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Summary. In this chapter, we present a multiobjective evolutionary algorithm
based design procedure for radial-basis function neural networks. A Hierarchical
Rank Density Genetic Algorithm (HRDGA) is proposed to evolve the neural net-
work’s topology and parameters simultaneously. Compared with traditional genetic
algorithm based designs for neural networks, the hierarchical approach addresses
several deficiencies highlighted in literature. In addition, the rank-density based fit-
ness assignment technique is used to optimize the performance and topology of the
evolved neural network to tradeoff between the training performance and network
complexity. Instead of producing a single optimal solution, HRDGA provides a set
of near-optimal neural networks to the designers so that they can have more flexibil-
ity for the final decision-making based on certain preferences. In terms of searching
for a near-complete set of candidate networks with high performances, the networks
designed by the proposed algorithm prove to be competitive, or even superior, to
three state-of-the-art designs for radial-basis function neural networks to predict
Mackey-Glass chaotic time series.

10.1 Introduction

Neural Networks (NN’s) and Genetic Algorithms (GA’s) represent two emerg-
ing technologies inspired by biologically motivated computational paradigms.
NN’s are derived from the information-processing framework of a human brain
to emulate the learning behavior of an individual, while GA’s are motivated
by the theory of evolution to evolve a whole population toward better fitness.
Although these two technologies seem quite different in the time period of
action, number of involved individuals, and the process scheme, their similar
dynamic behaviors stimulate research on whether a synergistic combination of
these two technologies may provide more problem solving power than either
alone [22].

There has been an extensive analysis of different classes of neural networks
possessing various architectures and training algorithms. Without a proven
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guideline, the design of an optimal neural network for a given problem is an
ad hoc process. Given a sufficient number of neurons, more than one neural
network structure (i.e., with different weighting coefficients and numbers of
neurons) can be trained to solve a given problem within an error bound if
given sufficient training time. The decision of “which network is the best” is
often decided by which network will better meet the user’s needs for a given
problem. It is known that the performance of neural networks is sensitive to
the number of neurons. Too few neurons can result in underfitting problems
(poor approximation), while too many neurons may contribute to overfitting
problems. Obviously, achieving a better network performance and simplifying
the network topology are two competing objectives. This has promoted re-
search on how to identify an optimal and efficient neural network structure.
AIC (Akaike Information Criterion) [19] and PMDL (Predictive Minimum
Description Length) [8] are two well-adopted approaches. However, AIC can
be inconsistent and has a tendency to overfit a model, while PMDL only suc-
ceeded in relatively simple neural network structures and seemed very difficult
to extend to a complex NN structure optimization problem. Moreover, all of
these approaches tend to produce a single neural network for each run, offering
the designers no alternative choices.

Since the 1990’s, evolutionary algorithms have been successfully applied
to the design of network topologies and the choice of learning parameters
[1, 2, 18, 17, 15]. They reported some encouraging results that are comparable
with conventional neural network design approaches. However, multiobjective
trade-off characteristic of the neural network design has not been well studied
and applied in the real world applications. In this chapter, we propose a
Hierarchical Rank Density Genetic Algorithm (HRDGA) for neural network
design in order to evolve a set of near-optimal neural networks. Without loss of
generality, we will restrict our discussions to the radial basis function neural
network. In HRDGA, each chromosome is a candidate neural network and
is coded by three different gene segments– high level segments have control
genes that can determine the status (activated or deactivated) of genes in
lower level segments. Hidden layers and neurons are added or deleted by this
“on/off” scheme to achieve an optimal structure through a survival of the
fittest evolution. Meanwhile, weights and biases are evolved along with the
neural network topology. Treating the neural network design as a bi-objective
optimization problem, a new rank-density based fitness assignment technique
is developed to evaluate the structure complexity and the performance of
the evolved neural network. More importantly, instead of a single network,
HRDGA produces a set of near-optimal candidate networks with different
trade-off traits from which the designers or decision makers can make flexible
choices based on their preferences.

