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Summary. Support Vector Machine (SVM) is gaining much popularity as one of
effective methods for machine learning in recent years. In pattern classification prob-
lems with two class sets, it generalizes linear classifiers into high dimensional feature
spaces through nonlinear mappings defined implicitly by kernels in the Hilbert space
so that it may produce nonlinear classifiers in the original data space. Linear classi-
fiers then are optimized to give the maximal margin separation between the classes.
This task is performed by solving some type of mathematical programming such
as quadratic programming (QP) or linear programming (LP). On the other hand,
from a viewpoint of mathematical programming for machine learning, the idea of
maximal margin separation was employed in the multi-surface method (MSM) sug-
gested by Mangasarian in 1960’s. Also, linear classifiers using goal programming
were developed extensively in 1980’s. This chapter introduces a new family of SVM
using multi-objective programming and goal programming (MOP/GP) techniques,
and discusses its effectiveness throughout several numerical experiments.

8.1 Introduction

For convenience, we consider pattern classification problems. Let X be a space
of conditional attributes. For binary classification problems, the value of +1 or
−1 is assigned to each pattern xi ∈ X according to its class A or B. The aim
of machine learning is to predict which class newly observed patterns belong
to on the basis of the given training data set (xi, yi) (i = 1, . . . , �), where
yi = +1 or −1. This is performed by finding a discriminant function f(x)
such that f(x) � 0 for x ∈ A and f(x) < 0 for x ∈ B. Linear discriminant
functions, in particular, can be expressed by the following linear form

f(x) = wT x + b
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with the property

wT x + b � 0 for x ∈ A
wT x + b < 0 for x ∈ B.

For such a pattern classification problem, artificial neural networks have
been widely applied. However, the back propagation method is reduced to
nonlinear optimization with multiple local optima, and hence difficult to apply
to large scale problems. Another drawback in the back propagation method is
in the fact that it is difficult to change the structure adaptively according to
the change of environment in incremental learning. Recently, Support Vector
Machine (SVM, for short) is attracting interest of researchers, in particular,
people who are engaged in mathematical programming, because it is reduced
to quadratic programming (QP) or linear programming (LP). One of main
features in SVM is that it is a linear classifier with maximal margin on the
feature space through nonlinear mappings defined implicitly by kernels in the
Hilbert space.

The idea of maximal margin in linear classifiers is intuitive, and its rea-
soning in connection with perceptrons was given in early 1960’s (e.g., Novikoff
[17]). The maximal margin is effectively applied for discrimination analysis us-
ing mathematical programming, e.g., MSM (Multi-Surface Method) by Man-
gasarian [11]. Later, linear classifiers with maximal margin were formulated
as linear goal programming, and extensively studied through 1980’s to the
beginning of 1990’s. The pioneering work was given by Freed-Glover [9], and
a good survey can be seen in Erenguc-Koehler et al. [8]. This chapter discusses
SVMs using techniques of multi-objective programming (MOP) and goal pro-
gramming (GP), and proposes several extensions of SVM along MOP/GP.

8.2 Support Vector Machine

Support vector machine (SVM) was developed by Vapnik et al. [6], [22] (see
also Cristianini and Shawe-Taylor [7], Schölkopf-Smola [20]) and its main fea-
tures are

1) SVM maps the original data set into a high dimensional feature
space by nonlinear mapping implicitly defined by kernels in the
Hilbert space,

2) SVM finds linear classifiers with maximal margin on the feature
space,

3) SVM provides an evaluation of the generalization ability using VC
dimension.

Namely, in cases where training data set X is not linearly separable, we
map the original data set X to a feature space Z by some nonlinear map φ.
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Increasing the dimension of the feature space, it is expected that the mapped
data set becomes linearly separable. We try to find linear classifiers with
maximal margin in the feature space. Letting zi = φ(xi), the separating hy-
perplane with maximal margin can be given by solving the following problem
with the normalization wT z + b = ±1 at points with the minimum interior
deviation:

minimize ||w|| (SVMhard)P

subject to yi

(
wT zi + b

)
� 1, i = 1, . . . , �.

Several kinds of norm are possible. When ||w||2 is used, the problem is
reduced to quadratic programming, while the problem with ||w||1 or ||w||∞
is reduced to linear programming (see, e.g., [12]).

Dual problem of (SVMhard)P with 1
2 ||w||22 is

maximize
�∑

i=1

αi −
1
2

�∑

i,j=1

αiαjyiyjφ(xi)Tφ(xj) (SVMhard)D

subject to
�∑

i=1

αiyi = 0,

αi � 0, i = 1, . . . , �.

Using the kernel function K(x,x′) = φ(x)Tφ(x′), the problem (SVMhard)D

can be reformulated as follows:

maximize
�∑

i=1

αi −
1
2

�∑

i,j=1

αiαjyiyjK(xi,xj) (SVMhard)

subject to
�∑

i=1

αiyi = 0,

αi � 0, i = 1, . . . , �.

Several kinds of kernel functions have been suggested: among them, q-
polynomial

K(x,x′) = (xT x′ + 1)q

and Gaussian

K(x,x′) = exp
(

−||x− x′||2
r2

)

are most popularly used.
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8.3 Review of Multi-objective Programming
and Goal Programming

Multi-objective programming (MOP) problems are formulated as follows:

(MOP) Maximize g(x) ≡ (g1(x), g2(x), . . . , gp(x))

over x ∈ X.
The constraint set X may be given by

cj(x) � 0, j = 1, . . . ,m,

and/or a subset of Rn itself. For the problem (MOP), Pareto solutions are
candidates of final decision (x̂ is said Pareto optimal, if there is no better
solution x ∈ X other than x̂).

In general, there may be many Pareto solutions. The final decision is made
among them taking the total balance over all criteria into account. This is a
problem of value judgment of decision maker (in abbreviation, DM). The
totally balancing over criteria is usually called trade-off. It is important to
help DM to trade-off easily in practical decisin making problems.

There have been developed several kinds of methods for multi-objective
programming (see, e.g., Steuer [21], Chankong-Haims [4], Sawaragi-Nakayama-
Tanino [18], Nakayama [15], Miettinen [14]). Among them, interactive multi-
objective programming methods, which were developed remarkably in 1980’s,
have been observed to be effective in various fields of practial problems. Those
methods search a solution in an interactive way with DM while eliciting in-
formation on his/her value judgment.

On the other hand, Goal Programming (GP) was developed by Charnes-
Cooper [5] much earlier than interactive programming methods. The idea
was originated from getting rid of no feasible solution in usual mathematical
programming. Namely, many constraints should be regarded as “goal” to be
attained, and we try to find a solution which attains those goals as much as
possible.

For example, suppose that we want to make

gi(x) � gi, i = 1, . . . , p.

Introducing the degree of overattainment (or surplus, or interior deviation)
ηi and the degree of unattainment (or slackness, or exterior deviation) ξi, we
have the following goal programming formulation:

minimize
p∑

i=1

hiξi (GP0)

subject to gi(x)− gi = ηi − ξi,

ξi, ηi � 0, i = 1, . . . , p
x ∈ X.
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where hi (i = 1, . . . , p) are positive weighting parameters which are given by
DMs.

