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Summary. Autonomous temporal linguistic rule extraction is an application of
growing interest due to its relevance to both decision support systems and fuzzy
controllers. In the presented work, rules are evaluated using three qualitative met-
rics based on their representation on the truth space diagram. Performance metrics
are then treated as competing objectives and Multiple Objective Evolutionary Algo-
rithm is used to search for an optimal set of non-dominated rules. Novel techniques
for data pre-processing and rule set post-processing are developed that deal directly
with the delays involved in dynamic systems. Data collected from a simulated hot
and cold water mixer and a two-phase vertical column is used to validate the pro-
posed procedure.

16.1 Introduction

When performing process management decisions, a control algorithm makes
use of the knowledge of the plant in the form of a model. In most cases, this
knowledge is commonly derived from the first principles and/or laboratory and
pilot plant experiments; and often such “ideal” knowledge is of little practical
use under real world complications due to unaccounted factors and modeling
uncertainties.

Human operators, on the other hand, make use of another type of model
when in charge of process management decisions. After a long time in con-
tact with the plant, process operators are capable of attaining some under-
standing of what factors govern the process and derive relationships between
process variables based on intuition and past experience. This process was best
described in [23] as “a cognitive skill of experienced process operators that
fits the current facts about the process and enables the operators to assess
process behavior and predict the effects of possible control actions.” How-
ever, the knowledge attained in this fashion also presents critical deficiencies
since wrong impressions on what is going on with the process will lead to
operator misjudgment as described in [17]. Furthermore, incoherencies inside
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such knowledge propagate itself as “mis-knowledge” or “technical folklore”
are passed down from one generation of process operators to the next.

By making use of linguistic information in the form of IF/THEN logical
statements or rules, Expert Systems and Fuzzy Logic Controllers (FLCs) are
technologies capable of enabling better process monitoring and control. FLCs
have found applications in a variety of fields such as robotics [7], automated
vehicles [5], and process control [19], to name a few. Expert Systems have been
used in the Chemical Process Industry (CPI) to control, monitor [6], and
understand process behaviors. Other applications of such knowledge based
systems have been in operator training and for planning and scheduling of
operations in control and maintenance [11], especially for getting a plant back
online after a failure or abnormal operating condition.

Expert Systems can be built from knowledge inserted by human experts
or acquired from historic data from the system. Knowledge bases made by
polling information from experienced personnel not only incorporate the be-
fore mentioned “technical folklore,” but also is intrinsically incomplete. Such
rules pertain only to information that is critical or obvious to the operators; it
is related to information just necessary for them to maintain desired plant con-
ditions. Such information does not incorporate the knowledge of events that
are lesser in significance or rarer in occurrence, but which affect the operation
of the plant nonetheless. A complete rule base should possess information on
almost all plant events that have an effect on the desired output or may change
the variable under control. Finally, knowledge collected from experts is usu-
ally in the form of static rules loosely related to the real numerical world. Due
to its lack of a mechanism to deal with the temporal behavior of the process,
the rigid, non-adaptive knowledge devised in this fashion becomes inadequate
for complete supervisory control of dynamic systems. Therefore, the solution
lies on the development of an algorithm capable of autonomously extracting
and improving a dynamic rule set for an expert system directly from process
data.

As pointed out in an extensive survey of Knowledge Discovery [8], many
technical fields are exploring rule extraction from data. Data Mining views
the rule extraction problem as one of finding patterns that describe the infor-
mation in a database [14]. Machine Learning on the other hand approaches
the same problem by generating deterministic finite-state automata with gen-
eralizing abilities capable of describing the relationship between antecedents
and consequents [25]. Yet, the most appreciable contributions made in process
applications are all based on computational intelligence paradigms, such as
Neural Networks, Fuzzy Logic, or Evolutionary Computation [9, 16, 12, 27].
Still, temporal reasoning is missing in most studies.

