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Summary. Feature selection refers to the selection of input attributes that are most
predictive of a given outcome. This is a problem encountered in many areas such
as machine learning, signal processing, and recently bioinformatics/computational
biology. Feature selection is one of the most important and challenging tasks, when
it comes to dealing with large datasets with tens or hundreds of thousands of vari-
ables. Areas of web-mining and gene expression array analysis provide examples,
where selection of interesting and useful features determines the performance of
subsequent analysis. The intrinsic nature of noise, uncertainty, incompleteness of
data makes extraction of hidden and useful information very difficult. Capability of
handling imprecision, inexactness and noise, has attracted researchers to use rough
sets for feature selection. This article provides an overview on recent literature in
this direction.

1.1 Introduction

Feature selection techniques aim at reducing the number of irrelevant and
redundant variables in the dataset. Unlike other dimensionality reduction
methods, feature selection preserves the original features after reduction and
selection. Benefit of feature selection is many fold: it improves subsequent
analysis by removing the noisy data and outliers, makes faster and more cost-
effective post-analysis, makes data visualization easier and provides a better
understanding of the underlying process that generated the data.

Here, we will consider an example which will serve us as an illustration
throughout the chapter. Consider gene selection from microarray data. In
this problem, the features are expression levels of genes corresponding to the
abundance of mRNA in a sample (e.g. particular time point of development
or treatment), for a number of patients and replicates. A typical analysis task
is to find genes which are differentially expressed in different cases or can
classify different classes with high accuracy. Usually very few data samples
are available altogether for testing and training. But, the number of features
(genes) ranges from 10,000 to 15,000.
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Rough set theory (RST) [13, 14] was developed by Pawlak as a tool to
deal with inexact and incomplete data. Over the years, RST has become a
topic of great interest to researchers and has been applied to many domains, in
particular to knowledge databases. This success is due in part to the following
aspects of the theory:

• only the facts hidden in data are analyzed;
• no additional information about the data is required;
• minimal knowledge representation is obtained.

Consider an information system consisting of a domain U of objects /
observations and a set A of attributes/features. A induces a partition (clas-
sification) of U by A, by grouping together objects having identical attribute
values. But the whole set A may not always be necessary to define the classifi-
cation/partition of U . Many of the attributes may be redundant, and we may
find minimal subsets of attributes which give the same classification as the
whole set A. These subsets are called reducts in RST, and correspond to the
minimal feature sets that are necessary and sufficient to represent a correct
decision about classification. Thus RST provides a methodology for address-
ing the problem of relevant feature selection that could be applied, e.g. to the
case of microarray data described earlier.

The task of finding reducts is reported to be NP-hard [15]. The high com-
plexity of this problem has motivated investigators to apply various approx-
imation techniques to find near-optimal solutions. There are some studies
reported in literature, e.g., [17, 3], where genetic algorithms [9] have been
applied to find reducts.

Genetic algorithms (GAs) provide an efficient search technique in a large
solution space, based on the theory of evolution. A population of chromosomes
is made to evolve over generations by optimizing a fitness function, which
provides a quantitative measure of the fitness of individuals in the pool. When
there are two or more conflicting characteristics to be optimized, often the
single-objective GA requires an appropriate formulation of the single fitness
function in terms of an additive combination of the different criteria involved.
In such cases multi-objective GAs (MOGAs) [7] provide an alternative, more
efficient, approach to search for optimal solutions.

In this article, we present various attempts of using GA’s (both single- and
multi-objective) in order to obtain reducts, and hence provide some solution
to the challenging task of feature selection. The rest of the chapter is organized
as follows. Section 1.2 introduces the preliminaries of rough sets and genetic
algorithms. Section 1.3 deals with feature selection and the role of rough sets.
Section 1.4 and Section 1.5 describe recent literature on single- and multi-
objective feature selection using rough sets. Section 1.7 concludes the chapter.
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1.2 Preliminaries

In this section we discuss the preliminaries of rough sets and genetic algo-
rithms, with emphasis on multi-objective GAs. The issues relevant to this
chapter are explained briefly. For detailed discussion, pointers to references
are given at the appropriate places.

