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Summary. The chapter presents a new method of rule extraction from trained
neural networks, based on a hierarchical multiobjective genetic algorithm. The prob-
lems associated with rule extraction, especially its multiobjective nature, are de-
scribed in detail, and techniques used when approaching them with genetic algo-
rithms are presented. The main part of the chapter contains a thorough description
of the proposed method. It is followed by a discussion of the results of experimental
study performed on popular benchmark datasets that confirm the method’s effec-
tiveness.

14.1 Introduction

For many years neural networks have been successfully used for solving various
complicated problems. The areas of their applications include communication
systems, signal processing, the theory of control, pattern and speech recogni-
tion, weather prediction and medicine. Neural networks are used especially in
situations when algorithms for a given problem are unknown or too complex.
In order to solve a problem, a network does not need an algorithm; instead,
it must be provided with training examples that enable it to learn the cor-
rect solutions. The most commonly used neural networks have the input and
output data presented in the form of vectors. Such a pair of vectors is an
example of the relationship that a network should learn. The training consists
of a certain iterative process of modifying the network’s parameters, so that
the answer given by the network for each of the input patterns is as close to
the desired one as possible.

The unquestionable advantage of neural networks is their ability of gener-
alization, which consists in giving correct answers for new input patterns that
had not been used for training. Their resistance to errors is equally impor-
tant. This means that networks can produce the right answers also in the case
of noisy or missing data. Finally, it should be emphasized that they are fast
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while processing data and relatively cheap to build. Nevertheless, a serious
disadvantage is that neural networks produce answers in a way that is incom-
prehensible for humans. Because in certain areas of applications, for instance
in medicine, the trustworthiness of a system that supports people’s work is
essential, the domain of extracting knowledge from neural networks has been
developed since the 90s [1]. This knowledge describes in an understandable
way the performance of a neural network that solves a given problem. Knowl-
edge extraction may also be perceived as a tool of verifying what has actually
been learned by a network.

Rapid development of data storage techniques has been observed in the last
years. Data is presently perceived as a source of knowledge and exploited by a
dynamically evolved area of computer science called data mining. Its methods
aim at finding new and correct patterns in the processed data. The problems
that data mining deals with include classification, regression, grouping and
characteristics. The majority of them may be approached by means of neural
networks. In this case knowledge extraction from a network could make its
behavior more trustworthy.

The discovered knowledge, if presented in a comprehensible way, could
be used for building expert systems as a source alternative or supplementary
to the knowledge obtained from human experts. Rule extraction from neural
networks might be used for this purpose as well as perceived as a method
of automatic rule extraction for an expert system. The system itself could be
built as a hybrid consisting of a neural network and a set of rules that describe
its performance. Such a hybrid would combine the advantages of both compo-
nents; it would work fast, which is typical of neural networks, and, on the other
hand, it would offer a possibility of explaining the way of reaching a particular
conclusion, which is the main quality of expert systems. Moreover, if the data
changed, the system’s reconstruction could be performed relatively quickly by
repeating the process of training the network and extracting knowledge.

Skeptics could ask why knowledge should be extracted from a network
and not directly from data. Networks’ ability to deal with noisy data should
be emphasized again. It tends to be much easier to extract knowledge after
having the data processed by a network.

However, if we imagine a network with dozens of inputs with various types,
the problem of finding restrictions that describe the conditions of belonging
to a given class becomes NP–hard. Searching such a vast space of solutions
may be efficiently performed by genetic algorithms – another nature–based
technique, which became the basis for a method of rule extraction called
MulGEx (Multiobjectve Genetic Extractor) that will be presented in this
chapter.
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14.2 The State-of-the-Art in Rule Extraction
from Neural Networks

The research on effective methods of acquiring knowledge from neural net-
works has been carried out for 15 years, which testifies not only to the impor-
tance of the problem, but also to its complexity.

The majority of methods apply to networks that perform the classification
task, although works concerning rule extraction for the regression task appear
as well [17]. The developed approaches may be divided into three main cate-
gories: global, local and mixed. This taxonomy bases on the degree to which
a method examines the structure of a network.

Global methods treat a network as a black box, observing only its inputs
and responses produced at the outputs. In other words, a network provides
the method with training patterns. The examples include VIA [21] that uses
a procedure similar to classical sensibility analysis, BIO-RE [20] that applies
truth tables to extract rules, Ruleneg [8], where an adaptation of PAC algo-
rithm is applied, or [15], based on inversion. It is worth mentioning that in
such approaches the architecture of a neural network is insignificant. Other
algorithms in this group treat the rule extraction as a machine learning task
where neural network delivers training patterns. In this case different machine
learning algorithms are used, for example genetic algorithms or decision tree
methods.

The opposite approach is the local one, where the first stage consists of de-
scribing the conditions of a single neuron’s activation, i.e., in determining the
values of its inputs that produce an output equal to 1. Such rules are created
for all neurons and concatenated on the basis of mutual dependencies. Thus
we obtain rules that describe the relations between the inputs and outputs
for the entire network. As examples one may mention Partial RE [20], M of N
[7], Full RE [20], RULEX [2]. The problem of rule extraction by means of the
local approach is simple if the network is relatively small. Otherwise differ-
ent approaches are developed in order to reduce the architecture of a neural
network. Some methods group the hidden neurons’ activations, substituting
a cluster of neurons by one neuron, other optimize the structure of a neural
network introducing a special training procedure or using genetic algorithms
[16], [10].

The last group encompasses mixed methods that combine the two ap-
proaches described above.

Most of the methods concern multilayer perceptrons (MLP networks).
However, methods dedicated to other networks are developed as well, e.g.,
[18], [5], [9].

Knowledge acquired from neural networks is represented as crisp prepo-
sitional rules. Fuzzy rules [14], first order rules and decision trees are used,
too.

There are many criteria of the evaluation of the extracted rules’ quality.
The most frequently used include:
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• fidelity,
• accuracy,
• consistency,
• comprehensibility.

