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Computing Roadmaps and Connected Compo-
nents of Algebraic Sets

In this chapter, we compute roadmaps and connected components of algebraic
sets. Roadmaps provide a way to count connected components and to decide
whether two points belong to the same connected component. Done in a
parametric way the roadmap algorithm also gives a description of the semi-
algebraically connected components of an algebraic set. The complexities of
the algorithms given in this chapter are much better than the one provided
by cylindrical decomposition in Chapter 11 (single exponential in the number
of variables rather than doubly exponential).

We first define roadmaps. Let S be a semi-algebraic set. As usual, we
denote by π the projection on the X1-axis and set Sx={y∈Rk−1 F (x, y)∈S}.

A roadmap for S is a semi-algebraic set M of dimension at most one
contained in S which satisfies the following roadmap conditions:

− RM1 For every semi-algebraically connected component D of S, D∩M is
semi-algebraically connected.

− RM2 For every x ∈ R and for every semi-algebraically connected compo-
nent D ′ of Sx, D ′∩M � ∅.

The construction of roadmaps is based on the critical point method,
using properties of pseudo-critical values provided in Section 15.1. In Sec-
tion 15.2 we give an algorithm constructing a roadmap for Zer(Q, Rk),
for Q∈R[X1,� , Xk]. As a consequence, we get an algorithm for computing
the number of connected components (the zero-th Betti number) of an alge-
braic set, with single exponential complexity.

In Section 15.3 we obtain an algorithm giving a semi-algebraic description
of the semi-algebraically connected components of an algebraic set. The idea
behind the algorithm is simple: we perform parametrically the roadmap algo-
rithm with a varying input point.



15.1 Pseudo-critical Values and Connectedness

We consider a semi-algebraic set S as the collection of its fibers Sx, x∈R. In
the smooth bounded case, critical values of π are the only places where the
number of connected components in the fiber can change.

More precisely, we can generalize Proposition 7.6 to the case of a general
real closed field.

Proposition 15.1. Let Zer(Q,Rk) be a non-singular bounded algebraic hyper-
surface, [a, b] such that π has no critical value in [a, b], and d∈ [a, b].

a) The number of semi-algebraically connected components of Zer(Q,Rk)[a,b]

and Zer(Q,Rk)d are the same.
b) Let S be a semi-algebraically connected component of Zer(Q, Rk)[a,b].

Then, for every d∈ [a, b], Sd is semi-algebraically connected.

Proposition 15.1 immediately implies.

Proposition 15.2. Let Zer(Q,Rk) be a bounded non-singular algebraic hyper-
surface and [a, b] such that π has no critical value in [a, b]. Let S be a
semi-algebraically connected component of Zer(Q, Rk)[a,b]. Then, for every
d∈ [a, b], Sd is semi-algebraically connected.

Proposition 15.3. Let Zer(Q,Rk) be a non-singular algebraic hypersurface
and S a semi-algebraically connected component of Zer(Q,Rk)[a,b]. If S[a,b) is
not semi-algebraically connected then b is a critical value of π on Zer(Q,Rk).

Proof of Proposition 15.1: Over the reals (the case R = R), the two
properties are true according to Proposition 7.6.

We now prove that Properties a and b hold for a general real closed field,
using Theorem 5.46 (Semi-algebraic triviality) and the transfer principle (The-
orem 2.80).

We first prove Property a.
Let {m1,� , mN} be a list of all monomials in the variables x1,�xk with

degree at most the degree of Q. To an element cof = (c1, � , cN) of RN , we
associate the polynomial

Pol(cof)=
∑
i=1

N

cimi.

Denoting by cofi(Q) the coefficient of mi in Q and by

cof(Q)= (cof1(Q),� , cofN(Q)),

we have Q =Pol(cof(Q)).
Consider the field Ralg of real algebraic numbers and the

subset W ⊂Ralg
N+2+k defined by

W = {(cof, a′, b′, x1� , xk) F a′≤ x1≤ b′,Pol(cof)(x1,� , xk) =0}.
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The set W can be viewed as the family of sets Zer(Pol(cof), Ralg
N+2+k)[a′,b′],

parametrized by (cof,a′, b′)∈Ralg
N+2. We also consider the subset W ′⊂Ralg

N+1+k

defined by

W ′= {(cof, d′, x1� , xk) F Pol(cof)(d′,� , xk)= 0}.

The set W ′ can be viewed as the family of sets Zer(Pol(cof), Ralg
N+1+k)d′,

parametrized by (cof, d′)∈Ralg
N+1. According to Theorem 5.46 (Hardt’s trivi-

ality) applied to W (resp. W ′), there is a finite partition A (resp. B) of Ralg
N+2

(resp. Ralg
N+1) into semi-algebraic sets, and for every A∈A (resp. B ∈B) the

sets Zer(Pol(cof),Ralg
N+2+k)[a′,b′] (resp. Zer(Pol(cof),Ralg

N+1+k)d′) are semi-alge-
braically homeomorphic as (cof, a′, b′) varies in A (resp. (cof, d′) varies in B).
Hence, they have the same number of bounded semi-algebraically connected
components �(A) (resp. �(B)).

Using the transfer principle (Theorem 2.80), for every real closed field R
and every (cof, a′, b′) ∈ Ext(A, R) (resp. (cof, d′) ∈ Ext(B, R)), the
set Zer(Pol(cof),RN+2+k)[a′,b′] has �(A) (resp. Zer(Pol(cof), RN+1+k)d′

has �(B)) bounded semi-algebraically connected components. Moreover, since
the connected components of

WA = {(cof, a′, b′, x1,� , xk)∈W |(cof, a′, b′)∈A}

are semi-algebraic sets defined over Ralg, there exists, for every A ∈A, �(A)
quantifier free formulas

Φ1(A)(cof, a′, b′, x1,� , xk),� , Φ�(A)(A)(cof, a′, b′, x1,� , xk),

such that for every real closed field R and for every (cof, a′, b′) ∈ Ext(A, R)
the semi-algebraic sets

Cj = {(x1� , xk)∈Rk F Φj(A)(cof, a′, b′, x1,� , xk)}

for 1 ≤ j ≤ �(A) are the bounded semi-algebraically connected components
of Zer(Pol(cof),RN+2+k)[a′,b′].

Let A (resp. B) be the set of the partition A (resp. B) such
that cof(Q), a, b)∈Ext(A,R) (resp. (cof(Q), d) ∈ Ext(B, R)), and
let E be the semi-algebraic set of (cof, a′, b′, d′) ∈ (Ralg)N+3 such
that (cof, a′, b′)∈A, (cof, d′)∈B, Zer(Pol(cof), Ralg

N+2+k) is a non-singular
algebraic hypersurface, π has no critical value over [a′, b′], and a′<d′< b′.
Using the transfer principle (Theorem 2.80), the set E is non-empty
since Ext(E,R) is non-empty, and hence Ext(E, R) is non-empty.

Given (cof, a′, b′, d′) ∈ Ext(E, R), the number of bounded connected
components of Zer(Pol(cof),RN+2+k)[a′,b′] is equal to the number of bounded
connected components of Zer(Pol(cof), RN+2+k)d′, since Property 1 holds
for the reals. It follows that �(A) = �(B), so the number of bounded semi-
algebraically connected components of Zer(Q,Rk)[a,b] is equal to the number
of bounded semi-algebraically connected components of Zer(Q,Rk)d.
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To complete the proof of the proposition, it remains to prove Property b.
According to the preceding paragraph, there exist j such that

S = {(x1� , xk)∈Rk F Φj(A)(cof(Q), a, b, x1,� , xk)}.

Since Property b is true over the reals, the formula expressing that for
every (cof, a′, b′, d′)∈Ext(E, R) the set

{(x2,� , xk)∈Rk F Φj(A)(cof(Q), a, b, d′,� , xk)}

is non-empty is true over the reals. Using the transfer principle (The-
orem 2.80), this formula is thus true over any real closed field. Thus, Sd

is non-empty. �

In the non-smooth case, we again consider X1-pseudo-critical values intro-
duced in Chapter 12. These pseudo critical-values will also be the only
places where the number of connected components in the fiber can change.
More precisely, generalizing Proposition 15.2 and Proposition 15.3, we prove
the following two propositions, which play an important role for computing
roadmaps.

Proposition 15.4. Let Zer(Q, Rk) be a bounded algebraic set and S a
semi-algebraically connected component of Zer(Q, Rk)[a,b]. If v ∈ (a, b)
and [a, b] \ {v} contains no X1-pseudo-critical value on Zer(Q, Rk), then Sv

is semi-algebraically connected.

Proposition 15.5. Let Zer(Q, Rk) be a bounded algebraic set and let S

be a semi-algebraically connected component of Zer(Q, Rk)[a,b]. If S[a,b)

is not semi-algebraically connected, then b is an X1-pseudo-critical value
of Zer(Q,Rk).

Before proving these two propositions, we need some preparation. Suppose
that the polynomial Q ∈ R[X1, � , Xk], and (d1, � , dk) satisfy the following
conditions:

− Q(x)≥ 0 for every x∈Rk,
− Zer(Q,Rk)⊂B(0, 1/c) for some c≤ 1, c∈R,
− d1≥ d2� ≥ dk,
− deg (Q)≤ d1, tDegXi

(Q)≤ di, for i= 2,� , k.