Set X

lower approximation

approximation
upper 

Fig. 1.1. Lower and upper approximations of a rough set

1.2.1 Rough sets

The theory of rough sets deals with uncertainty that arises from granularity
in the domain of discourse, the latter represented formally by an indiscerni-
bility relation (typically an equivalence) on the domain. The intention is to
approximate a rough (imprecise) concept in the domain of discourse by a pair
of exact concepts, that are determined by the indiscernibility relation. These
exact concepts are called the lower and upper approximations of the rough
concept. The lower approximation is the set of objects definitely belonging
to the rough concept, whereas the upper approximation is the set of objects
possibly belonging to the same. Fig. 1.1 illustrates a rough set with its ap-
proximations. The small squares represent equivalence classes induced by the
indiscernibility relation on the domain. Lower approximation of the set X is
shown as the shaded region and upper approximation consists of all the ele-
ments inside the thick line. The formal definitions of the above notions and
others required for the present work are given below.

Definition 1. An Information System A = (U,A) consists of a non-
empty, finite set U of objects (cases, observations, etc.) and a non-empty,
finite set A of attributes a (features, variables), such that a : U → Va, where
Va is a value set. Often, the attribute set A consists of two parts C and D,
called condition and decision attributes respectively. In that case the informa-
tion system A is called a decision table. Decision tables are termed con-
sistent, whenever objects x, y are such that for each condition attribute a,
a(x) = a(y), then d(x) = d(y), for any d ∈ D.



6 M. Banerjee et al.

Definition 2. Let B ⊆ A. A B-indiscernibility relation IND(B) is de-
fined as

IND(B) = {(x, y) ∈ U : a(x) = a(y), ∀a ∈ B}. (1.1)

It is clear that IND(B) partitions the universe U into equivalence classes

[xi]B = {xj ∈ U : (xi, xj) ∈ IND(B)}, xi ∈ U. (1.2)

Definition 3. The B-lower and B-upper approximations of a given set
X(⊆ U) are defined, respectively, as follows:
BX = {x ∈ U : [x]B ⊆ X},
BX = {x ∈ U : [x]B ∩X �= φ}.

Reducts and Core

Reducts are the basic attributes which induce same partition on universe U
as the whole set of attributes. These are formally defined below for both a
general information system (U,A), and a decision table (U,C ∪ D). In an
information system, there may exist many reducts.

For a given information system, A = (U,A), an attribute b ∈ B ⊆ A is
dispensable if IND(B) = IND(B−{b}), otherwise b is said to be indispensable
in B. If all attributes in B are indispensable, then B is called independent
in A. Attribute set B ⊆ A is called reduct, if B is independent in A and
IND(B) = IND(A).

In a decision table A = (U,C ∪D), one is interested in eliminating redun-
dant condition attributes, and relative (D)-reducts are computed.

Let B ⊆ C, and consider the B-positive region of D, viz., POSB(D) =⋃
[x]D

B[x]D. An attribute b ∈ B(⊆ C) is D-dispensable in B if POSB(D) =
POSB\{b}(D), otherwise b is D-indispensable in B. B is said to be D-

independent in A, if every attribute from B is D-indispensable in B.

Definition 4. B(⊆ C) is called a D-reduct in A, if B is D-independent in
A and POSC(D) = POSB(D).

If a consistent decision table has a single decision attribute d, then U =
POSC(d) = POSB(D), for any d-reduct B.

The core is the set of essential attributes of any information system. Math-
ematically, core(A) =

⋂
reduct(A), i.e., the set consists of those attributes,

which are members of all reducts.

Discernibility Matrix

D-reducts can be computed with the help of D-discernibility matrices [15].
Let U = {x1, · · · , xm}. A D-discernibility matrix MD(A) is defined as an
m ×m matrix of the information system A with the (i, j)th entry cij given
by:
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cij = {a ∈ C : a(xi) �= a(xj), and (xi, xj) �∈ IND(D)}, i, j ∈ {1, · · · ,m}.
(1.3)

A variant of the discernibility matrix, viz., distinction table [17] is generally
used in many applications to enable faster computation.

Definition 5. A distinction table is a binary matrix with dimensions
(m2−m)

2 ×N , where N is the number of attributes in A. An entry b((k, j), i)
of the matrix corresponds to the attribute ai and pair of objects (xk, xj), and
is given by

b((k, j), i) =
{

1 if ai(xk) �= ai(xj),
0 if ai(xk) = ai(xj).

(1.4)

The presence of a ‘1’ signifies the ability of the attribute ai to discern between
the pair of objects (xk, xj).