In [1] these four requirements are abbreviated to FACC. Accuracy is deter-
mined on the basis of the number of previously unseen patterns that have
been correctly classified. Fidelity stands for the degree to which the rules re-
flect the behavior of the network they have been extracted from. Consistency
occurs if, during different training sessions, the network produces sets of rules
that classify unseen patterns in the same way. Comprehensibility is defined as
the ratio of the number of rules to the number of premises in a single rule.
These criteria are discussed in detail by Ghosh and Taha in [20].

In real applications not all of them may be taken into account and their
weight may be different. The main problem in rule extraction is that these
criteria, especially fidelity and comprehensibility, tend to be contradictory.
The least complex sets, consisting of few rules, cover usually only the most
typical cases that are represented by large numbers of training patterns. If we
want to improve a given set’s fidelity, we must add new rules that would deal
with the remaining patterns and exceptions, thus making the set more com-
plicated and less understandable. Therefore rule extraction requires finding a
compromise between different criteria, since their simultaneous optimization
is practically infeasible. A good algorithm of rule extraction should have the
following properties [21]:

• independence from the architecture of the network,
• no restrictions on the process of a network’s training,
• guaranteed correctness of obtained results,
• a mechanism of accurate description of a network’s performance.

A method that would meet all these requirements (or at least the vast
majority) has not been developed yet. Some of the methods are applicable to
enumerable or real data only, some require repeating the process of training
or changing the network’s architecture, some require providing a default rule
that is used if no other rule can be applied in a given case. The methods differ
in computational complexity (that is not specified in most cases). Hence the
necessity of developing new methods. This work is an attempt to fill this gap
for a network that solves the problem of classification.

14.3 Problem Formulation

The presented method of extracting rules from a neural network belongs to the
group of global methods. It treats the network as a black box (Fig. 14.1)that
provides it with training patterns. For this reason the architecture of a net-
work, i.e., the way of connecting individual neurons, is insignificant.
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Fig. 14.1. Neural network as a black box.

Fig. 14.2. Model of neuron.

Every neuron (Fig. 14.2) in a neural network performs simple operations
of addition and multiplication by calculating its total input (for the i-th neu-
ron neti =

∑
xijwij , where xij is the signal on the j-th input and wij is

the weight of this connection), which is followed by applying the activation
function f(net) and producing the neuron’s output.

However, because of a large number of neurons in a network and the par-
allelism of processing, it is difficult to describe clearly how a network solves a
problem. Broadly speaking, the knowledge of this problem is encoded in the
network’s architecture, weights and activation functions of individual neurons.

Let’s assume that a network solves a classification problem. This resolves
itself into dividing objects (patterns) into k mutually separable classes C1,
C2, ..., Ck.

Every p-th pattern will be described as an input vector xp = [xp1, xp2, ...,
xpm] presented to the network. After the training the network’s output in-
dicates the class that the pattern belongs to. The class is encoded using the
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“1 of k” rule, i.e., only one of k outputs may produce the value 1 and the
remaining ones must be equal to 0.

Our goal is to describe the performance of such a network in a comprehen-
sible way. Undoubtedly, the most popular way of representing the extracted
knowledge is the 0-order logic, i.e., rules of the following form:

IF prem1AND prem2...premn THEN classv, (14.1)

A single premise premi determines the constraints that must be imposed
on the i -th input so that the network may classify the pattern into the class
included in the conclusion. Each premise in the left part of the rule corresponds
to a constraint imposed on the i -th attribute Xi. Depending on the type of
the attribute, a constraint is defined in one of the following ways:

• For a real type of attribute (discrete and continuous) it introduces the
bounds of the range of acceptable values, i.e., Xi ∈ [V aluemin, V aluemax].

• For enumerable attributes – a constraint represents a subset of permissible
values, i.e., Xi = V alue1OR Xi = V alue2 OR ...Xi = V aluek, where
V aluej belongs to the set of all possible values defined within a given
type.

• For logical attributes – it determines which of the two values they must
take, i.e., Xi = V alue, where V alue ∈ {true, false}.
During the process of classification some of the attributes may prove to

be insignificant. Therefore the conjunction of premises does not necessarily
have to contain constraints for all attributes. Some of the premises may be
eliminated, which indicates that all values of corresponding attributes are
accepted by the rule.

The IF...THEN... notation is very natural and intuitive. One cannot ex-
pect every doctor, for instance, to be willing to acquaint themselves with the
notation used in the first order logic (the calculus of predicates). This simple
reason explains the popularity of the above-mentioned solution. The major-
ity of classification problems, where there are no dependencies between the
attributes, can be expressed by means of the 0-order logic. Therefore the pur-
pose of a rule extraction algorithm is to produce one or more sets of rules,
presented in an understandable way, e.g. in the above-mentioned notation,
that would meet the criteria defined in the previous section. The most impor-
tant features are that these sets reflect the performance of the network both
for training patterns and the previously unseen ones, and that the number
and complexity of the rules they consist of are kept at a relatively low level.

The problem of classification, even in the presence of one class only, is
connected with multimodal optimization, since in a general case the patterns
belonging to one class cannot be covered by one rule. On the other side, if we
recall the criteria that an extracted set of rules should fulfill, the problem of
rule extraction turns out to be multiobjective.
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14.4 Pareto Optimization

The most common way of dealing with multiobjetive problems is weighted
aggregation, but its main disadvantage consists in the necessity for choosing
weights that determine the relative importance of the criteria. This decision
rests entirely on the user and must be made before the algorithm is run.
The weights are used for fitness calculation and influence the degree to which
particular criteria are optimized, forcing the algorithm to respect certain pri-
orities. For example, in rule extraction one must decide whether rules should
be very accurate or rather more concise and comprehensible. The problem
is that choosing the correct weights is not necessarily easy and can be done
onlyapproximately. A significant role is played by intuition and therefore the
results produced by the algorithm may prove not to be satisfactory. Another
drawback is that depending on the purpose of rule extraction, different crite-
ria may be important and different sets of weights may be required to meet
all the needs. In both cases the algorithm requires rerunning with modified
parameters, which, especially for complex problems, tends to be very time-
consuming.