Let d̄i be an even number >di, i = 1,� , k, and d̄ = (d̄1,� , d̄k).
Let Gk(d̄ , c) = cd̄1 (X1

d̄1 + � + Xk
d̄k + X2

2 + � + Xk
2)− (2 k − 1), and note

that ∀ x∈B(0, 1/c) Gk(d̄ , c)(x)< 0.

Using Notation 12.35, we consider

Def(Q, ζ) = ζGk(d̄ , c)+ (1− ζ) Q,

Def+(Q, ζ) = Def(Q, ζ)+ Xk+1
2 .
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The algebraic set Zer(Def+(Q, ζ),R〈ζ 〉k+1) has the following property which
is not enjoyed by Zer(Def(Q, ζ),R〈ζ 〉k).

Lemma 15.6. Let Zer(Q, Rk) ⊂ B(0, 1/c) be a bounded
algebraic set. For every semi-algebraically connected component D

of Zer(Q,Rk)[a,b] there exists a semi-algebraically connected component D ′

of Zer(Def+(Q, ζ),R〈ζ 〉k+1)[a,b] such that limζ (D ′)= D ×{0}.

Proof: Let y = (y1, � , yk) be a point of Ext(D, R〈ζ 〉). Since y ∈B(0, 1/c),
we have Gk(d̄ , c)(y) < 0, hence Def(Q, ζ)(y) < 0. Thus, there exists a
unique point (y, f(y)) in Zer(Def+(Q, ζ), R〈ζ 〉k+1) for which f(y) > 0 and
the mapping f is semi-algebraically continuous. Moreover for every z in D,
Def(Q, ζ) is infinitesimal, and hence f(z) ∈R〈ζ 〉 is infinitesimal over R. So,
limζ (z, f(z)) = (z, 0). Fix x ∈ D and denote by D ′ the semi-algebraically
connected component of Zer(Def+(Q, ζ),R〈ζ 〉k+1) containing (x, f(x)). Since
limζ (D ′) is connected (Proposition 12.43), contained in Zer(Q, Rk), and
contains x, it follows that limζ (D ′) ⊂ D. Since f is semi-algebraic and con-
tinuous, and D is semi-algebraically path connected, for every z in D, the
point (z, f(z)) belongs to the semi-algebraically connected component D ′ of
Zer(Def+(Q, ζ), R〈ζ 〉k+1) containing (x, f(x)). Since limζ (z, f(z))= (z, 0),
we have limζ (D ′)= D ×{0}. �

Exercise 15.1. Prove that for

Q =((X +1)2 +Y 2− 1)((X − 1)2 + Y 2− 1)((X − 2)2 + Y 2− 4)

the statement of Lemma 15.6 is false if Def+(Q, ζ) is replaced by Def(Q, ζ).

We are now able to prove Proposition 15.4 and Proposition 15.5.

Proof of Proposition 15.4: By Lemma 15.6, there exists D ′, a semi-
algebraically connected component of Zer(Def+(Q, ζ), R〈ζ 〉k+1)[a,b] such
that D × {0} = limζ (D ′). Since [a, b] \ {v} contains no X1-pseudo-crit-
ical value, there exists an infinitesimal β such that the X1-critical values
on Zer(Def+(Q, ζ),R〈ζ 〉k+1) in the interval [a, b], if they exist, lie in the
interval [v − β, v + β].

We claim that D[v−β,v+β]
′ is semi-algebraically connected.

Let x, y be any two points in D[v−β,v+β]
′ . We show that there exists a semi-

algebraic path connecting x to y lying within D[v−β,v+β]
′ . Since, D ′ itself is

semi-algebraically connected, there exists a semi-algebraic path, γ: [0,1]→D ′,
with γ(0) = x, γ(1) = y, and γ(t) ∈ D ′, 0 ≤ t ≤ 1. If γ(t) ∈ D[v−β,v+β]

′ for
all t∈ [0,1], we are done. Otherwise, the semi-algebraic path γ is the union of
a finite number of closed connected pieces γi lying either in D[a,v−β]

′ , D[v+β,b]
′

or D[v−β,v+β]
′ .
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By Proposition 15.2 the connected components of Dv−β
′ (resp. Dv+β

′ )
are in 1-1 correspondence with the connected components of D[a,v−β]

′

(resp. D[v+β,b]
′ ) containing them. Thus, we can replace each of the γi lying

in D[a,v−β]
′ (resp. D[v+β,b]

′ ) with endpoints in Dv−β
′ (resp. Dv+β

′ ) by another
segment with the same endpoints but lying completely in Dv−β

′ (resp. Dv+β
′ ).

We thus obtain a new semi-algebraic path γ ′ connecting x to y and lying
inside D[v−β,v+β]

′ .

It is clear that limζ (D[v−β,v+β]
′ ) coincides with Dv. Since D[v−β,v+β]

′ is
bounded, Dv is semi-algebraically connected by Proposition 12.43. �

Proof of Proposition 15.5: By Lemma 15.6, there exists D ′, a semi-
algebraically connected component of Zer(Def+(Q, ζ),R〈ζ 〉k+1)[a,b] such that
D × {0} = limζ (D ′). According to Theorem 5.46 (Hardt’s triviality), there
exists a′ ∈ [a, b) such that for every d ∈ [a′, b), D[a,d] is not semi-alge-
braically connected. Hence, by Proposition 12.43, D[a,c]

′ is also not semi-
algebraically connected for every c∈R〈ζ 〉 with limζ (c)=d. Since D ′ is semi-
algebraically connected, according to Proposition 15.3, there is an X1-critical
value c on Zer(Def+(Q, ζ),R〈ζ 〉k+1), infinitesimally close to b. Hence b is an
X1-pseudo-critical value on Zer(Q,Rk). �

15.2 Roadmap of an Algebraic Set

We describe the construction of a roadmap M for a bounded algebraic
set Zer(Q, Rk) which contains a finite set of points N of Zer(Q, Rk). A
precise description of how the construction can be performed algorithmically
will follow.

We first construct X2-pseudo-critical points on Zer(Q, Rk) in a para-
metric way along the X1-axis. This results in curve segments and their
endpoints on Zer(Q, Rk). The curve segments are continuous semi-algebraic
curves parametrized by open intervals on the X1-axis, and their endpoints
are points of Zer(Q, Rk) above the corresponding endpoints of the open
intervals. Since these curves and their endpoints include, for every x ∈ R,
the X2−pseudo-critical points of Zer(Q, Rk)x, they meet every connected
component of Zer(Q,Rk)x. Thus the set of curve segments and their end-
points already satisfy RM2. However, it is clear that this set might not be
semi-algebraically connected in a semi-algebraically connected component,
so RM1 might not be satisfied (see Figure 15). We add additional curve seg-
ments to ensure that Mea is connected by recursing in certain distinguished
hyperplanes defined by X1 = z for distinguished values z.

568 15 Computing Roadmaps and Connected Components of Algebraic Sets



The set of distinguished values is the union of the X1-pseudo-critical
values, the first coordinates of the input points N and the first coordinates
of the endpoints of the curve segments. A distinguished hyperplane is an
hyperplane defined by X1 = v, where v is a distinguished value. The input
points, the endpoints of the curve segments and the intersections of the curve
segments with the distinguished hyperplanes define the set of distinguished
points .

So we have constructed the distinguished values v1 < � < v� of X1

among which are the X1-pseudo-critical values. Above each interval (vi, vi+1),
we have constructed a collection of curve segments Ci meeting every semi-
algebraically connected component of Zer(Q, Rk)v for every v ∈ (vi, vi+1).
Above each distinguished value vi, we have constructed a set of distinguished
points N i. Each curve segment in Ci has an endpoint in N i and another
in N i+1. Moreover, the union of the N i contains N .

We then repeat this construction in each distinguished hyperplane Hi

defined by X1 = vi with input Q(vi, X2, � , Xk) and the distinguished points
in N i.

The process is iterated until for

I = (i1,� , ik−2), 1≤ i1≤ �,� , 1≤ ik−2≤ �(i1,� , ik−3),

we have distinguished values vI ,1 < � < vI ,�(I) along the Xk−1 axis with
corresponding sets of curve segments and sets of distinguished points with the
required incidences between them.

X1

X2

X3

Fig. 15.1. A torus in R3
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X1

X2

X3

Fig. 15.2. The roadmap of the torus

Proposition 15.7. The semi-algebraic set M obtained by this construction
is a roadmap for Zer(Q,Rk).

The proof of Proposition 15.7 uses the following lemmas.

Lemma 15.8. If v ∈ (a, b) is a distinguished value such that [a, b] \ {v} con-
tains no distinguished value of π on Zer(Q,Rk) and D is a semi-algebraically
connected component of Zer(Q, Rk)[a,b], then M ∩ D is semi-algebraically
connected.