1.2.2 Genetic Algorithms

Genetic algorithms [9] are heuristic techniques applied to solve complex search
and optimization problems. They are motivated by the principles of nat-
ural genetics and natural selection. Unlike classical optimization methods,
GAs deal with a population of solutions/individuals. With the basic ge-
netic/evolutionary operators, like selection, crossover and mutation, new so-
lutions are generated. A population of chromosomes, representing solutions, is
made to evolve over generations by optimizing a fitness function, which pro-
vides a quantitative measure of the fitness of individuals in the pool. Selection
operator selects better solutions to participate into crossover. Crossover op-
erator is responsible for creating new solutions from the old ones. Mutation
also creates new solutions, but only in the vicinity of old solutions. Mutation
operator plays a great role in case of multi-modal problems.

When there are two or more conflicting objectives to be optimized, often
weighted sum of objectives are taken to convert them as single-objective prob-
lem. In such cases multi-objective GAs provide an alternative, more efficient
approach to searching for optimal solutions.

Multi-Objective GAs

As the name suggests, a multi-objective optimization problem deals with more
than one objective function. In contrast to single-objective problems, multiple
objective problems give rise to a set of optimal solutions, known as Pareto-
optimal solution [5]. Over the past decade, a number of multi-objective genetic
algorithms have been suggested. The basic advantage of multi-objective GAs
over classical optimization methods is their ability to find multiple Pareto-
optimal solutions in one single simulation run. Detailed discussion about
multi-objective genetic algorithms can be found in [7]. Here, we will discuss
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the main features of Non-dominated Sorting Genetic Algorithm, viz. NSGA-
II [8], which is one of the frequently used multi-objective genetic algorithms.
This has been used in the studies of multi-objective feature selection using
rough sets, as discussed in Section 1.5.

Among the different multi-objective algorithms, it has been observed that
NSGA-II has the features required for a good multi-objective GA. It uses
the concept of non-domination to select the better individuals, when they are
compared with respect to all objectives. NSGA-II uses crowding distance to
find the population density near each individual. To get an estimate of the
density around the solution i, average distance of two solutions on either side
of solution i along each of the objectives is taken. Crowding distance metric is
defined in [8] such that the solution which resides in less crowded region will
get higher value of crowding distance. Thereby NSGA-II tries to maintain the
diversity among the non-dominated solutions. The algorithm assumes each
solution in the population has two characteristics:

• a non-domination rank ri;
• a local crowding distance di.

By using crowded tournament selection operator, NSGA-II not only tries to
converge to Pareto-front but also tries to have diverse solution on the front.
Crowded tournament selection operation is described below.

Definition 6. It is said that solution i wins tournament with another solution
j if any one of the following is true:

(i) solution i has better rank i.e. ri < rj;
(ii) both the solutions are in the same front, i.e. ri = rj but solution i is
less densely located in the search space, i.e. di > dj.

The NSGA-II algorithm can be summarized as follows.

1. Initialize the population;
2. Calculate the fitness;
3. Rank the population using the dominance criteria;
4. Calculate the crowding distance;
5. Do selection using crowding selection operator;
6. Do crossover and mutation to generate children population;
7. Combine parent and children population and do non-dominated sorting;
8. Replace the parent population by the best members of the combined pop-

ulation. Initially, members of lower fronts replace the parent population.
When it is not possible to accommodate all the members of a particular
front, that front is sorted according to the crowding distance. The number
of individuals selected on the basis of higher crowding distance, is that
which makes size of the new parent population same as size of the old one.
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1.3 Feature Selection and Rough Sets

Feature selection plays an important role in data selection and preparation
for subsequent analysis. It reduces the dimensionality of a feature space, and
removes redundant, irrelevant, or noisy data. It enhances the immediate effects
for any application by speeding up subsequent mining algorithms, improving
data quality and thereby performance of such algorithms, and increasing the
comprehensibility of their output. In this section we highlight the basics of
feature selection followed by the role of rough sets in this direction.

1.3.1 Feature Selection

It is a process that selects a minimum subset of M features from an original
set of N features (M ≤ N), so that the feature space is optimally reduced
according to an evaluation criterion. Finding the best feature subset is often
intractable or NP-hard.

Feature selection typically involves the following steps:

• Subset generation: For N features, the total number of candidate subsets is
2N . This makes an exhaustive search through the feature space infeasible,
even with moderate value of N . Often heuristic and non-deterministic
strategies are found to be more practical.

• Subset evaluation: Each generated subset needs to be evaluated by a cri-
terion, and compared with the previous best subset.