It is fundamental for the modeling of a dynamic system that the model
used incorporates the concept of time. In [18], a temporal restrictor is first
proposed as an entity that restricts a fuzzy proposition, expressed as ’A be
B T,’ which translates into ‘A is satisfying the fuzzy predicate B, taking into
account the temporal restrictor T.’ The temporal restrictor is expressed as
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a membership function. The conjunction be is a generic verb of being which
can take different temporal connotations according to the rule. In this way,
it is possible to add to the extracted rules information in the form of ‘tem-
perature was hot one hour ago.’ However, this approach is rudimentary and
incomplete; it does not account for persistence of excitation, and treating time
as a restricting factor greatly limits the generalization of the rules.

Bakshi and Stephanopoulos exploited temporal knowledge and proposed
reducing the dimensionality in [2] by describing process behavior with trian-
gles. The design is specifically crafted for fault detection applications. How-
ever, our goal is to explore relations between general variables, not just discrete
faults. Data mining in a time series database was approached in [15] by using
three different temporal attributes: length, slope, and fluctuation (signal-to-
noise ratio over time). Nevertheless, the application is not targeted on rule
extraction, but on time-series prediction.

Based on the widely applied Autoregressive Moving Average (ARMA) [1]
models, Tsai and Wu [24] proposed to incorporate temporal relationships into
fuzzy rules by matching antecedents with consequents a fixed number of time
steps in the future. In [21] the architecture was extended to allow different
discrete time delays to be used for each antecedent in single consequent rules.
Due to the usage of discrete time delays however, the representation capability
of the rule set was largely affected by the particular choice of time delays and
it displayed great sensitivity to noise, especially related to datasets composed
of data sampled from continuous systems. Displaying applications related to
the stock market and the weather, Last et al. [15] applied stochastic pre-
processing techniques to improve the meaningfulness of the data provided to
the rule extraction mechanism. Based on the concept of internal clocks that
biological organisms use for the learning of period and interval timing, Carse
and Fogarty [3] proposed the usage of a temporal membership function for
the averaging of sampled data in order to generate crisp values related to
fuzzy time periods. Applications of such an approach have been documented
in distributed adaptive routing control in packet switched communication net-
works [3]. Therefore, in this study, a particular fuzzy delay is assigned to the
temporally averaged consequent of each rule, generating a structure of the
form:

IF condition 1 AND condition 2 AND condition 3. . . ,
THEN after a certain fuzzy delay, a control variable will be such.

The statement between the IF and the THEN conjunction is the antecedent
while the statement after the THEN conjunction is the consequent.

A crucial step in the autonomous extraction of rules is the method used to
validate and compare those that are created. An optimal rule should be accu-
rate, properly describes the dynamic relationship between its antecedent and
consequent, and possesses enough data to support it. In a methodology intro-
duced in [20], three metrics based on a Truth Space Diagram (TSD) capable
of encapsulating and measuring each of these three goals were introduced and
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tested. However, it was also shown that in the general scenario such metrics
cannot be independently optimized due to inherent confliction among them.

Multiple Objective Evolutionary Algorithm (MOEA) is a tool capable of
performing efficient searches on high dimensional spaces to locate the Pareto
front, a set of solutions that contain the best rule for each possible trade-
off between competing goals. A growing research field, MOEA has already
demonstrated successful applications in solving challenging benchmark prob-
lems [26] and real world applications [4].

In this chapter, three metrics developed in [20] are used under a novel
dynamic treatment of the data to evaluate linguistic rules against process
data. MOEA is then introduced to locate inside the high dimensional rule
space the Pareto front of the antecedents that best describe (in the sense of
different combination of metrics) a given consequent.

The remainder of the chapter is organized as follows. Section 16.2 describes
the three metrics generation process, detailing the novel temporal data pre-
processing, the development of the truth space diagrams, and the choice of
relevant metrics. Section 16.3 introduces the use of MOEA for the automated
extraction of rules and the necessary rule set post-processing. The simulation
results of applying the proposed algorithm to the Hot and Cold water mixer
and a two-phase vertical column are explored in Section 16.4, following by
some final remarks and conclusions in Section 16.5.

