
maps.

In general, different types of results ask for different sampling designs,
because a given scheme may not yield the type of result that is required, or
it may do so in an inefficient way. For instance, estimating the spatial mean
of a region (a global target quantity) requires other, less expensive schemes
than the prediction of the values at grid nodes (local quantities), as is done
for mapping. In conclusion, a good way of designing a scheme is by reasoning
backwards through the following steps:

1. Decide precisely what information is needed. Examples include a map of
a given variable, at a given scale and with a given accuracy, or testing a
given hypothesis, at a given confidence level and with a given statistical
power.

2. Identify the constraints that apply to the production of the required in-
formation.

3. Identify what useful information is already available.
4. Determine what kind of data analysis leads to the required type of result.
5. Identify the data needs for this analysis and search for a strategy to obtain

these data in the most efficient way.

This sequence of steps implies that, prior to making any design decision, one
should first collect all design information. The reason for this is that the design
decisions are otherwise likely to be premature and need to be reconsidered once
the design information has been made more complete or explicit.

After all design information has been collected, the question remains how
to organize the rest of the design process. More specifically, in what order
should the various other items of the scheme be decided? It would be un-
feasible to provide a detailed design protocol that is suitable for all possible
circumstances. Nevertheless, the following global guidelines seem to be useful:

1 In this context ‘location’ does not refer to position in geographical space, but to
position on the measurement scale.
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1. Make a provisional decision on the assessment method (scheme item 6).
2. Choose a quality measure (scheme item 2, see Sect. 5.1).
3. Make a rough estimate of the sample size affordable at a given budget or

needed to meet a given quality requirement.
4. Make provisional decisions on the following major design issues:

a) Choice between design-based and model-based inference (scheme item 8;
see Sect. 4.1).

b) Choice of sample support (scheme item 5; see Sect. 4.2).
c) Choice of whether and how to bulk aliquots (scheme item 7; see

Sect. 4.3).
5. In the case of design-based inference: search for an optimal random sam-

pling design (scheme item 9; Sect. 5.2.1).
6. In the case of model-based inference: choose a sampling pattern type and

optimization technique (scheme item 10), such as simulated annealing and
genetic algorithms (Appendix A), and optimize the sample.

7. Make a prediction of operational costs and quality of results (scheme
item 14). If the expected costs are too high or the quality too low, then
revise one or more of the provisional design decisions. Otherwise, the de-
cisions are final.

8. Draw a random sample according to the chosen sampling design, or opti-
mize a sample (scheme item 11).

9. Work out the method of statistical inference (scheme item 13).
10. Develop protocols on field work and data recording (scheme item 12).

The reasons for making the major design decisions (mode of inference, sample
support and aliquot bulking) early in the process is that these decisions tend to
have dominant effects on both costs and quality, and that most other decisions
depend on them.

The scheme above assumes a single target quantity. In practice, especially
in monitoring situations, one has multiple target quantities, which makes op-
timization a more complex problem, further discussed in Sect. 5.2.

Design processes are seldom linear and one-way. There are often good rea-
sons to loop back to earlier provisional design decisions, or even to the design
information, e.g., to switch to a less demanding aim, to relax a constraint,
or to search for other prior information. Our advice is to keep track of the
process to prevent it from becoming haphazard or chaotic, and also to enable
reporting of the reasons for the various choices that are finally made.

3.3 Pay Sufficient Attention to Practical Issues

Designing a scheme for survey or monitoring is not just a matter of statistical
methodology. On the contrary, if the practical issues are disregarded, there is a
high risk that the project will be unsuccessful. Therefore, without pretending
to be exhaustive, we discuss what would seem to be the main practical issues.
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Avoid Undue Complexity

Researchers often know a great deal about the physical processes that generate
spatial patterns or time series of properties in the universe of interest. They
may be tempted to express all this knowledge in detail in the form of a highly
complex sampling design. Although understandable, this attitude entails three
risks which are easily underestimated.

First, due to unforeseen operational difficulties during field work, it may
prove impossible to carry out the design in all its complexity. The field work
must then be adjourned until the design has been adjusted. This may be
time-consuming and is likely to cause undesirable delay.

Second, complexities are introduced to increase the efficiency, but they may
make the statistical analysis much more intricate and time consuming than
expected. It is therefore usually wise to avoid highly complex sampling designs,
because the theoretical gain in efficiency compared with simpler solutions is
easily outweighed by the practical difficulties. Also, multiple target variables
may be of interest, and one may face the problem that an efficient design for
one target variable can be inefficient for another.

Third, complex sampling designs can be efficient for one target variable,
but inefficient for another variable. For instance, stratification of the target
area may lead to increased precision for a target variable related with the
stratification variable, but for target variables that are not related, there may
be no gain in precision or even a loss of precision. Therefore, for surveys and
monitoring with multiple target variables we recommend keeping the sampling
design as simple as possible, and using instead the ancillary information at
the estimation stage, for example by using the post-stratification estimator
(Sect. 7.2.11).

Allow for Unexpected Delay in Field Work

Even if one is familiar with the circumstances in the terrain, there may be
factors beyond one’s control that prevent the field work from being completed
within the available time. Clearly, unfinished field work may seriously harm
the statistical potential of the design. It is therefore prudent to allow some
extra time in the scheme for contretemps, say 20 % of the total time for field
work, and to include a number of optional sampling locations to be visited as
the extra time allows.

Include a Test Phase if Necessary

If there is significant uncertainty about the logistics of the field work or the
spatial or temporal variability, a preliminary test phase is always worth the
extra effort. The data from even a small sample, collected prior to the main
sample, enables the latter to be optimized more precisely and reduces the risk
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that the project will not meet its goal at all. In the final statistical analy-
sis, the data from the test phase can often be combined with those for the
main sample, so that the additional effort is limited to extra travel time and
statistical analysis.

Evaluate the Scheme Beforehand

It is good practice to quantitatively predict the operational costs of the
scheme, and the accuracy of the result, prior to starting the field work. Predict-
ing cost and accuracy can be done in sophisticated ways, using mathematical
models (Domburg et al., 1994), or more generally, using experience from sim-
ilar projects, rules-of-thumb and approximations. A test phase will of course
improve the prediction of costs and accuracy.

Explicit ex-ante evaluation in terms of costs and accuracy is not only a final
check of whether the scheme can be trusted to lead to the goal, it also enables
comparison with ex-post evaluation, i.e., after the project has been completed.
If this reveals significant discrepancies, the causes should be analyzed. This
may provide a basis for better planning of future projects.

Protocol for Field Work

Rules for field work will usually concern the physical act of taking samples
and/or measurements in the field, but they should also indicate what should
be done if a sampling location is inaccessible or if it falls outside the universe.
An example of the latter in soil sampling is where, on inspection in the field, it
turns out that at the given location there is no ‘soil’ according to an intended
definition.

A poor protocol may seriously affect the quality of the results. Obvious
requirements for a protocol are that it is complete, unambiguous, practically
feasible and scientifically sound. The scientific aspect plays a role, for instance,
when a rule says that an inaccessible sampling location is to be shifted to a
nearby location in a certain way. In principle, this leads to over-representation
of boundary zones and, depending on the kind of design and the statistical
analysis, may result in biased estimates.

Protocol for Data Recording

Just as for field work, there should be sound rules for data recording. These
rules should not only cover regular recording but also prescribe different codes
for when a sampling location falls outside the universe, when it is inaccessible,
when a variable cannot be measured because its value is too large or too small
(‘censoring’ in the statistical sense), and when a variable cannot be measured
for other reasons.
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3.4 Employ Prior Information on Variation

Any prior information about the variation in the universe should be utilized
as good as possible in the search for an efficient sampling design. Examples of
prior information are satellite images, aerial photographs, thematic maps (e.g.,
groundwater, soil or vegetation maps) and theories about the spatial and/or
temporal patterns of variation in the universe. Such theories may be available
in a verbal, qualitative form, or in the quantitative form of a mathematical
model.

There are many ways in which prior information can be exploited in
schemes. Two modes can be distinguished. The first mode is to use the prior
information in the sampling design, i.e., in the data acquisition stage. The
second mode is to use it in the statistical analysis of the sample data, i.e., in
the data processing stage. In the following we give examples of each mode.

An example of the first mode is when images, photographs or maps are
used to stratify the universe. In this case, the universe is split into a number of
relatively homogeneous sub-universes (called ‘strata’), which are then sampled
independently (Sect. 7.2.4). Another example is when genetic theory enables
intelligent guesses about spatial and/or temporal correlations. For instance, in
the case of a universe consisting of the soil in a given area, aeolian deposition
of parent material in that area may be known to have resulted in little short-
range variation of texture. If the target variable is closely related to texture, it
will be then important for the sake of efficiency to avoid sampling at locations
in close proximity. A final example of the first mode is when a variogram
(Chap. 9) is used to optimize the sampling density or sampling frequency.

An example of the second mode is when prior point data are used to design
a space-filling sample, and prior and new data are used in spatial interpola-
tion. Another example is the use of ancillary data in regression estimators
(Sect. 7.2.11). Brus and de Gruijter (2003) present a method for using prior
point data from non-probability sampling in design-based estimation of spatial
means.

If prior information on the variation is captured in the form of variograms,
these functions can be used to predict the sampling variance for a given design
(Sect. 7.2.15). If in addition a model of the costs is available, then it is possible
to optimize the sampling design in a fully quantitative manner (Domburg
et al., 1997).

3.5 Balance the Sources of Error

It is important to realize that the accuracy of the final result is not only de-
termined by the sampling error, i.e., the error due to the fact that sampling
is limited to a finite number of units. Examples of other sources of error are
sample treatment, observation, model of the variation, ‘censoring’ and ‘non-
response’. Censoring means that no quantitative measurement is possible on
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a particular sampling unit, because its true value falls outside the measur-
able range of the measuring device used for measuring. An example would
be a situation in which the water table is to be measured in an auger hole
with a depth of 1.5 m depth and no groundwater is observed in the hole.
This indicates that the level is deeper than 1.5 m (‘right censoring’), and a
quantitative assessment can only be produced by guessing or by statistical
estimation based on an assumed distribution function. (See Knotters et al.
(1995) for an example of the latter.) Another example is where the true value
of a concentration is below the detection limit of a chemical analysis (‘left
censoring’).

Non-response is a term used in the general statistical literature to indicate
the situation where for some reason no data can be obtained from a sampling
unit. In groundwater, soil and vegetation sampling this occurs when a location
in the field cannot be visited or when measurement is impossible for a different
reason than censoring, e.g., loss of an aliquot.

When the inference from the sample data is based on a model of the spatial
variation, this model will generally be a source of error, because the underlying
assumptions deviate from reality (see Sect. 4.1).

In many cases the target variable can not be observed without error. Ex-
amples are measurements of chemical and physical properties on soil- and
water-aliquots. Also, in surveys of elusive populations of plants or animals
the observer is typically unable to detect every individual in the neighbour-
hood of the sampling location or line-transect.

It may be tempting to adopt a cheap-to-measure target variable at the
cost, however, of large bias in the final results. Suppose, for instance, that
the objective is to estimate the total emission of a pollutant from the soil to
the groundwater in a given area during a given period. One possible strategy
would be to measure the concentration of the pollutant in the soil moisture at
the sampling locations, to estimate the mean concentration from these data,
and to multiply the mean concentration with the total groundwater recharge
taken from a water balance for the area. The advantage of this strategy is
that only concentrations need to be measured. However, the disadvantage
is that the estimate of the total emission is possibly seriously biased. The
cause of this bias is that the strategy assumes implicitly that concentration
and recharge are independent variables, whereas in reality this will not be
true; for instance, there may be a tendency for high concentrations at times
and at places with low recharge to the groundwater. A solution is measuring
not only the concentration at the sampling locations but also the flux to the
groundwater, and to take the product of these two as the target variable.

Although any reduction of the sampling error will lead to a smaller total
error, there is little point in investing all efforts in further reduction of the
sampling error if another source of error has a higher order of magnitude.
Therefore, in devising a scheme, the relative importance of all error sources
should be taken into consideration. For instance, if the spatial variation within
a sampling unit (plot) is small compared to that within the domain, it does
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not pay to take many aliquots in the selected plots to estimate the means of
the plots. The optimal number of aliquots in a plot also depends on the time
needed for taking the aliquots.

See Gy (1979) for a comprehensive theory of error sources in sampling,
especially sampling of particulate materials.

3.6 Anticipate Changing Conditions During Monitoring

An extremely important difference between survey and monitoring with re-
spect to scheme design is that survey takes place within a relatively short
period of time, during which neither the universe is supposed to change in
any relevant way, nor the operational, organisational and budgetary condi-
tions alter. With monitoring, on the other hand, not only the universe may
undergo large, unexpected changes, but especially in long-term monitoring
the conditions will often alter in a way that makes adaptation of the scheme
inevitable or at least desirable. Budgets may vary from one year to another,
and operational constraints that were originally present may be relaxed, or
new unforeseen ones may come into force.

It is also quite common that the focus is shifted, or that new objectives are
defined, e.g., through the introduction of new target variables or domains of
interest. Better measurement techniques may become available and, last but
not least, spatial variation patterns often change in time. For instance, the
spatial variation within strata, as originally defined, may increase to a level
that makes stratified sampling on the basis of these strata no longer efficient.

One important condition that will always change during monitoring is the
amount of available data: more and more data about the universe will become
available through monitoring itself. Thus, the available knowledge about the
variation in space and/or time will accumulate to a higher level than the prior
information that was used to design the scheme. This in itself may be a good
reason for fine-tuning or redesigning the scheme.

All changes mentioned above may call for specific adaptations of the
scheme, but the point is that some schemes do not lend themselves well to
particular adaptations. For instance, suppose that the target area has been
divided into small strata, with only one (permanent) sampling location in
each, that the statistical inference will be design-based, and that after some
years the total number of locations must be reduced due to budget cuts. One
then has to choose between (a) leaving some strata unsampled, which leads to
biased results, or (b) switching to a new stratification with fewer strata and
newly selected sampling locations within them. This may lead to extra costs,
and to less precise estimates of change over time.

Clearly, both options are undesirable. The chosen type of sampling design
does not survive any reduction of the sample size, i.e., it has no flexibility in
this respect. This trap might be avoided, for instance, by using a non-stratified
type of design or by defining fewer strata, allowing for more sampling locations
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in each. Such a choice may yield less precise results at the original budget,
but the expected loss of initial precision may be less important than greater
adaptability to changing budgets. As for surveys with multiple target variables
(see Sect.3.3), we recommend strongly to avoid complex sampling designs for
selecting the sampling locations of a monitoring scheme. See Overton and
Stehman (1996) for a discussion of desirable design characteristics for long-
term monitoring.

More generally, it would be unwise to limit the ex-ante evaluation of long-
term monitoring schemes to cost and quality based on the initial design in-
formation. Different ‘what–if’ scenarios in terms of changes in conditions and
possible adaptations to such changes should be worked out before final deci-
sions are made.

The fact that monitoring, especially long-term monitoring, is bound to face
changing conditions calls for flexibility of the scheme. This flexibility is largely
determined by the installation costs of the monitoring locations. When these
costs constitute a considerable part of the total costs of monitoring, one will
be reluctant to move at the next sampling round to other locations, leading
to a static or a static-synchronous sampling pattern, see Sects. 14.1 and 14.2
for a discussion of these pattern types.

3.7 Calculate the Sample Size Appropriately

It is perfectly obvious that in scheme design a correct formula for the sample
size must be used, so why should we stress this by presenting it as a design
principle? The reason is that we have repeatedly encountered cases in the
literature where an incorrect formula was used, sometimes leading to a much
larger sample than necessary and a waste of time and money. We discuss three
different kinds of mistake in calculating the sample size.

Design Effect Disregarded

A mistake sometimes made in design-based sampling is to use a sample size
formula intended for Simple Random Sampling (Eq. 7.8 or 7.9), when a differ-
ent sampling design will be used, such as Stratified Simple Random Sampling
(Sect. 7.2.4). By doing this, the effect of the chosen sampling design on the
sampling variance, compared with Simple Random Sampling, is disregarded
and as a result the calculated sample size may be either too large or too small.
For instance, if stratification is applied, the design effect is usually a reduction
of the sampling variance. Disregarding this effect by using a sample size for-
mula for Simple Random Sampling would then lead to a sample that is larger
than necessary.

Sample size calculation specifically for designs other than Simple Random
Sampling may be problematic in practice, because it needs prior information
that is difficult to obtain. In that case one can deliberately choose to calculate
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the sample size as if Simple Random Sampling would be applied. If one ex-
pects a positive design effect (reducing the sampling variance compared with
Simple Random Sampling), one can either accept the calculated sample size
as conservative estimate (a number on the safe side), or one can correct it
with a reduction factor equal to a prior estimate of the design effect based
on experience in comparable projects. If a negative design effect is to be ex-
pected, for instance when Cluster Random Sampling or Two-Stage Random
Sampling is adopted for operational reasons, then it is especially important to
correct the calculated sample size with a prior estimate of the design effect,
in order to avoid undersized sampling.

Autocorrelation Disregarded

When sample data are collected not by random but by purposive selection,
they should be analyzed by model-based inference, such as block-kriging for
prediction of the spatial mean. From a model-based point of view the ob-
servations will usually be auto-correlated, which makes the prediction error
variance smaller than when no autocorrelation exists. In that sense, kriging
takes advantage of auto-correlation. However, if one calculates the sample size
from the assumption that there is no autocorrelation (in other words: assum-
ing a pure nugget variogram), while in reality there is, then this advantage is
not accounted for. The result is an oversized sample.

Estimation of Model Mean Instead of Spatial or Temporal Mean

A pitfall also worth mentioning here is using a formula that is appropriate for
estimating a model mean but not for a spatial or temporal mean. To explain
this, consider the variance of the predicted mean of some target variable Z
over a universe. Suppose we have n observations on Z, where z satisfies a
model with mean µ plus a random component ε with variance σ2:

Zi = µ + εi (i = 1, . . . , n) (3.1)

If we take the unweighted sample mean as estimator of µ:

µ̂ =
1
n

n
∑

i=1

Zi , (3.2)

then, if the observations are independent, the variance of this estimator is
given by the well-known formula:

Vind(µ̂) =
σ2

n
. (3.3)

However, it was realized long ago (Bayley and Hammersley, 1946) that, if
the observations are not independent, then this formula needs adjustment by
taking account of the covariances between the observations:
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Vdep(µ̂) =
1
n2
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∑
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∑
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∑
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C(zi, zj)

⎫

⎬

⎭

=
σ2

n
{1 + (n − 1)ρ̄} , (3.4)

where ρ̄ denotes the average correlation between the observations. So, an
equivalent sample size was defined, equal to the nominal sample size divided
by the correction factor in (3.4):

neq =
n

{1 + (n − 1)ρ̄} . (3.5)

This formula for equivalent sample size has become rather popular and is
applied in time-series analysis (Lettenmaier, 1976; Matalas and Langbein,
1962; Zhou, 1996) as well as in spatial statistics, for instance in Gilbert’s book
on ecological monitoring (Gilbert, 1987). The formula is entirely correct, but if
one looks at what happens with the variance of the mean when the sample size
is increased, an odd behaviour can be noticed. Take as a simple example an
equidistant time series with the exponential autocorrelation function ρ(t) =
e−3t (see Fig. 3.1). Furthermore, take both σ2 and the monitoring period equal
to 1, and increase the sample size by increasing the sampling frequency.

Using (3.3) and (3.4), respectively, for independent and dependent obser-
vations we obtain the variance of the estimated mean (µ̂) as a function of
sample size, depicted in Fig. 3.2. This figure shows that, with independent
observations, the variance decreases continuously with increasing sample size,
however, with dependent observations the variance first drops, but not lower
than a certain level, and after that it stays nearly constant. In other words, ac-
cording to (3.4) one cannot reach a precision beyond a certain level no matter
how many observations one takes. This counters the intuition that the larger
the sample, the more one knows about the universe. The reason for this is not
that (3.4) is incorrect, but that it is intended for estimating the model mean,
not the integral mean, i.e., the average of z over the universe of interest:

z̄ =
1
|U|

∫

u∈U
z du . (3.6)

If the integral mean (spatial, temporal or spatio-temporal) is to be estimated
or predicted, then (3.5) is not applicable and a different formula should be
applied, which depends on how the sample will be taken. Following the design-
based approach, with some form of random sampling to estimate the integral
mean, the correct sample size formula depends on the chosen type of sampling
design (see Sect. 7.2). For instance, if Simple Random Sampling is chosen as
type of design, then (7.8) or (7.9) should be applied.

Using the model-based approach, the variance of the prediction error of
the Best Linear Unbiased Predictor of the integral mean is given by (2.16),
which can be used to calculate the required sample size via some optimization
routine (see Sect. 7.3 and Appendix A).

It follows from the above example that it is important to choose the target
quantity carefully. Just ‘the mean’ is not enough; the kind of mean is what
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counts for the sample size. We expect that for surveys the integral mean rather
than the model mean would usually be relevant, because it reflects directly
the actual state of the universe. The same applies for status and compliance
monitoring. For effect and trend monitoring, on the other hand, the model
mean may be more relevant.
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Fig. 3.1. Autocorrelation function used to calculate the variance of the estimated
mean in Fig. 3.2

Fig. 3.2. Variance of the estimated mean as a function of sample size, for indepen-
dent and dependent observations (see text)
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Major Design Decisions

4.1 Choice Between Design-Based and Model-Based
Inference

Before deciding on the details of a sampling design, a choice should be made
between design-based and model-based inference, because design-based infer-
ence requires probability sampling, whereas for model-based inference proba-
bility sampling generally is sub-optimal. It is beyond the scope of this book to
discuss this issue in detail, so only an outline is given here. An extensive dis-
cussion is presented in Brus and de Gruijter (1997). The ‘ideal’ circumstances
for application of the design-based approach are as follows:

i. The required result is an estimate of the frequency distribution of the tar-
get variable in the universe as a whole, or a parameter of this distribution,
such as the mean, the standard deviation or a quantile.

ii. A minimum sample size of, say, 5 or 10 units can be afforded, depending on
the variation in the universe, to have at least a rough idea of the sampling
error.

iii. It is practically feasible to sample at randomly selected locations and/or
times.

iv. It is important to obtain an estimate that is unbiased in the sense that,
averaged over all possible samples of the applied design, the estimate
equals the true value of the target parameter.

v. It is important to obtain an objective assessment of the uncertainty of the
estimate.

Around this ‘ideal’ there is a range of circumstances in which the design-based
approach is still preferable to the model-based approach.

The ‘ideal’ circumstances for application of the model-based approach are as
follows:
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i. The required result is a prediction of values at individual points in the
universe, as with forecasting, or a distribution of values over the entire
universe, as with mapping.

ii. At least a medium sample size can be afforded, depending on the spatial
and temporal variation. The model usually implies stationarity assump-
tions and a variogram, which should be estimated from about 100 to 150
sampling locations (Webster and Oliver, 1992).

iii. A reliable model of the variation is available.
iv. Strong autocorrelations exist in the universe.

As before, around this ‘ideal’ there is a range of circumstances in which the
model-based approach is still preferable to the design-based approach. A typ-
ical intermediate situation is where averages are required for a number of
sub-universes or ‘blocks’, in which only sparse sampling can be done. Brus
and de Gruijter (1997) explored this in a case study. Also, prior data of non-
probability samples favour the use of a model-based strategy, although there
are various possibilities of using the prior data at the sampling or the inference
stage of a design-based strategy (Brus and de Gruijter, 2003). A more exten-
sive discussion on the choice between design-based and model-based methods
in the case of sampling in space is given in Chap. 6.

4.2 Choice of Sample Support

As discussed in Sect. 1.3, the universe of interest is conceptualized as a set
of sampling units and these units can be selected for measurement, either in
situ or ex situ. The geometry of the sampling units, i.e., their shape, size and
orientation within the universe, is referred to as ‘sample support’. The sample
support may be constant or variable. Of course, with sampling in time, the
concept of sample support simplifies to points in time or periods, and similarly
for sampling in 1D space.

There is not always a choice with respect to sample support. The universe
may consist of discrete objects of a certain kind, such as the trees in a forest
stand, the fields in an administrative unit, or the rivers of a continent. In that
case we may speak of a discontinuous universe. In such cases the objects serve
as sampling units and measurements are taken from them, because the target
quantity is defined in terms of one or more properties of the objects, e.g., the
average height of the trees in a forest stand. In many situations, however, the
target quantity is defined in terms of one or more properties of a continuum,
such as the soil in a field or the water in a lake. Then we speak of a continuous
universe.

The distinction between discontinuous and continuous universes is not
always as clear-cut as one may think. It should be realized that continuity or
discontinuity of a universe is not an inherent property of reality, rather it is
determined by the purpose of the survey or monitoring, in particular the target
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quantity. Consider the above example of a forest stand. If the target quantity
is defined in terms of a property of the trees, such as the average height, then
indeed the universe is the set of trees in the stand and the sampling units
will be trees. However, if the target quantity relates to a terrain attribute like
the average number of trees per ha, then the universe is the area occupied by
the stand and the sampling units will be areal units or ‘plots’, also referred
to as quadrats. Finally, if the total timber volume of the stand is the target
quantity, then both plots and trees can be used as sampling units.

In the case of a continuous universe, one is in principle free to define the
sampling units as seems fit, and to choose the sample support accordingly.
This choice is a complex problem and to our knowledge there are no simple
rules that will always lead to an optimal solution. Instead we put forward a
number of considerations that may be relevant in making a choice. Finally,
in surveys of plants or animals, the probability that an individual is detected
typically decreases with distance from the observer (Sect. 7.2.13). In this case
the support of the sampling units is not clearly defined, and it makes more
sense to specify the detectability function.

Effects on the Informativeness of Sample Data

The choice of sample support is rather fundamental since it defines the cu-
mulative distribution function of the target variable in the universe. In case
of a quantitative target variable, the larger the support, the more small-scale
variation averages out within the sampling units. This will generally shorten
the range of values within the universe and make the cumulative distribution
function steeper. This in turn will affect parameters of that distribution (e.g.,
quantiles), except for the mean and the total. Therefore, presenting an esti-
mate of (parameters of) the without specification of the sample support is
useless.

In case of a qualitative target variable, increasing the support size has
similar effects. The larger the support, the more small-scale variation averages
out within the sampling units and the more they will be similar in terms
of composition. This will generally affect measures of diversity, while in the
special case of a presence/absence indicator the frequency of ‘present’ will
increase. (Note that at this point we consider true values, which we would
obtain by error-free observation.)

Given the potential impact on the informativeness of the sample data,
the first question to be answered is: is there a unique ‘ideal’ sample support
resulting in data relevant to the purpose and if so, what is it? The answer
should be given by how the target quantity is defined. For instance, if the
purpose is to estimate a mean per location in space, such as the mean cadmium
concentration of the soil in a given region, then there is no such ‘ideal’ support.
Any support will give data from which this mean can be estimated. In case of
variable supports, the sizes of the supports must be known in order to weight
the sample data.
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On the other hand, if in a study on cadmium uptake by wheat plants the
interest lies in the cumulative distribution function of soil cadmium in a field,
then an ideal support may exist, e.g., the size and shape of the soil bodies
as usually rooted by individual wheat plants. A larger support would give a
cumulative distribution that is too steep and a smaller support would give
one that is too flat.

The purpose may also set an upper bound on the sample support: the
support size should not exceed the size of the domain(s) of interest (Splitstone,
2001). For instance, if a decision is to be made on the remediation of polluted
soil for blocks of 50 × 50 × 1 m3 , then the sample support should not be
larger than this block. A lower bound on the support size may be implied
by the nature of the target variable. For instance, hydraulic conductivity and
porosity in groundwater flow are only defined for volumes of some minimum
size, referred to as the ‘representative elementary volume’ (Bear, 1972).

Finally, with large plot sizes, the problem that one cannot maintain the
plot shape near the boundaries of the universe may become serious (Stevens
and Urquhart, 2000).

Effects on the Efficiency

Increasing the support size will generally give more accurate results with the
same sample size, if also the measurement-error variance would remain the
same. This is because the larger the support, the more variation is averaged
out by measuring the sampling units, and the smaller the variation between
measurements. From this it follows that the support affects the precision of
estimates of parameters of the cumulative distribution function, for instance
the sampling variance of the estimated mean. In model-based prediction of
local quantities, the prediction-error variance is also affected by the sample
support. For instance, if the values at locations in space are predicted by
kriging, the sample support affects the sill and nugget of the variogram and,
as a consequence, the prediction-error variance (Zhang et al., 1999).

In practice, when the support size is increased, the accuracy of the mea-
surements will generally deteriorate. Furthermore, the costs per sampling unit
will rise, so that a smaller sample size will be available for the same budget.
Therefore, as far as there is freedom of choice, one should try to identify the
support that is most efficient, i.e., the support by which the best result is
produced for the given budget, or by which the required quality is achieved
for the lowest costs.

Composite Sampling to Measure Larger Sampling Units

When a sampling device is used to take aliquots for ex situ measurements,
then in principle this device determines the support. For instance, when soil
is sampled with a ring, the support is determined by the geometry of this
ring. In theory the support size can be enlarged to any level by increasing the
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diameter of the ring. However, in practice one will soon encounter limits of
practicability.

This example brings us to a technique that can be used for ex situ mea-
surements on large sampling units. Instead of increasing the volume of a single
aliquot, one might also take more than one aliquot of the original volume and
mix these to obtain a composite aliquot. If this is done properly, the measure-
ment on the composite can be used as a measurement of the average of the
unit from which the composite was taken. For instance, when n × n aliquots
are taken on the nodes of a square grid with a grid distance d, then the sample
support can be taken to be a square with a side of length n×d. This technique
assumes additivity of the target variable, an issue discussed in Sect. 4.3 on
composite sampling.

In general, the larger the grid distance d, the larger the variance between
the aliquots taken at the grid nodes, the more variation is averaged out by
the compositing, and the smaller the variance between composites. However,
reducing the variance between composites by increasing the support size is
achieved at the expense of the precision of the ‘measurements’ of the sampling
unit means. This is because the composite means differ from the sampling
unit means and, given n, the mean squared difference between them generally
increases with increasing grid distance.

The within-unit sampling error can be regarded as a pseudo-measurement
error. Of course, given the support size, this sampling error can be reduced by
taking more aliquots for the composite, but in general this is at the expense
of a larger subsampling error, i.e., the error introduced by taking a subsample
from the composite (after mixing) for analysis in laboratory.

We conclude that decisions on the sample support (in 2D space: the plot
size), the number of aliquots used in a composite from a sampling unit (plot)
and the sample size (the number of plots), should not be made separately, but
simultaneously on the basis of prior knowledge of short-distance variation (or
variation at short time lags) and variation in the universe, the subsampling
error and the measurement error.

Implications of Measuring Technique

When a measuring device is used for in situ measurements, then in princi-
ple this device determines the sample support. However, just as composite
sampling for ex situ measurements, multiple in situ measurements within
sampling units can be done to increase the support size, simply by averaging
the values measured at a number of points within the sampling unit. The
same considerations apply as for composite sampling within sampling units,
except that subsampling error does not play a role.

The measurement method for a given target variable may imply a lower
bound of the support size. For instance, a minimum amount of soil may be
needed for laboratory analyses, or a pH-electrode must be held in the water
for a sufficiently long time to obtain a stable measurement.
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Finally, when different variables must be measured on the same sampling
unit, or the same variable repeatedly measured as in monitoring, special care
is needed to avoid disturbance through the extraction of aliquots or otherwise
destructive or disturbing measurements. To that order the support size should
be chosen large enough to allow sufficient separation in space and/or time of
the various sampling and measurement actions.

Different Target Quantities Requiring Different Sample Supports

A problem often arising in monitoring practice is when different target quanti-
ties are defined which ask for different sample supports. We give two examples.

The first example is found in the national soil quality monitoring network
of the Netherlands. Here entire management units are taken as the sampling
units, and as a result the areas of the sampling units differ considerably. This
is not a problem if the aim is to estimate parameters of the cumulative distri-
bution function of soil properties of management units (e.g., the proportion of
management units in the Netherlands with an average phosphate content in
the topsoil larger than a given threshold value). However, we do have a prob-
lem if the aim is to estimate parameters of the cumulative distribution function
for a different, constant support, e.g., the areal fraction with a phosphate con-
tent larger than the threshold value, which is defined at point support. The
use of data from variable supports in model-based (geostatistical) prediction
is also problematic, for instance in estimating the model of spatial variation
(variogram) for a given constant support from these data.

The second example may arise in sampling of 3D spatial universes. Sup-
pose, for instance, the mean carbon content of the topsoil of an area is to
be estimated. To this end, an auger core is collected by a single augering at
each of a number of sampling locations. At all locations, the entire topsoil is
sampled. Suppose further that the depth of the topsoil varies in space, so the
depth of the augering also varies. If the auger cores are measured integrally,
then unbiased estimation is only possible for the spatial mean carbon content
per areal unit. It should be realized that this mean is generally different from
the spatial mean per volume or mass unit. (Suppose that the mean content
of shallow topsoils tends to be smaller than that of deep topsoils. In that case
the spatial mean per areal unit is smaller than the spatial mean per volume
or mass unit.) If an unbiased estimate of the mean per volume or mass unit is
required, then one should measure the content at various depths separately.

4.3 Choices on Composite Sampling

Composite sampling is the technique of putting the materials of individual
aliquots together and to mix and analyze the composite sample. As only the
composite aliquots are analyzed, the number of analyses is greatly reduced.
The technique is often used in soil sampling because of its great advantage
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in saving laboratory costs. A vast amount of literature exists on this subject,
both theoretical and applied, but a well-founded and generally applicable
methodology of composite sampling does not seem to be available. Therefore,
some general guidelines are given here.

The basic assumption in its most general form is that analysing a com-
posite aliquot gives the same result as analysing the individual aliquots used
to form the composite. Three applications can be mentioned here. The first
application is where the interest lies in the presence or absence of, for in-
stance, a species of soil microbe or a chemical substance. If the method used
to determine its presence or absence has a detection limit that is low enough,
then a composite aliquot could be analyzed instead of individual aliquots.
This application is often referred to as group screening or group testing.

The second application, related to the first, is in the detection of ‘hot
spots’, i.e., small areas with much higher values than in the rest of the area.

This application is discussed in detail in Sect. 8.3.5.
The third application is where interest lies in the average value of a quan-

titative variable, for instance, phosphate content in the topsoil. Here the as-
sumption is that, apart from mixing, subsampling and measurement errors,
analysing a composite aliquot gives the same result as averaging the values
measured on individual aliquots. In other words: arithmetic averaging can
be replaced by physical averaging. Of course, this assumes that averaging is
meaningful, and that it is needed given the purpose of the project. We discuss
these assumptions briefly.

Averaging of Values is Meaningful

This requires that the target variable is a quantitative attribute, which pre-
cludes composite sampling if the target variable is measured on a nominal or
ordinal scale.

Averaging of Values is Needed

Taking a non-composite scheme as the point of departure, this assumption im-
plies that, without compositing, the sample statistic for inference on the target
quantity would be a function of one or more unweighted means of individual
aliquot values. The simplest example of such a sample statistic in design-
based sampling is the unweighted sample mean, used to estimate the global
mean in the case of, for instance, Simple Random Sampling (Sect. 7.2.3),
Systematic Random Sampling (Sect. 7.2.7), Systematic Unaligned Sampling
or Markov Chain Sampling (Sect. 7.2.8). In these cases, all aliquots could in
principle be combined into one composite. Other examples, involving multi-
ple unweighted means, are the estimators used in Stratified Simple Random
Sampling (Sect. 7.2.4), Two-Stage Random Sampling (Sect. 7.2.5) and Clus-
ter Random Sampling (Sect. 7.2.6). In these cases, all aliquots belonging to
the same stratum, primary unit or cluster could in principle be combined.
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The present requirement precludes compositing when the purpose is, for
instance, to estimate a quantile, because its estimator would be an order
statistic of individual aliquot values, or to predict the value at an unsampled
location or the global mean via kriging, because the predictors would be the
weighted means of individual aliquot values.

At first sight, one might expect that the present requirement also precludes
compositing when the purpose is to estimate the standard deviation between
the elements of the universe, because the usual estimator of this quantity is
not the unweighted sample mean or a function thereof. However, this prob-
lem can be circumvented by using multiple composite values rather than a
single one. If one takes a simple random sample of size n, forms a composite
aliquot, and repeats this process of sampling and bulking m times, the varia-
tion between the m composite values contains information about the standard
deviation. Section 7.2.3 discusses how in this case the standard deviation can
be estimated from the composite values.

Another instance where compositing would not seem to work is in locating
‘hot spots’, i.e., places with exceptionally high values. This kind of problem
typically requires very large sample sizes and high laboratory costs when work-
ing with individual aliquots only. However, methods have been developed that
allow a compromise in the sense that the individual aliquots are all divided
into a portion used to form composites and a portion stored for possible later
analysis. The idea is then to analyze all composites, and only those individual
aliquots that relate to high composite values. See Sect. 8.3.5 for a discussion
of these methods.

Arithmetic Averaging Can Be Replaced by Physical Averaging

In order to make this basic assumption valid, three requirements must be
met. First, the target variable must be directly measured in the aliquots,
or be defined as a linear transformation of one or more measured variables.
Otherwise, if the target variable is a non-linear transformation of one or more
measured variables, the transformation of the mean value(s) for a composite
aliquot is not equal to the mean of the transformed values for individual
aliquots. Neglecting this fact can lead to an unacceptable systematic error.
Examples of a target variable defined as a non-linear transformation are: the
indicator variable indicating whether or not the phosphate content in the
topsoil exceeds a given threshold, the available soil moisture content calculated
with a non-linear model from inputs measured at sampling locations, and pH
as a logarithmic transformation of hydrogen ion activity.

Second, after the aliquots have been combined and mixed, no physical,
chemical or biological interactions between the increments should take place
that influence the value of the target variable. This precludes, for instance,
compositing when the target variable depends on pH and some aliquots con-
tain calcium carbonate while others do not. Also, many soil physical measuring
techniques require aliquots to be undisturbed, which is usually compromised
by compositing.
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Third, compositing reduces laboratory costs, but it introduces two inter-
related sources of error: error by imperfect mixing of the composites and error
by subsampling the mixed composite. Also, random measurement errors will
cancel out less well in the case of composite sampling than with non-composite
sampling, because fewer measured values are averaged. The additional error
due to compositing should not increase the total error too much, and this
imposes a limit on the number of aliquots that can be bulked. The increase in
the contribution of measurement error to the total error could be counteracted
by taking multiple measurements from each composite while still preserving a
cost advantage. See Brus et al. (1999) for an example. Also, if mixing and sub-
sampling are important error sources, one could produce a number of smaller
composites from random subsets of aliquots, instead of one large composite.

Some influential theoretical publications on composite sampling are
Duncan (1962), Brown and Fisher (1972), Rohde (1976) and Elder et al.
(1980). Boswell et al. (1996) provide an annotated bibliography. Papers on
composite soil sampling have been presented by, e.g., Baker et al. (1981), Brus
et al. (1999), Cameron et al. (1971), Carter and Lowe (1986), Courtin et al.
(1983), Ruark et al. (1982), Reed and Rigney (1947), Webster and Burgess
(1984) and Williams et al. (1989).
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Optimization of Sample Selection

Decisions on sample selection are often taken on the basis of experiences in
comparable cases, practical considerations, prescribed protocols or convention.
This may be inevitable, and it may work satisfactorily. However, in principle
one would like to optimize the selection of the sample in terms of costs and
quality, employing the available information about the universe in question.
This is especially true for large projects requiring relatively large investments,
and when good prior information is available.

In this chapter we discuss how sample selection can be optimized in terms
of costs and the quality of the result. Our discussion focuses on point sampling
from a continuous universe and on two modes of optimization:

1. Quality maximization, under the constraint that the costs must not exceed
a given budget;

2. Cost minimization, under the constraint that the quality of the result
must meet a given minimum requirement.

As we have seen in previous chapters, the sample is not the only scheme item
that determines costs and quality. The assessment method, sample support
and bulking of aliquots are other items that affect costs and quality. Hence,
the sample selection can only be optimized after decisions have been made (at
least provisionally) on these other issues.

In the following sections we discuss various options with respect to quality
measures as the basis of optimization, and approaches to the optimization
process itself.

5.1 Quality Measures

Defining a quality measure is a prerequisite for ex-ante and ex-post evaluation
of the quality of the result, as well as for optimization of the sample selection.
As indicated in Sect. 3.2, this definition is usually the result of a ‘translation’
of an initial, more general formulation of the aim of the survey or monitoring
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project. This translation generally leaves room for choice, and the designer
should be aware of this, because this choice has direct consequences for the
design process. We distinguish three types of quality measures.

Utility Measures

These are functions of the error distribution, which specify the expected eco-
nomic losses due to given errors in the result. An error in the resulting data
may cause a loss when it causes the user to make a sub-optimal or wrong
decision. Hence, functions of this kind are derived from a detailed quantita-
tive analysis of the consequences of errors. This involves analysing how the
error in the results propagate to the outcome of the economic analysis. See
Bie and Ulph (1972) for an early example of this approach in the context of
landuse planning on the basis of an imperfect soilmap. In many cases such
an uncertainty analysis is unfeasible, but if a realistic utility function can be
defined, then this is to be preferred over statistical or geometric functions,
because it offers a more accurate representation of the quality. This type of
measure requires the availability of a stochastic model of the variation as prior
information.

Statistical Measures

These are also functions of the error distribution, but they are generic and
do not specify expected economic losses. Instead, they reflect the accuracy,
precision or reliability of the result. Common measures for estimates and
predictions are the standard error, the error variance and the half–width of
confidence or prediction intervals. These measures are appropriate for more-
or-less symmetrically distributed errors. For non-symmetrically distributed
errors, and in case one is able to estimate the conditional probability density
of these errors one could choose to minimize the entropy (Bueso et al., 1998).

For qualitative results, as produced by hypothesis testing or classification,
the power of the test and error rates are common measures. Statistical mea-
sures are easier to apply than utility measures, but less closely related to the
actual use of the result. As with utility measures, statistical measures need a
stochastic model of the variation, either in the form of prior estimates of one
or more variance components, or in the form of a geostatistical or time-series
model.

Geometric Measures

These measures can be viewed as substitutes for statistical and utility mea-
sures. They can be used to facilitate the optimization of spatial sampling
locations when the application of a statistical or utility measure is unfeasible,
e.g., because a realistic model of the variation is not available. An example
is the Mean Squared Shortest Distance, a measure used to create ‘spatial
coverage’ samples (Sect. 8.3.3).
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5.2 Approaches to Optimization

The aim of this section is to give a broad overview of approaches to optimiza-
tion of sample selection. More details are given in various sections on sampling
methods. Section 5.2.1 discusses optimization for a single target quantity.
It appears that optimization in the design-based approach is quite different
from optimization in the model-based approach. Section 5.2.2 discusses the
more complicated case of optimization for multiple target quantities. Here,
the choice of an optimization method will be largely governed by the reason
why there are multiple target quantities.

5.2.1 Optimization for a Single Target Quantity

As explained below, optimization of sample selection is different in the design-
based approach and the model-based approach (Sect. 2.2.1). Optimization in
model-based sampling tries to find the best sampling pattern within the target
universe. This works roughly as follows.

If the optimization mode is ‘quality maximization’, the affordable sample
size is first determined from the given budget. An iterative search algorithm
is then used to find the optimal sample of that size. To keep computation
time within reasonable limits, the search is typically confined to some subset
of possible positions, e.g., selections from a user-specified discretization grid.
During the search, the chosen quality measure is evaluated for a large number
of candidate samples, but the algorithm generally does not guarantee that a
global optimum will be reached. Therefore the search should be repeated with
different initial solutions.

If the optimization mode is ‘costs minimization’, the problem is more com-
plex because now the best combination of both sample size and sampling pat-
tern has to be found. A practical approach is to conduct a ‘quality maximiza-
tion’ for each of a series of eligible sample sizes, and to retain the combination
with the smallest sample size that still meets the given quality requirement.

Optimization in design-based sampling is different from that in model-
based sampling, because design-based inference implies that a probability
sample is drawn, i.e., the sampling pattern is stochastic and cannot be opti-
mized as such. However, the randomized selection takes place within certain
randomization restrictions, which characterize the sampling design and vary
in nature and complexity. Thus, optimization in design-based sampling tries
to find the best sampling design rather than the best sampling pattern.

In order to explain the optimization of sampling designs, we must have
a closer look at the randomization restrictions that they impose. A very ba-
sic kind of restriction is imposed by the design ‘Simple Random Sampling
(Sect. 7.2.3) with sample size n’, which is that all samples of a size other than
n are excluded from selection. A slightly more complex restriction is imposed
by the design ‘Stratified Simple Random Sampling (Sect. 7.2.4) with sam-
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ple sizes n1, . . . , nk in the strata U1, . . . ,Uk’, allowing only samples with the
pre-specified sample sizes in the strata.

An even more complex combination of restrictions is imposed, for instance,
by ‘Cluster Random Sampling (Sect. 7.2.6) by n random transects in a north-
south direction and equidistant sampling locations d metres apart’. While
these restrictions determine the number and direction of the transects and
the inter-point distance, the only randomness left is in the starting points of
the transects. These examples illustrate that randomization restrictions can
be quantitative (e.g., numbers, distances) or qualitative (e.g., type of cluster,
shape of strata).

Optimization of qualitative randomization restrictions is computationally
more cumbersome in general, so in practice optimization will often be limited
to quantitative restrictions, given a provisional decision on possible qualitative
restrictions. The quantitative restrictions are related to total sample size,
sample size per stratum, number of primary and secondary units (as in Two-
Stage Random Sampling (Sect. 7.2.5)) and number of clusters.

Optimization methods for these parameters work with a stochastic model
of the variation, as with optimization in model-based sampling, according to a
utility or statistical measure. The use of a model in the design-based approach
may be confusing at first sight. Keep in mind, however, that the model is only
used to optimize the sampling design, not for inference from the sample data.

What was said above about costs minimization versus quality maximiza-
tion in model-based sampling applies to design-based sampling as well. Spe-
cific details on optimization in design-based sampling in space are presented
in Sect. 7.2, along with the various types of random sampling designs.

5.2.2 Optimization for Multiple Target Quantities

A predominant factor which complicates optimization is that survey and mon-
itoring often have more than one purpose, in the sense that more than one
target quantity is defined. This may be because there is more than one do-
main, or more than one target variable, or more than one target parameter.
Application of a single quality measure to multiple target quantities yields
multiple qualities (or a multivariate quality), and the outline given above is
then no longer directly applicable.

The choice of a suitable approach to optimization with multiple qualities
depends on the reason why there are multiple qualities. Therefore we discuss
these situations separately.

More Than One Domain

We discuss two cases, one where the domains have extensions in space and/or
time, and one where the domains are prediction points.
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Non-Point Domains

In this case, the universe is divided into a number of disjoint parts for which
separate results are required.

First let us consider costs minimization. This optimization mode assumes
that a quality requirement is given for each domain individually, e.g., the error
variance for each domain must be smaller than a user-specified maximum. If
the overall costs can be reasonably approximated by the sum of the costs per
domain, and if sampling and inference is done in such a way that the qualities
of the results for the domains are approximately independent of each other,
then overall costs minimization can simply be done by costs minimization per
domain, along the line indicated for the case of a single target quantity.

In the design-based approach, the condition of quality independence be-
tween domains can be met by using the domains as strata and sampling them
independently (Sect. 7.2.4). In the model-based approach, this independence
can be introduced by assuming – if only to simplify the optimization – that
the inference will be limited to the sample data from within each domain.
This may not be unreasonable, because it leads to conservative predictions of
the qualities if, in reality, data from other domains are also used.

For quality maximization, given a total budget for all domains together,
there are two options. The first option is to assign weights to the qualities
in the domains, and then to define a single overall quality measure as the
weighted average of the qualities per domain (see Sect. 8.2.2). The other option
is to define the overall quality measure as the minimum of the qualities per
domain. Whatever the definition, this single overall quality can in principle
be maximized through a search algorithm dividing the total budget among
the domains.

Point Domains

A common instance is a regular grid of prediction points created for the con-
struction of a map by means of model-based inference (e.g., kriging, Sect. 8.3).

Quality maximization, given a total budget and a maximum sample size
derived from it, also offers the same two options as in the case of domains
with an extension. One option is to assign weights to the qualities at the
prediction points, and then to define a single overall quality measure as the
weighted average of the qualities per point. The other option is to define the
overall quality measure as the minimum of the qualities per point. However
it is defined, this single overall quality can be maximized through a search
algorithm such as simulated annealing (Sect. 8.3.4).

Costs minimization assumes that a quality requirement is given for each
prediction point, and must be implemented over the combination of sample
size and sampling pattern. The difference with costs minimization in the case
of domains with an extension is that here the assumption of quality indepen-
dence is untenable; a change in sample size or pattern will affect the qualities
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at various prediction points simultaneously. This makes optimization more
complicated.

Similar to the case with a single target quantity (Sect. 5.2.1), a practical
approach would be to optimize1 the pattern for each of a series of eligible
sample sizes, and to retain the combination with the smallest sample size
that still meets the given quality requirements for the prediction points.

More than one target variable

This situation occurs when multiple target variables are to be determined at
the same sampling events. We briefly discuss three typical cases.

Spatial Cumulative Distribution Function (SCDF)

In order to estimate or predict the SCDF of some variable, a series of in-
dicator variables is defined that correspond with increasing threshold values
of the variable. The indicator variables are treated as the target variables.
The spatial means of the indicators are interpreted as fractions, which are the
target quantities.

In principle, there are as many qualities as there are threshold values, but
in this case it may be appropriate to reduce these to a single quality on prior
grounds. For instance, the fraction closest to 0 or 1 will have the smallest
relative precision, and this may be selected as the most critical single quality,
on the basis of which either quality maximization or costs minimization is
performed.

Spatial Coverages of Plant Species

In the context of survey of vegetation, information may be required about
the spatial coverages of different plant species. The presence or absence of the
species is represented by indicator variables which, once again, are treated as
the target variables, and their spatial means as target quantities.

Just as in the previous case, there are as many qualities as there are plant
species, and to simplify the optimization one might select a single quality on
prior grounds. In this case, however, it may be more appropriate to select the
quality for the ecologically most relevant species as the one for which either
quality maximization or costs minimization is performed.

The underlying assumption of this approach is that, while the sample
selection is optimized for a single species, the results for the other species
will still be satisfactory. If this assumption is deemed unrealistic, it may be
necessary to have recourse to the approach outlined for the case of prediction
points as domains.

1 The pattern could be optimized by simulated annealing (Sect. 8.3.4 and Appendix
A) with a penalty function accounting for differences between the expected qual-
ities and the required qualities
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Concentrations of Pollutants

In the context of environmental monitoring, information is often required
about the concentrations of a set of pollutants. The concentration of each
pollutant is treated as a target variable, and the spatio-temporal means of
these concentrations are the target quantities. This case resembles the previous
one as far as optimization is concerned, and sample selection may be optimized
in the same way.

There may be one difference, however, namely when the option is available
not to measure all concentrations at all sampling events. This is the case, for
instance, if the aliquots taken on the sampling events can be analyzed for
varying sets of pollutants. It may then be cost-efficient to limit the more
expensive analyses to a subsample and to use possible correlations in the
inference. This can be done by Two-Phase Random Sampling and regression
estimators (Sect. 7.2.11).

More than one target parameter

A typical example is when an estimate is required of both the mean and the
standard deviation of a quantitative target variable. Exact optimization in
such a case would generally require stochastic simulation.

A rough approach to costs minimization, given a quality requirement for
each parameter, would be to assume a parametric distribution on the basis
of the available prior information, e.g., a normal distribution with a prior
estimate of the standard deviation. Assuming Simple Random Sampling and
using standard formulae one can predict the precision of estimates of both
parameters for each of a series of eligible sample sizes. The smallest sample
size that still satisfies the quality requirements is then chosen. This leaves a
safety margin if a more efficient sampling design is applied, as will normally
be the case.
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Introduction to Sampling in Space

As regards ‘space’, it is assumed that in the structured approach to designing
survey and monitoring schemes (Chap. 3.2), the design information speci-
fies that the universe of interest is purely spatial, i.e., no time dimension is
involved. This part therefore deals with the situation in which a once-only sur-
vey can deliver the required information. Of course, the methods presented
here can be applied more than once in the same area. That would, however,
constitute a form of monitoring, the implications of which are dealt with in
Part IV ’Sampling in Space–Time’.

Sampling for survey of natural resources can be done in 1D, 2D or 3D
space. Although the spatial universe of interest is often a three-dimensional
body, sampling is mostly carried out in the horizontal plane, i.e., in 2D space,
so that the sampling locations have only two coordinates. Therefore we present
the methods in terms of 2D sampling; for instance, we will use the term
‘area’ rather than ‘spatial universe’. Sampling in 1D or 3D space is discussed
separately, in Sect. 7.2.16.

In Sect. 4.1 we already stressed the importance of the choice between
design-based or model-based inference because design-based inference requires
probability sampling, whereas for model-based inference non-probability sam-
pling is most appropriate. We shall discuss the pros and cons of these two
approaches to sampling and inference now in more detail in the context of
spatial survey. Broadly speaking, the suitability of design-based methods, rel-
ative to model-based methods, is greatest for global quantities such as the
spatial mean, and diminishes as one moves to smaller and smaller sub-areas,
and finally to estimation at specific points. Neither of the two approaches has
a monopoly, not even at the extremes of the spatial resolution continuum,
viz. the area as a whole and individual point locations. This broad picture is
illustrated in Fig. 6.1. It should be noted that the relative suitability func-
tions depicted in this figure only reflect our global expectations of suitabilities,
‘averaged’ over a broad class of different cases that could be encountered in
practice.
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Fig. 6.1. Relative suitability of the design-based and model-based approaches to
sampling, as a function of the spatial resolution at which estimates are required

In reality there are more factors that determine the suitability than spatial
resolution alone. These factors relate to the following questions.

1. Should the estimation or the test of the global quantity be ‘design-
unbiased’, i.e., correct on average over repetitions of the sampling process
using the same sampling design? Design-unbiasedness can be regarded as a
strict guarantee against bias in sampling, such as may arise in convenience
or purposive sampling. If this guarantee is required, then a design-based
method is the only option.

2. Should the accuracy of the estimate or the power of the test be quantified
objectively, i.e., without recourse to assumptions on the spatial variation?
A positive answer to this question rules out model-based methods.

3. Is random sampling in the field practically feasible? If not, then some
form of convenience or purposive sampling combined with model-based
inference is the obvious choice.

4. Is a reliable model of the spatial variation available? Only if this is the
case, can the model-based approach be sensibly applied.
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5. Do substantial spatial autocorrelations exist between sampling locations
and prediction locations? If not, then the computational effort involved in
model-based inference will be fruitless.

6. Is composite sampling acceptable and would it reduce costs significantly?
The conditions under which composite sampling is acceptable are dis-
cussed in Sect. 4.3. In principle, costs can be significantly reduced by
compositing if laboratory analyses of individual aliquots would consume
a considerable portion of the total budget. If composite sampling is an at-
tractive option, this could be a reason to prefer a design-based method over
a model-based one. The reason is that design-based methods allow com-
positing of aliquots taken at large mutual distances, possibly across the
entire area, whereas with model-based methods, compositing is in practice
always limited to aliquots from within small neighbourhoods. In general,
compositing of aliquots that are wider apart yields a greater reduction of
sampling variances, hence greater precision of the final estimates.

7. Are multiple realizations of a random field needed for the inference about
the target quantity? Such realizations are to generated by simulation with
a stochastic model of the variation, hence a model-based method must be
used. A condition that makes simulation inevitable is when the target
quantity is a nonlinear function of multiple values of the target variable.
This is the case, for instance, with detection problems (the target quantity
being the maximum of a 0/1 indicator variable), and with target quanti-
ties defined by neighbourhood operations, such as the (surface) area of a
watershed.

As there are several misconceptions in the literature on this issue, we repeat
from Sect. 4.1 that the design-based methods presented in Sect. 7.2 are valid,
regardless of the structure of the spatial variation, because they do not make
any assumption about that structure.

A typical application of design-based sampling strategies is to estimate the
areal mean of a directly measured quantitative variable. However, the scope
of these strategies is much wider than this, and can be expanded in three
directions: derived variables, other parameters and smaller areas or sub-areas.

First, the target variable need neither be quantitative, nor directly mea-
sured. If the target variable is measured on a nominal or ordinal scale, the
sample data consist of class labels, and these can be analyzed statistically
by first transforming them into 0/1 indicator variables. The presence and ab-
sence of a given class are thereby re-coded as 1 and 0, respectively. Of course,
if there are k mutually exclusive classes, only k − 1 indicator variables are
needed. The mean of an indicator variable can be interpreted as the fraction
of the area in which the class occurs. Transformation into indicator variables
can also be applied to quantitative variables in order to estimate the areal
fraction in which the variable exceeds a given threshold. This technique can
be extended to estimate the entire Spatial Cumulative Distribution Function
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(SCDF) of a quantitative variable. In that case, areal fractions are estimated
for a series of threshold values.

Apart from the simple 0/1 transformations, the target variable may be
the output of a more or less complicated model for which the input data
are collected at the sampling locations. Another important case of indirect
determination is in validation studies, where the target variable represents an
error, i.e., the difference between a measured value and a value predicted by
a process model or a spatial distribution model, such as a thematic map. A
common example is the error resulting from a classification algorithm applied
to remotely sensed images. The errors determined at the sampling locations
can be used to estimate their spatial mean (which equals the bias), the mean
absolute error, the mean squared error or the entire SCDF of the errors.

Second, the target parameter does not need be the spatial mean. For in-
stance, it may also be a quantile, such as the 90th percentile, the spatial
variance, a tolerance interval or a parameter of a model relating one or more
predictor variables to a variable of interest. See Krishnaiah and Rao (1988)
and Patil and Rao (1994) for design-based statistical inference on these and
other target parameters.

Third, the region for which estimation or hypothesis testing is required
need not be the entire area sampled; interest may also focus on one or more
sub-areas, or in estimation at points. This subject is dealt with in Sect. 8.2.