• Stopping criterion: The algorithm may stop when either of the following
holds.
– A pre-defined number of features are selected,
– a pre-defined number of iterations are completed,
– when addition or deletion of any feature does not produce a better

subset, or
– an optimal subset is obtained according to the evaluation criterion.

• Validation: The selected best feature subset needs to be validated with
different tests.

Search is a key issue in feature selection, involving search starting point,
search direction, and search strategy. One also needs to measure the goodness
of the generated feature subset. Feature selection can be supervised as well
as unsupervised, depending on class information availability in data. The al-
gorithms are typically categorized under filter and wrapper models [18], with
different emphasis on dimensionality reduction or accuracy enhancement.

1.3.2 Role of Rough Sets

Rough sets provide a useful tool for feature selection. We explain its role with
reference to the bioinformatics domain. A basic issue addressed in many prac-
tical applications, such as the gene expression analysis example discussed in
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Section 1.1, is that the whole set of attributes/features is not always neces-
sary to define an underlying partition/classification. Many of the features may
be superfluous, and minimal subsets of attributes may give the same classifi-
cation as whole set of attributes. For example, only few genes in microarray
gene expression study are supposed to define the underlying process and hence
working with all genes only reduces the quality and significance of analysis. In
rough set terminology, these minimal subsets of features are just the reducts,
and correspond to the minimal feature sets that are necessary and sufficient
to represent underlying classification.

The high complexity of the reduct finding problem has motivated investi-
gators to apply various approximation techniques to find near optimal solu-
tions. There are some studies reported in literature, e.g., [17, 3], where genetic
algorithms (GAs) have been applied to find reducts. Each of the studies in
[17, 3] employs a single-objective function to obtain reducts.

The essential properties of reducts are:

• to classify among all elements of the universe with the same accuracy as
the starting attribute (feature) set, and

• to be of small cardinality.

A close observation reveals that these two characteristics are of a conflict-
ing nature. Hence the determination of reducts is better represented as a
bi-objective problem. The idea was first presented in [1], and a preliminary
study was conducted. Incorporating some modifications in this proposal, [2]
investigates the multi-objective feature selection criteria for classification of
cancer microarray data.

We will first discuss single-objective feature selection approach using rough
sets in Section 1.4, and then pass on to the multi-objective approach in Section
1.5.

1.4 Single-objective Feature Selection Approach

Over the past few years, there has been a good amount of study in effec-
tively applying GAs to find minimal reducts. First we will discuss algorithms
proposed by Wroblewski [17].

Wroblewski’s Algorithms

Wroblewski has proposed three heuristic-based approaches for finding minimal
reducts. While the first approach is based on classical GAs, the other two are
permutation-based greedy approaches.
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Method 1

Solutions are represented by binary strings of lengthN , whereN is the number
of attributes (features). In the bit representation ‘1’ means that the attribute is
present and ‘0’ means that it is not. The following fitness function is considered
for each individual:

F1(ν) =
N − Lν

N
+

Cν

(m2 −m)/2
, (1.5)

where ν is a reduct candidate, N is the number of available attributes, Lν is
the number of 1’s in ν, Cν is the number of object combinations that ν can
discern, and m is the number of objects.

First part of the fitness function gives the candidate credit for containing
less attributes (few 1’s) and the second part of the function determines the
extent to which the candidate can discern among objects.

When the fitness function is calculated for each individual, the selection
process begins. A particular selection operator ‘Roulette Wheel’ is used. One-
point crossover is used with crossover probability Pc = 0.7. Probability Pm

of mutation on a single position of individual is taken as 0.05. Mutation of
one position means replacement of ‘1’ by ‘0’ or ‘0’ by ‘1’. Complexity of the
algorithm is governed by that of fitness calculation, and it can be shown that
the latter complexity is O(Nm2).

Method 2

This method uses greedy algorithms to generate the reducts. Here the aim is
to find the proper order of attributes. We can describe this method as follows:

Step 1 : Generate an initial set of random permutations of attributes
τ(a1, . . . , aN ), each of them representing an ordered list of attributes, i.e.,
(b1,. . .,bN ) = τ(a1,. . .,aN ).

Step 2 : For each ordered list, start with empty reduct R = φ and set i← 0.
Step 3 : Check whether R is a reduct. If R is a reduct, Stop.
Step 4 : Else, add one more element from the ordered list of attributes, i.e.

define R := R ∪ bi+1.
Step 5 : Go to step 3.