16.2 Rule Evaluation

In order to guide and automate process management decisions, a rule must dis-
play three basic characteristics: high accuracy, precise antecedent/consequent
relationship, and sufficient data support. However, it is seldom possible to
maximize these three characteristics at the same time. For example, if an
event is observed only a single time, it is trivial to develop a rule with 100%
accuracy, however it will lack support from historical data and the probabil-
ity that it will describe a whole family of similar events with comparative
accuracy is small. For this reason there is a need to develop three qualitative
metrics, each focusing on one of such competing characteristics.

In [20] a series of metrics were suggested, each capable of specifically rep-
resenting a different quality of a rule. All metrics were designed with a qual-
itative measure manifested through the Truth Space Diagram (TSD). In the
first part of this section, the efficiency of the TSD is further enhanced with
the introduction of a novel pre-processing strategy for the representation of
the temporal behavior of the plant into the linguistic rules. The concept of
the TSD is then introduced taking in consideration the enhanced temporal
representation and finally the three metrics of interest are introduced.
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16.2.1 Data Pre-processing

In previous applications of the TSD methodology, data pre-processing took
place in the following manner: 1) The consequent data was shifted backwards
in time by fixed intervals so that each set of antecedents matched three con-
sequent values corresponding to short, medium, and long delays; 2) The crisp
input-output data was fuzzified. Fuzzification proceeded through the applica-
tion of Equation (16.1) by using triangular membership functions to classify
each variable into three fuzzy categories – low, medium, and high:

µi,j
x =

{
aj−xi

aj−bj
, xi ∈ [aj , bj ]

0, otherwise,
, (16.1)

where j=1 to 3, i=1 to n, xi is the crisp numerical value of the ith input or
output variable, µi,j

x represents the fuzzy membership value of xi in the jth

fuzzy category, aj and bj are the fuzzy set break points for category j, and
n is the maximum number of datasets in the input-output data. Figure 16.1
illustrates the fuzzy classification of one variable into three fuzzy categories.

Fig. 16.1. Fuzzy classification procedure for the antecedents. In this case, temper-
ature with centers at 10o, 50o, and 90oC.

The fuzzification of the physical crisp data in such a manner leads to great
generalization capabilities, inherent noise rejection, and direct rule interpreta-
tion by human operators. Although ideal for the treatment of the antecedents,
the manner through which the dynamic temporal element is incorporated into
the consequent lacks such benefits. In essence, consequences for plant char-
acteristics at any given time are only observed at discrete instants. Since a
consequent’s time delay contains variability as much as physical characteris-
tics of a system, although rule extraction is possible, it requires extensive data
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in order to determine the true correlations through time. Moreover, the pre-
vious approach relies on accurate knowledge on the inherent major delays of
the plant in order to set up the number of iterations that correspond exactly
to the operator’s understanding of small, medium, and long delays.

In the present work, such deficiencies are addressed by dealing with time
uncertainties in a novel manner that is different in essence from the fuzzifica-
tion of physical variables. The application of such approach leads to a mean-
ingful linguistic description that maintains all the previously stated benefits
while better capturing the temporal characteristics of dynamic plants. Instead
of simply shifting the data to obtain a single measurement to represent a de-
lay, averaged values of a consequent are obtained for each fuzzy delay region
through Equation (16.2) and it is those averaged values that are then classified
into the membership function of the consequent by Equation (16.3).

yi
δ(t) =

∑t3δ
k=t1

δ

Mδ(k) · yy(t+ k)
∑t3

δ

k=t1
δ

Mδ(k)
, (16.2)