Proof: Since [a, b] \ {v} contains no pseudo-critical value of the algebraic
set Zer(Q, Rk), we know, by Proposition 15.4, that Dv is semi-algebraically
connected. Moreover, the points of M ∩ D are connected through curve
segments to the points of N v. By induction hypothesis, the points of N v are
in the same semi-algebraically connected component of Dv, since Dv is semi-
algebraically connected.

The construction makes a recursive call at every distinguished hyper-
plane and hence at Hv. The input to the recursive call is the algebraic
set Zer(Q,Rk)v and the set of all distinguished points in Hv which includes
the endpoints of the curves in M ∩D ∩Hv. Hence, by the induction hypoth-
esis they are connected by the roadmap in the slice.

Therefore, M ∩D is semi-algebraically connected. �

Lemma 15.9. If D is a semi-algebraically connected component
of Zer(Q,Rk), then M ∩D is semi-algebraically connected.

Proof: Let x, y be two points of M ∩D, and let γ be a semi-algebraic path
in D from x to y such that γ(0) = x, γ(1) = y. We are going to construct
another semi-algebraic path from x to y inside M . Let {v1 <� < v�} be the
set of distinguished values and choose ui such that

u1 < v1 < u2 <v2 <� < u� < v� < u�+1.
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There exist a finite number of points of γ, x = x0, x1, � , xN+1 = y,
with π(xi) =un(i), and semi-algebraic paths γi from xi to xi+1 such that:

− γ =
⋃

0≤i≤N γi,
− γi ⊂D[un(i),un(i)+1] or γi⊂D[un(i)−1,un(i)].

Let Di be the semi-algebraically connected component of D[un(i),un(i)+1]

(resp. D[un(i)−1,un(i)]) containing γi. Since Di−1∩Di is a finite union of semi-
algebraically connected components of Dπ(xi), M ∩Di−1 ∩ Di is not empty.
Choose y0=x,� , yi∈M ∩Di−1∩Di,� , yN+1= y. Then yi and yi+1 are in the
same semi-algebraically connected component of M ∩D by Lemma 15.8. �

Proof of Proposition 15.7: We have already seen that M satisfies RM2.
We now prove that M satisfies RM1.

The proof is by induction on the dimension of the ambient space. In the
case of dimension one, the roadmap properties are obviously true for the set we
have constructed. Now assume that the construction gives a roadmap for all
dimensions less than k. That the construction gives a roadmap for dimension k
follows from the following two lemmas. Lemma 15.8 and Lemma 15.9. �

We now describe precisely a way of performing algorithmically the pre-
ceding construction.

In our inductive construction of the roadmap, we are going to use the
following specification describing points and curve segments:

A real univariate triangular representation T , σ, u of level i − 1
consists of:

− a triangular Thom encoding T , σ specifying (z, t)∈Ri with z ∈Ri−1

− a parametrized univariate representation

u(X<i)= (T i(X<i, T ), g0(X<i, T ), gi(X<i, T ),� , gk(X<i, T )),

with parameters X<i =(X1,� , Xi−1) (see Definition page 481).

The point associated to T , σ, u is(
z,

gi(z, t)
g0(z, t)

,� ,
gk(z, t)
g0(z, t)

)
.

A real univariate triangular representation T , σ, u is above the triangular
Thom encoding T ′, σ ′ if T ′=T 1,� , T i−1, σ ′= σ1,� , σi−1.

It will be useful to compute the i-th projection of a point specified by a
real univariate representation.

Algorithm 15.1. [Projection]

• Structure: a domain D contained in a field K.
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• Input:
a real univariate triangular representation T , σ, u of level i − 1 with
coefficients in D. We denote by z the root of T specified by σ and by x
the point associated to T , σ, u.

• Output: a Thom encoding proji(u), proji(τ ) specifying the projection of
the point associated to T , σ, u on the Xi axis.

• Complexity: dO(i), where d is a bound on the degree of the univariate
representation and a bound on the degrees of the polynomials in T .

• Procedure:
− Compute the resultant proji(u) of T i(X<i, T ), and

Xi g0(X<i, T )− gi(X<i, T )

with respect to T , using Algorithm 8.21 (Signed subresultant).
− Compute the Thom encoding of the root of proji(u) which is the i-th

coordinate of x as follows: let d be the smallest even number not less
than the degree of proji(u) with respect to Xi, and compute the sign
of the derivatives of

g0(X<i, T )d proji(u)
(

gi(X<i, T )
g0(X<i, T )

)

with respect to T at the root z of T specified by σ. This gives the
Thom encoding proji(τ ) of the i-th coordinate of x. This is done using
Algorithm 12.19 (Triangular Sign Determination).

Proof of correctness: Immediate. �

Complexity analysis: The complexity is dO(ki) using the complexity of
Algorithm 12.19 (Triangular Sign Determination).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(i). �

Let V1, τ1, V2, τ2 be two triangular Thom encodings above T , σ. We denote
by z =(z1,� , zi−1)∈Ri−1 the point specified by T , σ and by (z, a), (z, b) the
points specified by V1, τ1 and V2, τ2 (see Definition page 496).

A curve segment representation u, ρ above V1, τ1,V2, τ2 is:

− a parametrized univariate representation with parameters (X≤i)

u= (f(X≤i, T ), g0(X≤i, T ), gi+1(X≤i, T ),� , gk(X≤i, T )),

− a sign condition ρ on Der(f) such that for every v ∈ (a, b) there exists a
real root t(v) of f(z, v, T ) with Thom encoding σ, ρ and g0(z, v, t(v))� 0.
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The curve segment associated to u, ρ is the semi-algebraic function h
which maps a point v of (a, b) to the point of Rk defined by

h(v) =
(

z, v,
gi+1(z, v, t(v))
g0(z, v, t(v))

,� ,
gk(z, v, t(v))
g0(z, v, t(v))

)
.

It is a continuous injective semi-algebraic function.
The Curve Segments Algorithm will be the basic building block in our

algorithm.

Algorithm 15.2. [Curve Segments]

• Structure: an ordered domain D contained in a real closed field R.

• Input:
− a triangular Thom encoding T , σ with coefficients in D specifying

z ∈Ri−1,
− a polynomial Q∈D[X1� , Xk], for which Zer(Q,Rk)⊂B(0, 1/c),
− a finite set N of real univariate triangular representation above T , σ

with coefficients in D and associated points contained in Zer(Q,Rk).
• Output:

− an ordered list of triangular Thom encodings V1, τ1,� ,V�, τ� above T , σ
specifying points (z, v1),� , (z, v�) with v1 <� < v�. The vj are called
distinguished values.

− For every j = 1,� , �,
− a finite set Dj of real univariate triangular representations represen-

tation above V j , τj. The associated points are called distinguished
points.

− a finite set Cj of curve segment representations above V j, τj,
Vj+1, τj+1. The associated curve segments are called distinguished
curves.

− a list of pairs of elements of Cj and Dj (resp. Cj+1 and Dj)
describing the adjacency relations between distinguished curves and
distinguished points.

The distinguished curves and points are contained in Zer(Q,Rk)z. Among
the distinguished values are the first coordinates of the points in N as
well as the pseudo-critical values of Zer(Q,Rk)z. The sets of distinguished
values, distinguished curves, and distinguished points satisfy the following
properties.
− CS1: For every v ∈R, the set of distinguished curve and distinguished

points output intersect every semi-algebraically connected component
of Zer(Q,Rk)(z,v).

− CS2: For each distinguished curve output over an interval with endpoint
a given distinguished value, there exists a distinguished point over this
distinguished value which belongs to the closure of the curve segment.
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• Complexity: dO(ik), where d is a bound on the degree of Q and O(d)k is a
bound on the degrees of the polynomials in T , the degrees of the univariate
representations in N , and the number of these univariate representations.

• Procedure:
− Step 1: Perform Algorithm 12.10 (Parametrized Multiplication Table)

with input Cr(Q2, ζ), (using Notation 12.46) and parameter X≤i. Per-
form Algorithm 12.15 (Parametrized Limit of Bounded Points) and
output U .

Consider for every u = (f , g0, gi+1, � , gk) ∈ U the finite set Fu

containing Qu (Notation 13.8) and all the derivatives of f with respect
to T , and compute

Du =RElimT (f ,Fu)⊂D[X≤i],

using Algorithm 11.19 (Restricted Elimination). Define D=
⋃

u∈U Du.

− Step 2: For every T ′, τ , u ∈N , compute proji(u), proji(τ ) using Algo-
rithm 15.1 (Projection), add to D the polynomial proji(u).

− Step 3: Compute the Thom encodings of the zeroes of A, A ∈ D
above T , σ using Algorithms 12.20 (Triangular Thom Encoding),
output their ordered list A1, α1, � , A�, α� and the corresponding
ordered list v1 <� < v� of distinguished values using Algorithm 12.21
(Triangular Comparison of Roots). Define V i, τi =T , Ai, σ, αi.

− Step 4: For every j = 1, � , � and every (f , g0, gi, � , gk), τ ∈ N
such that proji(τ ) = αj, append (f , g0, gi+1, � , gk), τ to Dj, using
Algorithm 12.19 (Triangular Sign Determination).