The result of this algorithm will be either a reduct or a set of attributes
containing a reduct as a subset. GAs help to find reducts of different order.
Genetic Operators: Different permutations represent different individuals. The
fitness function of an individual ν is defined as:

F (τ) =
1
Lν

, (1.6)

where Lν is the length of the subset R found by the greedy algorithm.
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The same selection methods are used as in method 1. But different muta-
tion and crossover operators are used, with an interchange of two randomly
chosen attributes being done in mutation with some probability. Although one
can choose any order-based crossover method, Wroblewski [17] has suggested
the use of PMX (Partially Mapped Crossover [9]).

Method 3

This method again uses greedy algorithms to generate reducts. We can de-
scribe this method as follows:

Step 1 : Generate an initial set of random permutations of attributes
τ(a1, . . . , aN ), each of which represents an ordered list of attributes, i.e.,
(b1,. . .,bN ) = τ(a1,. . .,aN ).

Step 2 : For each ordered list, define reduct R as the whole set of attributes.
Step 3 : Set i← 1 and let R := R− bi.
Step 4 : Check whether R is a reduct. If it is not, then undo step 3 and

i← i+ 1. Go back to step 3.

All genetic operators are chosen as in method 2. The result of this algorithm
will always be a reduct, the proof of which is discussed in [17]. However, a
disadvantage of this method is its high complexity.

‘Rough Enough’ Approach to Calculating Reducts

Bjorvand [3] has proposed another variant of finding reducts using GAs. In
his approach, a different fitness function is used. The notations used are the
same as those for the previous methods.

F1(ν) =

{
(N−Lν

N + Cν

(m2−m)/2 )2 if Cν < (m2 −m)/2
(N−Lν

N + ( Cν

(m2−m)/2 + 1
2 )× 1

2 )2 if Cν = (m2 −m)/2.

Bjorvand argues that by squaring the fitness values it becomes easy to
separate the different values. In case of total coverings (candidate is possibly a
reduct), the second part of fitness values is added and then multiplied by 1/2 to
avoid getting low fitness values as compared to the candidates almost covering
all objects and also having a low number of attributes. Instead of constant
mutation rate, Bjorvand uses adaptive mutation. If there are many individuals
with same fitness value, higher mutation rate is chosen to avoid premature
convergence or getting stuck at local minima. To give more preference to
finding shorter reducts, higher mutation probability is chosen for mutation
from 1 to 0 than for the reverse direction.
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Other Approaches

In literature, there are some more approximation approaches to calculate
reducts. Among these algorithms are Johnson’s algorithm [12] and hitting set
approach by Vinterbo et. al [16]. Johnson’s algorithm is a greedy approach
to find a single reduct. In the hitting set approach, non-empty elements of
the discernibility matrix are chosen as elements of a multiset �. The minimal
hitting sets of � are exactly the reducts. Since, finding minimal hitting sets
is again an NP-hard problem [16], GAs are used for finding the approximate
hitting sets (reducts).

Here the fitness function again has two parts, and a weighted sum of the
two parts are taken. The following fitness function is defined for each candi-
date solution ν:

F (ν) = (1−α)× cost(A)− cost(ν)
cost(A)

+α×min
{
ε,
|[S ∈ �|S ∩ ν �= φ]|

|�|
}
. (1.7)

In the above equation, α lies between 0 and 1, A is the set containing
elements of the discernibility matrix. Candidate solutions ν(⊂ A) are found
through evolutionary search algorithms. The parameter ε signifies a minimal
value for the hitting fraction. First term of the above equation rewards the
shorter element and the second term tries to ensure that hitting sets get
reward. Cost function in above definition specifies the cost of an attribute
subset. Means of defining the cost function are discussed in Rosetta [12]. One
can trivially define a cost function as “the cardinality of the candidate ν, |ν|”.
Rosetta describes all the required parameters in brief, and detailed description
of the fitness function and all parameters can be found in [16].

1.5 Multi-objective Feature Selection Approach

All the algorithms discussed above concentrate more on finding the minimal
reducts and thus use variations of different single fitness functions. In many
applications, such as gene expression analysis, a user may not like to just have
a minimal set of genes, but explore a range of different sets of features and
the relations among them. Multi-objective criterion has been used successfully
in many engineering problems, as well as in feature selection algorithms [11].
Here, the basic idea is to give freedom to the user to choose features from
a wide spectrum of trade-off features, which will be useful for them. As dis-
cussed in Section 1.3.2, a reduct exhibits a conflicting nature of having small
cardinality and ability to discern among all objects. Combining this conflicting
nature of reducts with MOGAs may give the desired set of trade-off solutions.
This motivated the work in [1], to use multi-objective fitness functions for
finding reducts of all lengths.