Pareto optimization is an alternative to scalarization that enables avoiding
the operation of converting the values of criteria into a single value. All criteria
are equally taken into account and therefore the purpose of the algorithm is to
produce a whole set of solutions with different merits and disadvantages. Such
an algorithm would create complex and accurate rules as well as more general
and comprehensible ones, leaving the final choice of the best solution to the
user. The method in question bases on the concept of Pareto domination –
a relation of quasi order, denoted by the symbol ≺, that makes it possible
to compare two solutions represented as vectors consisting of the values of
individual criteria. Let’s assume that there are two solutions – x and y, and
a function f that is used for measuring the solutions’ quality, such that:

f(x) = [f1(x), f2(x), ..., fm(x)], (14.2)

f(y) = [f1(y), f2(y), ..., fm(y)]. (14.3)

On the assumption that all criteria are minimized, the relation of domi-
nance is defined in the following way:

f(x) ≺ f(y) ⇔ (∀k = 1, ...,m) fk(x) ≤ fk(y) ∧ (∃k) fk(x) < fk(y).
(14.4)

This means that f(x) dominates f(y) if two conditions are met, namely: all the
criteria values (vector elements) in x are at least as good as the corresponding
values in y, and at least one of them is better than in y. Its worth noticing
that two solutions may not be bound by this relation at all, for example:

f1(x) < f1(y) ∧ f2(x) > f2(y) ⇒ ¬(f(x) ≺ f(y)) ∧ ¬(f(y) ≺ f(x)).
(14.5)
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In such a case both solutions are considered equally valuable. A multiob-
jective algorithm, unlike a single objective one, aims at finding an entire set of
non-dominated solutions that are located as close to the real Pareto front as
possible. Moreover, an additional requirement is that these solutions should be
distributed evenly in the space to ensure that all criteria are equally taken into
account. Genetic algorithms are particularly suitable for performing multiob-
jective optimization, because they operate on a large number of individuals
simultaneously, which facilitates optimizing a whole set of solutions. Besides,
due to niching techniques the second condition is met automatically.

14.5 Multimodality and Multiobjectiveness
in Genetic Algorithms

Genetic algorithms aim at finding the global extreme, which is a great advan-
tage, but in some cases, when finding all the optima is the basis of a correct
solution, may prove to be undesirable. That’s why the mechanism of nich-
ing was developed, which enables individuals to remain at the local optima.
Several methods are used for approaching such problems [13], among others:

• Iterations - a genetic algorithm is rerun several times; if all optima may
be found with equal probability, one gets a chance of finding them due to
independent computations.

• Parallel computations - where a set of populations is evolved indepen-
dently.

• Sharing-based methods - the sharing function determines by how much an
individual’s fitness is reduced, depending on the number of other individ-
uals in its neighborhood. The original fitness is divided by the value of
the sharing function, which is proportional to the number of individuals
surrounding a given one and inversely proportional to the distance from
them.

The existence of several objectives in the problem to be solved is reflected
in the method of evaluating individuals in a genetic algorithm. The objective
function takes the form of a vector, therefore it can not be directly used
as the fitness function. Such problems in GA-based methods are solved by
applying scalarization, which is the most common approach. In this case the
fitness function is a weighted sum of elements, where each represents one of
the objectives. The problem becomes how to define the weights. Choosing the
right weights may be a problem, because the objectives are usually mutually
exclusive and several solutions representing different trade-offs between them
may exist.

Pareto optimization may also be used in this case. It consists in comparing
individuals by means of domination, which allows either rank assignment or
performing the tournament selection. The first Pareto-based fitness assign-
ment method, proposed by Goldberg in [6], belongs to the most commonly
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used ones. It consists in assigning the highest rank to all nondominated solu-
tions. Afterwards, these solutions are temporarily removed from the popula-
tion and the procedure is repeated for the remaining individuals that receive
a lower rank value. The process of rank assignment is carried out as follows:

Temp := Population
n = 0
while (Temp �=0) do
{
Nondominated ={x ∈ Temp/(¬∃y ∈ Temp)f(y) ≺ f(x)}
(∀x ∈ Nondominated) rank(x) := n
Temp := Temp\Nondominated
n := n+ 1
}

Niching may be used at every stage of this algorithm to help preserve
diversity in the population. This optimisation has been introduced into the
NSGA algorithm [19].

Another method, proposed by Fonseca and Fleming in 1993, is based on
the idea that the rank of an individual depends on the number of other in-
dividuals in the population that dominate it. Zitzler and Thiele modified it
to develop the Strength Pareto Approach, which solves the problem of nich-
ing when elitism is introduced to a multiobjective genetic algorithm [23], [4].
In the case of multiobjective optimisation, elitism requires storing all non-
dominated individuals found during the course of evolution in an external set.
These individuals participate in reproduction along with the ones from the
standard population, but they are not mutated, which prevents them from
losing their quality. Fitness assignment in the Strength Pareto Evolutionary
Algorithm (SPEA) is performed in the following way (N denotes the size of
the population):

• For each individual i in the external set do:

fi =
card{j ∈ Population|i ≺ j}

N + 1

• For each individual j in the population, do:

fj =
∑

i,i≺j

fi + 1.

Because in this method the lowest fitness values are assigned to the best
individuals, i.e., fi ∈ [0, 1) and fj ∈ [1, N), the fitness function must be
modified so that selection may be carried out.
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14.6 MulGEx as A New Method of Rule Extraction

MulGEx belongs to black box methods. It does not require any special network
architecture nor use the information encoded in the network itself. Moreover,
it does not impose any constraints on the types of attributes in the input
patterns. Its main idea consists in introducing genetic algorithms working on
two levels as in [12]. MulGEx is based on the concept of Pareto optimization,
but scalarization has been implemented on both levels to allow comparison.
In the case of the lower-level algorithm this is less important, for it always
produces one solution at a time, but on the upper level the choice influences
the algorithm’s performance significantly. The difference has been shown by
experimental study.