Traditionally, the design-based method focused on discrete populations,
and therefore representation of the universe is discrete in this approach. For
instance, the mean is defined as an average over all N population elements.
In this book we adhere to this usage in most cases, even when the universe is
continuous. The continuous universe is first discretized by a fine grid of which
the nodes represent the possible sampling locations. These methods are thus
presented in a finite population mode, whereby the size of the universe is a
dimensionless quantity (the number of nodes). In the model-based approach,
on the other hand, the universe consists of an infinite number of possible
sampling locations, and its size is measured in units of length, (surface) area
or volume.

6.1 Contents

This part is divided into three chapters, according to what the aim of the sam-
pling is: sampling for global quantities in space (Chap. 7), for local quantities
in space (Chap. 8), or for variograms to model the spatial variation (Chap. 9).
The chapters 7 and 8 form the main body of this part. They are each divided
into a section on design-based methods and a section on model-based methods.

The section on design-based methods for global quantities (7.2) is the
largest section of this part. It contains not only subsections on basic and
advanced types of sampling designs and on how to choose from them (7.2.2–
7.2.8), but also subsections on special sampling techniques like Probabilities-
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Proportional-to-Size Sampling (7.2.9), Sequential Random Sampling (7.2.10),
Line-Transect Random Sampling (7.2.13), and Line-Intercept Random Sam-
pling (7.2.14). Two subsections deal explicitly with the use of ancillary infor-
mation in sampling and in inference from sample data (7.2.11 and 7.2.12).
Finally, there is a special subsection on model-based optimization of sample
sizes for design-based sampling (7.2.15), and one on sampling in 1D or 3D
space (7.2.16).

The section on model-based methods for global quantities (7.3) treats Cen-
tred Grid Sampling (7.3.2) and Geostatistical Sampling (7.3.3), i.e., optimiz-
ing the sampling pattern with the aid of a geostatistical model. The section
on model-based methods for local quantities (8.3) in addition contains a sub-
section on Spatial Coverage Sampling (8.3.3). Both sections (7.3) and (8.3)
contain a separate subsection on sampling of hot spots. Sampling for answering
the question ’Is there a hot spot?’ is treated in Sect. (7.3.4), while the question
’Where is the critical threshold exceeded?’ is dealt with in Sect. 8.3.5).

The section on design-based methods for local quantities (8.2) deals with
probability sampling for quantities defined on sub-areas (8.2.2) and for esti-
mation of values at points (8.2.3).

Finally, Chap. 9 presents sampling and inference methods for variogram
estimation. The sampling methods entail regular patterns (9.2) and optimized
patterns (9.3). The inference methods are the method-of-moments (9.4.1) and
maximum likelihood estimation (9.4.2).
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Global Quantities in Space

7.1 Introduction to Methods for Global Quantities in
Space

This chapter presents sampling and statistical inference methods leading to
statistical results about global quantities in space. By ‘global quantities’ we
mean the Spatial Cumulative Distribution Function(SCDF) of the target vari-
able in the entire area, or quantities that can be derived from the SCDF, such
as the mean, the median and other quantiles, the spatial variance, standard
deviation and coefficient of variation, and tolerance intervals. Examples of
global quantities in space are the mean phosphate content in the topsoil of an
agricultural field, the areal fraction of a nature conservation area covered by
some plant community, the SCDF of the nitrate concentration in the upper
groundwater at the start of the growing season in an agricultural area, etc.

This chapter focuses on methods for the mean, which is the most relevant
global quantity in practice, and on the SCDF, the basic function from which
all other global quantities can be derived. In this context, areal fractions and
percentages may be regarded as special cases of the mean. The spatial mean
should not be confused with the concept of model mean, which is a model
parameter representing the statistical expectation over realizations from a
stochastic process, see Sect. 3.7. Estimation of the mean µ of a geostatistical
model of the spatial variation is briefly dealt with in Sect. 2.2.

An important choice to be made is that of methodology: should one follow
the design-based or the model-based approach? As this choice has impor-
tant consequences for sampling and inference, this chapter is divided into a
section on design-based methods (Sect. 7.2) and one on model-based meth-
ods (Sect. 7.3). The difference between these two approaches is explained
in Sect. 2.2.1 A general discussion on the choice between them is given in
Sect. 4.1. For sampling in space the issue is discussed in more detail in Chap. 6,
from which we repeat that design-based methods are generally more suitable
for global quantities than model-based methods.
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Estimation of global quantities is the ‘homeland’ of the design-based ap-
proach to sampling, and adaptation of these methods from the general non-
spatial context in which they were originally developed to the spatial context
is straightforward. This is precisely the reason why most of the design-based
methodology is presented in this chapter.

7.2 Design-Based Methods for Global Quantities in
Space

7.2.1 Introduction

Basic Concepts of Design-Based Sampling

This section discusses how design-based sampling strategies work and how
they can be applied in surveys. The aim is to promote understanding of the ba-
sic principles at an intuitive level, i.e., the section is not meant as an exposé of
sampling theory. A somewhat practically oriented handbook on design-based
sampling strategies is Cochran (1977), from which most of the discussion pre-
sented here was derived. A comprehensive reference work on sampling theory
is Särndal et al. (1992).

The general pattern in the development of sampling strategies is to take
the simplest random selection method (Simple Random Sampling, Sect. 7.2.3)
as a starting point, with complete random selection of all sampling locations.
This is followed by the identification of restrictions on randomization which
reduce the sampling variance or the operational costs, or both. Different types
of restrictions can be distinguished, each giving rise to a different type of
sampling design.

Before discussing the various types of design, the statistical concept of
sampling design itself needs to be defined more precisely. It is formally defined
as a function that assigns a probability of selection to any set or sequence of
sampling units in the universe. If units are drawn ‘without replacement’, a unit
can occur only once in the sample, resulting in a random set. If they are drawn
‘with replacement’, a unit can occur more than once in the sample, yielding
a random sequence. For instance, the sampling design for Simple Random
Sampling, with point support, drawing without replacement, and sample size
25, assigns equal selection probabilities to every possible set of 25 points in
the area and zero probability to any set with less or more than 25 points.
Note that a design assigns probabilities to sets or sequences of units, not to
individual units.

This book focuses on point sampling from continuous universes in space
and/or time. The target universe therefore theoretically represents an in-
finitely large population of possible sampling locations, and the distinction
between sampling with replacement and sampling without replacement is im-
material. Even if the sample is drawn from a fine discretization grid, the num-
ber of possible sampling locations should still be very large compared with the
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sample size. To avoid undue complexity, we formally assume that point sam-
ples are drawn without replacement, thus considering them as sets. Although
in principle non-replacement causes correlations between observations, these
are negligible in this context, as are finite population corrections.

A sampling strategy is defined as a combination (p, t) of a sampling design
(p) and an estimator (t) for a given target parameter (T ), such as the mean
of the area. For instance, Simple Random Sampling with sample size (n) 25
and the unweighted sample mean as an estimator is a sampling strategy for
the areal mean. Statistical quality measures, like bias and variance, can only
be defined and evaluated for combinations of design and estimator, not for a
design or an estimator on its own.

In the example given, n=25 is a design attribute assigned to the selection
method of Simple Random Sampling. Another example of a design attribute is
the particular stratification applied in Stratified Simple Random Sampling. A
selection method without specification of the relevant attributes is referred to
below as a design type. Within each design type, numerous designs are possible
by varying the attributes. Thus, Simple Random Sampling is an example of
a design type, and another example is Stratified Simple Random Sampling.
Two attributes have to be assigned to the latter type: stratification (a division
of the area into sub-areas) and the sample sizes in each of the strata.

Before discussing how to choose a sampling strategy in Sect. 7.2.2, we give
an overview of the design types that are most relevant to survey.

Overview of Sampling Design Types

The design types which we present in this section can be divided into five
main groups:

1. basic design types;
2. compound design types;
3. spatial design types;
4. two-phase design types;
5. sequential design types.

Basic design types are:

• Simple Random Sampling (Sect. 7.2.3): locations are drawn from the uni-
verse, at random and mutually independent.

• Stratified Simple Random Sampling (Sect. 7.2.4): the locations in the uni-
verse are divided into groups, here called ‘strata’, and Simple Random
Sampling is applied to each stratum.

• Two-Stage Random Sampling (Sect. 7.2.5): the locations in the universe
are divided into groups, here called ‘primary units’ (PUs), a random sam-
ple of PUs is drawn in the first stage, and Simple Random Sampling is
applied to each selected PU.
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Fig. 7.1. Similarities and differences between the basic design types

• Cluster Random Sampling (Sect. 7.2.6): the locations in the universe are
divided into groups, here called ‘clusters’, after which a number of clusters
(> 1) are randomly selected, and all locations of the selected clusters are
included in the sample. In the spatial context, the clusters are typically
defined so as to form regular spatial patterns, e.g., equidistant locations
on a line.

• Systematic Random Sampling (Sect. 7.2.7): similar to Cluster Random
Sampling, except that only one cluster is selected. Again, in the spatial
context this single cluster is typically defined so as to form a regular spatial
pattern of locations, e.g., a square grid.

• Probabilities-Proportional-to-Size (pps-)Sampling (Sect. 7.2.9): Sampling
units are selected with probabilities proportional to their size or to an
ancillary variable that is correlated with the target variable.

The differences and similarities between these types are illustrated by the
logical tree in Fig. 7.1, except for pps-Sampling, which can be regarded as a
variety of Simple Random Sampling with unequal instead of equal selection
probabilities.

Compound design types (Sect. 7.2.8) are combinations or nested structures
of basic design types; they represent more advanced sampling methods. For
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instance, in the second stage of Two-Stage Random Sampling one could apply
Cluster Random Sampling instead of Simple Random Sampling.

Spatial design types (Sect. 7.2.8) sample on the basis of the spatial coor-
dinates of the possible sampling locations in the area. Sampling by a basic
or compound type of design, on the other hand, could in principle be done
from a list-type of sampling frame, with all possible sampling locations in any
order, regardless of their spatial position. (Spatial varieties of Cluster Ran-
dom Sampling and Systematic Random Sampling, with their regular point
patterns, obviously use coordinates too, but only in defining the clusters).
Like compound design types, spatial design types represent more advanced
sampling methods.

Two-Phase design types (Sect. 7.2.12) are sampling methods exploiting
the correlation between a cheap-to-measure ancillary variable and the target
variable. In the first phase, a relatively large sample is taken, in which only
the ancillary variable is measured. In the second phase, a subsample is taken
from the large sample, and the target variable is measured only in this sub-
sample. If the ancillary variable is quantitative, then a ‘regression estimator’
(see Sect. 7.2.11) is used to estimate means or fractions. In case of a qualitative
ancillary variable one can use ‘poststratification’ (Sect. 7.2.11).

Sequential design types (Sect. 7.2.10) proceed by taking samples one-at-
a-time or batch-by-batch, during which a statistic is calculated to determine
whether or not to continue.

7.2.2 Choosing a Design-Based Strategy for Global Quantities in
Space

As explained in the previous section, sampling strategies consist of three major
components: design type, design attributes and estimator. With few excep-
tions, these components have to be chosen in this order, because the attributes
depend on the type, and the estimator depends on both the type and the at-
tributes (see Fig. 7.2). Only the first choice, that of the design type, is treated
in this section; the other two are discussed in the various sections on the design
types.

First choice: Design type
Second choice: Design attributes

ff
Sampling design

Third choice: Estimator

9=
; Sampling strategy

Fig. 7.2. Major choices in deciding on a design-based sampling strategy

Choosing a design type involves many aspects. In order to structure the
design process in a manageable form, we have condensed and schematized
these considerations in the decision tree presented in Figs. 7.3, 7.4, and 7.5.
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Fig. 7.3. Decision tree to aid the choice of a design type for global quantities in
space
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Fig. 7.4. Continuation of Fig. 7.3

Fig. 7.5. Continuation of Fig. 7.3
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Some comments must be made on this tree. Firstly, it is the result of many
simplifications, so the outcomes should be interpreted as suggestions rather
than inescapable conclusions. Second, we have kept some questions more or
less vague because we believe that the underlying logical structure is inherently
vague. Thirdly, while this tree assumes clear-cut answers (yes or no), these
are often not unequivocally possible. If one has considerable doubt about the
answer to a question, we suggest that both branches of the tree are followed.

For surveys with several target variables the answers to the questions can
be conflicting. We repeat here our recommendation of Sect. 3.3 to avoid com-
plex sampling designs for surveys with multiple target variables. For instance,
stratified random sampling may be efficient for surveys of a single target vari-
able, but inefficient for surveys of several target variables.

Although the decision tree has been developed for survey sampling, it can
in principle also be used for choosing a spatial design in monitoring. However,
in the case of monitoring two considerations follow from the need for flexibil-
ity as argued in Sect. 3.6. First, the spatial sampling design should be kept
simple, because simple designs can be adapted most easily to changing condi-
tions during the monitoring (see Overton and Stehman (1996) for a detailed
discussion of this issue). Second, designs leading to good spatial coverage are
often preferable, because the sub-areas for which separate results are required
may change during the monitoring.

7.2.3 Simple Random Sampling

Restriction on Random Selection

No restrictions on random selection are imposed other than that the sam-
ple size is fixed and chosen beforehand. All sampling locations are selected
with equal probability and independently from each other. The sample size
is the only attribute to choose for this type of design; see ‘Sample Size for
Estimation’ or ‘Sample Size for Hypothesis Testing’.

Selection Technique

The following algorithm for Simple Random Sampling with sample size n is
applicable to irregularly shaped areas.

(a) Determine the minimum and maximum s1 and s2 coordinates of the area:
s1,min, s1,max, s2,min and s2,max.

(b) Generate two independent (pseudo-)random coordinates, s1,ran and s2,ran,
from the uniform distribution on the interval (s1,min, s1,max) and (s2,min,
s2,max), respectively.

(c) Use a point-in-polygon routine to determine whether the location (s1,ran,
s2,ran) falls within the area. Accept the location if it does; skip the location
if it does not.
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Fig. 7.6. Notional example of a simple random sample

(d) Repeat steps (b) and (c) until n locations have been selected.

Step (c) assumes that a perfect sampling frame is available in the form of
a GIS representation. In practice, however, imperfections of the frame may
appear after inspection of the projected sampling locations in the field. If
projected sampling locations are for some reason judged not to belong to
the target universe, then shifting to nearby locations would cause bias, as
boundary zones become oversampled. The correct remedy is to delete such
locations from the sample and to replace them by sampling locations from a
reserve list in pre-determined order.

Example

Figures 2.1a, b and c show three realizations of Simple Random Sampling
with 25 locations; Fig. 7.6 is an example with n = 16. Notice the irregularity,
the clustering and the empty spaces between the sampling locations, which
are typical of Simple Random Sampling.

Advantages and Disadvantages

The simplicity of this type of design enables relatively simple and straight-
forward statistical analyses of the sample data, even for non-standard esti-
mation and testing problems. One disadvantage is that the sampling variance
is usually larger than with most other types of design at the same costs,
for two possible reasons: (i) spatial coverage by the sample may be poor,
(ii) visiting sampling locations that are irregularly distributed may be more
time-consuming for logistical reasons, and higher per-sample costs result in
a smaller sample size. Another disadvantage is that estimation in domains
(Sect. 8.2) may be impossible because large empty spaces may occur between
the sampling locations.
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Statistical Inference

The spatial mean of the area, z̄, for a quantitative target variable z is estimated
by:

ˆ̄zSI =
1
n

n
∑

i=1

zi , (7.1)

where n is the sample size and zi is the value at sampling location i. The sub-
script SI is added to stress that this estimator is intended for Simple Random
Sampling designs.

The strategy (SI, ˆ̄zSI) is ‘p-unbiased’; this is a quality measure defined as:
Ep

(

ˆ̄zSI

)

= z̄, where Ep(·) denotes the statistical expectation over all possible
sample realizations from a design p (in this case Simple Random Sampling).
This means that if one were to repeat sampling, measuring and calculating
ˆ̄zSI in the same way again and again, one would find on average the true value
z̄. If measurement errors are present, the unbiasedness still holds if the errors
are purely random, i.e., zero on average.

The sampling variance of the estimated mean, V
(

ˆ̄zSI

)

, is estimated by:

̂V
(

ˆ̄zSI

)

=
1

n (n − 1)

n
∑

i=1

(

zi − ˆ̄zSI

)2
, (7.2)

and the standard error is estimated by the square root of ̂V
(

ˆ̄zSI

)

. For sampling
without replacement of finite populations the estimated variance must be
multiplied by

(

1 − n
N

)

, the finite-population correction.
If the data contain random and mutually independent measurement errors,

their contribution to the total estimation error is automatically included in
the estimated variance ̂V

(

ˆ̄zSI

)

.
The 100(1 − α)% confidence interval for z̄ is given by:

ˆ̄zSI ± t1−α/2 ·
√

̂V
(

ˆ̄zSI

)

, (7.3)

where t1−α/2 is the (1−α/2) quantile of the Student distribution with (n−1)
degrees of freedom. This confidence interval is based on the assumption that z,
and as a consequence ˆ̄zSI, is normally distributed. If the distribution deviates
clearly from normality, the data should be first transformed to normality, for
instance by taking the logarithm. The interval boundaries thus found are then
back-transformed to the original scale. Transformation is not necessary if n
is large, because ˆ̄zSI is then approximately normally distributed according to
the Central Limit Theorem.

In the case of composite sampling (Sect. 4.3), a single composite aliquot
may be formed by bulking all n individual aliquots from a simple random
sample. The measured z-value of the composite is then a p-unbiased estimate
of the spatial mean, with sampling variance S2(z)/n. However, the spatial
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variance S2(z) is generally unknown and cannot be estimated from a single
measurement.

An unbiased estimate of the standard error can be obtained by repeating
the process of sampling, bulking and measuring. If m composite aliquots are
formed, each from a simple random sample of size n, the spatial mean is
estimated by:

ˆ̄zc =
1
m

m
∑

j=1

zcj , (7.4)

where zcj is the value measured on composite j. The subscript c indicates
that this estimator applies to composite simple random samples.

The sampling variance of ˆ̄zc is estimated by:

̂V
(

ˆ̄zc

)

=
1

m (m − 1)

m
∑

j=1

(

zj − ˆ̄zc

)2
, (7.5)

and the standard error is estimated by the square root
√

̂V
(

ˆ̄zc

)

. Confidence
intervals are calculated according to (7.3), except that now there are m degrees
of freedom.

The formulas for estimating means can also be used to estimate fractions
of the area where a given condition in terms of the target variable is met,
such as the fraction of the area where a qualitative target variable has a given
value, for instance ‘very suitable’, or where a quantitative target variable ex-
ceeds a given threshold. Areal fractions can be estimated by first generating
a 0/1 indicator variable from the sample data, with value 1 if the condition is
met (in the example above, if z= ‘very suitable’) and 0 otherwise. The above
formulas are then simply applied to this indicator variable. The only excep-
tion is the calculation of confidence intervals, because the indicator variable
is clearly not normally distributed. The sample fraction has a binomial dis-
tribution, and with small samples (n < 20) this distribution should be used
to construct confidence intervals. For larger samples, the distribution is close
enough to normality and (7.3) will be sufficiently accurate for most practical
applications.

The Spatial Cumulative Distribution Function (SCDF) of z can be es-
timated through repeated application of the indicator technique described
before. The measured variable z is first transformed to a series of indicator
variables corresponding to a number of increasing thresholds. The areal frac-
tions estimated from these indicators, together with the thresholds, form an
estimate of the SCDF.

Estimation of areal fractions or SCDFs on the basis of predictions from
a regression model deserves special attention. Suppose one wants to estimate
the fraction of the area where some variable z exceeds a given threshold zt,
and that z is not measured directly at the sampling locations, but predicted
by a regression model. A naive approach would then be to apply the indicator
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technique described above to the regression predictions. However, this may
lead to serious bias in the estimated fraction, especially if the prediction errors
are large relative to the difference between the predictions and the threshold.
A simple way to avoid this is to calculate from the regression model the
probabilities of exceeding the threshold at the sampling locations, and to
apply the usual estimation formulas (7.1), (7.2) and (7.3) to these probabilities
instead of the indicator variable. It can be shown that the resulting estimate
of the areal fraction as well as its standard error are p-unbiased.

The spatial variance of z between locations in the area, S2(z), is estimated
by:

̂S2(z) =
1

(n − 1)

n
∑

i=1

(

zi − ˆ̄zSI

)2
, (7.6)

and the standard deviation by the square root: ̂S(z) =
√

̂S2(z).
The variance between locations in the area can still be estimated in the

case of m composite simple random samples, namely by:

̂S2(z) =
n

(m − 1)

m
∑

j=1

(

zj − ˆ̄zc

)2
. (7.7)

Sample Size for Estimation

The sample size needed to estimate a mean such that, with a specified large
probability (1 − α), the relative error |(ˆ̄z − z̄)/z̄| is smaller than a particular
limit r, can be calculated by:

n =

(

u1−α/2 · S̆(z)
r ˘̄z

)2

, (7.8)

where u1−α/2 is the (1 − α/2) quantile of the standard normal distribution,
S̆(z) is a prior estimate of the standard deviation of z in the area, and ˘̄z is
a prior estimate of the mean. In this equation, S̆(z)/˘̄z is a prior estimate of
the coefficient of variation of z in the area, which should be obtained from a
pilot or previous sampling in the same area, from sampling in a similar area,
or from general knowledge of the spatial variation.

If instead of the relative error, the absolute error |ˆ̄z − z̄| should be smaller
than a specified limit d, the required sample size is given by:

n =

(

u1−α/2 · S̆(z)
d

)2

. (7.9)

The sample size needed to estimate a fraction P can be calculated in the
same way as with a quantitative variable. In that case the prior estimate of
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the standard deviation of the corresponding indicator variable is derived from

a prior estimate of the fraction P̆ by: S̆(z) =
√

P̆ (1 − P̆ ) .
The above equations for sample size generally do not render integer num-

bers, so some rounding will be needed. In doing so, caution should be taken
because rounding to the nearest integer does not always give the optimal solu-
tion. We advise to evaluate the quality measure for some integer sample sizes
around the calculated sample size.

Sample Size for Hypothesis Testing

The basics of hypothesis testing as a mode of inference are outlined in
Sect. 2.2.4. The sample size needed for testing a hypothesis can be determined
through the procedure described below (see EPA (2000) for a comprehensive
description). This procedure starts with making the following choices:

• select the baseline condition, i.e., the de facto decision outcome when there
is insufficient evidence to refute it;

• specify a range of possible values of the target quantity (grey area) where
the consequences of accepting the baseline condition while the alternative
condition is true are considered tolerable;

• choose tolerable probabilities for the decision error made when the baseline
condition is rejected while it is in fact true, and for the decision error made
when the baseline condition is accepted while the alternative condition is
in fact true.

These choices are explained below.

1. The baseline condition is referred to as the null-hypothesis (H0). The
choice of the baseline condition is important because the same sample
data may lead to different decisions depending on the choice of the base-
line condition. If sample data are tested against a regulatory threshold,
the choice of the baseline condition should be based on where to put the
burden of proof. Two situations can be distinguished: law enforcement
and licence application. In the first case, the government is the initiator
of the investigation, and the baseline condition is generally that the target
quantity (statistical parameter of interest) is below the Action Level (no
measures). In the second case, a private person or company is the initia-
tor, who must show that the situation complies with the regulations for
obtaining a licence. If the choice of the null-hypothesis cannot be based on
regulatory considerations, it may be based on the relative consequences of
decision errors. If the consequences of deciding that the target quantity is
below the Action Level while in fact it is above that level (e.g., a risk to
human health) are more serious than those of the reverse error (e.g., the
risk of unnecessary clean-up), then the null hypothesis should be that the
target quantity is above the Action Level.
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2. The width of the grey area is referred to as the ‘minimum detectable
difference’. At the boundary of the grey area, the consequences of a false
acceptance error are considered large enough to set a low probability on
this error. In general, the smaller the minimum detectable difference, the
larger the required sample size (given the probability of a false acceptance
error).

3. In the third step, an upper limit is chosen for the probability that the
null-hypothesis is rejected while it is in fact true (false rejection; type I
error). This maximum tolerable probability is denoted by α. If the conse-
quences of a false rejection are serious, then a small probability must be
chosen, for instance 1%; if they are less serious, a larger probability may
be acceptable (e.g., 5% or even 10%). An upper limit is also chosen for the
probability of a false acceptance (type II error), β, when the true value
of the target quantity equals the Action Level minus the minimum de-
tectable difference (H0: ‘target quantity ≥ Action Level’), or Action Level
plus the minimum detectable difference (H0: ‘target quantity ≤ Action
Level’). The probability 1 − β is referred to as the power of the test. Be-
sides these two probabilities at the boundaries of the grey area, one is free
to specify additional probabilities at other values of the target quantity.

The sample size required to meet the chosen probabilities can be calculated as
follows. We consider first the situation that the aim is to test the mean of an
approximately normally distributed variable. First one calculates the critical
value for the mean beyond which H0 is rejected. For ‘H0: z̄ ≥ m0’, this critical
value is given by:

mcrit = Φ−1

(

α; m0;
S̆2(z)

n

)

, (7.10)

where Φ is the cumulative normal distribution, and S̆2(z) is a prior estimate
of the spatial variance of z in the target area. For H0: z̄ ≤ m0, the critical
value is calculated by substituting (1 − α) for α in (7.10).

For H0: z̄ ≥ m0 , the probability of false acceptance error, β, can then be
calculated by:

β = 1 − Φ

(

mcrit; m0;
S̆2(z)

n

)

. (7.11)

For the reverse H0, this probability is calculated by Φ
(

mcrit; m0; S̆2(z)/n
)

.
The sample size needed to attain a given power of a one-sided test, as a
function of the minimum detectable difference ∆ (normalized by dividing by
a prior estimate of the standard deviation S̆(z)), is given in Figs. 7.7 and 7.8,
respectively, for α = 0.05 and α = 0.1.

If the decision is based on an estimate of some percentile of the cumula-
tive distribution function or an estimated areal fraction, then the estimation
procedure is more or less similar. The target variable is now a 0/1 indica-
tor variable. For large samples, the mean can still be assumed to follow an
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Fig. 7.7. Required sample size versus normalized minimum detectable difference
for β = 0.5, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01 (from left to right) and
α = 0.05. S̆(z): prior estimate of the standard deviation (z normally distributed)

Fig. 7.8. Required sample size versus normalized minimum detectable difference
for β = 0.5, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01 (from left to right) and
α = 0.1. S̆(z): prior estimate of the standard deviation (z normally distributed)
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Fig. 7.9. Power versus sample size for ‘H0: P ≥ 0.05’, α = 0.10, and a minimum
detectable difference of 0.025

Fig. 7.10. Power versus sample size for ‘H0: P ≤ 0.05’, α = 0.10, and a minimum
detectable difference of 0.025
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approximately normal distribution. For small or medium size samples, how-
ever, the normal distribution in (7.10) and (7.11) must be replaced by the
binomial distribution. For instance, suppose that the aim is to test the P95
against an Action Level of 75 (‘H0: P95 ≥ 75’). This is equivalent to testing
the areal fraction with values larger than 75 against an Action Level of 0.05
(‘H0: P < 0.05’).

Figure 7.9 shows the power as a function of the sample size for ‘H0:
P ≥ 0.05’, α = 0.10, and a minimum detectable difference of 0.025. First note
that very large sample sizes are required for commonly used power values such
as 90% (n = 377) or 95% (n = 492). The required sample size increases even
further when smaller probabilities of false rejection, e.g., α = 0.05, are toler-
ated, or smaller differences, e.g., 0.01, must be detectable. Note also that the
power does not increase monotonically with the sample size. This is because
the binomial distribution is discrete. When the graph indicates two different
sample sizes for the same power, the smallest one may be chosen. Figure 7.10
shows the power as a function of the sample size for ‘H0: P ≤ 0.05’, α = 0.10,
and a minimum detectable difference of 0.025. The function now shows down-
ward jumps.

7.2.4 Stratified Simple Random Sampling

Restriction on Random Selection

The area is divided into sub-areas, called ‘strata’, in each of which Simple
Random Sampling is applied with sample sizes chosen beforehand. Three at-
tributes are to be chosen for this type of design:

1. the definition of the strata, see ‘Stratification’;
2. the total sample size, see ‘Sample Size’;
3. the allocation of sample sizes to the strata, see ‘Sample Size’

Selection Technique

The algorithm for Simple Random Sampling is applied to each stratum sep-
arately.

Example

Figure 7.11 shows an example with 16 square strata and one location in each
stratum. Notice the more even spreading compared with Simple Random Sam-
pling in Fig. 7.6.
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Fig. 7.11. Notional example of a stratified simple random sample

Advantages and Disadvantages

Stratified Simple Random Sampling can have two advantages compared with
Simple Random Sampling:

1. with appropriate stratification and allocation of sample sizes to the strata,
it is more efficient, i.e., leading to higher accuracy or lower costs, and

2. it allows better control of accuracy for possible sub-areas of interest.

A disadvantage may be that, with inappropriate stratification or sub-optimal
allocation of sample sizes, there could be loss rather than gain in efficiency.

Stratification

There are different possible reasons for stratification. The most important one
is that the efficiency can be increased compared with Simple Random Sam-
pling, i.e., smaller sampling variance at the same cost, or lower cost with the
same variance. In this case, the stratification is chosen so as to maximize the
expected gain in efficiency. In practice, this can be achieved by forming strata
that are as homogeneous as possible. Also, if the cost per sampling location
varies strongly within the area, for instance with the distance from roads, it
is efficient to stratify accordingly and to sample the ‘inexpensive’ strata more
densely. (Different conditions in sub-areas may even ask for different types of
design.)

Another reason for stratification may be that separate estimates are re-
quired for given sub-areas. If the strata coincide with these sub-areas of in-
terest, the accuracy of the estimates can be controlled by allocating sufficient
sample sizes to the strata, unlike the situation with Simple Random Sampling.
Finally, in large-scale surveys it can make sense for administrative reasons to
operate sub-areas (provinces, countries) independently and to treat them as
strata.
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With inappropriate stratification or sub-optimal allocation of sample sizes,
there could be loss rather than gain in efficiency. This may occur if the stratum
means differ little or if the sample sizes are strongly disproportional to the
surface areas of the strata. If, for instance, one has many small strata with
unequal areas and a small sample in each, then these sample sizes are bound
to be strongly disproportional because they must be integer numbers.

In order to achieve optimal efficiency, the available prior information
should be employed to define strata that are as homogeneous as possible, i.e.,
having minimal spatial variance of the target variable. (If there is more than
one target variable, then one must find some compromise.) Two approaches
can be followed: stratification by ancillary variables, or compact geographical
stratification.

Stratification by Ancillary Variables

The strata are defined in terms of one or more ancillary variable that are
known everywhere in the target area, and that are known or expected to be
correlated with the target variable. The strata can be defined in two ways:

1. as the classes of an a priori classification based on knowledge about the
relationships between the ancillary variables and the target variable, or

2. if the ancillary variables are quantitative, such as obtained by remote
sensing, then the strata can be calculated by cluster analysis.

A suitable cluster method for classification will be ‘k-means’, a well-established
algorithm used to find compact clusters of objects in multivariate attribute
space (Hartigan, 1975). The clusters are represented by their multivariate
means, referred to as centroids, and the method aims at minimizing the mean
squared distance between the objects and their nearest centroid. When applied
for stratification, the attribute space is spanned by the ancillary variables,
and the objects are the grid nodes of a fine discretization grid. The resulting
clusters of grid nodes form the strata.

Compact Geographical Stratification

If no suitable ancillary variables are available for stratification, one may con-
sider stratification on the basis of spatial coordinates. In general, the precision
of sampling strategies can be increased by spreading the sampling locations
over the study region. A simple way to achieve this spreading is Systematic
Random Sampling on regular grids (squares, triangles); see Sect. 7.2.7. An-
other way to ensure that the randomly selected locations cover the target area
as fully as possible is random sampling from compact geographical strata. Just
as strata based ancillary variables, such compact geographical strata can also
be formed by the k-means clustering algorithm (Brus et al., 1999). For this
application, the multivariate attribute space is replaced by the geographical
space, with only the spatial coordinates as properties, and again the grid
nodes of a fine discretization grid acting as objects. Figure 7.12 shows the
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result for a field of 2.8 ha, split up into 40 blocks. In this case we took care
that the blocks all have the same area, so that the stratified random sample is
self-weighting1 Section 8.3.3 proposes the use of k-means to optimize spatial
coverage samples for spatial mapping.

Statistical Inference

The mean for the area is estimated by:

ˆ̄zSt =
1
N

H
∑

h=1

Nh ˆ̄zh , (7.12)

where H is the number of strata; N is the number of sampling units in the
area; Nh is number of sampling units in stratum h and ˆ̄zh is the sample mean
of stratum h. Replacing the ratios Nh/N by the relative areas of the strata,
ah, gives the more practical formula:

ˆ̄zSt =
H

∑

h=1

ah ˆ̄zh . (7.13)

The same indicator technique as presented with Simple Random Sampling can
be used to estimate areal fractions and the Spatial Cumulative Distribution
Function of z.

The strategy (StS, ˆ̄zSt) is p-unbiased. Provided all sample sizes are larger
than 1, the variance of ˆ̄zSt can be estimated by:

̂V
(

ˆ̄zSt

)

=
H

∑

h=1

a2
h

̂V
(

ˆ̄zh

)

, (7.14)

where ̂V
(

ˆ̄zh

)

is the estimated variance of ˆ̄zh:

̂V
(

ˆ̄zh

)

=
1

nh (nh − 1)

nh
∑

i=1

(

zhi − ˆ̄zh

)2
, (7.15)

where nh is the sample size in stratum h. The standard error of the estimated

mean is estimated by
√

̂V
(

ˆ̄zSt

)

. Confidence intervals are calculated in the
same way as with Simple Random Sampling ( 7.3).

An unbiased estimator of the spatial variance S2(z) is:

̂S2(z) = ̂

z2
St −

(

ˆ̄zSt

)2 + ̂V
(

ˆ̄zSt

)

, (7.16)

1 A self-weighting sample is a sample generated by a design such that weighting of
the sample data is unnecessary, i.e., the unweighted sample mean is p-unbiased.
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Fig. 7.12. Example of compact geographical stratification of a field. The strata
all have the same area, and in each stratum two locations are selected by Simple
Random Sampling. Two composite samples can be formed by grouping all samples
selected in the first draw (circles), and those selected in the second draw (triangles)

where ̂

z2
St denotes the estimated mean of the target variable squared (z2),

obtained in the same way as ˆ̄zSt (7.13), but using squared values.
It may be asked what gain in precision the stratification has yielded, com-

pared to Simple Random Sampling with the same sample size. The sampling
variance that would have been obtained if Simple Random Sampling had been
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applied with the same n can be predicted by dividing the estimated spatial
variance by the sample size:

˜V
(

ˆ̄zSI

)

=
̂S2(z)

n
. (7.17)

The efficiency of the applied stratified design, relative to the reference design
(Simple Random Sampling with the same n), is defined as the ratio of the two
sampling variances:

Vr =
˜V

(

ˆ̄zSI

)

̂V
(

ˆ̄zSt

) . (7.18)

Multiplied by the actual sample size, this efficiency factor gives the ‘equivalent
sample size’, which would yield the same precision if Simple Random Sampling
were used:

neq = Vr · n . (7.19)

Brus (1994) used this procedure to quantify the effect of stratification by soil
map and land-use map units on the quality of estimated spatial means of
phosphate sorption properties of the soil.

Sample Size

The sample sizes in the strata may be chosen so as to minimize the variance
V

(

ˆ̄zSt

)

for a given maximum allowable cost, or to minimize the cost for a
given maximum allowable variance. A simple linear cost function is:

C = co +
H

∑

h=1

ch nh , (7.20)

where co is the overhead cost and ch is the cost per sampling location in
stratum h.

Adopting this function, the optimal ratios of the sample sizes to the total
sample size n are:

nh

n
=

ah S̆h√
ch

H
∑

h=1

ah S̆h√
ch

, (7.21)

where the S̆h are prior estimates of the standard deviations in the strata.
This formula implies that a stratum gets a larger sample if it is larger or more
variable or less expensive to sample.

The total sample size affordable at a fixed cost C, assuming that optimal
allocation to the strata is applied, is:

n =
(C − co)

H
∑

h=1

ah S̆h√
ch

H
∑

h=1

ah S̆h
√

ch

. (7.22)
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The total sample size needed to keep the variance below a maximum value
Vmax, again assuming that optimal allocation to the strata is applied, is:

n =
1

Vmax
·

H
∑

h=1

(

ah S̆h
√

ch

)

·
H

∑

h=1

ah S̆h√
ch

. (7.23)

If the cost per location is equal for the strata, this reduces to:

n =
1

Vmax
·
(

H
∑

h=1

ah S̆h

)2

. (7.24)

If, instead of Vmax, an absolute error d has been specified with an allowed
probability of exceedance α, then Vmax can be derived from d and α, according
to

Vmax =
(

d

u1−α/2

)2

, (7.25)

where u1−α/2 is the (1 − α/2) quantile of the standard normal distribution.
When estimating areal fractions rather than means of quantitative vari-

ables, the above formulas for sample sizes can still be applied if S̆h is replaced

by
√

P̆h

(

1 − P̆h

)

, where P̆h is a prior estimate of the fraction in stratum h.

If no prior estimates of the standard deviations in the strata are available,
and the cost of sampling is constant for the strata, then proportional allocation
is recommended:

nh

n
=

ah
∑

ah
. (7.26)

Also, for surveys with more than one target variable, proportional allocation
can be a good choice.

The above equations for sample size generally do not render integer num-
bers, so some rounding will be needed. In doing so, caution should be taken
because rounding to the nearest integer does not always give the optimal solu-
tion. We advise to evaluate the quality measure for some integer sample sizes
around the calculated sample size.

7.2.5 Two-Stage Random Sampling

Restriction on Random Selection

As with Stratified Simple Random Sampling, the area is divided into a num-
ber of sub-areas. Sampling is then restricted to a number of randomly selected
sub-areas, in this case called primary units. Note the difference with Strati-
fied Simple Random Sampling, where all sub-areas (strata) are sampled. In
large-scale surveys, this principle is often generalized to multistage sampling.
(Three-stage crop sampling, for instance, could use sub-areas from remotely
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sensed images as primary units, fields as secondary units, and sample plots as
tertiary units.)

Attributes to choose for this type of design are the following.

1. The definition of the primary units (PUs). As with stratification, the user
is free to define the PUs as seems fit; see ‘Advantages and Disadvantages’.

2. The mode of selection of the PUs: with replacement (a PU can be selected
more than once) or without replacement; see ‘Selection Technique’.

3. The selection probabilities for the PUs: equal or proportional to size; see
‘Selection Technique’.

4. The number of PUs to select in the first stage (without replacement) or
the number of PU selections (with replacement); see ‘Sample Size’.

5. The number of sampling locations in the PUs; see ‘Sample Size’.

Selection Technique

Because of its simplicity in statistical inference we present a version of Two-
Stage Random Sampling by which the primary units (PUs) are selected with
replacement and with probabilities proportional to their area. The following
algorithm can be used to make n such selections from all N PUs in the area.

(a) Determine the relative areas of all PUs, a1, . . . , aN , and their cumulative

sums, a1, . . . , Sk, . . . , 1, with Sk =
k
∑

i=1

ai.

(b) Generate a random number u from the uniform distribution on the interval
(0, 1).

(c) Select the PU whose corresponding Sk is the first in the series that exceeds
u.

(d) Repeat steps b and c until n selections have been made.

An alternative, sometimes more efficient algorithm works with a geographical
representation of the area and its PUs:

(a) Select a random point in the area, as in Simple Random Sampling.
(b) Use a point-in-polygon routine to determine in which PU the point falls,

and select this PU.
(c) Repeat steps a and b until n selections have been made.

In the second stage, a pre-determined number of sampling locations, mi, is
selected within each of the PUs selected in the first stage. This is done in
the same way as in Simple Random Sampling. If the geographical algorithm
is applied, the random points used to select the PUs may also be used as
sampling locations. If a PU has been selected more than once, an independent
sample of locations must be selected for each time the PU was selected.
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Fig. 7.13. Notional example of a two-stage random sample

Example

Figure 7.13 shows four square PUs selected in the first stage, and four locations
in each in the second stage. Notice the greater spatial clustering compared
with Simple Random Sampling in Fig. 7.6. This is just a simple, notional
example. It should be noted, however, that the PUs may be defined in any
way that seems appropriate, and that the number of sampling locations may
vary among units.

Advantages and Disadvantages

As with Cluster Random Sampling (Sect. 7.2.6), the spatial clustering of sam-
pling locations created by Two-Stage Random Sampling has the operational
advantage of reducing the travel time between locations in the field. Of course,
the importance of this advantage depends on the extent of the area relative
to the sample size and the accessibility of the terrain. The advantage may be
amplified by defining the PUs such that they reflect dominant accessibility
features like roads. PUs may also be defined by land ownership, especially if
getting permission for fieldwork constitutes an important cost component.

The spatial clustering generally leads to lower precision for a given sample
size. However, as with Cluster Random Sampling, the rationale of its appli-
cation is that the operational advantage allows a larger sample size for the
same budget, so that the initial loss of precision is outweighed. This can be
expected if much spatial variation occurs within the PUs, as compared with
the variation between the PUs. A disadvantage of Two-Stage Random Sam-
pling may be that estimates from the sample data will turn out to be much
less accurate than expected, if the variation within the PUs is much smaller
than assumed when deciding on the number of sampling locations in them.
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Statistical Inference

The mean of the area is estimated by the simple estimator:

ˆ̄zTs =
1
n

n
∑

i=1

ˆ̄zi , (7.27)

where n is the number of PU selections, and ˆ̄zi is the sample mean of the
PU from selection i. The same indicator technique as presented with Simple
Random Sampling can be used to estimate areal fractions and the Spatial
Cumulative Distribution Function of z.

The strategy (TsS, ˆ̄zTs) is p-unbiased. The variance is simply estimated
by:

̂V
(

ˆ̄zTs

)

=
1

n (n − 1)

n
∑

i=1

(

ˆ̄zi − ˆ̄zTs

)2
. (7.28)

Notice that neither the areas of the PUs, ai, nor the secondary sample sizes
mi occur in these formulas. This simplicity is due to the fact that the PUs
are selected with replacement and with probabilities proportional to size. The
effect of the secondary sample sizes on the variance is implicitly accounted
for. (To understand this, remember that the larger mi, the less variable ˆ̄zi,
and the smaller its contribution to the variance.)

The standard error is estimated by
√

̂V
(

ˆ̄zTs

)

. Confidence intervals are cal-
culated in the same way as with Simple Random Sampling (7.3). The spatial
variance in the area, the efficiency of the sampling strategy and the equivalent
sample size can be estimated from the sample data, similar to the procedure
presented for Stratified Simple Random Sampling with formulas (7.16), (7.18)
and (7.19).

Sample Size

The primary and secondary samples sizes n and mi can be optimized via dy-
namic programming, given a budget or variance requirement, any cost function
and prior estimates of the within- and between-unit variances; see Domburg
et al. (1997). A simple approximation is obtained by assuming the mi to be
constant, say mi = m. This is reasonable if the PUs have roughly the same
area and internal variation. The variance of the mean is now

V
(

ˆ̄zTs

)

=
1
n

(

S2
b +

1
m

S2
w

)

, (7.29)

where S2
b and S2

w are the between-unit and the pooled within-unit variance,
respectively. Given the linear cost function C = c1 n+c2 n m, the sample sizes
minimizing the variance under the constraint that the cost does not exceed a
budget Cmax can be found using the Lagrange multiplier method:
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n =
Cmax S̆b

S̆w
√

c1 c2 + S̆b c1

(7.30)

and

m =
S̆w

S̆b

√

c1

c2
, (7.31)

where S̆b and S̆w are prior estimates of Sb and Sw, respectively.
Conversely, minimizing the cost under the constraint that the variance

does not exceed a maximum Vmax can be achieved by:

n =
1

Vmax

(

S̆w S̆b

√

c2

c1
+ S̆2

b

)

(7.32)

and m as above.
If, instead of Vmax, an absolute error d has been specified with an allowed

probability of exceedance α, then Vmax can be derived from d and α, according
to

√
Vmax = d/u1−α/2, where u1−α/2 is the 1 − α/2 quantile of the standard

normal distribution.
The above equations for sample size generally do not render integer num-

bers, so some rounding will be needed. In doing so, caution should be taken
because rounding to the nearest integer does not always give the optimal so-
lution. We advise to evaluate the quality measure for some integer sample
sizes around the calculated sample size. (The need for this becomes obvious
in the extreme case of S̆B = 0, for which (7.30) gives n = 0, while obviously
n should be one.)

When estimating areal fractions rather than means of quantitative vari-
ables, the above formulas for sample sizes can still be applied if S̆2

b is inter-
preted as a prior estimate of the variance between the fractions in the units
Pi, and S̆2

w is replaced by a prior estimate of the mean of Pi (1− Pi) over the
units.

7.2.6 Cluster Random Sampling

Restriction on Random Selection

Pre-defined sets of locations are selected, instead of individual locations as
in Simple Random Sampling, Stratified Simple Random Sampling and Two-
Stage Random Sampling. These sets are referred to as ‘clusters’. Attributes
to choose for this type of design are:

1. the definition of the clusters, see ‘Definition of Clusters’;
2. the selection probabilities of the clusters, equal or proportional to size (the

number of locations in them), see ‘Selection technique’;
3. the number of clusters to select, see ‘Sample Size’.
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Definition of Clusters

In defining the clusters one has to consider the following aspects:

1. Shape: the type of pattern of the locations, e.g., linear with equidistant
locations on a line (so-called ‘transects’). As the reason for Cluster Ran-
dom Sampling lies in facilitation of the fieldwork, only regular patterns
are applied in practice.

2. Size: the number of locations.
3. Direction: the geographical orientation, e.g., random directions or the di-

rection of a gradient known by prior knowledge.

As with strata in Stratified Simple Random Sampling and primary units in
Two-Stage Random Sampling, one is free to define the clusters as seems most
appropriate. The rationale of Cluster Random Sampling is that the opera-
tional advantage in fieldwork expectedly outweighs any loss of precision due
to poor spatial coverage of the area by the sample. So, the cluster definition
should aim at maximal operational advantage as well as maximal within-
cluster variation. This is similar to the definition of primary units in Two-
Stage Random Sampling.

It should be noted that, for the inference method as presented here to be
valid, it is not necessary to randomize the directions of the clusters. Indeed
we see little use in randomized directions. In the case of a trend with a known
direction, random directions are clearly sub-optimal. Even if no trend is known
to exist, it seems safer to choose some different directions purposively, e.g.,
two directions perpendicular to each other, or three at 60 degrees, or four at
45 degrees. If the clusters are given random directions, too many of them may
happen to fall perpendicular to the direction of a possible unknown trend,
thus producing little information.

Selection Technique

If the area is not discretized beforehand, the number of possible sampling lo-
cations is infinite and so is the number of clusters. It would thus be impossible
to identify all possible clusters beforehand and to sample from this collection.
That could only be done if the area is discretized. However, there is no need
to identify all possible clusters beforehand. Only those that are selected need
to be identified, and selection of a cluster can take place via selection of one
of its locations. Hence the following algorithm:

(a) Select a random location in the area as in Simple Random Sampling; use
this location as a ‘starting point’.

(b) Find the other locations of the cluster to which the starting location be-
longs, by applying predetermined geometric rules corresponding with the
chosen cluster definition.

(c) Repeat steps a and b until n clusters have been selected.
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Fig. 7.14. Notional example of a cluster random sample

A condition for this algorithm to be valid is that the geometric rules are such
that the same cluster is created, regardless of which of its locations is used as
the starting point. A well-known technique satisfying this condition is Random
Transect Sampling with equidistant sampling locations on straight lines with
a fixed direction. Given this direction, the random starting point determines
the line of the transect. The other sampling locations are found by taking a
predetermined distance in both directions from the starting point, until the
line crosses the boundary of the area. Clusters thus formed will generally
consist of a variable number of locations, and the probability of selecting a
cluster is proportional to the number of locations in it. This is taken into
account in the method of statistical inference as presented.

The above algorithm assumes that a perfect sampling frame is available. In
practice, however, imperfections of the frame may appear after inspection of
the projected sampling locations in the field. If projected sampling locations
are for some reason judged not to belong to the target universe, then shifting
to nearby locations would cause bias, as boundary zones become oversampled.

The correct remedy with this type of design is to delete the entire clus-
ter from the sample if its starting point is rejected, and to only delete other
locations as far as they are rejected, while maintaining the rest of their clus-
ter. Rejected starting points are to be replaced by sampling locations from a
reserve list in pre-determined order.

Example

Figure 7.14 shows four transects, each with four equidistant locations. To
limit the length of the transects, the area has first been dissected with in-
ternal boundaries perpendicular to the transects. Notice the spatial cluster-
ing and the regularity compared with Simple Random Sampling, Stratified
Simple Random Sampling and Two-Stage Random Sampling (Figs. 7.6, 7.11
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and 7.13). This is just a simple, notional example. It should be noted, however,
that the clusters may be defined in any way that seems appropriate.

Advantages and Disadvantages

As with Two-Stage Random Sampling (Sect. 7.2.5), the spatial clustering of
sampling locations has the operational advantage of reducing the travel time
between locations in the field. In addition, the regularity may reduce the time
needed to find consecutive locations in the cluster. Of course, the importance
of these advantages depends on the extent of the area relative to the sample
size, the trafficability of the terrain and the possibilities and limitations for
navigation.

As with Two-Stage Random Sampling, the spatial clustering generally
leads to lower precision, given the sample size. Here too, the rationale for
using it is that the operational advantages allow a larger sample size for the
same budget, so that the initial loss of precision is outweighed. If there is
a marked trend with a known direction, the precision can be optimized by
defining transects in the direction of the trend.

A disadvantage is that the sample size, i.e., the total number of locations
in the clusters which happen to be selected, is generally random. This may be
undesirable for budgetary or logistical reasons. The variation in sample size
can be reduced by defining clusters of roughly equal size.

Statistical Inference

For this type of design, the same formulas are used as for Two-Stage Random
Sampling, with clusters assuming the role of primary units. For clarity, the
inference is presented again, together with the ‘cluster interpretation’ of the
quantities.

The means of the area is estimated by the estimator:

ˆ̄zCl =
1
n

n
∑

i=1

ˆ̄zi , (7.33)

where n is the number of clusters and ˆ̄zi is the sample mean of cluster i. The
same indicator technique as presented with Simple Random Sampling can
be used to estimate areal fractions and the Spatial Cumulative Distribution
Function of z.

The strategy (ClS, ˆ̄zCl ) is p-unbiased. The variance is estimated by:

̂V
(

ˆ̄zCl

)

=
1

n (n − 1)

n
∑

i=1

(

ˆ̄zi − ˆ̄zCl

)2
. (7.34)

Notice that the size of the clusters (number of locations) does not appear in
these formulas. This simplicity is due to the fact that the clusters are selected
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with probabilities proportional to size. The effect of the cluster size on the
variance is implicitly accounted for. (To understand this, consider that larger
clusters result in smaller variance among their means.)

The standard error is estimated by
√

̂V
(

ˆ̄zTs

)

. Confidence intervals are cal-
culated in the same way as with Simple Random Sampling (7.3). The spatial
variance in the area, the efficiency of the sampling strategy and the equivalent
sample size can be estimated from the sample data, similar to the procedure
presented for Stratified Simple Random Sampling, with formulas (7.16), (7.18)
and (7.19).

Sample Size

The number of clusters needed to keep the variance of the estimated mean
below a given maximum Vmax is given by n = S̆2

b /Vmax, where S̆2
b is a prior

estimate of the variance between cluster means. Clearly, this variance depends
on the number of locations in the clusters and their spatial pattern. If prior
information on the spatial variability is available in the form of a variogram,
the method described in Sect. 7.2.15 can be used to estimate S2

b for a given
cluster definition.

If, instead of Vmax, an absolute error d has been specified with an allowed
probability of exceedance α, then Vmax can be derived from d and α, according
to

√
Vmax = d/u1−α/2, where u1−α/2 is the 1 − α/2 quantile of the standard

normal distribution.
When estimating areal fractions rather than means of quantitative vari-

ables, the above formula for n can still be applied if S̆2
b is interpreted as a

prior estimate of the variance between cluster fractions.
The above equation for sample size generally do not render integer num-

bers, so some rounding will be needed. In doing so, caution should be taken
because rounding to the nearest integer does not always give the optimal solu-
tion. We advise to evaluate the quality measure for some integer sample sizes
around the calculated sample size.

7.2.7 Systematic Random Sampling

Restriction on Random Selection

As with Cluster Random Sampling (Sect. 7.2.6), random selection is applied
to pre-defined sets of locations, instead of individual locations as in Simple
Random Sampling, Stratified Simple Random Sampling and Two-Stage Ran-
dom Sampling. The difference with Cluster Random Sampling is that only one
cluster is selected. In this sense, Systematic Random Sampling is a special case
of Cluster Random Sampling.

The term ‘cluster’ as used here does not refer to geographical compactness,
but to the fact that if one location of a cluster is included in the sample,
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Fig. 7.15. Notional example of a systematic random sample

all other locations are included too. On the contrary, as only one cluster is
selected, the clusters are defined such as to allow each of them to cover the
area as fully as possible. This is achieved with clusters in the form of regular
grids (Random Grid Sampling). Thus the only attribute to be chosen with
this type of design is the definition of the grid (see ‘Grid Definition’).

Selection Technique

The selection algorithm for Cluster Random Sampling is used with n = 1.

Example

Figure 7.15 shows a random square grid. Notice the more even spatial
spreading and the greater regularity compared with all other types of design
(Figs. 7.6 – 7.14).

Grid Definition

Three aspects are to be decided on: the shape of the grid cells, the size of
the grid cells, and the direction of the grid. With respect to shape, there are
three options: square, triangular or hexagonal. An extensive study by Matérn
(1986) showed that triangular grids will generally be slightly more efficient
in estimating the spatial mean than square or hexagonal ones with the same
location density. In practice, however, a square grid may have an operational
advantage over a triangular one that outweighs the small difference in preci-
sion.

The size of the grid cells (i.e., the distance between adjacent grid nodes,
referred to as the grid spacing), determines the sample size; see ‘Sample Size’.
With regard to the direction of the grid, it should be noted that, for the
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inference method as presented here to be valid, it is not necessary to randomize
the direction of the grid. As with Cluster Random Sampling, we see little use
in a randomized direction. For instance, if the target area is rectangular, a
grid parallel to the boundaries will often make fieldwork easier.

Advantages and Disadvantages

The main advantage is that, due to the optimized spatial coverage, System-
atic Random Sampling will often give more accurate results than any other
random design. In addition, it has the same operational advantage as Clus-
ter Random Sampling: the regularity of the grid may reduce the time needed
to locate consecutive locations in the field. Here too, the importance of this
advantage depends on the scale, the accessibility of the terrain and the navi-
gation technique used.

Because this type of design does not produce any random repetition, no
unbiased estimate of the sampling variance is available. If the spatial variation
in the area is pseudo-cyclic, the variance may be severely underestimated, thus
yielding a false impression of accuracy. An operational disadvantage may be
that the total travel distance between sampling locations is relatively long, due
to their even spreading. Finally, Systematic Random Sampling has the same
disadvantage as Cluster Random Sampling: the sample size (i.e., the number
of grid nodes that happen to fall inside the area) is generally random, which
may be undesirable for budgetary or logistic reasons. The possible variation
in sample size will often be larger than with Cluster Random Sampling, and
it will be more difficult to reduce this variation.

Statistical Inference

The mean of the area is simply estimated by the sample mean ˆ̄z, as with
Simple Random Sampling. The same indicator technique as presented with
Simple Random Sampling can be used to estimate areal fractions and the
Spatial Cumulative Distribution Function of z.

The strategy (SyS, ˆ̄z) is p-unbiased. This condition holds only if the grid
is randomly selected, as is prescribed by the selection technique given above.
In ‘Centred Grid Sampling’, on the other hand, the grid is purposively placed
around the centre of the area, so that the boundary zones are avoided. This
is a typical model-based strategy (see Sect. 7.3), which is p-biased.

Unfortunately, no p-unbiased variance estimator exists for this type of
design. Many variance estimators have been proposed in the literature, but all
are based on assumptions about the spatial variation. A well-known procedure
is Yates’ method of balanced differences (Yates, 1981). An overview of variance
estimation is given by Cochran (1977). A simple, often applied procedure
is to calculate the variance as if the sample had been obtained by Simple
Random Sampling. If there is no pseudo-cyclic variation, this over-estimates
the variance, so in that case the accuracy assessment will have a safety margin.
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Sample Size

As indicated above, the sample size is generally random. The average sample
size is determined by the choice of the cell size, i.e., the grid spacing. A rough
approach to this choice is to determine the sample size in the same way as
for Simple Random Sampling (Sect. 7.2.3) and to reduce this by an empirical
factor (for instance 2) to account for the greater precision of Systematic Ran-
dom Sampling relative to Simple Random Sampling. The average required
grid size for a square grid is then

√

A/m, where A denotes the surface area.
However, if an estimated variogram is available, greater accuracy is achieved
by applying the method described in Sect. 7.2.15.

7.2.8 Advanced Design-Based Strategies

Apart from the basic strategies outlined in the previous sections, a large num-
ber of more advanced strategies have been developed. This section outlines
some of the major options.

Compound Strategies

The basic strategies discussed in the previous sections can be combined in
many ways to form compound strategies. One example is given in Fig. 7.16,
where Two-Stage Random Sampling has been applied while using Systematic
Random Sampling instead of Simple Random Sampling in both stages. In this
case, a square grid of 2× 2 PUs was selected, and then a square grid of 2× 2
locations in each of the selected PUs. Notice that the total between-location
distance is reduced relative to Systematic Random Sampling in Fig. 7.15, that
the risk of interference with possible cyclic variation has practically vanished,
and that the operational advantage of regularity in the pattern still largely
exists.

Figure 7.17 shows another example of a compound strategy: Stratified
Cluster Random Sampling with four strata and two clusters in each stratum.
The clusters are perpendicular transects, each with two locations at a fixed
distance. Notice that, due to the stratification, a more even spread is obtained
than with Cluster Random Sampling in Fig. 7.14, while the operational ad-
vantage of regularity still exists. See de Gruijter and Marsman (1984) for an
account of perpendicular Random Transect Sampling and an application to
the quality assessment of soil maps.