µi,j
y,δ(t) =

aj − yi
δ(t)

aj − bj
, (16.3)

where yi(t) is the crisp measurement of the ith consequent at time t, yi
δ(t)

corresponds to its arithmetical average for a given fuzzy delay δ, δ ∈[short ,
medium , long], tiδ are the fuzzy set break points (i ∈[1, 2, 3]) for category δ,
Mδ(t) denotes the membership function of a fuzzy delay δ, and µi,j

y,δ(t) is the
fuzzy membership value of the ith consequent for a fuzzy delay δ. An example
of the application of the procedure involving Equations (16.2) and (16.3) can
be seen in Figure 16.2, where the fuzzy membership value of the consequent
y1(t) is calculated at time 20s for medium delay and low temperature, i.e.
µ1,l

y,m(20).
By processing the process data from the antecedents using (1) and that

from the consequents with (2-3), crisp data is translated into linguistic vari-
ables. It is important to note that although each antecedent relates to a single
linguistic variable, due to the introduction of the fuzzy delay, each conse-
quent is represented by three fuzzy variables, each related to a different delay
membership function.

16.2.2 Truth Space Diagram

The TSD is a two-dimensional space in which a series of metrics capable of
quantifying the quality of a particular cause-and-effect rule can be obtained.
Each TSD relates to a single rule. For every data point extracted either from
mathematical simulations, pilot plant experiments, or real-word sensory data,
a point is plotted in the TSD according to its truth of the antecedent Ta and
the truth of the consequent Tc. Both parameters are calculated as geometrical
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Fig. 16.2. Proposed physical and temporal two-step fuzzification procedure.

means of the fuzzy membership function of each variable of the antecedents
and consequents. Hence, the truth space delimited by Ta and Tc is bounded
between 0 and 1 in which a value equal to 0 means absolute false while a value
of 1 means absolute truth.

Designed in this fashion, the TSD represents a one-to-one mapping from
the dataset from the real (numerical) space to a new (truth) space defined
by the linguistic statements of a specific rule. The TSD can be divided into
four quadrants and each quadrant provides different information about the
linguistic rule. For example, consider point A in Figure 16.3. The values for
Ta and Tc are high for this data point, i.e. the predicted consequent follows the
appointed antecedent or the cause and effect match according to the relevant
rule statement. This reveals that the information expressed in the linguistic
rule is contained within the numerical data. Hence, many points in Quadrant
II (denoted as Quad II) of the TSD reflect the validity of the rule in question.
Consequentially, points in Quadrant IV (denoted as Quad IV) show that
the rule statement is false, i.e. what the antecedent of the rule express does
not lead, in most cases, to the predicted consequent. An example of this
can be seen from data point B in Figure 16.4. Similarly, points in Quadrant I
demonstrate the incompleteness of the rule, since the predicted consequent was
due to an event(s) other than the one expressed in the antecedents of the rule.
Finally, the presence of a cluster of points in Quadrant III show the possibility
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Fig. 16.3. TSD for a meaningful rule extracted from process data with sufficient
supporting evidence.

Fig. 16.4. TSD for a rule that was proven inaccurate in a significant number of
points in the process data.

of that a rule is valid, however the amount of data currently available does
not allow yet for a conclusion to be drawn with enough confidence. The points
that lie on the vertical and horizontal axis show that either the antecedent or
the consequent of a particular rule were not expressed in the data.

16.2.3 Numerical Metrics

As mentioned previously, the goal of the presented work is to extract rules
that present high accuracy, precise antecedent/consequent relationship, and
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that are supported by sufficient data. By using the TSD, it is possible to
obtain metrics for each of these conflicting goals. In order to transform the
problem into one of minimization however, the actual metrics of interest are
converted into: rule inaccuracy, antecedent/consequent mismatch, and lack of
supporting evidence in the dataset. To improve the performance of the rule
extraction algorithm, all metrics presented here are normalized to the interval
[0,1].