The following criteria have been used for evaluating the produced solu-
tions:

• coverage - the number of patterns classified correctly by a rule or set,
• error - calculated on the basis of the number of misclassified patterns,
• complexity - depending on the number of premises in a single rule and

rules in a set.

The first two correspond to fidelity and determine to what extent the answers
given on the basis of the extracted rules are identical to those produced by
the network. Complexity has been introduced to evaluate the solutions’ com-
prehensibility. The remaining FACC requirements cannot be used as criteria
during the process of rule extraction. Accuracy may be measured only after
the algorithm has stopped and the final set of rules is applied to previously
unseen patterns. Consistency requires running the algorithm several times
and comparing the obtained results.

One of the most important decisions that needs to be made before im-
plementing a genetic algorithm concerns the form of an individual, i.e., the
way of encoding data in the chromosome. This influences not only the ge-
netic operators, but also the entire algorithm’s performance. Two alternative
approaches are used in rule extraction, namely Michigan and Pitt [13]. The
first one consists in encoding a single rule in each individual. This allows rules
to be optimized efficiently, but gives no possibility of evaluating how the ex-
tracted rules work as a set. Moreover, one must implement one of the niching
techniques as well as solve the problem of contradictory rules that might be
evolved. In the Pitt approach an individual contains an entire set of rules,
which eliminates the drawbacks of the previous method. However, because of
the variable length of chromosomes, i.e., the changing number of rules in the
evolved sets, more complicated genetic operators have to be implemented. The
proposed method combines both these approaches. The main idea is shown
in Fig. 14.3.

The first step consists in evolving single rules by a low-level genetic algo-
rithm. Focusing on individual rules allows adjusting their parameters precisely.
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Fig. 14.3. The main idea of MulGEx.

The results are passed to the upper-level algorithm that performs further op-
timization by working on sets built of the obtained rules and evaluating how
well these rules cooperate.

14.7 Details of the Method

The algorithms on both levels will be described in detail in this section. The
most significant elements in the design of a GA-based application will be
presented, namely the way of encoding individuals, genetic operators and
fitness function.

14.7.1 The Lower-level Algorithm

The lower level algorithm delivers the initial pool of rules for the upper level
algorithm. It operates on chromosomes representing single rules (the Michi-
gan approach). In order to reduce the complexity of rule extraction, several
independently evolved populations are introduced, one for each of the classes
defined in the problem. This is a solution to the problem of multimodality
that guarantees that the algorithm finds relatively precise rules for all classes,
including those represented by a small number of training patterns. Each of
the genetic algorithms on the lower level is run several times and produces one
rule at a time. This sequential approach to rule extraction solves the prob-
lem of multimodality within the classes. The best rule evolved is stored in
an external set (the upper level genetic algorithm’s initial pool). Afterwards,
all training patterns recognized by this rule are removed from the input set
used by the algorithm for fitness calculation (sequential covering approach
[22]). Then a new population is created in a random way and the algorithm
is rerun.

At this stage the choice of the method of dealing with multiobjectiveness
is of little significance, since only one rule is extracted at a time. Both ap-
proaches, i.e., scalarization and Pareto optimization, have been implemented
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and compared. Choosing the most appropriate weights is relatively easy, be-
cause complexity is rarely taken into account at this stage. In most cases it
is reasonable to select rules with a very small error value or, if possible, with
no error at all. This guarantees high fidelity of the final set evolved by the
algorithm, even though the number of rules may be relatively large.

Nevertheless, Pareto optimization tends to be more efficient here, espe-
cially for multidimensional solution spaces and large numbers of classes. At
an early stage of evolution the algorithm attempts to discover the areas in
the space where patterns belonging to a given class are located. The first
rules with coverage greater than 0 evolved have usually large error values and
should be subsequently refined in order to reduce misclassification. A single
objective algorithm combines coverage and error into one value and therefore
does not take into account the potential usefulness of such rules. These rules
are assigned low fitness values because of high error and may be excluded
from reproduction, thus being eliminated from the population. This hinders
the process of evolution. A Pareto-based genetic algorithm considers all ob-
jectives separately, therefore such rules are very valuable (as non-dominated)
and will be optimized by means of genetic operators with a strong probability
in the next generations. As a result, the initial error will be reduced. Therefore
the number of generations needed to evolve satisfying rules tends to be lower
if Pareto optimization is used. In this case, however, the choice of the best
rule is not straightforward because of a limited possibility of comparing indi-
viduals. Because of this, having stopped the algorithm, one must temporarily
apply certain weights to scalarize the fitness function.

The number of generations created within such an iteration is chosen by
the user who may decide to evolve a constant number of generations every
time or to remove the best rule when no improvement has been detected
for a given period of time. Improvement occurs when an individual with the
highest fitness so far appears in a single objective algorithm or when a new
non-dominated solution is found in a multiobjective one.

The process of extraction for a given class completes when there are no
more patterns corresponding to this class, or when the user decides to stop the
algorithm after noticing that newly found rules cover too few patterns (which
means that the algorithm may have started taking exceptions and noisy data
into account). As soon as evolution in all the populations has stopped, all
rules stored in the external set are passed to the upper-level algorithm for
further processing.

The Form of the Chromosome

The chromosome on this level is presented in Fig. 14.4. An individual consists
of a set of premises and a conclusion that is identical for all individuals within
a given population. The conclusion contains a single integer - the number of
the appropriate class. The form of a single premise depends on the type of
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the corresponding input in the neural network and may represent a constraint
imposed on a binary, enumerable or real value.

Fig. 14.4. A schema of chromosomes on the lower level.

The appropriate genes designed for all above-mentioned types of attributes
are presented in Fig. 14.5a – 14.5c. Every premise is accompanied by a logical
flag A that indicates whether the constraint is active. If the flag is set to false,
all values of a given attribute are accepted by the rule.