The reason for combining two or more basic strategies is always the en-
hancement of advantages or mitigation of disadvantages of the basic strategies.
As a final example, consider the situation in which the high precision and the
operational advantage of regularity in Systematic Random Sampling is re-
quired, but it is desirable that the precision can be quantified from the data,
without recourse to assumptions about the spatial variability. A possible solu-
tion is to adapt the Two-Stage/Systematic compound strategy of Fig. 7.16. In
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Fig. 7.16. Notional example of a two-stage random sample with Systematic Random
Sampling in both stages

Fig. 7.17. Notional example of a stratified cluster random sample

order to enable model-free variance estimation, the PUs could be selected at
random instead of systematically, while maintaining Random Grid Sampling
in the second stage. In that case, the variance can be estimated in the same
way as with basic Two-Stage Random Sampling.

In devising a compound strategy, there are often good reasons to stratify
the area first, and then to decide which designs will be applied in the strata.
It is not necessary to have the same type of design in each stratum. As long
as the stratum means and their variances are estimated without bias, these
estimates can be combined into unbiased overall mean and variance estimates
using the formulas given in Sect. 7.2.4.

If a variogram for the area is available, the variance of a compound strategy
can be predicted prior to sampling, using the Monte-Carlo simulation tech-
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Fig. 7.18. Notional example of a systematic unaligned sample

nique presented in Sect. 7.2.15. In the case of stratification, this technique can
be applied to each stratum separately, using different variograms if necessary.

Spatial Systematic Strategies

Most strategies discussed so far are spatial in the sense that primary units
and clusters are defined on the basis of geographical coordinates. Strata are
also usually defined this way. Given these definitions, however, the random
selection restrictions do not refer to the coordinates of sampling locations. A
category of more inherently spatial strategies exists whose random selection
restrictions make explicit use of coordinates or distances in geographical space.
Two examples are given.

Figure 7.18 shows a ‘systematic unaligned’ sample. This technique was
proposed by Quenouille (1949). The area is first divided into square strata
and one location is selected in each stratum, although not independently. A
random s1 coordinate is generated for each row of strata, and a random s2

coordinate for each column. The sampling location in a stratum is then found
by combining the coordinates of its row and column. Notice in Fig. 7.18 the
irregular, but still fairly even spread of the locations.

Figure 7.19 shows a ‘Markov Chain’ sample, a technique discussed by
Breidt (1995). Again, notice the irregular but fairly even spread of the loca-
tions. The underlying principle is that the differences between the coordinates
of consecutive locations are not fixed, as with systematic unaligned samples,
but stochastic. These differences have a variance which is determined by a
parameter φ, chosen by the user. Thus Markov Chain designs form a class in
which one-per-stratum Stratified Simple Random Sampling and Systematic
Unaligned Sampling are special cases, with φ = 0 and φ = 1, respectively.
The example in Fig. 7.19 was generated with φ = 0.75. The purpose of this
type of strategies is to allow enough randomness to avoid the risk of interfer-
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Fig. 7.19. Notional example of a Markov chain sample

ence with periodic variations and linear artefacts like roads, ditches, cables
and pipelines, while still maintaining an even spread of the locations over the
area as much as possible.

Random Geographical Stratification

In Sect. 7.2.4 a method is described for creating a probability sample with
good spatial coverage based on geographical stratification. However, if only
one location is selected per stratum, design-based estimation of the sampling
variance of the estimator is problematic. To overcome this problem, scientists
of the Environmental Monitoring and Assessment Program (EMAP) of the
U.S.A. proposed a method in which not only the locations are selected at
random, but also the stratification itself is random (Stevens, 1997; Stevens
and Olsen, 2003a,b). Figure 7.20 illustrates this method. A lattice of squares
is placed over the study region. Then a location is selected fully randomly from
the lower-left square, and the lattice is shifted so that the origin of the lattice
coincides with this location. Finally, one location is selected at random from
each square of the shifted lattice. Note that in this case the original lattice
must have one extra column at the left and one extra row at the bottom to
ensure that the shifted lattice covers the entire region. The polygons need not
be squares, but they must be radially symmetric about a centre point and
translation congruent. In EMAP, hexagons are used formed by tessellation of
a triangular grid with a spacing of about 27 km. This method can also be used
to select discrete objects such as lakes (Stevens and Olsen, 2003a). Each object
is represented by a point in geographical space (for instance the centroid or
the label point in GIS-files is taken as the reference point), and each object
is assigned to the polygon covering its reference point. A simple selection
method is to select randomly one object from each randomly placed polygon
with at least one object. Unfortunately, the usual (Horvitz-Thompson and
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Fig. 7.20. Random stratification of a field followed by Simple Random Sampling
of one location per stratum.

Yates-Grundy) variance estimators are unstable. Alternative, contrast-based
variance estimators have been proposed by (Stevens and Olsen, 2003b).

7.2.9 Probabilities-Proportional-to-Size Sampling

A straightforward method for using an exhaustively known ancillary variable
in sampling is to select units with probabilities proportional to size (pps), i.e.,
proportional to an ancillary variable x that must be strictly positive. If x is
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proportional to the target variable z, then considerable gain in precision will
be achieved. However, if this proportionality does not hold, then pps-sampling
will be less precise. For finite universes, the ancillary variable is cumulated,
i.e. set T0 = 0, and compute Tk = Tk−1 + xk for k = 1, . . . , N . Then one
number r is drawn from the uniform (0,1) distribution. The selected unit is
the one for which Tk−1 < rTN ≤ Tk, where TN =

∑

N xk, the cumulative
total. The selected unit is replaced, and the process is repeated. In this case,
the probability that unit k is selected in one draw pk equals xk

TN
, and the mean

can be estimated by

ˆ̄zpps =
1

Nn

n
∑

i=1

zi

pi
, (7.35)

where n is the number of draws (which may be larger than the number of
selected units). The sampling variance can be estimated by

̂V
(

ˆ̄zpps

)

=
1

N2 n (n − 1)

n
∑

i=1

(

zi

pi
− N ˆ̄zpps

)2

. (7.36)

The above estimators are very simple thanks to the replacement of selected
units. However, simplicity can be at the cost of efficiency, and therefore we
may prefer sampling without replacement. If we do not replace selected units,
we must be aware that it is very difficult to accomplish inclusion probabil-
ities (probability that a unit is selected in the sample exactly proportional
to xk. Sunter (1977) describes a selection scheme leading to exactly propor-
tional inclusion probabilities for most of the sampling units, not for all units,
but in practice this may not bother us. An alternative is to partition the
sampling units in n random groups, and to select from each group one unit
with probabilities equal to xk/TG, where TG is the cumulative total for the
group (Särndal et al., 1992, p.99). For infinite (spatial) universes, the proba-
bility that a unit is selected more than once is 0, and there is no reason for
not using the above simple estimators. In practice, the universe will often be
discretized, and one must make this discretization grid fine enough.

Systematic pps-Sampling

In Systematic Random Sampling (Sect. 7.2.7) the inclusion probabilities are
equal for all units. Units can be selected systematically with probabilities
proportional to an ancillary variable by the following procedure (Särndal et al.,
1992, p. 96):

1. cumulate the values of the ancillary variable xk (for simplicity we assume
that every xk is an integer);

2. choose a sampling interval, an integer, say a;
3. select with equal probability an integer, say r, between 1 and a (1 and a

included).



112 7 Global Quantities in Space

The first unit selected is the one for which Tk−1 < r ≤ Tk, the second unit is
the one for which Tk−1 < r+a ≤ Tk, for the third we have Tk−1 < r+2a ≤ Tk

etc. Let n be the integer part of TN/a, and c = TN − na. If c > 0, then the
sample size is either n or n + 1. The mean can be estimated by

ˆ̄zSYpps =
1
N

n
∑

i=1

zk

πk
, (7.37)

where πk is the inclusion probability of unit k:

πk =
n xk

TN − c
. (7.38)

As in Systematic Random Sampling with equal probabilities, estimation of
the variance of the mean is cumbersome.

7.2.10 Sequential Random Sampling

In sections 7.2.3, 7.2.4, 7.2.5 and 7.2.6 prior estimates of the variance com-
ponents are used to determine the sample size needed to estimate the mean
(fraction) with a particular precision. In situations where no reliable prior es-
timates of this variance are available, one may sample sequentially, i.e., in two
or more steps, and use the estimated variance based on the sample data of
the previous step to calculate the required sample size. This is done to achieve
better control of the precision of the estimated mean (fraction) based on the
final sample. Another important application of Sequential Random Sampling
is hypothesis testing.

The sample collected in the first step is used to estimate the variance
and, hence, the sample size required to estimate the mean (fraction) with the
prescribed precision, or to test the hypothesis with the prescribed power at a
given confidence level. If this required sample size is larger than the sample
size of the first step, then sampling is continued, otherwise it is stopped.
Many types of Sequential Random Sampling design have been described in
the literature, differing in the stopping rule, the number of steps, and the
sample sizes in these steps. A distinction can be made into classical sequential
designs and group sequential designs (Whitehead, 1997). In classical sequential
designs after a group (batch) of sampling units has been observed, sampling
units are added and observed one-at-a-time, and the precision of the estimated
mean (fraction) or power of the test is re-calculated continuously. In group
sequential designs, groups of sampling units are collected and observed. If
the aim is to estimate the mean with variance V from two groups of data
sequentially collected by Simple Random Sampling, the required sample size
can be calculated from (Cochran, 1977, section 4.7)

n =
̂s2
1

V

(

1 +
2
n1

)

. (7.39)



7.2 Design-Based Methods for Global Quantities in Space 113

The sample size required to estimate the fraction with variance V equals

n =
̂P1

(

1 − ̂P1

)

V
+

3 − 8 ̂P1

(

1 − ̂P1

)

̂P1

(

1 − ̂P1

) +
1 − 3 ̂P1

(

1 − ̂P1

)

V n1
, (7.40)

where ̂P1 is the fraction estimated from the first sample.
The usual binomial estimate of P based on the n data of the final sample

is biased. An unbiased estimate can be obtained from

̂Punbiased = ̂P +
V

(

1 − 2 ̂P
)

̂P
(

1 − ̂P
) . (7.41)

Cochran (1977, section 4.7) also provides formulas for calculating the final
sample size if we want to estimate the mean or fraction with a prescribed co-
efficient of variation with two-step Sequential Random Sampling (with Simple
Random Sampling in both steps).

A transition type in between Classical Sequential Random Sampling and
Group Sequential Random Sampling is Accelerated Sequential Random Sam-
pling, in which after an initial group of sampling units, more units are added
one-at-a-time until a fraction of the required sample size is reached, followed
by a final group of sampling units (Mukhopadhyay et al., 1992).

Adaptive Cluster Sampling

In ecological surveys of rare species, it is worth considering the option of select-
ing sampling units with an Adaptive Cluster Sampling design (Thompson and
Seber, 1996). In Adaptive Cluster Sampling, whenever the observed value of a
selected sampling unit satisfies a certain condition, sampling units are added
to the sample from the neighbourhood of that unit. Adaptive Cluster Sam-
pling is therefore a type of sequential sampling. The difference with sequential
sampling described in the previous section is that in Adaptive Cluster Sam-
pling the observations plus the locations of these observations are used to
determine the locations of observations in successive steps, rather than only
the number of new observations (sampling units).

Figure 7.21 illustrates the basic idea. The aim is to estimate the abundance
(total number of individuals: plants, animals, mineral deposits, etc.), or alter-
natively the density of individuals, i.e., the average number of individuals per
unit of area. In the first phase nine cells were selected by Systematic Random
Sampling. For each of these cells with at least one individual, the four adja-
cent cells have been added to the sample. This procedure was repeated until
none of the new cells contained an individual. We could have used a differ-
ent definition of the neighbourhood, for instance the eight cells that share a
corner with a cell, leading to larger sample sizes, or a different condition for
additional sampling, for instance z ≥ 4, leading to smaller sample sizes.
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To understand the estimators given below, the meaning of the terms clus-
ter, network and edge unit must be established. The collection of all units
that are selected by the design as a result of the initial selection of unit i is
referred to as a cluster . A network is a subset of units within a cluster with
the property that selection of any unit within the network would lead to the
inclusion of every other unit in that network. In Fig. 7.21 the units within a
given cluster that contain at least one point-object form a network. Any unit
not satisfying the condition but located in the neighbourhood of one that does
is termed an edge unit . For the sake of convenience, a unit not satisfying the
condition is regarded as a network including only itself, so that the population
can be uniquely partitioned into networks.

The initial sample can be selected by various designs. To keep matters
simple, we shall present the estimators for the mean and its variance for
Simple Random Sampling without replacement, while for other designs we
refer to Thompson and Seber (1996).

For sampling designs in which the probability πi that unit i is included
in the sample is known for every unit i = 1, . . . , N , the Horvitz-Thompson
estimator (π-estimator) z̄ = 1

N

∑

zi/πi can be used as an unbiased estimator
of the spatial mean. For Simple Random Sampling without replacement

πi = 1 −
(

N−mi−ai

n

)

(

N
n

) , (7.42)

where mi is the number of units in the network that includes unit i and ai

is the number of units in the networks of which unit i is an edge unit. The
numerator in the quotient of (7.42) is the number of distinct (unordered)
samples of size n not including unit i that can be formed by selecting n units
out of N units by Simple Random Sampling without replacement, while the
denominator is the total number of distinct (unordered) samples. Hence, the
quotient of (7.42) is the probability that unit i is not included. We now face
the problem that the inclusion probabilities are not known for all units in the
sample because some of the ai may be unknown (a unit in the sample may
be an edge unit of a cluster not represented in the sample). Therefore, the
π-estimator is modified by making use of units not satisfying the condition
only when they are included in the initial sample.

For Simple Random Sampling without replacement, the mean can be es-
timated by

ˆ̄zACl =
1
N

ν
∑

i=1

zi Ii

αi
, (7.43)

where ν is the number of distinct units in the final sample and Ii is an indicator
variable having a value of 1 if unit i is selected in the initial sample or if unit
i satisfies the condition; otherwise ii = 0, and π′

i is the probability that unit
i is included in the initial sample:
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Fig. 7.21. Adaptive cluster sample. The initial sample is a systematic random
sample of 16 squares (a). In the successive stages the four neighbouring cells of a
selected cell are added to the sample if this cell contains at least one point (b)

π′
i = 1 −

(

N−mi

n1

)

(

N
n1

) , (7.44)

where n1 is the size of the initial sample and mi is the number of units in the
network that includes unit i. Note that for a unit in the initial sample not
satisfying the condition, mi = 1. The variance of ˆ̄z can be estimated by

̂V
(

ˆ̄zACl

)

=
1

N2

κ
∑

k=1

κ
∑

m=1

z∗k z∗m
πkm − πk πm

πk πm πkm
, (7.45)

where κ is the number of distinct networks represented in the initial sample,
z∗k is the total of the z-values in network k, and πkm is the probability that
the initial sample contains at least one unit in each of the networks k and m,
which for k �= m can be calculated by

πkm = 1 −
(

N−mk

n1

)

+
(

N−mm

n1

) − (

N−mk−mm

n1

)

(

N
n1

) (7.46)

and for k = m

πkk = πk = 1 −
(

N−mk

n1

)

(

N
n1

) . (7.47)

7.2.11 Using Ancillary Information in Estimation

In many cases ancillary information is available that could be useful to increase
the precision of the estimated mean. The ancillary variable(s) can be qualita-
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tive (i.e., classifications) or quantitative. Both types of ancillary variable can
be used at the selection stage to improve the performance of the sampling
strategy, for instance by stratification (Stratified Simple Random Sampling,
see Sect. 7.2.4) or, in case of a quantitative variable, by selecting locations
with probabilities proportional to the ancillary variable (pps-Sampling). It
may happen that one has ‘forgotten’ to do so, regrets this, and now wonders
whether one can still use this ancillary information to increase the precision of
the estimates of the mean. In other cases it may be deliberately decided not
to use the ancillary information in the selection. For instance, one may have
decided not to use a variable for stratification, because the spatial boundaries
of the strata in the area are not known. An example is land use, which may
not be known for all parts of the area, whereas it can easily be recorded at the
sampling locations during the fieldwork. Another reason for not stratifying the
area may be that there are many target variables, which would lead to differ-
ent stratifications. Multiple stratification would lead to numerous strata. On
the other hand, stratification for one target variable may improve estimates of
this and correlated target variables, but can be inefficient for other variables.
A flexible alternative in this case is to use the ancillary information at the
estimation stage.

Post-Stratification

In many cases, the area can be split up into several more or less homogeneous
sub-areas. Such sub-areas can be thought of as groups of possible sampling
locations that have less variation within them than in the area as a whole. In
sampling terminology, these sub-areas are called ‘groups’. Even if groups are
not used as strata at the selection stage, however, they can still be used at
the estimation stage. The only thing that needs to be done is to classify the
sampling locations, i.e., determine the group of each sampling location. The
mean or the areal fraction can then be estimated by the post-stratification
estimator:

ˆ̄zpos =
G

∑

g=1

ag

ng
∑

i=1

zi

πi

ng
∑

i=1

1
πi

=
G

∑

g=1

ag

ng
∑

i=1

zi

πi

̂Ng

. (7.48)

where ag is the relative size of group g, ng is the number of sampling locations
in group g and πi is the probability of sampling location i being drawn. In
this formula, the estimated group means are weighted by their relative sizes
ag, which are assumed to be known. In spite of this, the group means are
estimated by dividing the estimated group totals by their estimated size, ̂Ng,
because this ratio estimator is more precise than the group sample mean.

For Simple Random Sampling, the post-stratification estimator reduces
to:
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ˆ̄zpos =
G

∑

g=1

ag z̄sg
, (7.49)

where z̄sg is the sample mean of group g. In the case of a stratified simple
random sample, for which one wants to use a second grouping at the estimation
stage, the mean can be estimated by:

ˆ̄zpos =
G

∑

g=1

ag ˆ̄zg =
G

∑

g=1

ag

Hg
∑

h=1

̂Ngh

̂Ng

z̄sgh
, (7.50)

where Hg is the number of strata in group g, and ̂Ng and z̄sgh
are the estimated

size and the sample mean of group g in stratum h, respectively.
For Simple Random Sampling, the variance of the post-stratification es-

timator for the mean can be estimated by the formula proposed by Särndal
et al. (1992, p. 287).

̂V
(

ˆ̄zpos

)

=
G

∑

g=1

a2
g

̂S2
g

ng
, (7.51)

where ̂S2
g is the estimated spatial variance of z in group g, which for Simple

Random Sampling can be estimated by:

̂S2
g =

1
ng − 1

ng
∑

i=1

(zi − z̄sg
)2 . (7.52)

Equation (7.51) is an estimator of the conditional sampling variance, i.e., of the
variance of the post-stratification estimator over only those possible samples
that have group sample sizes equal to the sizes in the sample actually drawn.
The post-stratification estimator requires that the sizes (area) of the strata
are known. If these sizes are unknown, then these sizes can first be estimated
from a relatively large sample, see Sect. 7.2.12 (Two-Phase Random Sampling
for Stratification).

Regression Estimators

This section describes how quantitative ancillary information can be used at
the estimation stage. If the ancillary information is known everywhere, for
instance from remote sensing or a digital terrain model, the true means of the
ancillary variables are known. The spatial mean of the target variable, z̄, can
then be estimated by the general regression estimator :

ˆ̄zgr = ˆ̄zπ +
Q

∑

q=1

bq

(

x̄q − ˆ̄xqπ

)

, (7.53)

where
ˆ̄zπ is the mean of the target variable estimated from the measurements of the
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target variable z in the probability sample only;
ˆ̄xqπ is the estimated mean of the q-th ancillary variable;
x̄q is true mean of the q-th ancillary variable; and
bq is the estimated regression coefficient (slope) for the q-th ancillary variable.

The estimators ˆ̄zπ and ˆ̄xqπ are the design-specific estimators for the mean,
presented in the previous sections. For instance, for Simple Random Sampling,
ˆ̄zπ is the unweighted sample mean ˆ̄zSI, while for Stratified Simple Random
Sampling, it is the weighted mean of the sample means per stratum ˆ̄zSt. Hence,
(7.53) is general in the sense that it can be used for any probability design.
It can also be used for a single ancillary variable (Q = 1), leading to the
simple regression estimator, or for two or more ancillary variables (multiple
regression estimator). As with spatial means, the sampling design must be
taken into account when estimating the regression coefficients. For Simple
Random Sampling, the regression coefficients can be estimated by the well-
known least squares estimator (Draper and Smith, 1981):

b = (X′X)−1(X′z) , (7.54)

where
b is the p-vector of regression coefficients;
X is the (n × p) matrix with the values of the ancillary variables at the
sampling locations (the first column is a vector with ones); and
z is the n-vector with values of the target variable at the sampling locations.
The first regression coefficient is the intercept, which is not used in the re-
gression estimator of the mean, but is needed to estimate the variance.

For Stratified Simple Random Sampling, (7.54) is used to estimate the
regression coefficients per stratum. If the number of sampling locations se-
lected in a stratum is small, say nh < 10 to 20 (depending on the number
of regression coefficients), this stratum must be combined with others to ob-
tain valid estimates of the sampling variance. For a combination of strata, the
regression coefficients can be estimated by the weighted means of the coeffi-
cients per stratum, using the relative areas as weights (7.13). In the case of
Two-Stage Random Sampling, (7.54) is used to estimate the coefficients per
primary unit selection, after which the unweighted mean of the coefficients
is calculated (7.27). Similarly, in the case of Cluster Random Sampling, the
regression coefficients are estimated by the unweighted mean of the estimated
regression coefficients per cluster. Finally, in the case of Systematic Random
Sampling the vector can be simply estimated by (7.54).

Derivation of the sampling variance of the regression estimator is not
straightforward because the regression coefficients are also estimated from
the sample, and as a result the regression estimator is non-linear. However,
for moderate to large samples (say, for the simple regression estimator n > 25)
the variance of the regression estimator can be approximated by the variance
of the π-estimator for the mean of the residuals, defined as:

e = z − Xb . (7.55)
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The variance of the π-estimator for the mean of the residuals can be estimated
by the usual sampling design specific estimators of the previous chapters, sub-
stituting the target variable z by the residual e. For instance, the approximate
variance of the regression estimator for Stratified Simple Random Sampling
can be estimated by (compare (7.14)):

̂V
(

ˆ̄zgr

)

=
H

∑

h=1

a2
h

̂V (ēsh
) , (7.56)

where ̂V (ēsh
) is the estimated variance of the sample mean of the residuals in

stratum h:
̂V (ēsh

) =
1

nh (nh − ph)

nh
∑

i=1

(ehi − ēsh
)2 . (7.57)

where ph is the number of regression coefficients for stratum h. Note that
in (7.57) nh (nh − 1) is replaced by nh (nh − ph) because we have lost ph

degrees of freedom to estimate the mean of the residuals for stratum h. If
strata are combined, n2

h is substituted in the denominator of (7.57) to estimate
the variance per stratum. To correct for the loss of degrees of freedom, the
weighted mean of the estimated variances per stratum (7.56) is multiplied by
a factor n/(n − p), where p is the number of regression coefficients for the
combined strata.

A special case of the regression estimator is the ratio estimator. It follows
from the assumption that the intercept is 0 and that the variance of the target
variable is proportional to the ancillary variable2. The ratio estimator equals:

ˆ̄zra = x̄
ˆ̄zπ

ˆ̄xπ
. (7.58)

In words: the spatial mean of the target variable is estimated by multiplying
the known spatial mean of the ancillary variable by the ratio of the estimated
spatial means of the target and ancillary variables. Again, this ratio estimator
can be used for any probability design, substituting the design-specific esti-
mators for the mean in (7.58). For small samples, one may prefer the ratio
estimator over the regression estimator even in situations where it is unlikely
that the intercept is 0, because with small samples the quality of the estimated
sampling variance of the ratio estimator outperforms that of the regression
estimator. Unlike the model-based approach, the quality of the estimated sam-
pling variance and confidence intervals does not depend on the quality of the
model assumptions. This is because the roles of the regression model in the
design-based approach and of the spatial variation model in the model-based
2 In (7.54) it is assumed that the variance of the target variable is constant (ho-

moscedasticity). If heteroscedasticity is assumed, the regression coefficients can
be estimated by the Weighted Least Squares estimator using the inverse of the
variance as weights.
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approach differ fundamentally. The regression model merely serves to choose
the type of regression estimator. The statistical inference is still based on the
selection probabilities of the samples as determined by the sampling design.
In the model-based approach, the model introduces the source of randomness,
and inference is based on this stochastic model (see Sect. 4.1). For an extensive
discussion of this, we refer to Hansen et al. (1983) and Särndal et al. (1992).
Brus (2000) discussed this issue in the context of soil sampling.

7.2.12 Two-Phase Random Sampling

The post-stratification estimator of section 7.2.11 requires that the sizes of
the strata are known and, similarly, the regression estimator of Sect. 7.2.11
requires that the means of the ancillary variables are known. If these are un-
known, but the ancillary variable can be measured cheaply, one may decide
to estimate the spatial means of the ancillary variables (sizes of the strata)
from a large sample. The target variable is measured in a random subsample
of this large sample only. This technique is known in the sampling litera-
ture as ‘Two-Phase Random Sampling’ or ‘Double Sampling’. Three Double
Sampling strategies are presented hereafter: Two-Phase Random Sampling
for Stratification, Ranked Set Sampling, and Two-Phase Sampling for Re-
gression. The requirements on the ancillary variable increase in this order.
For the stratification a nominal variable suffices. To rank the first-phase sam-
ple one must have measurements on at least an ordinal scale. The regression
estimator requires a quantitative variable. For a comparison of the three Two-
Phase Random Sampling techniques described below, we refer to Patil et al.
(1993) and Mode et al. (2002).

Two-Phase Random Sampling for Stratification

When the sizes of the strata are unknown, one can take a large sample and
classify the selected sampling units. The classes thus formed are then used as
strata in the second sampling phase, and the target variable is measured on the
units in the resulting subsample. See Fig. 7.22 for a notional example. With
Simple Random Sampling in the first phase and Stratified Simple Random
Sampling in the second phase, the mean can be estimated by:

ˆ̄z′π =
Hs1
∑

h=1

n1h

n1
z̄sh

, (7.59)

where Hs1 is the number of strata of the first-phase sample, n1h is the number
of locations in the first-phase sample that form stratum h, n1 is the total num-
ber of locations of the first phase sample and z̄sh

is the mean of the subsample
from stratum h. The variance can be estimated by the formula proposed by
Särndal et al. (1992, p. 353):
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Fig. 7.22. Notional example of a two-phase random sample for stratification, the
first-phase sample being selected by Simple Random Sampling. The solid symbols
represent the second-phase sample.

Fig. 7.23. Ranked set sample (one replication only). First-phase sample is selected
by Simple Random Sampling. The ranking is represented by the size of the symbols.
The solid symbols represent the second-phase sample with measurements of target
variable.

̂V(ˆ̄z′π) =
Hs1
∑

h=1

(

n1h

n1

)2 S2
sh

n2h
+

1
n1

Hs1
∑

h=1

n1h

n1

(

z̄sh
− ˆ̄z

)2
. (7.60)
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Ranked Set Sampling

Ranked Set Sampling is a way of increasing precision of estimates of the mean
or total, by ranking randomly selected sampling units. After this ranking, a
subset of sampling units is selected for measurement of the target variable.
When measurement of the target variable is expensive, and the ranking of the
sampling units is cheap and effective, considerable gains in precision can be
achieved compared to Simple Random Sampling. The ranking can be done
directly by eye, or with the help of some cheap measurement of a covariate,
such as electromagnetic readings, remotely sensed data, chemically-responsive
papers etc. In the simplest version m2 sampling units are selected, partitioned
into m simple random samples of size m (Fig. 7.23). Next, the m units of
each partition are ranked. Finally, the unit with the smallest rank in the
first partition, the unit with the second smallest rank in the second partition
until the unit with the largest rank in the final partition, are selected for
measurement of the target variable. This process is replicated r times.

The number of sampling units per partition must not be too large, other-
wise ranking may become difficult and less effective. Typical values for m are
two, three or four. For instance, if one wants to measure the target variable
on 12 sampling units, then a simple random sample of size nine (partitioned
into three groups of size three) may be selected four times (m=3, r=4). An
alternative would be to select two times (r = 2) a sample of size 36, parti-
tioned into six groups of size six (m = 6), but in general ranking six units will
be more difficult and less precise than ranking three sampling units.

The mean can simply be estimated by the unweighted mean of the target
variable in the subsample

ˆ̄zRSS =
1
r

r
∑

j=1

1
m

m
∑

i=1

z(i)j =
1
r

r
∑

j=1

ˆ̄zRSSj =
1
m

m
∑

i=1

ˆ̄z(i) , (7.61)

where z(i)j is the measurement of the target variable on the sampling unit
with ranking i in the ith partition, in the jth cycle. The variance can be
estimated by (Chen et al., 2004)

̂V
(

ˆ̄zRSS

)

=
̂V

(

ˆ̄zRSSj

)

r
=

1
r−1

r
∑

j=1

(

ˆ̄zRSSj − ˆ̄zRSS

)2

r
. (7.62)

An alternative variance estimator is

̂V
(

ˆ̄zRSS

)

=
1

r m2

m
∑

i=1

̂S2
(i) , (7.63)

with
̂S2

(i) =
1

r − 1

r
∑

j=1

(

z(i)j − ˆ̄z(i)

)2
. (7.64)
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Note that for both variance estimators at least two replications are needed.
For details on theory, methods and applications we refer to Chen et al. (2004)
and Patil et al. (1994).

Two-Phase Random Sampling for Regression

For Two-Phase Random Sampling, the regression estimator is:

ˆ̄z′gr = ˆ̄z′π +
Q

∑

q=1

bq

(

ˆ̄xqπ − ˆ̄x′
qπ

)

, (7.65)

where
ˆ̄z′π is the mean of target variable estimated from the measurements of the
target variable z in the subsample;
ˆ̄x′

qπ is the mean of the q-th ancillary variable estimated from the subsample;
ˆ̄xqπ is the mean of the q-th ancillary variable estimated from the first phase
sample;
bq is the regression coefficient for the q-th ancillary variable estimated from
the subsample.

The estimation of the spatial means of the target variable and the ancillary
variables from the subsample needs further explanation. A general p-unbiased
estimator of the mean for Two-Phase Random Sampling is:

ˆ̄z′π =
1
N

n2
∑

i=1

zi

π1i π2i
, (7.66)

where
N is the total number of possible locations in the area;
n2 is the number of locations selected in the second phase;
π1i is the probability that location i is included in the first phase sample; and
π2i is the conditional probability that location i is included in the second-
phase sample given the first phase sample.

The inclusion probabilities are determined by the sampling designs in the
two phases. Table 7.1 presents these probabilities for some combinations of
designs. The inclusion probabilities in Table 7.1 assume that, in the case
of Simple Random Sampling in phase 2, the locations are selected without
replacement, and in the case of Stratified Simple Random Sampling in phase
2, the strata coincide with the strata, PU drawings or clusters used in phase
1.

The regression coefficients must be estimated from the subsample as the
target variable is known for the locations of the subsample only. These can
be estimated in a similar way as the spatial means, using the inverse of the
product of the inclusion probabilities as weights in the Weighted Least Squares
estimator:

b = (X′WX)−1(X′Wz) , (7.67)
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Table 7.1. Inclusion probabilities for different combinations of phase 1 and phase
2 designs.

Phase 1 design Phase 2 design π1 π2

Simple Random Sampling (SI) SI n1/N n2/n1

Stratified Simple Random Sampling (StS) StS n1h/Nh n2h/n1h

Two-Stage Random Sampling (TsS) SI nm1i/N m2/m1

Two-Stage Random Sampling StS nm1i/N m2i/m1i

Cluster Random Sampling (ClS) SI nm1i/N m2/m1

Cluster Random Sampling StS nm1i/N m2i/m1i

Systematic Random Sampling (SyS) SI m1/N m2/m1

The symbols used in this table have the following meaning:
n1 is the number of locations selected by SI in phase 1;
n2 is the number of locations selected by SI in phase 2;

n1h is the number of locations selected in phase 1 from stratum h;
n2h is the number of locations selected in phase 2 from stratum h;

n is the number of PU drawings or selected clusters in phase 1;
m1i is the number of locations (selected in the second stage of TsS in phase 1) in

the PU containing the i-th subsampling location, or the number of locations
in the cluster (selected by ClS in phase 1) containing the i-th subsampling
location;

m1 is the total number of locations selected in phase 1;
m2i is the number of locations selected in phase 2 in stratum i; and
m2 is the number of locations selected in phase 2.

Table 7.2. Variance components for different combinations of phase 1 and phase 2
designs (see Table 7.1 for the meaning of abbreviations).

Phase 1 Phase 2 Variance component 1 Variance component 2

SI SI
cS2(z)
n1

“
1 − n2

n1

”
cS2(e)
n2

StS StS
PL

h=1 a2
h

cS2(zh)
n1h

PL
h=1 a2

h

“
1 − n2h

n1h

”
cS2(eh)

n2h

TsS SI 1
n(n−1)

Pn
i=1(z̄

′
i − z̄′)2 (1 − m2

m1
)

cS2(e)
m2

− 1
n2

Pn
i=1(1 − m2

m1
)

dS2
Wi

m2

TsS StS 1
n(n−1)

Pn
i=1(z̄

′
i − z̄′)2 1

n2

Pn
i=1(1 − m2i

m1i
)

bV (ei)
m2i

− 1
n2

Pn
i=1(1 − m2i

m1i
)

dS2
Wi

m2i

ClS SI as TsS/SI as TsS/SI

ClS StS as TsS/StS as TsS/StS
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where W is the n × n matrix with 1/ (π1iπ2i) as weights on its diagonal and
zeros as off-diagonal elements.

The variance of the regression estimator for Two-Phase Random Sampling
equals:

V
(

ˆ̄z′gr
)

= V1

{

E2

(

ˆ̄z′π | s1

)}

+ E1

{

V2

(

ˆ̄z′gr | s1

)}

, (7.68)

where
V1(·) is the variance over repeated sampling with the design of phase 1;
E2(·|s1) is the conditional expectation over repeated sampling with the design
of phase 2 given the first-phase sample;
E1(·) is the expectation over repeated sampling with the design of phase 1;
V2(·|s1) is the conditional variance over repeated sampling with the design of
phase 2 given the first-phase sample.

The first variance component of (7.68) equals the variance of the esti-
mated mean if the values of the target variable were known for all locations
of the first-phase sample. As the values are known for the subsample only,
this (weighted) mean of the first-phase sample must be estimated from the
subsample, which introduces an extra error, with variance equal to the second
variance component of (7.68). Table 7.2 shows estimators for the two variance
components for the sampling design combinations of Table 7.1, except for the
last one. The following symbols in Table 7.2 need to be defined:
̂S2(e) is the estimated residual variance;
̂S2(eh) is the estimated residual variance in stratum h;
z̄′i: subsample mean of the PU or cluster of the i-th selection;
z̄′: mean of z̄′i, i = 1, . . . , n.

For the combination of TsS/SI in Table 7.2, it is assumed that the number
of locations selected in the second stage of phase 1, each time a PU is selected,
is constant (m1i: constant). For the combination ClS/SI it is assumed that the
clusters are of equal size, and that the same number of subsampling locations
is drawn from each cluster. Brus and te Riele (2001) give an example from
soil science of Two-Phase Random Sampling for Regression, with Stratified
Simple Random Sampling in both phases.

7.2.13 Line-Transect Random Sampling

Line-Transect Random Sampling is commonly used in surveys of biotic pop-
ulations (vegetation, animals) to estimate the abundance3 or the density4 of
individuals, for instance of a specific plant or animal species. An observer
moves along one or more randomly selected lines, and records the location or
perpendicular distance of every individual of the species detected. In general,
more individuals are detected close to a transect than far away from it, simply
because individuals at large distance are more difficult to detect. In order to

3 Total number.
4 Total number divided by the area
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select the transects, a baseline is established across or below the target area.
The length of this line is equal to the projection of the area onto the line. Then
n points are selected on this baseline, for instance by Simple Random Sam-
pling or Systematic Random Sampling. These points determine the locations
of the transects perpendicular to the baseline.

In the simplest version of Line-Transect Random Sampling only the de-
tected individuals in a narrow strip along the line are used in the estimation.
This is referred to as the narrow-strip method. It is assumed that the de-
tectability in the narrow strip is perfect, i.e., every individual in the strip is
detected with probability 1. Individuals detected outside the narrow strip are
ignored, because the detectability of these individuals is < 1. The sampling
units generally have different (surface) areas and therefore the density is esti-
mated via the total number of individuals. For Simple Random Sampling of
n transects the narrow-strip estimator of the total is

̂tns(z) =
n

∑

i=1

zi
B

n2w
=

B

2w
zs , (7.69)

where zi is the number of observed individuals in strip i, B is the length of
the baseline, w is half the width of the strips, and z̄s is the sample mean of
the numbers. (The term B

n2w in (7.69) is the inverse of the transect inclusion
probability density integrated over the width of the strip). The density is then
estimated by

̂zns =
1
A

̂tns(z) , (7.70)

where A is the (surface) area of the region.
An alternative estimator, preferable in case of large differences in strip

length, is the ratio estimator

̂zR =
B
2w

∑n
i=1 zi

∑n
i=1 Li

. (7.71)

The variance of (7.69) can be estimated by

̂V
(

̂tns(z)
)

=
(

B

2w

)2
̂S2(zi)

n
(7.72)

with ̂S2(zi) the estimated spatial variance of the counts per strip:

̂S2(zi) =
1

n − 1

n
∑

i=1

(zi − zs)
2 (7.73)

The variance of the density can be estimated by dividing the estimated vari-
ance of the estimated total by A2.

The narrow-strip estimator is not entirely satisfying, because the detected
individuals outside the narrow strip with perfect detectability are not used.
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Also, in practice the half-width of the strips, w, is often not known and must
be estimated, i.e., one must estimate the maximum distance to which de-
tectability is perfect. This can be done with the help of a histogram of the
counts for distance-intervals from the transect, see Thompson (2002).

To get more out of the data, an alternative estimator has been developed.
This estimator makes use of the effective half-width of the transects. The effec-
tive half-width of a transect with a detectability that decreases with distance
is the width of a narrow strip (with perfect detectability) in which on average
the same number of individuals would be observed as seen from that transect.
This effective half-width can be derived from the above-mentioned histogram.
To this end the histogram is scaled to a probability function by dividing the
counts in a distance-interval through the total number of counts multiplied
by the width of the intervals. The areas of the bars in the probability plot
sum to 1. The effective half-width is now the reciprocal value of the estimated
probability for zero distance f̂(0). This probability at zero distance can be
estimated by fitting a smooth line through the bar-shaped probability plot.

For Simple Random Sampling of n transects, the abundance and density
can now estimated by substituting the effective width for the width in (7.69)
and (7.70). The variance of the abundance can be estimated by (7.72).

The transects can also be selected with probabilities proportional to their
length (pps-Sampling). This can be implemented by selecting n locations sim-
ple randomly from the whole target area, and drawing lines through these
points perpendicular to the baseline. Statistical inference of the density is
now much simpler because larger transects now also have larger selection
probabilities. The density can now be estimated by

̂zpps =
1
n

n
∑

i=1

̂zi =
1
n

n
∑

i=1

zi

2wLi
, (7.74)

and its variance by

̂V (̂zpps) =
1

n(n − 1)

n
∑

i=1

(

zi − ̂zpps

)2

(7.75)

A modification of Line-Transect Random Sampling is Variable-Circular-Plots
Random Sampling. By this method observation locations are randomly se-
lected from the area, and from each location every detected individual and
its distance to the location is recorded. When the locations are equidistant
points on transects selected by Systematic Random Sampling, this method is
referred to as Point-Transect Random Sampling. For further details we refer
to Thompson (2002).

7.2.14 Line-Intercept Random Sampling

This section deals with the situation where interest is in properties of the
individuals (plants, animals), such as the average diameter of trees at breast
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height, rather than properties of the terrain, such as the density of trees in
the area. In this situation the sampling units are the individuals. A common
problem with discrete universes (populations) is the absence of a sampling
frame, i.e., a list or a map of all individuals in the universe of interest. If
the individuals occupy considerable area, then Line-Intercept Sampling can
be used to select individuals in the field. With this type of design a sample
of lines is selected, and whenever an individual is intersected by one or more
lines, it is measured. Here we present the simplest version of Line-Intercept
Random Sampling in which transects, perpendicular to a baseline, are selected
through Simple Random Sampling of points on this baseline. For any transect,
the probability of selecting an individual k is

pk =
wk

B
, (7.76)

where wk and B are the length of the projection of individual k and the area,
respectively, on the baseline. An unbiased estimator of the mean of the target
variable z is

̂zi =
1

mi

mi
∑

k=1

zik

pik
, (7.77)

where mi is the number of individuals intersected by transect i. For n tran-
sects, the population mean can be estimated by the average of the ̂zi-values:

̂zli =
1
n

n
∑

i=1

̂zi . (7.78)

The variance of this estimator can be estimated by

̂V (ˆ̄zli) =
1

n(n − 1)

n
∑

i=1

(

̂zi − ̂zli

)2

. (7.79)

Line-Intercept Random Sampling can also be used to estimate the abun-
dance, density or the coverage of individuals. The coverage is defined as the
proportion of the total area covered by the individuals, such as vegetation
patches. In this case the sampling units are lines (transects), and not individ-
uals. For Simple Random Sampling of transects the total covered length of
transects, i.e., the covered area, can be estimated by (compare (7.69))

̂tli(z) =
n

∑

i=1

zi
B

n
= Bzs , (7.80)

where zi is the covered length of transect i. The coverage is then estimated
by

̂zli =
1
A

̂tli(z) , (7.81)
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The sampling variance of (7.80) can be estimated by

̂V
(

̂tli(z)
)

= B2
̂S2(zi)

n
(7.82)

with ̂S2(zi) the estimated spatial variance of the covered transect lengths:

̂S2(zi) =
1

n − 1

n
∑

i=1

(zi − zs)
2 (7.83)

The variance of the coverage can be estimated by dividing (7.82) by A2.
For pps-sampling of transects, an unbiased estimator of the coverage is

̂zpps =
1
n

n
∑

i=1

̂zi =
1
n

n
∑

i=1

zi

Li
. (7.84)

The variance can be estimated by (7.75).

7.2.15 Model-Based Optimization of Sample Sizes

If prior information on the spatial variability is available in the form of a
variogram, the following method can be used to predict the sampling variance
of any design-based strategy. Such predictions can then be used for optimizing
sample sizes. The core of the method is the general equation for predicting
the variance of a design-based estimated mean from a variogram (Domburg
et al., 1994):

Eξ

{

Vp

(

ˆ̄z
)}

= γ̄ − Ep

(

λ′ Γs λ
)

, (7.85)

where
Eξ(·) is the statistical expectation over realizations from the model ξ under-
lying the chosen variogram;
Ep(·) is the statistical expectation over realizations from the design p;
Vp(·) is the variance over realizations from the design p (the usual sampling
variance in the design-based approach);
γ̄ is the mean semi-variance between two random points in the area;
λ is the vector of design-based weights of the locations of a sample selected
according to design p (For instance, if one cluster of 3 locations and one of 2
locations were selected, the weights in calculating the mean would be (7.33):
1/6, 1/6, 1/6, 1/4, 1/4);
Γs is the matrix of semi-variances between the locations of a sample selected
according to design p.

The first term, γ̄, is calculated by numerical integration or by Monte-
Carlo simulation, repeatedly selecting a pair of random locations, calculating
its semivariance, and averaging. The second term can also be evaluated by
Monte-Carlo simulation, repeatedly selecting a sample according to design p,
calculating its mean semi-variance λ′ Γs λ, and averaging. This generic pro-
cedure is computationally demanding but it is the only option for compound
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and spatial systematic strategies (Sect. 7.2.8). For the basic strategies, how-
ever, much more efficient algorithms are possible, making use of the structure
of the design types. The following special prediction equations can be derived
from the general equation (7.85).

Simple Random Sampling

In the case of Simple Random Sampling, (7.85) simplifies to:

Eξ

{

Vp

(

ˆ̄zSI

)}

=
1
n

γ̄ . (7.86)

Stratified Simple Random Sampling

For Stratified Simple Random Sampling, (7.85) becomes:

Eξ

{

Vp

(

ˆ̄zSt

)}

=
H

∑

h=1

γ̄h

nh
, (7.87)

where γ̄h is the mean semi-variance between two random locations in stratum
h. Different variograms can be used for the strata.

Two-Stage Random Sampling

For Two-Stage Random Sampling and constant mi, the sampling variance is
given by (7.29). The variance components in this equation are the between-
unit and the pooled within-unit variances, S2

b and S2
w. These components can

be predicted from the two terms in (7.85). The first term predicts the total
variance, S2

T = S2
b + S2

w, while the second term predicts S2
w/2 if n = 1 and

m = 2. In other words, the second term is calculated by repeatedly selecting
one unit and two random points in it. The result is the mean semi-variance
between pairs of random points within units, denoted by γ̄u. The sampling
variance is then predicted by:

Eξ

{

Vp

(

ˆ̄zTs

)}

=
1
n

(

γ̄ − m − 1
m

· γ̄u

)

. (7.88)

Brus et al. (2002) illustrate the prediction of the sampling variance for two-
and three-stage designs, and the optimization of the sample sizes by simulated
annealing.

Cluster Random Sampling

The sampling variance with Cluster Random Sampling equals the between-
cluster variance, S2

b , divided by the number of clusters, n. To predict S2
b for

a given cluster definition, we apply (7.85) to Cluster Random Sampling with
n = 1. In other words, the second term is calculated by repeatedly selecting
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only one cluster. Within each cluster the locations have equal weight (1/mi),
so that λ′ Γs λ simplifies to the unweighted mean:

λ′ Γs λ =
1

m2
i

mi
∑

k=1

mi
∑

l=1

γkl =
2

m2
i

mi−1
∑

k=1

mi
∑

l=k+1

γkl , (7.89)

because Γs is symmetric with a zero diagonal. The result is the mean semi-
variance between pairs of locations within clusters, denoted by γ̄c. The sam-
pling variance is then predicted by:

Eξ

{

Vp

(

ˆ̄zCl

)}

=
1
n

(γ̄ − γ̄c) . (7.90)

Of course, in the special case that all clusters have the same size and shape,
λ′ Γs λ needs to be calculated only once.

Systematic Random Sampling

As Systematic Random Sampling is Cluster Random Sampling with n = 1,
the sampling variance can be predicted by:

Eξ

{

Vp

(

ˆ̄zCl

)}

= γ̄ − γ̄c . (7.91)

Again, in the special case that all clusters have the same size and shape,
λ′ Γs λ needs to be calculated only once.

7.2.16 Design-Based Sampling in 1D or 3D Space

The previous sections focused on sampling in 2D space, but in practice 1D
or 3D spatial dimensions are often involved. In general, the methodology pre-
sented for 2D space can be easily transferred or adapted to these dimensions,
as is outlined below.

One-dimensional spatial universes can have a horizontal or a vertical orien-
tation. Examples of horizontal 1D universes are projected trajectories of roads
or pipelines. The methodology presented for 2D is directly transferable to this
situation. Sampling in vertical 1D space, i.e., sampling at depth, is practically
always done at more than one location, hence it is part of sampling in 3D
space.

The universe of interest is very often embedded in 3D space. Sampling loca-
tions would then have two horizontal coordinates (s1 and s2) and one vertical
coordinate (s3). Theoretically, all three could be determined independently,
similar to s1 and s2 in 2D sampling. This would typically lead to sampling
at a single variable depth at each location. However, this is hardly ever done
in practice. There are two main reasons to treat the vertical coordinate dif-
ferently and to decompose the 3D sampling problem into a 2D (horizontal)
problem and a 1D (vertical) problem.
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The first reason applies when the target variable is defined as a function
of soil properties at various depths, as is usually the case in the context of,
for instance, plant growth and leaching. It is then logical to sample at these
depths at each location. The second reason applies when the target variable
is defined at points in 3D space, e.g., the concentration of a contaminant, and
the target quantity is defined over 3D space, e.g., the 3D spatial mean. In
this case, although not a necessity, it is usually efficient to take samples at
various depths at the same location. The sample is designed and analyzed as
a two-stage sample, with locations as the primary units and depths as the
secondary units (see Sect. 7.2.5).

The methodology of sampling at depth is, in principle, the same as that for
2D space. However, cluster and two-stage sampling will usually be inefficient,
because their operational advantages in 2D space do not hold for sampling
at depth. The two dominant techniques in practice are purposive sampling at
fixed depths and stratified systematic sampling, with soil horizons as strata
and compositing of samples from the same horizon.

7.3 Model-Based Methods for Global Quantities in
Space

7.3.1 Introduction

Although model-based methods are typically applied to predict local quanti-
ties, such as the values at points or the means of small sub-areas (Sect. 8.3),
they can be used for predicting global quantities such as the mean or the
cumulative distribution function for the entire study region. In general, a
design-based sampling strategy is the most appropriate for estimating global
quantities (Sect. 7.2). Broadly speaking, a model-based sampling strategy may
be appropriate when the target variable is strongly autocorrelated at the scale
of the study region and the sampling density is large enough to profit from
this autocorrelation (Sect. 4.1). Another prerequisite is that there must be
enough sample data from which to estimate the model. If the quantified un-
certainty about the estimated global quantity is important, and one is rather
uncertain about the model, a model-based strategy may be refrained from,
because the variance of the prediction error is particularly sensitive to the
model assumptions.

When a model-based strategy is followed to predict the global spatial
mean, the sampling locations need not be selected at random, because ran-
domness is already introduced via the stochastic model of spatial variation
(Sect. 4.1). In general, model-based predictions from probability samples are
less precise (have larger block-kriging variance) than those from purposive
samples, which is why purposive sampling is preferable. If prior information
is available on the spatial variation and a plausible model (variogram) can be
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postulated, this geostatistical model can be used to search for the sampling lo-
cations with minimum block-kriging variance. Samples optimized with a geo-
statistical model are referred to as geostatistical samples (Sect. 7.3.3). The
search for the optimal sample may be rather difficult and time-consuming,
and the closeness of the optimum thus found to the true optimum depends
on the quality of the postulated variogram. Therefore, in some situations one
may decide to follow a much simpler approach for designing a spatial sam-
ple to be used in a model-based sampling strategy. Simple alternatives are
regular grids and spatial coverage samples. For a discussion of methods to
design spatial coverage samples, we refer to Sect. 8.3.3. Nychka et al. (1997)
found that in predicting the global mean, spatial coverage samples perform
only slightly worse than geostatistical samples optimized with the true (but
in practice unknown) variogram.

7.3.2 Centred Grid Sampling

Figure 7.24 shows the block-kriging variance for centred square grids in a
square area. The spacing of all grids equals the side of the square divided
by the square root of the sample size, d =

√

A/n, where A is the area of
the square. For example, for n = 25, the grid spacing equals one fifth of
the side of the square. For linear variograms, this spacing is optimal, while
for spherical variograms, the optimal grid spacing is slightly larger (Webster
and Oliver, 1990). In each graph there are four lines, representing different
relative ranges (range divided by the side of the square). The block-kriging
variance is expressed as a percentage of the sill of the spherical variogram, i.e.,
the maximum value. These graphs can be used to choose the required sample
size, given the constraint on the precision of the predicted global mean, or vice
versa, to predict the precision given the sample size. Strictly speaking, regular
grids with optimized spacing can be considered as geostatistical samples.

The target area will usually not be square. To explore the effect of its
shape on the precision of the predicted global mean, we have calculated the
standard error of the predicted mean of a rectangle with a length/width ratio
of 100, and divided it by the standard error for a square of the same area. An
experiment showed that for non-square rectangles the standard errors differed
only marginally, except for small sample sizes (< 20), combined with a large
relative range (> 0.5), and a small nugget-to-sill ratio, (< 0.5). Therefore
Fig. 7.24 can also be used to obtain an estimate of the required sample size or
precision for non-square rectangles. To this end, the range of the postulated
variogram must be divided by

√
A to select the appropriate line in Fig. 7.24.
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Fig. 7.24. Block-kriging variance of the global mean of a square block, predicted
from centred square grids with grid spacing ∆s =

p
A/n, as a function of the sample

size, for spherical variograms. The variance is expressed as a percentage of the sill
of the variogram. Nugget-to-sill ratios: a: 0.10; b: 0.25; c: 0.50; d: 0.80
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7.3.3 Geostatistical Sampling

If a variogram can be postulated, it can be used to optimize sampling pat-
tern, i.e., the sampling pattern with minimum block-kriging variance of the
predicted global mean. Section 8.3.4 describes ways to optimize sampling pat-
terns for predicting the values at points. In most cases, however, the sampling
pattern with a minimum value for the maximum or mean kriging variance
of local predictions will be sub-optimal for predicting the global mean, and
vice versa (Sacks and Schiller, 1988; Nychka et al., 1997). To illustrate this,
Fig. 7.25 shows the optimized pattern of 23 points in a square, as calculated
by simulated annealing (Appendix A), for ordinary block-kriging of the global
mean with a spherical variogram with a range equal to half the side of the
square, and a nugget-to-sill ratio of 0.10. There is a striking difference with the
optimized patterns obtained with the mean and maximum point-kriging vari-
ance as quality measure (Fig. 8.4). The latter are distorted triangular grids,
alternating between three rows of 5 points and two rows of 4 points. The two
rows of 4 points are sandwiched between the rows of 5 points. In Fig. 7.25 the
two rows of 4 points are outside the three rows of 5 points, near the top and
bottom of the square. One can imagine that this pattern will be sub-optimal
for the maximum and mean point-kriging variance, because the point-kriging
variance rises sharply near the edges. However, locating points near the edges
to counteract this boundary effect seems to be sub-optimal for predicting the
global mean.

Finally, Fig. 7.26 shows the optimized pattern of 32 points added to 6
prior points to predict the global mean for the province of Gelderland in the
Netherlands, again calculated by simulated annealing. If one compares the
pattern with those obtained with the mean and maximum kriging variance as
quality measure (Figs. 8.6 and 8.7), the most striking is once again the differ-
ence with the maximum kriging variance pattern. Compared to this pattern,
points are moved to the interior of the province. There are also fewer points
close to the boundaries compared with the mean kriging variance pattern.
Here and in Sect. 7.3.2, the spatial mean is predicted with the block-kriging

predictor, which is a linear combination of the values at the observed points.
For multivariate normal distributions, this linear predictor is also the best
predictor, i.e., has smallest prediction-error variance. For other distributions,
however, non-linear predictors may perform better than the linear predictor.
For instance, for multivariate lognormal distributions, the precision of pre-
dictions can be increased by first taking the logarithm of the values at the
sampling locations, and then block-kriging the log-transformed values. In this
case, the block-kriging variance is not merely a function of the locations of
the observations, but also depends on the values observed. This implies that
if one has prior points, then the optimal pattern of the added points depends
on the values observed at the prior points (see Chao and Thompson (2001)
for an illustration).
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Fig. 7.25. Optimized pattern of 23 points in a square for predicting the global mean
by block-kriging with a spherical variogram with a range half the side of the square
and a nugget-to-sill ratio of 0.10

Fig. 7.26. Optimized pattern of 32 points added to 6 prior points for predicting
the global mean for the province of Gelderland, the Netherlands, by block-kriging
with a spherical variogram with a range of 50 km and a nugget-to-sill ratio of 0.40

7.3.4 Detecting Hot Spots

A hot spot is defined here as a relatively small area with a concentration of
some compound or abundance of some object (e.g., a plant or animal species)
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that exceeds a certain threshold. Examples are pieces of land with soil or
groundwater contaminated by some point-source, anomalous sites with high
concentrations of natural geochemical elements, niches inhabited by some rare
plant or animal species, or patches of crops infected by some disease. The
threshold concentration may be a constant value that does not vary in space,
or a spatially varying concentration. An example of the latter is a soil standard
defined in terms of soil organic-matter content, clay percentage and pH, thus
taking into account the bio-availability of the contaminant. A hot spot may
also have sharp boundaries separating them from background values, or more
gradual transitions.

In detecting hot spots, the aim of the survey is to find out whether at
any point in the study area the critical threshold is exceeded, without asking
where (Sect. 2.2.6). The answer to this type of question can be coded as a 0/1
indicator variable, which is related to the area as a whole, and consequently
is a global quantity. For delineating hot spots we refer to Sect. 8.3.5.

Detection of hot spots can be achieved better with purposive sampling than
with probability sampling. If one has no prior information on the location of
the hot spots, samples are typically taken on a centred, regular grid. Gilbert
(1987) worked out a method for calculating the required grid spacing from the
consumer’s risk, β, i.e., the probability of not hitting a hot spot if it exists, and
the geometry (size and shape) of the hot spot. This method is implemented
in the Visual Sample Plan program (Gilbert et al., 2002). The probability of
hitting a hot spot if it exists is calculated by summing the zones of coverage
for the sampling locations, excluding overlaps. The zone of coverage for any
sampling location can be obtained by drawing the contour of a hot spot with
its centre at the sampling location. If the centre of the hot spot is in the zone
of coverage, it will be detected from the sampling location. Note that this
method can be used only if one has prior information on the size and shape
of the hot spot. Moreover, it does not deal with the situation in which there
is more than one hot spot, and the intention is to detect all of them.

So far, it has been assumed that a hot spot exists. In other words, it is
assumed that the probability that a hot spot exists is 1. If the existence of a
hot spot is uncertain, the probability that a hot spot exists and is detected
can be estimated by

P (A,B) = P (B|A) P (A) , (7.92)

where P (B|A) is the probability that the hot spot is hit, conditional on its
existence, and P (A) is the probability that the hot spot exists. Given the grid
spacing and geometry of the hot spot one can calculate P (B|A) and simply
multiply this by the a priori probability that the hot spot exists to obtain the
probability that the hot spots exists and is detected by the sample.