Metric 1: rule inaccuracy – A rule is deemed inaccurate when its an-
tecedent is observed but the consequence that follows after the prescribed
delay does not match the predicted behavior. As mentioned previously, in
the TSD this concept relates to the points in the Quadrant IV (i.e. set Q4),
which relate to high truth of the antecedent but low truth of the consequent.
The number of data points in Q4 (i.e. n4) can therefore be used as a relative
measure of inaccuracy, however it is necessary to normalize this number by
dividing n4 by the total number of data points in which the rule antecedents
were observed with sufficient confidence, i.e. the sum of the points in Quad-
rant II (n2) and in Quadrant IV (n4). Equation (16.4) summarizes m1, the
rule inaccuracy metric.

m1 =
{ n4

n2+n4
, n2 + n4 > 0

1, otherwise
. (16.4)

Metric 2: antecedent/consequent mismatch – from a good rule it is ex-
pected that the value of Tc should match the value of the Ta. In other words,
the intensity in which the antecedents are observed should be equal to the
intensity of the resulted consequent. In real world scenarios however, Tc is
affected by both the quality of the rule and the quality of the available data
(e.g. noise corruption). By analyzing the data points in Quadrant II (i.e. set
Q2), it is possible to measure antecedent/consequent mismatch directly by
summing all distances from each data point in it to the diagonal of the TSD.
Defining Tai and Tci respectively as the truth of the antecedent and the
truth consequent for rule i, ‖.‖ as the Euclidian norm, and since 0.3536 is the
maximum distance to the diagonal, this second metric is stated as shown in
Equation (16.5):

m2 =

{ ∑
i∈Q2

||Tai−Tci||
0.3536·n2

, n2 > 0
1, otherwise

. (16.5)

Metric 3: lack of supporting evidence in the dataset – Since there is a
need for sufficient information inside the available data for any conclusion
to be drawn, this metric is crucial for the success of any data driven rule
extraction method. Using the TSD representation, Equation (16.6) is built
for this purpose.

m3 = 1− nTSD

ndata
, (16.6)
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where nTSD is the total number of data points mapped in the TSD excluding
points on the abscissa (Ta = 0); and ndata is the total number of data points
available in the dataset.

16.3 Rule Extraction

Evolutionary Algorithms (EA) is commonly regarded as a family of stochas-
tic search procedures that is inspired by computational models of natural
evolutionary processes to develop computer based optimization problem solv-
ing systems [22]. Being a population based algorithm, in EA each candidate
solution is represented as an individual. When evolving towards better solu-
tions, the individuals that better meet the optimization goal (individuals with
greater fitness) have a greater probability of being selected to take part in the
creation of the individuals of the new generation.

For problems that have multiple conflicting goals that cannot be directly
combined into a single scalar measure of fitness, Multiple Objective Evolu-
tionary Algorithm (MOEA) provides a method through which a population
of solutions can evolve towards a set of solutions within which no solution is
better than another in all optimization goals. By defining that an individual
dominates another when all of its optimization goals are closer to the ideal
values than those of the other individual, such a set can be referred to as
the non-dominated set. The non-dominated set among all possible solutions
is called the Pareto front and its determination is then the ultimate goal of
MOEA. Therefore, as shown in (7), in MOEA the fitness F is a vector of the
optimization goals, in this case represented by the three goodness metrics.

F = [m1,m2,m3]. (16.7)

In the present work, MOEA in the form presented in [26] is used once
for every consequent to evolve an initial random population of related rules
towards the Pareto front of the tri-dimensional space defined by F . Therefore,
for each consequent, a set of equally good (in the sense of the minimization of
the three previously defined metrics) antecedents is extracted based on their
relative success.

