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Summary. A generic, optimal feature extraction method using multi-objective ge-
netic programming (MOGP) is presented. This methodology has been applied to the
well-known edge detection problem in image processing and detailed comparisons
made with the Canny edge detector. We show that the superior performance from
MOGP in terms of minimizing the misclassification is due to its effective optimal
feature extraction. Furthermore, to compare different evolutionary approaches, two
popular techniques - PCGA and SPGA - have been extended to genetic program-
ming as PCGP and SPGP, and applied to five datasets from the UCI database. Both
of these evolutionary approaches provide comparable misclassification errors within
the present framework but PCGP produces more compact transformations.

4.1 Introduction

4.1.1 Feature Extraction

Over recent decades, the effort made on designing ever-more sophisticated
classifiers has almost eclipsed the importance of feature extraction, typically
the pre-processing step in a pattern classification system - see Figure 4.1. In-
deed many elegant results have been obtained in the area of classification since
the 1970s. Nonetheless, feature extraction maintains a key position in the field
since it is well-known that feature extraction can enhance the performance of
a pattern classifier via appropriate pre-processing of the raw measurement
data [2].

To utilize the potential information in a dataset to its maximum extent has
always been highly desirable and subset selection, dimensionality reduction
and transformation of features (feature extraction) have all been applied to
patterns in the past before they are labeled by a classifier. Often though,
the feature selection and/or extraction stages are omitted or are implicit in
the recognition paradigm - a multi-layer perceptron (MLP) is a good example,
where a distinct feature selection/extraction stages are not readily identifiable.
In many application domains, such as medical diagnosis or credit scoring,
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however, the interpretability of the features used in classification may contain
much important information.

A generic and domain-independent methodology for generating feature
extraction stages has hitherto been an unattained goal in pattern recogni-
tion. Normally, feature extraction approaches are hand-crafted using domain-
specific knowledge and optimality is hard to guarantee - in fact the subject
of optimality is rarely even addressed. Indeed, much of image processing re-
search, for example, has been devising what are really feature extraction al-
gorithms to detect edges, corners, etc. Ideally, we require some measure of
class separability in the transformed decision space to be maximized but with
hand-crafted methods, this is usually hard to assess.

Most importantly, no generic and domain-independent methodology exists
to automate the process of creating or searching for good feature extractors
for classification tasks where domain knowledge either does not exist or is
incomplete.

Generally speaking, there are two main streams of feature extractions: lin-
ear and non-linear. The former is exemplified by principal component analysis
(PCA) and related methods and are mainly applied to reduce the dimen-
sionality of the original input space by projecting the data down into the
sub-space with the greatest amount of data variability - this does not nec-
essarily equate to optimal class separability. To obtain the optimal (possibly
non-linear) transformation x → y from input vector, x to the decision space
vector, y where:

y = f(x) (4.1)

is a more challenging task. Popular supervised learning network systems such
as the multi-layer perceptrons, radial basis functions and LVQs, coupled with
powerful training algorithms, can provide model-free or semi-parametric meth-
ods to design non-linear mappings between the input and classification spaces
from a set of training examples. In such paradigms, the three processing steps
shown in Figure 4.1 are merged into a single, indivisible stage. Nonetheless,
optimality is hard to guarantee with such methods. For example, with multi-
layer perceptrons, critical quantities such the best number of hidden neurons
are often determined empirically using cross-validation or other techniques.

Following the above insight that the feature extraction pre-processing stage
is a mapping from input space to a decision space which can be represented
as a sequence of transformations, we seek the mapping which maximizes the
class separability in decision space and hence the classification performance.
Thus the problem reduces to one of finding an optimal sequence of operations,
subject to some criterion.

4.1.2 Genetic Programming

Genetic programming (GP) is an evolutionary problem-solving method which
has been extensively used to evolve programs, or sequences of operations [1].
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Fig. 4.1. Prototypical pattern recognition system

Typically, a prospective solution in GP is represented as a parse tree which
can be interpreted straightforwardly as a sequence of operations. Indeed, GP
has been used before to design feature extraction.

Koza [1] has evolved character detectors using genetic programming while
Tackett [9] evolved a symbolic expression for image classification based on
image features. Bot [4] has used GP to evolve new features in a decision space,
adding these one-at-a-time to a k -nearest neighbor (k -NN) classifier until the
newly added feature fails to improve the classification performance by more
than a predefined amount; in fact, Bot’s method is a greedy algorithm and
therefore sub-optimal.

Pipelined image processing operations to transform multi-spectral input
synthetic aperture radar (SAR) image planes into a new set of image planes
were evolved by Harvey et al. [29]. A conventional supervised classifier was
employed to classify the transformed features. Training data were used to
derive a Fisher linear discriminant and GP was applied to find a threshold
to reduce the output to a binary image. The discriminability, however, is
constrained in the discriminant-finding phase and the GP only used as a one-
dimensional search tool to find a threshold.