In some situations, information on land use, or a walkover survey of visual
or organoleptic indicators of high concentrations can be used to subdivide the
target area into subregions with different probabilities of containing the hot
spot. The grid spacing can then be adapted to these a priori probabilities as
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follows. For all subregions, there must be an equal probability that a hot spot
exists when none is detected by the sample. This probability is referred to as
the a posteriori probability and denoted by P (A|B). Bayes’ formula can now
be used to calculate from the a priori and a posteriori probabilities for each
subregion the probability of not hitting the hot spot if it exists, the consumer’s
risk β:

β =
1 − P (A)

P (A)
{

1
P (A|B)

− 1
} . (7.93)

Hence, when P (A) differs between subregions, and given a constant P (A|B)
for all subregions, for instance 0.05, β differs between subregions, and this
leads to different grid spacings. Subregions with large a priori probabilities
will be given smaller grid spacings than subregions with small a priori proba-
bilities. An alternative to Centred Grid Sampling is to optimize the sampling
pattern by minimizing the sum of the a priori probabilities outside the zones
of coverage of the sampling locations (Tucker et al., 1996).

A different aim, related to detection of hot spots, is estimation of the
fraction of the area with values exceeding the threshold or the total number
(density) of objects. For this aim the design-based Adaptive Cluster Sampling
strategy may be a good choice (Sect. 7.2.10). An unbiased estimate of the
sampling variance of the estimated areal fraction (number of objects) can
then be obtained from the sample.



8

Local Quantities in Space

8.1 Introduction to Methods for Local Quantities in
Space

The region for which estimation or testing of hypotheses is required, need not
be the entire area sampled. Interest may also be in one or more sub-areas
(domains), and this is treated in this chapter. Examples of local quantities
are the mean phosphate content in the topsoils of all agricultural fields in an
area, the abundances of some plant species in the cells of a raster covering a
nature conservation area, and the nitrate concentration at the nodes of a fine
grid covering an agricultural area, at the start of the growing season.

Means and parameters of the Spatial Cumulative Distribution Function of
sub-areas can be estimated by a design-based method (Sect. 8.2) or a model-
based method (Sect. 8.3). In choosing between these two approaches the sam-
ple sizes per sub-area should play an important role. If one can afford a rea-
sonable sample size for each sub-area (domain), and valid interval-estimates
are important, then a design-based approach is worth considering. If one has
many sub-areas and the average number of sampling locations per sub-area
is small, say less than 5 to 10, then the model-based approach comes into
scope. A design-based alternative is the regression estimator, which also uses
sampling locations outside the domain (Sect. 8.2.2).

At the extreme one may want to estimate or test hypotheses about the
values at points. In this case we recommend a model-based method (Sect. 8.3).

8.2 Design-Based Methods for Local Quantities in Space

8.2.1 Introduction

This section mainly deals with design-based estimation of means, or other pa-
rameters of the SCDF, for several sub-areas. If the sub-areas can be delineated
beforehand, one may select a sample from each of them separately. In that
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case the sub-areas act as ‘strata’ in a stratified sampling design (Sect. 8.2.2,
subsection ‘Sampling per Sub-Area’). However, even when the sub-areas can
be delineated prior to the sampling, this is not always done in practice. When
there are numerous sub-areas, independent sampling of all the sub-areas may
be too costly. Sometimes it is impossible to delineate the sub-areas, simply
because one does not know where they are. An example of the latter is where
the spatial mean of a target variable within a given soil type is to be esti-
mated, and no map of the soil types at an appropriate scale is available. This
mean can be estimated if, in addition to the target variable, the soil type is
recorded at the sampling locations. When it is impractical or impossible to
single out the sub-areas as strata, one may select a sample from the total
area independent from any division into sub-areas. The sample data are then
sorted afterwards according to the sub-areas in which the sampling locations
happen to fall. The sample sizes of the sub-areas are random rather than
controlled at the selection stage. Estimators for the mean and its sampling
variance are given in Sect. 8.2.2. In a separate subsection ‘Sampling Across
Small Sub-Areas’ estimators are presented for means of small sub-areas, and
consequently few points per sub-area.

The final section of this chapter deals with design-based estimation of
values at points. Although in principle, one would rather prefer a model-
based method for this aim, there is a design-based alternative if an estimate
of the average accuracy for all points of a sub-area suffices (Sect. 8.2.3).

8.2.2 Quantities Defined on Sub-Areas

Sampling per Sub-Area

When the sub-areas are known at the beginning of the survey and one can
afford a reasonable sample size for each domain, we recommend to sample
each sub-area separately, as an independent unit. Thus one can control the
sample sizes in the sub-areas, and one may choose a suitable type of sampling
design for each sub-area. This type of design need not be similar for all sub-
areas, For instance, for a sub-area that consists of several disjoint polygons
(e.g., all polygons of a map unit) a two-stage design can be efficient, whereas
for compact sub-areas this can be rather inefficient. Once a sampling design
is chosen, the estimators for the mean (areal fraction) and for the sampling
variance can be found in Sect. 7.2. If there is one budget for sampling all
sub-areas, one has to decide on the budgets per sub-area. Optimization under
the constraint that the total costs of the survey do not exceed the overall
budget, means minimizing an objective function that is defined in terms of
the sampling variances per sub-area, for instance:

J(n1, . . . , nD) =
D

∑

d=1

wd
̂V

(

ˆ̄zd

)

. (8.1)
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The weight wd for a sub-area d reflects the importance of obtaining a precise
estimate of that sub-area. For instance, if it is more important to obtain
precise estimates for large sub-areas than for small sub-areas, one can take the
relative (surface) area of the sub-areas as weights. Alternatively, one may want
estimates that are approximately equally precise for all sub-areas. This can be
reached by setting all weights to 1 and adding a penalty for differences between
the estimated sampling variances per domain, for instance the variance of the
estimated sampling variances per domain:

J(n1, . . . , nD) = α· 1
D

D
∑

d=1

̂V
(

ˆ̄zd

)

+(1−α)

√

√

√

√

1
D − 1

D
∑

d=1

{

̂V
(

ˆ̄zd

) −
∑

̂V
(

ˆ̄zd

)

D

}2

,

(8.2)
where α is a weighting factor to be specified by the user.

Sampling Across Large Sub-Areas

Frequently, the sub-areas for which an estimate is required are not used in
selecting the sampling locations. Sometimes a sample is taken independently
from any subdivision into sub-areas, in other situations the sub-areas for which
estimates are required differ from those used in selecting the sampling loca-
tions, i.e., they cut across the strata. In both cases the sample sizes in the
domains are uncontrolled and vary between samples.

Although perfect control is impossible, strong under- and overrepresenta-
tion of domains can be avoided by selecting locations by a design type that
leads to good spatial coverage, such as Systematic Random Sampling. Design
types that lead to spatial clustering such as Two-Stage Random Sampling,
Cluster Random Sampling and, to a lesser degree, Simple Random Sampling
are less appropriate. Despite this, we give estimators for these designs, because
one may want to use the sample data of one of these designs for estimating the
means of domains. Finally, if one can subdivide the target area into ’homo-
geneous’ sub-areas, one may use the sub-areas as strata in stratified random
sampling.

When there are only a few large domains, the sample sizes in the domains
may be large enough, say 10 to 20, to estimate the mean of a given domain
accurately enough from the sampling locations that happen to fall in that
domain only. In that case the mean of a domain could be estimated by the
direct estimator:

ˆ̄zd =
1

Nd

nd
∑

i=1

zdi

πdi
, (8.3)

where Nd is the size of the domain, nd is the number of sampling locations in
domain d, zdi is the value at the point selected in the ith draw from domain d,
and πdi is the inclusion probability of this point. When the size of the domain
is unknown, one can estimate it by:
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̂Nd =
nd
∑

i=1

1
πi

. (8.4)

This results into the general ratio-estimator:

ˆ̄zRd =

nd
∑

i=1

zdi

πdi

nd
∑

i=1

1
πdi

. (8.5)

This ratio-estimator is more precise than the direct estimator and is therefore
recommended even in situations where the size of the domain is known. The
variance of the ratio-estimator can be approximated only, but for expected
sample sizes in the domains greater than 10 to 20, this approximation suffices.
We shall now work out the general ratio-estimator and its variance for the
basic types of design.

Simple Random Sampling

Inserting πdi = n/N in (8.5) gives:

ˆ̄zRd =
1
nd

nd
∑

i=1

zdi . (8.6)

So in this case the mean of the domain is simply estimated by the mean of
the z-values observed in the domain. The variance of this estimator can be
estimated by:

̂V
(

ˆ̄zRd

)

=
1
â2

d

· 1
n (n − 1)

nd
∑

i=1

(zdi − z̄sd
)2 , (8.7)

where z̄sd
is the sample mean in domain d, and âd is the estimated relative

size of domain d:
âd =

nd

n
. (8.8)

Stratified Simple Random Sampling

Consider the following situation. The aim of the survey is to estimate the
mean of each field in a region. To estimate these means the units of a soil map
are used as strata in Stratified Simple Random Sampling. The soil map units
cross the fields. In each field the sample size is large enough to estimate its
mean with sufficient accuracy. The mean of a domain (field) can be estimated
by:

ˆ̄zRd =

H
∑

h=1

ah

nh

nhd
∑

i=1

zhdi

H
∑

h=1

ah
nhd

nh

, (8.9)
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where nhd is the number of sampling locations falling in the intersection of
domain d and stratum h. The sampling variance is estimated by:

̂V
(

ˆ̄zRd

)

=
1
â2

d

H
∑

h=1

a2
h

nh (nh − 1)

{

∑

i

(zhdi − z̄shd
)2+

nh

(

1 − nhd

nh

)

(

z̄shd
− ˆ̄zRd

)2
}

, (8.10)

where z̄shd
is the sample mean in the intersection of domain d and stratum h,

and âd is the estimated relative size of domain d:

âd =
H

∑

h=1

ah
nhd

nh
. (8.11)

Two-Stage Random Sampling

We first define a new variable z′, which equals z everywhere in the domain,
but is zero elsewhere. The mean for a domain can now be estimated by:

ˆ̄zRd =

n
∑

i=1

̂z′i
n
∑

i=1

mdi

mi

, (8.12)

where n is the number of primary unit (PU) selections, mi is the number of
points in PU selection i, mdi is the number of points in PU selection i and
domain d, and ̂z′i is the estimated mean of the transformed variable z′ for PU
selection i. When PUs are selected by Simple Random Sampling, ̂z′i equals
the sample mean of z′ for PU selection i. The variance can be estimated by:

̂V
(

ˆ̄zRd

)

=
1
â2

d

· 1
n (n − 1)

n
∑

i=1

(

̂z′i − ˆ̄zRd
mdi

mi

)2

, (8.13)

where the relative size of the domain is estimated by:

âd =
1
n

n
∑

i=1

mdi

mi
. (8.14)

Cluster Random Sampling

The formulas for the ratio-estimator and its variance are the same as for
Two-Stage Random Sampling when primary units are replaced by clusters.
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Systematic Random Sampling

Similar to Simple Random Sampling, the mean of a domain d can be estimated
by the mean of the z-values observed in the domain:

ˆ̄zRd =
1

md

md
∑

i=1

zdi , (8.15)

where md is the number of grid nodes falling in domain d. If one estimates the
variance as if the sample was obtained by Simple Random Sampling, then a
conservative estimate of its variance is obtained, provided that the sampling
pattern does not interfere with a cyclic variation.

Sampling Across Small Sub-Areas

When the domains are numerous and are not well represented in the sample,
the direct estimators from the previous section may lead to sampling variances
that are too large. Extensive literature exists about how the means of such
small domains can be estimated; see Chauduri (1994) for a review. We shall
describe two estimators, the synthetic estimator and the generalized regression
estimator. Both estimators use, as opposed to the estimators in the previous
section, sampling locations outside the domain. The intention is that, by doing
so, the precision will increase. On the other hand, in general some bias will
be introduced.

For small sub-areas, it is even more important to spread the sampling
locations over the target area, otherwise some sub-areas may be missed. Sys-
tematic Random Sampling therefore may be a good choice, despite its difficul-
ties with variance estimation. For the synthetic estimator stratified random
sampling is sensible, but again, one should take care of good spatial coverage.

Synthetic Estimator

With the synthetic estimator the area is divided into sub-areas, here referred
to as groups, that are as homogeneous as possible. In general these groups cut
across the domains, i.e., they do not coincide with the domains. The mean of
a domain is estimated as a weighted mean of the estimated means per group:

ˆ̄zSYd =
G

∑

g=1

agd ˆ̄zRg , (8.16)

where agd is the size of group g in domain d, relative to the size of the domain
(agd = Ngd/Nd). The group means are estimated by the ratio-estimator, ˆ̄zRg:

ˆ̄zRg =

ng
∑

i=1

zi

πi

ng
∑

i=1

1
πi

=

ng
∑

i=1

zi

πi

̂Ng

. (8.17)
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In general this synthetic estimator is not p-unbiased. It is approximately un-
biased only in the hypothetical situation where the true means of all domains
within a group equal the true mean of that group, i.e., z̄gd = z̄g for all d.
However, the intention is that the reduction of the sampling variance due to
the use of the sample data from similar parts of the area outside the domain,
outweighs the extra error due to the introduction of design-bias.

The sampling variance of the synthetic estimator can be approximated by:

̂V
(

ˆ̄zSYd

)

=
G

∑

g=1

a2
gd

̂V
(

ˆ̄zRg

)

, (8.18)

where ̂V
(

ˆ̄zRg

)

is the estimated sampling variance of the ratio-estimator for
the group mean (see the previous section on estimation for large domains).

When the groups are used as strata the synthetic estimator becomes:

ˆ̄zSYd =
H

∑

h=1

ahd ˆ̄zh , (8.19)

where ˆ̄zh is the π-estimator for the mean of stratum h. The sampling variance
can then be estimated by:

̂V
(

ˆ̄zSYd

)

=
H

∑

h=1

a2
hd

̂V
(

ˆ̄zh

)

, (8.20)

where ̂V
(

ˆ̄zh

)

is the estimated variance of the π-estimator for the mean of
stratum h.

Generalized Regression Estimator

To eliminate the design-bias, Hidiroglou and Särndal (1985) proposed the
generalized regression estimator for small domain estimation:

ˆ̄zGRd =
1

Nd

Nd
∑

k=1

ẑk +
1
̂Nd

nd
∑

i=1

εi

πi
, (8.21)

where ẑk =
∑Q

q=1 bqxqk is the predicted value of the target variable z at
point k from measurements of Q ancillary variables xq at point k, εi = zi −
ẑi is the residual at the point selected in the ith draw, πi is the inclusion
probability of this point, and ̂Nd =

∑nd

i=1 1/πi is the estimated size (area)
of the domain. Note that the first sum is over all points in the domain d, so
the ancillary variables must be known for all points in the domain. The first
part of this estimator, the mean of the predicted values 1

Nd

∑Nd

k=1 ẑk, is the
synthetic component of the estimator, because points outside the domain are
used in estimating the regression coefficients bq. In Sect. 7.2.11 estimators for
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these regression coefficients are presented. To eliminate the bias, the mean
of the predicted values is adjusted by the estimated mean of the residuals in
the domain d, the second term of the estimator. Note that the estimated size
of the domain is used in estimating this mean, i.e., the domain mean of the
residuals is estimated by the ratio-estimator.

We shall now work out the generalized regression estimator for the one-
way ANOVA model and the Simple Linear Regression model. The one-way
ANOVA model assumes that the mean and the variance of z is constant within
the groups, i.e., for all points in group g:

Eξ(Zk) = βg

Vξ(Zk) = σ2
g .

(8.22)

For this model the generalized regression estimator turns out to be:

ˆ̄zANd =
G

∑

g=1

agd ˆ̄zRg +
1
̂Nd

G
∑

g=1

̂Ngd

(

ˆ̄zRgd − ˆ̄zRg

)

, (8.23)

with:

ˆ̄zRgd =

ngd
∑

i=1

zi

πi

̂Ngd

=

ngd
∑

i=1

zi

πi

ngd
∑

i=1

1
πi

. (8.24)

When the groups are used as strata and these are sampled by Simple Ran-
dom Sampling (Stratified Simple Random Sampling), the estimator becomes:

ˆ̄zANd =
H

∑

h=1

ahd z̄sh
+

1
̂Nd

H
∑

h=1

̂Nhd (z̄shd
− z̄sh

) , (8.25)

where ahd is the size of stratum h in domain d, relative to the size of the
domain (ahd = Nhd/Nd), z̄sh

is the sample mean in stratum h, and z̄shd
is the

sample mean in the intersection of stratum h and domain d.
This estimator is similar to the synthetic estimator (8.19), plus a correction

term. The variance of this estimator can be estimated with:

̂V
(

ˆ̄zANd

)

=
H

∑

h=1

a2
hd

̂V
(

ˆ̄zRhd

)

, (8.26)

where ̂V (ˆ̄zRhd) is the estimated variance of the ratio-estimator for the mean
of domain d in stratum h for Simple Random Sampling (8.7).

When the Simple Linear Regression model is adopted, one assumes that

Eξ(Zk) = β0 + β1xk

Vξ(Zk) = σ2.
(8.27)
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For this model the regression estimator equals:

ˆ̄zSRd =
1

Nd

Nd
∑

k=1

(b0 + b1xk) +
1
̂Nd

nd
∑

i=1

εi

πi
, (8.28)

where b0 and b1 are estimates of the regression coefficients. For Simple Random
Sampling the variance of this simple regression estimator can be approximated
by:

̂V
(

ˆ̄zSRd

)

=
1
a2

d

· 1
n (n − 2)

n
∑

i=1

λ2
i ε2i , (8.29)

where ad is the relative size of domain d (ad = Nd/N), x̄sd
is the sample mean

of x in domain d, x̄d is the true mean of x in domain d, x̄s is the overall sample
mean of x, and λi are the regression weights, to be calculated by:

λi =
Nd

̂Nd

Ii +
ad (x̄d − x̄sd

) (xi − x̄s)
x2

s − (x̄s)
2 , (8.30)

with:

Ii =
{

1 if si ∈ D
0 otherwise (8.31)

where si is the ith sampling location and D is the domain in question.
A general estimator for the variance of the regression estimator for small

domains that can be used for any model in combination with any sampling
design with known inclusion probabilities of points and of pairs of points is
Särndal et al. (1992, p. 401):

̂V
(

ˆ̄zGRd

)

=
1

N2
d

n
∑

i=1

n
∑

j=1

πij − πi πj

πij
· λi εi

πi
· λj εj

πj
, (8.32)

where πij is the probability that both points i and j are included in the
sample, and λi is the regression weight attached to point i:

λi =
Nd

̂Nd

Ii +

(

Nd
∑

k=1

xk − Nd

̂Nd

nd
∑

i=1

xi

πi

)′

·
(

n
∑

i=1

xi x′
i

σ2
i πi

)−1

· xi

σ2
i

, (8.33)

where xi is the vector of predictor variables at point i, with value one as the
first element.

8.2.3 Values at Points

The focus of design-based methods is on estimating the means or other pa-
rameters of the cumulative distribution function for the entire area or for sub-
areas. However, one may use the estimated mean of a ‘homogeneous’ sub-area
(group) as an estimate of the value at all points in that group. For instance, to
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estimate the value of a soil variable at all nodes of a fine grid, one can estimate
the spatial means of the units of a soil map, and assign the estimated mean of
a given soil map unit to all grid nodes in that unit. To define the estimation
error, we imagine that the sampling is repeated, each sample resulting into
an estimate of the spatial mean of the group, which on its turn is used as
an estimate of the values at the points in that group. So the variance of the
estimator for the value at a point is defined as a sampling variance, which
makes the method design-based. We can estimate this sampling variance of
the estimator for the value at a point (it equals the sampling variance of the
estimator for the mean of the group), however we do not know its bias be-
cause the true value at the point is unknown. Therefore the average accuracy
is estimated, or more precisely the spatial mean of the expected squared error
of the estimates at all points in the group:

MSE (ẑg) =
1

Ng

Ng
∑

k=1

{

Ep(ẑk − zk)2
}

. (8.34)

This mean squared error of the estimates at points can be rewritten as the
sum of the mean squared error of the estimated mean of the group and the
spatial variance of the target variable within the group:

MSE (ẑg) = Ep

(

ˆ̄zg − z̄g

)2 +
1

Ng

Ng
∑

k=1

(zk − z̄g)
2

. (8.35)

With p-unbiased sampling strategies the first term on the right hand side
of (8.35) equals the sampling variance of the estimator for the mean of the
group. The mean squared error of the estimates at points can be estimated by
estimating the two terms of (8.35). The sampling variance of the estimated
mean depends on the sampling design, and estimators for this sampling vari-
ance can be found in previous sections. The spatial variance is a property of
the group, and is independent of the sampling design. When the groups are
used as strata and these are sampled by Simple Random Sampling (Stratified
Simple Random Sampling), the spatial variance of the z-values in a group can
simply be estimated by:

̂S2(zh) =
1

nh − 1

nh
∑

i=1

(zhi − z̄sh
)2 . (8.36)

Finally, we would like to stress that the difference between design-based
and model-based estimation of values at points is in some situations not as
large as one might think. Suppose that an area is sampled regularly and
sparsely, such that the distance between neighbouring points is always large
compared to the range of the variogram. When the ordinary kriging model is
adopted, the surface of the model-based predictions is a horizontal plane with
spikes at the sampling locations. The values are predicted by the unweighted
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sample mean everywhere except close to the sampling locations. One does
obtain a separate estimate of the variance at each prediction point, however
these estimates are equal for all points except near the sampling locations.

8.3 Model-Based Methods for Local Quantities in Space

8.3.1 Introduction

In general, the most appropriate sampling strategies for mapping target vari-
ables and predicting the means of many, relatively small sub-areas are model-
based. To profit from the spatial variation model in predicting the values at
particular points or the block means, the following conditions should be met:
(1) the target variable must be spatially autocorrelated at the scale of the
study region; (2) the sampling density must be large enough so that the dis-
tances between the sampling locations are small compared to the range of the
variogram; (3) there must be enough data to estimate the model from.

If, prior to the sampling, one can postulate a tentative model, then this
model can be used either to optimize the spacing of a grid (Sect. 8.3.2), or to
optimize an irregular sampling pattern (Sect. 8.3.4). So, in that case a model
is used at the sampling stage and the inference (prediction) stage. However, in
many situations it is not feasible to postulate a model prior to the sampling. In
these cases, one can sample on a centred grid, with a spacing derived from the
affordable sample size (Sect. 8.3.2). Sampling on grids may be sub-optimal, for
instance in the case of small, irregularly shaped areas or when measurements
are already available for locations that cannot be matched with the grid. An
alternative is then a ‘spatial coverage sample’, i.e., a sample that covers the
space as uniformly as possible (Sect. 8.3.3).

The final section (Sect. 8.3.5) deals with sampling to delineate areas where
the target variable exceeds a critical threshold, such as ‘hot spots’. In this case,
the mode of inference is not prediction but classification.

8.3.2 Centred Grid Sampling

Sampling on a regular grid is attractive because of its simplicity. Contrary
to design-based Systematic Random Sampling (Sect. 7.2.7) the starting point
is not selected at random, but the grid is purposively placed such that it
covers the area as good as possible, because this maximizes the precision of
model-based predictions. Grid Sampling is generally a good choice when the
area is large (relative to the grid spacing) and has a fairly regular shape, and
there are no prior measurements that can be used to map the target variable.
However, in situations were there may be a cyclic pattern of variation, one
needs to ensure that the grid does not interfere with this cyclic pattern, as
this may lead to grossly misleading results. With model-based Grid Sampling,
it is necessary to choose the pattern and orientation of the grid, as well as the
grid spacing.
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Fig. 8.1. Commonly used grid patterns. a: square grid; b: triangular grid; c: hexag-
onal grid

Pattern and Orientation

Figure 8.1 shows three commonly used patterns. Which sample pattern is
optimal depends on the predictor, the variogram, and the quality measure.
Assume that the values at specific points are predicted by ordinary kriging
and that we want to minimize the maximum of the kriging variance. This max-
imum occurs at the centres of gravity of the squares, triangles or hexagons.
Which pattern is optimal depends on the variogram. For variograms with a
small nugget-to-sill ratio, the maximum kriging variance is minimal for the
triangular grid at the same number of measurements (Yfantis et al., 1987).
When the nugget is large, say > 0.9 times the sill of the variogram, and the
distance between neighbouring points approaches the range of the variogram,
the hexagonal pattern is optimal. When anisotropic spatial variation is ex-
pected, a rectangular pattern may be a good choice. The short sides of the
rectangles must then be aligned in the direction of the shortest range. In
practice, a square pattern is often chosen for convenience.

Ideally, the grid should be oriented so as to minimize the boundary effects.
For rectangular target areas, this can be achieved by orienting one side of
the squares, triangles or hexagons, parallel to one side of the target area.
For irregularly shaped areas, it will be hard to decide what orientation of
the regular grid is optimal with respect to the boundary effect. However, if
the boundary effect is expected to be an important issue, Spatial Coverage
Sampling or Geostatistical Sampling is more appropriate than Grid Sampling.

Grid Spacing

If there is no specific requirement for the precision of the predictions but
a cost constraint only, the grid spacing can be calculated by equating the
area of a unit grid cell to the total area of the study region divided by the
affordable sample size. For instance, the grid spacing ∆s for a square grid can
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Fig. 8.2. Standard deviation of the predicted mean altitude of small blocks (10 m x
10 m), centred at the midpoints of square grid cells as a function of the grid spacing

be calculated by ∆s =
√

A/n, where A is the area of the study region, and n
is the affordable sample size. This procedure can also be used if no model of
spatial variation is available.

If a minimum precision is required and a reasonable model of spatial vari-
ation can be postulated, this model can be used to calculate the grid spacing
required to achieve this minimum precision. For instance, if a variogram to
be used in ordinary kriging is postulated, one can calculate the variance of
the prediction error (ordinary kriging variance) at any prediction point in the
area, for any sampling pattern. This is because the error variance is indepen-
dent of the values at the data points, and depends only on the variogram and
on the locations of the data points and the prediction point. Conversely, for a
given variogram and grid pattern, it is possible to calculate the grid spacing
required to achieve a mean or maximum error variance that is smaller than
a specified maximum. The OSSFIM program developed by McBratney and
Webster (1981) can be used for the maximum error variance situation. This
program can also be used to calculate the required grid spacing when the
aim is to predict the spatial means of small blocks. Figure 8.2 is an example
taken from archeology, where the aim is to map the altitude of the pleistocene
surface, rich in artefacts, beneath a holocene layer of clays. The variogram
used is a spherical model without nugget (range 338 m, sill 2354 cm2). Fig-
ure 8.2 shows the standard deviation of the mean altitude of small 10× 10 m
blocks centred at the midpoints of the square grid cells (where this standard
deviation is largest) as a function of the grid spacing.
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Fig. 8.3. Contourplot of the kriging variance for a triangular grid, showing a bound-
ary effect

McBratney et al. (1981) assume that the data are interpolated by ordinary
(block) kriging, which is appropriate in situations without trend. If there is a
spatial trend, it can be accounted for by universal kriging or IRF-k kriging. For
a given pattern and spacing of the grid, the variances of the universal kriging
predictor and IRF-k kriging predictor will generally differ from the ordinary
(block) kriging predictor. Conversely, for a given mean or maximum kriging
variance, the required grid spacings will be different for these predictors. As
for the ordinary kriging variance, the universal kriging variance and IRF-k
kriging variance at a prediction location is independent of the sample values,
and therefore one can calculate the mean or maximum universal kriging or
IRF-k kriging variance for any grid spacing, and proceed as described above
to select the required grid spacing.

8.3.3 Spatial Coverage Sampling

In practice, Centred Grid Sampling may be sub-optimal for several reasons:

• there may be prior measurements that cannot be matched with the regular
grid;

• sampling may be hampered by enclosures that are inaccessible for sam-
pling;

• irregular shape of the universe;
• the dimensions of the area may be small compared to the grid spacing that

can be afforded. As a result, the prediction-error variances are relatively
large near the boundaries of the target area (see Fig. 8.3 for an illustration
of this boundary effect).
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In these situations an alternative to a regular grid is a spatial coverage sam-
ple, also referred to as a space filling sample. For such samples, a pattern is
calculated that fills in the space as uniformly as possible. This is achieved
by minimizing a quality measure that is defined in terms of the distances be-
tween the prediction points (usually the nodes of a fine grid) and the sampling
locations. Royle and Nychka (1998) proposed the general quality measure
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where Dij is the distance between the ith grid node and the jth sampling
location, and p and q are parameters to be chosen by the user. The inner
sum is the sum of the distances raised to the power p of the ith node to all
sampling locations. This sum can be thought of as a measure of how well
the sample covers the ith node. The outer sum is a sum over all N nodes.
Royle and Nychka (1998) used a point-swapping algorithm, starting from a
random pattern, to find an optimal pattern. In this algorithm, a given point
in the current sample is replaced by a candidate point, i.e., a grid node not yet
included in the sample. If the quality measure is reduced by this swap, then the
swap is accepted, i.e., the sampling location is replaced by the tested node.
Since the process may end in a local minimum, depending on the starting
pattern, the algorithm must be repeated a sufficient number of times with
different starting patterns.

Brus et al. (2003) proposed to minimize the mean of the squared shortest
distances (MSSD) of the grid nodes to the sampling locations,

JMSSD =
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. (8.38)

An advantage of this measure is that it can be minimized by the fast k-means
algorithm. In Sect. 7.2.4, k-means is proposed to construct compact geograph-
ical strata for design-based Stratified Simple Random Sampling, and we refer
to this section for a brief description. The difference between Sect. 7.2.4 and
the present section is that Sect. 7.2.4 addresses the clustering of the pixels
(nodes of a discretization grid), whereas the present section focuses on the
centroids. These centroids are taken as sampling locations. K-means proceeds
in an iterative way, starting with an initial solution (e.g., a random sampling
pattern), and repeatedly alternating two steps: re-allocation of grid nodes
from one cluster to the other and re-calculation of the coordinates of the sam-
pling locations (centroids of clusters). In the re-allocation step, each grid node
is allocated to the nearest sampling location. In the re-calculation step, each
sampling location is shifted to the mean of the coordinates of the grid nodes
allocated to that sampling location. The iteration process is stopped when
the JMSSD cannot be reduced any further, or when the improvements become
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Fig. 8.4. Optimized pattern of 23 sampling locations in a square obtained by mini-
mizing (a) the Mean Squared Shortest Distance with k-means; (b) the mean kriging
variance with simulated annealing; (c) the maximum kriging variance with simu-
lated annealing. A spherical variogram with a range of half the side of the square,
and a nugget-to-sill ratio of 0.10 is postulated

smaller than a user-specified threshold. Re-calculation can be done as soon
as a grid node has been re-allocated to a different sampling location, or it
may be postponed and done when all grid nodes have been re-allocated. Fig-
ure 8.4a shows 23 sampling locations in a square, optimized by k-means. At
the centre of the square, the points form a triangular grid, but at the sides of
the square, this grid is clearly distorted. Four points have been drawn nearer
to the boundaries. Brus et al. (2003) showed that the mean kriging variance
for this spatial coverage sample is very close to the mean kriging variance of
the geostatistical sample obtained by directly minimizing the mean kriging
variance.

There are two shortcomings associated with k-means as it is described
above. The first is that it does not account for data points that already exist
in the area. However, existing data points can be easily accommodated in the
k-means algorithm, simply by re-allocating the grid nodes to both the existing
and the new sampling locations, but limiting the re-calculation step to the new
sampling locations. This allows the existing points to remain in their place,
while only the new points move. The other shortcoming is that with areas of
a non-convex shape, one or more sampling locations may end up outside the
area. If this is not acceptable, the problem can be solved by shifting such points
to the nearest grid point after each re-calculation. This forces the sampling
locations to stay within the area during the process. By way of illustration,
we have optimized the pattern of 32 sampling locations, added to a sample of
6 prior points in the province of Gelderland, the Netherlands (Fig. 8.5).

8.3.4 Geostatistical Sampling

Geostatistical samples are samples obtained by minimizing a quality measure
defined in terms of the variances of the geostatistical predictions errors. Two
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Fig. 8.5. Optimized pattern of 32 sampling locations added to a prior sample of
6 locations, obtained by minimizing the Mean Squared Shortest Distance with k-
means, for the province of Gelderland, the Netherlands

commonly used quality measures for constructing geostatistical samples are
the mean of the error variances (Sacks and Schiller, 1988; van Groenigen et al.,
1999),

JMeanV =
1
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and the maximum of the error variances,

JMaxV = max
i
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. (8.40)

Figures 8.4b and 8.4c show the result when these two quality measures are
used to optimize 23 locations in a square, and Figs. 8.6 and 8.7 for the 32
additional locations in the province of Gelderland. Whereas the differences
between the JMSSD sample and the JMeanV sample are small, the locations for
the JMaxV sample are much closer to the boundaries.

From this we may tentatively conclude that:
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Fig. 8.6. Optimized pattern of 32 locations added to 6 prior locations, obtained by
minimizing the mean kriging variance of predicted values at locations in the province
of Gelderland, the Netherlands. A spherical variogram with a range of 50 km and a
nugget-to-sill ratio of 0.40 is postulated

• if the aim is to minimize the mean kriging variance, then optimization with
the JMSSD quality measure gives satisfactory results, and computing time
for the JMSSD quality measure minimized by k-means is substantially less
than for the JMeanV quality measure minimized by simulated annealing
(Appendix A);

• if the aim is to minimize the maximum kriging variance, then it is worth
considering calculating a JMaxV sample instead of a JMSSD sample.

In practice, one is always to some extent uncertain about the variogram.
This matters because the optimal geostatistical sample depends on the var-
iogram model. Sacks and Schiller (1988) showed that the JMeanV samples
obtained with an exponential and a Gaussian model differed considerably.
Van Groenigen et al. (1999) found that a linear, exponential and spherical
model with comparable parameters resulted in very similar JMeanV samples,
and that a Gaussian model led to a very different sample. There is also an
effect of the range and of the nugget-to-sill ratio. Van Groenigen et al. (1999)
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Fig. 8.7. Optimized pattern of 32 locations added to 6 prior locations obtained by
minimizing the maximum kriging variance of predicted values at locations in the
province of Gelderland, the Netherlands. A spherical variogram with a range of 50
km and a nugget-to-sill ratio of 0.40 is postulated

found that a spherical model with a range equal to 1/20 of the side of the
square resulted in a very irregular sampling pattern. Neighbouring points were
located at distances larger than twice the range, but the spatial coverage of
the geostatistical sample was very poor. In practice, one would hesitate to
collect such a sample, because it is never certain that the assumption of sta-
tionarity holds. The effect of the nugget-to-sill ratio on the sample showed up
at the large value of 0.75 only, and even for this value the sample differed only
marginally from those with smaller nugget-to-sill ratios.

As there is uncertainty about the variogram, one may decide to sample
in two or more phases. Sampling in the first phase is done on a regular grid
or according to a spatial coverage sample, supplemented with points at short
distances of these grid nodes. These first-phase points are then used to esti-
mate the experimental variogram and to fit a variogram model. For efficient
sampling designs to estimate the variogram, we refer to Chap. 9. The fit-
ted variogram is then used to design a second-phase sample, using either the
JMaxV or JMeanV quality measure. Geostatistical samples also come into scope
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when data is already available that can be used to estimate the variogram,
and the aim is to add more locations. This is referred to as infill sampling.

Depending on the size of the area, the optimization algorithm, and the type
of processor, designing a geostatistical sampling pattern may take much com-
puting time, which may even become prohibitive. Therefore it is important to
use efficient optimization algorithms. However, it will in many situations be
unfeasible to calculate the quality measure for all patterns that can be formed
by selecting m additional locations out of the N possible sampling locations.
Benedetti and Palma (1995) compared several optimization algorithms (al-
beit for predicting the global mean), and concluded that simulated annealing
(Appendix A) is a suitable solution.

Optimized Samples for Mapping with Universal Kriging

We now consider the situation where the target variable is not stationary,
but shows a trend. This trend can be a spatial trend or a relation with other
ancillary variables that are known everywhere in the target area. The relation
between the target variable and the spatial coordinates or ancillary variables
can be described by a (multiple) linear regression model. If one can postu-
late, prior to sampling, a regression model for the trend up to the predictors
the regression coefficients need not be known), and a variogram for the re-
gression residuals, then one can optimize the sampling locations by simulated
annealing, using the mean or maximum universal kriging variance as a qual-
ity measure. citetheu05 showed that in this case the locations are spread in
geographical space and in feature space. This is because estimation of the
relation between the target variable and the ancillary variable profits from a
large spread of the observations in feature space, while spatial interpolation of
the residuals gains from a uniform spreading of the observations in geographic
space.

8.3.5 Delineating Hot Spots

A hot spot is defined here as a relatively small area with a concentration of
some compound or abundance of some object (e.g., a plant or animal species)
that exceeds a certain threshold. This section deals with the question where
the critical threshold is exceeded. Sampling for finding out whether at any
point in the study area the critical threshold is exceeded, without asking
where, is dealt with in Sect. 7.3.4.

When no prior measurements on the target variable are available, and one
has no idea of the location of the hot spots, the best option is sampling on a
regular grid (Sect. 8.3.2), or alternatively according to some spatial coverage
(Sect. 8.3.3) or geostatistical sample (Sect. 8.3.4). There are two ways to in-
crease the efficiency of these samples in order to delineate hot spots: sampling
in two or more phases and composite sampling.
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Phased Sampling

The efficiency of sampling can be increased by sampling in two, or even more
phases (batches). For instance, the first phase could involve sampling the
area on a centred, square grid. The sample data are then used to design
an additional sample, by predicting the concentration at the nodes of the
discretization grid, or alternatively the mean values of blocks, for instance
remediation units. Based on these predictions, the nodes are classified as above
the threshold (hot spot) or not. If the cost of a false positive (a node is classified
as a hot spot whereas in reality it is not) equals the cost of a false negative
(node classified as ‘outside a hot spot’, whereas in reality it is inside), it is
natural to classify a node (or block) as a hot spot if the predicted value
exceeds the threshold, ̂Z(s0) > zt, or, alternatively, if the probability that the
concentration exceeds the threshold (conditional on the measurements of the
first batch) exceeds 0.50. Aspie and Barnes (1990) considered the case that
the cost of false positives differs from that of false negatives. They show that
for the optimal classification cut-off zt′

Pr
{

Z(s0) > zt | ˜Z(s0) = zt′
}

=
Co

Co + Cu
, (8.41)

where Co is the cost of false positives per unit area, and Cu is the cost of
false negatives per unit area. This implies that if the conditional probability
of exceeding the threshold exceeds the ratio of the cost of false positives and
the sum of the two cost components, then the point is classified as a hot spot.
Thus, if the cost of false negatives is larger than the cost of false positives,
then the conditional probability of (8.41) must be smaller than 0.5. For a
multivariate Gaussian stochastic function (SF), this is the case when zt′ < zt.

When adding new sampling locations one would like to select these lo-
cations in such a way that, when the measurements of the first and second
batches are used to predict the values at the grid nodes and to classify the
nodes, the expected costs of misclassification are minimal. In formula, ad-
ditional sampling locations are selected by minimizing the expected cost of
misclassification (loss):

E(C) =
∑N

i=1

[

Co Pr
{

Z(si) < zt ∩ ˜Z(si) > zt′
}

+

Cu Pr
{

Z(si) > zt ∩ ˜Z(si) < zt′
}]

,
(8.42)

where N is the number of discretization nodes in the target area. Note that
the probabilities in (8.42) are defined on bivariate distributions: the true value
Z(si) is unknown, while the predicted value ˜Z(si) is also unknown, because
the values at the locations of the second batch are unknown.

Christakos and Killam (1993) modified (8.42) for the situation in which
the two cost components are not constant, but are linearly related to the mag-
nitude of the error. For a multivariate Gaussian SF, the probabilities of (8.42)
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can be calculated from the simple kriging prediction using the measurements
of the first batch, the simple kriging variance using the first batch measure-
ments, and the simple kriging variance using the first and second batch mea-
surements (updated simple kriging variance). Even for small N (N < 100),
an exhaustive search for the optimal pattern of additional sampling locations
may be impracticable because of computing time (there are

(

N
n

)

possible ways
of selecting n additional sampling locations out of N possible locations). In
this case, a random (non-exhaustive) search may be more efficient, for instance
by simulated annealing (Appendix A).

A much simpler, more practical method for selecting additional locations
in Phased Sampling is described by Englund and Heravi (1994). The measure-
ments of the first-phase sample are used to predict the values at unsampled
locations (nodes of a fine discretization grid) or the mean values of blocks (for
instance remediation units) and the kriging variance of these predictions. A
triangular probability distribution on the interval [ ˜Z − 3V ( ˜Z), ˜Z + 3V ( ˜Z)]
is then assumed to calculate for each prediction point (block) the probability
of decision errors and the expected loss. The point (block) with the highest
expected loss is selected as the first additional sampling unit. This procedure
is repeated (the kriging variances must be updated in each iteration) until the
predetermined number of additional locations has been selected.

A special case is when none of the prior measurements exceeds the thresh-
old, and one wants to know whether the threshold is exceeded anywhere in
the area. For this situation, Watson and Barnes (1995) proposed to select
additional locations by maximizing the joint conditional probability that at
least one of the new observations exceeds the threshold, which is equivalent
to minimizing the joint conditional probability that all the observations are
smaller than the threshold. Minimization of this quality measure requires sub-
stantial computing time, limiting its potentials for practical situations. For a
multivariate (i.e., multipoint) Gaussian random field, adding a single location
boils down to selecting the location with the minimum value for

ζ(s0) =
zt − ˜Z(s0)

√

V { ˜Z(s0) − Z(s0)}
, (8.43)

where ˜Z(s0) is the predicted value at the new sampling location obtained by
ordinary kriging, and V { ˜Z(s0)−Z(s0)} is the variance of the prediction error.
Equation (8.43) shows that, depending on the threshold value, a location
is selected either near a data point with a large value ( ˜Z(s0) is large), or
in the empty space, where V { ˜Z(s0) − Z(s0)} is large. A ‘quick and dirty’
method for adding a single location is to transform the data so that the
univariate distribution is approximately Gaussian, then krige the transformed
data, and select the location with the minimum value for ζ calculated from
the transformed data. An even more ‘quick and dirty’ method to select more
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Fig. 8.8. Example of the formation of composites from aliquots taken on a grid.
Aliquots from locations with the same symbol form a composite

than 1 location is to repeat this selection procedure, i.e., add one location at
a time.

So far, nothing has been said about the sample sizes, i.e., the total sample
size and the distribution of this total over the phases. If the costs of sampling
and measurement per sampling unit are substantial compared to the costs of
decision errors, then the optimal sample size can be calculated by including
this cost component in the loss function. Englund and Heravi (1994) found
that the optimal sample size is insensitive to the number of phases, and they
therefore recommend determining this optimal sample size for one-phase sam-
pling. They also found that to profit from Phased Sampling, the sample size
in the first phase must be substantial: they recommend approximately 75% of
the total sample size.

Hsiao et al. (2000) describe a method, based on Bayes’ theorem, for cal-
culating the size of the second batch required to detect the remaining blocks
(remediation units) with mean concentrations above the threshold not de-
tected in the first batch. The method requires as input an a priori probability
that all hot blocks are detected in the first batch, and a parameter that de-
termines the a priori probabilities that there is one undetected hot block, two
undetected hot blocks, etc. Their method assumes that sampling locations are
selected by Simple Random Sampling, whereas in practice locations will be
selected purposively, for instance by the method described above.

Composite Sampling

Composite sampling comes into scope when the measurement costs per aliquot
are high. In composite sampling, individual aliquots taken at the sampling lo-
cations are bulked (Sect. 4.3). Figure 8.8 shows an example where the four
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aliquots at the corners of square cells are combined to form a composite.
Analysing the composite instead of the individual aliquots reduces the mea-
surement costs, so that a larger sample size can be afforded for the same
budget. Due to the larger sample size, the sample has a better spatial cov-
erage, so that the probability of hitting a hot spot is higher. The problem is
that mixing the aliquots implies a loss of information on the concentration (or
density) in the individual aliquots. The concentration of an individual aliquot
may exceed the threshold, while that of the composite does not.

Several methods have been developed to identify the individual aliquots
(further briefly ‘individuals’) with the highest values or with values above a
threshold, by measuring some or all individuals of some composites, assuming
that some of the material of the individuals is kept for later analysis (Gore and
Patil, 1994; Gore et al., 1996). In these methods, the composites are sorted on
the basis of their concentration in descending order. For each composite, an
upper bound of the maximum value is calculated by assuming that the concen-
tration of all except one of the individuals is zero. Under this assumption, the
maximum equals the total of the composite, i.e., the composite concentration
multiplied by the number of individuals in that composite.

In the simple sweep-out method (Gore and Patil, 1994), all individuals of
the first ordered composite are measured, and the largest value in this com-
posite is identified and recorded as the tentative maximum of the individuals
of all composites (global maximum). If the upper bound of the maximum of
the next ordered composite is smaller than this tentative global maximum,
then it is clear that this is the true global maximum, and no further compos-
ites need to be measured. If the upper bound of the maximum for the next
ordered composite is larger than the tentative global maximum, then this
composite may contain an individual with a value larger than the tentative
global maximum, and the individuals of this composite have to be measured.
If the maximum identified in this second composite is larger than the maxi-
mum identified in the first composite, then the tentative global maximum is
updated. This procedure is continued until the tentative global maximum is
larger than the upper bound of the maximum in the next ordered composite.

If the aim is to identify the two largest values, the second largest value
is also identified each time the individuals constituting a composite are mea-
sured, and the procedure is continued until the tentative second largest value
is smaller than the upper bound of the maximum value in the next ordered
composite. If the aim is to identify all individuals with values larger than a
threshold, then the procedure goes on until the individual with the largest
value below the threshold has been identified. It is also possible to identify
p% of the total number of selected individuals with the largest values. For a
self-weighting design, the smallest of these largest values can be used as an
estimate of the pth quantile of the spatial cumulative distribution function.

Contrary to the simple sweep-out method, where, once a composite is se-
lected, all individuals except one constituting this composite are measured,
the sequential sweep-out methods (Gore et al., 1996) require measuring indi-
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viduals of a composite as long as there is a possibility that there is a larger
value among the unmeasured individuals of that composite. After each analy-
sis of an individual, the total of the remaining, unmeasured individual samples
is updated by subtracting the concentration of the measured individual sam-
ple from the previous total. This updated total is used as the upper bound
of the maximum of the ‘residual’ composite, i.e., the composite that could be
formed by mixing the remaining individuals. The procedure stops when the
tentative global maximum exceeds the updated upper bound of the maximum
of all (residual) composites.

There are two versions of the sequential sweep-out method, the locally
and globally sequential sweep-out methods. In the locally sequential sweep-
out method, once a composite has been selected, individuals of this composite
are measured as long as there is a possibility that the remaining individuals
have a maximum larger than the tentative global maximum, before another
composite is considered for breaking down. In the globally sequential sweep-
out method, after each analysis and updating of the total, the composite
with the largest probability of containing the maximum is selected, i.e., the
composite with the largest (residual) mean concentration. Gore et al. (1996)
showed that the number of measurements needed to identify the largest value
with these sweep-out methods can be much smaller than the total number of
individuals, especially for the sequential sweep-out methods. For this purpose,
therefore, the cost of measurement can be reduced considerably by composit-
ing. The cost savings depend on aspects such as the probability distribution
and the number of individuals per composite (composite size). The more ex-
treme the largest values (the threshold), the larger the potential savings. The
optimal composite size depends on the type of distribution. For a lognormal
distribution, the optimal size increases with the coefficient of variation, from
3 (c.v. = 0.5) to 8 (c.v. = 2.0).

In the sweep-out methods described above, the individual to be measured
in a selected composite is selected randomly, which is reasonable because there
is no information available on the individual values. When composites are
formed by a two-way compositing design some information is available, and it
is possible to select the individual with the highest probability of having the
maximum (Gore et al., 2001). Fig. 8.9 shows a two-way composite sampling
design. From every individual aliquot, two portions are taken, one of which is
combined with the portions from the same column to form a column compos-
ite, the other is combined with the portions from the same row to form a row
composite. The individual that contributes to the column composite with the
largest value and to the row composite with the largest value has the largest
probability of having the maximum value, and will therefore be selected for
measurement. For a sweep-out method for this two-way compositing design,
we refer to Gore et al. (2001).

In the above methods, all values above a threshold are identified with cer-
tainty. In general, after all values above the threshold have been identified,
some additional measurements are needed to confirm that all values above the
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Fig. 8.9. Example of two-way composite sampling on a square grid. At the node of
the grid, two samples are used, one for a row composite, one for a column composite

threshold have been identified. The alternative is to accept some uncertainty,
and to continue measuring individuals until, for all (residual) composites, the
probability that they contain an individual with a value above the thresh-
old is smaller than some chosen limit. Carson (2001) describes a method to
calculate from the concentration of the composite the probability that all indi-
viduals have concentrations less than the threshold. This method assumes that
all combinations of individual concentrations that lead to the concentration
measured on the composite have equal probability. Correll (2001) proposed
to measure the individuals of all composites having a concentration higher
than zt/

√
k, where zt is the threshold for the individual values, and k is the

composite size. This modified threshold gave few false negatives (i.e., cases
where the composite is below the modified threshold, while at least one of
the individuals exceeds the original threshold), and few false positives (i.e.,
cases where the composite exceeds the modified threshold, while none of the
individuals exceeds the original threshold). The modified threshold could be
site-specific. False positives lead to unnecessary laboratory costs, while false
negatives lead to risks to human health or the environment. However, these
negative effects may be more than compensated for by the positive effects on
costs and risks due to the increased sampling density.
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Variograms

9.1 Introduction to Methods for Variograms

In model-based methods of spatial prediction (kriging) the values of the tar-
get variable at the sampling locations are considered to be realizations of
a Stochastic Function (see Appendix B). In a spatial context a Stochastic
Function (SF) is a field of spatially dependent random variables (RVs), and
therefore is also referred to as a Random Field (RF). In many cases it is as-
sumed that the mean difference of the RVs at two locations is zero (constant
mean), and the variance of this difference depends on the spatial separation
vector (lag) h only, not on the locations themselves:

E{Z(s2) − Z(s1)} = 0 (9.1)
E{Z(s2) − Z(s1)}2 = 2γ(s2 − s1) = 2γ(h) . (9.2)

A SF that meets these requirements is an intrinsic SF. The function γ(h) is
referred to as the (semi-)variogram. If this variogram is known, then one can
obtain Best Linear Unbiased Predictions (BLUP) of the values at points or
the means of blocks from sample data. One may also use the variogram for
geostatistical simulation of fields (realizations) that are used, for instance, as
input in a process-based simulation model. In this chapter we present sam-
pling designs appropriate for estimating the variogram. In many situations
the collected sample data are used both for estimating the variogram and for
geostatistical interpolation or simulation. In Sect. 8.3 appropriate designs for
sampling in one-phase are described. If the available time and budget allow for
sampling in two phases, then we recommend to focus the first phase sample
on estimating the variogram, and the second-phase sample on interpolation.
In general, this two-phase sampling is more efficient, because the variogram
estimated from the first phase sample can be used to optimize the sample
for the second phase. This chapter describes principles for designing efficient
samples for the first phase of such a phased sampling approach.

The first choice to be made is the size of the first phase sample. According
to Webster and Oliver (1992), 150 locations might suffice in many situations,
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and 225 locations would be almost certainly adequate in most applications
where spatial variation is equal in all directions (isotropic). These sample
sizes already make clear that for model-based prediction quite a few locations
must be sampled. This is usually only realistic when many local means or
the values at points must be predicted. Once one has decided on the number
of locations to estimate the variogram from, one must choose the locations
themselves. We distinguish two approaches for selecting the locations. In the
first approach clusters of locations are selected. The locations within a cluster
have a more or less regular, predetermined pattern. In this approach, one
must choose a pattern, and a method or principle for selecting the clusters.
In the second approach the sampling locations are optimized by minimizing
a quality measure. In general this approach will result in an irregular pattern
of locations. In this approach one must choose a quality measure and an
algorithm for minimizing it.

9.2 Regular Patterns

9.2.1 Transect and Grid Sampling

Due to its operational advantages, a commonly used cluster type for estimat-
ing variograms is the transect. When sampling on transects, one has to choose
the number of locations per transect, the distances between the locations, and
the location and orientation of the transects. The distance between neighbour-
ing locations on a given transect, i.e., the sampling interval, can be chosen
constant or varying. Pettit and McBratney (1993) recommend transects in
three directions, with the sampling locations in a given transect exponentially
spaced. For instance, one may select 25 transects of 6 locations with inter-
point distances of 0.2, 1, 5, 25 and 125 meter, i.e., each time the interval
increases by a factor five. The transects must be evenly spread over the target
area, for instance by dividing the area into squares or compact geographical
strata of equal area (Sect. 7.2.4), and selecting one transect from each square
(Fig. 9.1).

Transect sampling is appropriate when the average distance across the
study area is large compared to the range of the variogram. For such areas
sampling on a regular grid would give insufficient information on the semi-
variance at lags smaller than the range. If the distance across the area is
small compared to the range of the variogram, then an alternative for tran-
sect sampling is sampling on a regular grid, supplemented by locations at a
short distance of some grid nodes. To account for anisotropy, triangular grids
are more suitable than square grids (Yfantis et al., 1987).

The ‘short distance locations’ are used to estimate the semivariance at lags
smaller than the grid distance. Accurate estimates of the semivariance at small
lags are important for estimating the nugget of the variogram, and for choosing
between alternative models, for instance a spherical or a Gaussian model. It is
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Fig. 9.1. Transect sampling from squares. After Pettit and McBratney (1993)

well known that if the variogram is used for geostatistical interpolation, then
it is especially important to have reliable information on the variogram near
the origin. We recommend to select at least 30 to 50 additional locations per
lag, because this results into 30 to 50 disjoint pairs of locations, which is the
minimum number of pairs mentioned by Journel and Huijbregts (1978).

To avoid spatial clustering of short distance locations in certain parts of
the area, we recommend to select the grid nodes that will receive a short
distance location purposively and not at random, for instance by subsampling
the regular grid systematically (see Fig. 9.2). Also, we recommend to locate
the additional locations on the sides of the grid cells, so that the directions
for the smallest lag coincide with those of the larger lags.

9.2.2 Nested Sampling

In Nested Sampling the sampling locations are selected in stages (batches)
in such a way that the distance between a randomly selected location of a
given stage to a location of a previous stage is controlled. Figure 9.3 shows a
nested design with four stages: in the first stage three locations with a mutual
distance of h1 m are randomly selected from the area. In the second stage at
each of these locations in a random direction a location is selected at a distance
of h2 = h1/3 m. We now have 3×2 = 6 locations. In the third stage at each of
these six locations in a random direction a locations is selected at a distance
of h2/3 m, which makes the total number of locations 3×2×2 = 12 locations.
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Fig. 9.2. Square grid sample with additional short distance locations for variogram
estimation

This procedure is repeated once more, leading to a total of 24 locations. Note
that in two dimensions it is impossible to select more than three mutually
equidistant locations.

In practice, in the first stage often more than three locations are selected,
for instance at the nodes of a square grid with a grid distance of h1 m (Oliver,
1984). However, in that case one must be aware that the largest lag at which
the semivariance is estimated is larger than h1 m. Note that in the design
of Fig. 9.3 the sample size doubles at each stage. So, if one has five stages
with 9 locations in the first stage, the size of the nested sample becomes
9×2×2×2×2 = 144. Adding a sixth stage implies an increase of the sample
size of 144 locations.

Clearly, with nested designs one generally cannot afford many stages, be-
cause that would imply a too large sample size. However, full replication
at each stage is unnecessary because with this design the variogram at the
smaller lags is estimated much more precisely than at the larger distances.
Therefore one may decide to replicate for the lower stages at only a pro-
portion of the units, leading to so-called unbalanced designs. For the nested
sample of Fig. 9.3 a 50% replication at the fourth stage leads to a total of 18
locations. For a nested design with five levels, 9 locations in the first stage,
and a 50% replication at the fifth stage the total sample size becomes 108.
One can now afford a sixth stage of 36 locations for the same budget, leading
to an estimate of the variogram at one extra lag near the origin.
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Fig. 9.3. Balanced nested sample with four stages. In the first stage three locations
are selected. In subsequent stages at each of the sampling locations of the previous
stages one additional location is selected

9.2.3 Independent Sampling of Pairs of Locations

If the method-of-moments is used to estimate the variogram (see Sect. 9.4.1),
then one must be aware that the estimated semivariances for the M lags are
logically correlated. These correlations should be taken into account when
fitting the variogram model, but calculating the correlations is cumbersome.
Moreover, from time-series analysis it is well known that due to these corre-
lations one may be misled as to the type of model. For instance, the experi-
mental variogram (the estimated semivariances for several lags) may show a
hole effect which does not exist in reality.

These problems can be avoided by selecting pairs of locations indepen-
dently as proposed by Brus and de Gruijter (1994). They proposed a design-
based approach for estimating local (non-ergodic) variograms (Isaaks and Sri-
vastava, 1988). In this approach, first a number of lags and the numbers of
pairs per lag are chosen. To choose these lags and numbers the theory of ex-
perimental design can be used. Then for each lag the pairs of locations are
selected by some type of design. For instance, in Simple Random Sampling
(Sect. 7.2.3) of M(h) pairs of locations with lag h, M(h) locations are se-
lected at random, with equal probability and independently from each other.
Then for each location a counterpart is selected in a random or fixed direc-
tion at distance h from the starting location. If this counterpart is outside
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the target area, also the starting location is omitted, and a new starting lo-
cation is selected. Due to the independent selection of the pairs of locations,
the estimated semivariances at the selected lags are uncorrelated, and their
sampling variances can be estimated simply. The same holds for the sampling
variance and covariance of the parameters of the fitted model. These advan-
tages concerning the quantification of the uncertainty about the variogram
are at the expense of the precision, because only n/2 (n is total number of
locations) pairs of locations are used in the estimation, and the remaining
n (n−2)/2 pairs are neglected. It depends on the situation how large this loss
of information is and whether it is outweighed by the mentioned advantages.