As laid down in the pseudocode in Table 16.1, the first step of imple-
menting an MOEA algorithm is the generation of the initial population of
candidate solutions. In order to guarantee an unbiased and diverse popula-
tion while maintaining a low computational demand, 20 initial individuals
are generated with random antecedent values, clearly 20 is an ad hoc choice
that needs to be quantified in future research. In the following step, the three
metrics are calculated for the rules formed by the antecedents of each indi-
vidual and the consequent related to the current MOEA run. It is also in this
step that each individual is assigned a rank value according to their relative
success in minimizing the elements of the fitness vector F (i.e. the concept
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of Pareto optimality). In particular, the ranking scheme discussed in [10] is
implemented, in which an individual is assigned a rank value equal to one plus
the number of individuals it is dominated by.

Table 16.1. MOEA pseudocode

1. Generate initial population;
2. Evaluate the metrics of all individuals and rank them;
3. for (i=1: maximum generation)
4. Choose parents with probability inversely proportional to their ranks;
5. Perform crossover operation on parents to generate new individuals;
6. With probability equal to the mutation rate, perform

mutation procedure;
7. Evaluate all three metrics on the new individuals;
8. Update population ranking.

The third step in the presented pseudocode is the first in its main loop
and it relates to the selection of two individuals that will be involved in the
generation of new individuals to the population. The selection is performed
stochastically by assigning a greater selection probability to individuals with
smaller rank values, and therefore individuals with greater fitness. The in-
dividuals in this way chosen are denominated parents and, in step 4, part
of their individual solutions is exchanged in the operation termed crossover.
Through the crossover operation, two new individuals (solutions) are formed,
combining elements of both parents. In the following step, mutation, another
biologically inspired process, may affect with a specific probability (defined as
the mutation rate) the newly generated individuals. In MOEA, mutation takes
place by randomly modifying an arbitrary portion of the solution related to a
given individual. Independent of the occurrence of mutation in step 5, on step
6 the fitness vector F is evaluated for the two new individuals, followed by
the updating of the ranks of all individuals in the population. A generation is
then concluded and the algorithm returns to step 3 until a maximum number
of generations is reached.

After MOEA generates a set of non-dominated rules for each consequent,
thresholds are used over each metric to eliminate outliers and establish min-
imum acceptable performances (e.g. minimum degree of accuracy required
of a rule). Another post-MOEA data processing involves removal of time-
redundant information from the rule set. If, for instance, a consequent should
develop quickly and remain unchanged for a long time throughout the dataset,
the antecedents would be credited with both short and long-term effects even
though the long-term effect is only a matter of persistence. Time redundancy
then refers to rules with equal antecedents and physical consequents, but with
different consequent delays. In such cases, the rule related to the longer con-
sequent delay is removed.



376 G.G. Yen

16.4 Simulation Results and Discussion

The results of the application of the proposed rule extraction algorithm to
two examples are presented in this section. The first is a proof-of-the-concept
computer simulation. The simulation pertains to a hot and cold water mixer
that is sufficiently challenging to demonstrate the impact of each of the al-
gorithm sub-systems while at the same time it remains simple enough to be
intuitively understandable. The second pertains to the results of rule extrac-
tion over process data collected from the operation of a laboratory scale two
phase column. Different from the computer simulation, the two phase column
is an actual plant, subject to real world noise levels, sensor calibrations and
other implementation imperfections.

16.4.1 Hot and Cold Water Mixer

To demonstrate the feasibility and clarify implementation details of the pro-
posed process for extracting temporal cause and effect relationships, data was
acquired from a Hot and Cold water mixer simulator shown in Figure 16.5.
The simulator incorporates real world dynamics such as transport and mea-
surement delays and is capable of adding deviations such as measurement bias
and process drifts that have an ARMA stochastic behavior, noise and valve
“sticktion.” This is a simple example, but incorporates behaviors which are
representative of a majority of unit operations within the CPI. The simulation
was non-linear, had multiple inputs and its dynamics (such as hydrodynamic
delay) depended upon operation conditions. A detailed description contain-
ing the mathematical model of the Hot and Cold water mixer simulator is
available in [27].