In this section we first discuss the multi-objective reduct finding algorithm
proposed initially in [1]. This is followed by a discussion on a modification and
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implementation of this proposal, for gene expression classification problem, in
[2].

1.5.1 Finding Reducts Using MOGA – I

In [1] the fitness function proposed by Wroblewski (eqn. (1.5)) was split into
two parts, to exploit the basic properties of reducts as two conflicting objec-
tives. The two fitness functions F1 and F2 are as follows:

F1(ν) =
N − Lν

N
, (1.8)

F2(ν) =
Cν

(m2 −m)/2
. (1.9)

Hence, in this case, the first fitness function gives the solution credit for
containing less attributes (few 1’s) and the second fitness function determines
the extent to which the solution can discern among objects.

Non-domination sorting brings out the difference between the proposed
algorithm and the earlier algorithms. The algorithm makes sure that

• the true reducts come to the best non-domination front, and
• two different candidates also come into the same non-domination front, if

one is not the superset of the other and the two can discern between the
same number of objects.

For two solutions i and j, non-domination procedure is outlined as follows:

if F i
2 = F j

2 and F i
1 �= F j

1

if one (i, say) is superset of other (j)
then put i at inferior domination level

else put both in same domination level
else

do regular domination checking with respect to two fitness values.

Remark 1. If the two solutions discern the same number of pair of objects,
then their non-domination level is determined by the first objective. In this
way, we make sure that candidates with different cardinality can come to the
same non-domination level, if they do not violate the superset criteria, i.e.
one solution is not a superset of the other. Explicit checking of superset is
intended to ensure that only true reducts come into the best non-domination
level.

The representation scheme of solutions discussed in Section 1.4, and the
usual crowding binary tournament selection as suggested in Section 1.2.2 are
used. The complete algorithm can be summarized in the following steps:

Step 1 : A random population of size n is generated.
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Step 2 : The two fitness values for each individual is calculated.
Step 3 : Non-domination sorting is performed, to identify different fronts.
Step 4 : Crowding sort is performed to get a wide spread of the solution.
Step 5 : Offspring solution is created using crowded tournament selection,

crossover and mutation operators.
Step 6 : Steps 2 to 5 are repeated for a pre-specified number of generations.

An advantage of the multi-objective approach can be shown by taking
an example. Consider two solutions (a, b) and (c, d, e) giving the same clas-
sification. Then the earlier approach will give less preference to the second
solution, whereas the proposed algorithm puts both solutions in the same
non-domination level. Thus the probability of selecting reducts of larger car-
dinalities is the same as that of smaller cardinalities. The explicit check of
superset also increases the probability of getting only true reducts.

This algorithm was implemented on some simple data sets. However, there
are complexity problems when faced with large data.

1.5.2 Finding Reducts Using MOGA – II

For a decision table A with N condition attributes and a single decision at-
tribute d, the problem of finding a d-reduct is equivalent to finding a minimal
subset of columns R(⊆ {1, 2, · · · , N}) in the distinction table, satisfying

∀(k, j)∃i ∈ R : b((k, j), i) = 1,whenever d(xk) �= d(xj).

So, in effect, the distinction table consists of N columns, and rows correspond-
ing to only those object pairs (xk, xj) such that d(xk) �= d(xj). We call this
shortened distinction table, a d-distinction table. Note that, as A is taken to
be consistent, there is no row with all 0 entries in a d-distinction table.

In [2], NSGA-II is modified to effectively handle large datasets. We focus
on two-class problems. An initial redundancy reduction is done to generate a
reduced attribute value table Ar. From this we form the d-distinction table
consisting of N columns, with rows corresponding to only those object pairs
(xk, xj) such that d(xk) �= d(xj). As object pairs corresponding to the same
class do not constitute a row of the d-distinction table, there is a considerable
reduction in its size, thereby leading to a decrease in computational cost.