The remainder of this chapter is organized as follows. Section 10.2 discusses
the neural network design dilemma and the difficulty of finding a single optimal
neural network. Section 10.3 reviews various approaches to applying genetic
algorithms for neural network design and introduces the proposed hierarchi-
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cal structure, genetic operators, and multi-fitness measures of the proposed
genetic algorithm. Section 10.4 applies hierarchical genotype representation
to a radial-basis function neural network design. Section 10.5 introduces the
proposed rank-density fitness assignment technique for multiobjective genetic
algorithms and describes HRDGA parameters and design flowchart. Section
10.6 presents a feasible study on the Mackey-Glass chaotic time series predic-
tion using HRDGA evolved neural networks. A time series with chaotic char-
acter is trained and the performance is compared with those of the k-nearest
neighbors, generalized regression, and orthogonal least square training algo-
rithms. Finally, Section 10.7 provides some concluding remarks along with
pertinent observations.

10.2 Neural Network Design Dilemma

To generate a neural network that possesses the practical applicability, several
essential conditions need to be considered.

1. A training algorithm that can search for the optimal parameters (i.e.,
weights and biases) for the specified network structure and training task.

2. A rule or algorithm that can determine the network complexity and ensure
it to be sufficient for solving the given training problem.

3. A metric or measure to evaluate the reliability and generalization of the
produced neural network.

The design of an optimal neural network involves all of these three problems.
As given in [6], the ultimate goal of the construction of a neural network with
the input-output relation y = fNS(x, ω) is the minimization of the expectation
of a cost function gT (fNS(X, ω),Y) as:

E[gT (fNS(X, ω,Y)] =
∫ ∫

gT (fNS(x, ω),y)fx,y(x,y)dxdy, (10.1)

where fx,y(x,y) denotes the joint pdf that depends on the input vector x and
the target output vector y. X and Y are spaces spanned by all individual
training samples, x and y. Given a network structure NS, a family of input-
output relations FNS = {fNS(x, ω)}, parameterizd by ω, consisting of all
network functions that may be formed with different choices of the weights
can be assigned. The structure NS′ is said to be dominated by NS” if FNS′ ⊂
FNS”. In order to choose the optimal neural network, two problems have to
be solved.

1. Determination of the network function f∗
NS(x) (i.e., the determination of

the respective weights) that gives the minimal cost value within the family
FNS :
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f∗
NS(x) = fNS(x, ω∗) = arg minωE[gL(fNS(X, ω),Y)], (10.2)

where gL(·, ·) denotes the cost function measuring the performance over
the training set.

2. Determination of the network structure NS∗ that realizes the minima cost
value within a set of structures {NS}:

NS∗ = arg minNS∈FNS
E[gT (f∗

NS(X),Y)]. (10.3)

Obviously, the solutions of both tasks need not result into a unique net-
work. In [6], if several structures NS∗

1 , NS
∗
2 , · · · meet the criterion as shown

in Equation (10.3), the one with the minimal number of hidden neurons is de-
fined as an optimal. However, as a neural network can only tune the weights
by the given training data sets, and these data sets are always finite, there
will be a trade-off between NN learning capability and the number of the
hidden neurons. A network with insufficient neurons might not be able to ap-
proximate well enough the functional relationship between input and target
output. On the other hand, if the number of neurons is excessive, the realized
network function will depend greatly on the resulting realization of the given
limited training set. This trade-off characteristic implies that a single optimal
neural network is very difficult to find as extracting f∗

NS(x) from FNS by us-
ing a finite training data set is a difficult task, if not impossible [9]. Therefore,
instead of trying to obtain a single optimal neural network, finding a set of
near-optimal networks with different network structures seems more feasible.
Each individual in this neural network set may provide different training and
test performances for different training and test data sets. Moreover, the idea
of providing “a set of” candidate networks to the decision makers can offer
more flexibilities in selecting an appropriate network judged by their own pref-
erences. For this reason, genetic algorithms and multiobjective optimization
techniques can be introduced in neural network design problems to evolve net-
work topology along with parameters and present a set of alternative network
candidates.