Fig. 14.5. Genes representing different types of premises, depending on the type of
attribute.

A constraint defined for a binary attribute has been implemented as a
single logical variable (Fig. 14.5a). In order to match a given rule, a pattern
must have the same value of this attribute as the premise, unless the flag
indicates that this particular constraint is inactive. An enumerable attribute
requires an array of logical variables, where every element corresponds to one
value within the type (Fig. 14.5b). All elements set to true represent together
the subset of accepted values. A given rule can be applied to a pattern if the
value of the attribute in the pattern belongs to the subset specified within the
premise.

A constraint imposed on a real value consists of two real variables repre-
senting the minimal and maximal value of the attribute that can be accepted
by the rule (Fig. 14.5c). The number of premises in a rule is constant and
equal to the number of the network’s input attributes. Premises are elimi-
nated by deactivating their flags, which indicates that certain constraints are
not taken into account when applying the rule to the patterns.

Genetic Operators

Having defined the form of the chromosome, one must introduce appropriate
genetic operators to allow reproduction and mutation.

The process of exchanging genetic information between individuals is based
on uniform crossover. Every logical or real variable in the chromosome is
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copied from one of the offspring’s two parents. The choice of the parent is
performed randomly, with equal probability. A logical premise is therefore
copied entirely from one parent. The subset of values in an enumerable one is
a random combination of those encoded in the parents’ chromosomes. In the
case of real premises, the newly created range may be either copied entirely
from one parent or created as a sum or intersection of both parents’ ranges.
The conclusion of the rule may be copied from either of the individuals, since
its value is the same within a given population.

Mutation consists of modifying individual premises in a way that depends
on their type. Some of the logical variables in premises corresponding to binary
or enumerable attributes, chosen randomly usually with a small probability,
may be assigned the opposite value, which changes the set of patterns accepted
by the rule. Constraints imposed on real attributes may be altered by modify-
ing one of the bounds of the range of accepted values. This is done by adding
a random value to a given real variable within the premise. The algorithm
becomes more effective if small changes are more probable than larger ones,
which prevents individuals from being modified too rapidly and losing their
qualities. Mutation may also influence the flags attached to premises. This
results in individual constraints being activated or deactivated and makes
rules either more specific and complex or more general. For obvious reasons
mutation cannot affect the conclusion that remains constant in the course of
evolution.

The Fitness Function and the Method of Selection

The quality of an individual is measured in the following way: The first step
consists in calculating the number of patterns classified correctly by the rule
(coverage) as well as the number of misclassified patterns (error). This re-
quires checking whether the neural network’s response, given for every pat-
tern that the rule can be applied to, matches the conclusion. Additionally, the
number of active premises is determined in order to evaluate the complexity
of the rule. These criteria of quality assessment have to be gathered into a
single fitness value.

In single objective optimization, all of them are multiplied by certain
weights and the results are summed up to produce a scalar value. Since fitness
cannot be negative, the obtained values may need to be scaled. This is the
simplest solution, however, the information concerning the values of individ-
ual criteria is lost. The weights used for fitness calculation are chosen by the
user and the function takes the form presented by Eq. 14.6 (the objectives
that are minimized are negated).

Fitnessscalar = Wc · coverage−We · error −Wx · complexity (14.6)

The multiobjective approach requires creating a vector containing all values of
the criteria (Eq. 14.7). Comparing two individuals in this case must be based
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on the relation of domination. Fitness is calculated on the basis of Goldberg’s
method, unless the option of retaining the best individuals (elitism) has been
chosen. In the latter case, the procedure of fitness assignment proposed in the
Strength Pareto Approach is used.

FitnessPareto = [coverage, error, complexity] (14.7)

The last element that needs to be defined when designing a genetic al-
gorithm is the method of selection. Various possibilities have been proposed
here. The roulette wheel technique has been implemented in MulGEx, which
implies that all individuals have a chance to be chosen for reproduction, but
the probability of them being selected is proportional to their fitness value.

14.7.2 The Upper-level Algorithm

The upper-level algorithm in MulGEx is multiobjective in the Pareto sense,
although scalarization has also been implemented to allow comparison. It
operates on entire sets of rules that are initially created on the basis of the
results obtained from the lower-level one.

Every individual in the initial population consists of all the rules produced
by the lower-level genetic algorithms (Fig. 14.3). This implies that the maxi-
mal fidelity achieved at the previous stage is retained and further optimization
does not require adding new rules. The purpose of the upper-level algorithm
consists mostly in improving comprehensibility by either excluding certain
rules from the sets or eliminating individual premises. Naturally, this process
should be accompanied by possibly low deterioration of fidelity, i.e., the algo-
rithm must decide which rules are the least significant. Gradual simplification
of the sets results in producing various solutions with different qualities, which
is the main advantage of a multiobjective algorithm. Other modifications of
the rules are also possible at this stage, but their influence on the quality of
evolved solutions is usually of little importance.

Evolution stops after a given number of generations has been created since
the beginning or since the last improvement. The result produced by the algo-
rithm is a set of non-dominated solutions that correspond to sets of rules with
different qualities and drawbacks. The final choice of the most appropriate
one is left to the user and is usually done by applying weights to the criteria
to enable comparing non-dominated solutions. Due to the multiobjective ap-
proach the user may examine several solutions at a time without having to
rerun the algorithm with different parameters. This allows identifying noisy
data. Normally, increasing the complexity of a set is accompanied by improved
fidelity. However, if the observed improvement is very small after a new rule
has been added, this may indicate that this rule covers exceptions that haven’t
been eliminated by a neural network. The multiobjective approach helps to
determine the optimal size of a rule set, which is not possible in the case of
scalarization, where weights have to be carefully adjusted for the algorithm
to produce satisfying results.
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As previously, designing the algorithm requires defining the form of an
individual, followed by genetic operators, fitness evaluation and the method
of selection.

The Form of the Chromosome

An individual takes the form of a set of rules that describes the performance of
the network, which implies that rules corresponding to all classes are included
in every set.

