
THE ENTITIES OF GENE EXPRESSION PROGRAMMING 29

In contrast to its analogous cellular gene expression, GEP gene expression is

rather simple. The main players in gene expression programming are only

two: the chromosomes and the expression trees, the latter consisting of the

expression of the genetic information encoded in the former. The process of

information decoding (from the chromosomes to the expression trees) is called

translation. And this translation implies obviously a kind of code and a set of

rules. The genetic code is very simple: a one-to-one relationship between the

symbols of the chromosome and the functions and terminals they represent.

The rules are also quite simple: they determine the spatial organization of

the functions and terminals in the expression trees and the type of interaction

between sub-expression trees in multigenic systems.

Therefore, there are two languages in gene expression programming: the

language of the genes and the language of the expression trees, and we will

see that the sequence or structure of one of these languages is more than

sufficient to infer exactly the other. In nature, although the inference of the

sequence of proteins given the sequence of genes and vice versa is possible,

very little is known about the rules that determine the folding of the protein.

And the expression of a protein gene is not complete before the folding of

the protein, that is, strings of amino acids only become proteins when they

are correctly folded into their native three-dimensional structure. The only

thing we know for sure about protein folding is that the sequence of the

amino acids determines the folding. However, the rules that orchestrate the

folding are still unknown. Fortunately for us, in GEP, thanks to the simple

rules that determine the structure of expression trees and their interactions, it

is possible to infer immediately the phenotype (the final structure, which is

equivalent to the folded protein molecule) given the sequence of a gene, and

vice versa. This bilingual and unequivocal system is called Karva language.

The details of this language are explored in this chapter.

2 The Entities of Gene

Expression Programming

Cândida Ferreira: Gene Expression Programming, Studies in Computational Intelligence

 (SCI) 21,
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

29–54 (2006)

30 GENE EXPRESSION PROGRAMMING

2.1 The Genome

In gene expression programming, the genome or chromosome consists of a

linear, symbolic string of fixed length composed of one or more genes. De-

spite their fixed length, we will see that GEP chromosomes code for expres-

sion trees with different sizes and shapes.

2.1.1 Open Reading Frames and Genes

The structural organization of GEP genes is better understood in terms of

open reading frames (ORFs). In biology, an ORF, or coding sequence of a

gene, begins with the start codon, continues with the amino acid codons, and

ends at a termination codon. However, a gene is more than the respective

ORF, with sequences upstream of the start codon and sequences downstream

of the stop codon. Although in GEP the start site is always the first position

of a gene, the termination point does not always coincide with the last posi-

tion of a gene. It is common for GEP genes to have noncoding regions down-

stream of the termination point. (For now we will not consider these noncoding

regions, as they do not interfere with the product of expression.)

Consider, for example, the algebraic expression:

 (2.1)

It can also be represented as a diagram or expression tree (ET):

dcba

Q

ba dc

where “Q” represents the square root function.

This kind of diagram representation is in fact the phenotype of GEP genes,

the genotype being easily inferred from the phenotype as follows:

01234567
Q*-+abcd (2.2)

which is the straightforward reading of the ET from left to right and from top

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 31

to bottom (exactly as we read a page of text). The expression (2.2) is an

ORF, strarting at “Q” (position 0) and terminating at “d” (position 7). I named

these ORFs K-expressions (from Karva language).

Note that this notation differs from both the postfix and prefix representa-

tions used in different GP implementations with arrays or stacks (Keith and

Martin 1994). Figure 2.1 compares Karva notation both with postfix and

prefix expressions.

Figure 2.1. Comparison of Karva notation with both postfix and prefix

representations. In all cases, the expression (2.1) is represented.

K-expression:

01234567
Q*-+abcd

Postfix:

01234567
ab-cd+*Q

Prefix:

01234567
Q*+dc-ba

Consider another ORF, the following K-expression:

01234567890
Q*b**+baQba (2.3)

Its expression as an ET is also very simple and straightforward. For its com-

plete expression, the rules governing the spatial distribution of functions and

terminals must be followed. First, the start of the ORF corresponds to the

root of the ET (this root, though, is at the top of the tree), forming this node

the first line of the ET. Second, depending on the number of arguments of

each element (functions may have a different number of arguments, whereas

terminals have an arity of zero), in the next line are placed as many nodes as

there are arguments to the elements in the previous line. Third, from left to

right, the new nodes are filled consecutively with the elements of the ORF.