Sherrah et al. [14] proposed an Evolutionary Pre-Processor (EPrep) system
which used GP to evolve a good feature (or feature vector) by minimizing
misclassification error. Generalized linear machine, k -nearest neighbor (k -NN)
and maximum likelihood classifiers were selected randomly and trained in
conjunction with the search for feature extractors. The misclassification error
over the training set was used as a raw fitness for the individuals in the
evolutionary population. This approach not only has a large search space in
which to work, but also depends on the classifiers in an opaque way such that
there is a potential risk that the evolved pre-processing can be excellent but
the classifier can be ill-matched to the task in hand, giving a poor overall
performance or vice versa.

Kotani et al. [23] used GP to determine the polynomial combination of raw
features to pass to a k -NN classifier. Krawiec [33] proposed a new method of
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using GP to design a fixed-length decision-space vector which protects ‘useful’
blocks during the evolution. Unfortunately, the protection mechanism actually
contributes to the over-fitting which is evident in his experiments.

Significantly, all previous work on GP feature extraction has used a single
objective comprising either a raw misclassification score or an aggregation of
this with a tree complexity measure - see also [25]. The single objective func-
tion used in this previous work has a number of shortcomings; indeed, many
real-world problems naturally involve the simultaneous optimization of mul-
tiple, often conflicting objectives. As far as genetic algorithms are concerned,
many methods have been proposed to apply multi-objective optimization: e.g.
SPEA-II[7, 17], MOGA [19], PCGA [20]. Also see [39] for a detailed review of
multi-objective evolutionary algorithms.

4.1.3 Multi-objective Optimization

As we have noted, there are often competing multiple objectives in real world
design problems. For a pattern classification system, the obvious design ob-
jective is to minimize the misclassification error (over some finite size training
set). Unfortunately, unless specific measures are taken to prevent it, the trees
in a GP optimization tend to carry-on growing in complexity, a phenomenon
known as bloat. This results in excessive computational demands, typically ac-
companied by a degradation in the generalization performance of the trained
classifiers. Effectively, bloat is an over-parameterization of the problem. To
counter this, various heuristic techniques have been tried to suppress bloat,
for example, adding a further objective to penalize more complex individuals.
Such strategies stem from Occam’s Razor - for a given error, the simpler indi-
vidual is always preferred. Ekárt and Németh [18] have shown that embedding
tree complexity within a multi-objective GP tends to prevent bloat by exerting
selective pressure in favor of trees of smaller size [7]. Thus a multi-objective
framework based on Pareto optimality [16] is presented here.

Both Strength Pareto GP (SPGP) and Pareto Converging GP (PCGP) are
applied in the present framework to find the Pareto set for our multi-objective
optimization problem - identifying the (near-)optimal sequence of transforma-
tions which map input patterns to decision space with maximized separability
between the classes. As far as the authors are aware, this is the first report of
the comparison between these two evolutionary techniques (generational vs.
steady-state) applied to multi-objective genetic programming.

The rest of this chapter is organized as follows: Our generic framework
for evolving optimal feature extractors will be presented in Section 4.2 In
Section 4.3, we will describe the principal application domain to which the
methodology will be applied - the edge detection problem in image processing.
In Section 4.4, quantitative comparisons are made with the ‘gold-standard’
Canny edge detector to investigate the effectiveness of the present method on
the USF real world dataset [24]. In addition, comparisons between two multi-
objective evolutionary strategies - SPGP and PCGP - have been made on five
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datasets from UCI Machine Learning database [8]. We offer conclusions and
thoughts on future work in Section 4.5.

4.2 Methodology

There are two ways of applying evolutionary optimization techniques in the
pattern classification domain - one could be regarded as putting the whole
system inside the evolutionary learning loop to directly output class labels.
This is a tempting route due to its ‘simplicity’. Unfortunately, it not as simple
as it first appears since the search space is very large, comprising the space of
all feature extractors and the space of all classifiers. The other option - and
the one we favor - is that treating the feature extraction as a stage distinct
from classification. Our target is to invest all available computational effort
into evolving the feature extraction and to utilize established knowledge from
the relatively well-understood area of classifier design. Consequently, we adopt
the approach of evolving the optimal feature extraction and performing the
classification task using a standard, simple and fast-to-train classifier. The
“fast-to-train” requirement on the classifier comes from the fact that we still
have to use classification performance as an individual’s fitness and thus the
classifier has to be trained anew within the evolutionary loop for every fitness
evaluation. In addition, evolving a distinct feature extraction stage retains the
possibility of human interpretation of the evolved meta-features and therefore
the use of our method as a data exploration technique.

Our target is to obtain a generic, domain-independent method to fully
automate the process of producing optimal feature transformations. Hence
we make no assumptions about the statistical distributions of the original
data, nor indeed about the dimensionality of the input space.

4.2.1 Multi-objective Genetic Programming

In order to implement the method, multi-objective genetic programming
(MOGP) is used as the search tool driven by Pareto optimality to search
for the optimal sequence of transformations. If the optimization is effective,
features in the transformed space should not only be much easier to separate
than in the original pattern space but should also be optimal in the decision
space with the classifier employed. In the context of optimality, we conjecture
that our method should yield a classification performance which is at least as
good as the best of the set of all classifiers on a particular dataset [6].