10.3 Neural Network Design with Genetic Algorithm

In the literature of applying genetic algorithms to assist neural networks de-
sign, several approaches have been proposed for different objectives. These
approaches can be categorized into four different areas.

10.3.1 Data Preparation

GA’s were primarily used to help NN design by pre-processing data. Kelly and
Davis used a genetic algorithm to find the rotation of a data set and scaling
factors for each attribute to improve the performance of a KNN classifier [13].
Chang and Lippmann used a genetic algorithm to reduce the dimensionality
of a feature set for a KNN classifier in a speech recognition task [3].
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10.3.2 Evolving Network Parameters

Belew and his colleagues used a genetic algorithm to identify a good ini-
tial weighting configuration for a back-propagation network [1]. On the other
hand, Bruce and Timothy used a genetic algorithm to evolve the centers and
widths for a radial basis function neural network [2]. Genetic algorithms are
used to evolve the weights or biases in a fixed topology neural network. The
structure, number of layers and number of neurons, is pre-determined based
upon some heuristic judgments.

10.3.3 Evolving Network Topology

This is the most targeted area with which genetic algorithm can be used in
neural network design. Miller et. al., used a genetic algorithm to evolve an
optimally connected matrix to form a neural network [16], but this method
can only be used for simple problems. Whiltley et. al., used a genetic algo-
rithm to find which links could be eliminated in order to achieve a specific
learning objective [21]. Lucas proposed a GA based adaptive neural archi-
tecture selection method to evolve a back-propagation neural network [15],
and Davila applied GA’s schema theory to aid the design of genetic coding
for NN topology optimization. Three main problems exist in current topology
design research, namely network feasibility, one genotype mapping multiple
phenotypes and one phenotype mapping different genotypes [23].

10.3.4 Evolving NN Structures together with Weights and Biases

Dasgupta and McGregor proposed an sGA (Structure Genetic Algorithm) to
evolve neural networks [5]. But in their work, only a XOR problem and a 4×4
encoder/decoder problem were tested, which is relatively simple. Since an N -
neuron neural network must be expressed as a chromosome with a bit string of
length N2, a complex phenotype will map to a much more complex genotype.
As a result, using sGA to evolve a large neural network is computationally
expensive, if not impossible. Zhang and Cho proposed Bayesian evolutionary
algorithms to evolve the structures and parameters of neural trees, which are
then used to predict a time series [24]. However, both of these algorithms
use the connection matrix and from-to units, which had been shown to easily
produce “one phenotype mapping different genotypes” problem.

To avoid this problem, a hierarchical genotype representation is adopted
in this study. HGA (Hierarchical Genetic Algorithm) was first proposed by
Ke for fuzzy controller design [12]. They used two layer genes to evolve mem-
bership functions for a fuzzy logic design. Based on this idea, Yen and Lu
designed an HGA Neural Network (HGA-NN) [23]. In the HGA-NN, a three-
layer HGA is used to evolve a Multi-layer Perceptron (MLP) neural network.
The chromosome structure (genotype) is shown in Figure 10.1(a). As shown
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Fig. 10.1. Genotype structure of an individual MLP neural network (left) and the
corresponding phenotype with layered neural network topology (right).

in Figure 10.1(a), each candidate chromosome corresponding to a neural net-
work implementation is assumed to have at most four hidden layers (shown
in the high-level layer genes), where the first and the third hidden layers are
activated (as indicated with binary bits 1) and the second and the fourth
hidden layers are deactivated (with binary bits 0). Additionally, we assume
at most three neurons in each hidden layer as shown in the space available in
neuron gene corresponding to each element in layer gene.