9.3 Optimized Sampling Patterns

One may calculate the sampling pattern that explicitly has a minimum value
for some objective function. In this case a quality measure and an algorithm
to optimize it has to be selected. In the first papers on this subject a quality
measure is proposed that quantifies how close the numbers of location pairs
per lag class are to prespecified numbers (Warrick and Myers, 1987). However,
the problem then shifts to the choice of the numbers of location pairs, and
the question becomes what distribution of numbers of location pairs is best.
Müller and Zimmerman (1999) and Lark (2002) have shown that a uniform
distribution is sub-optimal; see also Müller (2001).

In subsequent papers it was proposed to base the quality measure on the
variance-covariance matrix of the estimated parameters of a variogram model
(Zimmerman and Homer, 1991; Bogaert and Russo, 1999; Müller and Zimmer-
man, 1999). For variograms that are non-linear functions of the parameters
this is not straightforward. If one approximates the non-linear function by a
first-order Taylor expansion, then the variance-covariance matrix of the pa-
rameters fitted by Generalized Least Squares to the estimated semivariances
can be approximated by

Vθ̂ ≈
(

G′
θ V−1

γ̂ Gθ

)−1

, (9.3)

where Gθ is the M × p matrix with the partial derivatives of the variogram,
evaluated at the true (but unknown) values of the parameters:

Gθ =

⎡

⎢

⎢

⎣

∂γ(h1;θ)
∂θ1

· · · ∂γ(hM ;θ)
∂θp

...
. . .

...
∂γ(hM ;θ)

∂θ1
· · · ∂γ(hM ;θ)

∂θp

⎤

⎥

⎥

⎦

, (9.4)

and Vγ̂ is the M × M variance–covariance matrix of the estimated semivari-
ances. Cressie (1993) shows how Vγ̂ can be calculated when the SF is assumed
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to be second-order stationary (Appendix B.1) and multivariate Gaussian. Bo-
gaert and Russo (1999) and Müller and Zimmerman (1999) proposed to opti-
mize the locations by minimizing the determinant of Vθ̂, which is equivalent to
maximizing the determinant of the so-called information matrix G′

θ V−1
γ̂ Gθ

in (9.3). Such designs are referred to as D-optimal designs. Note that both
Gθ and Vγ̂ depend on the parameters of the variogram, and therefore to
minimize det(Vθ̂) with respect to the sampling locations, one must know the
variogram. So, there is a circular problem.

A way out is to sample in two phases, and to use estimates of the parame-
ters from the relatively small first phase sample to optimize the sample of the
second phase. Bogaert and Russo (1999) optimized the pattern of 100 loca-
tions for an exponential variogram without nugget (sill = 1; effective range =
1/2 of side of square) and for an exponential variogram with nugget (nugget
= 0.5; sill = 1; effective range = 1/2 of side of square). For the exponential
variogram without nugget the gain in precision of the estimated parameters
compared to Simple Random Sampling was limited. For the exponential var-
iogram with nugget the optimized sample had many locations at very short
distance, and as a result the estimated nugget was considerably more precise
than for Simple Random Sampling. There was also gain for the sill, however
for the range parameter the gain was again limited. Müller and Zimmerman
(1999) and Boer et al. (2001) studied the effect of ignoring the correlations
between the location pairs. This implies that the variogram is estimated by
Weighted Least Squares (weights equal to n(h)/γ2(h;θ)) instead of General-
ized Least Squares (Cressie, 1985). The quality measure then slightly changes:
in the matrix Vγ̂ of (9.3) the off-diagonal elements are substituted by zeroes.
Müller and Zimmerman (1999) found that this simplification led to a very
similar pattern which was only slightly inferior to the optimal pattern. Boer
et al. (2001) found that ignoring correlations led to strong clustering of loca-
tions, even for a variogram without nugget. Boer et al. (2001) also found that
the value of the quality measure, det(Vγ̂), and the pattern of locations was
rather insensitive to changes in the parameters of the variogram, although
there was some influence of the range and (for large ranges) of the nugget.

Finally, Lark (2002) proposed a quality measure based on the suitability of
the estimated variogram for geostatistical interpolation. This seems rational
because in many cases the ultimate goal is not the variogram itself, but a map
obtained by kriging with the variogram. It is well-known that the kriging vari-
ance is more sensitive to changes in the variogram than the kriging prediction
itself, and this is the main reason why Lark proposed to look at the kriging
variance (Appendix B, equation B.19). Due to uncertainty about the vari-
ogram, there is also uncertainty about this kriging variance, and Lark (2002)
proposed to use as a quality measure the variance of the kriging variance. This
variance is approximated by a first-order Taylor expansion:

V (VK) ≈ g′
V Vθ̂ gV , (9.5)
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where gV is the p-vector with partial derivatives of the kriging variance to the
variogram parameters:

gV =

⎡

⎢

⎣

∂VK
∂θ1
...

∂VK
∂θp

⎤

⎥

⎦
, (9.6)

and Vθ̂ is the p × p variance–covariance matrix of the estimated variogram
parameters. Lark (2002) optimized 49 sampling locations assuming an ex-
ponential variogram with nugget, γ(h) = c0 + c1{1 − exp(−h/a)}, at three
levels for the distance parameter a, and for the ratio of spatial dependence
c1/(c0+c1), resulting into nine combinations. Lark (2002) considered the krig-
ing variance at the centre of a square grid of 5 units. Figure 9.4 shows the
optimized sampling locations. For a small ratio of spatial dependence (large
nugget-to-sill ratio) and/or a small range the optimized sample showed several
clusters of locations. For the intermediate ratio of spatial dependence com-
bined with the two largest ranges the optimized sample showed a more or less
regular distribution with some of the locations supplemented by an additional
location at short distance. For the largest ratio of spatial dependence and the
two largest ranges the optimized sample has a more or less regular pattern
with several chains of locations. Lark (2002) compared the optimized sam-
ples with 7 randomly selected transects of 7 locations with a regular spacing.
He found comparable values for the quality measure, and therefore concluded
that when one is ignorant about the variogram, then the most robust ap-
proach is to sample on transects. In an experiment where a first phase sample
of 7 randomly selected transects of 7 locations each was supplemented by an
optimized sample of 31 locations, there was a benefit from the optimization
compared to sampling entirely on transects.

9.4 Estimating the Variogram

We shall now describe how the variogram can be estimated from the sample
data. The most widely used method for variogram estimation is the method-
of-moments. Alternatively, the variogram can be estimated by the maximum
likelihood method. In principle for all sampling designs described above both
estimation methods can be used. For nested designs the natural way of es-
timating the variogram is ANOVA. By summing the variance components
associated with the stages we get the variogram for the chosen lags (Webster
and Oliver, 1990). Miesch (1975) and Corsten and Stein (1994) have shown
that for balanced designs ANOVA and the method-of-moments are equivalent
and lead to identical experimental variograms. For unbalanced designs these
two methods lead to different estimates.
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Fig. 9.4. 49 sampling locations optimized for the kriging variance of predictions at
the centre of the square grid cells with a spacing of 5 distance units. An exponen-
tial variogram is assumed, with varying distance parameters, and ratios of spatial
dependence. (Reproduced from Lark (2002, p. 69) with permission from Elsevier.)

9.4.1 Method-of-Moments

With the method-of-moments, the variogram is estimated in two steps. In the
first step, the data are used to form pairs of locations. Then we estimate the
variogram for a given lag h by selecting all pairs of sampling locations h apart,
and calculating:

γ̂(h) =
1

2M(h)

M(h)
∑

i=1

{z(si) − z(si + h)}2
, (9.7)
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where M(h) is the number of pairs separated by lag h. Unless locations are
chosen at regular intervals along transects or on grids, it is necessary to group
the lags by distance and direction, i.e., to use tolerance intervals both for the
length and for the direction of the vector. If it is assumed that the variogram is
independent of direction, i.e., an omnidirectional or isotropic variogram, then
one may group all lags with (approximately) the same length, and estimate
the experimental variogram for these lags. For kriging one needs a continuous
function, and therefore in the second step a continuous model is fitted to the
experimental variogram. Only models are permitted which ensure that the
variances of the prediction errors are non-negative. Permissible models that
are commonly used are the spherical, the exponential, and the Gaussian model
(Appendix B). The estimates γ̂(h) are correlated, and therefore the parame-
ters of the model must be estimated by taking into account the variances and
covariances of the values in the experimental variogram. In statistical litera-
ture this is referred to as Generalized Least Squares estimation. This implies
that the parameters must be estimated iteratively, because the variances and
covariances depend on the variogram itself. Cressie (1985) recommended to
neglect the covariances, and to fit the model by Weighted Least Squares, us-
ing the number of pairs divided by the squared semivariance in the previous
iteration as weights.

9.4.2 Maximum Likelihood Estimation

Contrary to the method-of-moments, with the maximum likelihood method
the data are not paired into couples, and the variogram is estimated in one
step. To apply this method one typically assumes that the n sample data
are a realization of a second-order stationary n-variate Gaussian Stochastic
Function. Second-order stationarity is a slightly stronger assumption than
the intrinsic hypothesis because the variance of the process is assumed fi-
nite (Appendix B). Especially the assumption that the process is multivariate
Gaussian is a rather strong assumption. When the Spatial Cumulative Dis-
tribution Function is clearly non-Gaussian, we recommend transforming the
data first, for instance by taking logarithms or square roots, and to estimate
the variogram of the transformed data.

One needs the assumption of a multivariate Gaussian process, because
then the joint probability density of the sample data can be calculated by:

P (z, µ,p) = (2π)−
n
2 |V|− 1

2 exp
{

−1
2
(z − µ)′ V−1 (z − µ)

}

, (9.8)

where z is the vector with the n sample data, µ is the vector with means (all
values are equal), p is the vector with parameters of the covariance function,
and V is the n × n matrix with variances and covariances of the sample
data. This equation may not be familiar to the reader, however rewriting this
equation for n = 1 gives
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P (z, µ, σ2) =
1

σ
√

2π
exp

{

−1
2

(

z − µ

σ

)2
}

, (9.9)

the univariate normal density function. Note that there is a matrix with co-
variances in the equation, and not a matrix with semivariances, however for
second-order stationary Stochastic Functions the variogram can be obtained
from the covariance function (Appendix B, equation B.15). If the values at
the sampling locations are considered as fixed, then (9.8) can be used to cal-
culate the probability of finding these values for any combination of values
for µ and for the parameters of the covariance function. The parameters of
the covariance function can now be estimated by maximizing this probability.
The estimates thus obtained are referred to as maximum likelihood estimates.
Usually the logarithm of the probability is taken and multiplied by -1, and
this negative log-likelihood is minimized, which is equivalent to maximizing
the likelihood itself. Lark (2000) compared the method-of-moments and the
maximum likelihood method. In general the maximum likelihood estimates
were better than the method-of-moments estimates, especially for small sam-
ple sizes (say n < 75) and when spatial structure is moderate to strong (small
nugget, large range). Lark (2000) also found that, although the method-of-
moments does not make the multivariate Gaussian assumption, this method
is equally sensitive to skewness of data as the maximum likelihood method.
For larger sample sizes (n > 150) ML estimation becomes impractical because
a huge number of computations are then required. For more information on
this method we refer to Pardo-Igúzquiza and Dowd (1998).
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Introduction to Sampling in Time

From the definition in Sect. 1.1 follows that monitoring concerns repeated or
continued sampling in time, with or without a spatial extent. This part of
the book addresses sampling in time of objects without a spatial extent, i.e.,
repeated or continued sampling at one location. It should be mentioned that
the methods described here can also be applied in a space–time context, e.g.,
with multiple time series distributed in space, or a time series of spatial means
of an area. Sampling in space–time, however, is treated in Part IV.

In contrast to Part II on sampling in space, a substantial portion of this
Part on sampling in time is devoted to estimation of model parameters such
as the temporal trend. The reason for this is that in monitoring of processes,
the interest is often in model parameters, because these parameters tell us
what can be expected on average, and not in target quantities only related to
a bounded monitoring period.

Chapter 11 describes sampling methods for estimation of global quantities
in time. Many methods for spatial sampling given in Chaps. 7 and 8 apply to
temporal sampling as well: the methods can be adapted straightforwardly to
the 1D context. Notwithstanding the similarities, temporal sampling differs
in two principal aspects from spatial sampling.

First, time is unidirectional and sampling in past time is impossible, hence
designs such as Two-Phase Random Sampling are inappropriate for sampling
in time. Second, while spatial sampling always takes place in a bounded uni-
verse, the temporal universe to be monitored may have an end-point that is
still undetermined when the monitoring scheme is designed. This has several
consequences. One practical consequence is that, instead of the total sam-
ple size, the average sample size per unit of time or the sampling frequency
becomes the major parameter of the monitoring sample.

Chapter 13 discusses the sampling aspects of time-series modelling. In
Sect. 13.2 the sampling aspects of estimating process parameters are discussed.
These parameters characterize the dynamic behaviour of a process. Next, in
Sect. 13.3 the estimation of means, such as annual means, is elaborated upon.
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In contrast to Chap. 11 we focus on model means here. Finally, Sect. 13.4
discusses the sampling aspects in the context of detecting trends in time series.
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Global Quantities in Time

11.1 Introduction to Methods for Global Quantities in
Time

Sampling in time is done, for instance, to monitor the quality of surface water
at some critical location in a river or at the outlet of a water-management
unit, or to monitor the soil quality at a control site. It is similar to sampling
in space in the sense that, although the practical aspects may differ, the same
principles, theory and problems of choice play a role. Therefore, much of what
has been said about spatial sampling in Chap. 7 is applicable to temporal
sampling as well. In particular, the distinction and the choice between the
design-based and the model-based approach is again of paramount importance
and is taken here too as the main sub-division of the methodology. See Sect. 4.1
and Chap. 6 for a general discussion of how to choose between these two
approaches.

In the case of sampling in time, it should be added that cyclic variations
seem to be more common in time than in space. If this is true, then for sam-
pling in time more caution is needed with systematic (random) sampling, i.e.,
at constant time-intervals, because of a greater risk that the sampling interval
interferes with some cyclic pattern of variation (see also Sect. 7.2.7). On the
other hand, taking samples at constant intervals is often more convenient.
Of course this advantage vanishes when a programmable automatic sampling
device can be installed.

As with sampling in space, design-based methods are usually most ap-
propriate for global quantities in time. They have the advantage of greater
simplicity and more robustness in the sense that the statistical inference from
the sample data does not rely on the validity of a time-series model. This is
especially important for regulatory monitoring. We repeat that when interest
is in the model-mean, one should ship this chapter and proceed to Chap. 13.
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11.2 Design-Based Methods for Global Quantities in
Time

11.2.1 Introduction

Random sampling is less common in time than in space, Nevertheless, most
of the methods as presented in Sect. 7.2 for design-based spatial sampling can
be used for sampling in time. Clearly, in 2D spatial sampling, populations,
domains, strata and primary units are all areas, in temporal sampling they are
periods of time. The advantages and disadvantages indicated for the various
spatial sampling strategies in Sect. 7.2 hold, mutatis mutandis, for sampling
in time. If the end of the monitoring period is pre-determined, the selection
techniques presented in Sect. 7.2 for the 2D spatial context only need obvious
adaptations to the 1D temporal context. Long-term monitoring projects often
have no pre-determined end, but budgets tend to be allocated periodically,
often annually. In that case it is practical to take the budgetary years as strata,
and to determine the sample size for each successive year from the available
budget.

11.2.2 Practical Issues

A point which deserves special attention in the application of design-based
strategies in time is non-response. Non-response generally indicates the situ-
ation where for some reason no data can be obtained from a sampling unit. If
non-response occurs in spatial sampling, data are often collected from addi-
tional sampling units which were kept in reserve, in order to meet the required
sample size. In temporal sampling, however, this would lead to overrepresen-
tation of the end of the monitoring period since sampling in the past is not
possible. To avoid bias as a result of this overrepresentation, temporal strati-
fication is recommended.

There are some exceptions to the rule that the 2D spatial sampling designs
of Sect. 7.2 are straightforwardly applicable in time. In Cluster Random Sam-
pling (Sect. 7.2.6) the configuration of the clusters is restricted to ‘transects’
with equidistant points in one ‘direction’, namely the time scale. For instance,
the cluster might be a period of a day during which is measured hourly. Clus-
ter Random Sampling in time has the operational advantage of reducing the
travel time between, for example, the field spot and the laboratory.

Systematic Random Sampling (Sect. 7.2.7) is straightforwardly applicable
in time. However, the warning is emphasized that if the temporal variation
is cyclic or pseudo-cyclic, the variance may be severely underestimated. Note
that cyclic or pseudo-cyclic variations, such as daily or yearly fluctuations,
are often found in environmental temporal variables.

The systematic unaligned type of design in Sect. 7.2.8 needs two dimen-
sions and is therefore not appropriate for sampling in time. In place of that,
the Markov Chain design discussed in Sect. 7.2.8 is well suited to achieve a
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fairly even spreading of sampling times, while still avoiding the risk of inter-
ference with cyclic or pseudo-cyclic variations.

Sampling with probabilities proportional to size (pps, Sect. 7.2.9) can-
not be applied in sampling in time, because the required information on an
ancillary variable is not available at the time that the sampling strategy is de-
signed. For the same reason Sequential Random Sampling (Sect. 7.2.10) may
not be appropriate for sampling in time. However, in some cases it might be
reasonable to extrapolate ancillary variables to the future, in particular those
which are dominated by a seasonal fluctuation.

Adaptive Cluster Sampling (Sect. 7.2.10) is not appropriate for sampling in
time, because the method would require sampling in the past which is impossi-
ble. For the same reason Two-Phase Sampling strategies (Sect. 7.2.12) are not
straightforwardly applicable. A possible way to apply Two-Phase Sampling is
to collect a large number of samples and to store them. After the monitoring
period the samples are analysed using an inexpensive, indicative technique in
the first phase. Next, in the second phase, a subsample is analysed by using
a more precise methods.

11.2.3 Estimating Temporal Means by Using an Ancillary Variable

If the temporal variation of the target variable differs between periods of time,
then a constant interval between sampling times can be inefficient. If one has
a time series of an ancillary variable correlated with the target variable, then
one can use this ancillary variable for selecting a systematic sample with vary-
ing intervals between sampling times. The time series of the ancillary variable
is used to calculate cumulative totals for t = tb, tb+1, . . . , te, where tb and te
are the beginning and end time of the monitoring. Then a systematic random
sample with constant interval is drawn between 0 and the cumulative total at
te. Note that the starting point is selected randomly. The points in time at
which the cumulative total equals the randomly selected numbers are taken
as sampling times. Figure 11.1 illustrates this principle for estimating the an-
nual mean concentration of, e.g., nitrate in soil pore water at a given depth,
using the precipitation surplus (precipitation minus evapotranspiration) as an
ancillary variable (when the precipitation surplus is negative, it is taken as
zero, so that the cumulative precipitation surplus is a non-decreasing func-
tion). Note that the sampling frequency in summer, when the precipitation
surplus is small, is much lower than in winter.

11.2.4 Testing Step Trends

One important purpose in temporal sampling is not covered by the design-
based methods presented for spatial sampling in Sect. 7.2: estimation or test-
ing of a step trend. If interest lies in possible effects of a sudden natural or
human-induced change that starts at a given point in time, then a relevant
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Fig. 11.1. Systematic Random Sampling in time, with sampling times equidistant
in cumulative precipitation surplus

quantity to estimate may be the difference between the temporal means before
and after the change:

D = z̄a − z̄b =
1

te − tc

∫ te

tc

z dt − 1
tc − tb

∫ tc

tb

z dt , (11.1)

where z̄a and z̄b are the temporal means after and before the change, respec-
tively, tb and te are the beginning and end time of the monitoring, and tc is
the time at which the change happens. This effect is simply estimated by:

̂D = ˆ̄za − ˆ̄zb , (11.2)

where ˆ̄za and ˆ̄zb are estimators of the temporal means, depending on the
type of sampling design (see Sect. 7.2). If the samples taken before and after
the change are taken independently from each other, then the variance of ̂D
equals:

V
(

̂D
)

= V
(

ˆ̄za

)

+ V
(

ˆ̄zb

)

, (11.3)

where V
(

ˆ̄za

)

and V
(

ˆ̄zb

)

are the true sampling variances of the estimated

means. An estimate ̂V
(

̂D
)

of V
(

̂D
)

can simply be obtained by inserting the

estimates of V
(

ˆ̄za

)

and V
(

ˆ̄zb

)

, as given in Sect. 7.2 for the various designs:

̂V
(

̂D
)

= ̂V
(

ˆ̄za

)

+ ̂V
(

ˆ̄zb

)

. (11.4)
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A two-sided 100(1 − α) % confidence interval for D is given by:

̂D ± t1−α/2 ·
√

̂V
(

̂D
)

, (11.5)

where t1−α/2 is the (1− α
2 ) quantile of the Student distribution with (ηa +ηb)

degrees of freedom; ηa and ηb denoting the degrees of freedom on which the
estimates ̂V (ˆ̄za) and ̂V (ˆ̄zb) are based. The null-hypothesis of no effect (D = 0)
can be tested against the alternative D �= 0 with the two-sided two-sample
t-test. The null-hypothesis is rejected if the confidence interval of (11.5) does
not contain zero. It is emphasized that this method of trend testing is based
on temporal means, in contrast to the methods described in Sect. 13.4, which
are based on model means.

11.3 Model-Based Methods for Global Quantities in
Time

11.3.1 Introduction

The simplest and most common model-based method of sampling in time is
systematic sampling, i.e., at constant time-intervals, and to use a time-series
model for statistical inference from the sample data. Time-series analysis is a
broad subject on its own, and a vast literature exists on its methodology. A
practical textbook is Box and Jenkins (1976); see Hipel and McLeod (1994) for
applications in natural resources. These books discuss in detail how models of
the temporal variation may be selected and fitted to the data, and how these
models can be used to test, estimate and forecast quantities of interest. We
repeat the warning in Sect. 3.7 that some formulas for sample size imply that
the model mean is to be estimated, and therefore render sample sizes that are
larger than needed for estimating the often more relevant temporal mean, the
average of the target variable over the monitoring period.

In systematic sampling, an appropriate sampling frequency or interval
length must be chosen. Many time-series models are based on equidistant
time series, as is explained in Appendix C. The tendency to sample at con-
stant time-intervals is obviously caused by operational advantages but prob-
ably enforced by the fact that equidistant series can be analyzed by methods
which are mathematically relatively simple. However, taking spatial sampling
as an analogy, it can be conjectured that systematic sampling is not always
the best option even in the model-based approach. As explained in Sect. 7.2.4,
if in spatial sampling sub-areas can be outlined beforehand that are expected
to be more variable than others, then it is efficient to stratify accordingly
and to sample more densely in the more variable strata. Similarly, if the tem-
poral variation varies with time then it should be efficient to sample more
densely in periods with larger variation. Another example can be borrowed
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from Sect. 7.3 on model-based sampling in space, where it was demonstrated
that when optimizing a sample for an area in which certain parts are not
accessible for sampling, the sampling locations are attracted or repelled by
the boundaries of the inaccessible parts, depending on whether they belong
to the target area or not. Similarly, if sampling is impossible in one or more
sub-periods, then a sampling design adapted in the same way should be more
efficient than an equidistant one.

11.3.2 Kriging the Temporal Mean

As an alternative to the estimation of model means by the methods described
in Sect. 13.3, the mean value of a variable over a bounded period of time
can be predicted. This can be done by block-kriging. It is important to note
that with block-kriging the temporal mean of a single realization is predicted,
whereas in Sect. 13.3 methods are described that estimate model means, µ.
Temporal means might be relevant in compliance monitoring, when one is
interested in the departure of the true mean from a critical value during a
certain bounded period, for instance a year. Besides this, estimation of tempo-
ral means by block-kriging is recommendable if only an unevenly spaced time
series is available. Block-kriging for prediction of spatial means is described
in Appendix B. Basically, the block-kriging system is straightforwardly re-
stricted to one dimension when it is applied to periods of time. Figure 11.2
shows the ordinary block-kriging variance as a function of the sample size,
for a centred systematic sample and an exponential variogram. The block-
kriging variance is expressed as a ratio of the sill (horizontal asymptote) of
the variogram. Figure 11.2 shows that the larger the nugget-to-sill ratio and
the smaller the relative range, the more sampling times are needed to achieve
a given precision (block-kriging variance). The four lines in Fig. 11.2d are
very close, showing that the effect of the range on the block-kriging variance
is small for large nugget-to-sill ratios.
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Fig. 11.2. Block-kriging variance of the temporal mean predicted from a centred
systematic sample with interval length ∆s = |T |/n, as a function of the sample size,
for exponential variograms. The variance is expressed as a percentage of the sill of
the variogram. Nugget-to-sill ratios: a: 0.10; b: 0.25; c: 0.50; d: 0.80
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Local Quantities in Time

12.1 Model-Based Methods for Local Quantities in Time

12.1.1 Introduction

This chapter deals with retrospective prediction of the temporal means for
many short periods of time or of the values at points in time. An example
is the reconstruction of a continuous time series of water table depth, to be
used as input of a model for the leaching of heavy metals in the soil. The non-
linear relation between model-output and model-input makes that the global,
temporal mean is insufficient as input. For local prediction in time model-
based methods are most appropriate. Kriging is a flexible method because it
does not require observations at regular intervals.

12.1.2 Kriging Values at Points in Time

When prior information can be used to postulate a tentative variogram for
the random variable Z(t), then this variogram can be used to decide on the
interval length for systematic sampling in time, given a quality requirement
on the mean or maximum error-variance of predictions at intermediate times.

Figures 12.1 and 12.2 show the mean and maximum ordinary kriging vari-
ance as a function of the interval length, for exponential variograms with
different nugget-to-sill ratios. The kriging variances are expressed as a ratio of
the sill of the variogram, and the interval length as a ratio of the range of the
variogram (see Appendix B). The kriging variances are based on 20 observa-
tions used in kriging, 10 on each side of the prediction-point in time. When
fewer data are used, the kriging variance will be slightly larger. The larger the
nugget-to-sill ratio, the larger the mean and maximum kriging variance. Also,
given the range of the variogram, the mean and maximum kriging variance
increase with the interval length. The effect of the interval length is largest for
small nugget-to-sill ratios. Setting a limit to the maximum kriging variance
requires smaller interval lengths (higher sampling frequencies) than setting
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Fig. 12.1. Ratio of the mean kriging variance to the sill as a function of the ratio
of the interval length to the range.

Fig. 12.2. Ratio of the maximum kriging variance to the sill as a function of the
ratio of the interval length to the range.

the same limit to the mean kriging variance, especially for small nugget-to-sill
ratios.
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Time-Series Models

13.1 Introduction

Appendix C recapitulates the most commonly assumed linear stochastic pro-
cesses. In this chapter the sampling aspects of time-series modelling are
dealt with. Section 13.2 focuses on the sampling aspects of estimating pro-
cess parameters which characterize the dynamic behaviour of the process.
In Sect. 13.3 the estimation of model means, such as annual model means,
is elaborated upon. Finally, Sect. 13.4 discusses the sampling aspects in the
perspective of detecting trends in time series.

13.2 Estimation of Process Parameters

This section focuses on the development of monitoring strategies to obtain
parameters which give a general description of the temporal behaviour of a
physical phenomenon, i.e., status monitoring (Sect. 1.1). Statistical inference
is made by assuming that the temporal behaviour results from a stochastic
process which can be specified by a time-series model. Therefore, the main
question to be answered in this section is: How should samples be distributed in
time, in order to derive time-series models that describe the dynamic behaviour
of a physical phenomenon adequately? The answer to this question starts with
making assumptions about the stochastic processes, the most applied of which
are recapitulated in Appendix C. As is mentioned in Sect. C.1, stochastic
processes are data-based. The discrete-time stochastic processes described in
Sects. C.2 to C.4 reflect the dynamic behaviour of physical phenomena, given
the sampling frequency and the length of the monitoring period. Decisions
must be taken on the sampling frequency and the length of the monitoring
period. These decisions are discussed in this section.
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We restrict ourselves here to discrete-time stochastic processes with dis-
crete, constant time-intervals . Statistical inference for this type of processes is
possible by using relatively simple mathematical methods, as compared with
continuous-time processes. Box and Jenkins (1976) give a procedure of model
identification, fitting (calibration) and diagnostic checking (verification). In
Fig. 13.1 this procedure is summarized and extended for decisions on the
length of the monitoring period and the sampling frequency.

Important tools in both model identification and diagnostic checking are
the sample autocorrelation function (sample ACF), the sample partial auto-
correlation function (sample PACF) and the residual cross-correlation func-
tion (residual CCF), see Appendix C. As an alternative to the identification
procedure, automatic model selection can be applied, using a selection crite-
rion (e.g., Akaike’s Information Criterion, AIC, or Bayes Information Crite-
rion, BIC). The procedures of either model identification or automatic model
selection, fitting and diagnostic checking result in a model that describes the
data adequately. The next step is to analyze the extent to which the under-
lying physical processes are described adequately by the model. This can be
done by physical interpretation of the modelling results. Besides this, when-
ever possible validation is advised, which means that the model performance
is tested using independent validation data. Both physical interpretation and
validation results may not only give rise to further model improvements, but
also to extension of the monitoring period, and adjustment of the sampling
frequency. This is illustrated by the following two situations, which are given
without aiming to be complete:

1. A large value of the autoregressive parameter of a first-order autoregres-
sive model (Sect. C.2.1) is found. The validation results show large sys-
tematic errors. In this case the monitoring period may not fully cover
the correlation length, i.e., the time lag at which the autocorrelation is
(approximately) zero. In the case of a dynamic relationship between two
variables, the monitoring period may not cover the response time. The
monitoring should be continued at least until the correlation length or
the response time is completely covered;

2. Although autoregressive relationships were expected on the basis of phys-
ical insights, no significant autoregressive relationships were found. The
validation results show large random errors. In this case the sampling
interval may be larger than the correlation length or, in the case of a
dynamic relationship between two variables, than the response time.

13.3 Sampling Frequency for Estimation of Model Means

As is mentioned in Sect. 1.1 in status monitoring the status of a system is char-
acterized and followed in time. A general statistic of a system is the mean, for
instance the annual mean. If monitoring is restricted to systematic sampling
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Fig. 13.1. Flow chart for the procedure of time-series model identification, fitting
and diagnostic checking, extended with sampling aspects
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in time, a sampling frequency needs to be chosen which enables estimates of
means which are sufficiently accurate given the purposes of monitoring.

An observed series {zi}, i = 1 . . . n is considered to be a realization of a
second-order stationary stochastic process with a random fluctuation εi with
variance σ2

ε around a deterministic mean µ:

Zi = µ + εi . (13.1)

Note that µ is a model parameter, and not the average of z over the universe of
interest. Sanders and Adrian (1978) presented a sampling frequency criterion
based on the relationship between sampling frequency and the magnitude of
half the confidence interval of the model mean. Their approach will be followed
here.

Suppose that n second-order stationary, independent and identically dis-
tributed observations on z are available. To obey the stationarity assumption,
it may be necessary to remove seasonal nonstationarity first, for instance by
fitting a deterministic annual cycle to the data and to use the residuals in
further analysis. The variance σ2

ε can be estimated by:

̂σ2
ε =

1
n − 1

n
∑

i=1

(zi − z̄)2 , (13.2)

where z̄ is the calculated mean of zi, i = 1, . . . ,m. Confidence intervals for
estimates of µ are estimated using the Student’s t statistic:

t =
z̄ − µ

σε/
√

n
. (13.3)

The probability that t is within the confidence interval is given by the confi-
dence level 1 − α:

Pr
(

tα/2 <
z̄ − µ

σε/
√

n

)

, (13.4)

where tα/2 and t1−α/2 are constants from the Student’s t distribution for a
corresponding number of observations and confidence level. Since t1−α/2 =
−tα/2, the confidence interval of the model mean µ is given by

z̄ − tα/2 σε√
n

< µ < z̄ +
tα/2 σε√

n
. (13.5)

If σε has been estimated from prior information, and a decision on the con-
fidence level 1 − α has been taken, the width of the confidence interval can
be plotted against values of n. If annual means are considered, n is the yearly
number of observations.

Until now it was assumed that the values of z are mutually independent.
However, the presence of autocorrelation is often indicated in time series of
environmental variables. Dependency can be dealt with in two ways: (a) it is
avoided, or (b) it is accounted for.
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Avoiding dependency

To avoid dependency, the interval length should be larger than the length of
serial correlation. Thus, prior information is needed on the length of serial
correlation, but this is not always available. Alternatively, one could start to
measure with a high frequency to estimate the correlation length, and then
to continue at intervals longer than the estimated correlation length. Another
possibility is to take average values over sufficiently long periods. For instance,
if daily values appear to be correlated, one could calculate a series of monthly
averages which may possibly be uncorrelated.

The correlation length can be estimated from observed time series using
(C.8), provided that the interval length is shorter than the correlation length
and the series amply covers the correlation length. Once a sampling frequency
is found which provides serially uncorrelated observations on a target variable
zt, the maximum sampling frequency is known. Equation (13.5) is applied to
investigate lower frequencies.

Accounting for dependency

A first way to account for serial correlation in estimating model means µ
is by using the relationship between the actual number of observations and
the equivalent number of independent observations for an autocorrelated time
series, given by Bayley and Hammersley (1946):

V (µ̂) =
σ2

ε

n∗
b

, (13.6)

where n∗
b is the equivalent number of independent observations, µ̂ is the es-

timated mean of a process {Zt} and σ2 is the variance for the random fluc-
tuation εi in (13.1). For second-order stationary stochastic processes with n
observations, n∗

b can be calculated by

1
n∗

b

=
1
n

+
2
n2

n−1
∑

j=1

(n − j) ρj∆t , (13.7)

where ∆t is the observation interval and ρ(j∆t) is the correlation coefficient
for lag j∆t. For first-order autoregressive processes (AR(1), see Sect. C.2.1),
(13.7) reduces to

1
n∗

b

=
1
n

+
2
n2

· ρ(n+1) ∆t − n ρ2 ∆t + (n − 1) ρ∆t

(ρ∆t − 1)2
, (13.8)

(Matalas and Langbein, 1962), where ρ is the lag 1 correlation coefficient for a
selected base lag period. If the base lag period equals the observation interval
the AR(1) process is given by
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Fig. 13.2. Maximum equivalent number of independent observations as a function
of the daily lag 1 correlation coefficient ρ for a Markov process; no = 365 days. (Re-
produced from Lettenmaier (1976, Fig. 6) with permission of American Geophysical
Union.)

Zi − µ = φ (Zi−1 − µ) + εi , (13.9)

and ρ∆t in (13.8) can be replaced by φ. The width of the confidence interval
can be estimated by (13.5), replacing n by n∗

b.
Within a specified period no a maximum number of equivalent independent

observations may be collected:

nmax =
no

2
· (ln ρ)2

ρno − no ln ρ − 1
, (13.10)

(Lettenmaier, 1976), where no is the specified period, for example 365 days,
and ρ is the daily lag 1 correlation coefficient. Thus, if the number of ob-
servations n goes to infinity within the period no, the equivalent number of
independent observations will not exceed a certain nmax.

In Fig. 13.2 nmax is given as a function of the lag 1 correlation coefficient
ρ. Figure 13.2 shows that nmax decreases with an increasing lag 1 correlation
coefficient. If the number of actual samples were infinite and ρ were 0.14, then
from (13.10) and Fig. 13.2 it follows that the equivalent number of independent
observations equals 365.

Figure 13.3 gives the ratio n∗
b/nmax as a function of the normalized sam-

pling frequency n/no, for various values of the daily lag 1 correlation coefficient
ρ. It can be seen that nmax is approached quite rapidly for large values of ρ. If
observations are taken weekly (n/no = 0.14) and ρ = 0.85, then from Fig. 13.3
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Fig. 13.3. Ratio of equivalent and maximum equivalent number of independent ob-
servations, as a function of the normalized sampling frequency; n/no = 1 corresponds
to daily sampling. (Reproduced from Lettenmaier (1976, Fig. 7) with permission of
American Geophysical Union.)

follows that n∗
b/nmax equals 0.9. Thus, 90 % of the information that may be

collected in a period of 365 days is already provided by weekly sampling.

13.4 Sampling Frequency for Detecting Trends

In the previous section second-order stationarity of Z in (13.1) was assumed,
which implies a time invariant model mean µ. This section focuses on the
detection of temporal changes in the model mean µ. In Sect. 13.4.1 sampling
aspects of tests for step trends and linear trends are discussed. Section 13.4.2
deals with sampling aspects of intervention analysis. Note that the methods
described here are based on model means, in contrast to the method for trend
testing described in Sect. 11.2 which is based on temporal means.

13.4.1 Tests for Step Trends and Linear Trends

If temporal sampling is restricted to systematic sampling, then the choice of
an appropriate sampling design reduces to choosing an appropriate sampling
frequency. Analogous to Sect. 13.3, serial correlation in regularly spaced series
is either prevented for or accounted for.
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Avoiding dependency

In Sect. 13.3 it was discussed how the sampling frequency can be found below
which observations are practically serially uncorrelated. Once a sampling fre-
quency is found which provides serially uncorrelated observations on a target
variable Z, the minimum sample size and thus the minimum length of the
monitoring period must be decided on. Lettenmaier (1976) gives criteria for
the minimum sample size if trend detection is the purpose of the monitor-
ing. The trend can concern either a step trend or a linear trend. Lettenmaier
(1976) considers trend detection as a testing problem, with H0: a trend is
not present in the underlying process and H1: a trend is present. Following
Lettenmaier (1976), it is explained below how the minimum length of series
can be determined for testing on step trends and linear trends, respectively.

Sampling Frequency for Detecting Step Trends

A step trend is defined here as a sudden change in the mean level of a process.
Suppose that this sudden change occurs halfway a series with an even number
of n measurements. Furthermore, let µ1 and µ2 be the mean levels of the series
before and after the abrupt change. The underlying process is now defined as

Zi =
{

µ1 + εi if i ≤ n/2
µ2 + εi if i > n/2 ,

(13.11)

where i = 1, . . . , n indicates the ith element of an equidistant series of length
n. In (13.11) the ε’s are independent identically distributed random variables
with zero mean and variance σ2

ε .
The test chooses between

H0 : µ1 = µ2

H1 : µ1 �= µ2 .

The test statistic is

T =
|z̄1 − z̄2|

√
n

2 σ̂ε
− t1−α/2, ν , (13.12)

with

z̄1 =
1

n/2

n/2
∑

i=1

zi, z̄2 =
1

n/2

n
∑

i=n/2+1

zi , (13.13)

being estimators for µ1 and µ2, respectively, t1−α/2,ν is the quantile of the
Student’s t distribution at confidence level 1− α/2 and for ν = n− 2 degrees
of freedom, and with σ̂ε being the sample standard deviation,

σ̂2
ε =

1
n − 2

⎛

⎝

n/2
∑

i=1

(zi − z̄1)2 +
n

∑

i=n/2+1

(zi − z̄2)2

⎞

⎠ . (13.14)
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If T ≤ 0 then H0 is accepted, otherwise H0 is rejected.
Now, for the purpose of sample design, the absolute value of the true

difference between µ1 and µ2 is assumed to be known: Tr = |µ1 − µ2|, as well
as the variance σ2

ε . Then, the following population statistic can be formed:

NT =
√

n

2 σε
Tr . (13.15)

The power of the test is now given by

1 − β = F (NT − t1−α/2, ν) , (13.16)

where F is the cumulative distribution of a standard Student’s t distribution
with ν = n − 2 degrees of freedom.

If prior information on the variance σ2
ε is available, a guess can be made

of the minimum length of the series needed for the detection of a step trend
which occurs halfway this series, for a given α and β. Figure 13.4 shows a
diagram for the relationship between the normalized magnitude of the step
trend (Tr/σε) and the minimum length of the series needed for given values of
β and with α = 0.05. The step trend is assumed to occur halfway the series,
and n = n1 + n2, where n1 = n2 are the numbers of observations before and
after the step change, respectively. The effect on the sample size of a decision
for a lower confidence level 1 − α is illustrated by Fig. 13.5, where α = 0.10.

Minimum Sample Size for Detecting Linear Trends

According to Lettenmaier (1976, p. 1038), a linear trend is parameterized as

Zi = εi + i τ + γ , (13.17)

where εi is a series of random disturbances from a normal distribution with
mean zero and variance σ2

ε , τ is the trend magnitude, and γ is the process
base level. The parameter τ is estimated by

τ̂ =

n
∑

i=1

i′ z′i
n
∑

i=1

i′2
, (13.18)

where

i′ = i − n + 1
2

, z′i = zi − 1
n

n
∑

i=1

zi . (13.19)

The estimate τ̂ has variance

V (τ̂) =
σ2

ε
n
∑

i=1

i′2
. (13.20)
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Fig. 13.4. Sample size against normalized step trend for β = 0.5, 0.4, 0.35, 0.3,
0.25, 0.2, 0.15, 0.1, 0.05, 0.01 (from left to right) and α = 0.05. Tr: the magnitude
of the step trend, σ: the standard deviation, n = n1 +n2, with n1 = n2: the number
of equidistant observations before and after the step change, respectively.

Fig. 13.5. Sample size against normalized step trend for given values of β, and
α = 0.1. See Fig. 13.4
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Assuming normality of τ̂ , a test statistic T is given by

T = |τ̂ | − t1−α/2, ν · σ̂ε
√

n
∑

i=1

i′2
, (13.21)

with ν = n − 2 degrees of freedom. The sample estimate σ̂ε is calculated by

σ̂ε =
1

n − 2

n
∑

i=1

(zi − i τ̂ − γ̂)2 , (13.22)

and the sample estimate γ̂ is calculated by

γ̂ =
1
n

n
∑

i=1

zi − τ̂
n + 1

2
. (13.23)

The test statistic T in (13.21) can be normalized as follows:

T ′ =
|τ̂ | (∑n

i=1 i2
)1/2

σ̂ε
− t1−α/2, ν . (13.24)

Given the identity
n

∑

i=1

i2 =
1
6
n (n + 1) (2n + 1) , (13.25)

Lettenmaier (1976) derives the following dimensionless statistic for the exis-
tence of a linear trend, assuming that the population trend magnitude τ is
known:

N ′
T =

{n (n + 1) (n − 1)}1/2
τ√

12σε

. (13.26)

If n τ is substituted by T ′
r , then N ′

T becomes

N ′
T =

{n (n + 1) (n − 1)}1/2
T ′

r

n
√

12σε

. (13.27)

The power of the test for linear trend can be calculated by (13.16), with NT

replaced by N ′
T . Figures 13.6 and 13.7 give minimum series lengths needed

for given values of β and for α = 0.05 and 0.1, respectively, to detect linear
trends with normalized magnitudes T ′/σε.

Lettenmaier (1976) gives power curves for nonparametric trend tests.
These tests are appropriate if the assumptions of parametric tests are vio-
lated. Lettenmaier (1976) shows that Mann–Witney’s test and Spearman’s
rho test are adequate for testing against a step trend and a linear trend,
respectively.
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Fig. 13.6. Sample size against normalized linear trend for given values of β (See
Fig. 13.4), and α = 0.05. T ′

r : magnitude of the linear trend, σε: the residual standard
deviation of the linear trend model, n: the number of equidistant observations

Fig. 13.7. Sample size against normalized linear trend for given values of β (See
Fig. 13.4), and α = 0.1. T ′

r : magnitude of the linear trend, σε: the residual standard
deviation of the linear trend model, n: the number of equidistant observations
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Accounting for dependency

The trend tests described above are based on the assumption that the ob-
servations are mutually independent. This is the case if the interval length
is larger than the correlation length. However, in many cases the assumption
of mutual independence is not very useful. The required minimum interval
length implies extensive monitoring periods in order to obtain a sufficiently
large number of observations to execute powerful tests. Furthermore, if serial
correlation is removed by extending the interval length or by calculating av-
erages over sufficiently long periods, information gets lost. Therefore, it may
be attractive to use methods for trend detection that account for serial cor-
relation.

Serial correlation can be accounted for in trend tests by using the relation-
ship between the actual number of observations and the equivalent number of
independent observations for an autocorrelated time series, given in (13.6) to
(13.8). Tests for step trends or linear trends in autocorrelated series can be
performed using the equations given before for independent series, replacing
n by n∗

b.
Within a specified period no a maximum number of equivalent independent

observations may be collected, see (13.10). This is important in deciding on
the sampling frequency and the length of the observation period: the power of
trend tests may increase more by observing longer than by observing more fre-
quently. Lettenmaier (1976) made an extension of nonparametric trend tests
to dependent time series, and gives diagrams of maximum power and power to
maximum power ratio for Mann–Whitney’s test against a step trend. Similar
diagrams for parametric t-tests are given in Figs. 13.8 and 13.9. As compared
to the diagrams for Mann–Whitney’s test against step trend, the diagrams for
t-tests given in Fig. 13.8 indicate that t-tests have smaller maximum power
for given daily lag 1 correlation coefficient and trend to standard deviation
ratio. For the application of nonparametric trend tests to hydrological time
series we refer to Hirsch et al. (1982), van Belle and Hughes (1984), Hirsch
and Slack (1984) and Yue et al. (2002).

Lettenmaier (1978) compared the statistical power of trend tests for uni-
formly collected time series (i.e., equidistant observation times) and for ‘strat-
ified’ or unequally spaced time series, resulting from rotational monitoring
designs (Sect. 14.1). In the latter case observations are taken, for instance,
during one year in three, which may be more travel-economical than col-
lecting equidistant time series in a monitoring network. It was concluded that
equidistant time series are preferred over unequally spaced time series in trend
detection. In the rotational design 2–3 times as many samples need to be taken
to achieve the same power as in trend tests for equidistant time series.

13.4.2 Intervention Analysis

Methods accounting for serial correlation include the intervention models,
described by Hipel et al. (1975) and Hipel and McLeod (1994). Intervention
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Fig. 13.8. Maximum power of a t-test against a step trend, as a function of the
daily lag 1 correlation coefficient ρ and the trend to standard deviation ratio Tr/σ
for a Markov process. Analogous to Lettenmaier (1976)

models form a special class of transfer function-noise models, see Sect. C.4.
The intervention model for a step trend is given by

Zt = It + Nt , (13.28)

where t = 1, . . . , n indicates the t-th element of a series of length n, Zt is
the process of interest, It is the trend component and Nt is a noise compo-
nent describing the part of Zt that cannot be explained from the trend. The
noise component is usually taken as an ARMA model, see (C.23). The trend
component It is a transfer function with the following general form:

It = δ1It−1 + δ2It−2 + · · · + δrIt−r + ω0S
(T )
t−b − ω1S

(T )
t−1−b − · · · − ωmS

(T )
t−m−b ,
(13.29)

where δ1 . . . δr are autoregressive parameters up to order r, ω0 . . . ωm are mov-
ing average parameters up to order m, b is a pure delay parameter. Using the
backward shift operator B, (13.29) can be written as

It =
ω(B)
δ(B)

BbS
(T )
t , (13.30)

with Bkzt = zt−k and k is a positive integer.
S

(T )
t is an input series indicating the step intervention:
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Fig. 13.9. Power to maximum power ratio as a function of relative sampling fre-
quency for t-tests against a step trend in time series following a Markov process. ρ
is the daily lag 1 correlation coefficient. no = 365. Analogous to Lettenmaier (1976).

S
(T )
t = 0 if t < T,

S
(T )
t = 1 if t ≥ T .

(13.31)

Step interventions influence processes in different ways, which can be ex-
pressed by different forms of the transfer function, see Fig. 13.10. As com-
pared to the testing procedures described before, intervention modelling has
the advantage that the effect of interventions can be separated from other
independent influences. The model in (13.28) can be extended with other
transfer components besides the intervention:

Zt = It + Xi,t + Nt, ı = 1, . . . ,m , (13.32)

where Xi,t, i = 1, . . . ,m are m transfer components of m independent in-
puts. Lettenmaier et al. (1978) discussed the sampling aspects of intervention
analysis. They considered intervention analysis as a hypothesis test with H0:
no intervention has taken place, which means that ωB/δB = 0 in (13.30).
Based on knowledge of the covariance matrix of the model parameters, they
constructed power functions for several specified intervention models. These
models do not include models containing other inputs besides the interven-
tion, as in (13.32). Nevertheless, the power curves presented by Lettenmaier
et al. (1978) provide an indication of required sample sizes and the ratio of
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the number of observations collected before and after the intervention took
place. In summary, their conclusions on the sampling aspects of intervention
analysis are:

1. For the step decay model, the linear model and the impulse decay model
(Figs. 13.10c, d and e, respectively), relatively small pre-intervention se-
ries lengths are required. For the step model (Fig. 13.10a, b) it is indicated
that equal pre- and post-intervention series lengths are optimal;

2. For the impulse decay model, it is important that data are collected fre-
quently during the period that the intervention response is non-constant;

3. It is indicated that the minimum detectable intervention effect depends
on the complexity of the intervention model: more complex models re-
quire a larger number of observations. Let ω be the intervention response
magnitude. Furthermore, let γ be the pre-intervention series length rel-
ative to the total series length. For a step model and an impulse decay
model ω equals ω0. For a step decay model ω equals ω0/(1 − δ1). For a
linear model ω = mω0/(1−γ) where m is the number of post-intervention
observations. It is indicated that a minimum level of change, relative to
the process standard deviation, ω/σZ , of about 0.5 can be detected for
the step model. For the linear model the minimum level of ω/σZ that can
be detected is at about 0.75, and 1.0 for the impulse decay model. For the
step decay model a higher minimum level is indicated. Below these values
intervention effects cannot be detected with reasonable sample sizes.

Additional to these conclusions Lettenmaier et al. (1978) suggest:

1. If the fitted parameter values for a hypothesized intervention model are
not significant, a simpler model should be fitted (e.g., a step model instead
of a step–decay model);

2. Seasonality should be removed from the data. However, seasonal differenc-
ing will lead to substantial loss of power. Therefore alternative methods
of deseasonalization are recommended (for instance differencing against a
control time series, or removing seasonal means);

3. If the process variance varies seasonally, homoscedasticity (i.e., constant
variance) should be achieved by an appropriate Box–Cox transformation;

4. Data should be collected uniformly, i.e., at constant time-intervals. How-
ever, Kalman filter methods for modelling irregularly spaced time series,
as proposed by Bierkens et al. (1999), could be extended to intervention
analysis.
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Fig. 13.10. Responses to a step intervention. T = 5, S
(T )
t = 0 for t < T , S

(T )
t = 1

for t ≥ T , ω0 = 3, δ1 = 0.7, b = 1. a: step model, b: delayed step model, c: step
decay model, d: linear model, e: impulse decay model.
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Introduction to Sampling in Space–Time

This part deals with monitoring of objects with a spatial extent. Examples
are monitoring the quality of surface-water or the level of the groundwater
in a watershed, monitoring the soil quality in an agricultural area, and mon-
itoring the biodiversity in a nature conservation area. As will be shown, the
sampling events can be distributed in many ways in the space–time universe.
Monitoring implies that observations are repeated or continued in time. A
survey, on the other hand, is defined as the collection of information on an
object with a spatial extent through observation, such that possible changes
of the object during the observation are negligible (Sect. 1.1). By keeping the
observation period of a given survey as short as possible, temporal variation
is eliminated, and the sampling error is related to spatial variation only. By
repeating these surveys, information is obtained on the temporal variation of
the target variable. In this part we neither give details on sampling designs
for the separate surveys, nor on sampling designs for longitudinal studies at
a single location. For this we refer to Parts II and III, respectively. This part
focuses on the choice of sampling patterns in both space and time.

An important question is whether at all sampling times the same locations
must be observed, or whether this restriction should be relaxed and all or part
of the sampling locations is to be replaced by new locations. This issue is dealt
with in Sects. 14.1 and 14.2. Also, for estimating a spatio-temporal mean or
a temporal trend of the spatial mean, an important question is the optimal
number of sampling locations in relation to the number of sampling times or
the sampling frequency. This is discussed in the sections on these quantities.

14.1 Types of Sampling Pattern for Monitoring

The design types for probability sampling in space (Sect. 7.2) are derived from
Simple Random Sampling, by imposing restrictions on the randomization in
order to increase the efficiency. Similarly, pattern types in space–time can
be conceived as derived from the irregular kind of pattern resulting from
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Simple Random Sampling, by imposing regularity restrictions. In model-based
sampling the patterns are deterministic, in design-based sampling they are
selected at random within the restrictions of the chosen type of pattern.

Fully unrestricted patters in space–time are not further discussed here,
because they are clearly inefficient in nearly all practical situations. The reason
is that the number of sampling locations as well as sampling times would equal
the sample size (i.e., the number of sampling events), which is uneconomical in
view of the fixed costs of sampling locations and sampling times. Depending
on logistics and techniques, the average costs of sampling events generally
decreases when at a given sampling time more than one location is sampled,
or when a given location is sampled more than once.

Two kinds of restrictions are imposed on space–time patterns to improve
the efficiency: sampling multiple times at the same location (stationarity),
and sampling at multiple locations at the same time (synchronicity). Four
basic types of sampling pattern arise by imposing these restrictions: static,
synchronous, static-synchronous and rotational patterns. In Static Sampling
all sampling takes place at a fixed set of locations. See Fig. 14.1 for a notional
example. If continuous measuring takes place at each location, then sampling
is in fact only spatial and the methods of sampling in space (Part II) are
applicable. Sampling at the various locations may or may not follow the same
pattern in time.

In Synchronous Sampling , also referred to as repeated or dynamic sam-
pling, a different set of sampling locations is selected for each sampling time,
i.e., the sampling locations are not revisited. See Fig. 14.2 for a notional ex-
ample. If one measures exhaustively in space at each sampling time, e.g., by
remote sensing, then sampling is in fact only temporal and the methods of
sampling in time (Part III) are applicable. The spatial patterns used at differ-
ent times may or may nor be the same. If they are the same, then they do not
coincide spatially, because otherwise the pattern would be static-synchronous.

An interesting special type of synchronous pattern is the interpenetrating
space–time grid . In that case the same grid is used at each sampling time,
however, as opposed to Space–Time Grid Sampling (see hereafter), the grids
do not coincide spatially. Instead of this, the grids are shifted so that the grid
points at a given sampling time are farthest from those at the previous time.
See Fig. 14.3 for three notional examples.

When Static Sampling and Synchronous Sampling are combined with each
other, we speak of Static-Synchronous Sampling . Figure 14.4 is an illustration
of such a pattern, also referred to as a pure panel1 (Fuller, 1999). If in addition
the spatial pattern is a grid and temporal sampling is systematic, then this is
referred to as Space–Time Grid Sampling .
1 Note that the pattern of Fig. 14.4, although generated by Simple Random Sam-

pling in both space and time, is not equivalent with Simple Random Sampling in
space–time!
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Fig. 14.1. Notional example of a static sample, with Simple Random Sampling in
both space and time

Rotational Sampling is a compromise between Static Sampling and Syn-
chronous Sampling, in the sense that the locations of the previous sampling
time are partially replaced by new ones. See Fig. 14.5 for a notional example.

Synchronous Sampling implies that the locations are not resampled. With
a variation of this type of pattern, after some fixed number of sampling times,
no new sampling locations are selected anymore, but the existing locations
are resampled in the same order (Fig. 14.6). Such a pattern is referred to as
a serially alternating pattern (Urquhart and Kincaid, 1999). To distinguish
it from other periodic sampling patterns, we refer to it as an r-period syn-
chronous sampling pattern. Similarly, in Rotational Sampling one may decide
at any sampling time to stop selecting new locations and to resample locations
of previous sampling times (Fig. 14.7). Such a sampling pattern is referred to
as an r-period rotational pattern or r-period rotating panel (Fuller, 1999).

The pattern types as described above may be combined. For instance, a
static sample (pure panel) can be augmented with a synchronous sample or a
rotation panel. Such samples are referred to as split panels or supplemented
panels (Duncan and Kalton, 1987).

A term often used in connection with monitoring is ‘monitoring network’,
defined by Loaiciga et al. (1992) as a fixed set of sampling locations and a
sampling frequency. Depending on whether or not the locations are sampled
simultaneously, this represents what we call a static or a static-synchronous
sampling pattern.
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Fig. 14.2. Notional example of a synchronous sample, with Simple Random Sam-
pling in both space and time

Fig. 14.3. Notional examples of interpenetrating space–time grids for two, three
and four sampling times

14.2 Statistical and Operational Aspects

The choice of a type of sampling pattern for monitoring should be guided by
operational as well as statistical considerations. Obviously, the static and the
static-synchronous type of pattern have a financial advantage if the costs of
repeated sampling at the same location are lower than for sampling at dif-
ferent locations with the same total sample size. This will be the case when
retrieval of sampling locations in the field can be made easier by marking
them, or when sampling, measuring or recording equipment is installed at
fixed locations in the field on a semi-permanent basis. A statistical disad-
vantage of these patterns compared with synchronous and rotational ones is
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Fig. 14.4. Notional example of a static-synchronous sample, with Simple Random
Sampling in both space and time

Fig. 14.5. Notional example of a rotational sample, with Simple Random Sampling
in both space and time

that while monitoring goes on, only the information on temporal variation
increases, not that on spatial variation. Also, in environmental and ecological
studies, disturbances of the environment in previous rounds may cause bias in
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Fig. 14.6. Notional example of a 4-period synchronous sample, with Simple Random
Sampling in space and Systematic Random Sampling in time

Fig. 14.7. Notional example of a 4-period rotational sample, with Simple Random
Sampling in space and Systematic Random Sampling in time

estimated target quantities such as the estimated change of the spatial mean
or total.
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An advantage of static over static-synchronous patterns is that the selec-
tion of sampling times may be adapted to local circumstances, e.g., differences
in costs of sampling or measuring, or differences in temporal variation. On
the other hand, static-synchronous patterns may have an important advan-
tage over static ones because, given the sample size, they reduce the number
of sampling times. If the fixed costs of sampling times are high relative to
the variable costs (i.e., the costs of sampling an additional location at the
same sampling time), then reducing the number of sampling times enables
more locations to be sampled for the same budget. This in turn yields more
accurate estimates of spatio-temporal global quantities like means, fractions
and totals, as long as the number of sampling times is not too small and the
sampling events remain sufficiently well spread over the space–time universe.

Even more important is that synchronous patterns are much more flexible
than static and static-synchronous ones. This is because at each sampling
time the locations can be adapted to altered circumstances with respect to
the spatial or temporal variation existing in the universe, the accumulating
amount of information on both these sources of variation, the information
needs or the available budget. As argued by Overton and Stehman (1996), the
importance of flexibility in sample size and locations for long-term monitoring
can hardly be overrated (see also Sect. 3.6).