The two evolutionary strategies mentioned above - SPGP and PCGP -
are both implemented here on five UCI datasets. The SPGP approach uses
a generational strategy with tournament selection to maintain two sets of
individuals during evolution, one representing the current population and the
other containing the current approximation to the Pareto set. Ranking is done
by calculating the strength, or fitness, of each individual in both sets - when
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calculating an individual’s strength, we use the method proposed in SPEA-II
[7]. In our modified binary tournament selection method, two individuals from
the union of the population and the non-dominated set are randomly selected.
If both trees have been drawn from the same set we compare the normalized
fitness to determine the winner; if not, the raw fitness vector is used to decide
which should be chosen.

For the steady-state PCGP strategy, we followed the method designed
in [20] as PCGA with straightforward modifications for use with GP trees.
In comparing the two evolutionary strategies, we are aiming to focus on the
issue of the search convergence. The Pareto Converging Genetic Algorithm
(PCGA) ensures population advancement towards the Pareto-front by natu-
rally sampling the solution space. The motivation for this approach is aimed
particularly at solving difficult (real-world) problems with local minima. For
detailed information see [20].

We have used a fairly standard chromosomal tree structure for the MOGP
implementation. There are two types of nodes in each individual - function
nodes and terminal nodes. Details of node types are summarized in Table 4.1.

Non-destructive, depth-dependent crossover [13] and a depth-dependent
mutation operator were used to avoid the breaking of building blocks. Here
a set of candidate sub-trees is chosen to mutate based on their depth in the
tree using the depth-fair operator [13]. Then, one particular sub-tree from
this set is selected biased in its complexity (i.e. the number of nodes) us-
ing roulette wheel selection; that is, we favor mutating more complex trees.
Detailed information can be found in [5].

The stopping criterion for SPGP is any of the following being is met:

• The maximum number of generations is exceeded (500 in present case)
• The evolution process stops as adjudged by the Bayes error of the best in-

dividual failing to improve for 0.04 × the maximum number of generations
(the 0.04 value is an empirical value determined by experiment)

• The misclassification error = 0.

For PCGP, the termination condition was set simply as exceeding the
maximum number of generations, 2000 in present work. The population size
for SPGP in all experiments presented here was 500 while a population of
only 200 individuals was used for PCGP. Note that when fully converged, all
the non-dominated individuals in the PCGP population comprise the Pareto-
front. For more detailed information see [20].

4.2.2 Multiple Objectives

Within the multi-objective framework, our three-dimensional fitness vector of
objectives comprises: tree complexity, misclassification error and Bayes error,
as follows:
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Table 4.1. MOGP Settings

Terminal set Input pattern vector elements
Constant 10 floating point numbers 0.0, . . . , 1.0

Raw fitness vector Bayes error, misclassification error, number of nodes
Standardized fitness Strength-based fitness
Original population Half full-sized trees, half random trees
Original tree depth 5

Probabilities 0.3 mutation, 0.7 crossover

Tree Complexity Measurement

As pointed-out above, tree bloat in GP can produce trees with extremely small
classification errors over the training set but a very poor error estimated over
an independent validation set. This is clearly an example of the familiar over-
fitting phenomenon and grounded on the principle of Occam’s Razor, we use
the node count of a tree as a straightforward measure of tree complexity.
Within the concept of Pareto optimality in which all objectives are weighted
equally, this complexity measure exerts a selective pressure which favors small
trees.

Misclassification Error

In addition to the tree complexity measure, the fraction of misclassified pat-
terns counted over the training set is used as a second objective [33]. Since
the GP tree chromosomes used here naturally lead to an n-to-1 mapping into
the one-dimensional decision space, a simple threshold in this decision space
is adapted during the determination of fitness value to obtain the minimum
misclassification error. This means we are trying to evolve an optimal feature
extractor conditioned on a thresholding classifier operating in the decision
space.

Under Pareto optimality [16], all objectives are treated as equally impor-
tant since we are aiming to explore the trade-off between the complexity and
the misclassification error (over the training set). With the aid of the two
competing objectives, we are aiming to maximize the class separability in the
decision space using the simplest possible mapping. Nonetheless, during our
early experiments, we found that learning is often very slow and sometimes
the optimization fails to converge at all. After detailed investigation into the
searching process, we found that in the initial stages, when all the randomly-
created individuals possessed roughly the same (very high) misclassification
error, there was insufficient selective pressure to pick individuals with slightly
more promise than the irredeemably poor performers. Thus the search stag-
nated. Consequently, the third objective of Bayes error was investigated as an
additional measure of inter-class separability.
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Bayes Error

The search performance of all evolutionary algorithms is critically dependent
on the use of appropriate fitness functions. Our motive for choosing the Bayes
error as an objective is because it is the fundamental lower bound on clas-
sification performance, independent of the class distributions and classifier.
In a two class problem, we map the n-dimensional input pattern space into
the 1D decision space forming two class-conditioned probability density func-
tions (PDFs) in the decision space and the overlapping region(s) of these two
class-conditioned PDFs can be used to estimate the Bayes error with a simple
histogramming procedure.