− Step 5: For every j =1,� , � and every

u= (f , g0, gi+1,� , gk)∈U ,

compute the Thom encodings τ of the roots of f above T , σ
such that proji(τ ) = αj, using Algorithm 12.20 (Triangular Thom
Encoding). Append all pairs (f , g0, gi+1, � , gk), τ to Dj when the
corresponding associated point belongs to Zer(Q,Rk)z.

− Step 6: For every j =1,� , �− 1 and every

u= (f , g0, gi+1,� , gk)∈U ,

compute the Thom encodings ρ of the roots of f(z, v,T ) over (vj , vj+1)
using Algorithm 12.22 (Triangular Intermediate Points) and Algo-
rithm 12.20 (Triangular Thom Encoding) and append pairs u, ρ to Cj

when the corresponding associated curve is included in Zer(Q,Rk)z.
− Step 7: Determine adjacencies between curve segments and points. For

every point of Dj specified by

v ′ =(p, q0, qi+1,� , qk), τ ′,with {p, q0, qi+1,� , qk}⊂D[X≤i][T ]
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and every curve segment representation of Cj specified by

v = (f , g0, gi+1,� , gk), τ , {f , g0, gi+1,� , gk}⊂D[X≤i][T ],

decide whether the associated point t is adjacent to the asso-
ciated curve segment as follows: compute the first ν such
that (∂νg0/∂Xi

ν)(vj , t) is not zero and decide whether for
every �= i +1,� , k

∂νg�

∂Xi
ν(vj , t)q0(t)−

∂νg0

∂Xi
ν (vj , t)q�(t)

is zero. This is done using Algorithm 12.19 (Triangular Sign Determi-
nation) above T , σ.

Repeat the same process for every element of Dj+1 and every curve
segment representation of Cj.

Proof of correctness: It follows from Proposition 12.42, the correctness
of Algorithm 12.10 (Parametrized Multiplication Table), Algorithm 12.15
(Parametrized Limit of Bounded Points), Algorithm 11.19 (Restricted Elim-
ination), Algorithm 15.1, Algorithm 12.22 (Triangular Intermediate Points),
Algorithm 12.20 (Triangular Thom Encoding), Algorithm 12.21 (Triangular
Comparison of Roots) and Algorithm 12.19 (Triangular Sign Determina-
tion). �

Complexity analysis:

− Step 1: This step requires dO(i(k−i)) arithmetic operations in D, using
the complexity analysis of Algorithm 12.10 (Parametrized Multiplication
Table), Algorithm 12.15 (Parametrized Limit of Bounded Points), Algo-
rithm 11.19 (Restricted Elimination). There are dO(k−i) parametrized
univariate representations computed in this step and each polynomial in
these representations has degree O(d)k−i.

− Step 2: This step requires dO(ik) arithmetic operations in D, using the
complexity analysis of Algorithm 15.1 (Projection).

− Step 3: This step requires dO(ik) arithmetic operations in D, using the
complexity analysis of Algorithm 12.20 (Triangular Thom Encoding).

− Step 4: This step requires dO(ik) arithmetic operations in D, using the
complexity analysis of Algorithm 12.19 (Triangular Sign Determination)

− Step 5: This step requires dO(ik) arithmetic operations in D, using the
complexity analysis of Algorithm 12.20 (Triangular Thom Encoding).

− Step 6: This step requires dO(ik) arithmetic operations in D, using the
complexity analysis of Algorithm 12.22 (Triangular Intermediate Points),
Algorithm 12.20 (Triangular Thom Encoding).

− Step 7: This step requires dO(ik) arithmetic operations in D, using the
complexity analysis of Algorithm 12.19 (Triangular Sign Determination).
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Thus, the complexity is dO(ik). The number of distinguished values is bounded
by dO(k).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(ik). �

Given a polynomial Q and a set of real univariate representations N , we
denote by RM(Zer(Q, Rk), N ) a roadmap of Zer(Q, Rk) which contains the
points associated to N .

We now describe a recursive roadmap algorithm for bounded algebraic
sets.

Algorithm 15.3. [Bounded Algebraic Roadmap]

• Structure: an ordered domain D contained in a real closed field R.
• Input:

− a triangular Thom encoding T , σ with coefficients in D specifying
z ∈Ri,

− a polynomial Q∈D[X1,� , Xk], for which Zer(Q,Rk)⊂B(0, 1/c),
− a finite set N of real univariate representation u, τ above T , σ with

coefficients in D with associated points contained in Zer(Q,Rk)z.
• Output: a roadmap RM(Zer(Q,Rk)z,N ) which contains the points asso-

ciated toN .
• Complexity: dO(k2), where d is a bound on the degree of Q and O(d)k is a

bound on the degrees of the polynomials in T , the degrees of the univariate
representations in N , and the number of these univariate representations.

• Procedure:
− Call Algorithm 15.2 (Curve Segments), output � and, for

every j =1,� , �, Aj , αj, Dj and C j.
− For every j = 1, � , �, call Algorithm 15.3 (Bounded Algebraic

Roadmap) recursively, with input T , Aj , σ, αj, specifying (z, vj),
Q and Dj.

Proof of correctness: The correctness of the algorithm follows from Propo-
sition 15.7 and the correctness of Algorithm 15.2 (Curve Segments). �

Complexity analysis: In the recursive calls to Algorithm 15.3 (Bounded
Algebraic Roadmap), the number of triangular systems considered is at most
dO(k2) and the triangular systems involved have polynomials of degree O(d)k.
Thus the total number of arithmetic operations in D is bounded by dO(k2)

using the complexity analysis of Algorithm 15.2 (Curve Segments).
If D = Z, and the bitsizes of the coefficients of the polynomials are

bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k2). �
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Since RM(Zer(Q, Rk)z, N ) contains RM(Zer(Q, Rk)z), it is possible to
extract from RM(Zer(Q, Rk)z, {u, τ }) a path connecting the point p associ-
ated to u, τ to RM(Zer(Q,Rk)z).

Algorithm 15.4. [Bounded Algebraic Connecting]
• Structure: an ordered domain D contained in a real closed field R.
• Input:

− a triangular Thom encoding T , σ with coefficients in D specifying
z ∈Ri,

− a polynomial Q∈D[X1,� , Xk] for which Zer(Q,Rk)⊂B(0, 1/c),
− a real univariate triangular representation V , τ , u above T , σ with

coefficients in D, with associated point p contained in Zer(Q,Rk)z.
• Output: a path γ(p)⊂Zer(Q,Rk)z connecting p to a distinguished point

of RM(Zer(Q,Rk)z).
• Complexity: dO(k2), where d is a bound on the degree of Q and O(d)k is

a bound on the degrees of the polynomials in T and the degree of the real
univariate triangular representation V , τ , u.

• Procedure: Call Algorithm 15.3 (Bounded Algebraic Roadmap) with
input Q, T , σ and {V , τ , u}, and extract γ(p) from RM(Zer(Q, Rk),
{V , τ , u}).

Proof of correctness: The correctness of the algorithm follows from the
correctness of Algorithm 15.3 (Bounded Algebraic Roadmap). �

Complexity analysis:The total number of arithmetic operations in D is
bounded by dO(k2), using the complexity analysis of Algorithm 15.3 (Bounded
Algebraic Roadmap).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k2). �

Remark 15.10. Note that the connecting path γ(p) consists of two consecu-
tive parts, γ0(p) and Γ1(p). The path γ0(p) is contained in RM(Zer(Q,Rk))
and the path Γ1(p) is contained in Zer(Q, Rk)p1. The part γ0(p) consists
of a sequence of sub-paths, γ0,0, � , γ0,m. Each γ0,i is a semi-algebraic path
parametrized by one of the co-ordinates X1, � , Xk, over some interval [a0,i,
b0,i] with γ0,0(a0,0) = p. The semi-algebraic maps, γ0,0,� , γ0,m and the end-
points of their intervals of definition a0,0, b0,0,� , a0,m, b0,m are all independent
of p (up to the discrete choice of the path γ(p) in RM(Zer(Q, Rk), {p})),
except b0,m which depends on p1.

Moreover, Γ1(p) can again be decomposed into two parts, γ1(p) and Γ2(p)
with Γ2(p) contained in Zer(Q,Rk)p̄2 and so on.

If q =(q1,� , qk)∈Zer(Q,Rk) is another point such that p1� q1, then since
Zer(Q,Rk)p1 and Zer(Q,Rk)q1 are disjoint, it is clear that

RM(Zer(Q,Rk), {p})∩RM(Zer(Q,Rk), {q})=RM(Zer(Q,Rk)).
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Now consider a connecting path γ(q) extracted from RM(Zer(Q, Rk), {q}).
The images of Γ1(p) and Γ1(q) are disjoint. If the image of γ0(q) (which is
contained in RM(Zer(Q,Rk)) follows the same sequence of curve segments as
γ0(q) starting at p (that is, it consists of the same curves segments γ0,0, � ,
γ0,m as in γ0(p)), then it is clear that the images of the paths γ(p) and γ(q)
has the property that they are identical up to a point and they are disjoint
after it. We call this the divergence property. �

Next we show how to handle the case when the input algebraic
set Zer(Q,Rk) is not bounded.