The mid-level neuron genes indicate that two out of three neurons in
the first hidden layer are activated, while only one neuron in the third hidden
layer is activated. Since the second and the fourth layers are deactivated, their
neurons are not used. The low-level parameter genes are then used to represent
the weighting and bias parameters of each corresponding neuron activated.
The active status of one control gene determines whether the parameters of
the next level controlled by this gene will be activated or not. As an example,
a genetic chromosome (genotype) shown in Figure 10.1(a) corresponds to an
individual neural network (phenotype) with two hidden layers and two and one
neuron in each layer in Figure 10.1(b). By using this hierarchical genotype, the
problem of “one phenotype mapping different genotypes” can be prevented.

10.4 HGA Evolved Radial-Basis Function NN

In a similar spirit, HGA is tailored in this chapter to evolve an RBF (Radial-
Basis Function) neural network. A radial-basis function can be formed as:

f(x) =
m∑

i=1

ωiexp(−||x− ci||2), (10.4)

where cidenotes the center of the ith localized function, ωi is the weighting
coefficient connecting the ith Gaussian neuron to the output neuron, and
m is the number of Gaussian neurons in the hidden layer. Without loss of
generality, we choose the variance as unity for each Gaussian neuron.
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Fig. 10.2. Genotype (left) and phenotype (right) of HGA based RBF neural net-
work.

In HGA based RBF neural network design, genes in the genotype are
hierarchically structured into three layers: control genes, weight genes, and
center genes. The lengths of these three layers of genes are the same and
specified by the user. The value of each control gene (0 or 1) determines the
activation status (off or on) of the corresponding weight gene and center gene.
On the other hand, the weight genes and center genes are represented by real
values. Control genes and weight genes are randomly initialized and the center
genes are randomly selected from given training data samples. Figure 10.2
shows the genotype and phenotype of a HGA based RBF neural network,
where the first, third and fifth hidden neurons are activated. As a result, their
corresponding weight and center parameters are used.

10.5 Multiobjective Genetic Algorithm

As discussed in Section 10.3, neural network design problems have a multi-
objective trade-off characteristic in terms of optimizing network topology and
performance. Therefore, multiobjective genetic algorithm is applied in NN
design procedure.

10.5.1 Multiobjective Optimization Problems

Multiobjective Optimization (MO) is a very important research topic, be-
cause most real world problems have not only a multiobjective nature, but
also many open issues to be answered qualitatively and quantitatively. In
many optimization problems, there is not even a universally accepted defini-
tion of “optimum” as in single-objective optimization [10], because the solu-
tion to a MO problem is generally not a single point. It consists of a family of
non-dominated points, a so-called Pareto front [7], which describes the trade-
off among contradicted objectives. The Pareto front yields many candidate
solutions— non-dominated points, from which we can choose the desired one
under different trade-off conditions. In most cases, the Pareto front is on the
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boundary of the feasible range as shown in Figure 10.3. Considering the NN
design dilemma outlined in Section 10.2, a neural network design problem can
be regarded as a class of MO problems as minimizing network structure and
improving network performance, which are two conflicting objectives. There-
fore, searching for a near-complete set of non-dominated and near-optimal
candidate networks as the design solutions (i.e., Pareto front) is our goal.

10.5.2 Rank-density Based Fitness Assignment

Since the 1980’s, several Multiobjective Genetic Algorithms (MOGAs) have
been proposed and applied in multiobjective optimization problems [25].
These algorithms all have almost the same purpose— searching for a uni-
formly distributed and near-optimal Pareto front for a given MO problem.
However, this ultimate goal is far from been accomplished by the existing
MOGAs described in literature due to trade-off decisions between homoge-
nously distributing the computational resources and GA’s strong tendencies
to restrict searching efforts (i.e., genetic drift).

In this chapter, we propose a new rank-density based fitness assignment
technique in a multiobjective genetic algorithm to assist neural network de-
sign. Compared to traditional fitness assignment methods, the proposed rank-
density based technique possesses the following characteristics of a) simplify-
ing the problem domain by converting high-dimensional multiple objectives
into two objectives to minimize the individual rank value and population den-
sity value, b) searching for and keeping better-approximated Pareto points by
diffusion and elitism schemes, and c) preventing harmful individuals by intro-
ducing a “forbidden region” concept. Three essential techniques were applied
in this technique.