If the Bayes error is used as a direct replacement for the misclassification
error, the optimization converges rapidly - clearly the Bayes error is exerts
more sensitive selective pressure in the the situation where the population
is far from convergence. Unfortunately, the subsequently estimated validation
error was disappointingly high. Further investigation revealed that in minimiz-
ing the overlap between two class-conditioned PDFs, the GP often achieved
this goal by producing two PDFs with non-coincident, ‘comb’-like features
as illustrated in Figure 4.2. The Bayes error is indeed small when calculated
over the training set but this does not generalize to an independent validation
set. Clearly what was desired were two well-separated PDFs although the GP
was meeting this goal in an unintended and unhelpful way - such opportunis-
tic behavior has been observed previously in evolutionary algorithms. As a
consequence, we employed both misclassification error and the Bayes error
estimate in a three-dimensional fitness vector.

The Bayes error allows the evolutionary search to make rapid initial
progress after which the misclassification error objective appears provide se-
lective pressure which separates the transformed distributions. We have also
observed that on those occasions when the optimization has got temporar-
ily stuck in a local minimum, it is the Bayes error which improves first and
appears to ‘lead’ algorithm out of the local minimum.

4.3 Application Domain

4.3.1 Edge Detection in Image Processing

Edge detection is an important image processing technique in many applica-
tions, such as object segmentation, shape recognition, etc. and so we chose this
well-understood problem as the starting point to demonstrate our methodol-
ogy. Edge detection is a well-researched field which should be suitable for
assessing the effectiveness of the evolved feature extraction method in com-
parison to an established and conventional method e.g. the Canny edge detec-
tor; the Canny algorithm is widely held to be a ’gold standard’ among edge
detection algorithms [21, 22, 24]. Harris [34] used GP with a single objective
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Fig. 4.2. Example of ‘comb’-like class-conditioned densities evolved using the Bayes
error metric alone

to evolve an ‘optimal’ edge detector but terminated the evolution when he
obtained a performance comparable to the Canny detector See also [10, 11].

We used a synthetic dataset for training on the edge detection task because
Chen et al. [30] concluded that hand-labeling real image training set did not
adequately sample the pattern space, leading to deficient learning. We have
followed a very similar approach of synthesizing a training set from a physically
realistic model of the edge imaging process. Three distinct types of patterns
are identified: edges, non-obvious-non edges and uniform patches. Further
details can be found in [30, 31, 32]. We have employed an image patch size
of 13 × 13 in the generated training set - probably larger than is needed -
deliberately to investigate whether the most useful features would be selected
by the objective of minimizing the tree size, and by implication, the number
of raw input features used. The training set comprised 10,000 samples and
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the realistic figure of 0.05 is chosen for the prior probability of the edge class.
See also [6].

The Canny algorithm includes a significant number of post-processing
steps, such as non-maximal suppression (NMS) which appear to be respon-
sible in large measure, if not completely, for its superiority over other con-
ventional edge detectors [32]. The NMS step is a heuristic sequential and
spatially-localized classification stage, which serves to reduce the fraction of
false positives (FPs) with a slight attendant sacrifice in the fraction of true
positives (TPs). Our interest here is a domain-independent methodology and
a step such as NMS is very much a heuristic specific to the image processing
domain; nonetheless we have included NMS in our comparisons since it is held
to be an integral part of the Canny algorithm.

Whereas the our GP detector has no adjustable parameters (once trained),
the edge labelling threshold is a user-defined tuning parameter in the Canny
algorithm. Thus fair comparison is not completely straightforward. The prin-
cipled basis we have chosen for comparison between the GP-generated and
Canny edge detectors is the operating points which minimize the Bayes risk
for both detectors. The operating point which naturally emerges from our GP
algorithm is that which minimizes the misclassification error over the training
set which was constructed with edge prior of 0.05. For the Canny algorithm we
can locate the corresponding decision threshold by plotting the Bayes risk ver-
sus threshold to locate the optimal operating point (i.e. the minimum Bayes
risk) [15]. The Bayes risk can be written as:

R = P × (1− TP ) + (1− P )× FP (4.2)

where, TP and FP are the fractions of true and false positives, respectively.
P is the prior of edge. Generally, both TP and FP will vary with threshold
and other operating conditions. Through locating the minimum of the risk-
threshold plot we can identify the ‘optimal’ operating point of the detector at
the given prior.

Note we have used the assumption of equal costs: In fact, cost ratios are
always subjectively chosen and vary from application to application. For ex-
ample, in medical image processing, the cost of a false negative may be un-
acceptably high and so a suitable cost would be used, biasing the classifier
operating point. In other applications, false negatives resulting in line frag-
mentation, may be tolerable in order to keep processing times below some
limit. Here we adopt a neutral position of using a cost ratio of unity since we
have no basis for regarding one sort of error as more or less important than
any other.