Statistical inference from synchronous samples is straightforward and rel-
atively simple compared to static, static-synchronous and rotational samples.
For instance, design-based statistical testing of the change of the spatial mean
is simple when the locations at different sampling times are selected indepen-
dently.

The choice between the pattern types should also be guided by the target
quantity. For instance, for the current mean (total, areal fraction) rotational
patterns are more efficient than synchronous patterns (no overlap between
samples at successive sampling times) and static-synchronous patterns (100
percent overlap), whereas for the change of mean (total, areal fraction) static-
synchronous pattern are optimal, i.e. have the smallest prediction-error vari-
ance.

Advantages of rotational patterns over static and static-synchronous ones
are greater flexibility and better spatial coverage. A drawback is that design-
based inference of the sampling variance may be cumbersome. If there is a
fair amount of correlation between observations at consecutive sampling times,
then the advantage of rotational patterns compared with synchronous samples
is higher efficiency in estimating temporal trends as well as current means and
totals; see Sect. 15.2.1.

14.3 Contents

For both space and time a choice has to be made between the design-based and
the model-based approach, so there are four possible combinations: design-
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based in space and time, design-based in space plus model-based in time,
model-based in space plus design-based in time, and model-based in space
and time.

Chapter 15 deals with sampling methods for global quantities in space–
time such as the spatio-temporal mean and the temporal trend of the spatial
mean (also referred to as the spatial mean temporal trend). Section 15.2 de-
scribes purely design-based methods, i.e., the sampling events (locations and
times) are selected by probability sampling. There is one exception, viz. sam-
pling for the temporal trend of the spatial mean, which assumes that sampling
times are selected by systematic sampling, not necessarily Systematic Ran-
dom Sampling, and the temporal trend is estimated by model-based inference.
A separate subsection (Sect. 15.2.6) deals with the situation where one is in-
terested in the difference between the spatio-temporal means before and after
an intervention (BACI designs).

Section 15.3 describes model-based methods, i.e., methods using a model
for statistical inference. In this case, purposive sampling in space and time is
recommendable. If prior to the sampling, a model for the variation in space–
time can be postulated, then this model can be used to optimize the sampling
events. This will be shown for various geostatistical models.

Chapter 16 deals with sampling methods for local quantities in space–time.
Only model-based methods are presented in this chapter. Design-based meth-
ods for large space–time domains follow directly from Sect. 8.2.2. For sampling
on a space–time grid, the effects of the interval length and the grid spacing
on the prediction-error variance is explored for two prediction methods, viz.
space-time kriging, which is a purely statistical method, and for Kalman Fil-
tering, a data-assimilation method that uses a dynamic–mechanistic model to
describe temporal variation.

In this part, the spatio-temporal target universe is denoted by U , and
assumed to be the Cartesian product of a two- or three-dimensional spatial
universe S and a temporal universe T : U = S × T . A sampling event in U is
denoted by the vector u = (s′, t)′, where s is the vector of spatial coordinates,
and t is the temporal coordinate.
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Global Quantities in Space–Time

15.1 Introduction to Methods for Global Quantities in
Space–Time

In monitoring studies with a temporal and a spatial dimension, a large va-
riety of global target quantities can be defined. Commonly estimated target
quantities are:

• the current mean, i.e., the spatial mean at the most recent sampling time;
• the change of the spatial mean from one sampling time to the other;
• the temporal trend of the spatial mean;
• the spatial mean of the temporal trend
• the spatio-temporal mean;
• the difference between the spatio-temporal means before and after an in-

tervention.

In some cases one is interested in totals rather than means, and means can be
interpreted as fractions when the target variable is a 0/1 indicator variable.
Also, one may be more interested in a change of the spatial mean from one
sampling time to the other than in the current level of the spatial mean.
This is because the change tells more about environmental processes than the
status of the environment. For instance, in a study on the greenhouse effect,
one may want to estimate the change in carbon stocks in soil between now
and 10 years hence. Or, to calculate the water balance of a watershed, one
may want to estimate the difference in groundwater storage at the beginning
and at the end of a year. The change in the spatial mean from one sampling
time to the other is defined as:

d̄2,1 =
1
|S|

∫

s∈S
z(s, t2) ds− 1

|S|
∫

s∈S
z(s, t1) ds =

1
|S|

∫

s∈S
{z(s,t2) − z(s,t1)}ds .

(15.1)
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(For model-based inference, the definition is of course the same, but the target
variable z(·) and the target quantity d̄2,1 are random instead of deterministic;
see (15.23).)

When sampling has been done at more than two sampling times, one may
be interested in the mean change per time unit, i.e., the temporal trend.
This trend may differ considerably between locations, and in that case one
may want to estimate the Spatial Cumulative Distribution Function of the
temporal trend, or one or more parameters of this SCDF. The spatial mean
temporal trend is defined as the spatial mean of the trend parameter β(s)
of a (linear) time-series model for the target variable at location s at time t,
Z(s, t)

Z(s, t) = α(s) + β(s) · (t − t0) + ε(s, t) , (15.2)

where t0 is the first time the target variable is measured.
It can be shown that this spatial mean temporal trend is equal to the

temporal trend of the spatial mean, i.e., the trend parameter β of a time-
series model for the spatial mean of Z at time t, Z(t) :

Z(t) = α + β · (t − t0) + ε(t) . (15.3)

A target quantity related to the spatial mean temporal trend is the tem-
poral trend of the areal fraction where the target variable meets certain con-
ditions, for instance the areal fraction where a quantitative target variable
exceeds a given threshold. Clearly, a static type of pattern is inappropriate
for estimating this quantity.

This target quantity should be distinguished from the areal fraction where
the temporal trend meets a given condition. In this case the condition is in
terms of the trend, whereas in the former it is in terms of the target variable.
This areal fraction can be estimated by the indicator technique described be-
fore (Sect. 7.2.3). The Spatial Cumulative Distribution Function of the tem-
poral trend is the most informative target quantity. This SCDF can simply
be estimated by repeated application of the indicator technique.

The spatio-temporal mean is defined as

zU =
1
|U|

∫

u∈U
z(u) du , (15.4)

and similarly the fraction in space and time that z(u) exceeds some critical
threshold) is defined as

FU (z) ≡ 1
|U|

∫

u∈U
i(u; z) du . (15.5)

with

i(u; z) =
{

1 if z(u) ≤ z
0 if z(u) > z

(15.6)

If a change in the environmental conditions is foreseen, for instance due
to the implementation of measures that have a positive or negative effect
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on the quality of the environment, then one may want to assess this effect.
One may choose one sampling time before and one after the intervention,
and estimate the change in the spatial mean, but the difference found may
strongly depend on the chosen times. Therefore this difference can be a very
imprecise estimate of the difference between the spatio-temporal means before
and after the intervention. Repeated measurements in time, both before and
after the intervention, will increase precision. When the putatively ‘disturbed’
area has such an extent that it is unreasonable to assume that the effect
is equal everywhere, it is also recommended to repeat the measurements in
space. For example, assume that in an agricultural area measures are planned
to reduce the leaching of nitrate to the ground and surface water. To assess the
effect of these measures one may want to estimate the total amount of leached
nitrate in the area where the measures are planned in the year before the
intervention B, and in the year after the intervention A. The target quantity
to be estimated is

dA,B =
∫

t∈A

∫

s∈S
z(s, t) dsdt −

∫

t∈B

∫

s∈S
z(s, t) dsdt

=
∫

s∈S

{∫

t∈A
z(s, t) dt −

∫

t∈B
z(s, t) dt

}

ds . (15.7)

As for global quantities in space and global quantities in time, design-
based methods are the most appropriate. Especially for regulatory monitoring,
objectivity of the method and validity of the results are of great importance.
For instance, if a regulation specifies a threshold value (Action Level) for
the spatio-temporal mean, then a valid interval estimate of this quantity is
important for statistical testing.

15.2 Design-Based Methods for Global Quantities in
Space–Time

15.2.1 Introduction

The typology of sampling patterns for monitoring presented in Sect. 14.1 is
equally relevant for design-based and model-based methods. In model-based
methods, however, the patterns are deterministic and in design-based methods
they are random, i.e., selected by probability sampling. A static-synchronous
sampling design, for instance, generates random static-synchronous patterns.
This section deals with sampling and estimation for spatio-temporal and cur-
rent global quantities, change of global quantities and spatial mean temporal
trends, by synchronous, static, static-synchronous and rotational designs.

With synchronous designs, at each sampling time one is free to choose
a spatial sampling design from Sect. 7.2 that seems most appropriate given
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the circumstances at that time. So one may adapt the sample size, possible
stratification, clusters and/or primary units, and even the very type of design.

Synchronous Sampling can be considered as a special case of Two-Stage
Random Sampling in space–time, using spatial sections of the universe at
given times as primary units, and sampling locations as secondary units (Vos,
1964). Therefore, the methods of inference for Two-Stage Random Sampling
in space, given in Sect. 7.2.5, can be applied. For instance, inference about
the spatio-temporal mean proceeds by first estimating the spatial mean at
each sampling time (using the method associated with the spatial design at
each time), and then estimating the spatio-temporal mean from these means
as ‘observations’ (using the method associated with the temporal design).
Inference on totals and trend parameters is similar.

With static designs the order of space and time in the two stages is re-
versed: sampling locations are selected as primary units and sampling times
as secondary units. Now the set of sampling locations remains fixed through
time, as with static-synchronous designs, which brings similar operational ad-
vantages. The difference with static-synchronous designs is that sampling is
not synchronized, so that correlation due to synchronized sampling is avoided.
Another difference is that the temporal design may be adapted to local cir-
cumstances. Static designs are attractive when considerable spatial variation
between time series is known to exist, and when the operational advantages
of fixed locations are real.

A static-synchronous design can be considered as a combination of a spatial
sampling design and a temporal sampling design, so that at each sampling
time all locations are sampled (see Fig. 14.4). The sampling locations can
be selected by the same designs as described in Sect. 7.2 on design-based
sampling in space, while the sampling times can be selected by the methods
discussed in Sect. 11.2 on design-based sampling in time. The inference for
static-synchronous designs depends primarily on these two constituting partial
designs.

Rotational Sampling or ‘sampling with partial replacement’ represents a
compromise between static and synchronous designs. The rationale is to avoid
on the one hand the unbalancedness of static designs that accumulate more
data only in time. On the other hand, the relative inefficiency of synchronous
designs for estimating temporal trends is partially avoided because repeated
measurements are made at the same locations.

The principle of Rotational Sampling is to divide the locations of an initial
spatial sample into different rotational groups, and to replace each time one
group by a new set of locations (see Fig. 14.5). Many different strategies of
Rotational Sampling have been developed, including improved estimation pro-
cedures. In some strategies a set of locations would be re-introduced into the
sample after having been rotated out for some time. See Binder and Hidiroglou
(1988) for a review on Rotational Sampling.

The suitabilities, from a statistical point of view, of the four design types
for estimating global quantities are summarized in Table 15.1.
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Table 15.1. Suitability of the four main types of design for estimating spatio-
temporal global quantities (StGQ), current global quantities (CuGQ), change of
global quantities (ChGQ), and spatial mean temporal trends (SMTT). A question
mark means that estimation of the standard error may be problematic.

Type of design StGQ CuGQ ChGQ SMTT

Synchronous + + + +
Static + − − ++
Static-Synchronous +? + ++ +?
Rotational +? ++ + +?

15.2.2 Spatio-Temporal Global Quantities

Spatio-temporal global quantities most relevant in practice are spatio-temporal
means, fractions and totals, and (parameters of) spatio-temporal Cumulative
Frequency Distributions. An example of a spatio-temporal total is the total
emission of a pollutant in a target area during a target period. The temporal
mean of the spatial fraction of the area where the emission rate exceeds a
given threshold is an example of a spatio-temporal fraction.

Synchronous Designs

Synchronous designs can be considered as two-stage designs, and therefore
the formulas of Sect. 7.2.5 can be used to calculate the number of sampling
locations and sampling times. The primary units are then spatial sections
of the universe at given times, and sampling locations are secondary units.
The (pooled) within-unit variance in this case is the (time-averaged) spatial
variance of the target variable at a given time, and the between-unit variance
is the variance of the spatial means over time. Note that (7.30 – 7.32) hold for
Simple Random Sampling in space and Simple Random Sampling in time, an
equal number of sampling locations at all sampling times, and a linear cost
function C = c0 + c1nt + c2ntns, where c0 is the fixed costs of installing the
monitoring design, for instance costs of preparing the sampling frame, c1 is
the variable costs per sampling time and c2 is the variable costs per sampling
location, and nt and ns, are the number of sampling times and locations,
respectively.

Usually, more efficient types of design than Simple Random Sampling will
be chosen for space and time, for instance, systematic in time and stratified
in space. In that case, the above formulas can still be used, either by adopting
the resulting sample sizes nt and ns, as conservative (safe) estimates, or by
dividing them by a prior estimate of the design-effects (accounting for the
higher efficiency), e.g., 1.1 or 1.2. Of course, after one or more sampling rounds
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the data then collected can be used as prior information for adapting parts of
the design that are still to be carried out.

Estimating the spatio-temporal mean (total, fraction) proceeds by first es-
timating the spatial mean at each sampling time (using the method associated
with the spatial design at that time), and then estimating the spatio-temporal
mean and its standard error from these means as ‘observations’ (using the
method associated with the temporal design). The spatio-temporal total is
obtained by multiplying the mean with the size of spatio-temporal universe
(|S| · |T |), and similarly for the standard error.

Static Designs

Like synchronous designs, static designs can be considered as two-stage de-
signs, but the role of space and time are interchanged. The primary units
are now temporal sections at given locations, and sampling times are sec-
ondary units. The same formulas for the number of locations and times
can be used. However, now the (pooled) within-unit variance is the (space-
averaged) temporal variance at a given location, and the between-unit variance
is the variance of the temporal means over space. The cost function is now
C = c0 + c1ns + c2ntns, where c1 is the variable costs per sampling location
and c2 is the variable costs per sampling time. The remark about using more
efficient designs than Simple Random Sampling, made for synchronous de-
signs, applies to static designs as well. Just as with synchronous designs, after
some time the sample data then collected can be used as prior information in
adapting parts of the design still to be carried out.

Inference about the spatio-temporal mean (total, fraction) proceeds by first
estimating the temporal mean at each sampling location (using the method
associated with the temporal design at that location), and then estimating
the spatio-temporal mean and its standard error from these means as ‘obser-
vations’ (using the method associated with the spatial design). The spatio-
temporal total is obtained by multiplying the mean with the size of spatio-
temporal universe (|S| · |T |), and similarly for the standard error.

Static-Synchronous Designs

Due to the two-fold alignment of the sampling events, sample optimization
for static-synchronous designs is more complicated than for synchronous and
static designs. With synchronous and static designs there are two variance
components to take into account: the variance between and the (pooled) vari-
ance within primary units, i.e., spatial and temporal sections, respectively.
With static-synchronous designs it appears that there are three variance com-
ponents. Building on the early work of Quenouille (1949), Koop (1990) worked
out the sampling variance in estimating (surface) areas for different combina-
tions of two designs of point sampling in the plane, one along the X-axis and
one along the Y-axis, with or without alignment of the sampling points in
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either direction. Taking time for the Y-axis and space for the X-axis (or vice
versa), one of Koop’s designs types, ‘random sampling with alignment in both
directions’, is analogous to static-synchronous sampling with Simple Random
Sampling in both space and time. Translating Koop’s variance formula for
this type of design to estimation of the spatio-temporal mean gives, cf. Koop
(1990, eq. 3.3.5):

V
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ˆ̄z
)

=
S2(z)

n
+

(

1
nt

− 1
n

)

S2
t (z̄s) +

(

1
ns

− 1
n

)

S2
s (z̄t) , (15.8)

where S2(z) is the spatio-temporal variance of z over space and time, S2
t (z̄s)

is the variance over time of the spatial mean, and S2
s (z̄t) is the variance over

space of the temporal mean. This formula can be used for sample optimization
as follows.

1. Make prior estimates of the three variance components.
2. Make estimates of the cost components in a linear cost function such as

those mentioned under synchronous and static designs.
3. Choose relevant ranges for ns and nt and calculate for each combination

of ns and nt the expected sampling variance and costs.
4. In case of quality maximization under a given budget constraint, select

ns and nt for which the expected sampling variance is smallest and the
expected costs are still within the budget.

5. In case of costs minimization under a given quality requirement, select ns

and nt for which the expected costs is smallest and the expected sampling
variance still meets the requirement.

Estimation can be done in two steps, the order of which may be reversed.
First, for each sampling location the quantity over time is estimated from
the data at that location, using the method associated with the temporal de-
sign. Then the spatio-temporal quantity and its standard error are estimated
using these temporal values as ‘observations’, using the method associated
with the spatial design. This standard error accounts automatically for errors
due to sampling in space and sampling in time, but not for possible spatial
correlations between the estimated temporal quantities due to synchronized
sampling at the locations. This will generally lead to underestimation of the
standard error. Due to the two-fold alignment of the sampling events, there
is no unbiased estimator of the sampling variance available (Koop, 1990).
One option is to substitute posterior estimates of the variance components
in (15.8). Another possibility is to form, by random partioning, a number of
smaller static-synchronous subsamples. The variance between the means of
these subsamples could be then used as an estimate of the variance for the
original sample.
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15.2.3 Current Global Quantities

Synchronous Designs

The choice of the sampling design and the inference are as for global quantities
in space (see Sect. 7.2). The inference depends only on the current type of
spatial design. There is no overlap between the spatial samples at different
sampling times, and as a result, there is no simple way of exploiting the
information in the previous samples to estimate the current quantity. This is
a drawback of synchronous designs compared to rotational designs, which do
create such overlap, see Sect. 15.2.1.

Static-Synchronous Designs

Inference on a current global quantity, such as the spatial mean, fraction,
total or (a parameter of) the Spatial Cumulative Distribution Function at any
given sampling time, can be done by applying the appropriate method from
Sect. 7.2 on the data collected at that time. To estimate the current quantity,
only measurements taken at the current sampling time need to be used. There
is no additional information in the measurements from the previous sampling
times, because the locations coincide.

Rotational Designs

In Rotational Sampling there is partial overlap between samples of successive
sampling times, and consequently the sample of the previous sampling time
can be used in estimating a current spatial mean, fraction or total. We present
the procedure for the mean; fractions are estimated by applying the same
procedure to indicator variables, and totals are estimated by multiplying the
estimated mean and its standard error with the size of the spatial universe
(surface area in case of 2D).

To start with, two sampling times are considered. The sample of the first
sampling time is subsampled, and on the locations of this subsample the target
variable is also measured at the second sampling time. This subsample with
measurements at both sampling times is referred to as the matched sample;
the unmatched sample consists of the locations with measurements at the first
sampling time only. At the second sampling time, the target variable is also
measured on a set of new locations. The spatial mean at the second sampling
time z̄2, is estimated by the composite estimator (Cochran, 1977, p. 346)

ˆ̄z2c = ŵ1 ˆ̄z(m)
2gr + ŵ2 ˆ̄z(u)

2π , (15.9)

where ŵ1 and ŵ2 are weights summing to 1, ˆ̄z(u)
2π is the π-estimator for the

mean of z2 estimated from the unmatched sample, and ˆ̄z(m)
2gr is the Two-Phase
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Random Sampling regression estimator for the mean of z2 estimated from the
matched (remeasured) sample (see Sect. 7.2.12)

ˆ̄z(m)
2gr = ˆ̄z(m)

2π + b
(

ˆ̄z1π − ˆ̄z(m)
1π

)

, (15.10)

where ˆ̄z(m)
2π is the second sampling time mean estimated from the matched

sample, b is the estimated slope coefficient, ˆ̄z1π is the first sampling time mean
estimated from the entire first-phase sample (matched plus unmatched), and
ˆ̄z(m)
1π is the first sampling time mean estimated from the matched sample. The

estimated optimal weights ŵ1 and ŵ2 equal
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where ̂V
(

ˆ̄z(m)
2gr

)

is the estimated variance of the regression estimator, and

̂V
(

ˆ̄z(u)
2π

)

is the estimated variance of the π-estimator for the mean of z2 for
the unmatched sample. For Simple Random Sampling of n locations at both
sampling times and m matched (remeasured) locations this variance is given
by

̂V
(

ˆ̄z(m)
2gr

)

=
̂S2(e)

m
+

̂S2(z2) − ̂S2(e)
n

, (15.12)

where ̂S2(e) is the estimated variance of the residuals e = z2 − z1b, and
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. (15.13)

The variance of the composite estimator can be estimated by (Schreuder et al.,
1987):
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. (15.14)

The variance depends on the proportion of matched sampling locations. The
optimal matching proportion can be calculated with (Cochran, 1977)

m

n
=

√

1 − ρ2

1 +
√

1 − ρ2
, (15.15)

where ρ is the correlation coefficient between z1 and z2. For ρ = 0.9, 0.8 and
0.5 the optimum matching proportion equals 0.30, 0.38 and 0.48 respectively.
When ρ goes to 0, m/n approaches 0.5. Given these correlation coefficients
the gain in precision, calculated as the ratio of the variance with no match-
ing (Synchronous Sampling) and the variance with the optimum matching
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proportion, equals 1.39, 1.25 and 1.07, respectively. When the costs of remea-
suring a location are lower than the costs of measuring a new location, the
optimum matching proportion increases. When choosing a matching propor-
tion one must take care that the number of matched locations is large enough
to obtain reliable estimates of the regression coefficient and the variance of
the regression estimator, say m > 10.

With three or more sampling times, the current mean z̄0 is estimated by
substituting the composite estimator for the mean at the previous sampling
time, ˆ̄z′−1 (15.9), for the π-estimator for the previous mean, ˆ̄z1π, in the regres-
sion estimator (15.10):

ˆ̄z(m)
0gr = ˆ̄z(m)

0π + b
(

ˆ̄z−1c − ˆ̄z(m)
−1π

)

, (15.16)

and then weighting this regression estimator and the π-estimator for the
current mean inversely proportional to the variance (15.11). Cochran (1977)
shows that the optimal matching proportion increases rapidly with the sam-
pling time. For the fifth sampling time the optimal matching proportion is
close to 0.5 for a correlation coefficient ≤ 0.95.

Once the matching proportion is chosen, one can calculate the sample size
needed for a given precision (15.14). Prior estimates of the residual variance
and the variance of the target variable at the current time are needed to
calculate the weights.

15.2.4 Change of Global Quantities

Synchronous Designs

Change of the spatial mean (total, fraction) can be estimated as with static-
synchronous designs (Eq. 15.19). Because the samples taken at different times
are mutually independent, the estimated means ˆ̄z(t1) and ˆ̄z(t2) are uncorre-
lated. The sampling variance of ˆ̄d2,1 equals
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, (15.17)

which can be simply estimated by:
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)

. (15.18)

Note that, contrary to (15.20), there is no covariance-term, which makes syn-
chronous designs in general less efficient than static-synchronous designs. In
the case of classical testing, this procedure leads to the common two-sample
t-test. Change of spatial fractions and totals can be estimated in the same
way as change of spatial means.

If both sampling rounds are still to be designed, one has to decide on the
sampling design type and the sample size at both sampling times. In general
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there will be no reason for choosing different design types for the two sampling
times. Also, in general prior estimates of the spatial variance components for
the target variable will be equal for the two sampling times. In that case the
optimal ratio of sizes of the first and second sample will be 0.5. The sample size
per sampling time required to estimate the change with prescribed precision
can then be calculated by the formulas of Sect. 7.2, substituting half the
maximum allowed variance of the estimated change for the variance of the
estimated mean of the target variable.

After the first sampling time, one has new information that can be used to
redesign the sample of the second time. The estimated sampling variance of
the mean at the first sampling time can be subtracted from the variance of the
estimated change to obtain the variance of the mean at the second sampling
time. Also, estimates of the spatial variance components at the first sampling
time can be used as prior estimates to calculate the sample size needed to
meet this updated constraint on the sampling variance of the estimated mean
at the second sampling time.

Static-Synchronous Designs

The change of the spatial mean or fraction from one sampling time to the
other, d̄2,1 (15.1), can be estimated straightforwardly by

ˆ̄d2,1 = ˆ̄z(t2) − ˆ̄z(t1) . (15.19)

In static-synchronous samples, the locations of the first and the second sam-
pling time coincide. This implies that in estimating the sampling variance of
the change, a possible temporal correlation between the estimated means ˆ̄z(t1)
and ˆ̄z(t2) must be taken into account. The true sampling variance equals

V
(

ˆ̄d2,1

)

= V
(

ˆ̄z(t2)
)

+ V
(

ˆ̄z(t1)
) − 2C

(

ˆ̄z(t2), ˆ̄z(t1)
)

. (15.20)

So, the stronger (more positive) the temporal correlation between the two
estimated spatial means, the smaller the sampling variance of the change. In
general this correlation will be largest when the sampling locations at the
first and second sampling time coincide, as is the case with static designs and
nondestructive sampling. With destructive sampling, the shifts should be kept
as small as possible. Also, if a spatial trend is suspected, then the direction of
the separation vector must be randomized to avoid bias (Papritz and Flühler,
1994). A simple way to estimate the variance (15.20) is first calculating the
difference di = zi(t2) − zi(t1) at each sampling location i, and then applying
the appropriate method of inference from Sect. 7.2 to those differences. (If
change of a fraction is to be estimated, z is an indicator variable, and d can
take the values -1, 0 or 1.) In the case of classical testing, this procedure leads
to the common t-test for paired observations.

The change of a spatial total from one sampling time to the other can be
estimated by multiplying the estimated change of the spatial mean with the
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size of the target universe (area in case of 2D), and similarly for the standard
error.

The required sample size can be calculated with the formulas from Sect. 7.2,
substituting spatial variances of the differences for the spatial variances of the
target variable. From the third sampling time onwards, these variance com-
ponents can be estimated from the data of the previous sampling times.

Rotational Designs

The change of the spatial mean from the previous to the latest sampling time
can be estimated by:

ˆ̄d = ˆ̄z0c − ˆ̄z−1c , (15.21)

where ˆ̄z0c and ˆ̄z−1c are the composite estimators at the latest and the previous
sampling time, respectively (see (15.9)). An alternative, more precise but more
complicated estimator of the change is to combine two estimators of change,
one built on the matched sample and one built on the unmatched sample,
into a composite estimator with optimized weights (Schreuder et al., 1993, p.
180). Change fractions can be estimated by applying this method to indicator
variables, and change of totals are obtained by multiplying estimated change
of means with the size of the spatial universe.

15.2.5 Spatial Mean Temporal Trend

Synchronous Designs

With synchronous designs the spatial mean temporal trend (temporal trend
of spatial mean) is estimated by first estimating the spatial means at time t,
z̄(t), and then estimating the model parameter β in (15.3) and the variance
of β̂ by Weighted Least Squares fitting, with weights inversely proportional to
the variances of spatial means. The variance accounts for uncertainty about
β due to the residual term ε(t), and for uncertainty about the spatial means
due to sampling errors.

Static Designs

Compared with synchronous designs, the inference proceeds in reversed order.
First the temporal trend parameters are estimated for each sampling location
separately, then these estimates are averaged to a spatial mean, using the
method associated with the spatial design. To estimate the temporal trend of
an areal fraction static designs are inappropriate.
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Static-Synchronous Designs

To estimate the spatial mean temporal trend, first the model parameter β(s)
is estimated at all sampling locations, and then these estimates are used to
estimate the spatial mean of the model parameter, β̄. The variance of the
estimated spatial mean temporal trend can be estimated straightforwardly by
the estimators of Sect. 7.2. This variance accounts automatically for uncer-
tainty about β̄ due to sampling error, and for uncertainty about the model
parameters due to the residual term ε(s, ti), but not for spatial correlations
(due to synchronized sampling) between these two error-components.

If systematic sampling in time, i.e., sampling at constant time-intervals
is applied, then the sampling frequency to be optimized, see Fig. 15.4. For
the required number of sampling locations the formulas from Sect. 7.2 can
be used. A prior estimate of the spatial variance of the temporal trend at
locations (within the target area, strata, primary units or clusters) is needed.
The (averaged) estimation variance of the temporal trend at locations must
be added to this spatial variance, see (13.20).

Rotational Designs

Similarly to static designs, the spatial mean temporal trend can be estimated
by first estimating the temporal trend β(s) at the sampling locations, and then
estimating the spatial mean of the model parameter, β̄. However, compared
to static designs, considerable time elapses before all sampling locations have
been observed repeatedly. For instance, in the 4-period rotational sample of
Fig. 14.7 one must wait for the seventh sampling time until all locations
have been sampled three times. The alternative is to estimate the spatial
means (areal fractions, totals) first, and then the trend of the spatial mean
(areal fraction, total). With this procedure an estimate of the spatial mean
temporal trend (trend of areal fraction or total) can already be obtained
after the third sampling time. Successive estimates of the current mean (areal
faction, total) estimated by the composite estimator evidently are correlated
because measurements of the previous time are used to estimate the current
global quantity. Therefore, it is recommendable not to use the measurements
of the previous sampling time to estimate the current status of the global
quantity, i.e., use the π-estimator. Due to overlap of successive samples the
estimated global quantities at successive times still can be correlated, but this
correlation will be much less serious a problem.

15.2.6 Estimating Effects with BACI designs

Figure 15.1 shows a monitoring design composed of two independent syn-
chronous designs, one before and one after an intervention. The difference
in spatio-temporal means before and after the intervention d̄A,B can be es-
timated by estimating the two space–time means with the design-based es-
timators mentioned in the previous sections. The sampling variance of the



232 15 Global Quantities in Space–Time

Fig. 15.1. Notional example of a synchronous sample before and after an interven-
tion

estimated difference can be estimated simply by the sum of the variances
of the two estimated space–time means. As stated above, Synchronous Sam-
pling can be considered as a special case of Two-Stage Random Sampling in
space–time, using spatial sections of the universe at given times as primary
units, and sampling locations as secondary units. Assuming that the variance
within and between primary units before and after the intervention are equal,
the formulas of Sect. 7.2.5 can be used to determine the optimal number of
sampling times and sampling locations before and after the intervention.

Suppose that the target variable shows a linear trend in time due to pro-
cesses working in an area that is much larger than the area where the measures
are planned. Then one will find a difference between the space–time means
before and after the intervention which has nothing to do with the interven-
tion. To overcome this problem, one can measure the target variable at one or
more reference (control) sites, i.e., locations more or less similar to the impact
sites but outside the area with the planned measures. The target quantity is
now defined as

δ̄A,B =
1

|S × A|
∫

t∈A

∫

s∈S
δ(s,t) dsdt− 1

|S × B|
∫

t∈B

∫

s∈S
δ(s,t) dsdt , (15.22)

where δ(s, t) = z(s, t) − z̄C(t), with z̄C(t) being equal to the mean of z at
the control sites at time t. The control sites can be restricted to one or more
purposively selected locations outside the impact area. In that case the mean
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Fig. 15.2. Notional example of a synchronous sample before and after an interven-
tion, with simultaneous sampling of a control site (a BACI design)

z̄C(t) is known without error. It is convenient to measure the impact and
control sites simultaneously, because then estimating or testing the quantity
(15.22) is analogous to that of (15.7). Figure 15.2 shows an example of a
synchronous sampling pattern in the impact area, and one purposively selected
control site. One may also select the control sites randomly from a bounded
control area. In that case one can account for uncertainty in the spatial means
z̄C(t). Random sampling in the control area can be synchronized with the
sampling in the impact-area. Besides possible operational advantages, this
also leads to higher precision when the estimated spatial means at time t in
the control area and in the impact area are positively correlated.

Note that if the estimator of (15.22) differs significantly from zero, then still
one cannot conclude that this is caused by the intervention. The treatment
levels (impact versus control) are not randomly allocated to the sites as in
experimental design, and as a consequence one must be careful to interpret
the estimated target quantity as the effect of the treatment (intervention).

Underwood (1994) considers the case of a single impact location that is not
randomly selected, but predetermined by the source of the disturbance. To
introduce randomness, Underwood proposes selecting the control sites ran-
domly. However, Stewart-Oaten and Bence (2001) pointed out that in this
case the estimation of the effect of the intervention at the impact site must
be based necessarily on a geostatistical model. The measurements after the
intervention at the control sites are used to predict the target variable at the
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impact site. These predictions are used as possible values if no intervention
would have occurred at the impact site. Note that this strategy can be used
if before-measurements at the impact site are unavailable. If one does have
measurements before the intervention at the impact site, the alternative is to
describe the temporal variation at the impact site with a time-series model
and use the synchronized measurements at the control sites as covariates.

15.3 Model-Based Methods for Global Quantities in
Space–Time

15.3.1 Introduction

This section describes sampling in space and time for prediction of global
quantities (e.g., spatio-temporal means or spatio-temporal cumulative distri-
bution functions), where a model is used for statistical inference. If prior to
sampling a reasonable model can be postulated, then this model can also be
used to guide the sampling, i.e., to optimize the pattern of sampling events.
Although design-based methods generally are well suited for global quantities,
there may be reasons to prefer model-based methods. An example is where one
has prior monitoring data from purposive samples in space–time that need to
be extended with additional data. Another example is where the global target
quantity is related to a detection problem (Sect. 2.2.6).

The first two sections deal with optimization of the sampling locations at
two given sampling times. The target quantities considered are the change
of the mean between two successive sampling times (Sect. 15.3.2), and the
current mean, i.e., the mean at the latest sampling time (Sect. 15.3.3). Both
target quantities are predicted by co-kriging. The optimal patterns for the
two target quantities will generally be different.

The following two sections deal with the situation where more than two
sampling times are to be considered. In that case co-kriging becomes cum-
bersome, because a co-regionalization model for more than two co-variables
is hard to obtain. The alternative is then to postulate a relatively simple geo-
statistical model for the variation in space–time. In Sect. 15.3.4 such a model
is used to optimize the spacing and interval length of a space–time grid for
predicting the spatio-temporal mean. Sect. 15.3.5 elaborates on optimization
of the sample pattern for the current mean with this model.

Finally, Sect. 15.3.6 deals with sampling for predicting the spatial mean
temporal trend. A simple model is postulated for the residuals of the temporal
trend, which is used to optimize the spacing and interval length of a space–
time grid.

In some situations one may have knowledge about the dynamics of the
target variable, described by a process model. If this model can be used to
predict the spatio-temporal evolution of the target variable, then the predicted
spatio-temporal images can be used to direct sampling effort in space and
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time. For instance, a groundwater flow and transport model could be used to
describe the development of a contaminant plume by a series of concentration
maps that are subsequently used to determine where and when concentrations
can best be measured. Examples of the use of a process model for sampling
in space–time can be found in Meyer and Bril (1988), Cieniawski et al. (1995)
and Bierkens (2002). When a realistic process model is available, its use in
sampling is recommendable because this is likely to increase the efficiency.
The reason that we do not treat this type of model-based sampling is that it
is highly application-specific and therefore beyond the scope of this book.

15.3.2 Co-Kriging the Change of Spatial Mean

This section deals with sampling for predicting the change of the spatial mean
between two sampling times. What should be optimized are the sampling loca-
tions at these two times. The target quantity is predicted by block co-kriging.
In co-kriging the change of the mean, there is not a primary variable and a
secondary variable, but the cross-correlation between the random variable at
sampling time 1, Z(s, t1), and at sampling time 2, Z(s, t2) is used to improve
the predicted change of the spatial means.

Hereafter, we denote Z1(s) = Z(s, t1) and Z2(s) = Z(s, t2), and as-
sume that Z1(s) and Z2(s) are two second-order stationary functions with
unknown means µ1 and µ2 and with the following covariance functions:
C11(h) = Cov[Z1(s), Z1(s + h)], C22(h) = Cov[Z2(s), Z2(s + h)] and cross-
covariance function C12(h) = Cov[Z1(s), Z2(s + h)].

Here we use covariances rather than semivariances, because the estimation
of the cross-variogram requires that data at two sampling times are observed
at the same location1 (see Goovaerts, 1997).

The change of the spatial mean

D2,1 =
1
|S|

∫
s∈S

Z2(s) ds− 1
|S|

∫
s∈S

Z1(s) ds , (15.23)

is predicted by (Papritz and Flühler, 1994)

D̃2,1 =
n2∑
i=1

λ2i Z2(s2i)−
n1∑
i=1

λ1i Z1(s1i) , (15.24)

where n1 and n2 are the number of sampling locations at t1 and t2, respec-
tively. The co-kriging weights λ1i and λ2i are obtained by solving the following
sets of linear equations:
1 An alternative formulation in terms of so-called pseudo cross-variograms is possi-

ble, which is also suitable for intrinsic Stochastic Functions. This however yields
much more complicated expressions (see Papritz and Flühler, 1994).
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n1
∑

j=1

λ1j C11(s1j − s1i) −
n2
∑

j=1

λ2j C21(s2j − s1i) − ν1

= C11(S, s1i) − C21(S, s1i) i = 1, . . . , n1
n2
∑

j=1

λ2j C22(s2i − s2j) −
n1
∑

j=1

λ1j C21(s2i − s1j) − ν2

= C22(s2i,S) − C21(s2i,S) i = 1, . . . , n2
n1
∑

i=1

λ1i = 1
n2
∑

i=1

λ2i = 1 ,

(15.25)

where ν1 and ν2 are Lagrange multipliers, and where two unbiasedness
constraints are included to assure that the predictor (15.24) is unbiased.
C11(S, s1i), C21(S, s1i), C21(s2i,S) and C22(s2i,S) are point-to-block aver-
aged covariances. With C11(S,S), C21(S,S) and C22(S,S), the within-block
(S-averaged) (cross-)covariances, the variance of the prediction error (block
co-kriging variance) can be calculated as

V (˜D2,1 − D2,1) = C11(S,S) + C22(S,S) − 2C21(S,S) + ν1 + ν2

−
n1
∑

i=1

λ1i[C11(S, s1i) − C21(S, s1i)] −
n2
∑

i=1

λ2i[C22(s2i,S) − C21(s2i,S)] .

(15.26)
As can be seen from (15.26), the prediction-error variance depends only on
the sampling locations at the sampling times t2 and t1 and can thus be used
for optimization of the sampling locations. Papritz and Webster (1995) have
shown that if the observations at the two times are positively correlated, then
the prediction-error variance is minimal when the sampling locations at the
two times coincide. When sampling is destructive (e.g., soil sampling), it is
impossible to exactly sample the same location. In that case it is advisable to
sample at sampling time t2 as closely as possible to the sampling locations at
sampling time t1.

Some additional remarks about co-kriging of differences are in order. First,
if the sampling locations at the two sampling times do not coincide, then co-
kriging always yields more accurate predictions than first ordinary kriging
separately at both sampling times and then subtracting the two predicted
means. If the observations at the two sampling times coincide and the cross-
covariance structure is intrinsic, i.e., C11(h) = α C22(h) = β C12(h), where α
and β are positive real valued constants for all lags h, then co-kriging yields
the same results as kriging for each sampling time first and then obtaining
differences. The system is called ‘autokrigeable’. If the system is autokrigeable,
the kriging weights will also be the same for each sampling time. In this case,
D2,1 can simply be estimated by direct ordinary block-kriging of differences:

˜D2,1 =
ns
∑

i=1

λi [Z2(si) − Z1(si)] =
ns
∑

i=1

λi D2,1(si) , (15.27)

with λi obtained from solving the ordinary block-kriging equations (see Ap-
pendix B)
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ns
∑

j=1

λj γD(hij) + ν = γD(si,S) i = 1, . . . , ns

ns
∑

i=1

λi = 1 ,
(15.28)

with γD(hij) the variogram of D2,1, which should be estimated directly from
the differences. The block-kriging variance of the predicted mean difference is
given by:

V
(

˜D2,1 − D2,1

)

=
ns
∑

i=1

λi γD(si,S) + ν − γD(S,S) . (15.29)

In conclusion, model-based sampling for predicting the change of the mean
can be treated as a special case of model-based sampling in space because it
is optimal to sample the same locations at the two times. The pattern with
minimum block co-kriging variance (15.26) can be searched for by simulated
annealing, see Sect. 7.3.3 for further details. Optimization becomes even more
simple when an intrinsic covariance model is postulated. In that case block
co-kriging is equivalent to block-kriging the differences, and the pattern can
be optimized by minimization of the block-kriging variance of the predicted
mean difference (15.29). A simple alternative for situations where one is not
able to postulate a model for the variation in space–time, is to design a spatial
coverage sample (Sect. 8.3.3) or a regular grid (Sect. 7.3.2).

15.3.3 Co-Kriging Current Means

In co-kriging the current mean, the measurement of the target variable at the
previous sampling time is used as a secondary variable, i.e., a co-variable. The
current mean is predicted by the ordinary block co-kriging predictor:

˜Z2 =
n2
∑

i=1

λ2i Z2(s2i) +
n1
∑

i=1

λ1i Z1(s1i) , (15.30)

The co-kriging weights λ1i and λ2i are obtained by solving the following
sets of linear equations:

n2
∑

j=1

λ2j C22(s2i − s2j) +
n1
∑

j=1

λ1j C21(s2i − s1j) + ν1

= C22(s2i,S) i = 1, . . . , n2
n2
∑

j=1

λ2j C12(s1i − s2j) +
n1
∑

j=1

λ1j C11(s1i − s1j) + ν2

= C12(s1i,S) i = 1, . . . , n1
n2
∑

j=1

λ2j = 1
n1
∑

j=1

λ1j = 0 ,

(15.31)

Finally, the block co-kriging variance of the predicted current mean equals
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V
(

˜Z2

)

= C22(S,S) − ν1

−
n2
∑

i=1

λ2iC22(s2i,S) −
n1
∑

i=1

λ1iC12(s1i,S) .
(15.32)

The optimal sampling pattern for the current mean may differ from the
change of the mean. Whereas for the change of mean it is optimal to sample
the same locations at the two times, for the current mean this will be opti-
mal only when the spatial autocorrelation strongly dominates the temporal
autocorrelation.

In the reverse case, it is optimal to sample at time t2 at locations farthest
from those at time t1. This is because at these intermediate locations one has
the least information on the current values, whereas at or near to a location
sampled at t1 a more precise estimate of the current value could be obtained
with the observation at time t1. In this case a simple solution is two interpene-
trating grids, one for each sampling time. An alternative for irregularly shaped
areas is to optimize the locations at time t2 with k-means using the locations
of time t1 as prior locations, leading to a spatial infill sample (Sect. 8.3.3).

If neither the temporal nor the spatial autocorrelation is dominant, then
the pattern of the locations might be optimized with simulated annealing,
using the locations at the previous sampling time as prior data. The quality
measure to be minimized is the block co-kriging variance of the predicted
current mean.

15.3.4 Space–Time Kriging the Spatio-Temporal Mean

This section deals with the design of a space–time sample for the whole moni-
toring period, to predict the spatio-temporal mean. The sampling pattern will
be optimized for the space–time block-kriging predictor.

Space–time kriging is a simple extension to spatial kriging, treating time
as an extra dimension (e.g., Heuvelink et al., 1997). The spatio-temporal vari-
ation is modelled with a Stochastic Function Z(s, t), s ∈ S and t ∈ T , which
is assumed to be second-order stationary in both space and time. We model
the space–time semivariance between Z(si, ti) and Z(sj , tj) with the follow-
ing variogram model, assuming isotropy in space and space–time geometric
anisotropy (see Heuvelink et al., 1997):

γ(ui,uj) = γ(si−sj , ti − tj) = γ(hij , τij) = γ

⎛

⎝

√

|hij |2
a2
s

+
τ2
ij

a2
t

⎞

⎠ , (15.33)

with |hij | = |si − sj | and τij = |ti − tj | the Euclidian distances in space and
time, respectively, and as and at the variogram range parameters in space
and time, respectively. The target quantity is the spatio-temporal mean ZU
of Z(s, t) over U (15.4).

If the mean value µ = E[Z(u)] is not known, ZU can be predicted with
ordinary block-kriging:
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˜ZU =
n

∑

i=1

λi Z(ui) , (15.34)

where the weights λi are obtained by solving the following set of equations

n
∑

j=1

λj γ(ui,uj) + ν = γ(ui,U) i = 1, . . . , n

n
∑

i=1

λi = 1

(15.35)

and the variance of the prediction error is given by

V [˜ZU − ZU ] = σ2
obk =

n
∑

i=1

λi γ(ui,U) + ν − γ(U ,U) , (15.36)

with
γ(ui,U) =

1
|U|

∫

u∈U
γ(ui,u) du (15.37)

γ(U ,U) =
1

|U|2
∫

u2∈U

∫

u1∈U
γ(u1,u2) du1 du2 . (15.38)

In practice, the integrals (15.37) and (15.38) are approximated by discretizing
U with a grid and averaging semivariances between locations on the grid (see
Appendix B). The prediction-error variance (15.36) can be used as a quality
measure to be minimized through sampling. It can be seen that this depends
only on the projected n sampling locations. Thus, it can be used for sample
optimization when new sampling locations are projected.

A simple and practical type of sampling pattern for space–time kriging
the spatio-temporal mean is a space–time grid. The trade-off between the
sampling effort in space and in time, and the effect of grid spacing and the
interval length on the prediction-error variance will be evaluated for a square
grid pattern in space, in a block-shaped universe S × T .

From analysis of the prediction-error variance (15.36) it follows that for
grid sampling the ratio σ2

obk/σ2 with σ2 = V [Z(s, t)] can be represented by
the following function r(·):

σ2
obk

σ2
= r

(

ns, nt,
as

√|S| ,
at

|T |

)

, (15.39)

where ns and nt are the number of sampling locations and sampling times,
respectively. Figure 15.3 shows isolines of the ratio σ2

obk/σ2 as a function of
ns and nt for as/

√|S| = 1 and at/|T | = 1, using a spherical model (with zero
nugget) for the variogram (see Appendix B). Appendix D shows similar figures
for other combinations of a2

s/
√|S| and at/|T |. These figures can be used to

determine the required grid spacing and interval length for grid sampling in
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Fig. 15.3. Sampling on a centred space–time grid (square grid pattern in space) for
predicting the spatio-temporal mean by space–time kriging. The figure shows the
variance ratio σ2

obk/σ2 for as/
p
|S| = 1 and at/|T | = 1 as a function of the number

of sampling locations ns and sampling times nt. Figures for other combinations of
as/

p
|S| and at/|T | are given in Appendix D.

space and time, given values of area |S|, length of monitoring period |T | and
the statistical parameters σ2, as and at.

Suppose that the aim is to predict the spatio-temporal mean for a block-
shaped universe, square in space, and that a variance reduction of 90 per-
cent is required, i.e., σ2

obk/σ2 = 0.1. Further, suppose that as/
√
|S| = 1 and

at/|T | = 1, so that we can use Fig. 15.3. One possible combination of sam-
ple sizes in space and time is log(

√
ns) = 0.47 and log(nt) = 0.82. Rounding

fractions upwards to integers, this leads to 9 sampling locations and 7 sam-
pling times. Alternatively, one could choose the combination log(

√
ns) = 0.70

and log(nt) = 0.40, leading to 25 sampling locations and 3 sampling times.
The number of sampling events is 63 for the first combination and 75 for the
second. To determine which combination is preferable, a costs model can be
used. If the total costs of sampling (c) is dominated by the costs per event
(co), for instance due to lengthy observation times or an expensive method of
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determination, then the total sample size is leading. This implies that taking
a number of observations in space at a single time costs the same as taking
the same number of observations at a single location at multiple times, i.e.,
c = nsntco. Given this costs model, the first combination is least expensive
and therefore preferable.

Repeated sampling is often more expensive than taking the same number
of observations in one sampling round. A linear costs model accounting for this
effect is c = nsntco+ntct, where ct is the fixed costs per sampling round. Given
a required variance reduction, the optimal combination can be determined by
evaluating this cost function for all combinations on the corresponding isoline
in Fig. 15.3, and selecting the least expensive combination.

Alternatively, for quality optimization the aim is to find the sample size
combination that results in the smallest prediction error variance for a given
budget B, i.e., nsntco + ntct ≤ B. In this case the optimal combination can
be found by plotting the line nsntco + ntct = B in Fig. 15.3. The point on
this line for which the variance ratio is minimal is the optimal combination.

Figures D.1 to D.4 in Appendix D show that if as/
√|S| and at/|T | are

similar in magnitude, then the lines run roughly diagonal with a slope of ap-
proximately -2. Note that if we would have plotted log(ns) instead of log(

√
ns)

the slope would have been -1, indicating that the effect on the prediction error
variance of adding one sampling location with nt observations is equal to the
effect of adding one sampling time at which ns = nt locations are observed.
In case as/

√|S| � at/|T |, the lines run roughly vertical (bottom diagrams
in Fig. D.1), showing that much more can be gained by adding sampling lo-
cations, while for as/

√|S| � at/|T | (upper left diagram in Fig. D.4) adding
sampling times is much more efficient.

Although Figs. D.1 to D.4 are based on a square area, these figures can
also be used to obtain rough estimates for irregularly shaped areas. Note that
for such areas the number of sampling locations is not restricted to squares
of integers (4, 9, 16, 25 etc.), but can be any integer. For irregularly shaped
areas a regular grid can be too restrictive. Alternatives are a spatial coverage
pattern type (Sect. 8.3.3) or a geostatistical pattern type (Sect. 8.3.4).

Figures D.1 to D.4 are based on variograms without nugget. For vari-
ograms with nugget a different set of figures is required. First, substituting
part of the structured variance by unstructured variance (nugget variance)
leads to smaller variance ratios σ2

obk/σ2. The larger the nugget-to-sill ratio,
the smaller the ratio σ2

obk/σ2, i.e., the stronger the variance reduction. This
implies that less observations are required to achieve the same variance re-
duction as depicted in these figures.

Second, it turns out that the nugget has an effect on the optimal sample-
size combination, i.e., the optimal grid spacing and interval length. The larger
the nugget-to-sill ratio, the smaller the difference between the number of sam-
pling locations per spatial correlation length and the number of sampling times
per temporal correlation length.
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In case the universe S × T is irregular or observations have already been
made, other spatial patterns such as those of spatial coverage samples may
be preferable. Even a different type of space–time pattern, such as interpene-
trating space–time grids, could be in order.

A standard reference in model-based sampling design for spatio-temporal
means is the paper by Rodŕıguez-Iturbe and Méıja (1974) on the design of
rainfall networks. Here, the target is the long term spatial mean (|T | → ∞)
and the sampling is exhaustive in time (rainfall is measured as cumulative
amounts) such that the length of the monitoring period and the number of
rain gauges are the variables to be optimized.

15.3.5 Space–Time Kriging Current Means

The previous section treats the design of space–time samples for the whole
monitoring period, simultaneously for all sampling times. This section deals
with the situation where a spatial sample is designed for the next sampling
time only, in other words spatial samples are designed sequentially.

As with co-kriging, static-synchronous patterns such as space–time grids
is a good choice only when the spatial autocorrelation strongly dominates the
temporal autocorrelation. In this case the sampling problem can be treated
as one of sampling in space, see Sect. 7.3.

In the reverse case, there are two simple solutions. The first solution is an
interpenetrating space–time grid. The required spacing of the grids at each
sampling time might be approximated by calculating the space–time block-
kriging variance for a range of grid spacings. The second solution is to design
a spatial infill sample with k-means, using the locations of all sampling times
that are temporally autocorrelated as prior locations (Sect. 8.3.3).

If neither the temporal nor the spatial autocorrelation is dominant, then
the pattern of the locations might be optimized with simulated annealing,
using the previous sampling events as prior data. The quality measure to be
minimized is the block-kriging variance of the predicted current mean.

15.3.6 Kriging the Spatial Mean Temporal Trend

A question such as ‘has the surface temperature increased over the last 30
years?’ is quite common in environmental research. Usually such a question
has to be answered based on a small number of time series of the variable
involved (e.g. temperature) scattered around the area of interest. If the time
series are long enough it is possible to estimate a trend at each sampling
location, see Sect. 13.4.1. Of course, the magnitude and sign of the trend may
be different at different locations, so that the question whether the average
temperature has increased in a certain area cannot be answered by looking
at time series only. The real question to be answered is therefore whether the
spatial mean of the temporal trend in temperature is positive and significantly
different from zero. Consequently, the goal of this section is sampling for
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predicting spatial mean temporal trends. A general space–time model for this
purpose has been developed by Sølna and Switzer (1996). Here we will use a
much simpler model for designing a sample in space–time.

This model has the following form:

Z(s, t) = α(s) + β(s) · (t − t0) + ε(s, t) , (15.40)

where α(s) and β(s) are level and trend coefficients respectively, that are
Stochastic Functions of location in space and, for a given location s, parame-
ters in time, t0 is the initial time and ε(s, t) is a zero-mean residual which is
assumed to have the following properties:

E[ε(s1, t1) · ε(s2, t2)] =
{

σ2
ε exp(−|t2 − t1|/at) if s1 = s2

0 if s1 �= s2
(15.41)

In words, we assume that the residuals are correlated in time, but are uncor-
related in space.

Equation (15.40) can be reformulated in matrix–vector form as:

z(s) =

⎡

⎢

⎢

⎢

⎣

z(s, t1)
z(s, t2)

...
z(s, tnt)

⎤

⎥

⎥

⎥

⎦

β(s) =
[

α(s)
β(s)

]

T(s) =

⎡

⎢

⎢

⎢

⎣

1 t1 − t0
1 t2 − t0
...

...
1 tnt − t0

⎤

⎥

⎥

⎥

⎦

ε(s) =

⎡

⎢

⎢

⎢

⎣

ε(s, t1)
ε(s, t2)

...
ε(s, tnt)

⎤

⎥

⎥

⎥

⎦

,

so that
z(s) = T(s) · β(s) + ε(s) . (15.42)

Using (15.41) the covariance matrix C(s) = ε(s) ·ε(s)′ can be constructed.
With the help of this covariance matrix and the above matrix–vector defi-
nitions the Generalized Least Squares estimate of β(s) can be obtained as
(Cressie, 1993):

̂β(s) =
[

T′(s) · C−1(s) · T(s)
]−1 · T′(s) · z(s) , (15.43)

and the estimation covariance matrix as

V[̂β(s)] =
[

T′(s) · C−1(s) · T(s)
]−1

. (15.44)

From application of (15.43) and (15.44) to all ns locations one obtains esti-
mates of trends ̂β(si) and the variances of the estimation errors V [̂β(si)].

Next, the spatial average β can be predicted using block-kriging of the
̂β(si), where the estimation errors ̂β(si) − β(si) of the temporal estimation
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problem are now treated as ‘observation’ errors in a spatial context. Thus,
ordinary block-kriging with uncertain data is used (de Marsily, 1986). The
prediction and prediction-error variance have the same form as with the reg-
ular ordinary kriging system:

˜β =
ns
∑

i=1

λi
̂β(si) (15.45)

V
(

˜β − β
)

=
ns
∑

i=1

λi γβ(si,S) + ν − γβ(U , U) , (15.46)

but the normal equations to obtain the weights and the value of the Lagrange
multiplier have additional terms containing the estimation variances: V [̂β(si)]:

ns
∑

j=1

λj γβ(hij) − λiV [̂β(si)] + ν = γβ(si,S) i = 1, . . . , ns

ns
∑

i=1

λi = 1

(15.47)

The function γβ(hij) is the variogram of the real trend coefficients β. Of
course this is unknown. What can be estimated from the estimates ̂β(si) at
the sampling locations is the variogram γ

bβ(hij). An approximation of the true
variogram γβ(hij) may be obtained as follows (nti is the number of sampling
times at sampling location i; the sampling interval length is assumed to be
constant and equal for all sampling locations):

γβ(hij) ≈ γ
bβ(hij) −

ns
∑

i=1

ntiV [̂β(si)]

ns
∑

i=1

nti

. (15.48)

In practice, the prediction of the spatial mean temporal trend consists of the
following steps:

1. perform a Generalized Least Squares estimate of the trend parameter at
each location with a time series. This entails:
a) start with an Ordinary Least Squares regression of α + β(t − t0) to

the time series;
b) calculate the residuals εt;
c) estimate the covariance of the residuals (using the variogram estimator

if observations are not equally spaced in time; see Chap. 9);
d) fit relation (15.41) to the estimated covariance function;
e) build the covariance matrix C with (15.42) and perform the General-

ized Least Squares estimate with (15.43);
f) repeat steps b to e until the estimate ̂β(si) converges;
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g) evaluate (15.44) to obtain the estimation variance V [̂β(si)];
2. estimate the variogram γ

bβ(si − sj) from the estimated trend coefficients
̂β(si) at the locations and fit a permissible variogram function (see
Chap. 9);

3. approximate the true variogram γβ(hij) with (15.48), making sure that
γβ(hij) is positive for all lags;

4. solve (15.47) and evaluate (15.45) and (15.46) to obtain the prediction ˜β

and the prediction error variance V (˜β − β).

The prediction and the prediction-error variance can then be used to calculate
a prediction interval for the spatial mean temporal trend β. Assuming nor-

mality and a confidence level of 0.95, the interval equals ˜β ± 1.96
√

V (˜β − β).
If this interval does not include zero, one can conclude that a spatial mean
temporal trend exists.

In this context, the smallest relevant trend βmin that can still be detected,
can be used to assess the sample size needed. To this end, a quality requirement
related to the half-width of the 95% prediction interval can be used:

V (˜β − β) ≤
(

βmin

1.96

)2

. (15.49)

The sampling problem is then to assess the required length of the time series,
and the number and locations of these time series to make sure that the quality
requirement (15.49) is met.

In the following we consider the case of sampling on a space–time grid,
with a square grid pattern in space. Some figures are presented that can
be used to determine the optimal interval length and grid spacing required
to estimate the spatial mean temporal trend with prescribed precision. The
assumptions are that the temporal covariance parameters in (15.41) are equal
for all locations, and that the variogram γβ(hij) is of spherical form with
zero nugget. Given these assumptions, the parameters that must be known
are: length of the time series |T |, size of the area |S|, temporal covariance
parameters σ2

ε and at and semivariance parameters σ2
β and as.