It should be noted that in order for ηi and ξi in the above formulation to
have the meaning of the degree of overattainment and the degree of unattain-
ment, respectively, the relation ξi · ηi = 0 has to be satisfied. The above
formulation assures this property due to the following lemma (Lemma 7.3.1
of [18]):

Lemma 1. Let ξ and η be vectors of Rp. Then consider the following problem:

minimize P (ξ,η)
subject to gi(x)− gi = ηi − ξi,

ξi, ηi � 0, i = 1, . . . , p,
x ∈ X.

Suppose that the function P is monotononically increasing with respect to
elements of ξ and η and strictly monotonically increasing with respect to at
least either ξi or ηi for each i (i = 1, . . . , p). Then, the solution ξ̂ and η̂ to
the preceding problem satisfy

ξ̂iη̂i = 0, i = 1, . . . , p.

In the original formulation of goal programming, once a solution which
attains every goal, no efforts are made for further improvement. Therefore, the
obtained solution by goal programming is not necessarily Pareto optimal. This
is due to the fact that the idea of goal programming is based on “satisficing”
rather than “optimization”.

In order to overcome this difficulty, we can put the degree of overattain-
ment in the objective function in (GP0) as follows:.

minimize
p∑

i=1

hiξi −
p∑

i=1

kiηi (GP1)

subject to gi(x)− gi = ηi − ξi,

ξi, ηi � 0, i = 1, . . . , p,
x ∈ X.

Note that if the relation hi > ki for each i = 1, . . . , p holds, then the
relation ξiηi = 0 for each i = 1, . . . , p is satisfied at the solution. This follows
in a similar fashion to Lemma 1 by considering

p∑

i=1

hiξi −
p∑

i=1

kiηi =
p∑

i=1

ki(ξi − ηi) +
p∑

i=1

(hi − ki)ξi.

Moreover, if ki = hi for each i = 1, . . . , p, then by substituting the right
hand side of the equality constraints of (GP1) into the objective function we
have
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maximize
p∑

i=1

hi(gi(x)− gi) (MOP/GP0)

subject to x ∈ X.

Since the term of −gi does not affect to maximizing the objective func-
tion, it can be removed. Namely the formulation (MOP/GP0) is reduced to
the usual scalarization using the linearly weighted sum in multi-objective pro-
gramming.

However, the scalarization of linearly weighted sum has another drawbacks:
e.g., it can not yield solutions on nonconvex parts of the Pareto frontier. To
overcome this, the formulation of improvement of the worst level of objective
function as much as possibel is applied as follows:

maximize η (MOP/GP1)
subject to gi(x)− gi � η, i = 1, . . . , p,

x ∈ X.

The solution to (MOP/GP1) is guaranteed to be weakly Pareto optimal.
Further discussion on scalarization functions can be seen in the literatures
([21], [4], [18], [15], [14]).

8.4 MOP/GP Approaches to Pattern Classification

In 1981, Freed-Glover suggested to get just a hyperplane separating two classes
with as few misclassified data as possible by using goal programming [9] (see
also [8]). Let ξi denote the exterior deviation which is a deviation from the
hyperplane of a point xi improperly classified. Similarly, let ηi denote the
interior deviation which is a deviation from the hyperplane of a point xi

properly classified. Some of main objectives in this approach are as follows:

i) Minimize the maximum exterior deviation (decrease errors as
much as possible)

ii) Maximize the minimum interior deviation (i.e., maximize the mar-
gin)

iii) Maximize the weighted sum of interior deviation

iv) Minimize the weighted sum of exterior deviation

Although many models have been suggested, the one considering iii) and
iv) above may be given by the following linear goal programming:
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minimize
�∑

i=1

(hiξi − kiηi) (GP)

subject to yi(xT
i w + b) = ηi − ξi,

ξi, ηi � 0, i = 1, . . . , �,

where since yi = +1 or −1 according to xi ∈ A or xi ∈ B, two equations
xT

i w + b = ηi − ξi for xi ∈ A and xT
i w + b = −ηi + ξi for xi ∈ B can be

reduced to the following one equation

yi(xT
i w + b) = ηi − ξi.

Here, hi and ki are positive constants. As was stated in the preceding
section, if hi > ki for i = 1, . . . , �, then we have ξiηi = 0 for every i = 1, . . . , �
at the solution to (GP). Hence then, ξi and ηi are assured to have the meaning
of the exterior deviation and the interior deviation respectively at the solution.

It should be noted that the above formulation may yield some unacceptable
solutions such as w = 0 and unbounded solution. In the goal programming
approach to linear classifiers, therefore, some appropriate normality condition
must be imposed on w in order to provide a bounded nontrivial optimal
solution. One of such normality conditions is ||w|| = 1.

If the classification problem is linearly separable, then using the normal-
ization ||w|| = 1, the separating hyperplane H : wT x + b = 0 with maximal
margin can be given by solving the following problem [3]:

maximize η (MOP/GP2)

subject to yi(xT
i w + b) � η, i = 1, . . . , �,

||w|| = 1.

However, this normality condition makes the problem to be of nonlin-
ear optimization. Instead of maximizing the minimum interior deviation in
(MOP/GP2), we can use the following equivalent formulation with the nor-
malization xT w + b = ±1 at points with the minimum interior deviation
[13]:

minimize ||w|| (MOP/GP′
2)

subject to yi

(
xT

i w + b
)

� η, i = 1, . . . , �,
η = 1.

This formulation is the same as the one used in SVM.
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8.5 Soft Margin SVM

Separating two sets A and B completely is called the hard margin method,
which tends to make overlearning. This implies the hard margin method is
easily affected by noise. In order to overcome this difficulty, the soft margin
method is introduced. The soft margin method allows some slight error which
is represented by slack variables (exterior deviation) ξi (i = 1, . . . , �). Using
the trade-off parameter C between minimizing ||w|| and minimizing

∑�
i=1 ξi,

we have the following formulation for the soft margin method:

minimize
1
2
||w||22 + C

�∑

i=1

ξi (SVMsoft)P

subject to yi

(
wT zi + b

)
� 1− ξi,

ξi � 0, i = 1, . . . , �.

Using a kernel function in the dual problem yields

maximize
�∑

i=1

αi −
1
2

�∑

i,j=1

αiαjyiyjK(xi,xj) (SVMsoft)

subject to
�∑

i=1

αiyi = 0,

0 � αi � C, i = 1, . . . , �.

It can be seen that the idea of soft margin method is the same as the
goal programming approach to linear classifiers. This idea was used in an
extension of MSM by Benett [2]. Not only exterior deviations but also interior
deviations can be considered in SVM. Such MOP/GP approaches to SVM are
discussed by the authors and their coresearchers [1], [16], [23]. When applying
GP approaches, it was pointed out in Section 3 that we need some normality
condition in order to avoid unacceptable solutions.

Glover suggested the following necessary and sufficient condition for avoid-
ing unacceptable solutions [10]:

(

−lA
∑

i∈IB

xi + lB
∑

i∈IA

xi

)T

w = 1, (8.1)

where lA and lB denote the number of data for the category A and B, respec-
tively. Geometrically, the normalization (8.1) means that the distance between
two hyperplanes passing through centers of data respectively for A and B is
scaled by lAlB.