For the purpose of generating data, the four input variables were manip-
ulated, the flow of each input tube (F1 and F2) changing randomly at every
20 seconds and the input temperatures (T1 and T2) changing randomly at
every 40 seconds. The periods of manipulation of the variables were shifted
so as not to lead into two changes occurring at the same time. Their effect on
the temperature at the output of the mixer stream (T3) was measured over
time. All flow variables were restricted to the interval [0,30] kg/min and the
temperature variables to [0,100] oC.

According to the proposed data pre-processing procedure, physical vari-
ables were fuzzified with centers at 10, 50 and 90 oC for the temperatures
and at 2.5, 15 and 25 kg/min for low, medium and high flow rates respec-
tively. For the fuzzy delay, centers were placed at 3, 7 and 20 seconds for
short, medium and long delays respectively. Note that long delay rules will be
harder to calculate since the input variables will change randomly at faster
rates. The dataset is intentionally devised in this form to challenge the rule
extraction procedure with data of different degrees of quality.

The proposed MOEA based on the three selected metrics was implemented
over the pre-processed data generating a non-dominated set of rule candidates
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Fig. 16.5. The hot and cold water simulator used for validation of the rule extraction
algorithm.

for each consequent. An initial population of 20 randomly generated individ-
uals was allowed to evolve through the course of 200 maximum generations.
The individuals received a rank equal to one plus the number of individuals
it was dominated by. At each generation, parents were chosen according to
a probability inversely proportional to their rank. For the generation of new
individuals, crossover was implemented with a single crossover point and a
mutation rate of 0.01 was used. An elitism scheme was implemented to guar-
antee that all non-dominated solutions were preserved during the evolution
process. Figure 16.6 displays the obtained non-dominated set containing 13
antecedent combinations relating to high temperature at T3 after a long delay.

For post-processing, the minimum acceptable accuracy of the extracted
rules was set at 90%, a minimum of 1% of the information inside the observed
dataset was necessary to validate a rule, and a maximum spread of 0.6 around

Fig. 16.6. Distributions of individuals related to two different consequents in the
metric space at generation 200. Filled circles form the non-dominated set.
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the diagonal of the TSD was allowed. In terms of the minimization metrics m1,
m2, and m3, the corresponding thresholds were 0.1, 0.99 and 0.6 respectively.
Finally, rules that were time-redundant were removed to generate the final
rule set.

Through the outlined process, the presented algorithm was capable of ex-
tracting 49 rules out of a possible set of 729 rule combinations (containing
both “good” and “bad” rules). Some examples of the obtained rules are shown
below:

• IF T1 is high AND F1 is medium AND T2 is medium AND F2 is low
THEN after a medium delay T3 will be high.

• IF T1 is low AND F1 is low AND T2 is low AND F2 is low THEN after
a long delay T3 will be low.

• IF T1 is medium AND F1 is low AND T2 is high AND F2 is high THEN
after a short delay T3 will be high.

Good rules are those that express the phenomenological-based, cause-and-
effect mechanism as a logical relation between their antecedent and consequent
parts. Consequentially, bad rules are defined as those that are inconsistent
with the process phenomena. Therefore, in order to evaluate the quality of the
49 extracted rules, each one of them had its antecedents implemented in the
simulator and those that demonstrated matching consequents were deemed
good rules. As a result, 5 of those rules were rejected demonstrating a success
ratio of 89.8% of the proposed rule extraction algorithm. Moreover, most
rejected rules pointed to borderline consequents (e.g. the measured T3 would
be 78oC, when the maximum value acceptable for a medium fuzzy range was
70oC). Such scenarios reflect the choice of fuzzy membership function centers,
left at the discretion of the operator.