Figure 15.4 shows the relation between the ratio V (̂β)|T |2/σ2
ε and the

number of sampling times nt, for several ratios at/|T |. Note that the trend
estimation variance has been normalized both by the residual variance as well
as by the length of the monitoring period to obtain a dimensionless parameter.
Given the residual variance σ2

ε and the length of monitoring period |T |, the
estimation variance V (̂β) decreases with the number of sampling times nt. The
smaller temporal autocorrelation length, the stronger this sampling-frequency
effect is. Figure 15.5 shows isolines of the variance ratio V (˜β − β)/σ2

β for
combinations of the ratio V (̂β)/σ2

β and the number of sampling locations ns,
for as/

√|S| = 0.1, 0.5, 1.0, 2.0 (σ2
β is the sill of the variogram of the real
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Fig. 15.4. Systematic sampling for estimating the temporal trend at a given location
with Generalized Least Squares, assuming an exponential temporal covariance of the
residuals. The figure shows the relationship between the dimensionless estimation
variance V (bβ)|T |2/σ2

ε and the number of sampling times nt, for five ratios at/|T |.

trend coefficient). Figures 15.4 and 15.5 can be used to evaluate the effect of
the number of sampling times and the number of sampling locations on the
prediction-error variance V (β̃−β). First, for a proposed nt the value of V (β̂)
is determined from Fig. 15.4. Next, using the value of V (β̂) to determine the

ratio V (β̂)/σ2
β , the variance ratio V (β̃ − β)/σ2

β , and thus V (β̃ − β) can be
obtained from Fig. 15.5 for a given number of sampling locations ns. This
way, combinations of numbers of sampling locations and sampling times can
be sought that are in accordance with quality requirement (15.49).

Although space–time grids clearly have operational advantages, we would
like to stress that for predicting spatial mean temporal trend this type of
pattern will not always be optimal. In situations with a large temporal range
of the variogram of the residuals, an r-period synchronous pattern may be
more efficient.

The assumption that the spatio-temporal residual ε(s, t) is spatially in-
dependent, leading to spatially independent estimation errors β̂(s) − β(s) is
rather strong. However, it leads to relatively simple equations and is therefore
suitable for sampling design. If, after data have been collected, it turns out
that these assumptions are not supported by the data, then a more general
model for inference and prediction may be in order. One option is the statisti-
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cal space–time model and prediction method described by Sølna and Switzer
(1996).

A special case of a temporal trend is a step trend, a sudden change in the
model mean due to an intervention, see Sect. 13.4.1. If one wants to account for
changes in the model mean not related to the intervention, then one may also
sample synchronously one or more purposively selected control sites outside
the intervention area, and postulate a time model for the pairwise differences
between the impact and control sites, see Sect. 15.2.6.
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Fig. 15.5. Sampling on a centred space–time grid (square grid pattern in space) for
predicting the spatial mean temporal trend by kriging with uncertain data, assuming

a spherical spatial covariance model. The figure shows the ratio V (bβ − β)/σ2
β as a

function of the ratio V (bβ)/σ2
β and the number of sampling locations ns, for four

different ratios as/
p
|S|.
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Local Quantities in Space–Time

16.1 Introduction to Methods for Local Quantities in
Space–Time

With local quantities we mean the target variable at multiple locations or
blocks and at multiple time steps or time intervals. Typical goals in this con-
text are spatio-temporal mapping, i.e., mapping some variable over the entire
space–time universe, and updating (spatial) maps. We make this distinction
because it leads to different sampling problems. For spatio-temporal mapping
a space–time sample is designed for the whole monitoring period, whereas in
updating maps a spatial sample is designed for the next sampling time only,
in other words spatial samples are designed sequentially.

In most of the literature on spatio-temporal mapping and updating maps
model-based methods are used. Application of design-based methods for local
space–time quantities seem to be rare in natural resource monitoring. Design-
based methods come into scope when one has few domains, and as a result
the number of sampling events per domain is considerable, and validity of
results is important, as in regulatory monitoring. Examples are estimation of
spatio-temporal means, totals or fractions for a limited number of sub-areas
and no subdivision of the monitoring period, and estimation of the spatial
mean temporal trend for several sub-areas.

When the domains are known at the beginning of the monitoring and one
can afford a reasonable sample size for each domain, we recommend to sample
each domain separately and independently, i.e., the domains are used as strata
in stratified random sampling. Thus one can control the sample sizes, and
one can choose for each stratum a suitable basic design type for monitoring
(static, synchronous or rotational design), along with suitable partial designs
for sampling in space and sampling in time. We refer to Sect. 14.1 for deciding
on the basic design types for monitoring, and Sect. 7.2.2 for deciding on the
spatial design. For sampling in time we refer to Part III.

When there are numerous domains, independent sampling of all the do-
mains may be too costly. Also, sometimes it is impossible to delineate the
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domains simply because one does not know where they are. When it is im-
practical or impossible to single out the domains as strata, one may select a
sample from the total space–time universum, independent from any division
into domains. The sample data are then sorted afterwards according to the
domains in which the sampling events happen to fall. The sample sizes of the
domains are random rather than controlled at the selection stage. For estima-
tors for the mean and its sampling variance we refer to Sect. 8.2.2 (subsection
‘Sampling Across Large Sub-Areas’). If one has only a few sampling events
per domain, one might think of design-based estimators that use observations
in similar domains, such as the synthetic estimator and the generalized regres-
sion estimator for small domains, see Sect. 8.2.2 (subsection ‘Sampling Across
Small Sub-Areas’).

16.2 Model-Based Methods for Local Quantities in
Space–Time

16.2.1 Introduction

As stated in Sect. 16.1, two primary goals are treated: space–time mapping and
mapping current values. With regard to the model, two different approaches
can be distinguished: the geostatistical and the data assimilation approach.
For both modelling approaches, a relatively simple exponent is used in design-
ing samples for the two goals. This leads to four combinations of goals and
modelling approaches, treated in separate sections.

The geostatistical approach is conceptually simple and therefore seems at-
tractive. However, since most environmental variables show trends, periodicity
or changing spatial variation with time, a stationary Stochastic Function is
often a poor model for environmental variables, making ordinary and simple
space–time kriging of limited use.

The inclusion of temporal trends in space–time kriging has resulted in
many complicated space–time models, with separate procedures for trend es-
timation and the prediction of residuals (e.g., Rouhani and Hall, 1989; Angulo
et al., 1998). However, apart from being complicated, such models are difficult
to infer from limited data and they are not always realistic. A further prob-
lem with such space–time models is that they do not take explicit account
of direction and causality in time. For instance, Snepvangers et al. (2003)
found, while mapping soil moisture content with space–time kriging, that the
predicted moisture content had started to rise before the actual rainfall event
occurred. Thus, space–time models using the autoregressive nature of time se-
ries (Wikle and Royle, 1999) and exogenous variables such as precipitation to
explain variation and trend (Knotters and Bierkens, 2001) are more suitable
for modelling space–time phenomena. Also, such models often have a simpler
structure.
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If there exists a dynamic-mechanistic model (e.g. a partial differential
equation) to describe the spatio-temporal variation of an environmental vari-
able, it is advisable to use the model in the sampling problem. One way is to
describe the principal spatio-temporal variation (say the trend) with a mecha-
nistic model and to predict the residuals with kriging. Another way is to merge
observations and results of the mechanistic model in a physically consistent
manner, making sure that can the predictions obey certain physical laws. Such
methods are called data assimilation methods. One of these methods, called
the ‘Kalman filter’ is treated in Sect. 16.2.4.

An overview of geostatistical and data-assimilation methods is provided
in Sect. 16.2.6.

16.2.2 Space–Time Kriging the Space–Time Map

Space–time kriging is a extension to spatial kriging where time is simply
treated as an extra dimension. Good examples of this technique are given
by Rouhani and Hall (1989) and Heuvelink et al. (1997). Recent advances
in space–time kriging can for instance be found in De Cesare et al. (2001);
Gneiting (2002); Myers (2002); De Iaco et al. (2003); Hartfield and Gunst
(2003); Huerta et al. (2004) and Lophaven et al. (2004). Let us assume that
the target quantity is the value of some target variable z, varying in a spatio-
temporal universe U . The unknown spatio-temporal variation is modelled with
a Stochastic Function Z(u), which is assumed to be second-order stationary in
both space and time. We model the space–time semivariance between Z(ui)
and Z(uj) with the following variogram model, assuming isotropy in space
and space–time geometric anisotropy (see Heuvelink et al., 1997):

γ(ui,uj) = γ(si − sj , ti − tj) = γ(h, τ) = γ

(
√

|h|2
a2
s

+
τ2

a2
t

)

, (16.1)

with |hij| = |si − sj | and τ = |ti − tj | the Euclidean distances in space and
time, respectively, and as and at the range parameters in space and time,
respectively. If the mean value µ = E[Z(u)] is not known, Z(s0, t0) at space–
time coordinate (s0, t0) can be predicted by ordinary kriging as a weighted
mean of the sample data:

˜Z(s0, t0) =
n

∑

i=1

λi Z(si, ti) , (16.2)

where the weights λi are obtained by solving the following set of equations
n
∑

j=1

λj γ(si − sj , ti − tj) + ν = γ(si − s0, ti − t0) i = 1, . . . , n

n
∑

i=1

λi = 1 ,

(16.3)
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and the variance of the prediction error is given by

V [ ˜Z(s0, t0) − Z(s0, t0)] = σ2
ok =

n
∑

i=1

λi γ(si − s0, ti − t0) + ν . (16.4)

If predictions are to be made on a grid of size N in space–time with coordinates
uk (k = 1, . . . , N), to make spatio-temporal maps, then a possible quality
measure to minimize with regard to the sampling events ui (i = 1, . . . , n) is
given by:

J [(ui), i = 1, . . . , n] = σ2
ok =

1
N

N
∑

k=1

V [ ˜Z(uk) − Z(uk)] . (16.5)

It can be seen from combining (16.4) and (16.5) that the quality measure
depends only on the coordinates of the n sampling events.

With regard to the type of sampling pattern for space–time mapping, we
recommend to first consider a space–time grid. This is a practical type of
pattern when the installation costs of sample plots are high. If the budget is
given, and one can derive from this the total sample size, then still one must
decide on the grid spacing (number of locations) and the sampling interval
length (number of sampling times).

Figures 16.1 and 16.2 show the effect of the grid spacing and interval length
on the kriging variance for ordinary space–time kriging. The distances between
sampling events on the grid in space ∆s and time ∆t were varied relative to
the correlation scales. This was achieved by changing the variogram ranges
as and at of a spherical variogram of form (16.1), which has the same effect
as changing ∆s and ∆t while keeping the ranges constant. We calculated,
for various combinations of ∆s/as and ∆t/at, the average prediction-error
variance σ2

ok (16.5) for a block-shaped spatio-temporal universe discretized
with 10× 10× 10 = 1000 grid nodes and a distance of 10 grid nodes between
sampling events (so the spatio-temporal universe is bordered by 8 sampling
events). The universe for which σ2

ok was calculated was placed in the centre
of a larger spatio-temporal universe of 30 × 30 × 30 = 27000 grid nodes with
the same sampling density (i.e., a total of 64 sampling events) to avoid edge
effects in the calculation of σ2

ok. Figure 16.1 shows for ∆s/as = ∆t/at = 1 the
spatial variation of σ2

ok/σ2 (with σ2 = V [Z(s, t)]) for the large universe at two
time steps, at a sampling time and between sampling times, and the temporal
variation at two locations, one close to a sampling location and one further
away. The effect of observations reducing the uncertainty in both space and
time is clearly visible. Figure 16.2 shows isolines of the average variance ratio
σ2

ok/σ2 as a function of the ratios ∆s/as and ∆t/at. This figure clearly shows
the trade-off between sampling in time and space.

The spatio-temporal variogram or covariance function deserves some fur-
ther attention. A variogram like (16.1) may be difficult to infer from the
available space–time data, when sampling has been dense in time and sparse
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Fig. 16.1. Spatial variation of the space–time ordinary kriging variance-ratio σ2
ok/σ2

at a sampling time (upper left) and between sampling times (upper right), and time
series of the space–time ordinary kriging variance-ratio σ2

ok/σ2 at a sampling location
and between sampling locations; ∆s/as = ∆t/at = 1

in space (e.g., time series at a few locations). For this reason, a so-called sepa-
rable covariance model is often adopted. This means that Z(s, t) is thought to
consist of either the sum or the product of a purely spatial and a purely tem-
poral Stochastic Function, which are assumed to be mutually independent.
This yield the following two covariance models:

C(h, τ) = Cs(h) + Ct(τ) , (16.6)

C(h, τ) = Cs(h) · Ct(τ) . (16.7)

The advantage of such a model is that the data can be averaged over time
first to obtain the spatial covariance function, and vice versa. However, the
additive model (16.6) in particular, is problematic. First, as explained by
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Fig. 16.2. Average variance ratio σ2
ok/σ2 for sampling on a space–time grid and

space–time ordinary kriging, as a function of the ratios ∆s/as and ∆t/at

Rouhani and Myers (1990) and Heuvelink et al. (1997), this model leads to
singularity problems in the case of Grid Sampling in space–time. Second,
Heuvelink et al. (1997) also point out that this model leads to unrealistic
spatio-temporal variation, involving time series at different locations varying
completely parallel in time; a spatial image that does not change its form
with time but only changes its mean level. Myers (2002) also works with
combinations of (16.6) and (16.7), leading to more realistic results. Rodŕıguez-
Iturbe and Méıja (1974) use the following form of (16.7):

C(h, τ) = σ2 · ρs(h) · ρt(τ) . (16.8)

This is a convenient model, but care should be taken when such a model
is used with Grid Sampling, since both ρs(h) and ρt(τ) are represented by
single covariance models (instead of, e.g., a linear combination of two or more
models, see Appendix B). If observations are made at fixed time steps, simple
space–time kriging is equivalent to co-kriging, using every time slice as a
covariable (Bogaert, 1996). If all locations have been observed at all time slices
(a case in co-kriging called ‘isotopy’), and ρs(h) and ρt(τ) are represented by
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single covariance models (called ‘intrinsic correlation’ in co-kriging), then the
entire prediction problem is ‘autokrigeable’ (Wackernagel, 1994). This means
that co-kriging, and therefore also space–time kriging, yield exactly the same
results as spatial kriging of every time slice separately, and no use is made of
the temporal correlation to improve predictions.

Similar to sampling in space, there may be prior sample data from locations
that do not match with the grid. In that case one might prefer a spatial
coverage pattern for the sampling locations. Another possible reason for using
this type of pattern is an irregular shape of the area. Again one must decide
on the sampling density in space and sampling frequency. The diagrams in
Appendix D can also be used to approximate these sample characteristics.

16.2.3 Space–Time Kriging Current Maps

The previous section treats the design of space–time samples for the whole
monitoring period, simultaneously for all sampling times. This section deals
with the situation where a spatial sample is designed for the next sampling
time only, in other words spatial samples are designed sequentially.

Static-synchronous patterns such as space–time grids are a good option
only when the spatial autocorrelation strongly dominates the temporal au-
tocorrelation. In this case the sampling problem can be treated as one of
sampling in space, see Sect. 8.3.

In the reverse case, there are two simple solutions. The first solution is an
interpenetrating space–time grid. The required spacing of the grids at each
sampling time might be approximated by calculating the average or maxi-
mum space–time kriging variance for a range of grid spacings. This average or
maximum is calculated over the space domain only. The second solution is to
design a spatial infill sample with k-means, using the locations of all sampling
times that are temporally autocorrelated as prior locations (Sect. 8.3.3).

If neither the temporal nor the spatial autocorrelation is dominant, then
the pattern of the locations might be optimized with simulated annealing,
using the previous sampling events as prior data. The quality measure to be
minimized is again the average or maximum space–time kriging variance over
the space domain.

If temporal autocorrelation is weak, and consequently it does not pay to
use the data of the second-last and earlier sample times to predict the current
values, then co-kriging current maps can be a good alternative to space–time
kriging. We refer to Sect. 15.3.3 for optimization of sample patterns with
co-kriging. For the point co-kriging equations we refer to Goovaerts (1997).

16.2.4 Kalman Filtering the Space–Time Map

Kalman filtering is a method for optimal prediction of dynamic (temporally
varying) linear stochastic systems. If a dynamic model can be cast into a linear
state–space formulation and the error sources of the model can be identified,
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Kalman filtering can be used to predict the model’s output variables using ob-
servations. As will be shown in this section, the Kalman filter can also be used
for prediction in space and time, especially if the spatio-temporal variation
of the target variable is described by a partial differential equation. Merg-
ing observations and model predictions from partial-differential equations is
referred to as ‘data-assimilation’, a term first coined in the meteorological
and oceanographical literature. The Kalman filter is one particular form of
data-assimilation as is further explained in Sect. 16.2.6. Here, the space–time
Kalman filter is explained using an example from groundwater hydrology.

First a rather extensive description of the Kalman filter is given. After
that we describe how the Kalman filter can be used in space–time sampling
problems. Two sampling goals are treated: 1) optimizing a static synchronous
design (space-time grid) for space-time mapping; 2) optimizing a synchronous
dynamic design for predicting current values.

The example described here is partly based on the work of van Geer et al.
(1991) and Zhou et al. (1991). The target quantity is the hydraulic head
h (water table elevation with respect to some reference level) at a location
s ∈ S ⊂ R

2 and a time t ∈ T ⊂ R. The spatio-temporal variation is modelled
with a Stochastic Function H(s, t) as follows.

Groundwater head h(s, t) for two-dimensional flow in a (semi-)confined
aquifer is described with the following partial-differential equation:

S(s)
∂h

∂t
= ∇. [T(s)∇h(s, t)] + Q(s, t) , (16.9)

where S is the storage coefficient [T], T a matrix (tensor) with transmis-
sivities [L2T−1] whose elements Tij relate the flow in direction i to a head
gradient in direction j, and Q [LT−1] is a source/sink term representing,
for instance, groundwater withdrawal and groundwater recharge. As can be
seen, S and T may vary in space and Q may vary in both space and
time. In practice, a partial-differential equation like (16.9) is solved nu-
merically using finite difference or finite element algorithms. In both cases,
h(s, t) is solved at a finite number of locations and time steps discretizing
S × T : h(si, tk), i = 1, . . . , N, k = 1, . . . ,K. After numerical approxima-
tion of (16.9) it is possible to write h(si, tk), i = 1, . . . , N in a matrix–vector
(state–space) formulation:

hk = Ak hk−1 + Bk uk , (16.10)

where hk = (h(s1, tk), . . . , h(sN , tk))′ are the groundwater heads at time step
k at the nodes discretizing the universe, uk is a vector containing all source
terms and boundary conditions and Ak and Bk are matrices whose elements
depend on the space and time discretization, the storage coefficients and the
transmissivities (note that if the time and space discretization are fixed, Ak =
A and Bk = B are constant too).

The Stochastic Function is now defined for the discretized universe only
by adding a noise vector to (16.10):
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hk = Ak hk−1 + Bk uk + wk , (16.11)

where wk is a vector of zero-mean discrete white noise (called system noise)
assumed to be white in time and coloured in space: E[wk] = 0, E[wkw′

�] =
0 if k �= � and E[wkw′

k] = Qk, Qk being the covariance matrix. It is usually
assumed that wk is stationary in time (although not necessary and probably
not likely; see Senegas et al. (2001)) so that Qk = Q). Note that by adding
wk the vector hk = (H(s1, tk), . . . , H(sN , tk))′ becomes stochastic.

At certain time steps, observations are made. If observations Y (sj , tk), j =
1, . . . , nsk are made at time step k at nsk locations, they can be put in the
observations vector yk = (Y (s1, tk), . . . , Y (snsk

, tk))′. If it is assumed that the
observations are linear combinations of the state variables plus some measure-
ment noise, the following measurement equation can be formulated:

yk = Ck hk + vk , (16.12)

where Ck is the measurement matrix and vk a zero mean vector of measure-
ment errors, which may be mutually dependent but are all white in time:
E[vk] = 0, E[vkv′

�] = 0 if k �= �, E[vkv′
k] = Rk, Rk being the covari-

ance matrix of the measurement errors. The measurement errors are often
assumed to be mutually independent, so that Rk is a diagonal matrix. The
measurement errors and the system noise are also mutually independent:
E[wkv′

�] = 0 ∀k, �. Note that the observations can be of any type, as long as
they are linearly related to the state. If observations are actual measurements
at locations of hydraulic head (assuming that they are made at grid nodes
only), then Ck is simply a nsk × N matrix with for each row a 1 at the lo-
cation number where an observation is made at time k and zeros everywhere
else. However, an observation could also be some (weighted) average value of
the state, for instance obtained with geophysical measurements, in which case
the row of the corresponding observation in Ck contains weights for the state
nodes that have contributed to the observation and zeros everywhere else. It
can thus be seen that Ck actually represents the sampling locations which
defines for each time step where observations are made. If no observations are
made at a particular time step, then Ck = 0, the null-matrix.

Equations (16.11) and (16.12) form the basis of our prediction prob-
lem, i.e., optimal mapping of h for the space–time coordinates (si, tk), i =
1, . . . , N, k = 1, . . . ,K. To solve this problem, predictions of the groundwa-
ter model somehow have to be merged with the observations. Kalman (1960)
derived a recursive estimation procedure to achieve this. This procedure, re-
ferred to as the Kalman filter, gives best linear unbiased predictions (in least
squares sense) of hk using all observations up to and including time step k.
The Kalman filter is described next. We first define the following variables:
h̃k|k is the measurement update, i.e., the unbiased least squares prediction of
hk using all observations up to and including time step k;
h̃k|k−1is the time update, i.e., the unbiased least squares prediction of hk us-
ing all observation up to and including time step k − 1;
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Pk is the covariance matrix of the error in the measurement update at time
k: E[(h̃k|k − hk)(h̃k|k − hk)′];
Mk is the covariance matrix of the error in the time update at time k:
E[(h̃k|k−1 − hk)(h̃k|k−1 − hk)′].

Assuming that the initial conditions h0 and P0 are given, the Kalman
filter algorithm is given by:

h̃k|k−1 = Ak h̃k−1|k−1 + Bk uk , (16.13)

Mk = Ak Pk−1 A′
k + Qk , (16.14)

Kk = Mk C′
k (Ck Mk C′

k + Rk)−1
, (16.15)

h̃k|k = h̃k|k−1 + Kk

(

yk − Ck h̃k|k−1

)

, (16.16)

Pk = (I − Kk Ck)Mk , (16.17)

where I is an identity matrix and Kk a weighting matrix called the ‘Kalman
gain’.

Equations (16.13) and (16.16) show that the Kalman filter is in fact a
predictor–corrector method, where a prediction is made by the mechanistic
model (16.13) first. Next, measurements are used to update this prediction
using a weighted average (16.16). The magnitude of the update depends on
the ratio of the prediction error and the measurement error through (16.15).
If the measurement error (through Rk) is very large or the error in the model
prediction (through Mk) is small, then Kk → 0 and no updating will take
place. Conversely, if the measurement error is small compared to the model
prediction error, updating will be considerable. The updating is performed in
a physically consistent way because it depends (through Mk) not only on the
correlation structure of noise Qk but also on the system matrix Ak, which
represents the system dynamics based on physical laws, such as Darcy’s law
and the conservation of mass in our groundwater example. Such an update
could be viewed as creating additional sources/sinks at the nodes where wk is
defined, which are then propagated through the system by the deterministic
model (16.13). For this reason, noise is often put only on the boundary of the
model area, thus representing unknown boundary conditions. The temporal
persistence of the update depends on the magnitude (i.e., the trace) of the
system matrix Ak, while the spatial influence of an observation depends both
on the correlation length of Qk and the relative magnitude of the off-diagonal
elements of Ak.

If both wk and vk are multivariate Gaussian and stationary in space, the
Kalman filter not only gives Best Linear Unbiased Predictions, but also the
best unbiased prediction, in which case the time update is the conditional
mean h̃k|k = E[hk|yj , . . . ,yk] and its covariance the conditional covariance:
Pk = C[hk|yj , . . . ,yk]. In this case, h̃k|k is also a maximum likelihood pre-
diction.
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The Kalman filter was developed in the context of control theory, usually
dealing with small state vectors. However, in data assimilation, distributed dy-
namic models are used, often consisting of thousands of nodes. The Kalman
filter then commonly leads to both storage problems (large covariance matrices
Mk and Pk) and computational problems (CPU time) mainly when evaluating
the covariance of the time update (16.14). Several adaptations and approxi-
mations to the original formulation of the Kalman filter have been developed
to solve such problems (e.g., Morf et al., 1974; Heemink and Kloosterhuis,
1990; Evensen and van Leeuwen, 1995; Verlaan and Heemink, 1997; Bierkens
et al., 2001; Heemink et al., 2001). A comprehensive overview of methods is
given by Verlaan (1998).

The Kalman filter is not only suitable for prediction in a data-assimilation
framework, but can also be used together with purely statistical descrip-
tions of Z(s, t). For instance, Huang and Cressie (1996) and Bierkens et al.
(2001) formulated autoregressive statistical space–time models in a state–
space framework to apply the Kalman filter for space–time prediction. Wikle
and Cressie (1999) used a dimension reduction technique to reduce an autore-
gressive space–time model to a small number of spatially correlated time series
which are then predicted using a Kalman filter. The advantage of these ap-
proaches is that they solve some of the dimension problems mentioned above
and can therefore be applied to large systems.

The Kalman Filter and Space–Time Sampling

To return to the sampling problem: if the goal is to map the hydraulic head in
space and time and an optimal sampling design is sought to achieve this, the
numerical groundwater model and the Kalman filter can be used to direct the
sampling. For space-time mapping, a static-synchronous design seems advan-
tageous and we will provide a framework for optimizing such a design using
the Kalman filter.

If one were to define the quality measure as the sum of all squared pre-
diction errors

∑

k

∑

i[h̃(si, tk) − h(si, tk)]2 then it follows that this quality
measure is given by the sum of the traces of Pk:

J =
K

∑

k=1

tr(Pk) . (16.18)

For practical reasons, the covariance matrices of system noise and measure-
ment error are usually assumed to be constant in time: Qk = Q and Rk = R,
while the system matrix is usually constant because constant grid sizes and
time steps are used: Ak = A. Given some initial condition P0, covariance
matrices Q and R and system matrix A, this quality measure can thus be
fully evaluated for some sample Ck, k = 1, . . . , K with (16.14), (16.15) and
(16.17):

Mk = APk−1 A′ + Q , (16.19)
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Kk = Mk C′
k (Ck Mk C′

k + R)−1
, (16.20)

Pk = (I − Kk Ck)Mk . (16.21)

As can be seen, these equations do not depend on the actual predictions,
but only on the system and noise characteristics and the sample Ck, k =
1, . . . , K. So, once a calibrated groundwater model is available and the noise
statistics have been identified, it is possible to perform monitoring-network
optimization, not only by leaving out existing sampling locations and sampling
times but also by adding additional sampling locations and sampling times
(e.g., Zhou et al., 1991).

Of course, before any sampling optimization can be implemented, it is
necessary to identify A, Q and R. The system matrix A is built from the
physical properties of the subsurface (S(s) and T(s)) and the discretization
of the numerical model. Usually, S(s) and T(s) are determined by making
geophysical observations (pumping tests, slug tests) at a number of locations
and then interpolated in space by means of splines, kriging, inverse distance
or geological stratification. The values can be further adapted by means of
calibration of the groundwater model to head measurements from an exist-
ing network. The measurement error covariance matrix is often assumed to
be diagonal, with the diagonal showing the variances of measurement errors
as derived from experience. The greatest problem is the identification of the
matrix of system noise Q. As in the case of the system matrix, some regular-
ization is needed. This can for instance be achieved by a continuous covariance
function whose parameters are then estimated through a trial and error pro-
cedure from the innovations of the Kalman filter yk −Ck h̃k|k−1 when applied
to an existing network (cf. van Geer et al., 1991). More advanced methods
are possible. For instance, te Stroet (1995) applied inverse estimation theory
and adaptive filtering techniques to estimate regularized versions of A and Q
concurrently.

To illustrate the evolution of the variance of prediction error when using a
Kalman filter, we present a similar set-up of a space–time universe as described
for the space–time kriging: discretized with 10 × 10 nodes in space and 10
time steps. To avoid border effects, the universe was placed in the centre of
a larger spatio-temporal universe of 30 × 30 grid nodes in space and 30 time
steps. If we assume that the spatial universe is a homogeneous and isotropic
porous medium (conductivity and storage coefficient are constant in space
and conductivity is constant with direction) with groundwater flow described
by (16.9), then, using a finite difference approximation of (16.9), the inverse
of the system matrix is equal to the following band matrix:
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A−1 =

2666666666666664

(4/α) + 1 −1/α 0 · 0 −1/α 0 · · 0
−1/α (4/α) + 1 −1/α −1/α ·

0 −1/α · · · ·
· · · · · 0
0 · · · −1/α

−1/α · · · 0
0 −1/α · · · ·
· · · · −1/α 0
· · −1/α (4/α) + 1 −1/α
0 0 · 0 −1/α 0 · 0 −1/α (4/α) + 1

3777777777777775
(16.22)

where α is a dimensionless parameter that describes the characteristic re-
sponse time:

α =
S

T
· (δs)2

δt
, (16.23)

S and T being the storage coefficient and transmissivity of the domain (as-
sumed constant), and δs and δt being the finite difference discretizations in
space and time, respectively. Here we have neglected to explicitly account for
boundary conditions, so that the model boundaries are in fact no flow. Fig-
ure 16.3 shows the results of the evolving prediction-error variance for this
system with α = 1. The system noise matrix has been modelled with a spher-
ical covariance model with range as = 10δs and variance σ2

Q = 1, and the
matrix of measurement noise with a diagonal with variance σ2

R = 0.1 for ev-
ery sampling location. Figure 16.3 shows the prediction-error variance for the
large domain at two time steps, at a sampling time (upper left) and between
sampling times (upper right), as well as the temporal variation at two loca-
tions, one location close to a sampling location and one further away. The
influence of the boundaries can be clearly seen in the upper right figure. The
time series below shows the typical saw-tooth shape of the evolution of the
prediction-error variance, first growing to a maximum value and then reduced
to a value smaller than the observation error after updating at a sampling
time.

The characteristic response time α determines how quick the groundwater
system reacts to a change in forcing, such as a change in boundary conditions,
precipitation or a change in pumping rate of a groundwater withdrawal. In case
α is small, a disturbance travels fast and a change in for instance precipitation
rate will quickly lead to a new equilibrium hydraulic head distribution. In
case α is large, the system takes a lot of time to reach a new equilibrium
after a change. For example, confined aquifers that are covered on top with
an impermeable layer have very small storage coefficients and will reach a
new head distribution within days or even hours after groundwater pumping
is increased. On the other hand, very thick unconfined aquifers with large
storage coefficients and transmissivities can still experience years later the
influence of a succession of wet or dry years.
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Fig. 16.3. Spatial variation of prediction-error variance-ratio for a linear space–time
Kalman filter applied to two-dimensional groundwater flow in a confined aquifer
(α = 1, as = 10 δs, σ2

Q = 1 and σ2
R = 0.1) at a sampling time (upper left) and

between sampling times (upper right), and time series of prediction-error variance-
ratio close to sampling location and distant from sampling locations (lower left)

Figure 16.4 shows that the characteristic response time also influences
the accumulation of model errors. The figure shows how the variance of the
total prediction error σ2

M develops with time in case at each time a model
error is made with a fixed variance σ2

Q and no updating with observations
is performed. It can be seen that slow reacting systems tend to accumulate
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Fig. 16.4. Accumulation of prediction errors in a stochastic dynamic system de-
scribed by (16.11) with varying response times α and Q modelled using a spherical
covariance function with as = 10 δs and variance σ2

Q = 1

errors much more than fast reacting ones; the have a larger ‘memory’ for
past errors, which are thus propagated more strongly in time. It can also
be seen that the maximum prediction error is reached much faster for a fast
reacting system than for slow reacting one. Clearly, in case of a slow reacting
system one achieves an enormous variance reduction with just a few sampling
rounds, while in case of fast reacting systems a higher sampling frequency is
needed to obtain any improvement at all. The characteristic response time
thus determines strongly how a given number of measurements should be
optimally distributed in space and time.

The sampling density in space and time not only depends on α, but also
on the spatial correlation of the error process in wk. This can be seen in
Fig. 16.5, which shows isolines of the average variance ratio σ2

kf/σ2
Q of the

central universe of our example for as/δs = 10 and α = 0.1 as a function of
the sampling density and sampling frequency. Here

σ2
kf =

1
NK

K
∑

k=1

tr(Pk) , (16.24)

where as and σ2
Q are the parameters used to model covariance matrix Q with

a spherical covariance function. Note that some small corrections have been
applied when calculating σ2

kf for the central universe in order to account for
the effect of the boundary conditions (maximum correction up to 5%).
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Fig. 16.5. Lines of equal normalized mean prediction-error variance σ2
kf/σ2

Q for
sampling on a space–time grid and prediction of groundwater heads with a Kalman
filter. The covariance model is spherical with parameters as and σ2

Q. Here as/δs = 10
and the system property α = 0.1. Figures with other combinations of as/δs and α
are presented in Appendix D.

Figure 16.5 can be used as follows. If the hydraulic parameters S, T are
given, as well as discretization δs, δt (and therefore α), a combination of ∆s
and ∆t can be chosen, with ∆s ∈ {δs, 2δs, 3δs, . . .} and ∆t ∈ {δt, 2δt, 3δt, . . .},
in order to achieve a given required mean variance ratio σ2

kf/σ2
Q. Figure 16.5

is valid for as/δs = 10 and α = 0.1. Appendix D provides a more complete
set of figures for various combinations of as/δs and α. These figures provide a
tool that can be used to design samples for mapping hydraulic heads with a
Kalman filter. Also, we envisage an even broader use of these diagrams. Many
dynamic systems in the earth sciences can be described by an equation that is
similar to (16.11), with a system matrix having the structure of (16.22). Space–
time samples for such systems could thus be designed using the diagrams in
Appendix D.
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16.2.5 Kalman Filtering Current Maps

This section deals with designing a spatial sample for mapping the values
at the next sampling time, using the sample data at the previous sampling
times as prior data. So, contrary to the previous section where a space–time
sample is designed for the whole monitoring period before the start of the
first sampling round, in this section spatial samples are designed sequentially.
The sample for the second sampling time is designed after the data of the first
sampling time have been collected, etc.

Wikle and Royle (1999) have shown that for Kalman filtering current maps
synchronous patterns are generally more efficient than static-synchronous pat-
terns. Synchronous patterns are particularly advantageous if the characteristic
response time of the system (i.e., the diagonal of the system matrix Ak) is
large (long memory) and the spatial correlation length of the system noise wk

(off-diagonals of Qk) is not too large. Of course, such a pattern requires that
the costs and time involved in moving sampling locations are not a problem:
e.g., sensors for measuring air quality may be easily moved, while the time
required to install piezometer tubes measuring groundwater head prohibits
moving them around.

Wikle and Royle (1999) discuss also an intermediate case where there are
a limited number of sampling locations (e.g., piezometer tubes) and an even
smaller number of measurement devices (e.g., groundwater quality sensors)
that can be moved freely between the sampling locations at each time step.
Such a synchronous pattern is especially suitable if both the costs of installing
sampling locations and the observation costs contribute significantly to the
total monitoring costs.

16.2.6 Models and Predictors in Space–Time

The many methods of modelling spatio-temporal variation reported in the lit-
erature differ greatly with respect to the modelling of Z(s, t) and the predictor
used. Here, we present a taxonomy of space–time methods, restricting our-
selves to prediction at points. The proposed classification is partly based on
an extensive survey of geostatistical models given by Kyriakidis and Journel
(1999) and partly on papers by McLauglin (1995) and Houser et al. (1998).
The suitability of a method for use in sampling design depends on whether a
quality measure can be constructed based on the space–time coordinates of
projected sampling events only, i.e., without the sample data. Methods that
meet this requirement are marked by asterisks. All other methods require a
stochastic simulation approach to be used for sampling. The suitability of a
space–time prediction method for sampling also depends on the complexity
of the quality measure, i.e., the way Z(s, t) is modelled and the form of the
predictor. Methods that are complex are marked with the symbol c. Note that
the latter is only our personal opinion, not a fact. Thus, methods marked with
an asterisk only are, in our opinion, most easily adapted for use in sampling.
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We stress again that in model-based sampling, the prediction method and the
sampling design are intertwined: the sampling design is only ‘optimal’ if, after
sampling, the inference is performed with the prediction method associated
with the quality measure.

Statistical Models

Statistical models are entirely based on the data. Statistical models may be
purely empirical, as in kriging or regression. However, models that are built
from preconceived ideas about the spatio-temporal variation (e.g., data-based
mechanistic modelling as described in Young and Beven (1994)), but do not
explicitly include physical laws are also classified as statistical models. If the
deterministic part of the model is a partial-differential equation and model
prediction is performed in a physically consistent manner (conserving mass,
momentum or energy) it is classified as a data-assimilation method. Statistical
models of space–time can be classified into the following categories (Kyriakidis
and Journel, 1999; Bierkens, 2001).

1. Multiple Time-Series Models∗

Here, time series are modelled at the sampling locations, using either temporal
geostatistical models or Box–Jenkins type models (Box and Jenkins, 1976).
Prediction is restricted to the sampling locations (where the time series have
been observed) and is applied at non-observed times. In Box–Jenkins mod-
elling, prediction is performed by using the multivariate time-series model in
forecasting mode (Bras et al., 1983) or Kalman filtering (Priestley, 1981). In
a geostatistical framework, co-kriging is used to predict time series at unob-
served times (Rouhani and Wackernagel, 1990).

2. Regionalized Time-Series Models

Multiple time-series modelling restricts prediction to the sampling locations.
By contrast, adaptation of the concept of multiple time series, called ‘region-
alized time-series models’, enables prediction at unobserved locations. To this
end, stochastic time-series models are defined at a grid. First, parameters of
the time-series model are inferred at the sampling locations. Next, these pa-
rameters are interpolated onto the grid. Using the interpolated parameters,
the time-series model is used to predict time series at every grid node. Dif-
ferences between methods concentrate on the type of time series model used,
the type of method used to interpolate the parameters and the prediction
method. Examples of methods used are:

• (Huang and Cressie, 1996)∗. These authors assume an autoregressive pro-
cess of order p (AR(p)) at each location. Autoregressive parameters are
assumed to be the same for all locations and estimated from spatially
averaged temporal covariances obtained from all sampling locations. The
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noise process driving the AR(p) process is white in time and spatially
coloured. Predictions at unobserved locations for a given time step tk are
made with a space–time Kalman filter using all available observations up
to and including time step tk.

• Knotters and Bierkens (2001). The time-series model is a simple transfer-
function noise model (called ARX model). Parameters are interpolated
with ordinary kriging and kriging with an external drift. Predictions are
made by running the deterministic part of the ARX model.

• Bierkens et al. (2001)∗; Knotters and Bierkens (2002)∗. This approach
builds on the approach by Knotters and Bierkens (2001). The regional-
ized time series at the grid nodes are embedded in a space–time Kalman
filter for space–time prediction, where the noise process driving the ARX
model is white in time, spatially coloured and heteroscedastic. Apart from
spatially varying time-series parameters and spatially varying noise vari-
ance, the approach by Bierkens et al. (2001) and Knotters and Bierkens
(2001) is equivalent to the method described by Wikle and Royle (1999).
Through the use of the multiple time-series concept, these approaches are
particularly suitable for predicting onto large grids, despite the use of the
Kalman filter.

• Angulo et al. (1998)∗,c. These authors present a combined geostatistical
and discrete time-series approach. The time-series models consist of a tem-
poral trend and an ARMA model. The trend parameters and the ARMA
parameters are interpolated using inverse distance weighting. Prediction
is done in two steps: (1) spatial interpolation of noise time series obtained
at the sampling locations; (2) use of the interpolated noise at the unob-
served locations in the (interpolated) ARMA model for predicting residu-
als, which are then added to the (interpolated) trend. A similar approach
was used by Meiring et al. (1998)∗,c, adding the option to model a spatially
and temporally nonstationary noise process.

• Kyriakidis and Journel (2001)c use a conditional simulation approach, in
which trend parameters are determined at locations with time series. Full
spatial coverage of trend parameters is achieved through geostatistical con-
ditional simulation (after transformation of the trend parameters to inde-
pendent variates using principal component analysis). The residual pro-
cess is modelled as a collection of spatially correlated time series, whose
covariance parameters are again interpolated with conditional stochastic
simulation. The resulting spatio-temporal noise is modelled by simulating
at each location Gaussian deviates that are white in time but spatially
coloured and conditioned on normal scores of residuals.

3. Multiple Spatial Random Fields

The universe is only considered at a finite number of time sections: s ∈ S ⊂ R
k

and t ∈ {t1,t2, . . . , tN,} and the stochastic model consists of a collection of
multiple mutually dependent spatial random fields. Prediction is performed
by:
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• co-kriging multiple time sections∗. Examples can be found in Bogaert
(1996) and Bogaert and Christakos (1997b);

• (co-)kriging differences between two time sections∗. See, for instance, Sølna
and Switzer (1996) and Papritz and Flühler (1994).

4. Space–Time Random Fields

Here, z(s, t) is modelled with a complete space–time stochastic function
Z(s, t), s ∈ S ⊂ R

k, t ∈ T ⊂ R. Two ways of obtaining predictions are
commonly used in the literature.

• Space–time kriging∗. Time is treated as an additional coordinate and krig-
ing is performed using data from different locations and different time
steps. In certain cases, nonstationarity in time is accounted for by uni-
versal kriging. Examples are given in papers by Rouhani and Hall (1989),
Bogaert (1996), Bogaert and Christakos (1997a), Heuvelink et al. (1997)
and Snepvangers et al. (2003). As described in the previous section, the dis-
advantage of these methods is that particular features of time (its unidirec-
tionality, causality) are not taken into account and that nonstationarity in
time can lead to complicated models and inference problems. Also, notice
again that under certain circumstances space–time kriging and co-kriging
are equivalent when considering a finite number of fixed time sections
(Bogaert, 1996).

• Space–time Kalman filtering∗. Here, a space–time model is formulated
as a spatially continuous and temporally autoregressive process, where
time is considered at discrete time steps only. The advantage is that the
unidirectional nature of time is embedded in the model formulation1. An
example of this approach is provided in the paper by Wikle and Cressie
(1999). A special feature of their method is that it can be applied to large
problems by using dimension reduction techniques (see also the previous
section).

Data Assimilation

Readers not familiar with the Kalman filter are advised to read the example
in Sect. 16.2.4 first. McLauglin (1995) provides the following description of
data assimilation:

“The objective of data assimilation is to provide physically consistent es-
timates of spatially distributed environmental variables. These estimates are
derived from scattered observations taken at a limited number of times and lo-
cations, supplemented by any additional ‘prior information’ that may guide the
1 In this sense, the stochastic model used is close to the multiple random field

approach, albeit with a specific unidirectional Markov-type covariance structure
between time steps.
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estimation process. The terms ‘spatially distributed’ and ‘physically consistent’
are important here. Spatially distributed estimates are defined everywhere, not
just at sampling locations, and they can usually be viewed as continuous func-
tions of time and location. Physically consistent estimates are compatible with
physical laws such as conservation of mass, momentum, and energy. This is
reflected in both their spatial and temporal (or dynamic) structure.”

Thus, the distinctive feature of data-assimilation methods is that space–
time predictions are made in a physically consistent way, that is, making sure
that the predictions obey certain physical laws. In data-assimilation meth-
ods, the space–time Stochastic Function Z(s, t) is generally described with a
stochastic partial-differential equation. When discretized in space (on a grid
size N) and time (K time steps), this stochastic partial differential equation
can be represented by the following discrete stochastic system in state space:

zk = ϕk(zk−1,ak,uk) + wk , (16.25)

where zk = (Z(s1,tk), . . . , Z(sN,tk))′, k = 1, . . . , K, is the state vector, uk

is a vector of (possibly random) inputs such as boundary conditions sinks
and sources, ak is a vector of (possibly random) model parameters, wk is a
vector with system noise representing errors due to inadequacy of the model
description and ϕk(·) is a (generally non-linear) vector function relating zk to
zk−1, ak, uk and wk. Note that if ϕk is linear and ak is deterministic, (16.25)
reduces to (16.11).

Apart from an equation describing the physics behind Z(s, t), there are
also observations y(sj , tk), j = 1, . . . , nk that tell us something about z(s, t).
If it is possible to find some relation between observations and the state, a
general equation describing this relation looks like:

yk = hk(zk) + vk , (16.26)

where yk = (Y (s1,tk), . . . , Y (snk,tk))′ is a vector of observations at time k,
vk is a vector with observation errors and hk(·) is a (generally non-linear)
vector function relating the observations to the state. If the observations are
the actual state variables or weighted averages of these variables, then hk

is linear and (16.26) reduces to (16.12). However, if our observations are,
e.g., radar reflectivity measurements which are related to soil moisture (our
state variable), then hk(·) may represent a complex non-linear reflectivity
model (e.g., Hoeben and Troch, 2000). Equations (16.25) and (16.26) form
the basis of all data assimilation methods aiming to the optimal merger of
predictions from physical models with data in order to arrive at physically
consistent space–time predictions. An overview of data-assimilation methods
is presented below.

1. Heuristic (Non-Optimal) Methods

There are various heuristic methods that can be used to assimilate data into
physical–mechanistic models. An overview of such methods applied to the
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modelling of soil moisture content is given by Houser et al. (1998). These
methods are called sub-optimal because the updating of model predictions
with data is not done in order to minimize some error-related quality measure.
Instead, updating is done in a heuristic manner. Therefore, these methods are
not very suitable for sampling design. Examples of such methods are:

• ‘Direct insertion’, where observations are directly inserted in the state
vector, and no measurement error is taken into account. It is assumed
that a positive influence of the inserted correction will propagate to the
other state elements through the system dynamics.

• ‘Statistical correction’ is very much like direct insertion, except that ob-
servation errors can be taken into account by inserting a weighted average
of the observation and the model prediction.

• ‘Newtonian nudging’ (Stauffer and Seaman, 1990) is a technique in which
the physical–mechanistic model is augmented with an additional source
term that is adjusted while advancing the model in time in order to ‘nudge’
the model predictions towards the observations. Observation errors can be
taken into account.

2. Optimal and Approximately Optimal Methods

In optimal data-assimilation methods, the observations and the state are
merged in such a way that some error-related quality measure is minimized.
For instance, a Kalman filter minimizes the mean squared difference between
the actual (but unknown) state and the model predictions. Many of the opti-
mal methods provide quality measures that are a function of the coordinates
only and are therefore suitable for spatio-temporal sampling design. Optimal
methods can be divided into filters and smoothers.

2a. Filtering

In filtering, observations are used that are made at times up to and including
the time step at which the prediction is made: y1, . . . ,yk to predict zk. Filters
are very suitable if the aim is to forecast in time while observations are taken
along the way. Optimal filters thus extrapolate in time. However, as filter
algorithms are easier to implement than smoothing algorithms, they are often
used for prediction in space and time when all observations have already been
made. Distinction can be made between linear and non-linear systems.

• Linear systems∗. If the stochastic system and the measurement equation
are both linear, the linear Kalman filter can be used (van Geer et al.,
1991; Zhou et al., 1991). In case a system or the measurement equation is
slightly non-linear, linearized versions can be formulated in order to apply
the Kalman filter (e.g., Walker and Houser, 2001).

• Non-linear systemsc. If the stochastic system or the measurement equation
are non-linear and linearization is not an option (i.e., gives poor results),
an extended Kalman filter can be used. The extended Kalman filter uses
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the non-linear state and measurement equations, but it uses a linearized
version of these equations to calculate the covariance matrix of the time
update and the Kalman gain. Linearization is done around the optimal pre-
diction of the previous time step. Because the linearization requires actual
predictions, the extended Kalman filter is not very suitable for sampling,
except for thinning out. For examples of the extended Kalman filter, we
refer to Evensen (1992) and Hoeben and Troch (2000). Linearization can
lead to system instability (prediction blow-up), especially in the case of few
or imprecise observations. The ensemble Kalman filter (Evensen, 1994) is
a solution to this problem. Instead of the ‘optimal trajectory’, an ensem-
ble of trajectories (realizations of zk by simulating error vectors wk and
possibly ak and uk in (16.25)) are propagated with the model. The co-
variance of the time update is obtained by estimating it directly from the
realizations. The covariance matrix is used to calculate the Kalman gain,
which in turn is used to update each realization with the observations. The
updated realizations are each propagated with the model (16.25) and so
on. The ensemble Kalman filter is increasingly used in data assimilation.
A recent addition to non-linear filtering is the particle filter (or sequen-
tial importance resampling filter; van Leeuwen (2003)). The particle filter
is much simpler to implement than the ensemble Kalman filter and has
the added value that it also works for variables that have an extremely
non-Gaussian (e.g., multimodal) distribution. It is however less suitable if
state vectors are large. Unfortunately, non-linear filtering methods are not
very suitable for sampling design (except for thinning out), as they also
require actual observations.

2b. Smoothing

If all observations have already been made, then it makes sense to predict zk

using all observations made before and after time step k: y1, . . . ,yk, . . . ,yK .
There are two ways of doing this: recursively or off-line.

• Recursively: the Kalman smoother∗,c. The algorithm that can provide op-
timal predictions of zk using all observations made before and after time
step k in a recursive manner is called the ‘Kalman smoother’. It basically
consists of running the Kalman filter forward and backward in time, and
optimally averaging the predictions obtained with the forward and the
backward filter for each time step. We refer to Schweppe (1973) for the
algorithm and to Zhang et al. (1999) for a recent application. Like the
Kalman filter, the Kalman smoother requires linear state equations and
measurement equations.

• Off-line: variational data assimilation∗,c. Suppose that the uncertainty in
the predictions is caused by an error in the parameters a − ã, with ã
some prior estimate of the parameters with covariance matrix Ca, initial
conditions z0− z̃0 with covariance matrix P0, measurement errors vk with
covariance matrix Rk, and a model error (system noise) wk with covariance
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matrix Qk. The goal is then to minimize a quality measure of the following
form:

J =
K
∑

k=1

[yk − hk(zk)]′ R−1
k [yk − hk(zk)] +

K
∑

k=1

w′
k Q−1

k wk

+ [z0 − z̃0]′ P−1
0 [z0 − z̃0] + [a0 − ã0]′ C−1

a [a0 − ã0]

+ 2
K
∑

k=1

λk [zk − ϕk(zk−1,ak,uk) − wk]′ · 1
(16.27)

where the first term represents measurement error, the second the model
error, the third term the error in initial conditions and the fourth the error
in our initial estimate of the parameters. Errors in boundary conditions
and source terms uk could be added in a similar way. In this formulation,
the goal is to estimate both the model parameters and initial conditions
and to predict the state optimally. Thus, (16.27) is also suitable for inverse
estimation of parameters (Valstar, 2001). The fifth term (with 1 a vector
of ones) is added to make sure that the optimal predictions obey the
physical laws as described by the model. It is a constraint very much
like that added in the quality measure that is minimized with ordinary
kriging (see Appendix B), i.e., to ensure that the predictor is unbiased.
The vector λk is a vector of Lagrange multipliers. However, the fifth term
is a weak constraint: the prediction does not have to be exactly equal to a
solution of zk = ϕk(zk−1,ak,uk) because of the added model error wk. To
minimize (16.27), so called ‘variational methods’ are used to derive explicit
equations for its minimum: the so called Euler–Lagrange equations. These
equations are solved using all available measurements simultaneously, so
that variational data assimilation is an off-line method, not a recursive
one. To solve the Euler–Lagrange equations , we also need the vector λk for
every time step. For this we need to derive a so called ‘adjoint model’ which
is similar to our model ϕk(·) but using as its inputs the differences yk −
hk(z̃k) between model predictions and observations. The Euler–Lagrange
equations must be solved in an iterative manner, requiring several runs
of the mechanistic model ϕk(·) as well as the adjoint model. We refer
to Reichle et al. (2001) for a description of the method as well as an
illustrative example. Standard references for descriptions of this method
are Daley (1991), Bennet (1992) and McLauglin (1995).

From this description it is clear that variational data assimilation is not easy
to apply. In particular, the derivation and implementation of an adjoint model
from a numerical model code of some distributed mechanistic model requires
much effort and time. However, the method is very popular for modelling
large-dimensional systems, such as those used in numerical weather predic-
tion2, because it does not require propagation and storage of large covariance
matrices. The method can be used for both linear and non-linear systems (in
2 In numerical weather prediction, variational data assimilation is used to re-

initialize the state (e.g., pressure, temperature, air moisture content) using all
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the case of a linear system, and using only the first, second and fifth terms,
variational data assimilation is mathematically equivalent to fixed interval
Kalman smoothing). For linear systems, it is possible to also derive an ex-
pression for the covariance matrix of the prediction error, which is a function
of the space–time sample positions only. This makes variational data assimila-
tion suitable for space–time sampling design. It can also be used for non-linear
systems by using an approximation of the covariance matrix of the prediction
error obtained by linearization around some nominal value of hk.

We end this description of optimal data-assimilation methods by noting
that there are recursive algorithms (both filtering and smoothing) which are
approximately optimal but very efficient in terms of computer storage as well
as CPU demand (see Verlaan (1998) for an overview). These algorithms can
be used in large-dimensional systems, but they do not require the tedious
derivation and implementation of an adjoint state model. Examples of such
approximate methods can be found in Verlaan and Heemink (1997)∗,c, Zhang
et al. (1999)∗,c and Heemink (2000)∗,c.

the observations available. A similar equation as (16.27) is used, using only the
first, third and fifth terms without the model error (hard constraint). The goal
is to obtain better forecasts by improving initial conditions: in weather predic-
tion, initial conditions are by far the largest source of uncertainty due to chaotic
behaviour
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Optimization Algorithms for Model-Based
Sampling

The aim of optimization under model-based sampling is to find the sample
size n and the sampling events {(s1, t1), (s2, t2), . . . , (sn, tn)} (assuming sam-
pling in space and time at point support) such that some quality measure is
optimized (minimized or maximized). In some situations the sample size is
given, usually because of a fixed budget. In that case the problem is restricted
to finding the sampling events that optimize the quality measure. In other sit-
uations the problem may be to find a sample such that the quality measure is
smaller than a certain value (e.g. in testing problems) or the sample size may
be part of the quality measure itself, e.g. if the quality measure contains a cost
function. In these situations both the sample size n and the sampling events
have to be optimized. The following description of optimization methods only
focuses on the first case: the sample size n is known and the sampling events
have to be found such that the quality measure is optimized. The sample size
can be included in the optimization quite easily by running the optimization
algorithms repeatedly with increasing sample size until the optimized quality
measure becomes smaller (larger) than the target value.

The algorithms described below all assume that the sampling events can
be chosen freely within the universe. Optimization of sampling grids is not
treated here. We refer to McBratney et al. (1981) for optimizing spatial grids,
and to Zhou et al. (1991) and Sect. 11.3 for optimizing the sampling interval
in time. Also, in the following description we assume that we are dealing with
a quality measure that has to be minimized. Of course, the same algorithms
can be used to maximize quality measures, just by rewriting the minimization
problem into a maximization problem.

When looking for algorithms to optimize a sample of size n, three types
of algorithms come to mind. These are described in the next sections.
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A.1 Standard Methods for Minimizing Functions

If the sample size is small, standard methods can be used to minimize the
quality measure subject to the sampling events {s1, s2, . . . , sn}. Gradient-
based methods, such as Conjugate Gradient methods, are usually fastest.
This, however, requires the partial derivatives of the quality measure with
respect to the coordinates. If it is not possible to analytically calculate these
derivatives, a numerical approximation using finite differences may be better
used. Alternatively methods can be used that do not require gradients, such
as the Downhill Simplex method. Optimization algorithms and programs are
for instance given in Press et al. (1988).

A.2 Simulated Annealing

Simulated annealing is a combinatorial optimization algorithm in which a
sequence of combinations is generated by changing the previous combination
slightly and randomly. Each time a combination is generated, the quality mea-
sure is evaluated and compared with the quality measure value of the previous
combination. The new combination is always accepted if the quality measure
value is decreased by the change. A distinctive property of the annealing algo-
rithm is that it accepts also some changes that increase the quality measure
value. This is to avoid being trapped at local minima. The probability of
accepting a worse combination is given by

P = e
−∆J

T , (A.1)

where ∆J is the increase of the quality measure (objective function) and T
is a control parameter which, by analogy with the original application of sim-
ulating the cooling of a metal into a minimum energy crystalline structure,
is known as the system temperature. This temperature is lowered stepwise
during the optimization. Equation (A.1) shows that, given the temperature,
the larger the increase of the quality measure value, the smaller the accep-
tance probability. The temperature remains constant during a fixed number
of transitions (a Markov chain), and is then lowered, reducing the probabil-
ity of accepting changes that increase J (given ∆J). The simplest and most
commonly used cooling scheme is the exponential cooling scheme:

Tk+1 = αTk, (A.2)

where α is a constant, close to and smaller than 1. Besides this parameter,
there are three more parameters to be specified by the user:

• the initial temperature T0;
• the final temperature or stopping quality measure;
• the length of the Markov chains.



A.3 Genetic Algorithms 279

A suitable initial temperature results in an average probability of accept-
ing an increase of the quality measure value of 0.8 (Kirpatrick, 1984). This
initial temperature can be calculated by performing an initial search in which
all increases are accepted. From the result the average of objective-function
increases ∆J+ is calculated. The initial temperature is then given by

T0 =
∆J+

ln(χ0)
, (A.3)

where χ0 is the average increase acceptance probability.
The final temperature is not directly specified, but indirectly via the num-

ber of Markov chains or the number of combinations to be evaluated. Alterna-
tively, a stopping criterion may be specified for lack of progress. A commonly
used definition for lack of progress is no improvement of the quality measure
within a Markov chain or an average increase acceptance probability falling
below a given small value χf . The length of the Markov chains, i.e., the num-
ber of combinations generated at one temperature, can be chosen as fixed, i.e.,
independent of the Markov chain. Alternatively, one may specify a minimum
number of acceptances for each Markov chain. In this case the length of the
Markov chains increases with the chain number, because the average increase
acceptance probability decreases.