Algorithm 15.5. [Algebraic Roadmap]

• Structure: an ordered domain D contained in a real closed field R.
• Input: a polynomial Q∈D[X1,� ,Xk] together with a finite set N of real

univariate representations with coefficients in D.
• Output: a roadmap RM(Zer(Q,Rk),N ) which contains N .
• Complexity: dO(k2), where d is a bound on the degree of Q and O(d)k is a

bound on the degrees of the polynomials in T , the degrees of the univariate
representations in N , and the number of these univariate representations.

• Procedure:
− Introduce new variables Xk+1 and ε and replace Q by the polynomial

Qε = Q2 +(ε2 (X1
2 +� + Xk+1

2 )− 1)2.

Replace N ⊂Rk by the set of real univariate representations specifying
the elements of Zer(ε2 (X1

2+� +Xk+1
2 )−1,R〈ε〉k+1) above the points

associated to N using Algorithm 12.11 (Univariate Representation).
− Run Algorithm 15.3 (Bounded Algebraic Roadmap) without

a triangular Thom encoding (i.e. with i = 0), Qε and N as
input with structure D[ε]. The algorithm outputs a roadmap of
RM(Zer(Qε,R〈ε〉k+1),N ) composed of points and curves whose
description involves ε.

− Denote by L the set of polynomials in D[ε] whose signs have been
determined in the preceding computation and take a = minP ∈L c′(P )
(Definition 10.5). Replace ε by a in the polynomial Qε to get a
polynomial Qa. Replace ε by a in the output roadmap to obtain a
roadmap RM(Zer(Qa,Rk+1),N ). When projected to Rk, this roadmap
gives a roadmap for RM(Zer(Q,Rk),N )∩B(0, 1/a).

− In order to extend the roadmap outside the ball B(0, 1/a) col-
lect all the points (y1, � , yk, yk+1) ∈ R〈ε〉k+1 in the roadmap
RM(Zer(Qε,R〈ε〉k+1),N ) which satisfies ε(y1

2 + � + yk
2) = 1. Each

such point is described by a real univariate representation involving
ε. Add to the roadmap the curve segment obtained by first forget-
ting the last coordinate and then treating ε as a parameter which
varies vary over (0, a, ] to get a roadmap RM(Zer(Q,Rk),N ).

578 15 Computing Roadmaps and Connected Components of Algebraic Sets



Proof of correctness: The choice of a guarantees that the roadmap for Qε

just computed specializes to a roadmap for Qa when ε is replaced by a. The
correctness follows from the correctness of Algorithm 15.3 (Bounded Algebraic
Roadmap). �

Complexity analysis: According to the complexity analysis of Algo-
rithm 15.3 (Bounded Algebraic Roadmap), the number of arithmetic opera-
tions in the ring D[ε] is dO(k2). Moreover, the degrees of the polynomials
in ε generated by the algorithm do not exceed dO(k2), using the complexity
analysis of Algorithm 12.10 (Parametrized Special Multiplication Table). The
complexity is thus dO(k2) in the ring D, taking into account the complexity
analyses of Algorithm 8.4 (Addition of multivariate polynomials), Algo-
rithm 8.5 (Multiplication of Multivariate Polynomials), and Algorithm 8.6
(Exact Division of Multivariate Polynomials).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k2). �

Algorithm 15.6. [Algebraic Connecting]

• Structure: an ordered domain D contained in a real closed field R.

• Input:
− a polynomial Q∈D[X1,� , Xk],
− a real univariate representation u, τ with coefficients in D, with asso-

ciated point p contained in Zer(Q,Rk).
• Output: a path γ(p, Zer(Q, Rk)) ⊂ Zer(Q, Rk) connecting p to a distin-

guished point of RM(Zer(Q,Rk)).
• Complexity: dO(k2), where d is a bound on the degree of Q and O(d)k is

a bound on the degrees of u.
• Procedure: Call Algorithm 15.5 (Algebraic Roadmap) with input Q and

(u, τ ) and extract γ from RM(Zer(Q,Rk), {u, τ }).

Proof of correctness: The correctness of the algorithm follows from the
correctness of Algorithm 15.5 (Algebraic Roadmap). �

Complexity analysis: The total number of arithmetic operations in D is
bounded by dO(k2), using the complexity analysis of Algorithm 15.5 (Algebraic
Roadmap).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k2). �

We can now summarize our results on the complexity of the computation
of the roadmap for an algebraic set.
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Theorem 15.11. Let Q∈R[X1,� ,Xk] be a polynomial whose total degree is
at most d.

a) There is an algorithm whose output is exactly one point in every semi-
algebraically connected component of Zer(Q, Rk). The complexity in the
ring generated by the coefficients of Q is bounded by dO(k2). In particular,
this algorithm counts the number of semi-algebraically connected compo-
nents of Zer(Q, Rk) in time dO(k2). If D = Z, and the bitsizes of the
coefficients of the polynomials are bounded by τ, then the bitsizes of the
integers appearing in the intermediate computations and the output are
bounded by τ dO(k2).

b) Let p and q in Zer(Q, Rk) be two points which are represented by real k-
univariate real representation u, σ v, τ of degree O(d)k. There is an algo-
rithm deciding whether p and q belong to the same connected component
of Zer(Q, Rk). The complexity in the ring generated by the coefficients
of Q and the coefficients of the polynomials in u and v is bounded by dO(k2).
If D=Z, and the bitsizes of the coefficients of the polynomials are bounded
by τ, then the bitsizes of the integers appearing in the intermediate com-
putations and the output are bounded by τ dO(k2).

Proof: For a), proceed as follows: first compute RM(Zer(Q,Rk)), then
describe its connected components using the adjacencies between curve seg-
ments and points, and finally take one point in each of these connected compo-
nents.

For b), use Algorithm 15.6 (Algebraic Connecting) for p and q. The
points p and q are connected to points p′ and q ′ of the roadmap. Use the
first item to decide whether they belong to the same connected component
or not. �

15.3 Computing Connected Components of Algebraic
Sets

This section is devoted to the proof of the following result.

Theorem 15.12. If Zer(Q,Rk) is an algebraic set defined as the zero set of
a polynomial Q∈D[X1,� , Xk] of degree ≤ d, then there is an algorithm that
outputs quantifier free formulas whose realizations are the semi-algebraically
connected components of Zer(Q,Rk). The complexity of the algorithm in the
ring generated by the coefficients of Q is bounded by dO(k3) and the degrees of
the polynomials that appear in the output are bounded by O(d)k2

. Moreover,
if D = Z, and the bitsizes of the coefficients of the polynomials are bounded
by τ, then the bitsizes of the integers appearing in the intermediate computa-
tions and the output are bounded by τ dO(k3).
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The proof is based on a parametrized version of the roadmap algorithm: we
are going to find sign conditions on the parameters for which the description
of the roadmap does not change.

For this purpose, we need parametrized versions of Algorithm 12.21 (Tri-
angular Comparison of Roots) and Algorithm 12.22 (Triangular Intermediate
Points). These algorithms will be based on Algorithm 14.6 (Parametrized Sign
Determination).

Let A⊂B, ρ and ρ̄ two sign conditions on A and B. The sign condition ρ̄
refines ρ if ρ̄ (P )= ρ(P ) for every P ∈A.

Notation 15.13. We denote by SIGN(ρ,B) the list of realizable sign condi-
tions on B refining ρ. �

Algorithm 15.7. [Parametrized Comparison of Roots]

• Structure: an ordered integral domain D contained in a real closed field R.
• Input: a parametrized Thom encoding A, ρ, T , σ, of level k − 1, with

coefficients in D, two non-zero polynomials P and Q∈D[Y , X1,� , Xk].
• Output:

− a finite set B⊂D[Y ] containing A,
− for every ρ̄ ∈ SIGN(ρ, B), a list of sign conditions

on Der(T ∪ {P }∪ {Q}) refining σ specifying for every y ∈ Reali(ρ)
the ordered list of the triangular Thom encodings of the roots of P
and Q above the point specified by σ.

• Complexity: dO(k�), where � is the number of parameters and d is a bound
on the degrees of the polynomials in T , and the degree of P and Q.

• Procedure: Apply Algorithm 14.6 (Parametrized Sign Determination) to
T , P and

Der(T )∪Der(P )∪Der(Q),

then to T , Q and

Der(T )∪Der(P )∪Der(Q)

Proof of correctness: Immediate. �

Complexity analysis: The complexity is dO(k�), using the complexity of
Algorithm Algorithm 14.6 (Parametrized Sign Determination). The number
of elements in B is dO(k�), and the degrees of the elements of A are bounded
by dO(k).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k�). �

Algorithm 15.8. [Parametrized Intermediate Points]

• Structure: an ordered integral domain D contained in a real closed field R.
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• Input: a parametrized Thom encoding A, ρ, T , σ of level k − 1, with
coefficients in D, two non-zero polynomials P and Q in D[Y ,X1,� ,Xk] of
degree bounded by p.

• Output:
− a finite set B⊂D[Y ] containing A
− for every ρ̄ ∈SIGN(ρ,B), a list of sign conditions on Der(T ∪{(PQ)′})

specifying for every y ∈ Reali(ρ̄ ) the triangular Thom encodings of a
set of points intersecting all the intervals between two consecutive roots
of P and Q.