Lately, taking into account the objectives (ii) and (iv) of goal programming
stated in the previous section, Schölkopf et al. [19] suggested ν-support vector
algorithm:
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minimize
1
2
||w||22 − νρ+

1
�

�∑

i=1

ξi (ν−SVM)P

subject to yi

(
wT zi + b

)
� ρ− ξi,

ρ � 0, ξi � 0, i = 1, . . . , �.

where 0 � ν � 1 is a parameter.

Compared with the existing soft margin algorithm, one of the differences is
that the parameter C for slack variables does not appear, and another differ-
ence is that the new variable ρ appears in the above formulation. The problem
(ν−SVM)P maximizes the variable ρ which corresponds to the minimum inte-
rior deviation (i.e., the minimum distance between the separating hyperplane
and correctly classified points).

The Lagrangian dual problem to the problem (ν−SVM)P is as follows:

maximize − 1
2

�∑

i,j=1

yiyjαiαjK (xi,xj) (ν−SVM)

subject to
�∑

i=1

yiαi = 0,

�∑

i=1

αi � ν,

0 � αi � 1
�
, i = 1, . . . , �.

8.6 Extensions of SVM by MOP/GP

In this section, we propose various algorithms of SVM considering both slack
variables for misclassified data points (i.e., exterior deviations) and surplus
variables for correctly classified data points (i.e., interior deviations).

8.6.1 Total Margin Algorithm

In order to minimize the slackness and to maximize the surplus, we have the
following optimization problem:

minimize
1
2
‖w‖22 + C1

�∑

i=1

ξi − C2

�∑

i=1

ηi (SVMtotal)P

subject to yi

(
wT zi + b

)
� 1− ξi + ηi,

ξi � 0, ηi � 0, i = 1, . . . , �,
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where C1 and C2 are chosen in such a way that C1 > C2 which ensures that at
least one of ξi and ηi becomes zero. The Lagrangian function for the problem
(SVMtotal)P is

L(w, b, ξ,η,α,β,γ) =
1
2
‖w‖22 + C1

�∑

i=1

ξi − C2

�∑

i=1

ηi

−
�∑

i=1

αi

[
yi

(
wT zi + b

)
− 1 + ξi − ηi

]

−
�∑

i=1

βiξi −
�∑

i=1

γiηi,

where αi � 0, βi � 0 and γi � 0.

Differentiating the Lagrangian function with respect to w, b, ξ and η
yields the following conditions:

∂L(w, b, ξ,η,α,β,γ)
∂w

= w −
�∑

i=1

αiyizi = 0,

∂L(w, b, ξ,η,α,β,γ)
∂ξi

= C1 − αi − βi = 0,

∂L(w, b, ξ,η,α,β,γ)
∂ηi

= −C2 + αi − γi = 0,

∂L(w, b, ξ,η,α,β,γ)
∂b

=
�∑

i=1

αiyi = 0.

Substituting the above stationary conditions into the Lagrangian function
L and using kernel representation, we obtain the following dual optimization
problem:

maximize
�∑

i=1

αi −
1
2

�∑

i,j=1

yiyjαiαjK (xi,xj) (SVMtotal)

subject to
�∑

i=1

yiαi = 0,

C2 � αi � C1, i = 1, . . . , �.

Let α∗ be the optimal solution to the problem (SVMtotal). Then, the
discrimination function can be written by

f(φ(x)) =
�∑

i=1

α∗
i yiK (x,xi) + b.



8 Generating Support Vector Machines using MOP/GP 183

The offset b is given as follows: Let n+ be the number of xj with C2 < α∗
j < C1

and yj = +1, and let n− be the number of xj with C2 < α∗
j < C1 and yj = −1,

respectively. From the Karush-Kuhn-Tucker complementarity conditions, if
C2 < α∗

j < C1, then βj > 0 and γj > 0. This implies that ξj = ηj = 0. Then,

b∗ =
1

n+ + n−



(n+ − n−)−
n++n−∑

j=1

�∑

i=1

yiα
∗
iK (xi,xj)



 .

8.6.2 µ−SVM

Minimizing the worst slackness and maximizing the sum of surplus, we have
a reverse formulation of ν−SVM. We introduce a new variable σ which repre-
sents the maximal distance between the separating hyperplane and misclassi-
fied data points. Thus, the following problem is obtained:

minimize
1
2
‖w‖22 + µσ − 1

�

�∑

i=1

ηi (µ−SVM)P

subject to yi

(
wT zi + b

)
� ηi − σ,

σ � 0, ηi � 0, i = 1, . . . , �,

where µ is a parameter which reflects the trade-off between σ and the sum of
ηi.

The Lagrangian function for the problem (µ−SVM)P is

L(w, b,η, σ,α,β, γ) =
1
2
‖w‖22 + µσ − 1

�

�∑

i=1

ηi

−
�∑

i=1

αi

[
yi

(
wT zi + b

)
− ηi + σ

]
−

�∑

i=1

βiηi − γσ,

where αi � 0, βi � 0 and γ � 0.

Differentiating the Lagrangian function with respect to w, b, η and σ
yields the following conditions:

∂L(w, b,η, σ,α,β, γ)
∂w

= w −
�∑

i=1

αiyizi = 0,

∂L(w, b,η, σ,α,β, γ)
∂ηi

= −1
�

+ αi − βi = 0,

∂L(w, b,η, σ,α,β, γ)
∂σ

= µ−
�∑

i=1

αi − γ = 0,

∂L(w, b,η, σ,α,β, γ)
∂b

=
�∑

i=1

αiyi = 0.
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Substituting the above stationary conditions into the Lagrangian function
L, we obtain the following dual optimization problem:

maximize − 1
2

�∑

i,j=1

αiαjyiyjK (xi,xj) (µ−SVM)

subject to
�∑

i=1

αiyi = 0,

�∑

i=1

αi � µ,

αi � 1
�
, i = 1, . . . , �.

Let α∗ be the optimal solution to the problem (µ−SVM). To compute the
offset b, we take the set A of xj which is the same size n with 1

� < α∗
j . From

the Karush-Kuhn-Tucker complementarity conditions, if 1
� < α∗

j , then βj > 0
which implies ηj = 0. Thus,

b∗ = − 1
2n

∑

xj∈A

�∑

i=1

α∗
i yiK (xi,xj) .

8.6.3 µ−ν−SVM

Applying SVMtotal and µ−SVM, all training points become support vectors
due to the second constraint of the problem (SVMtotal) and the third con-
straint of the problem (µ−SVM). In other words, the algorithms (SVMtotal)
and (µ−SVM) lack in the sparsity of support vectors. In order to overcome this
problem in (SVMtotal) and (µ−SVM), we suggest the following formulation,
which combines the ideas of ν−SVM and µ−SVM:

minimize
1
2
‖w‖22 − νρ+ µσ (µ− ν−SVM)P

subject to yi

(
wT zi + b

)
� ρ− σ, i = 1, . . . , �,

ρ � 0, σ � 0,

where ν and µ are parameters.