Detailed comparison using synthetic datasets between the MOGP edge
detector and the Canny algorithm had been made elsewhere [5]. In order to
investigate the labeling performance on real image data, we have applied the
GP-generated edge detector to images taken from the ground-truth labeled
USF dataset [24] and drawn comparison with the Canny edge detector with
and without NMS; the results are presented in Section 4.4.
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4.3.2 UCI data

In addition to the edge detection task, we have applied our method to five
other datasets from the UCI Machine Learning databases [35] in Section 4.4.2
where we make comparison between the two evolutionary strategies - SPGP
and PCGP - to investigate the relative merits of generational and steady-state
evolutionary techniques. The datasets used in the current work are:

• BUPA Liver Disorders (BUPA): To predict whether a patient has a liver
disorder. There are two classes, six numerical attributes and 345 records.

• Wisconsin Diagnostic Breast Cancer (WDBC): This dataset has been dis-
cussed before by Mangasarian et al. [26]. 569 examples with thirty numer-
ical attributes.

• Pima Indians Diabetes (PID): All records with missing attributes were
removed. This dataset comprises 532 complete examples with seven at-
tributes.

• Wisconsin Breast Cancer (WBC): Sixteen instances with missing values
were removed; 683 out of original 699 instances have been used here. Each
record comprises ten attributes. This dataset has been used previously in
[27].

• Thyroid (THY): This dataset includes 7200 instances with 21 attributes
(15 are binary, 6 are continuous) from 3 classes. It has been reconfigured
as a two-class problem with 166 instances from class1 and the remaining,
7034 instances from non-class1. This dataset has been discussed by [36].

For convenience, the details of the datasets used in the current work are
summarized in Table 4.2.

Table 4.2. Five UCI Datasets

Name Number of Features Size and Distributions
BUPA 6 345 = 200 (Benign) + 145 (Malignant)
WDBC 30 569 = 357 (Benign) + 212 (Malignant)

PID 7 532 = 355 + 177 (Diabetic)
WBC 10 699 = 458 (Benign) + 241 (Malignant)
THY 21 7200 = 166 (Class1) + 7034 (Others)
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4.4 Results

4.4.1 Comparisons on USF Datasets

In order to examine the performance of the GP edge detector as well as make
fair comparison with the Canny algorithm, we have assessed the performance
of both detectors with and without the NMS post-processing step.

As pointed out in our previous work [6], fair comparisons turn-out to be
somewhat harder than first appear. We are trying to compare the GP edge
detector (with or without NMS) to the Canny edge detector (with or without
NMS) at the detector operating points which minimize the Bayes risk. The
principal complication here is that the USF dataset has been subjectively
censored since the non-obvious non-edge patterns [24],[32] - which are the
patterns most likely to be confused by any classifier - have been hand-labeled
as belonging to a distinct “don’t care” class. Hence we have used the following
methodology: Quantifying the performance of the Canny detector over the
USF images is straightforward. We have used the same optimal threshold
as determined over the synthetic data [5],[6] which assumes an edge prior
of 0.05 - the GP detector assumes this same prior therefore neither detector
is comparatively disadvantaged. The labeling performance is summarized in
Table 4.3 for each of the USF images shown in Figs 4.3(a) - 4.6(a).

Table 4.3. Canny [TP, FP] Operating Points for USF Test Images

Figure Edge Prior Without NMS With NMS
TP FP TP FP

4.3 0.087 0.0003 0.0001 0.3821 0.0466
4.4 0.080 0.0204 0.0003 0.4326 0.0695
4.5 0.211 0.0142 0.0063 0.3886 0.0061
4.6 0.066 0.0048 0.0003 0.3580 0.0049

Table 4.4. GP [TP, FP] Operating Points for USF Test Images

Figure Edge Prior Without NMS With NMS
TP FP TP FP

4.3 0.087 0.5045 0.0278 0.3657 0.0083
4.4 0.080 0.4151 0.0298 0.3388 0.0052
4.5 0.211 0.6228 0.0129 0.4433 0.00036
4.6 0.066 0.5581 0.0246 0.3415 0.0047

It is again straightforward to obtain the labeling performance of the GP
detector without NMS and these results are shown in Table 4.4. To determine
the GP performance with NMS we have devised a special method of carrying-
out non-maximal suppression on the output of the GP detector. First, we
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estimate the orientation of an edgel using the familiar difference-of-boxes op-
erator. We then quantize the edge direction into one of the eight principal
directions of the compass and examine the decision variable responses of the
GP detector for the three pixels centered on the edge and (approximately)
normal to the edge direction. The ‘distance’ of a given edge pixel’s response
from the decision threshold can be taken as a measure of its edge strength and
we perform non-maximal suppression on this quantity. The results are again
summarized in Table 4.4.

It is apparent from Table 4.3 that the Canny algorithm without NMS
performs very poorly, an observation consistent with the preceding results on
synthetic edge data reported in [6]. In particular, the TP values are very low.
Consistent to the conclusion made in [32] that there is no clear minimum risk
operating point for the Canny algorithm without NMS. Hence the success of
this algorithm owes very little to the feature extraction (pre-processing) step,
a finding which will be a surprise to many in the image processing community.