Fig. 10.3. Graphical illustration of the Pareto optimality.

Automatic Accumulated Ranking Strategy (AARS)

In HRDGA, an Automatic Accumulated Ranking Strategy (AARS) is ap-
plied to calculate the Pareto rank value, which represents the dominated
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relationship among individuals. In AARS, an individual’s rank value is de-
fined as the summation of the rank values of the individuals that domi-
nate it. Assume at generation t, individual y is dominated by p(t) individ-
uals y1, y2, · · · , yp(t) , whose rank values are already known as rank(y1, t),
rank(y2, t), · · · , rank(yp(t) , t). Its rank value can be computed by

rank(y, t) = 1 +
p(t)
∑

j=1

rank(yj , t). (10.5)

Therefore, by AARS, all the non-dominated individuals are still assigned
rank value 1, while dominated ones are penalized to reduce the population
density and redundancy.

Adaptive Density Value Calculation

To maintain the diversity of the obtained Pareto front, HRDGA adopts an
adaptive cell density evaluation scheme as shown in Figure 10.4. The cell
width in each objective dimension can be computed as :

di =
maxx∈Xfi(x)−minx∈Xfi(x)

Ki
, i = 1, · · · , n, (10.6)

where di is the width of the cell in the ith dimension, Ki denotes the number
of cells designated for the ith dimension (i.e., in Figure 10.4, K1 = 12 and
K2 = 8), and X denotes the decision vector space. As the maximum and
minimum fitness values will change with different generations, the cell size will
vary from generation to generation to maintain the accuracy of the density
calculation. The density value of an individual is defined as the number of the
individuals located in the same cell.

Rank-density Based Fitness Assignment

Because rank and density values represent fitness and population diversity, re-
spectively, the new rank-density fitness formulation can convert any multiob-
jective optimization problem into a bi-objective optimization problem. Here,
population rank and density values are designated as the two fitness values
for GA to minimize. Before fitness evaluation, the entire population is divided
into two subpopulations with equal sizes; each subpopulation is filled with
individuals that are randomly chosen from the current population according
to rank and density value, respectively. Afterwards, the entire population is
shuffled, and crossover and mutation are then performed.

For crossover, the parent selection and replacement schemes are borrowed
from Cellular GA [14] to explore the new search area by “diffusion.” For each
subpopulation, a fixed number of parents are randomly selected for crossover.
Then, each selected parent performs crossover with the best individual (the
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one with the lowest rank value) within the same cell and the nearest neigh-
boring cells that contain individuals. If one offspring produces better fitness
(a lower rank value or a lower population density value) than its correspond-
ing parent, it replaces its parent. The replacement scheme of the mutation
operation is analogous.

Fig. 10.4. Density map and density grid.

Meanwhile, we take the minimization of the population density value as
one of the objectives. It is expected that the entire population will move to-
ward an opposite direction to the Pareto front where the population density
value is being minimized. Although moving away from the true Pareto front
can reduce population density value, obviously, these individuals are harm-
ful to the population to converge to the Pareto front. To prevent “harmful”
offspring surviving and affecting the evolutionary direction and speed, a for-
bidden region concept is proposed in the replacement scheme for the density
subpopulation, thereby preventing the “backward” effect. The forbidden re-
gion includes all the cells dominated by the selected parent. The offspring
located in the forbidden region will not survive in the next generation, and
thus the selected parent will not be replaced. As shown in Figure 10.5, sup-
pose our goal is to minimize objectives f1 and f2, and a resulting offspring of
the selected parent pis located in the forbidden region. This offspring will be
eliminated even if it reduces the population density, because this kind of off-
spring has the tendency to push the entire population away from the desired
evolutionary direction.