Fig. 14.6. A schema of chromosomes on the upper level.

Rules are accompanied by binary flags whose purpose is the same as in
the chromosome on the lower level. Namely, setting a flag to false results in
the temporary exclusion of a given rule from the set. This allows adjusting
the size of the set without having to introduce variable-length chromosomes.
The form of chromosome on this level is presented in Fig. 14.6.

Genetic Operators

The hierarchical structure of the chromosome requires defining specialized
genetic operators.

Crossover exchanges corresponding rules between the parents in a uniform
way. Rules are copied into the offspring entirely, including the flag.

The operator of mutation is more complicated, for it should enable modifi-
cation on two levels - in relation to entire sets and individual rules. Therefore
mutation is performed in two steps. First, every flag attached to a rule may
change its value with a small probability, which results in adding or removing
the rule from the set. Afterwards, premises inside the rule may be modified by
applying the mutation operator used on the lower level. This helps to adjust
the ranges of accepted values inside the rule or reduce the rule’s complexity
at the cost of fidelity.

It is worth noticing that in the lower-level algorithm some rules were
evolved on the basis of a reduced set of patterns. At this stage the whole
set is used for evaluation. Moreover, individual rules cooperate to perform the
classification task and are assessed together. Because of these new conditions
further optimization of rules might be possible and that is why the operator
of mutation in the upper-level algorithm may alter the internal structure of
rules that was developed before.
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Evaluation of Individuals

The criteria used for the evaluation of individuals are calculated on the basis
of the criteria introduced for rules on the lower level.

Coverage depends on the number of patterns classified correctly by the
set as a whole, whereas error is the sum of errors made by each of the active
rules. Complexity is defined as the number of active rules increased by the
overall number of active premises within them.

The process of creating new generations resembles the one introduced on
the lower level. Fitness is assigned to individuals depending on the type of
the algorithm, according to one of the methods described in the previous sub-
section. Again, Pareto optimization requires creating a vector of the values
of objectives (Eq. 14.7). Scalarization implemented for the purpose of com-
parison consists in applying weights to the objectives so that a single value is
obtained.

The difference between genetic algorithms on both levels is that at this
stage the purpose of the algorithm is to produce a whole set of solutions
simultaneously, therefore niching proves to be very useful. To this end the
technique of sharing function has been implemented to reduce the fitness of
those individuals that are surrounded by many others. However, this is not
necessary in the case of the SPEA algorithm, since niching is guaranteed by
the method of fitness assignment.

14.8 Experimental Study

The purpose of experiments is to verify the algorithm’s effectiveness and ver-
satility. The method should be tested on various data, which aims at checking
whether it has the following properties:

• independence on the types of attributes,
• effectiveness in the presence of superfluous attributes,
• resistance to noise,
• scalability.

A good practice is to perform experiments on well-known benchmark data
sets, so that the results may be compared with those obtained by means of
other methods. MulGEx has been tested on four sets from [3] and presented
in Table 14.1. The data contain different types of attributes, which allows
verifying the method’s versatility. Resistance to noise was tested on the LED-
24 data set, where 2% noise had been added to make the classification task
more difficult. Moreover, this data allows to observe whether the algorithm can
detect superfluous attributes, since not all of them participate in determining
the class that a given pattern belongs to (17 attributes are insignificant and
have been chosen randomly). The evaluation of scalability requires patterns
with a large number of attributes, hence the Quadrupeds set.
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Table 14.1. Data sets used for the tests

Name Type of Class No of
(examples) attributes examples

Iris Setosa 50
(150 instances ) 3 Versicolour 50

continuous Virginica 50
LED-24 24 binary about 100

(1000 instances) (17 superfluous), 2% noise 10 classes per one class
Monk-1 6 0 216

(432 instances) enumerable 1 216
Quadrupeds Dog 29

(100 instances) 72 Cat 21
continuous Horse 27

Giraffe 23

All sets were processed by a neural network in order to reduce noise and
eliminate unusual data. A multi-layer feed-forward network with one hidden
layer was provided with the data and trained using the back-propagation algo-
rithm. The results of the training are gathered in Table 14.2. The subsequent
experiments performed to evaluate MulGex were conducted both on raw as
well as processed sets, unless the network achieved maximal accuracy.

Table 14.2. Results of the network training

data Number of neurons Accuracy
set in the hidden layer %
Iris 2 96,7

LED-24 3 95
Monk-1 3 100

Quadrupeds 2 100

The optimal values of the algorithm’s parameters depend on the prop-
erties of the data set, especially on the number of attributes. During the
experiments the best effectiveness of rule extraction was achieved when the
probability of crossover was relatively low, for example 0.5. The reason is
that even a small modification of a rule may change its coverage and error
significantly. Therefore if the fittest individuals exchange genetic information
during reproduction, the offspring may lose the most desirable properties. Low
probability of crossover guarantees that some of the individuals are copied di-
rectly into the new population. Introducing elitism may also be helpful in this
case, for it ensures that the best individuals are always present in the next
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generation. The probability of mutation should be inversely proportional to
the number of attributes and during the tests was usually set not to exceed
0.01. The size of the population influences the efficiency of the algorithm as
well. Theoretically, increasing the number of individuals reduces the number
of generations needed to find satisfactory solutions. The more individuals, the
more potential solutions may be examined and compared at a time. On the
other hand, because the process of calculating coverage and error for each in-
dividual is very time-consuming, large populations cause deterioration in the
algorithm’s performance. Therefore a reasonable compromise must be found.
Rule extraction for the above-mentioned data sets was successfully carried out
when populations consisted of 20 - 50 individuals.

The results of the experiments performed both on raw data and sets
processed by the network are gathered in Table 14.3 and Table 14.4, respec-
tively. In each case multiobjective algorithms on both levels were stopped af-
ter having evolved 100 generations without improvement. MulGEx produced
sets of non-dominated solutions with various properties. Then, solutions con-
taining different numbers of rules were selected and their fidelity, i.e., the
difference between coverage and error, was determined. Every test was car-
ried out 5 times and the average result as well as the standard deviation were
calculated.