The Lagrangian function to the problem (µ−ν−SVM)P is

L(w, b, ρ, σ,α, β, γ) =
1
2
‖w‖22 − νρ+ µσ

−
�∑

i=1

αi

[
yi

(
wT zi + b

)
− ρ+ σ

]
− βρ− γσ,

where αi � 0, β � 0 and γ � 0.
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Differentiating Lagrangian function with respect to w, b, ρ and σ yields
the four conditions

∂L(w, b, ρ, σ,α, β, γ)
∂w

= w −
�∑

i=1

αiyizi = 0,

∂L(w, b, ρ, σ,α, β, γ)
∂ρ

= −ν +
�∑

i=1

αi − β = 0,

∂L(w, b, ρ, σ,α, β, γ)
∂σ

= µ−
�∑

i=1

αi − γ = 0,

∂L(w, b, ρ, σ,α, β, γ)
∂b

=
�∑

i=1

αiyi = 0.

Substituting the above stationary conditions into the Lagrangian function
L and using kernel representation, we obtain the following dual optimization
problem:

maximize − 1
2

�∑

i,j=1

αiαjyiyjK (xi,xj) (µ− ν−SVM)

subject to
�∑

i=1

αiyi = 0,

ν �
�∑

i=1

αi � µ,

αi � 0, i = 1, . . . , �.

Letting α∗ be the optimal solution to the problem (µ−ν−SVM), the offset
b∗ can be chosen easily for any i satisfying α∗

i > 0. Otherwise, b∗ can be
obtained by the similar way with the decision of the b∗ in the other algorithms.

8.7 Numerical Examples

In order to investigate the performance of our proposed method, we compare
the results for four data sets in the following: (The data can be downloaded
from http://www.ics.uci.edu/̃ mlearn/MLSummary.html)

I. MONK’s Problem (all data sets with 7 attributes)
a) case 1

i. training : 124 instances (A : 62 instances, B : 62 instances)
ii. test : 432 instances (A : 216 instances, B : 216 instances)
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b) case 2
i. training : 169 instances (A : 64 instances, B : 105 instances)
ii. test : 432 instances (A : 142 instances, B : 290 instances)

c) case 3
i. training : 122 instances (A : 60 instances, B : 62 instances)
ii. test : 432 instances (A : 228 instances, B : 204 instances)

II. Cleveland heart-disease from Long Beach and Cleveland Clinic Founda-
tion : 303 instances (A : 164 instances, B : 139 instances) with 14 attributes

III. BUPA liver disorders from BUPA Medical Research Ltd. : 345 instances
(A : 200 instances, B : 145 instances) with 7 attributes

IV. PIMA Indians diabetes database : 768 instances (A : 268 instances, B :
500 instances) with 9 attributes

In the following numerical experiments, QP solver of MATLAB was used
for solving QP problems in SVM formulations; Gaussian kernels with r = 1.0
were used with the data normalization for each sample xi

x̃ki =
xki − µk

σk

where µk and σk are the mean value and the standard deviation of k-th
component of given the sample data {x1, . . . ,xp}, respectively. For parameters
in applying GP model, we set h1 = h2 = · · · = h� = C1 and k1 = k2 = · · · =
k� = C2.

For the dataset I, we followed both the training data and the test data as in
the benchmark of the WEB site. Tables 8.1–8.6 compare the classification rates
by using the existing algorithms (GP), (SVMsoft) and (ν−SVM) with the
proposed algorithms (SVMtotal), (µ−SVM) and (µ−ν−SVM), respectively.

For the datasets II and III, we adopt the ‘cross validation test’ method
which makes 10 trials for randomly selected training data of 70% from the
original data set and the test data of the rest 30%. Tables 8.7–8.18 compare
the average (AVE) and the standard deviation (STDV) of classification rates
by using the existing algorithms (GP), (SVMsoft) and (ν−SVM) with the
proposed algorithms (SVMtotal), (µ−SVM) and (µ−ν−SVM), respectively.

For the dataset IV, there is an unbalance between the number of el-
ements of two classes: A (tested positive for diabetes) has 268 elements,
while B (tested non-positive for diabetes) 500 elements. We selected ran-
domly 70% from the whole data set as the training samples, and set the
rest 30% as the test samples. We compared the results by (GP), (SVMsoft)
and (SVMtotal ν−SVM) with the proposed algorithms (SVMtotal), (µ−SVM)
and (µ−ν−SVM) as seen in Tables 8.19–8.24, respectively.

Table 8.25 shows the rate of support vectors in terms of percentage for
each problem and each method.

Throughout our numerical experiments, it has been observed that even
though the result depends on the value of parameters, the family of SVM
using MOP/GP such as ν−SVM, SVMtotal, µ−SVM and µ− ν−SVM show a
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relatively good performance in comparison with the simple SVMsoft. Some-
times unbalanced data sets cause a difficulty in predicting the category with
fewer samples. In our experiments, MONK (case2) and PIMA diabetes are of
this kind. It can be seen in those problems that the classification ability for
the class with fewer samples is much sensitive to the value of C in SVMsoft. In
other words, we have to select the appropriate value of C in SVMsoft carefully
in order to attain some reasonable classification rate for unbalanced data sets.
SVMtotal and µ − ν−SVM, however, have advantage over SVMsoft in clas-
sification rate of the class with fewer elements. In addition, the data set of
MONK seems not to be linearly separated. In this example, therefore, SVMs
using MOP/GP show much better performance than the mere GP.

Table 8.1. Classification Rate by GP for MONK’s Problem

C1 1 10 100

C2 0.001 0.01 0.1 0.01 0.1 1 0.1 1 10 average

case 1 73.39 73.39 73.39 73.39 73.39 71.77 73.39 73.39 73.39 73.21

Training case 2 63.31 63.31 63.31 63.31 63.31 63.91 63.31 63.31 65.09 63.57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 53.13 53.13 45.31 51.56 51.56 48.44 51.56 51.56 45.31 50.17
B 69.52 69.52 74.29 70.48 70.48 73.33 70.48 70.48 77.14 71.75

case 3 88.52 88.52 88.52 88.52 88.52 88.52 88.52 88.52 88.52 88.52

case 1 66.67 66.67 66.67 66.67 66.67 65.97 66.67 66.67 66.67 66.59

Test case 2 58.33 58.33 58.33 59.03 59.03 59.26 59.03 59.03 61.11 59.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 39.44 39.44 35.92 40.14 40.14 37.32 40.14 40.14 35.92 38.73
B 67.59 67.59 70.69 68.28 68.28 70.00 68.28 68.28 73.45 69.16

case 3 88.89 88.89 88.89 88.89 88.89 88.89 88.89 88.89 88.89 88.89

Table 8.2. Classification Rate by SVMsoft for MONK’s Problem

C 0.1 1 10 100 average

case 1 87.90 95.16 100 100 95.77

Training case 2 62.13 85.80 100 100 86.98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 0.00 64.06 100 100 66.02
B 100 99.05 100 100 40.84

case 3 81.15 99.18 100 100 95.08

case 1 78.94 83.80 92.36 92.36 86.86

Test case 2 67.13 70.14 79.63 80.09 74.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 0.00 40.14 82.39 83.10 51.41
B 100 84.83 78.28 78.62 85.43

case 3 69.44 95.83 91.67 91.67 87.15
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Table 8.3. Classification Rate by ν−SVM for MONK’s Problem