• Complexity: dO(k�), where � is the number of parameters and d is a bound
on the degrees of the polynomials in T , and the degree of P and Q.

• Procedure: Apply Algorithm 14.7 (Parametrized Thom Encoding)
with input T , P , T , Q and T , P ′Q. Sort them using Algorithm 15.7
(Parametrized Comparison of Roots).

Proof of correctness: Immediate. �

Complexity analysis: The complexity is dO(k�), using the complexity of
Algorithm Algorithm 14.6 (Parametrized Sign Determination). The number
of elements in A is dO(k�), and the degrees of the elements of B are bounded
by dO(k).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k�). �

A parametrized real univariate triangular representation of
level i− 1 with parameters Y =(Y1,� , Y�) T , σ, u above A, ρ is

− a parametrized triangular Thom encoding T , σ of level i,
− a parametrized representation u = (T i, g0, gi, � , gk) ⊂D[Y , X≤i, T ] such

that for every y∈Reali(ρ) there is a root (z(y), t(y)) of T with triangular
Thom encoding σ.

A parametrized real univariate triangular representation T , σ, u is above the
parametrized triangular Thom encoding A, ρ,T ′, σ ′ if T , σ is above A, ρ and
if T ′= T 1,� , T i−1, and σ ′= σ1,� , σi−1.

Algorithm 15.9. [Parametrized Projection]

• Structure: a domain D contained in a field K.
• Input: a parametrized real univariate representation T , u, σ above a

parametrized triangular Thom encoding A, ρ, with coefficients in D. For
every y ∈Reali(ρ), we denote by z(y) the root of T (y) specified by τ and
by x(y) the point associated to u(y, z(y)).

• Output:
− a finite set B⊂D[Y ] containing A,
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− for every ρ̄ ∈ SIGN(ρ, B) a Thom encoding (proji(u), proji(τ )) spec-
ifying, for every y ∈ Reali(ρ̄ ), the projection of the point associated
to x(y) on the Xi axis.

• Complexity: dO(ki�), where � is the number of parameters, d is a bound
on the degrees of on the degree of the univariate representation and of the
polynomials in T .

• Procedure:
− Compute the resultant proji(u) of f(Y , X<i, T ), and

Xi g0(Y , X<i, T )− gi(Y , X<i, T )

with respect to T , using Algorithm 8.21 (Signed subresultant).
− Use Algorithm 14.6 (Parametrized Sign Determination) with T , f and

the derivatives of

g0(Y , X<i, T )d proji(u)
(

gi(Y , X<i, T )
g0(Y , X<i, T )

)

with respect to T , where d is the smallest even number not less
than the degree of proji(u) with respect to Xi. This gives a list of
polynomials B ⊂ D[Y ] and for every ρ̄ ∈ SIGN(ρ, B) the Thom
encoding proji(τ ) of the i-th coordinate of x(y).

Prof of correctness: Immediate. �

Complexity analysis: The complexity is dO(ki�), using the complexity of
Algorithm 14.6 (Parametrized Sign Determination).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(ki�). �

We now define parametrized curve segments.
Let V1, τ1, V2, τ2 be two parametrized triangular Thom encoding

above A, ρ, T , σ. For every y ∈ Reali(ρ), we denote by z(y) ∈ Ri−1 the
point specified by T (y), σ and by (z(y), a(y)), (z(y), b(y)) the points specified
by V1(y), τ1 and V2(y), τ2. A parametrized curve segment represen-
tation u, τ above V1, τ1,V2, τ2 is given by

− a parametrized univariate representation with parameters (Y , X≤i),

u =(f(Y , X≤i, T ), g0(Y , X≤i, T ), gi+1(Y , X≤i, T ),� , gk(Y , X≤i, T )),

− a sign condition τ on Der(f) such that for every y ∈ Reali(ρ) and for
every v ∈ (a(y), b(y)) there exists a real root t(v) of f(z(y), v, T ) with
Thom encoding σ, ρ, τ and g0(z(y), v, t(v))� 0.

Our aim is first to describe a parametrized version of Algorithm 15.2 (Curve
Segments).
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Algorithm 15.10. [Parametrized Curve Segments]

• Structure: an ordered domain D contained in a real closed field R.
• Input:

− a parametrized Thom encoding A, ρ, T , σ with parame-
ters Y = (Y1,� , Y�) of level i − 1, with coefficients in D. For
every y ∈Reali(ρ), (y, z(y)) denotes the point specified by σ.

− a polynomial Q∈D[Y , X1� , Xk], for which Zer(Q,Rk)⊂B(0, 1/c)
− a finite set N of parametrized real univariate triangular representation

above A, ρ, T , σ with, for every y ∈ Reali(ρ), associated points con-
tained in Zer(Q,Rk).

• Output:
− a finite set B⊂D[Y ] containing A,
− for every ρ̄ ∈SIGN(ρ,B),

− an ordered list of parametrized Thom encodings

V ρ̄ ,1, τρ̄ ,1,� ,V ρ̄ ,�(ρ̄ ), τρ̄ ,�(ρ̄ )

above B, ρ̄ , T , σ
− for every i= 1,� , �(ρ̄ ),

− a finite set N ρ̄ ,i of parametrized real univariate triangular rep-
resentations above

B, ρ̄ ,V ρ̄ ,j , τρ̄ ,j

− a finite set C ρ̄ ,j of parametrized curve segments above

B, ρ̄ ,V ρ̄ ,j , τρ̄ ,j ,V ρ̄ ,j+1, τρ̄ ,j+1

− a list of pairs of elements of C ρ̄ ,j and N ρ̄ ,j (resp. C ρ̄ ,j+1

and N ρ̄ ,j) describing the adjacency relation.
For every y ∈ Reali(ρ̄ ), this defines a set of curves and points contained
in Zer(Q,Rk)y,z(y). The specifications of these points and curves is fixed
for every point y∈Reali(ρ̄ ). These points and curves satisfy the properties
of the output of Algorithm 15.2 (Curve Segments).

• Complexity: dO(ki�), where � is the number of parameters, d is a bound
on the degree of Q, O(d)k is a bound on the degrees of on the degree of the
parametrized univariate representations inN and of the polynomials in T .

• Procedure:
− Step 1: Perform Algorithm 12.10 (Parametrized Multiplication Table)

with input Cr(Q2, ζ , ), using Notation 12.46, and parameter Y , X≤i.
Perform Algorithm 12.15 (Parametrized Limit of Bounded Points), and
output a set U of parametrized univariate representations.

Using Notation 13.8, consider for every u = (f , g0, gi+1,� , gk)∈U
the finite set Fu containing Qu) and all the derivatives of f with
respect to T , and compute Du = RElimT(f , Fu) ⊂ D[Y , X≤i] using
Algorithm 11.19 (Restricted Elimination).

− Define D=
⋃

u∈U Du.
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− Step 2: Use Algorithm 15.9 (Parametrized Projection) with input N
and output a finite set B2 ⊂ D[Y ] containing A, such that for
every ρ̄ ∈SIGN(ρ,B2) and every u ∈ N the Thom encoding proji(u),
proji(τ ) specifying the projection of the associated point on the Xi

axis is fixed for every y∈Reali(ρ̄ ). Add to D the polynomials proji(u).
− Step 3: Apply Algorithms 14.7 (Parametrized Thom Encoding), 15.7

(Parametrized Comparison of Roots) to the setD. Denote by B3⊂D[Y ]
the family of polynomials output, and for every ρ̄ ∈ SIGN(ρ, B3),
denote by

Aρ̄ ,1αρ̄ ,1,� , Aρ̄ ,�(ρ̄ ), αρ̄ ,�(ρ̄ )

the list of Thom encodings output. For every y ∈ Reali(ρ̄ ), these are
the Thom encodings of the corresponding distinguished values

v1(y, z(y)) <� < v�(y, z(y)).

Define Vi, τi = T , Ai and τi = σ, αi.
− Step 4: For every ρ̄ ∈ SIGN(ρ, B3), every j = 1, � , �(ρ̄ )

and every u = (f , g0, gi,� , gk), τ ∈N, use Algorithm 14.7
(Parametrized Triangular Thom Encoding) and output B4(ρ̄ , j , u),
containing B3. Append pairs (f , g0, gi+1, � , gk), τ to N ρ1,j for
every ρ1∈SIGN(ρ̄,B4(ρ̄,j , u, τ)) such that for every y ∈ Reali(ρ1)
proji(τ ) is the Thom encoding of a point of Zer(Q,Rk)z(y) with pro-
jection having Thom encoding αj. Define B4(ρ̄ )=∪B4(ρ̄ , j , u, τ ).