Table 4.5. Bayes Risk Comparisons for USF Test Images

Figure GP Canny
Without NMS With NMS Without NMS With NMS

4.3 0.06848 0.06276 0.0871 0.09630
4.4 0.07420 0.05768 0.0786 0.10933
4.5 0.08977 0.11774 0.2129 0.13381
4.6 0.05214 0.04785 0.06596 0.04694

With NMS, the Canny algorithm has a much higher TP fraction although
the FP fraction also increases. This is again consistent with the result reported
in [32] that after the NMS step, there is a clearer optimal operating point in
terms of minimization of Bayes risk. Indeed, after NMS the (increased) FP
fraction becomes the principal contributor to the Bayes risk.

The received wisdom in the image processing community would suggest
that the difference between the detector output with and without NMS can be
explained by the thinning of otherwise thick edges - this turns-out not to be
the case since NMS significantly changes the ROC of the Canny edge detector
and hence its optimal operating point.

From the comparisons we can see that before NMS, GP gives larger TP
values while after NMS, the two algorithms give comparable TP values. The
Canny algorithm, however, gives much bigger FP values. Comparisons of the
Bayes risk figures are shown in Table 4.5 from which it can be seen that the
risk values of the Canny algorithm are higher than for the GP, with or without
NMS. The only exception to this is the image in Fig. 4.6 where, after NMS,
the GP has a slightly higher risk. The reason seems to be that the noise level
in this image is much lower than the others, allowing the Canny algorithm to
yield a higher TP value while having an FP value roughly equal to the GP
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detector. In fact, it is not statistically significantly different using t-test under
95% confidence level. The final labeled images in Fig 4.6 (e, f) for Canny and
GP (with NMS) look much more similar than for any of the other images from
the USF dataset.

In the USF dataset, a number of regions have been labeled as “don’t care”
- the white regions in Fig. 4.3b, 4.4b, 4.5b, and 4.6b are the distinct “don’t
care” class. For the edge detection problem we have concluded that it is these
non-obvious non-edge (NONE) patterns labeled as “don’t care”in the USF
images which make the classification task difficult. This is consistent with the
observation of Konishi et al. [22] that the USF images are easier to label than
the Sowerby dataset which these authors also considered and which has no
”don’t care” regions.

Whole image labeling results for four, typical USF images using the Canny
and GP detectors (with and without NMS) are shown in Fig. 4.3 to Fig. 4.6. In
these figures, (a) denotes the original image from the USF dataset, (b) shows
the ground truth data, (c) shows the labeling results from the Canny detector
without NMS and (d) shows images labeled with the GP feature extractor; (e)
shows images from the Canny edge detector with NMS, (f) shows the output
from the GP feature extractor with the gradient-direction based NMS.

In these labeling results, it is striking that Fig. 4.3(c) contains only six
labeled pixels in the top right hand corner of the image and the same poor
performance in other corresponding (c) figures are consistent with the results
from Table 4.3. These results further confirm our conclusion that the Canny
edge detector’s performance is not due to the feature extraction stage but
to the sophisticated post-processing steps coupled with subjectively - and
implicitly - set cost ratios.

Discussion

The evolution described here, driven by multiple objectives is able to generate
separated class-conditioned distributions in the 1D decision space. In contrast
to the hand-crafted, heuristic post-processing steps of the Canny edge detector
[21], we concentrate our computational resource on optimizing the feature
extraction stage to yield greater separability in the mapped feature space.
Further, compared to the Canny detector which is based on extensive domain
knowledge - see Canny’s original work on deducing the ‘optimal’ filter kernel
[21] - we did not supply any domain-dependent knowledge to MOGP apart
from the carefully constructed training set. This lends evidence to support our
conjecture that our method is able to automatically produce (near-)optimal
feature extraction stages of a classification system.

Although feature selection was not explicitly intended in our approach,
we have deliberately employed an overly large image patch (13 × 13) to in-
vestigate how the GP selects input features within this patch given that one
of our fitness objectives is to minimize tree size and, therefore, the number
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of leaf nodes (i.e. individual pixel intensity values). A histogram of the num-
ber of times each pixel was used by the trees in a typical converged Pareto
set is shown in Fig. 4.7, where the central pixel of the 13 × 13 patch has
the row and column indices of (0, 0). This figure illustrates that the MOGP
optimization has a strong tendency to select pixels from around the center
of the image patch, a fact which is intuitively pleasing because most of the
edge/non-edge discriminatory information can be considered to come from
this region. We reiterate that we have not embedded any domain knowledge
in this optimization. Thus we believe that feature selection is occuring as a
beneficial by-product of the feature extraction process due to the way we have
incorporated parsimony into the optimization.

(a) (b) (c) (d)

(e) (f)

Fig. 4.3. a to f illustrate the comparisons from the Canny edge detector and GP,
details refer to the text.

4.4.2 Comparison of Generational and Steady-state Evolutionary
Algorithms on UCI Datasets

As mentioned in the introduction, evidence to substantiate the generic prop-
erty of our method has been demonstrated in previous work [6] where we have
shown that our methodology, implemented using the SPGP algorithm, exhib-
ited either superior or equivalent performance to nine conventional classifiers.
Here we report the results of a preliminary investigation into the efficacy and
performance of different evolutionary techniques within the proposed frame-
work. SPGP and PCGP have been compared on five typical problems from the
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(a) (b) (c) (d)

(e) (f)

Fig. 4.4. a to f illustrate the comparisons from the Canny edge detector and GP,
details refer to the text.