Sacks and Schiller (1988) showed how the simulated annealing algorithm
can be used for optimizing sampling patterns in situations where observa-
tions are spatially dependent. Van Groenigen and Stein (1998) modified the
simulated annealing algorithm by changing the solution generator, i.e., the
mechanism to generate a new solution by a random perturbation of one of
the variables of the previous solution. This is done by moving one randomly
selected sampling location over vector h, with a random direction, and a ran-
dom length with probability distribution Uniform(0,hmax). Initially, hmax is
half the length of the target area, and decreases with the chain-number.

A.3 Genetic Algorithms

Genetic Algorithms (Gershenfeld, 1999) are a third way of optimizing large
samples. They start with defining not one initial sample, but a large ensemble
(say 100), called ‘population’. For each member of the population the quality
measure is calculated. The value of the quality measure is called the fitness.
The smaller the value the fitter the population member. Next three things
may happen:

1. Reproduction. A new generation of the same number of members is cre-
ated. Depending on the fitness a population member may have a larger
or smaller chance of reproduction, and therefore many duplicates or few
or even no duplicates. The way the probability of reproduction is linked
to the fitness determines the selectivity of the scheme. This has the same
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function as the cooling down scheme in annealing. If the selectivity is high,
than only a few population members get all the offspring and the danger
of ending up in a local minimum is large. If selectivity is low all members
procreate and evolution (to the best solution) is slow.

2. Crossover. This is not always included in genetic algorithms. Here mem-
bers of the population can share parameter sets. After being randomly
chosen, usually according to a probability related to their fitness, two
parents give random subsets of there respective parameters to their off-
spring: in our case the children share for instance n/2 randomly chosen
sampling locations from one parent and n/2 from the other.

3. Mutation. In this step, parameters are randomly changed. So, in this case,
for some randomly chosen members the positions of one or more points
are (randomly or purposively) changed.

These steps are repeated until no significant changes in average fitness occur
between generations. Genetic algorithms thus yield a population of samples.
From this one can choose the fittest one, but it may also be the case that
several samples are equally fit and therefore eligible. The versatility of genetic
algorithms is also a disadvantage. The user must make many choices: the
relation between fitness and probability of reproduction (selectivity), if and
how crossover is implemented and how mutations are performed, i.e., which
sampling locations and how they are shifted. In this way there is an almost
infinite number of variants of the genetic algorithm that can be thought of. It
is not clear from the start which variant would be most successful in finding
the true but unknown global minimum. See Cieniawski et al. (1995) for an
application of genetic algorithms in monitoring.

The shifts of coordinates of sampling locations that are proposed in the
simulated annealing and the genetic algorithms can be performed in a random
manner or in a purposive manner. Random shifts are of course most easily
implemented, but generally lead to slow convergence, especially when getting
close to a minimum. To speed up the convergence, shifts can be made purpo-
sively, using standard optimization methods such as the Conjugate Gradient
or the Downhill Simplex method.
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Kriging

Kriging or geostatistical interpolation aims at predicting the unknown value
of Z at a non-observed location s0 using the values zi observed at surrounding
locations. To do this we use a Stochastic Function (SF) as a model of spa-
tial variation so that the actual but unknown value z(s0) and the values at
the surrounding locations z(si), i = 1, . . . , n are spatially dependent random
variables (RVs) Z(s0) and Z(si), i = 1, . . . , n. There exist a large number
of different kriging methods. For an introduction to stochastic functions and
kriging we refer to Isaaks and Srivastava (1989). A complete overview of all
types of kriging can be found in Goovaerts (1997). Deutsch and Journel (1998)
and Pebesma (2004) provide kriging software.

B.1 Simple Kriging

B.1.1 Theory

The most elementary of kriging methods is called simple kriging and is treated
here. Simple kriging is based on a SF that is second-order stationary . A
second-order stationary SF has the following properties

E[Z(s)] = µ = constant (B.1)

V [Z(s)] = E[Z(s) − µ]2 = σ2 = constant (and finite) (B.2)

C[Z(s1), Z(s2)] = E[{Z(s1) − µ}{Z(s2) − µ}] = C(s2 − s1) = C(h12) (B.3)

These properties show that in case of second-order stationarity, the mean and
variance are constant, the variance has a finite value and the covariance is
not dependent on the absolute locations s1 and s2, but only on the separation
vector h = s2 − s1. The function C(h) is called the covariance function. Fur-
thermore we have C(0) = σ2. In Sect. 9.4 it is shown how covariance functions
can be estimated from data.
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Simple kriging is the appropriate kriging method if the SF is second-order
stationary and the mean of the SF E[Z(s)] = µ is known without error. With
simple kriging a predictor ˜Z(s0) is sought that

1. is a linear function of the surrounding data,
2. is unbiased: E[ ˜Z(s0) − Z(s0)] = 0,
3. and has the smallest possible error, i.e., the variance of ˜Z(s0) − Z(s0) is

minimal.

A linear and unbiased predictor is obtained when considering the following
weighted average of deviations from the mean:

˜Z(s0) = µ +
n

∑

i=1

λi [Z(si) − µ] , (B.4)

with Z(si) the values of Z(s) at the surrounding sampling locations. Usually,
not all sampling locations are included in the predictor, but only a limited
number within a given search neighbourhood. Predictor (B.4) is unbiased by
definition:

E[ ˜Z(s0) − Z(s0)] = µ +
n

∑

i=1

λi E[Z(si) − µ] − E[Z(s0)]

= µ +
n

∑

i=1

λi [µ − µ] − µ = 0 . (B.5)

The weights λi should be chosen such that the prediction-error variance is
minimal. The variance of the prediction error (simple kriging variance) can
be written as

V [ ˜Z(s0) − Z(s0)] = E[ ˜Z(s0) − Z(s0)]2 = E

[

n
∑

i=1

λi [Z(si) − µ] − [Z(s0) − µ]

]2

=

n
∑

i=1

n
∑

j=1

λi λj E{[Z(si) − µ][Z(sj) − µ]} − 2
n

∑

i=1

λi E[{Z(si) − µ}{Z(s0) − µ}]

+ E[Z(s0) − µ]2 . (B.6)

Using the definition of the covariance of a second-order stationary SF E[{Z(si)−
µ}{Z(sj) − µ}] = C(hij) and C(0) = σ2, we obtain for the variance of the
prediction error:

V [ ˜Z(s0) − Z(s0)] =
n

∑

i=1

n
∑

j=1

λi λj C(hij) − 2
n

∑

i=1

λi C(hi0) + σ2 . (B.7)

To obtain the minimum of (B.7) we have to equate all its partial derivatives
with respect to the λi to zero:
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∂

∂λi
V [ ˜Z(s0)−Z(s0)] = 2

n
∑

j=1

λj C(hij)−2C(hi0) = 0 i = 1, . . . , n . (B.8)

This results in the following system of n equations, referred to as the ‘simple
kriging system’:

n
∑

j=1

λj C(hij) = C(hi0) i = 1, . . . , n . (B.9)

The n unknown values λi can be uniquely solved from these n equations if
all the si are different. The predictor (B.4) with the λi found from solving
(B.9) is the one with the minimum prediction-error variance. This variance
can be calculated using (B.7). However, it can be shown (e.g. de Marsily, 1986,
p. 290) that the simple kriging variance can be written in a simpler form as:

V [ ˜Z(s0) − Z(s0)] = σ2 −
n

∑

i=1

λi C(hi0) . (B.10)

The error variance shows very nicely how kriging takes advantage of the spatial
dependence of Z(si). If only the marginal probability distribution had been
estimated from the data and the spatial coordinates had not been taken into
account, the best prediction for every non-observed location would have been
the mean µ. Consequently, the variance of the prediction error would have
been equal to σ2. As the values of the product λi C(si − s0) are positive,
it can be seen from (B.10) that the prediction error variance of the kriging
predictor is always smaller than the variance of the SF.

To obtain a positive error variance using (B.10) the function C(h) must
be positive definite. This means that for all possible s1, . . . , sn ∈ R

k (k equals
1, 2 or 3) and for all λ1, . . . , λn ∈ R the following inequality must hold:

n
∑

i=1

n
∑

j=1

λi λj C(hij) ≥ 0 . (B.11)

It is difficult to ensure that this is the case for any chosen function. There-
fore, we cannot just estimate a covariance function directly from the data
for a limited number of separation distances and then obtain a continuous
function by linear or spline interpolation between the sampling locations. If
such a covariance function were used in (B.9) and (B.10), then this would not
necessarily lead to a positive estimate of the prediction error variance. In fact,
there are only a limited number of functions for which it has been proven that
inequality (B.11) will always hold. So the practical solution used in kriging is
to take one of these ‘permissible’ functions and fit it through the points of the
experimental covariance function. Next, the values of the fitted function are
used to build the kriging system (B.9) and to estimate the kriging variance
using (B.10). Table B.1 gives a number of covariance functions that can be
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Table B.1. Permissible covariance models for simple kriging. Here h denotes the
length of the lag vector h.

(a) spherical model C(h) =

(
c

h
1 − 3

2

`
h
a

´
+ 1

2

`
h
a

´3
i

if h ≤ a

0 if h > a

(b) exponential model C(h) = c exp(−h/a)

(c) Gaussian model C(h) = c exp(− [h/a]2)

(d) nugget model C(h) =

j
c if h = 0
0 if h > 0

Fig. B.1. Example of an exponential covariance model fitted to estimated covari-
ances

used for simple kriging (i.e., using a second-order stationary SF). Figure B.1
shows an example of an exponential model that is fitted to estimated covari-
ances. Of course, in case of second-order stationarity the parameter c should
be equal to the variance of the SF: c = σ2.

Any linear combination of a permissible covariance model is a permissible
covariance model itself. Often a combination of a nugget model and another
model is observed:

C(h) =
{

c0 + c1 if h = 0
c1 exp(−h/a) if h > 0 (B.12)

where c0 + c1 = σ2. In this case c0 is often used to model the part of the
variance that is attributable to observation errors and spatial variation that
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occurs at distances smaller than the minimal distance between sampling lo-
cations.

B.1.2 Practice

The practical application of simple kriging would involve the mapping of some
variable observed at a limited number of locations. In practice, the kriging
routine would consist of the following steps:

1. Estimate the mean and the covariance function from the data
2. Fit a permissible covariance model to the experimental covariance function

If kriging is used for making maps, the locations where the predictions are
made are usually located on a grid. So, when in the following steps we refer
to a prediction location s0 we refer to a node of this grid. Thus, the following
steps are repeated for every grid node:

3. Solve the simple kriging system
Using (B.9) and the covariance function C(h), the λi are obtained for
location s0.

4. Predict the value Z(s0)
With the λi, the observed values z(si) and the estimated value of µ in
(B.4) the unknown value of Z(s0) is predicted

5. Calculate the variance of the prediction error at s0

Using λi(s0), C(h) and σ2 the variance of the prediction error is calculated
with (B.10).

The result is a map of predicted properties on a grid and a map of associated
error variances.

B.2 Ordinary kriging

B.2.1 Theory

Ordinary kriging can be used if

1. Z(s) is a second-order stationary SF but the mean of Z(s) is unknown, or
2. Z(s) is an intrinsic SF.

An intrinsic SF has the following properties (Journel and Huijbregts, 1978):

E[Z(s2) − Z(s1)] = 0 (B.13)

E[Z(s2) − Z(s1)]2 = 2γ(h21) = 2γ(h) (B.14)

The mean difference between the RVs at any two locations is zero (i.e., con-
stant mean) and the variance of this difference is a function that only depends
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Fig. B.2. Example of permissible variogram models fitted to estimated semivari-
ances; one variogram represents a second-order stationary SF and reaches a sill, the
other represents a SF that is intrinsic but not second-order stationary

on the separation vector h. The function γ(h) = 1
2E[Z(s)−Z(s+h)]2 is called

the semivariogram or variogram. If a SF is second-order stationary, it is also
intrinsic, but not vice versa. If an intrinsic SF is also second-order stationary
than the following relation exists between the variogram and the covariance
function:

γ(h) = σ2 − C(h) : ∀ h . (B.15)

The difference between intrinsicity and second-order stationarity is further
explained by Fig. B.2. The figure shows two variograms. The first variogram
is the mirror image of the covariance function in Fig. B.1 (according (B.15))
and represents the variogram of a second-order stationary SF. Here, the vari-
ogram reaches a constant value called the sill which is equal to σ2 = 25. The
separation distance for which this sill is reached is called the range (here 1000
m). The range is the maximum distance over which the RVs at two locations
are correlated. The second variogram does not reach a sill and belongs to an
intrinsic SF that is not second-order stationary.

The ordinary kriging predictor is a weighted average of the surrounding
observations:

˜Z(s0) =
n

∑

i=1

λi Z(si) , (B.16)

with Z(si) the values of Z(s) at the observation locations (usually within a
limited search neighbourhood). As with the simple kriging predictor we want
(B.16) to be unbiased:
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E[ ˜Z(s0)−Z(s0)] = E

[

n
∑

i=1

λi Z(si) − Z(s0)

]

=
n

∑

i=1

λi E[Z(si)]−E[Z(s0)] = 0

(B.17)
As the unknown mean is constant, i.e., E[Z(si)] = E[Z(s0)]∀ si, s0, we find
the following ‘unbiasedness constraint’ for the λi:

n
∑

i=1

λi = 1 . (B.18)

Apart from being unbiased we also want to have a predictor with a minimum
variance of the prediction error. The variance of the error for predictor (B.16)
(ordinary kriging variance) can be written in terms of the semivariance as (see
de Marsily, 1986, for a complete derivation):

V [ ˜Z(s0)−Z(s0)] = E[ ˜Z(s0)−Z(s0)]2 = −
n

∑

i=1

n
∑

j=1

λi λj γ(hij)+2
n

∑

i=1

λi γ(hi0) .

(B.19)
We want to minimize the error variance subject to the constraint (B.18). In
other words, we want to find the set of values λi, i = 1, . . . , n for which (B.19)
is minimum without violating constraint (B.18). To find these, a mathematical
trick is used. First the expression of the error variance is extended as follows:

E[ ˜Z(s0) − Z(s0)]2 = −
n

∑

i=1

n
∑

j=1

λi λj γ(si − sj) + 2
n

∑

i=1

λi γ(si − s0)

− 2ν

{

n
∑

i=1

λi − 1

}

. (B.20)

If the predictor is unbiased, nothing has happened to the error variance as the
added term is zero. The dummy variable ν is called the Lagrange multiplier.
It can be shown that if we find the set of λi, i = 1, . . . , n and the value
of ν for which (B.20) has its minimum value, we have also have the set of
λi, i = 1, . . . , n for which the error variance of the ordinary kriging predictor
is minimal, while at the same time

∑

λi = 1. As with simple kriging, the
minimum value is found by partial differentiation of (B.19) with respect to
λi, i = 1, . . . , n and ν and equating the partial derivatives to zero. This results
in the following system of (n + 1) linear equations:

n
∑

j=1

λj γ(hij) + ν = γ(hi0) i = 1, . . . , n

n
∑

i=1

λi = 1

(B.21)

Using the Lagrange multiplier, the value for the (minimum) ordinary kriging
variance can be conveniently written as
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Table B.2. Permissible variogram models for ordinary kriging; here h denotes the
length of the lag vector h.

(a) spherical model γ(h) =

(
c

h
3
2

`
h
a

´
+ 1

2

`
h
a

´3
i

if h ≤ a

c if h > a

(b) exponential model γ(h) = c [1 − exp(−h/a)]

(c) Gaussian model γ(h) = c {1 − exp(− [h/a]2)}

(d) nugget model γ(h) =

j
0 if h = 0
1 if h > 0

(e) power model γ(h) = c hω 0 < ω < 2

V [ ˜Z(s0) − Z(s0)] =
n

∑

i=1

λi γ(hi0) + ν . (B.22)

A unique solution of the system (B.21) and a positive kriging variance is
only ensured if the variogram function is ‘conditionally non-negative definite’.
This means that for all possible s1, . . . , sn ∈ R

k (k equals 1, 2 or 3) and for
all λ1, . . . , λn ∈ R such that

∑

i λi = 1, the following inequality must hold:

n
∑

i=1

n
∑

j=1

λi λj γ(hij) ≥ 0 . (B.23)

This is ensured if one of the permissible variogram models (Table B.2) is fitted
to the experimental variogram data.

Models (a) to (d) are also permissible in case the SF is second-order sta-
tionary. The power model, which does not reach a sill, can be used in case of
an intrinsic SF but not in case of a second-order stationary SF.

The unknown mean µ and the Lagrange multiplier ν require some further
explanation. If all the data are used to obtain predictions at every location,
at all locations the same unknown mean µ is implicitly estimated by the or-
dinary kriging predictor. The Lagrange multiplier represents the additional
uncertainty that is added to the kriging prediction by the fact that the mean
is unknown and must be estimated. Therefore, if the SF is second-order sta-
tionary, the variance of the prediction error for ordinary kriging is larger than
that for simple kriging, the difference being the Lagrange multiplier. This can
be deduced from substituting in (B.22) γ(h) = σ2 − C(h) and taking into
account that

∑

λi = 1. This means that, whenever the mean is not exactly
known and has to be estimated from the data it is better to use ordinary
kriging, so that the added uncertainty about the mean is taken into account.

Even in simple kriging one rarely uses all data to obtain kriging predic-
tions. Usually only a limited number of data points close to the prediction
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location are used. This is to avoid that the kriging systems becomes too large
and the mapping too slow. The most common way of selecting data is to
centre an area or volume at the prediction location s0. Usually the radius is
taken about the size of the variogram range. A limited number of data points
that fall within the search area are retained for the kriging prediction. This
means that the number of data points becomes a function of the prediction
location: n = n(s0). Also, if ordinary kriging is used, a local mean is implic-
itly estimated that changes with s0. So we have µ = µ(s0) and ν = ν(s0)1.
This shows that, apart from correcting for the uncertainty in the mean and
being able to cope with a weaker form of stationarity, ordinary kriging has a
third advantage when compared to simple kriging: even though the intrinsic
hypothesis assumes that the mean is constant, using ordinary kriging with a
search neighbourhood enables one to correct for local deviations in the mean.
This makes the ordinary kriging predictor more robust to trends in the data
than the simple kriging predictor.

B.2.2 Practice

In practice ordinary kriging consists of the following steps:

1. Estimate the variogram
2. Fit a permissible variogram model

For every node on the grid repeat:

3. Solve the kriging equations
Using the fitted variogram model γ(h) in the n+1 linear equations (B.21)
yields, after solving them, the kriging weights λi, i = 1, . . . , n and the
Lagrange multiplier ν.

4. Predict the value Z(s0)
With the λi, the observed values z(si) (usually within the search neigh-
bourhood), and (B.16) the unknown value of Z(s0) is predicted.

5. Calculate the variance of the prediction error
Using λi, γ(h) and ν the variance of the prediction error is calculated with
(B.22).

B.3 Block-Kriging

Up to now we have been concerned with predicting the target variable at the
same support as the observations, usually point support. However, in many
1 For briefness of notation we will use n and ν in the kriging equations, instead of

n(s0) and ν(s0). The reader should be aware that in most cases, both the number
of observations and the Lagrange multipliers depend on the prediction location
s0, except for those rare occasions that a global search neighbourhood is used.
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cases one may be interested in the mean value of the target variable for some
area or volume much larger than the support of the observations. For in-
stance, one may be interested in the average porosity of a model block that
is used in a numerical groundwater model, or the average precipitation of
a catchment. These average quantities can be predicted using block kriging.
The term ‘block-kriging’ is used as opposed to ‘point-kriging’ or ‘punctual
kriging’ where variables are predicted at the same support as the observa-
tions. Any form of kriging has a point form and a block form. So, there is
simple point-kriging and simple block-kriging and ordinary point-kriging and
ordinary block-kriging etc. Usually, the term ‘point’ is omitted and the term
‘block’ is added only if the block-kriging form is used.

Consider the problem of predicting the mean Z of the target variable z
that varies with spatial coordinate s for some domain D with size |D| (length,
area or volume):

Z =
1
|D|

∫

s∈D
Z(s) ds . (B.24)

In case D is a block in three dimensions with upper and lower boundaries s1l,
s1u, s2l, s2u, s3l, s3u the spatial integral (B.24) stands for

1
|D|

∫

s∈D
Z(s) ds =

1
|s1u − s1l||s2u − s2l||s3u − s3l|

∫ s3u

s3l

∫ s2u

s2l

∫ s1u

s1l

Z(s1, s2, s3) ds1 ds2 ds3

(B.25)
Of course, the domain D can be of any form, in which case a more complicated
spatial integral is used.

Similar to point-kriging, the unknown value of Z can be predicted as linear
combination of the observations by assuming that the predictant and the
observations are partial realizations of a SF. So, the ordinary block kriging
predictor becomes:

˜Z =
n

∑

i=1

λi Z(si) , (B.26)

where the block-kriging weights λi are determined such that ˜Z is unbiased
and the prediction-error variance V [˜Z − Z] is minimal. This is achieved by
solving the λi from the ordinary block-kriging system:

n
∑

j=1

λj γ(hij) + ν = γ(si,D) i = 1, . . . , n

n
∑

i=1

λi = 1

. (B.27)

It can be seen that the ordinary block-kriging system looks almost the same
as the ordinary kriging system, except for the term on the right hand side
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Fig. B.3. Schematic examples of calculating the point–block semivariance (left) and
the within-block semivariance (right)

which is the average semivariance between a location si and all the locations
inside the domain D:

γ(si,D) =
1
|D|

∫

s∈D
γ(si − s) ds . (B.28)

When building the block-kriging system, the integral in (B.28) is usually not
solved. Instead, it is approximated by first discretizing the area of interest
in a limited number of grid nodes. Second, the semivariances are calculated
between the sampling location and the N nodes sj discretizing D (see Fig. B.3,
left figure). Third, the average semivariance is approximated by averaging
these semivariances as:

γ(si,D) � 1
N

N
∑

j=1

γ(hij) . (B.29)

The variance of the prediction error (block-kriging variance) of is given by

V [˜Z − Z] = E[˜Z − Z]2 =
n

∑

i=1

λi γ(si,D) + ν − γ(D,D) , (B.30)

where γ(D,D) is the average semivariance within the area of interest, i.e., the
average semivariance between all locations with D:

γ(D,D) =
1

|D|2
∫

s2∈D

∫

s1∈D
γ(h12) ds1 ds2 , (B.31)

which in practice is approximated by N grid nodes si discretizing D as (see
also Fig. B.3, right figure)
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γ(D,D) � 1
N2

N
∑

i=1

N
∑

j=1

γ(hij) . (B.32)

Here we have given the equations for ordinary block-kriging. The simple block-
kriging equations can be deduced in a similar manner from the simple kriging
equations (B.9) by replacing the covariance on the right hand side by the
point–block covariance C(si,D). The prediction error variance is given by
(B.10) with σ2 replaced by the within-block variance C(D,D) (the average
covariance of grid nodes within D) and C(si − s0) by C(si,D). The point–
block covariance and the within block covariance are defined as in (B.28) and
(B.31), with γ(s1 − s2) replaced by C(s1 − s2).

B.4 Block Indicator Kriging the Spatial Cumulative
Distribution Function

Kriging can also be used to predict the Spatial Cumulative Distribution Func-
tion (SCDF) of a target variable for an area or volume from observations taken
at a limited number of sampling locations. The SCDF gives for a given value
of the target variable (called ‘threshold’), the fraction of the universe (area or
volume) with a value smaller than or equal to this threshold. To predict the
SCDF the geostatistical technique called ‘block indicator kriging’ can be used.
Again it is assumed that the unknown spatial variation of target variable z is
a realization of a Stochastic Function Z(s). In the following we are interested
in predicting the SCDF of some universe U . For a given threshold zk the frac-
tion FU (zk) of U with Z(s) ≤ zk can be calculated with the following spatial
integral over U :

FU (zk) =
∫

s∈U
I(s; zk) ds , (B.33)

where I(s; zk) is the indicator transform for threshold zk:

I(s; zk) =
{

1 if Z(s) ≤ zk

0 if Z(s) > zk
(B.34)

Based on (B.33) the fraction FU (zk) can be estimated from n observations
Z(si) with the following ordinary block indicator kriging predictor:

F̂U (zk) =
n

∑

i=1

λi I(si; zk) , (B.35)

where λi are the block indicator kriging weights.
To calculate kriging weights the indicator variogram for threshold zk is

required, which is defined as:
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γI(si, sj ; zk) =
1
2
E[I(si; zk) − I(sj ; zk)]2 . (B.36)

As was the case with the regular variogram, if I(s; zk) is considered to be an
intrinsic Stochastic Function, the indicator variogram only depends on the
difference si − sj and we have:

γI(sj , si; zk) = γI(hij ; zk) = γI(hji; zk) . (B.37)

Besides the point–point indicator semivariance also the point–block indicator
semivariance and the within-block indicator semivariance are required, defined
respectively as:

γI(si,U ; zk) =
1
|U|

∫

s∈U
γ(si − s; zk) ds (B.38)

γI(U ,U ; zk) =
1

|U|2
∫

s2∈U

∫

s1∈U
γ(h12; zk) ds1 ds2 . (B.39)

The kriging weights are obtained by solving a set of linear equations that,
apart from the semivariances being replaced by indicator semivariances, is
similar to (B.21):

n
∑

j=1

λj γI(hij ; zk) + νI = γI(si,U ; zk) i = 1, . . . , n

n
∑

i=1

λi = 1

(B.40)

where the Lagrange multiplier νI is added to account for the additional unbi-
asedness condition

∑

λi = 1.
Finally, the variance of the prediction error is given by:

V [F̂U (zk) − FU (zk)] =
n

∑

i=1

λi γI(si,U ; zk) + νI − γI(U ,U ; zk) . (B.41)

The SCDF can be estimated by dividing the range of variation of Z(s) into
K +1 classes based on K thresholds zk, k = 1, . . . , K (where z1 < z2 < · · · <
zk < zk+1 < · · · < zK). By repeating for each threshold the block indicator
kriging with the indicator variograms belonging to that threshold, a series
of fractions below threshold F̂U (zk), k = 1, . . . , K is obtained. From these a
discrete approximation of the SCDF is constructed.

We end this appendix with some words on indicator variograms. Indicator
variograms must obey certain rules. If the Stochastic Function I(s; zk) is sta-
tionary, the indicator variogram will reach a sill which, theoretically, is equal
to E[I(s; zk)]{1 − E[I(s; zk)]}, i.e., the variance of a binomially distributed
variable. Of course, as E[I(s; zk)] is not known beforehand, we cannot fit a
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Fig. B.4. Examples of indicator variograms of a multivariate Gaussian Stochastic
Function

permissible function with exactly that sill. If Z(s) is stationary and multi-
variate Gaussian the indicator variograms will behave as shown in Fig. B.4.
For a threshold at the median value of the SCDF (p50 in Fig. B.4.) the sill is
largest (sill ≈ 0.25), the relative nugget (ratio of nugget to sill) smallest and
the range is largest.

When moving towards the tail of the distribution (low or high values)
(p25, p75 and p5, p95) the sill and range decrease and the relative nugget in-
creases. This shows that the values close to the median exhibit more spatial
contiguity than large or small values. For non-Gaussian Z(s) this does not have
to be the case. For instance, in case of heterogeneous hydraulic conductivity
in certain geological settings there may be a background of less contiguous
smaller and median values in combination with large values that are very well
spatially connected, forming preferential flow paths.



C

Processes and Time-Series Modelling

C.1 Introduction to Time-Series Modelling

The state of many phenomena in nature changes with time. This dynamic
‘behaviour’ can be described by time-series models, which can be used to esti-
mate target parameters. These may include expected values at certain times
such as the start of the growing season, or probabilities that critical levels are
exceeded at certain times or during certain periods. These target parameters
are estimated with the purpose of obtaining characteristics of the development
of a certain universe in time. Such characteristics can, for instance, be extrap-
olated to future situations. Inherently, the universe is assumed to develop in
time, following a process about which information is obtained by an observed
time series. Because of restricted knowledge, there is no certainty about the
‘true’ process, if any, along which a universe develops in time. Therefore, the
‘assumed’ process is referred to as a stochastic process. Typically, this process
is described by a model. One general class of models is that of time-series mod-
els as described by Box and Jenkins (1976) and Hipel and McLeod (1994).
It is emphasized here that in time-series modelling, the observed time series
itself is regarded as the realization of a process. This process, which depends
on the sampling interval, should not be confused with the underlying physical
processes which cause the variation in the observed time series, as well as
observation error. It is stressed that the assumption of a stochastic process
does not imply that nature is stochastic. Basically, stochastic processes are
data-based, and they are imaginary, enabling statistical inference.

C.2 Stationary Processes

A process is said to be stationary if its statistical properties do not change with
time. It is important to note that stationarity is not found in nature, whether
in geological, evolutionary or any other processes. Stationarity can only be
assumed, given the length of the period and the length of time intervals.
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Strong or strict stationarity means that all statistical properties are time-
independent, so they do not change after time shifts. It is often sufficient to
assume weak stationarity of order k, which means that the statistical moments
up to order k only depend on differences in time and not on time as such.
Second-order stationarity means that the stochastic process can be described
by the mean, the variance and the autocorrelation function. This is also called
covariance stationarity.

We now consider a discrete-time second-order stationary stochastic pro-
cess. Suppose that we have an equidistant time series of n observations,
z1, z2, z3, . . . , zn. The process cannot be exactly described, so {zt} is con-
sidered to be a realization of a stochastic process {Zt}. The mean is defined
as the expected value of Zt

µ = E[Zt] , (C.1)

which can be estimated from an observed time series by the simple estimator

µ̂ = z̄ =
1
n

n
∑

t=1

zt . (C.2)

The variance of the stochastic process {Zt} is defined as the expected value
of the squared deviations from the mean:

σ2
Z = E[(Zt − µ)2] . (C.3)

σ2
Z can be estimated by

̂σ2
Z =

1
n − 1

n
∑

t=1

(zt − z̄)2 . (C.4)

The autocovariance for lag k is defined by

Ck = E[(Zt − µ)(Zt+k − µ)] ,
C0 = σ2

Z .
(C.5)

For lag 0 the autocovariance equals the variance. The autocorrelation function
(ACF) for lag k is a scaled form of the autocovariance:

ρk =
Ck

C0
. (C.6)

The sample autocovariance function for lag k can be calculated from a time
series by

̂Ck =
1
nk

n−k
∑

t=1

(zt − z̄)(zt+k − z̄) , (C.7)

where nk is the number of summed terms, with a maximum of n − k; terms
for which a value of zt or zt+k is missing are excluded. The sample ACF is
estimated by

ρ̂k =
(

1 − k

n

)

̂Ck

̂C0

. (C.8)
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C.2.1 Autoregressive (AR) processes

For many environmental processes it is likely that the state at a particular
time is correlated with the state at previous times. These processes are referred
to as autoregressive (AR) processes. An autoregressive process of order 1, an
AR(1) process or Markov process, is given by

Zt − µ = φ1(Zt−1 − µ) + εt , (C.9)

where µ is the mean level, φ1 is the AR parameter, and εt is the error term with
zero mean and variance σ2

ε . εt is assumed to be identically and independently
distributed (IID), so

E[εtεt−k] =
{

σ2
ε if k = 0

0 if k �= 0 (C.10)

for all t.
Using the backward shift operator B, (C.9) can be written as

Zt − µ = φ1(BZt − µ) + εt , (C.11)

where BkZt = Zt−k . (C.11) can also be written as

φ(B)(Zt − µ) = εt , (C.12)

with φ(B) = 1 − φ1B.
An autoregressive process of order p, an AR(p) process, is given by

Zt − µ = φ1(Zt−1 − µ) + φ2(Zt−2 − µ) + · · · + φp(Zt−p − µ) + εt , (C.13)

or using the backward shift operator:

φ(B)(Zt − µ) = εt , (C.14)

where φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p is the autoregressive operator of
order p.

To obey the assumption of stationarity, the values of the AR parameters
are restricted. For an AR(1) process, this restriction is |φ1| < 1.

Important tools to identify an AR(p) process from an observed time series
are the ACF and the partial autocorrelation function (PACF). The theoretical
ACF for an AR(p) process is derived as follows. First, the terms of the AR(p)
process in (C.13) are multiplied by (Zt−k − µ):

(Zt−k − µ)(Zt − µ) = φ1(Zt−k − µ)(Zt−1 − µ) + φ2(Zt−k − µ)(Zt−2 − µ)
+ · · · + φp(Zt−k − µ)(Zt−p − µ) + (Zt−k − µ)εt .

(C.15)
By taking expectations of the terms in (C.15) we obtain

Ck = φ1Ck−1 + φ2Ck−2 + · · · + φpCk−p , (C.16)
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Fig. C.1. Theoretical ACF for an AR(1) process with φ1 = 0.8

with k > 0. E[(Zt−k −µ)εt] equals zero for k > 0, because Zt−k only depends
on the error process up to and including t − k and is uncorrelated with at.
The theoretical ACF is obtained by dividing (C.16) by C(0):

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p , (C.17)

with k > 0. Figures C.1 and C.2 give the theoretical ACFs for AR(1) processes
with φ1 = 0.8 and φ1 = −0.8, respectively (see (C.9)).

For a derivation of the PACF we refer to Hipel and McLeod (1994). Be-
cause of its definition, the PACF must be equal to zero after lag p for an AR(p)
process. The sample ACF and PACF of a deseasonalized series of water table
depths are given in Fig. C.3, which indicate an AR(1) process.

C.2.2 Moving average (MA) processes

In moving average processes the state at a certain time depends on a random
shock at that time and a random shock which occurred at one or more previous
times. A first-order moving average process, MA(1), is given by

Zt − µ = εt − θ1εt−1 . (C.18)

Here εt and εt−1 are random shocks which form part of a white noise process
with zero mean and finite and constant variance. Using the backward shift
operator, (C.18) can be written as

Zt − µ = θ(B)εt , (C.19)
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Fig. C.2. Theoretical ACF for an AR(1) process with φ1 = −0.8

Fig. C.3. Sample ACF and PACF for a deseasonalized time series of water table
depths.

where θ(B) = 1−θ1B is the MA operator of order one. The process is invertible
if |θ1| < 1. The process is stationary for all values of θ1 since εt is stationary.
The theoretical ACF for a MA(1) process with θ1 = 0.8 is given in Fig. C.4.

An MA(q) process is given by

Zt − µ = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q , (C.20)
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Fig. C.4. Theoretical ACF for a MA(1) process with θ1 = 0.8

or
Zt − µ = θ(B)εt , (C.21)

where θ(B) is the MA operator of order q. The process is stationary for all
values of the MA parameters.

C.2.3 Autoregressive moving average (ARMA) process

A time series may contain properties of an autoregressive process as well
as a moving average process. An autoregressive moving average ARMA(1,1)
process is given by

Zt − µ = φ1(Zt−1 − µ) + εt − θ1εt−1 . (C.22)

The ARMA(p, q) process is given by

φ(B)(Zt − µ) = θ(B)εt , (C.23)

where φ(B) and θ(B) are the AR(p) and the MA(q) operator, respectively.

C.3 Nonstationary Processes

Calculating differences allows a trend to be removed from a series:

∇Zt = (Zt − µ) − (Zt−1 − µ) (C.24)

∇2Zt = ∇Zt −∇Zt−1 (C.25)

and so on, until a series of differences is obtained with a constant mean in
time.
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C.3.1 Autoregressive Integrated Moving Average (ARIMA)
processes

Basically, an ARIMA model is an ARMA model for stationary differences:

(∇dZt − µ) =
θ(B)
φ(B)

εt . (C.26)

C.3.2 Seasonal nonstationary processes

A form of nonstationarity often encountered in environmental processes is
seasonality. Besides seasonal variation of the mean, the variance itself may
vary seasonally. For example, shallow water tables in the wet season may
vary more than deep water tables in the dry season, due to reduced storage
capacity of the unsaturated zone in the wet season. If the variance varies in
time, i.e., there is heteroscedasticity, the variance should be made constant by
an appropriate deseasonalization procedure or by a Box–Cox transformation
of the time series (Hipel and McLeod, 1994).

C.3.3 Seasonal integrated autoregressive moving average
(SARIMA) processes

In the case of a seasonal autoregressive moving average process, differences
are calculated for the so-called seasonal distance, with the aim of removing
a seasonal trend. For example, the seasonal distance for monthly values is
twelve. The general notation of a SARIMA(p,d,q)×(P,D,Q) model is

(∇d∇D
s Zt − µ) =

φ(B)Φ(Bs)
θ(B)Θ(Bs)

εt . (C.27)

C.4 Transfer Function–Noise Processes

A class of time-series models which describe the linear dynamic relationship
between one or more input series and an output series is that of the transfer
function model with added noise (TFN) developed by Box and Jenkins (1976).
For applications to environmental series, we refer to Hipel and McLeod (1994).
The general TFN model is given schematically in Fig. C.5.

If one input series {Xt} is considered, the TFN model is defined as

Zt = Z∗
t + Nt , (C.28)

where

Z∗
t =

r
∑

i=1

δiZ
∗
t−i + ω0Xt−b −

s
∑

j=1

ωjXt−j−b (C.29)
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Fig. C.5. Schematic representation of a transfer function model with added noise.
X1,t, X2,t, X3,t, . . . are input variables. Z∗

1,t, Z
∗
2,t, Z

∗
3,t, . . . are transfer components.

εt is an error term which forms a series of independent and identically distributed
disturbances, with finite and constant variance σ2

ε . Nt is the noise component. Zt is
the output variable

is the transfer component, and

Nt − µ =
p

∑

i=1

φi(Nt−i − µ) + εt −
q

∑

j=1

θjεt−j , (C.30)

is the noise component. The subscript b is a pure delay, which is the number
of time steps after which a reaction to an input change is observed in the
output. The extension to more input series is straightforward.

The transfer component in (C.28) can be written as

Z∗
t = ν0Xt + ν1Xt−1 + ν2Xt−2 + · · ·

= ν(B)Xt .
(C.31)

The weights ν0, ν1, ν2, . . . form the impulse–response function ν(B):

ν(B) =
ω(B)
δ(B)

=
ω0 − ω1B − ω2B

2 − · · · − ωsB
s

1 − δ1B − δ2B2 − · · · − δrBr
. (C.32)

The theoretical impulse–response function reflects the same autoregressive
and moving average characteristics as the theoretical autocorrelation function,
given in Sect. C.2.

Box and Jenkins (1976) present a procedure for identifying the order of
TFN models. This procedure is summarized by the following steps:
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1. An appropriate univariate time-series model is fitted to the input se-
ries {xt}. The resulting white noise sequence of residuals is called the
prewhitened input series {αt}.

2. The output series {zt} is filtered by the univariate time-series model for
the input series obtained in the previous step. This results in a series {βt}.

3. The residual cross-correlation function ρ̂αβ(k) (residual CCF) is calculated
for the {αt} and {βt} series:

ρ̂αβ(k) =
(

1 − k

n

)

̂Cαβ(k)
√

̂Cα(0) ̂Cβ(0)
, (C.33)

where

̂Cαβ(k) =
1
nk

n−k
∑

t=1

αtβt+k (C.34)

for positive lags, and nk is the number of summed terms. Terms with
missing values are excluded. ̂Cα(0) and ̂Cβ(0) are the sample variances of
the α series and the β series, respectively, calculated by (C.4).

4. Based on the residual CCF given by (C.33), the parameters required in
the transfer function ν(B) in (C.32) are identified. Box and Jenkins (1976)
show that the theoretical CCF between αt and βt is directly proportional
to ν(B).

5. Next, a noise model is identified for the series

n̂t = (zt − z̄) − ν̂(B)(xt − x̄) , (C.35)

by using the sample ACF and sample PACF for n̂t.
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Diagrams on Sample Sizes for Sampling in
Space–Time

In this appendix diagrams are presented that can be used for optimizing
spatio-temporal sampling. Figures D.1 to D.4 can be used for optimizing sam-
pling in space and time in order to estimate the spatio-temporal mean using
ordinary kriging. The underlying spatio-temporal Stochastic Function is as-
sumed to be second-order stationary with a spherical semivariogram. Given
the (surface) area |S|, period length |T |, variance σ2 of the underlying Stochas-
tic Function, spatial range as, and temporal range at, the figure shows isolines
of the ratio of prediction-error variance and the variance of the Stochastic
Function, σ2

obk/σ2. For more explanation we refer to Sect. 15.3.4.
Figures D.5 to D.8 can be used for optimizing sampling in space and time

when predicting hydraulic head using a numerical groundwater flow model
and the Kalman filter. These figures can be used as follows. If the hydraulic
parameters S (storage coefficient) and T (transmissivity) are given as well
as the discretization in space (δs) and time (δt), a combination of sampling
distances in space (∆s) and time (∆t) can be chosen to achieve a given ratio
between mean prediction-error variance and the variance of the model error,
σ2

kf/σ2
Q. See Sect. 16.2.4 for more explanation.
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Fig. D.1. Sampling on a space–time grid (square grid pattern in space) for predict-
ing the spatio-temporal mean by space–time kriging. The figure shows the variance
ratio σ2

obk/σ2 for as/
p|S| = 0.1 and at/|T | = 0.1, 0.5, 1.0, 2.0 as a function of the

number of sampling locations ns and sampling times nt.
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Fig. D.2. Sampling on a space–time grid (square grid pattern in space) for predict-
ing the spatio-temporal mean by space–time kriging. The figure shows the variance
ratio σ2

obk/σ2 for as/
p|S| = 0.5 and at/|T | = 0.1, 0.5, 1.0, 2.0 as a function of the

number of sampling locations ns and sampling times nt.
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Fig. D.3. Sampling on a space–time grid (square grid pattern in space) for predict-
ing the spatio-temporal mean by space–time kriging. The figure shows the variance
ratio σ2

obk/σ2 for as/
p|S| = 1 and at/|T | = 0.1, 0.5, 1.0, 2.0 as a function of the

number of sampling locations ns and sampling times nt.
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Fig. D.4. Sampling on a space–time grid (square grid pattern in space) for predict-
ing the spatio-temporal mean by space–time kriging. The figure shows the variance
ratio σ2

obk/σ2 for as/
p|S| = 2 and at/|T | = 0.1, 0.5, 1.0, 2.0 as a function of the

number of sampling locations ns and sampling times nt.
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Fig. D.5. Lines of equal normalised prediction-error variance σ2
kf/σ2

Q for space–
time prediction of groundwater heads with a Kalman filter using Grid Sampling.
The covariance model is spherical with parameters as and σ2

Q. Here as/δs = 1, 5,
10 and 20 and the system property α = 0.01
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Fig. D.6. Lines of equal normalised prediction-error variance σ2
kf/σ2

Q for space–
time prediction of groundwater heads with a Kalman filter using Grid Sampling.
The covariance model is spherical with parameters as and σ2

Q. Here as/δs = 1, 5,
10 and 20 and the system property α = 0.1
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Fig. D.7. Lines of equal normalised prediction-error variance σ2
kf/σ2

Q for space–
time prediction of groundwater heads with a Kalman filter using Grid Sampling.
The covariance model is spherical with parameters as and σ2

Q. Here as/δs = 1, 5,
10 and 20 and the system property α = 1
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Fig. D.8. Lines of equal normalised prediction-error variance σ2
kf/σ2

Q for space–
time prediction of groundwater heads with a Kalman filter using Grid Sampling.
The covariance model is spherical with parameters as and σ2

Q. Here as/δs = 1, 5,
10 and 20 and the system property α = 10



References
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π-estimator, 114

ξ-expectation, 21

ξ-unbiasedness, 21, 22

Abundance, 113

Action Level, 23, 85

Adaptive Cluster Sampling, 113–115,
183

Adjoint model, 272

Akaike’s Information Criterion (AIC),
192

Aliquot, 6

Allocation (of sample sizes), 89, 91

optimal allocation, 94–95

proportional allocation, 95

ANOVA model, 146

AR model, 297–298

AR(p) model, 266, 297

AR(1) model, 195, 297, 298

ARIMA model, 301

ARMA model, 204, 267, 300, 301

ARX model, 267

Autocorrelation, 194

Autocorrelation function (ACF), 296

partial autocorrelation function
(PACF), 297

sample autocorrelation function
(sample ACF), 192

sample partial autocorrelation
function (sample PACF), 192

Autocovariance, 296

Autocovariance function (ACF), 296

Autokrigeable system, 236, 255

Autoregressive integrated moving
average process, see ARIMA
model

Autoregressive moving average process,
see ARMA model

Autoregressive process, see AR model

BACI design, 231–234
Backward shift operator, 204, 297
Basic design type , see Design type
Bayes Information Criterion (BIC), 192
Bayes’ formula, 138
Before-After-Control-Impact design, see

BACI design
Best Linear Unbiased Estimator, 21
Best Linear Unbiased Predictor, 22, 43,

165, 258
Between-unit variance, 98, 130, 223
Boundary effect, 14, 135, 150, 152
Box–Cox transformation, 206, 301
Box–Jenkins model, 266
Bulking (of aliquots), see Composite

sampling

Calibration, 260
Calibration (of time-series models), 192,

193
Censoring, 37, 38
Change of mean, 228–230
Classification, 18, 24–25, 58, 149, 159
Cluster (in Adaptive Cluster Sampling),

114
Cluster Random Sampling, 60, 76,

99–103, 105, 106, 130, 143, 182
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Composite (aliquot), 6
Composite estimator, 226–228, 230
Composite sampling, 50–55
Composite sampling (for hot spot

detection)
sequential sweep-out method,

162–163
simple sweep-out method, 162
two-way composite sampling, 163

Compound design type, see Design type
Confidence interval, 20, 24, 29

width of confidence interval, 194, 196
Confidence level, 20, 24
Constant time-interval, 181, 183, 185,

192, 206, 231
Consumer’s risk, 137, 138
Contour map, 29, 34
Convenience sampling, 13
Correlation

correlation coefficient, 195, 196,
203–205

correlation length, 192, 195, 203
serial correlation, 195, 197, 203

Cost function, 94, 98, 223, 241, 277
Costs minimization, 57, 59, 61, 63
Covariance model

exponentialal covariance model, 284
Gaussian covariance model, 284
nugget covariance model, 284
spherical covariance model, 284

Coverage, 128
Critical region, 23
Cross-correlation function

residual cross-correlation function
(residual CCF), 192

Cyclic variation, 181, 183

D-optimal design, 171
Data assimilation, 268–273

variational data assimilation, 271, 272
Density, 113
Deseasonalization, 206, 298, 301
Design effect, 41, 94
Design type

basic design type, 75–77
compound design type, 75–77, 106
sequential design type, 75–77,

112–113, 183
spatial design type, 75–77, 108

two-phase design type, 75–77,
120–125, 183

Design-unbiasedness, see p-unbiasedness
Detectability, 39, 49, 126
Detection, 18, 25, 69, 136
Detection limit, 39, 53
Diagnostic checking (of time-series

model), 192, 193
Domain (of interest), 29

non-point domain, 61
point domain, 61
small domain, 144–147

Double sampling, see Two-Phase
Random Sampling

Edge unit (in Adaptive Cluster
Sampling), 114

Entropy, 58
Environmental monitoring, 63, 109
Equivalent number of independent

observations, 195, 196, 203
Equivalent sample size, 43, 94, 98, 103
Error source, 38–40
Estimation, 19–22

interval estimation, 20
point estimation, 20

Estimation error, 19
Estimator, 19, 21
Euler–Lagrange equations, 272
Evaluation

ex-ante evaluation, 30, 37, 41
ex-post evaluation, 37

Exogenous variable, 250

False acceptance error, 58, 86
False rejection error, 58, 86, 89
Fitting (of time-series model), see

Calibration (of time-series model)

Generalized Least Squares, 174, 243,
244

Genetic algorithm, 279–280
Geometric measure, 58
Geostatistical sampling, 135, 154–158
Geostatistical simulation, 165
Gradient-based optimization, 278

Conjugate Gradient method, 278, 280
Downhill Simplex method, 278, 280

Grid
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interpenetrating space–time grid,
212, 238, 242, 255

space–time grid, 245, 252
Grid pattern, 150
Grid Sampling

Centred Grid Sampling, 133, 137,
149–152

Random Grid Sampling, see
Systematic Random Sampling

Grid spacing, 106, 150–152, 239, 245,
252

Group screening, 53
Group testing, see Group screening

Heteroscedasticity, 301
Hexagonal grid, 150
Horvitz-Thompson estimator, see

π-estimator
Hot spot, 136, 158–164
Hypothesis

alternative hypothesis, 23
null-hypothesis, 23, 31, 85, 185

Identification (of time-series models),
192, 193, 302

Impulse-response function, 302
Inference, 15–25
Infill sampling, 158
Interval length, 185, 189, 195, 203, 239,

245, 252
Intervention analysis, 203–206
Intrinsic correlation, 255
Intrinsicity, 286
Isotopy, 254

K-means clustering, 91–92, 153–154
Kalman filter, 255–264, 266–268, 270

ensemble Kalman filter, 271
extended Kalman filter, 270

Kalman gain, 258, 271
Kalman smoother, 271
Kriging

block co-kriging, 237
block indicator kriging, 292–294
block-kriging, 186, 289–292
block-kriging with uncertain data,

244
IRF-k kriging, 152
ordinary kriging, 285–289

point-kriging, 189, 290
simple kriging, 281–285
space–time block-kriging, 238
space–time kriging, 251–255
universal kriging, 152, 158

Kriging variance
block-kriging variance, 133, 135, 291
ordinary kriging variance, 287
simple kriging variance, 282, 283

Line-Intercept Random Sampling,
127–129

Line-Transect Random Sampling,
125–127

MA model, 298–300
MA(q) model, 299
MA(1) model, 298

Mapping
spatio-temporal mapping, 249

Markov Chain Sampling, 108, 182
Markov process, 196, 204, 205, 297
Matched sample, 226, 230
Maximum kriging variance, 155, 157
Maximum likelihood (for variogram

estimation), 174–175
Mean

annual mean, 179, 183, 192
current mean, 226–228, 242
model mean, 17, 19, 21–22, 42–44,

180, 185, 192–197
spatial mean, 19–20, 22–23, 34,

42–44, 132
spatio-temporal mean, 219, 220,

223–225, 238–242
temporal mean, 42–44, 184–186

Mean kriging variance, 135, 155, 156
Mean squared shortest distance, 58,

153–155
Measurement error, 39, 51, 55, 82
Measuring device, 39, 51
Method-of-moments (for variogram

estimation), 173–174
Minimum detectable difference, 86, 88,

89
Model-unbiasedness, see ξ-unbiasedness
Monitoring, 2, 4

ambient monitoring, see status
monitoring
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compliance monitoring, see regulatory
monitoring

effect monitoring, 4
regulatory monitoring, 3
status monitoring, 3, 191
trend monitoring, 3

Monitoring network, 203, 213, 260
Monitoring period

length of monitoring period, 191, 192,
198

Monte Carlo simulation, see Stochastic
simulation

Moving average process, see MA model

Narrow-strip method, 126
Nested sampling (for variogram

estimation)
balanced nested sampling, 167–168
unbalanced nested sampling, 168

Network (in Adaptive Cluster
Sampling), 114

Non-response, 39, 182
Nonstationarity, 300
Nonstationary stochastic process, 300
Normal equations, 244
Nugget (of variogram), 50, 150, 166
Nugget-to-sill ratio, 133–136, 150, 154,

156, 157, 187, 189, 241

Optimal matching proportion (in
rotational sampling), 227

Optimization algorithm, 277–280
Ordinary Least Squares, 244

Partial-differential equation, 256, 266
stochastic partial-differential

equation, 269
Particle filter, 271
p-expectation, 20
Phased sampling, 159–161
Point sampling, 57, 74
Point support, 6
Point-Transect Random Sampling, 127
Poisson process, 21
Pollutant, 23, 39, 63, 223
Population, 70, 74
Positive definiteness, 283
Post-stratification, 116–117
Power (of test), 24, 31, 58, 86–89, 203

Prediction, 18, 22–23
interval prediction, 22
point prediction, 22

Prediction error, 22, 132
Prediction interval, 23, 245
Primary unit (in Two-Stage Random

Sampling), 95, 132, 222, 223
Prior information, 30, 38
Probabilities-Proportional-to-Size

Sampling, 76, 110–111, 183
pps-Sampling of line-transects, 127
Systematic pps-Sampling, 111–112

Probability sampling, 14
Protocol, 30, 35, 37
Pseudo-cyclic variation, see Cyclic

variation
p-unbiasedness, 19, 68, 82
Purposive sampling, 14

Quadrat, 6
Quality maximization, 57, 59, 61
Quality measure, 57–58
Quality requirement, 31, 32, 35, 59,

61–63, 245, 246
Quantity

global quantity, 1, 73, 181, 219
local quantity, 1, 139, 249

Random Field, see Stochastic Function
multiple spatial random field, 267
space–time random field, 268

Random sampling, see Probability
sampling

Random Transect Sampling, 101, 106
Randomization restriction, 59, 74
Range (of variogram), 133, 150, 156,

166, 189, 286, 289
Ranked Set Sampling, 121, 123
Ratio estimator, 119, 126
Regression estimator, 38, 117–119

for Rotational Sampling, 227
for Two-Phase Random Sampling,

123
general regression estimator, 117
generalized regression estimator (for

small domains), 145–147, 250
multiple regression estimator, 118
simple regression estimator, 118, 147

Regression model, 5, 83, 119, 146
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Simple Linear Regression model, 146
Representative elementary volume, 50
Response time, 192, 261–263
Rotational design, 226, 230, 231
Rotational panel, see Rotational design
Rotational pattern, 212

r-period rotational pattern, 213
Rotational Sampling, 213

Sample, 6
Sample selection, 57
Sample size, 6
Sample support, 6, 30, 48–52
Sampling, 6
Sampling density, 38, 132, 149, 164, 263
Sampling design, 15, 16
Sampling device, 30
Sampling error, 38
Sampling event, 6
Sampling frame, 7, 30
Sampling frequency, 38, 179, 183, 185,

191–199, 263
normalized sampling frequency, 196

Sampling location, 6
Sampling pattern, 7
Sampling strategy, 75
Sampling time, 6
Sampling unit, 6
Sampling variance, 20
Sampling with partial replacement, see

Rotational design
SARIMA model, 301
Scheme, 28–33
Seasonal autoregressive integrated

moving average process, see
SARIMA model

Seasonal distance, 301
Seasonal nonstationarity, see Seasonal-

ity
Seasonal trend, see Seasonality
Seasonality, 301
Secondary unit (in Two-Stage Random

Sampling), 96, 132, 222, 223
Self-weighting sample, 92
Separable covariance model, 253
Sequential design type, see Design type
Sequential Random Sampling

Accelerated Sequential Random
Sampling, 112–113

Classical Sequential Random
Sampling, 112–113

Group Sequential Random Sampling,
112–113

Sill (of variogram), 50, 133, 150, 186,
189, 286, 293

Simple Random Sampling, 20, 41, 75,
80–89

Simulated annealing, 130, 135, 154, 158,
160, 278–279

Soil sampling, 50, 125
Space filling sampling, see Spatial

coverage sampling
Space–time geometric anisotropy, 238,

251
Space–Time Grid Sampling, 212
Space–time semivariance, 251
Spatial coverage (of plant species), 62
Spatial Coverage Sampling, 58, 133,

152–154
Spatial Cumulative Distribution

Function, 62, 70, 73, 83, 92, 98,
139, 220, 226, 292

Spatial design type, see Design type
Spatial mean temporal trend, 220,

230–231, 242
Split panel, 213
Square grid, 150
Standard error, 20
State–space formulation, 255, 256, 259
Static design, 224, 230
Static pattern, 212
Static Sampling, 212
Static-synchronous design, 224, 226,

229, 231
Static-synchronous pattern, 212
Static-Synchronous Sampling, 212
Stationarity, 21, 281, 295

second-order stationarity, 281, 286
Statistical measure, 58
Step intervention, 204
Stochastic Function (SF), 165, 281

intrinsic SF, 285
second-order stationary SF, 281

Stochastic process, 191
discrete-time stochastic process, 191
stationary stochastic process, 194,

295
Stochastic simulation, 63
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Stratification, 75, 90–91, 120–121
compact geographical stratification,

91–92
random geographical stratification,

109–110
Stratified Simple Random Sampling,

75, 89–95
Subsampling, 51, see Two-Phase

Random sampling
Survey, 1
Synchronous design, 223, 226, 228, 230
Synchronous pattern, 212

r-period synchronous pattern, 213
Synchronous Sampling, 212
Synthetic estimator (for small domains),

144–145, 250
System noise, see White noise
Systematic Random Sampling, 76,

103–106, 183
Systematic sampling in time, 181, 185,

194, 197, 231
Systematic Unaligned Sampling, 108

Target parameter, 29
Target quantity, 29
Target universe, 31
Target variable, 29
Temporal sampling, 179, 181
Temporal universe, 179
Temporal variation, 185
Test

one-sample test, 23
test statistic, 23
two-sample test, 23

Testing (of hypothesis), 18, 23–24, 34,
58, 85–89

TFN model, 301
Time series

equidistant time series, 43, 185,
192–206, 296

unequally spaced time series, 203
Time-series analysis, 185
Time-series model, 185
Time-series modelling, 179, 191–206
Transect sampling (for variogram

estimation), 166–167
Transfer function–Noise process, see

TFN model

Trend
linear trend, 197, 199–201, 203, 232
step trend, 197, 198

Trend detection (in time series), 180
Trend testing, 183, 185

nonparametric trend testing, 201, 203
Triangular grid, 150
t-test

paired t-test, 229
two-sample t-test, 228

Two-phase design type, see Design type
Two-Phase Random Sampling

Two-Phase Random Sampling for
Regression, 123–125

Two-Phase Random Sampling for
Stratification, 120–121

Two-Stage Random Sampling, 75,
95–99

Type I error, see False rejection error
Type II error, see False acceptance error

Universe, 5
continuous universe, 6, 48
discrete universe, 6

Update
measurement update, 257
time update, 257–259, 271

Utility measure, 58

Validation (of time series model), 192
Variable-Circular-Plots Random

Sampling, 127
Variogram, 165–175

experimental variogram, 169
pseudo cross-variogram, 235
spatio-temporal variogram, 252

Variogram model
exponentialal variogram model, 288
Gaussian variogram model, 288
nugget variogram model, 288
spherical variogram model, 288

Vegetation survey, 62

Weighted Least Squares, 119, 123, 171
White noise, 257, 298, 303
Within-unit variance, 98, 130, 223