The modified feature selection algorithm is implemented on microarray
data consisting of three different cancer samples, as summarized in Ta-
ble 1.1 [2]. After the initial redundancy reduction, the feature sets are reduced:

• Colon dataset: 1102 attributes for the normal and cancer classes,
• Lymphoma dataset: 1867 attributes for normal and malignant lymphocyte

cells, and
• Leukemia dataset: 3783 attributes for classes ALL and AML.

The algorithm is run on the d-distinction table, with different population sizes,
to generate reducts upon convergence. Fitness functions of eqns. (1.8)-(1.9),
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Table 1.1. Usage details of the two-class microarray data

Data used # Attributes Classes # Samples
Colon 2000 Colon cancer 40

Normal 22
Lymphoma 4026 Other type 54

B-cell lymphoma 42
Leukemia 7129 ALL 47

AML 25

adapted to the case of two-class problems, are used. Results indicate conver-
gence to 8, 2, 2 attributes respectively, for the minimal reduct on the three
sets of two-class microarray gene expression data after 15,000 generations.

On the other hand, feature selection (without rough sets) in microar-
ray gene expression analysis has also been reported in literature [10, 4, 6].
Huang [10] uses a probabilistic neural network for feature selection, based on
correlation with class distinction. In case of Leukemia data, they report a re-
duction to a ten-genes set. For Colon data, a ten-genes set is generated. Chu
et al. [6] employ a t-test based feature selection with a fuzzy neural network.
A five-genes set is generated for Lymphoma data.

1.6 Example

In this section we will explain single-objective and multi-objective based fea-
ture selection through an example. For illustration, a sample data viz. Cleve-
land data set is taken from Rosetta [12]. The data has 14 attributes and it does
not contain any decision variable. We have removed all objects with missing
values and hence there are 297 objects. A part of the data with 10 attributes
and 3 objects, is shown in Table 1.2.

Table 1.2. Part of Cleveland data, taken from Rosetta

age sex cp trestbps chol fbs restecg thalach exang oldpeak

63 M Typical angina 145 233 T LV hypertrophy 150 N 2.3

67 M Asymptomatic 160 286 F LV hypertrophy 108 Y 1.5

67 M Asymptomatic 120 229 F LV hypertrophy 129 Y 2.6

37 M Non-anginal pain 130 250 F Normal 187 N 3.5

To illustrate the single-objective feature selection approach, we have used
Wroblewski’s algorithm implemented in Rosetta, to find reducts. For multi-
objective feature selection approach, the algorithm proposed in [1] is used on
the same data set.
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1.6.1 Illustration for the Single-objective Approach

Wroblewski’s algorithm searches for reducts using GA until either it has ex-
hausted the search space, or a pre-defined number of reducts has been found.
Three different parameters can be chosen to control the thoroughness and
speed of the algorithm.

Rosetta gives an option of finding reducts based on a complete set of
objects or a subset of objects. In this example, we have chosen discernibility
based on all objects. In case of decision table, one can select modulo decision
to avoid discerning between objects belonging to the same decision class. Thus
the resultant distinction table consists of object pairs belonging to different
classes only. Rosetta also provides options to users for selecting parameters
such as number of reducts, seed to start with different random populations,
and calculation speed to choose one of the different versions of Wroblewski’s
algorithm discussed in Section 1.4. We have chosen normal calculation speed
and number of reducts = 50. It may be remarked that other approaches (e.g.
Vinterbo’s method [16]) for finding reducts have also been implemented in
Rosetta.

Results

On running Wroblewski’s algorithm implemented in Rosetta, we obtain 25
reducts. Table 1.3 summarizes the results. All reducts were tested for reduct
membership [15] and found to be true reducts.

Table 1.3. Results of Rosetta

Reduct Length # Reducts
3 10
4 10
5 2
6 3

1.6.2 Illustration for the Multi-objective Approach

Solutions or chromosomes are binary strings of 1 and 0, of length equal to the
total number of attributes. 1 indicates that the particular attribute is present.
For example, 10001000000001 means that 1st, 5th and 14th attributes are
present.

A random population of size n is generated. Each individual is nothing
but a binary string, as just explained. Fitness functions are calculated and
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non-domination ranking is done, as discussed in Section 1.5.1. For illustra-
tion, let us take 4 individuals with the following strings and assume that all
4 individuals can discern among all the objects, i.e. second fitness function of
all individuals is 1.0.