Finally, the simple elitism scheme [7] is also applied as the bookkeeping for
storing the Pareto individuals obtained in each generation. These individuals
are compared to achieve the final Pareto front after the evolution process has
stopped.
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Fig. 10.5. Illustration of the valid range and the forbidden region.

10.5.3 HRDGA for NN Design

To assist RBF network design, HRDGA is applied to carry out the fitness
evaluation and mating selection schemes. The HRDGA operators are designed
as followed.

Chromosome Representation

In HRDGA, each individual (chromosome) represents a candidate neural net-
work. The control genes are binary bits (0 or 1). For the weight and center
genes, real values are adopted as the gene representation to reduce the length
of the chromosome. The population size is fixed and chosen ad hoc by the
difficulty of the problem to be solved.

Crossover and Mutation

We used one-point crossover in the control gene segments and two-point
crossover in the other two gene segments. The crossover points were ran-
domly selected and the crossover rates were chosen to be 0.8, 0.7, and 0.7 for
the control, weight, and center genes, respectively. One-point mutation was
applied in each segment. In the control gene segment, common binary value
mutation was adopted. In the weight and center gene segments, real value mu-
tation was performed by adding aGaussian(0, 1), which denotes a Gaussian
function with zero mean and unit variance. The mutation rates were set to be
0.1, 0.05, and 0.05 for the control, weight, and center genes, respectively.
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Fitness Evaluations and Mating Selection

Since we are trying to use HRDGA to optimize the neural network topology
along with its performance, we need to convert them into the rank-density
domain. Therefore, the original fitness— network performance and number
of neurons—of each individual in a generation is evaluated and ranked, and
the density value is calculated. Then the new rank and density fitness values
of each individual will be evaluated and the individuals with higher fitness
measures will reproduce and crossover with other high fitness individuals with
a certain probability. Their offspring replaces the low fitness parents forming
a new generation. Mating is then iteratively processed.

Stopping Criteria

When the desired number of generations is met, the evolutionary process
stops.

10.6 Mackey-Glass Chaotic Time Series Prediction

Since the proposed HRDGA is designed to evolve the neural network topology
together with its best performance, it proves useful in solving complex prob-
lems such as time series prediction or pattern classification. For a feasibility
check, we use the HRDGA assisted NN design to predict the Mackey-Glass
chaotic time series.

10.6.1 Mackey-Glass Time Series

The Mackey-Glass time series is a continuous time-delay data differential
equation:

d(x(t))
d(t)

=
a x(t− τ)

(1 + xc(t− τ))
− b x(t). (10.7)

The chaotic behavior of the Mackey-Glass time series is determined by the
delay parameter τ . Some examples are listed in Table 10.1. Larger values of
τ produce more chaotic dynamics which are much more difficult to predict.
Here we assign a = 0.2, b = 0.1 and c = 10 for Equation (10.7). In this study,
we used HRDGA evolved neural networks to predict a chaotic Mackey-Glass
time series with τ = 150. The network is set to predict x(t + 6) based on
x(t), x(t− 6), x(t− 12), and x(t− 18).

In the proposed HRDGA, 150 initial center genes are selected, 150 control
genes and 150 weight genes are initially generated as well. Population size
was set to be 400. For comparison, we applied three other center selection
methods—KNN (K-Nearest Neighbor) [11], GRNN (Generalized Regression
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Table 10.1. Characteristics of Mackey-Glass time series

delay parameter τ Chaotic characteristics
τ < 4.53 A stable fixed point attractor

4.53 < τ < 13.3 A stable limit cycle attractor
13.3 < τ < 16.8 Period limit cycle doubles

τ > 16.8 Chaotic attractor characterized by τ

Neural Network) [20], and OLS (Orthogonal Least Square Error) [4] methods
on the same time series prediction problem. For KNN and GRNN types of
networks, 70 networks are generated with the neuron numbers increasing from
11 to 80 with the step equals to one. Each of these networks will be trained
by KNN and GRNN methods, respectively, and the stopping criterion is the
same with the one used in HRDGA. For the OLS method, the selection of
the tolerance parameter ρ determines the trade-off between the performance
and complexity of the network. Ideally, ρ should be larger than, but very close
to, the ratio σ2