− Step 5: For every ρ̄ ∈ SIGN(ρ, B3), every j = 1, � , �(ρ̄ ) and
every u = (f , g0, gi� , gk)∈U, use Algorithm 15.8 (Parametrized
Intermediate Points) and Algorithm 14.7 (Parametrized Triangular
Thom Encoding) and output B5(ρ̄ , j , u), containing B3. Append
pairs (f , g0, gi+1,� , gk), τ to N ρ1,j for every ρ1∈SIGN(ρ̄ ,B5(ρ̄,j , u))
such that for every y ∈ Reali(ρ1) proji(τ ) is the Thom encoding of
a point of Zer(Q, Rk)z(y) with projection having Thom encoding αj.
Define B5(ρ̄ ) =∪B5(ρ̄ , j , u).

− Step 6: For every ρ̄ ∈ SIGN(ρ, B3), every j = 1, � , �(ρ̄ ) − 1 and
every u = (f , g0, gi� , gk) ∈ U , use Algorithm 15.8 (Parametrized
Intermediate Points) and Algorithm 14.7 (Parametrized Triangular
Thom Encoding) and output a family B6(ρ̄ , j , u) containing B3 such
that for every sign condition ρ1 on B6 and every y ∈ Reali(ρ1) the
Thom encodings τ of the roots of f(y, z(y), v, T ) over (vi(y), vi+1(y))
are fixed and the corresponding associated curves are contained
in Zer(Q,Rk)z(y). Append all pairs (f , g0, gi+1� , gk), τ to Cρ3,i.
Define B6(ρ̄ ) =∪B6(ρ̄ , j , u).

− Step 7: Consider ρ1∈ SIGN(ρ̄ ,B4∪B5∪B6). For every j = 1,� , �(ρ̄1)
and every parametrized real univariate triangular representation
of N ρ1,j specified by

v ′=(p, q0, q2,� , qk), τ ′, {p, q0, q2,� , qk}⊂D[Y , X≤i][T ]
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and every parametrized curve segment representation of Cρ1,j specified
by

v = (f , g0, g2,� , gk), τ , {f , g0, g2,� , gk}⊂D[Y , X≤i[T ],

compute a family B7(ρ1, v ′, τ ′, v, τ) of polynomials contai-
ning B4∪B5∪B6 such that for every ρ2∈ SIGN(ρ1,B7(ρ1, v

′, τ ′, v, τ))
and every y ∈ Reali(ρ2) the algorithm deciding whether the corre-
sponding point t(y) is adjacent to the corresponding curve segment
gives the same answer: compute the first ν such that (∂νg0/∂Xi

ν)(vj , t)
is not zero and decide whether for every � = i+ 1,� , k

∂νg�

∂Xi
ν(vj , t)q0(t)−

∂νg0

∂Xi
ν (vj , t)q�(t)

is zero, using Algorithm 14.6 (Parametrized Sign Determination).
Repeat the same process for every element of N ρ1,i+1 and every

curve segment of Cρ1,i.
− Finally output B=∪B7(ρ1, v

′, τ ′, v, τ).

Proof of correctness: It follows from Proposition 12.42 and the correct-
ness of Algorithm 12.10 (Parametrized Multiplication Table), Algorithm 12.15
(Parametrized Limit of Bounded Points), Algorithm 11.19 (Restricted
Elimination), Algorithm 15.9 (Parametrized Projection), Algorithm 15.8
(Parametrized Intermediate Points), Algorithm 14.7 (Parametrized Thom
Encoding), Algorithm 15.7 (Parametrized Comparison of Roots) and Algo-
rithm 14.6 (Parametrized Sign Determination). �

Complexity analysis:

− Step 1: This step requires dO((�+i)(k−i)) arithmetic operations in D, using
the complexity analyses of Algorithm 12.10 (Parametrized Multiplica-
tion Table), Algorithm 12.15 (Parametrized Limit of Bounded Points),
Algorithm 11.19 (Restricted Elimination). There are dO(k−i) parametrized
univariate representations computed in this step and each polynomial in
these representations has degree O(d)k−i.

− Step 2: This step requires dO((�+i)k) arithmetic operations in D, using the
complexity analysis of Algorithm 15.9 (Parametrized Projection).

− Step 3: This step requires dO(�ik) arithmetic operations in D, using the
complexity analysis of Algorithm 14.7 (Parametrized Thom Encoding).

− Step 4: This step requires dO(�ik) arithmetic operations in D, using the
complexity analysis of Algorithm 14.6 (Parametrized Sign Determination).

− Step 5: This step requires dO(�ik) arithmetic operations in D, using the
complexity analysis of Algorithm 14.7 (Parametrized Thom Encoding).

− Step 6: This step requires dO(�ik) arithmetic operations in D, using the
complexity analyses of Algorithm 15.8 (Parametrized Intermediate Points)
and Algorithm 14.7 (Parametrized Thom Encoding).
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− Step 7: This step requires dO(�ik) arithmetic operations, using the com-
plexity analysis of Algorithm 14.6 (Parametrized Sign Determination).

Thus, the complexity is dO(�ik).
If D = Z, and the bitsizes of the coefficients of the polynomials are

bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(�ik). �

Algorithm 15.11. [Parametrized Bounded Algebraic Roadmap]

• Structure: an ordered domain D contained in a real closed field R.
• Input:

− a parametrized Thom encoding A, ρ, T , σ with parame-
ters Y = (Y1,� , Y�) and variables X≤i = (X1, � , Xi), with coefficients
in D. For every y∈Reali(ρ), (y, z(y)) denotes the point specified by σ,

− a polynomial Q∈D[Y , X1� , Xk], for which Zer(Q,Rk)⊂B(0, 1/c),
− a finite setN of parametrized real univariate triangular representations

above A, ρ, T , σ with coefficients in D, with, for every y ∈ Reali(ρ),
associated points contained in Zer(Q,Rk).

• Output:
− a subset C of D[Y ] containing A,
− for every realizable sign condition τ on C refining ρ, a subset RM(τ )

such that, for every y∈Reali(τ ), RM(τ )y is a roadmap for Zer(Q,Rk)y

that contains N y.

• Complexity: dO(�k2), where � is the number of parameters, O(d)k is a
bound on the degrees of on the degree of the univariate representation and
of the polynomials in T .

• Procedure:
− Call Algorithm 15.10 (Parametrized Curve Segments), output B and,

for every realizable sign condition ρ̄ on B refining ρ, �(ρ). Output also,
for every j = 1,� , �(ρ), Aρ̄ ,i, αρ̄ ,i, N ρ̄ ,i and C ρ̄ ,i.

− For every realizable sign condition ρ̄ on B and for every i from 1
to �(ρ̄ ), call Algorithm 15.11 (Parametrized Bounded Algebraic
Roadmap) recursively, with input B, ρ̄ ,T , Aρ̄ ,j , σ, αρ̄ ,j, Q and N ρ̄ ,j.

Proof of correctness: The correctness of the algorithm follows from Propo-
sition 15.7 and the correctness of Algorithm 15.2 (Curve Segments). �

Complexity analysis: In the recursive calls to Algorithm 15.11
(Parametrized Bounded Algebraic Roadmap), the number of triangular sys-
tems considered is at most dO(k2) and the triangular systems involved have
polynomials of degree O(d)k.

Thus, the total number of arithmetic operations in D is bounded by dO(�k2)

using the complexity analysis of Algorithm 15.10 (Parametrized Curve Seg-
ments).
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If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(�k2). �

We now want to obtain a parametrized connecting algorithm. We show
how to obtain a covering of a given P-closed semi-algebraic set contained in
Zer(Q, Rk) by a family of semi-algebraically contractible subsets. The con-
struction is based on a parametrized version of the connecting algorithm: we
compute a family of polynomials such that for each realizable sign condition
σ on this family, the description of the connecting paths of different points in
the realization, Reali(σ,Zer(Q,Rk)), are uniform.

We first define parametrized paths. A parametrized path is a semi-alge-
braic set which is a union of semi-algebraic paths having the divergence
property (see Remark 15.10).

More precisely,

Definition 15.14. A parametrized path γ is a continuous semi-algebraic
mapping from V ⊂ Rk+1 → Rk, such that, denoting by U = π1� k(V ) ⊂ Rk,
there exists a semi-algebraic continuous function �: U → [0, + ∞), and there
exists a point a in Rk, such that

− V = {(x, t) F x∈U , 0≤ t≤ �(x)},
− ∀ x∈U , γ(x, 0) = a,
− ∀ x∈U , γ(x, �(x))= x,
− ∀ x∈U , ∀ y ∈U , ∀ s, 0 � s � �(x), ∀ t0� t � �(y)

(γ(x, s)= γ(y, t)⇒ s = t),
− ∀ x∈U , ∀ y ∈U , ∀ s∈ [0,min (�(x), �(y))]

(γ(x, s)= γ(y, s)⇒∀ t≤ s γ(x, t) = γ(y, t)). �

Given a parametrized path, γ: V → Rk, we will refer to U = π1� k(V ) as its
base. Also, any semi-algebraic subset U ′⊂U of the base of such a parametrized
path, defines in a natural way the restriction of γ to the base U ′, which
is another parametrized path, obtained by restricting γ to the set V ′ ⊂ V ,
defined by V ′= {(x, t) F x∈U ′, 0≤ t≤ �(x)}.

Proposition 15.15. Let γ: V → Rk be a parametrized path such that U =
π1� k(V ) is closed and bounded. Then, the image of γ is semi-algebraically
contractible.