(a) (b) (c) (d)

(e) (f)

Fig. 4.5. a to f illustrate the comparisons from the Canny edge detector and GP,
details refer to the text.

UCI database [35]. As far as we are aware, there has been little detailed analy-
sis and comparison of multi-objective evolutionary strategies on real world GP
problems.

We have applied SPGP and PCGP to each of the problems listed in Table
4.2. The GP settings are the same as those listed in Table 4.1 except that the
terminal nodes are now the elements in the pattern vectors of the five UCI
datasets rather than image pixel values. For the generational SPGP algorithm,
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(a) (b) (c) (d)

(e) (f)

Fig. 4.6. a to f illustrate the comparisons from the Canny edge detector and GP,
details refer to the text.
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Fig. 4.7. Histogram of numbers of pixels used in the GP trees in a typical Pareto
set, relative to the 13 × 13 input patch.

we used a population size of 500 and a maximum of 500 generations; the three
possible stopping criteria listed in Table 4.1 are reused. For the steady-state
PCGP algorithm, only 200 individuals were used in the population, while
for simplicity, the stopping criterion used was to run for a fixed number of
2000 generations. This means that PCGP is performing around one-tenth the
number of fitness evaluations of the SPGP algorithm and is thus comparatively
disadvantaged; this was an intentional feature of this preliminary study to



92 Y. Zhang and P. I Rockett

determine if approximately equivalent solutions could be obtained with PCGP
but with much less computing resource. A sophisticated method of gauging
actual convergence of PCGA have been discussed by Kumar & Rockett [20].

Table 4.6. Mean Error Comparisons Between SPGP and PCGP on Five UCI
Datasets

Datasets SPGP PCGP
BE ME Mean Nodes BE ME Mean Nodes

BUPA 0.185 0.272 58.928 ± 54.636 0.219 0.278 7.830 ± 5.242
PID 0.160 0.203 32.633 ± 40.133 0.173 0.200 3.870 ± 1.401
WBC 0.019 0.025 24.071 ± 46.320 0.014 0.022 6.280 ± 2.647

WDBC 0.025 0.028 36.941 ± 43.417 0.028 0.028 7.785 ± 5.343
THY 0.0044 0.0061 37.964 ± 43.299 0.0044 0.0058 11.220 ± 5.492

The mean error comparisons between the two evolutionary algorithms over
10 repetitions are summarized in Table 4.6, where ME stands for misclassi-
fication error from optimal thresholding in the decision space after feature
extraction. BE, the corresponding Bayes error estimates are listed to give an
indication of the degree to which the misclassification error approaches its fun-
damental lower bound. Table 4.6 contains only data from the non-dominated
solutions from each of the evolutionary paradigms. We have applied Alpaydin’s
F -test [28] to these data from which we conclude that none of these differences
in error is statistically significant. What is a notable and significant difference
between these two algorithms is the numbers of mean nodes required to ob-
tain ‘identical’ misclassification errors. The mean numbers of nodes for the
steady-state PCGP approach are very much smaller than for the generational
SPGP algorithm. We have observed that some inactive/redundant sub-trees
exist in solutions evolved by SPGP [6] and the fact that we generate signifi-
cantly smaller trees using PCGP implies that PCGP is much more effective
in controlling tree bloat than SPGP. This result saves a lot of computational
effort during evolution as well as having a practical implication.

To further explore the differences between the ‘quality’ of the solutions
produced by these two evolutionary paradigms, we have plotted the misclas-
sification error versus the number of nodes for the final solutions produced
by the two algorithms on each of the datasets in Figures 4.8 to 4.12. Al-
though the SPGP results shown are this algorithm’s best approximation to
the Pareto front, for PCGP we have plotted the whole population which in
practice, contains a number of dominated solutions. Our aim here is to com-
pare the coverage and sampling of the Pareto front produced by the two algo-
rithms, albeit at an intermediate stage for PCGP. Note that these figures do
not depict Pareto-optimal sets per se since these plots are a two-dimensional
representation of a three-dimensional Pareto front. This in part explains why
a number of solutions appear at first glance to be dominated (in the Pareto
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Fig. 4.8. Misclassification error vs. Number of nodes for the members of the Pareto
sets generated by SPGP (left) and PCGP (right) on the BUPA dataset
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Fig. 4.9. Misclassification error vs. Number of nodes for the members of the Pareto
sets generated by SPGP (left) and PCGP (right) on the PID dataset
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Fig. 4.10. Misclassification error vs. Number of nodes for the members of the Pareto
sets generated by SPGP (left) and PCGP (right) on the WBC dataset
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Fig. 4.11. Misclassification error vs. Number of nodes for the members of the Pareto
sets generated by SPGP (left) and PCGP (right) on the WDBC dataset
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Fig. 4.12. Misclassification error vs. Number of nodes for the members of the Pareto
sets generated by SPGP and PCGP on the THY dataset

sense) whereas in fact, they are actually non-dominated if one takes the third
(Bayes error) objective into account. (Indeed, many of the PCGP solutions
actually are dominated within their population.)