ε/σ
2
d, where σ2

ε is the variance of the residuals, and σ2
d is the

variance of the desired output. A smaller ρ value will produce a neural network
with more neuron number, whereas a larger ρ value generally results in a
network with less number of neurons. Therefore, by using different ρ values, we
generated a group of neural networks with various training performances and
numbers of hidden neurons. For the given Mackey-Glass time series prediction
problem, we selected 100 different ρvalues, which are from 0.01 to 0.4 with the
step size of 0.01. The stopping criteria for KNN, GRNN, and OLS algorithms
is either the epochs exceed 5,000, or the training Sum Square Error (SSE)
between two sequential generations is smaller than 0.01. For HRDGA, the
stopping generation is set to be 5,000. We used the first 250 seconds of the
data as the training data set, and then the data from 250 – 499, 500 – 749, 750
– 999, and 1,000 – 1,249 seconds were used as the corresponding test data sets
to be predicted by four different approaches. Each approach runs 30 times with
different parameter initializations to obtain the average results. Figure 10.6(a)
shows the resulting average training SSEs of neural networks with different
number of hidden neurons by four training approaches. Figure 10.6(b) shows
the approximated Pareto fronts (i.e., non-dominated sets) by the selected
four approaches. Figure 10.7(a) shows the average test SSEs of the resulting
networks by using the first test data set for each approach, and Figure 10.7(b)
shows their corresponding Pareto fronts. Furthermore, Figures 10.8, 10.9 and
10.10 show the same types of results by using the second, third, and fourth
test data, respectively.

Table 10.2 shows the best training and test performances and their cor-
responding numbers of hidden neurons. From Figures 10.6- 10.10, we can
see, comparing to KNN and GRNN, HRDGA and OLS algorithms have much
smaller training and test errors for the same network structures. KNN trained
networks produce the worst performances, because the RBF centers of the
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(a) (b)

Fig. 10.6. (a) Training performances for the resulting neural networks with different
number of hidden neurons and (b) The corresponding Pareto fronts (non-dominated
sets).

(a) (b)

Fig. 10.7. (a) Test performances for the resulting neural networks with different
number of hidden neurons and by using test set #1 (b) The corresponding Pareto
fronts (non-dominated sets).

Table 10.2. Comparison of best performance (SSE) and structure (number of
neurons) between KNN, OLS, GRNN and HRDGA

Training
set

Test set
#1

Test set
#2

Test set
#3

Test set
#4

SSE no. SSE no. SSE no. SSE no. SSE no.
KNN 2.8339 69 3.3693 42 3.4520 42 4.8586 48 4.8074 19
GRNN 2.3382 68 2.7720 38 3.0711 43 2.9644 40 3.2348 37
OLS 2.3329 60 2.4601 46 2.5856 50 2.5369 37 2.7199 54
HRDGA2.2901 74 2.4633 47 2.5534 52 2.5226 48 2.7216 58
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(a) (b)

Fig. 10.8. (a) Test performances for the resulting neural networks with different
number of hidden neurons and by using test set #2 (b) The corresponding Pareto
fronts (non-dominated sets).

(a) (b)

Fig. 10.9. (a) Test performances for the resulting neural networks with different
number of hidden neurons and by using test set #3 (b) The corresponding Pareto
fronts (non-dominated sets).

KNN algorithm are randomly selected, which make KNN to achieve only a
“local optimum” solution. Since GA always seeks “global optimum”, and the
orthogonal result is near optimal, the performances of OLS are comparable
to HRDGA.