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 average

case 1 100 100 100 99.19 98.39 94.35 91.94 97.70

Training case 2 100 100 100 98.82 98.82 95.27 88.17 97.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 100 100 100 96.88 96.88 89.06 70.31 93.30
B 100 100 100 100 100 99.05 99.05 99.73

case 3 100 99.18 99.18 99.18 97.54 95.90 94.26 97.89

case 1 92.36 92.13 91.20 88.43 87.04 84.03 80.56 87.96

Test case 2 80.09 80.09 79.40 78.70 77.78 74.31 71.06 77.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 83.10 83.10 82.39 80.28 73.94 60.56 45.07 72.64
B 78.62 78.62 77.93 77.93 79.66 81.03 83.79 79.66

case 3 91.67 94.44 95.14 96.06 95.60 93.52 92.13 94.08

Table 8.4. Classification Rate by SVMtotal for MONK’s Problem

C1 1 10 100

C2 0.001 0.01 0.1 0.01 0.1 1 0.1 1 10 average

case 1 95.16 95.16 95.97 100 100 100 100 100 90.38 97.40

Training case 2 86.98 87.57 88.76 100 100 100 100 100 80.47 93.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 70.31 71.88 76.56 100 100 100 100 100 100 90.97
B 97.14 97.14 96.19 100 100 100 100 100 68.57 95.45

case 3 99.18 99.18 99.18 100 100 100 100 100 95.0 99.18

case 1 84.49 84.26 84.03 92.59 92.59 86.57 92.59 86.57 79.40 87.01

Test case 2 69.68 69.91 70.83 77.78 78.01 78.01 77.78 78.01 69.91 74.43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 47.18 47.89 50.70 86.62 87.32 89.44 87.32 89.44 85.92 74.65
B 80.69 80.69 80.69 73.45 73.45 72.41 73.10 72.41 62.07 74.33

case 3 95.83 95.83 96.06 91.90 91.90 91.90 91.90 91.90 90.51 93.08

Table 8.5. Classification Rate by µ−SVM for MONK’s Problem

µ 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 average

case 1 90.32 90.32 90.32 90.32 90.32 90.32 90.32 90.32 90.32

Training case 2 71.01 71.01 71.01 71.01 71.01 71.01 71.01 71.01 71.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 100 100 100 100 100 100 100 100 100
B 53.33 53.33 53.33 53.33 53.33 53.33 53.33 53.33 53.33

case 3 100 100 100 100 100 100 100 100 100

case 1 77.46 77.46 77.46 77.46 77.46 77.46 77.46 77.46 77.46

Test case 2 62.73 62.73 62.73 62.73 62.73 62.73 62.73 62.73 62.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18
B 45.86 45.86 45.86 45.86 45.86 45.86 45.86 45.86 45.86

case 3 93.52 93.52 93.52 93.52 93.52 93.52 93.52 93.52 93.52
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Table 8.6. Classification Rate by µ − ν−SVM for MONK’s Problem

µ 1 10 100

ν 0.001 0.01 0.1 0.01 0.1 1 0.1 1 10 average

case 1 100 100 100 100 100 100 100 100 100 100

Training case 2 100 100 100 100 100 100 100 100 100 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 100 100 100 100 100 100 100 100 100 100
B 100 100 100 100 100 100 100 100 100 100

case 3 100 100 100 100 100 100 100 100 100 100

case 1 95.37 93.06 92.59 92.59 92.59 92.36 92.59 92.36 92.36 92.88

Test case 2 80.56 75.69 75.46 75.46 75.46 80.09 75.46 80.09 80.09 77.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 95.77 92.96 92.96 92.96 92.96 83.10 92.96 83.10 83.10 89.98
B 73.10 67.24 66.90 66.90 66.90 78.62 66.90 78.62 78.62 71.53

case 3 93.98 93.52 93.52 93.52 93.52 91.67 93.52 91.67 91.67 92.95

Table 8.7. Classification Rate by GP for Cleveland Heart-disease

C1 1

C2 0.001 0.01 0.1

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 87.93 88.80 86.88 79.11 80.05 78.07 88.03 88.98 86.88 79.11 80.05 78.07 88.22 89.50 86.68 78.89 80.30 77.35

STD 1.07 1.21 2.05 3.61 5.73 5.14 1.03 1.22 2.05 3.61 5.73 5.14 0.93 1.47 1.94 3.02 5.24 4.48

C1 10

C2 0.01 0.1 1

AVE 88.12 89.16 86.88 78.56 78.86 78.44 88.12 89.16 86.88 78.56 78.86 78.44 88.26 89.77 86.47 79.22 80.29 78.20

STD 1.41 1.56 2.17 2.77 5.32 5.45 1.41 1.56 2.17 2.77 5.32 5.45 1.07 1.44 2.23 3.26 5.77 5.28

C1 100

C2 0.1 1 10

AVE 88.12 89.16 86.88 78.56 78.86 78.44 88.12 89.16 86.88 78.56 78.86 78.44 88.22 89.77 86.38 79.00 80.12 77.92

STD 1.41 1.56 2.17 2.77 5.32 5.45 1.41 1.56 2.17 2.77 5.32 5.45 1.08 1.30 1.95 3.08 5.54 5.84

Table 8.8. Classification Rate by SVMsoft for Cleveland Heart-disease

C 0.01 0.1 1.0

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 53.05 90.00 10.00 53.89 90.00 10.00 53.05 90.00 10.00 53.89 90.00 10.00 99.72 100 99.40 73.89 75.19 74.30

STD 1.67 30.00 30.00 7.36 30.00 30.00 1.67 30.00 30.00 7.36 30.00 30.00 0.23 0.00 0.49 4.31 11.86 16.65

C 10 100

AVE 100 100 100 74.56 74.49 76.28 100 100 100 74.56 74.49 76.28

STD 0.00 0.00 0.00 3.93 10.80 14.14 0.00 0.00 0.00 3.93 10.80 14.14
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Table 8.9. Classification Rate by ν−SVM for Cleveland Heart-disease

ν 0.1 0.2 0.3

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 100 100 100 74.56 74.49 76.28 100 100 100 74.56 74.49 76.28 100 100 100 74.56 74.49 76.28

STD 0.00 0.00 0.00 3.93 10.80 14.14 0.00 0.00 0.00 3.93 10.80 14.14 0.00 0.00 0.00 3.93 10.80 14.14

ν 0.4 0.5 0.6

AVE 100 100 100 74.67 74.87 76.04 100 100 100 74.33 74.45 75.72 99.91 100 99.80 74.33 74.64 75.48

STD 0.00 0.00 0.00 4.18 10.74 14.59 0.00 0.00 0.00 3.83 10.66 14.52 0.19 0.00 0.40 3.99 10.75 14.65

ν 0.7 0.8

AVE 99.86 100 99.70 74.67 75.05 75.76 99.72 100 99.40 73.78 75.02 74.30

STD 0.22 0.00 0.46 4.38 10.75 15.40 0.23 0.00 0.49 4.59 12.21 16.65

Table 8.10. Classification Rate by SVMtotal for Cleveland Heart-disease

C1 1

C2 0.0001 0.001 0.01

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 99.72 100 99.40 74.44 74.80 75.97 99.72 100 99.40 74.11 74.23 75.97 99.72 100 99.40 74.11 74.23 75.97