Individual 1: 10001000100000
Individual 2: 01001000010000
Individual 3: 11001000010000
Individual 4: 01001001000100

Since individual 3 is a superset of individual 2, individual 2 dominates it.
But individuals 1 and 2 are non-dominated, and are put in the same front.
Though individual 4 has cardinality four, which is more than the cardinality
of individual 1 and individual 2, it is still kept in the same non-dominated
front as individuals 1 and 2.

Offspring solutions are created using crowding selection, crossover and
mutation operators.

Results

The following parameters are used to run the multi-objective algorithm.
Population Size = 50
Number of Generations = 500
Crossover Probability = 0.6
Mutation Probability = 0.08
Table 1.4 summarizes the results. Again, all reducts were tested for reduct
membership [15] and found to be true reducts. A comparison with the results
obtained using the single-objective algorithm indicates a greater effectiveness
of the multi-objective approach.

Table 1.4. Results of multi-objective implementation

Reduct Length # Reducts
3 10
4 17
5 14
6 7
7 2
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1.7 Conclusion

In this article we have provided a study on the use of rough sets for feature
selection. Handling of high-dimensional data requires a judicious selection of
attributes. Feature selection is hence very important for such data analysis.
Reducts in rough set theory, prove to be relevant for this task. However, reduct
computation is a hard problem. It is found that evolutionary algorithms, par-
ticularly multi-objective GA, is useful in computing optimal reducts. Applica-
tion to microarray data is described. An illustrative example is also provided,
to explain the single- and multi-objective approaches.

Identifying the essential features amongst the non-redundant ones, also
appears to be important in feature selection. The notion of core (the common
part of all reducts) of an information system, could be relevant in this direc-
tion, and it may be a worthwhile future endeavor to conduct an investigation
into its role.

Acknowledgment

Ashish Anand is financially supported by DBT project no. DBT/BSBE/
20030360. We thank the referees for their suggestions.

References

[1] A. Anand. Representation and learning of inexact information using rough
set theory. Master’s thesis, Department of Mathematics, Indian Institute of
Technology, Kanpur, India, 2002.

[2] M. Banerjee, S. Mitra, and H. Banka. Evolutionary-rough feature selection in
gene expression data. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 2005. Accepted.

[3] A. T. Bjorvand. ‘Rough Enough’ – A system supporting the rough sets ap-
proach. In Proceedings of the Sixth Scandinavian Conference on Artificial In-
telligence, pages 290–291, Helsinki, Finland, 1997.

[4] L. Cao, H. P. Lee, C. K. Seng, and Q. Gu. Saliency analysis of support vec-
tor machines for gene selection in tissue classification. Neural Computing and
Applications, 11:244–249, 2003.

[5] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making Theory and
Methodology. North-Holland, 1983.

[6] F. Chu, W. Xie, and L. Wang. Gene selection and cancer classification using
a fuzzy neural network. In Proceedings of 2004 Annual Meeting of the North
American Fuzzy Information Processing Society (NAFIPS 2004), volume 2,
pages 555–559, 2004.

[7] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, London, 2001.



20 M. Banerjee et al.

[8] K. Deb, S. Agarwal, A. Pratap, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[9] D.E. Goldberg. Genetic Algorithms for Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, 1989.

[10] C. -J. Huang. Class prediction of cancer using probabilistic neural networks and
relative correlation metric. Applied Artificial Intelligence, 18:117–128, 2004.

[11] R. Jensen. Combining rough and fuzzy sets for feature selection. PhD thesis,
School of Informatics, University of Edinburgh, 2004.

[12] J. Komorowski, A. Øhrn, and A. Skowron. The rosetta rough set software
system. In W. Klasgen and J. Zytkow, editors, Handbook of Data Mining and
Knowledge Discovery, chapter D.2.3. Oxford University Press, 2002.

[13] Z. Pawlak. Rough sets. International J. Comp & Inf. Sc., 1982.
[14] Z. Pawlak. Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht, 1991.
[15] A. Skowron and C. Rauszer. The discernibility matrices and functions in in-

formation systems. In R. Slowinski, editor, Handbook of Applications and Ad-
vances of the Rough Set Theory, pages 331–362. Kluwer Academic Publishers,
Dordrecht, 1992.

[16] S. Vinterbo and A. Øhrn. Minimal approximate hitting sets and rule templates.
International Journal of Approximate Reasoning, pages 123–143, 2000.

[17] J. Wroblewski. Finding minimal reducts using genetic algorithms. In Second
Annual Joint Conference on Information Sciences, pages 186–189, 1995.

[18] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research, 5:1205–1224, 2004.