As mentioned previously, any rule extraction procedure can only produce
results as good as the data provided. This simulation was intentionally de-
signed to provide much sparser and more noise corrupted data for the extrac-
tion of rules related to long delays. Among the 44 good rules in the final set,
only 6 of those portrayed long delays, while the expected from a fully represen-
tative dataset would be one third of the total. Since the algorithm minimizes
inaccuracy (m1) while at the same time evaluating the amount of supporting
evidence (m3), the lower number of long delay rules extracted demonstrates
the success of the procedure in avoiding unsupported rules to be presented to
the operator in the final set.

16.4.2 Two-Phase Flow Column

Gas-liquid two-phase flows are defined as the flow of a mixture of the two
phases, flowing together, through a system. The description of a two-phase
flow in pipes is highly intricate due to the various existence of the interface
between the two phases [27]. For gas-liquid two-phase flows, the variety of
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interface forms depends on the flow rates, phase properties of the fluid and
on the inclination and the geometry of the tube. Generally, for vertical gas-
liquid two-phase flows, the flow regimes are mainly determined by the phase
flow rates. In this case, Bubbly, Slug, Churn and Annular are four significant
regimes that can be recognized as standard patterns in the chemical industry.
The characteristics of these four patterns are shown in Figure 16.7. Each of
these four patterns has a distinguished air/water density and flow speed ratio.
These characteristics have a strong influence on pressure drop and heat and
mass transfer mechanisms in a system, and are very important in the chemical
process industries.

Fig. 16.7. Water/air flow ratio of four major two-phase vertical flow patterns.

Using the laboratory-scale vertical two-phase column shown in Figure 16.8,
real process data (subjected to ambient noise) was acquired from the pressure
drop in the column (∆P) while independently varying the flow rates of air (Fa)
and water (Fw). As illustrated in Figure 16.9, the two inputs were alternately
modified at every 30 seconds (150 samples).

Due to the second order nature of the response of the two-phase column,
higher fuzzyfication definition was required. Therefore, five membership func-
tions were used to generate the levels very low, low, medium, high and very
high; leading to 375 possible rules. Using the same procedure discussed for
the hot and cold water mixer simulator, 22 satisfactory rules were extracted
from the two-phase column data. Some examples of the extracted rule set are
shown below.

• IF Fa is high AND Fw is very low THEN after a short delay ∆P will
be very low.

• IF Fa is medium AND Fw is low THEN after a medium delay ∆P will
be low.
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(a) (b)

Fig. 16.8. Details of the base (a) and the top (b) of the two-phase flow column.

• IF Fa is very low AND Fw is medium THEN after a long delay ∆P will
be medium.

Fig. 16.9. Two-phase column pressure drop (solid) in response to variations in
water flow (dashed) and air flow (dot-dashed).
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16.5 Conclusions

As demonstrated though the application of the procedure on the data col-
lected from the simulated hot and cold water mixer, the proposed rule ex-
traction procedure succeeded in autonomously generating a viable rule set
from a less than completely representative data set. The use of MOEA as an
optimization algorithm allowed for three conflicting metrics to be evaluated
simultaneously leading to the final extraction of optimal non-dominated rule
sets. Both pre-processing, involving the representation of each rule inside a
TSD, and post-processing, which allowed for the removal of time-redundant
rules, were applied successfully and with beneficial outcomes.

The presented work assumes that all antecedents remain unaltered until
the consequent is observed, however its ultimate goal is to achieve rules that
specifically account for antecedent persistence such as: “IF (the reactor tem-
perature has been high for a short period of time) AND (the speed is in
manual for an extended period of time) THEN (in a short while the prod-
uct will be slightly yellow).” To achieve such a goal, persistence must also
be added to the dynamic persistence of the rule, which will lead to different
data pre-processing requirements. To further improve the dynamic represen-
tation of complex plants, there may also be need to explore novel operators as
opposed to the logical ones currently in use, such as “shortly succeeded by.”
Future work also focuses on the autonomous definition of fuzzy membership
centers and on procedures capable of improving the quality of the extracted
rule set as new batches of data becomes available over time.
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