Proof: Let W = Im(γ) and M = supx∈U �(x). We prove that the semi-algebraic
mapping φ: W × [0, M ]→W sending

(γ(x, t), s) to γ(x, s) if t≥ s,
(γ(x, t), s) to γ(x, t) if t < s
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is continuous. Note that the map φ is well-defined, since

γ(x, t)= γ(x′, t′)⇒ t = t′,

by condition (4).Since φ satisfies

φ(γ(x, t), 0) = a,

φ(γ(x, t), M) = γ(x, t)

this gives a semi-algebraic continuous contraction from W to {a}.
Let w ∈W , s∈ [0, M ]. Let ε > 0 be an infinitesimal, and let

(w ′, s′)∈Ext(W × [0, M ],R〈ε〉)

be such that limε (w ′, s′) = (w, s). In order to prove the continuity of φ at w
it suffices to prove that

lim
ε

Ext(φ,R〈ε〉)(w ′, s′)= φ(w, s).

Let w = γ(x, t) for some x∈U , t ∈ [0, �(x)], and similarly let w ′ = (x′, t′) for
some x′ ∈ Ext(U ,R〈ε〉) and t′ ∈ [0,Ext(�,R〈ε〉)(x′)]. Note that limε (x′) ∈ U
since U is closed and bounded and limε t′∈ [0, �(limε x′)].

Now,
γ(x, t) = w

= lim
ε

(w ′)

= lim
ε

Ext(γ,R〈ε〉)(x′, t′)

= γ(lim
ε

x′, lim
ε

t′).

Condition (4) now implies that limε t′= t.
Without loss of generality let t′≥ t. The other case is symmetric. We have

the following two sub-cases.

− Case s′>t′: Since s, t∈R and limεs′=s and limε t′= t, we must have that
s≥ t. In this case Ext(φ,R〈ε〉)(w ′, s′) =Ext(γ,R〈ε〉)(x′, t′). Then,

lim
ε

Ext(φ,R〈ε〉)(w ′, s′) = lim
ε

Ext(γ,R〈ε〉)(x′, t′)

= lim
ε

w ′

= w
= φ(w, s).

− Case s′≤ t′: Again, since s, t ∈R and limε s′ = s and limε t′ = t, we must
have that s≤ t.

In this case we have,

lim
ε

φ(w ′, s′) = lim
ε

Ext(γ,R〈ε〉)(x′, s′)

= γ(lim
ε

x′, lim
ε

s′)

= γ(lim
ε

x′, s).
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Now,
γ(lim

ε
x′, t) = γ(lim

ε
x′, lim

ε
t′)

= lim
ε

Ext(γ,R〈ε〉)(x′, t′)

= lim
ε

w ′

= w
= γ(x, t).

Thus, by condition (5) we have that γ(limε x′, s′′)= γ(x, s′′) for all s′′≤ t.
Since, s≤ t, this implies,

lim
ε

Ext(φ,R〈ε〉)(w ′, s′) = lim
ε

Ext(γ,R〈ε〉)(w ′, s′)

= γ(lim
ε

x′, lim
ε

s′)

= γ(x, s)
= φ(w, s).

This proves the continuity of φ, using Proposition 3.5. �

Algorithm 15.12. [Parametrized Bounded Algebraic Connecting]

• Structure: an ordered domain D contained in a real closed field R.
• Input:

− a parametrized Thom encoding A, ρ, T , σ with parameters
Y = (Y1,� , Y�) and variables X≤i =(X1,� ,Xi), with coefficients in D.
For every y ∈Reali(ρ), (y, z(y)) denotes the point specified by σ,

− a polynomial Q∈D[Y , X1� , Xk], for which Zer(Q,Rk)⊂B(0, 1/c)
− a parametrized real univariate triangular representation above A, ρ,

T , σ with coefficients in D, with, for every y∈Reali(ρ), associated point
p(y) contained in Zer(Q,Rk).

• Output:
− a subset C of D[Y ] containing A,
− for every realizable sign condition τ on C refining ρ, a parametrized

path γ(τ) such that, for every y∈Reali(τ ), γ(τ)(y) is a path connecting
p(y) to a distinguished point of RM(Zer(Q,Rk)).

• Complexity: dO(�k2), where � is the number of parameters, O(d)k is a
bound on the degrees of on the degree of the univariate representation and
of the polynomials in T .

• Procedure: Call Algorithm 15.11 (Parametrized Bounded Algebraic
Roadmap) and extract γ from RM(τ ).

Proof of correctness: The correctness of the algorithm follows from the cor-
rectness of Algorithm 15.11 (Parametrized Bounded Algebraic Roadmap).It
is easy to see that γ is a parametrized path (see Definition 15.14), using the
divergence property of the paths γ(y, · ) (see Remark 15.10). �
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Complexity analysis: The total number of arithmetic operations in D
is bounded by dO(�k2), using the complexity analysis of Algorithm 15.11
(Parametrized Bounded Algebraic Roadmap).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(�k2). �

Algorithm 15.13. [Connected Components of an Algebraic Set]

• Structure: an ordered domain D contained in a real closed field R.
• Input: a polynomial Q∈D[X1,� , Xk].
• Output: a subset A of D[X1, � , Xk] and for every semi-algebraically

connected component S of Zer(Q, Rk) a finite subset Σ ⊂ SIGN(A) such
that S =

⋃
σ∈Σ Reali(σ,Zer(Q,Rk)).

• Complexity: dO(k3), where d is a bound on the degree of the polyno-
mial Q.

• Procedure:
− Take Qε = Q2 + (ε2 (X1

2 +� +Xk
2 + Xk+1

2 )− 1)2.
− Call Algorithm 15.11 (Parametrized Bounded Algebraic Roadmap)

without parametrized triangular Thom encoding, Qε, and

N = {(T − 1, 1, Y1,� , Yk)}.

The output contains a family of polynomials A ⊂ D[ε][X ] such that
the realization of a non-empty sign condition ρ in A is contained in a
semi-algebraically connected component of Zer(Qε,R〈ε〉k+1).

− Find a set S of sample points for every realizable sign condition on A

using Algorithm 13.1(Sampling). Compute RM(Zer(Qε, R〈ε〉k+1)
using Algorithm 15.3 (Bounded Algebraic Roadmap) and for every
semi-algebraically connected component S ′ of Zer(Qε, R〈ε〉k+1), fix
a point y(S ′) of S ′∩RM(Zer(Qε,R〈ε〉k+1). For every x∈ S compute
a roadmap RM(Zer(Qε,R〈ε〉k+1), x) of Zer(Qε,R〈ε〉k+1) containing x
using Algorithm 15.3 (Bounded Algebraic Roadmap) and decide
from RM(Zer(Qε,R〈ε〉k+1), x) whether x belongs to S ′.

− Output the description of S ′, i.e. the disjunction Φ(S ′) of realizable
sign conditions on A with a sample point belonging to S ′, for every
semi-algebraically connected component S ′ of Zer(Qε,R〈ε〉k+1).

− For every connected component S of Zer(Q, Rk) there exists a con-
nected component S ′ of Zer(Qε, R〈ε〉k+1), such that π(S ′) ∩ Rk = S,
where π: R〈ε〉k+1 → R〈ε〉k is the projection map forgetting the last
coordinate.

Consider the formula Φ(S ′) describing S ′ and, eliminating a
quantifier, the formula Ψ describing π(S ′). Then Remoε(Ψ(Y )) (Nota-
tion 14.6) defines S.
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Proof of correctness: All points satisfying the same sign condition on A
can be connected by a semi-algebraic path in Zer(Q,Rk) to some fixed curve
segment of RM(Zer(Q, Rk)) and hence must belong to the same connected
component of Zer(Q, Rk). Which realizable sign conditions on A belong to
the same semi-algebraically connected component of RM(Zer(Q,Rk)) follows
from Step 2 and 3. We also use Proposition 14.7. �

Complexity analysis: The total number of arithmetic operations in D
is bounded by dO(k3), using the complexity analysis of Algorithm 15.11
(Parametrized Bounded Algebraic Roadmap). The degrees of the polyno-
mials in A are bounded by dO(k2).

If D = Z, and the bitsizes of the coefficients of the polynomials are
bounded by τ , then the bitsizes of the integers appearing in the intermediate
computations and the output are bounded by τ dO(k3). �

So we have proved Theorem 15.12.

15.4 Bibliographical Notes

The problem of deciding connectivity properties of algebraic sets considered
here is a base case for deciding connectivity properties of semi-algebraic sets,
studied in Chapter 16.

The notion of a roadmap for a semi-algebraic set was introduced by Canny
in [36].

We discuss in more details the various contributions to the roadmap
problem and the computation of connected components at the end of
Chapter 16.

It is interesting to remark that the complexity of computing the number
of connected components of an algebraic set given in this chapter is signif-
icantly worse than that of the algorithm for computing the Euler-Poincaré
characteristic of an algebraic set given in Chapter 12. Thus, currently we are
able to compute the Euler-Poincaré characteristic of real algebraic sets (which
is the alternative sum of the Betti numbers) more efficiently than any of the
individual Betti numbers.
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