From Figures 4.8 to 4.12, it is apparent that PCGP produces a solution
set which is much more strongly centered on lower node numbers. This pre-
liminary comparison of PCGP is thus extremely promising since even in the
state of not being fully converged and only having had around one-tenth the
computing resources invested in it, PCGP is able to produce solutions which
are significantly smaller than those from SPGP but with indistinguishable
error rates.

Tree Interpretation

By way of example, we show a typical GP-generated tree in Figure 4.13. This
individual was a non-dominated population member obtained from a PCGP
run on the THY dataset; we present the tree as it was generated without
pruning. The leaf nodes in Figure 4.13 are labeled as Xn, for ∈ [1...N ], where
N is the number of raw attributes in the input pattern vector; for the THY
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dataset here, N = 21 (see Table 4.2). All the function nodes in the graph are
elementary functions except pow2 which calculates the child value raised to
the power of two and ifelse which returns the second child value if the first
child value is 0, otherwise it returns the third child value. Actually, in the
example tree shown in Figure 4.13, the sub-tree containing ifelse could be
simplified as X19. Although it is trivial to remove this obvious redundancy by
hand (or even as a non-evolutionary post-processing stage), it appears that
even the PCGP evolutionary strategy has the propensity to generate inactive
code.

The value returned from the tree root - −(minus) - is the transformed
feature value in the one-dimensional decision space in which the separability
between classes is maximized. Each input pattern will be fed into the tree
and will return a scalar value as the extracted feature. Again, the set of raw
input features has been selected during the optimization process which seeks
to minimize the number of tree nodes. Surprisingly, with this dataset only two
original elements can be used to extract the optimal new feature to obtain
the desirable classification performance.

Fig. 4.13. One typical evolved GP feature extractor on THY dataset

4.5 Conclusions and Future Research Work

In the present work we conjecture that efficient feature extraction can yield a
classification system, the performance of which is at least as good as the best of
all available classifiers on any given problem. In essence, the evolutionary algo-
rithm is ‘inventing’ the optimal classifier for a given labeling problem/dataset.
It is, of course, entirely feasible that the genetic optimization is re-inventing
an existing classifier rather than devising a novel algorithm but this is of
little practical consequence. When confronted with a new dataset, the com-
mon approach among pattern recognition practitioners is to empirically try a
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range of classification paradigms since there is no principled method for pre-
dicting which classifier will perform best on a given problem; there is always
the chance that better performance could be obtained with another, but un-
tried classifier. Our conjecture that multi-objective evolutionary optimization
produces the best possible classifier effectively eliminates the risk from this
trial-and-select approach. Needless to say, although the results presented here
and in previous work [6] support our conjecture, by definition, we cannot offer
a definitive proof.

Also of considerable importance is the fact that we do require any do-
main knowledge of the application. The feature extraction transformation
sequence is identified automatically, driven solely by the optimality criteria
of the multi-objective algorithm. We have presented the application to edge
detection, for example, in which our method yields superior results to the
very well-established and mature Canny algorithm. The generic property of
the presented method enables it to be straightforwardly applied to other ap-
plication domains.

Although the principle of evolutionary optimization is straightforward,
exact implementation is still an open research issue. Here we present the pre-
liminary results of applying two different evolutionary paradigms, one gener-
ational (SPGP) and one steady-state (PCGP). The differences between the
misclassification errors attained with the two types of genetic search are not
statistically significant although the complexity of the generated feature trans-
formation sequences is markedly different. Even where the PCGP algorithm
has not fully converged, we find that the steady-state method produces much
smaller trees which implies that PCGP is more responsive to the objective try-
ing to minimize tree size. The concentration of the solutions at low node num-
bers also means that the sampling of the Pareto front is better with PCGP.
(Previous comparisons between PCGA and other multi-objective GAs imply
a similar, fundamental superiority in the steady-state approach [20].) Faster
convergence and better control of the tree-bloating make the PCGP approach
very promising for practical applications.

We have demonstrated the use of multi-objective genetic programming
(MOGP) to evolve an “optimal” feature extractor which transforms the input
patterns into a decision space such that pattern separability in this decision
space in is maximized. In the present work we have projected the input pattern
to a one-dimensional decision space since this transformation naturally arises
from a genetic programming tree although potentially, superior classification
performance could be obtained by projecting into a multi-dimensional decision
space [14] - this is currently an area of active research.

Finally, as with all multi-objective optimizations, what arises from our
method is a family of equivalent solutions - the Pareto set - which presents the
system designer with the trade-off surface between classification performance
and the complexity of the feature extractor. Exactly which pre-processing
solution is selected for the final application will depend on the generalization
properties of the solutions - invariably one would like the solution which is
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best able to predict class of as-yet unseen patterns with the greatest accuracy.
Predicting generalization performance is very much a major and continuing
issue in statistical pattern recognition - ultimately we would like to formulate a
measure of classifier generalization which potentially, could be optimized along
with the other multiple objectives. This remains an area of open research.
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