STD 0.23 0.00 0.49 4.99 11.80 17.23 0.23 0.00 0.49 4.87 11.99 17.23 0.23 0.00 0.49 4.87 11.99 17.23

C1 10

C2 0.001 0.01 0.1

AVE 100 100 100 74.22 73.26 77.00 100 100 100 74.22 73.26 77.00 100 100 100 74.22 73.05 77.25

STD 0.00 0.00 0.00 3.47 10.62 13.93 0.00 0.00 0.00 3.47 10.62 13.93 0.00 0.00 0.00 3.47 10.56 14.14

C1 100

C2 0.01 0.1 1

AVE 100 100 100 74.22 73.26 77.00 100 100 100 74.22 73.05 77.25 100 100 100 72.56 57.91 91.63

STD 0.00 0.00 0.00 3.47 10.62 13.93 0.00 0.00 0.00 3.47 10.56 14.14 0.00 0.00 0.00 3.37 5.67 5.76

Table 8.11. Classification Rate by µ−SVM for Cleveland Heart-disease

µ 1.2 · · · 1.5

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 99.81 99.67 100.00 81.00 82.25 79.72 · · · · · · 99.81 99.67 100.00 81.00 82.25 79.72

STD 0.33 0.59 0.00 2.19 3.33 4.02 · · · · · · 0.33 0.59 0.00 2.19 3.33 4.02

µ 1.6 · · · 2.0

AVE 99.81 99.67 100.00 81.00 82.25 79.72 · · · · · · 99.81 99.67 100.00 81.00 82.25 79.72

STD 0.33 0.59 0.00 2.19 3.33 4.02 · · · · · · 0.33 0.59 0.00 2.19 3.33 4.02
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Table 8.12. Classification Rate by µ − ν−SVM for Cleveland Heart-disease

µ 1

ν 0.0001 0.001 0.01

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 100 100 100 94.67 95.50 93.30 100 100 100 85.00 86.66 82.69 100 100 100 80.44 82.56 77.61

STD 0.00 0.00 0.00 1.71 2.74 3.49 0.00 0.00 0.00 2.91 4.30 4.90 0.00 0.00 0.00 2.73 5.00 4.14

µ 10

ν 0.001 0.01 0.1

AVE 100 100 100 85.00 86.66 82.69 100 100 100 80.44 82.56 77.61 100 100 100 79.11 80.93 76.59

STD 0.00 0.00 0.00 2.91 4.30 4.90 0.00 0.00 0.00 2.73 5.00 4.14 0.00 0.00 0.00 2.80 4.82 4.22

µ 100

ν 0.01 0.1 1

AVE 100 100 100 80.44 82.56 77.61 100 100 100 79.11 80.93 76.59 100 100 100 74.56 74.49 76.28

STD 0.00 0.00 0.00 2.73 5.00 4.14 0.00 0.00 0.00 2.80 4.82 4.22 0.00 0.00 0.00 3.93 10.80 14.14

Table 8.13. Classification Rate by GP for Liver Disorders

C1 1

C2 0.001 0.01 0.1

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 71.32 75.48 65.57 69.71 73.17 64.92 71.32 75.62 65.38 69.71 73.50 64.39 72.31 77.61 64.97 70.10 74.89 63.51

STD 1.42 1.45 1.64 2.67 5.38 3.38 1.46 1.67 1.44 2.70 5.26 3.61 1.83 2.23 1.92 2.81 5.02 4.27

C1 10

C2 0.01 0.1 1

AVE 71.36 75.48 65.67 69.71 73.17 64.92 71.45 75.62 65.67 69.81 73.34 64.92 72.31 77.75 64.78 70.10 75.06 63.30

STD 1.37 1.45 1.58 2.67 5.38 3.38 1.44 1.61 1.58 2.62 5.36 3.38 1.80 2.23 1.87 2.97 5.17 4.56

C1 100

C2 0.1 1 10

AVE 71.36 75.48 65.67 69.71 73.17 64.92 71.45 75.62 65.67 69.81 73.34 64.92 72.31 77.75 64.78 70.10 75.06 63.30

STD 1.37 1.45 1.58 2.67 5.38 3.38 1.44 1.61 1.58 2.62 5.36 3.38 1.80 2.23 1.87 2.97 5.17 4.56
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Table 8.14. Classification Rate by SVMsoft for Liver Disorders

C 0.01 0.1 1

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 58.02 100 0.00 57.86 100 0.00 58.02 100 0.00 57.86 100 0.00 86.69 93.79 76.89 70.10 85.05 49.79

STD 1.32 0.00 0.00 3.11 0.00 0.00 1.32 0.00 0.00 3.11 0.00 0.00 1.42 1.16 3.16 3.93 4.83 5.89

C 10 100

AVE 95.29 96.29 93.91 66.12 73.70 56.22 99.46 99.36 99.61 63.20 69.54 54.92

STD 1.34 0.80 2.81 3.72 2.39 8.67 0.32 0.49 0.48 4.20 5.31 7.59

Table 8.15. Classification Rate by ν−SVM for Liver Disorders

ν 0.1 0.2 0.3

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 99.46 99.36 99.61 63.59 70.04 55.12 98.26 98.29 98.22 65.34 72.72 55.73 96.07 96.50 95.46 65.05 71.90 56.21

STD 0.32 0.49 0.48 3.34 5.20 6.55 0.40 0.49 1.15 3.01 4.61 8.44 0.89 1.01 1.75 3.07 2.95 8.74

ν 0.4 0.5 0.6

AVE 93.47 95.51 90.64 67.86 76.06 57.12 91.98 95.15 87.63 68.64 78.52 55.44 90.12 94.45 84.15 69.22 80.86 53.54

STD 0.80 0.68 1.73 4.17 3.11 8.25 0.95 0.95 1.69 3.61 3.64 7.69 1.22 1.62 2.30 3.86 3.82 8.07

ν 0.7 0.8

AVE 87.81 93.80 79.48 69.42 83.09 50.94 99.72 100 99.40 73.78 75.02 74.30

STD 1.19 1.23 2.97 3.08 4.17 6.41 0.23 0.00 0.49 4.59 12.21 16.65

Table 8.16. Classification Rate by SVMtotal for Liver Disorders

C1 1

C2 0.0001 0.001 0.01

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 82.73 90.66 71.66 65.53 74.71 53.00 86.74 92.94 78.17 69.51 82.72 51.56 86.74 92.94 78.17 69.42 82.55 51.56

STD 1.81 2.71 4.91 5.11 6.74 7.08 1.33 1.20 2.89 3.17 3.99 5.34 1.29 1.20 2.72 3.17 4.18 5.34

C1 10

C2 0.001 0.01 0.1

AVE 95.25 95.86 94.40 65.83 71.85 57.97 95.25 95.86 94.40 65.83 71.85 57.97 95.29 95.86 94.50 65.53 71.35 57.97

STD 1.17 0.91 2.51 3.09 2.99 7.16 1.17 0.91 2.51 3.09 2.99 7.16 1.19 0.91 2.50 3.02 3.18 7.16

C1 100

C2 0.01 0.1 1

AVE 99.42 99.29 99.61 61.84 64.54 58.20 99.42 99.29 99.61 61.84 64.76 58.00 99.46 99.29 99.70 63.11 66.45 58.76

STD 0.27 0.44 0.48 4.43 6.13 6.65 0.27 0.44 0.48 4.47 5.96 6.50 0.26 0.44 0.46 3.53 5.86 6.85
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Table 8.17. Classification Rate by µ−SVM for Liver Disorders