The results of the experiments indicate that MulGEx is suitable for solving
problems with various numbers and types of attributes, as well as with differ-
ent sets of classes defined for a given problem. In the case of Iris, Monk-1 and
Quadrupeds the algorithm succeeded in finding a relatively small rule set that
covered all training patterns without misclassification. This was not possible
for LED-24, where the presence of noise resulted in increasing complexity or
error, depending on the weights chosen by the user.

The experiments confirm the fact that the criteria used for evaluating
solutions are contradictory. The simplest sets, consisting of few rules, cover
only the most typical examples. When more rules are added to the set, its
fidelity is improved at the cost of complexity.

At this point it should be mentioned that MulGEx satisfies the requirement
that the produced solutions should be distributed evenly in the space.

Table 14.3. The results of experiments on raw data

Iris LED-24 Monk-1 Quadrupeds
Rules F idelity Rules F idelity Rules F idelity Rules F idelity

1 50.0± 0.0 3 326.0± 1.0 1 108.0± 0.0 1 27.4± 2.5
2 96.8± 0.4 6 608.2± 6.4 2 180.0± 0.0 2 53.0± 5.0
4 143.6± 0.5 9 843.2± 12.6 4 324.0± 0.0 3 76.8± 2.8
6 147.4± 0.5 12 918.4± 5.0 6 396.0± 0.0 4 97.8± 2.9
8 149.4± 0.5 15 924.8± 4.7 7 432.0± 0.0 5 99.3± 1.2
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Table 14.4. The results of experiments on data processed by a network

Iris LED-24
Rules F idelity Rules F idelity

1 50.0± 0.0 3 336.2± 2.0
2 98.2± 0.4 6 642.0± 3.6
4 143.0± 0.7 9 897.6± 4.0
6 147.6± 1.1 12 981.8± 4.3
7 149.5± 0.9 15 987.4± 4.7

The evolved rule sets represent different trade-offs between the objectives
and contain sets with maximal fidelity as well as sets consisting of one rule only
and various intermediate solutions. The results obtained for LED-24 for raw
and processed data differ significantly. The fidelity of sets containing the same
number of rules is higher for data passed through a neural network, which
means that in this case a single rule covers statistically more patterns and
misclassifies less. This is possible due to neural networks’ ability of reducing
noise, which facilitates rule extraction.

The Pareto approach in the upper-level algorithm has been compared with
scalarization. To this end separate tests for the Iris data set have been per-
formed. The lower-level algorithm was run 5 times and produced initial rule
sets. In all cases Pareto optimization was used at this stage and rules with
very high error weight were selected, so that the initial set could achieve max-
imal fidelity. Afterwards the upper-level one was executed several times with
different settings. When the Pareto approach was used, it was run only once
during each of the tests and a whole set of solutions was created. Then the
user could apply weights to allow the algorithm to select the most appro-
priate solution. In the case of scalarization weights for the objectives had to
be determined beforehand, therefore separate runs were necessary to produce
results for all indicated weights’ combinations.

The results (Table 14.5) show that for the Iris data set there is hardly any
difference in the quality of solutions between the two approaches. However,
it must be emphasized that scalarization requires rerunning the algorithm
every time when the user decides to change the weights, which is very time-
consuming. If we take into account the fact that adjusting weights is not easy,
it proves to be much more convenient to find a set of solutions in a single run
and then apply different weights in search of the most satisfying one.

Another advantage of Pareto optimization is that one may analyze all so-
lutions simultaneously. Fig. 14.7 shows the values of fidelity and complexity
for rule sets produced during one of the experiments. Before choosing a solu-
tion the user may evaluate which one would be the most satisfactory, based
on the shape of the Pareto front. In the presented example very high fidelity
may be achieved by a set with complexity equal to 6. If complexity is increased
by adding new rules or premises, the improvement of fidelity is relatively low.
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Table 14.5. The comparison of Pareto approach and scalarization (Cov stands for
coverage, Comp – for complexity)

Weights Pareto Scalarization

Cov. Error Comp. Cov. Error Comp. Cov. Error Comp.

1 1 1 143.6± 1.5 1.0± 0.0 8.6± 1.5 143.2± 1.5 1.0± 0.0 8.2± 1.6

1 1 10 143.0± 0.0 5.4± 0.9 6.0± 0.0 142.0± 1.7 6.0± 1.0 6.0± 0.0

1 10 1 141.2± 1.6 0.0± 0.0 9.2± 1.6 141.2± 1.6 0.0± 0.0 9.2± 1.6

10 1 1 150.0± 0.0 4.0± 2.1 18.4± 3.9 150.0± 0.0 2.0± 2.0 22.0± 2.9

Fig. 14.7. The values of the criteria for rules sets obtained for Iris.

This may indicate that more complicated sets cover noisy data and are not
valuable for the user. On the other hand, if complexity is reduced below 6,
fidelity deteriorates rapidly, which suggests that an important rule has been
eliminated. Therefore, having this additional information due to the Pareto
approach, the user may choose the most appropriate weights when selecting
one particular solution.

14.8.1 Evaluation of Rules by Visualization

The quality of rules produced by MulGEx for LED-24 may be easily evaluated
due to the possibility of visualizing the data. The first attributes in LED-
24 represent seven segments of a LED display presented in Fig. 14.8. The
remaining ones are superfluous and are successfully excluded by the algorithm
from participating in classification. The experiment was carried out for data
that had been processed by a network.

The presented results were produced by the multiobjective lower-level al-
gorithm and the following weights: coverage = 10, error = 10, complexity =
1 were used for selecting the most satisfactory solutions after the algorithm
had stopped. The size of population was set to 20 and the probabilities of
crossover and mutation to 0.9 and 0.01, respectively. The option of saving the
best individuals (elitism) was chosen. Evolution was stopped after 100 gen-
erations without improvement and the best rule in each of the populations
was selected. Table 14.6 and Fig. 14.9 show an example of rules produced for
LED-24. In Fig. 14.9 thick black lines denote segments that are lit, missing
lines stand for segments that are off and thin grey lines correspond to seg-
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Fig. 14.8. The segments of LED.

ments whose state is insignificant when assigning a pattern to a given class
(these segments are represented by inactive premises).