Moreover, from Figure 10.6, we can see that when the network complexity
increases, the training error decreases. This phenomenon can be observed
from the results by all of the selected training approaches. However, this
phenomenon is only partially maintained for the relationship between the
test performances and the network complexity. Before the number of hidden
neurons reaches a certain threshold, the test error still decreases as the network
complexity increases. After that, the test error has the tendency to fluctuate
even when the number of hidden neurons increases. This occurrence can be
considered as that the resulting networks are overfitted. The network with the
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(a) (b)

Fig. 10.10. (a) Test performances for the resulting neural networks with different
number of hidden neurons and by using test set #4 (b) The corresponding Pareto
fronts (non-dominated sets).

best test performance before overfitting occurs is called the optimal network
and is judged as the final single solution by conventional NN design algorithms.
However, from Figures 10.6– 10.10 and Table 10.1, it is very difficult to find
a single optimal network that can offer the best performances for all the test
data sets, since these data sets possess different traits. Therefore, instead of
searching for a single optimal neural network, an algorithm that can result
in a near-complete set of near-optimal networks can be a more reasonable
and applicable option. This is the essential reason that multiobjective genetic
algorithms can be justified for this type of neural network design problems.

From the simulation results, althoughK KNN and GRNN approaches did
not provide better training and test results comparing to the other two ap-
proaches, they have the advantage that the designer can control the network
complexity by increasing or decreasing the neuron numbers at will. On the
other hand, although the OLS algorithm always provides near-optimal net-
work solutions with good training and test performance, it also has serious
problem to generate a set of network solutions in that the designers cannot
manage the network structure directly. The trade-off characteristic between
network performance and complexity totally depends on the value of toler-
ance parameterρ. Same ρ value means completely different trade-off features
for different NN design problems. In addition, as shown in Figure 10.11, the
relationship between ρ value and network topology is a nonlinear, many-to-
one mapping, which may cause a redundant computation effort in order to
generate a near-complete neural network solution set. Compared with the
other three training approaches, HRDGA does not have problems in design-
ing trade-off parameters, because it treats each objective equally and inde-
pendently, and its population diversity preserving techniques help it build a
near-uniformly distributed non-dominated solution set.



10 Radial Basis Function Neural Network Design 237

Fig. 10.11. Relationship between ρ values and network complexity.

Therefore, comparing to the other three traditional training approaches,
the proposed HRDGA algorithm offers several benefits for the neural network
design problems in terms of:

1. providing a set of candidate solutions, which is caused by GA’s population-
based optimization capability and the definition of Pareto optimality;

2. presenting competitive or even superior individuals with high training and
test performances. This is resulted from GA’s feature of seeking “global
optimum” and HRDGAs’ Pareto ranking technique; and

3. offering a near-complete, non-dominated set, and long-extended Pareto
front, which is originated from HRDGA’s population diversity keeping
design that can be found in AARS, density preserving technique, and the
concept of “forbidden region”.

10.7 Conclusions

In this study, we propose a multiobjective genetic algorithm based design
procedure for the radial-basis function neural network. A Hierarchical Rank
Density Genetic Algorithm (HRDGA) is developed to evolve both the neural
network’s topology and parameters simultaneously. Instead of producing a sin-
gle solution, HRDGA provides a set of near-optimal neural networks from the
perspective of Pareto optimality to the designers so that they can have more
flexibility for the final decision-making based on certain preferences. From the
results presented above, HRDGA shows potential in estimating neural network
topology and weighting parameters for complex problems when a heuristic es-
timation of the neural network structure is not readily available. For the given
Mackey–Glass chaotic time series prediction, HRDGA shows competitive, or



238 G.G. Yen

even superior performances comparing with the other three selected training
algorithms in terms of searching for a set of non-dominated, near-complete
neural network solutions with high training and test performances. While we
considered radial-basis function neural networks, the proposed hierarchical
genetic algorithm may be easily extended to the designs of other neural net-
works (i.e., feed-forward, feedback, or self-organized). In addition, as some of
the traditional neural network training approaches (i.e., OLS algorithm) also
provide competitive results, a hybrid algorithm that synergistically integrates
traditional training method with the proposed algorithm can be a promising
future work.
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