µ 1.2 1.3 1.4

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 69.75 93.11 37.37 65.34 92.87 27.54 73.93 90.99 50.32 69.03 90.26 39.75 74.92 90.64 53.14 68.83 88.96 41.10

STD 1.79 3.19 7.83 4.27 4.75 6.06 1.04 1.70 3.22 4.61 3.71 5.73 1.83 1.85 5.37 3.65 3.39 4.35

µ 1.5 1.6 1.7

AVE 78.22 91.71 59.57 68.64 88.59 41.11 87.89 95.09 77.87 68.45 87.78 41.77 92.19 97.00 85.49 69.13 88.12 42.93

STD 7.85 3.13 15.24 3.63 2.46 4.27 12.85 5.18 23.69 3.58 2.93 5.17 12.62 4.84 23.61 3.29 3.27 5.21

µ 1.8 · · · 2.0

AVE 100 100 100 69.22 87.64 43.87 · · · · · · 100 100 100 69.22 87.64 43.87

STD 0.00 0.00 0.00 3.58 3.30 5.06 · · · · · · 0.00 0.00 0.00 3.58 3.30 5.06

Table 8.18. Classification Rate by µ − ν−SVM for Liver Disorders

µ 1

ν 0.0001 0.001 0.01

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 97.81 97.25 98.58 93.69 93.58 93.85 100 100 100 72.52 76.50 66.84 100 100 100 63.20 66.74 58.24

STD 3.15 5.43 3.33 2.50 5.75 6.19 0.00 0.00 0.00 4.45 5.64 5.31 0.00 0.00 0.00 4.71 5.39 5.30

µ 10

ν 0.001 0.01 0.1

AVE 100 100 100 72.52 76.50 66.84 100 100 100 63.20 66.74 58.24 100 100 100 62.14 67.87 54.53

STD 0.00 0.00 0.00 4.45 5.64 5.31 0.00 0.00 0.00 4.71 5.39 5.30 0.00 0.00 0.00 4.23 4.48 8.78

µ 100

ν 0.01 0.1 1

AVE 100 100 100 63.20 66.74 58.24 100 100 100 62.14 67.87 54.53 100 100 100 62.14 67.87 54.53

STD 0.00 0.00 0.00 4.71 5.39 5.30 0.00 0.00 0.00 4.23 4.48 8.78 0.00 0.00 0.00 4.23 4.48 8.78

Table 8.19. Classification Rate by GP for PIMA

C1 1

C2 0.001 0.01 0.1

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 78.10 67.75 83.49 77.35 66.40 83.67 78.18 67.24 83.85 77.57 65.82 84.36 78.72 63.34 86.70 76.87 60.93 86.06

STD 1.19 1.58 1.02 2.92 5.37 2.05 1.14 1.79 1.02 2.87 5.34 1.96 1.37 2.32 1.07 3.00 5.92 1.74

C1 10

C2 0.01 0.1 1

AVE 78.14 68.02 83.40 77.43 66.08 84.01 78.14 67.41 83.71 77.74 66.18 84.43 78.74 63.77 86.51 77.00 61.55 85.93

STD 1.29 1.83 1.07 2.86 5.15 1.92 1.13 1.55 1.08 2.71 5.09 1.91 1.38 2.00 1.25 3.41 6.82 1.94

C1 100

C2 0.1 1 10

AVE 78.12 67.97 83.40 77.48 66.19 84.01 78.12 67.41 83.68 77.78 66.18 84.49 78.79 63.94 86.51 77.00 61.55 85.93

STD 1.27 1.76 1.07 2.82 5.00 1.92 1.15 1.55 1.11 2.75 5.09 1.92 1.39 1.86 1.31 3.51 7.07 1.94
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Table 8.20. Classification Rate by SVMsoft for PIMA

C 0.01 0.1 1

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 65.61 0.00 100 63.91 0.00 100 65.61 0.00 100 63.91 0.00 100 91.47 80.71 97.08 74.17 52.51 86.40

STD 1.03 0.00 0.00 2.41 0.00 0.00 1.03 0.00 0.00 2.41 0.00 0.00 0.70 2.26 0.57 1.82 3.02 2.25

C 10 100

AVE 99.44 98.43 99.97 69.83 54.29 78.60 100 100 100 68.91 54.45 77.09

STD 0.20 0.63 0.08 1.63 4.24 2.05 0.00 0.00 0.00 2.07 3.90 2.71

Table 8.21. Classification Rate by ν−SVM for PIMA

ν 0.1 0.2 0.3

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 99.91 99.73 100 69.04 54.33 77.34 99.33 98.16 99.94 70.04 54.62 78.74 97.66 94.69 99.20 71.61 54.51 81.24

STD 0.12 0.36 0.00 1.88 3.81 2.37 0.25 0.66 0.11 1.80 4.25 2.23 0.46 0.69 0.46 1.42 4.24 1.59

ν 0.4 0.5 0.6

AVE 94.93 88.52 98.27 72.65 53.40 83.57 93.03 84.18 97.64 73.43 52.66 85.18 90.65 78.75 96.85 74.09 51.75 86.76

STD 0.58 1.82 0.53 2.30 5.27 2.29 0.46 1.92 0.65 2.25 3.92 2.56 0.86 3.12 0.79 2.08 3.49 2.47

Table 8.22. Classification Rate by SVMtotal for PIMA

C1 1

C2 0.0001 0.001 0.01

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 68.77 87.51 58.95 65.22 85.36 53.85 91.62 82.29 96.48 73.91 57.85 82.99 91.67 82.51 96.45 73.57 58.19 82.23

STD 1.29 1.31 1.84 2.01 2.97 3.02 0.72 2.23 0.92 2.39 2.78 2.45 0.74 2.14 0.94 2.44 2.75 2.51

C1 10

C2 0.001 0.01 0.1

AVE 99.48 98.70 99.89 69.17 63.45 72.36 99.48 98.70 99.89 69.17 63.69 72.22 99.44 98.86 99.75 68.65 66.35 69.89

STD 0.20 0.37 0.19 2.40 2.84 3.14 0.20 0.37 0.19 2.47 2.78 3.18 0.28 0.52 0.23 2.64 3.41 3.31

C1 100

C2 0.01 0.1 1

AVE 100 100 100 67.35 64.60 68.89 100 100 100 67.35 67.23 67.37 70.13 100 54.52 62.22 91.43 45.59

STD 0.00 0.00 0.00 2.51 4.05 3.14 0.00 0.00 0.00 2.54 3.57 2.94 3.36 0.00 4.68 2.98 2.62 5.69
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Table 8.23. Classification Rate by µ−SVM for PIMA

µ 1.4 1.5 1.6

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 78.01 46.68 94.62 66.91 26.41 89.14 93.92 85.70 97.86 67.87 30.92 88.14 100 1000 100 68.00 31.32 88.06