Fig. 14.9. Visualization of rules for LED-24.

The obtained rules presented in the form of a schema in Fig. 14.9 prove
to be very comprehensible for humans. One may easily notice that the results
resemble digits that appear on a LED display, which confirms the effectiveness
of MulGEx. At the same time the algorithm succeeded in reducing the rules’
complexity. The state of some of the segments proves to be insignificant when
a certain pattern is classified as one of the digits.
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Table 14.6. Rules produced by the lower-level algorithm for LED-24

Rule Coverage Error

IF Up center AND Up right AND NOT Mid center AND
Down left THEN 0 114 0

IF NOT Up center AND NOT Up left AND
NOT Down left THEN 1 83 0

IF NOT Up left AND Down left AND NOT Down right
AND Down center THEN 2 118 0

IF Up center AND NOT Up left AND Mid center AND
NOT Down left AND Down center THEN 3 110 0

IF Up left AND Up right AND NOT Down left AND
Down right AND NOT Down center THEN 4 82 0

IF Up left AND NOT Up right AND
NOT Down left THEN 5 92 3

IF NOT Up right AND Down left THEN 6 103 0

IF Up center AND NOT Up left AND NOT Mid center AND
NOT Down left THEN 7 102 0

IF Up right AND Mid center AND Down left AND
Down right AND Down center THEN 8 104 0

IF Up left AND Up right AND Mid center
AND NOT Down left AND Down center THEN 9 81 0

14.9 Comparison to Other Methods

The vast majority of rule extraction algorithms are based on the scalar ap-
proach. Therefore comparing their effectiveness may not be appropriate be-
cause of different goals pursued by their authors. Nevertheless two different
approaches have been implemented in MulGEx to allow evaluating their per-
formance.

The results of experiments performed for MulGEx may be confronted with
those obtained for a different multiobjective rule extraction algorithm, namely
GenPar [11]. This is facilitated by the fact that the same data sets were used
in both cases. Nevertheless the relative effectiveness of these methods may
be evaluated only approximately because of certain differences in the way of
performing experiments and the scope of collected information.

GenPar was tested on data processed by a neural network only. Moreover,
during the course of evolution coverage and error were combined into a single
objective, which reduced the number of objectives by one, and only coverage
was measured during the tests. The results for GenPar, presented in [11]
and shown in Table 14.7, contain information on the quality of evolved sets
expressed in terms of coverage and the number of rules.

The results for GenPar indicate that its effectiveness is lower than that
of MulGEx. Although fidelity achieved by solutions with the same numbers
of rules are similar, in all cases GenPar failed to produce a solution with the
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Table 14.7. The results of experiments for GenPar (size – number of rules, fid –
fidelity equivalent to coverage) on the basis of [11]

Iris LED-24 Quadrupeds
size fid size fid size fid
1 50 1 87 2 182
2 94 4 324 4 471
4 137 5 473 – –
5 144 13 928 – –

maximal fidelity possible. The reason may be that GenPar is based exclusively
on the Pitt approach (entire rule sets are encoded in individuals). This implies
that sets are evaluated as a whole and the performance of single rules is not
taken into account, which prevents rules from being intensively optimized
by adjusting values within the premises. The superiority of MulGEx lies in
introducing a lower-level algorithm that evolves single rules before sets are
formed and allows constant chromosome length on the upper-level.

14.10 Conclusion

Neural networks, in spite of their efficiency in solving various problems, have
no ability of explaining their answers and presenting acquired knowledge in a
comprehensible way. This serious disadvantage leads to developing numerous
methods of knowledge extraction. Their purpose is to produce a set of rules
that would describe a network’s performance with the highest fidelity possible,
taking into account its ability to generalize, in a comprehensible way. These
objectives are contradictory, therefore finding a satisfactory solution requires
a compromise.

Because the problem of rule extraction is very complex, genetic algorithms
are commonly used for this purpose, especially for networks that solve the
problem of classification. Since the fitness function is scalar, standard al-
gorithms can deal with one objective only. Multiobjective problems are ap-
proached in many ways; the most common one is to aggregate the objectives
into a single value, but this approach has many drawbacks that can be elimi-
nated by introducing proper multiobjective optimization based on domination
in the Pareto sense.

The proposed method, MulGEx, combines multiobjective optimization
with a hierarchical structure to achieve high efficiency. It is network archi-
tecture independent and can be used regardless of the number and types of
attributes in the input vectors. Although the algorithm has been designed
to extract rules from neural networks, it can be also used with raw data. In
this case, however, its efficiency may be deteriorated because the presence of
noise in the data requires more complicated rule sets to describe the process
of classification.
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MulGEx consists of genetic algorithms working on two levels. The lower-
level one produces single rules (independently evolved populations correspond
to the classes defined for a given classification problem) and passes them to the
upper-level one for further optimization. The latter algorithm evolves entire
sets of rules that describe the performance of a network.

Due to Pareto optimization MulGEx produces an entire set of solutions
with different properties simultaneously, varying from complex ones with very
high fidelity to the simplest ones that cover only the most typical data. The
usefulness of such solutions depends on the purpose of rule extraction. In
most cases relatively general rules are considered valuable for a classification
problem, for they provide information about the most important properties
that objects belonging to a given class should have. Nevertheless, if we attempt
to find hidden knowledge by means of data mining, we might be interested
rather in more specific rules that cover a smaller number of patterns, but
achieve high fidelity. The final choice of the most appropriate solution is left
to the user who may select several solutions without the need for rerunning
the algorithm. The effectiveness and versatility of MulGEx has been confirmed
by experiments and the superiority of the Pareto approach over scalarization
has been pointed out.
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