STD 2.13 7.25 1.20 3.13 5.78 2.84 9.81 23.91 3.69 4.70 6.78 2.47 0.00 0.00 0.00 4.41 6.13 2.40

µ 1.7 · · · 2.0

AVE 100 100 100 68.00 31.32 88.06 · · · · · · 100 100 100 68.00 31.32 88.06

STD 0.00 0.00 0.00 4.41 6.13 2.40 · · · · · · 0.00 0.00 0.00 4.41 6.13 2.40

Table 8.24. Classification Rate by µ − ν−SVM for PIMA

µ 1

ν 0.0001 0.001 0.01

training test training test training test

rate A B rate A B rate A B rate A B rate A B rate A B

AVE 98.05 99.95 97.02 89.57 94.29 87.13 100 100 100 73.00 64.93 77.64 100 100 100 69.17 60.46 74.17

STD 2.01 0.16 3.12 3.20 3.99 5.43 0.00 0.00 0.00 2.14 4.26 2.77 0.00 0.00 0.00 2.25 4.46 3.44

µ 10

ν 0.001 0.01 0.1

AVE 100 100 100 73.00 64.93 77.64 100 100 100 69.17 60.46 74.17 100 100 100 69.09 56.07 76.49

STD 0.00 0.00 0.00 2.14 4.26 2.77 0.00 0.00 0.00 2.25 4.46 3.44 0.00 0.00 0.00 1.72 5.06 3.63

µ 100

ν 0.01 0.1 1

AVE 100 100 100 69.17 60.46 74.17 100 100 100 69.09 56.07 76.49 100 100 100 68.91 54.45 77.09

STD 0.00 0.00 0.00 2.25 4.46 3.44 0.00 0.00 0.00 1.72 5.06 3.63 0.00 0.00 0.00 2.07 3.90 2.71
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Table 8.25. Rates of Support Vectors (unit : %)

SVMsoft ν−SVM SVMtotal µ−SVM µ − ν−SVM

MONK AVE 74.60 76.69 100 100 62.83

(case 1) STD 15.19 13.65 0 0 0.23

MONK AVE 76.90 73.10 100 100 69.00

(case 2) STD 7.43 4.78 0 0 0.85

MONK AVE 70.70 74.23 100 100 56.11

(case 3) STD 17.40 12.53 0 0 1.41

Cleveland AVE 97.40 96.97 100 100 96.83

Heart-disease STD 0.75 0.70 0 0 0.70

Liver Disorders AVE 81.59 75.37 100 100 59.02

STD 2.13 2.18 0 0 3.54

PIMA AVE 72.53 71.35 100 100 64.26

STD 1.74 1.71 0 0 1.98

8.8 Concluding Remarks

In this chapter, we introduced various SVM algorithms using MOP/GP. The
authors have given a generalization error bound, and proved that the error
bound can be decreased by minimizing slack variables and maximizing surplus
variables [23]. As a total, µ−ν−SVM shows relatively good performance in our
experiences. However, SVMtotal and µ−SVM among the proposed algorithms
are inferior to the standard SVM algorithms in terms of sparsity of support
vectors. This means that those methods cause some difficulty in computation
for large scale data sets. It is observed in our experience, moreover, that some
values of µ yield unacceptable solutions in µ−SVM algorithm. However, µ−
ν−SVM overcomes the lack of sparsity of support vectors, and does not cause
so much difficulty in computation even for large scale data sets. For regression
problems, moreover, µ− ν−SVM minimizing the exterior deviation is akin to
function approximation using the Tchebyshev error, which is widely applied to
many real problems. This is another point for which µ−ν−SVM is promising.
The details on regression by µ− ν−SVM will be discussed elsewhere.

Acknowledgement

This research was supported by JSPS.KAKENHI13680540.



8 Generating Support Vector Machines using MOP/GP 197

References

[1] Asada, T. and Nakayama, H. (2003) SVM using Multi Objective Linear Pro-
gramming and Goal Programming, in T. Tanino, T. Tanaka and M. Inuiguchi
(eds.), Multi-objective Programming and Goal Programming, 93-98

[2] Bennett, K.P. and Mangasarian, O.L. (1992) Robust Linear Programming Dis-
crimination of Two Linearly Inseparable Sets, Optimization Methods and Soft-
ware, 1, 23-34

[3] Cavalier, T.M., Ignizio, J.P. and Soyster, A.L., (1989) Discriminant Analysis via
Mathematical Programming: Certain Problems and their Causes, Computers
and Operations Research, 16, 353-362

[4] Chankong, V. and Haimes, Y.Y., (1983) Multiobjective Decision Making Theory
and Methodlogy , Elsevier Science Publsihing

[5] Charnes, A. and Cooper W.W., (1961) Management Models and Industrial Ap-
plications of Linear Programming , vol. 1, Wiley

[6] Cortes, C. and Vapnik, V., (1995) Support Vector Networks, Machine Learning,
20, pp. 273–297

[7] Cristianini, N. and Shawe-Taylor, J., (2000) An Introduction to Support Vec-
tor Machines and Other Kernel-based Learning Methods, Cambridge University
Press

[8] Erenguc, S.S. and Koehler, G.J., (1990) Survey of Mathematical Programming
Models and Experimental Results for Linear Discriminant Analysis, Managerial
and Decision Economics, 11, 215-225

[9] Freed, N. and Glover, F., (1981) Simple but Powerful Goal Programming Mod-
els for Discriminant Problems, European J. of Operational Research, 7, 44-60

[10] Glover, F. (1990) Improved Linear Programming Models for Discriminant
Analysis, Decision Sciences, 21, 771-785

[11] Mangasarian, O.L., (1968) Multisurface Method of Pattern Separation, IEEE
Transact. on Information Theory, IT-14, 801-807

[12] Mangasarian, O.L., (1999) Arbitrary-Norm Separating Plane, Operations Re-
search Letters 23

[13] Marcotte, P. and Savard, G., (1992) Novel Approaches to the Discrimination
Problem, ZOR–Methods and Models of Operations Research, 36, pp.517-545

[14] Miettinen, K. M., (1999) Nonlinear Multiobjective Optimization , Kluwer Aca-
demic Publishers

[15] Nakayama, H., (1995) Aspiration Level Approach to Interactive Multi-objective
Programming and its Applications, Advances in Multicriteria Analysis, ed. by
P.M. Pardalos, Y. Siskos and C. Zopounidis, Kluwer Academic Publishers, pp.
147-174

[16] Nakayama, H. and Asada, T., (2001) Support Vector Machines formulated as
Multi Objective Linear Programming, Proc. of ICOTA2001, 3, pp.1171-1178

[17] Novikoff, A.B., (1962) On the Convergence Proofs on Perceptrons,
InSymposium on the Mathematical Theory of Automata, vol. 12, pp. 615–622,
Polytechnic Institute of Brooklyn

[18] Sawaragi, Y., Nakayama, H. and Tanino, T., (1994) Theory of Multiobjective
Optimization, Academic Press

[19] Schölkopf, B. and Smola, A.J., (1998) New Support Vector Algorithms, Neu-
roCOLT2 Technical report Series, NC2-TR-1998-031



198 H. Nakayama and Y. Yun

[20] B.Schölkopf, and A.J.Smola, (2002) Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond-, MIT Press

[21] Steuer, R.E., (1986) Multiple Criteria Optimization: Theory, Computation, and
Application , Wiley

[22] Vapnik, V.N., (1998) Statistical Learning Theory, John Wiley & Sons, New
York

[23] Yoon, M., Yun, Y.B. and Nakayama, H., (2003) A Role of Total Margin in
Support Vector Machines, Proc. IJCNN’03, 2049-2053