This process is repeated until a line containing only terminals is formed. So,

for the K-expression (2.3) above, the root of the ET will be formed by “Q”,

the symbol at position 0:

Q

The square root function has only one argument, so the next line requires only

one node, which is filled with the next symbol at position 1, that is, “*”:

32 GENE EXPRESSION PROGRAMMING

The multiplication function takes two arguments and, therefore, in the next

line are placed two more nodes. These nodes are then filled with the symbols

at positions 2 and 3, that is, “b” and “*”, obtaining:

Q

Q

b

In this line we have a leaf node and a bud node representing a function of two

arguments (multiplication). Therefore two more nodes are required to build

the next line. And in this case, they are filled with the elements at positions 4

and 5, namely “*” and “+”, giving:

Q

b

Now we have a line with two function buds, each expanding into two more

branches. Thus, four new nodes are required in the next line. And they are

filled with the elements “b”, “a”, “Q”, and “b”, occupying respectively posi-

tions 6, 7, 8, and 9 in the ORF, obtaining:

Q

Q

b

ab b

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 33

In this new line, although there are four nodes, just one of them is a bud node,

whereas the remaining three are leaf nodes. From the leaf nodes obviously

no more growth will be sprouting, but from the bud node another branch will

be formed. Thus, the required branch is placed below the bud node and filled

with the next element in the ORF, the symbol “a” at position 10:

Q

Q

b

a

ab b

With this step, the expression of the K-expression (2.3) is complete as the last

line contains only nodes with terminals. We will see that, thanks to the structural

organization of GEP genes, the last line of all ETs generated by this technique

will contain only terminals. And this is equivalent to say that all programs

evolved by GEP are syntactically correct. Indeed, in GEP, there is no such

thing as an invalid expression or computer program.

Looking at the structure of ORFs only, it is difficult or even impossible to

see the advantages of such a representation, except perhaps for its simplicity

and elegance. However, when open reading frames are analyzed in the con-

text of a gene, the advantages of this representation become obvious. As I

said before, the chromosomes of gene expression programming have fixed

length, and they are composed of one or more genes of equal length. There-

fore the length of GEP genes is also fixed. Thus, in gene expression pro-

gramming, what varies is not the length of genes, which is constant, but the

length of the ORFs. Indeed, the length of an ORF may be equal to or less

than the length of the gene. In the first case, the termination point coincides

with the end of the gene, and in the latter the termination point is somewhere

upstream of the end of the gene. And this obviously means that GEP genes

have, most of the times, noncoding regions at their ends.

And what is the function of these noncoding regions at the end of GEP

genes? We will see that they are the essence of gene expression program-

34 GENE EXPRESSION PROGRAMMING

ming and evolvability, for they allow the modification of the genome through

the use of virtually any kind of genetic operator without any kind of restric-

tion, always producing syntactically correct programs. And this opens up

new grounds for the exploration of the search space as all the recesses of the

fitness landscape are now accessible. Thus, in gene expression programming,

the fundamental property of genotype/phenotype systems – syntactic clo-

sure – is intrinsic, allowing the totally unconstrained manipulation of the

genotype and, consequently, an efficient evolution. Indeed, this is the para-

mount difference between gene expression programming and previous GP

implementations, with or without linear genomes, all of them either limiting

themselves to inefficient genetic operators or checking exhaustively all the

newly created programs for syntactic errors (for a review on genetic pro-

gramming with linear genomes see Banzhaf et al. 1998).

Let us now analyze the structural organization of GEP genes in order to

understand how they invariably code for syntactically correct computer pro-

grams and why their revolutionary structure allows the unconstrained appli-

cation of virtually any search operator and, therefore, guarantees the genera-

tion of the quintessential genetic variation fundamental for the evolution of

good solutions.

2.1.2 Structural and Functional Organization of Genes

So, what is so special about the structure of GEP genes? Well, they are com-

posed of two different domains – a head and a tail domain – each with differ-

ent properties and functions. The head domain is used mainly to encode the

functions chosen for the problem at hand, whereas the tail works as a buffer

or reservoir of terminals in order to guarantee the formation of only valid

structures. Thus, the head domain contains symbols that represent both func-

tions and terminals, whereas the tail is composed of only terminals.

For each problem, the length of the head h is chosen, whereas the length

of the tail t is a function of h and the number of arguments of the function

with more arguments n
max

 (also called maximum arity) and is evaluated by

the equation:

(2.4)

Consider a gene for which the set of functions F = {Q, *, /,-, +} and the set

of terminals T = {a, b}, thus giving n
max

 = 2. And if we chose an h = 15, then

t = 15 · (2 - 1) + 1 = 16 and the length of the gene g is 15 + 16 = 31. One such

gene is shown below (the tail is shown in bold):

1)1(maxnht

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 35

Q

b

a

a

a

b

b

a

a

a

0123456789012345678901234567890
*b+a-aQab+//+b+babbabbbababbaaa (2.5)

It codes for the following ET:

In this case, the termination point shifts just one position to the right (position

8), with the new expression tree managing to keep most of the characteristics

of the original one.

Consider another mutation in chromosome (2.5) above, the substitution of

“a” at position 5 by “+”. In this case, the following daughter chromosome is

obtained:

Note that in this case the ORF ends at position 7, whereas the gene ends at

position 30 and, therefore, a noncoding region of 23 elements, apparently

doing nothing, exists downstream of the termination point.

Suppose now a mutation occurred in the coding region of the gene, spe-

cifically at position 6, changing the “Q” into “*”. Then the following gene is

obtained:

0123456789012345678901234567890
*b+a-a*ab+//+b+babbabbbababbaaa (2.6)

And its expression gives:

36 GENE EXPRESSION PROGRAMMING

b

a

Q

0123456789012345678901234567890
*b+a-+Qab+//+b+babbabbbababbaaa (2.7)

And its expression results in the following ET:

b

a

ba

b b

Q

ba b a

/ /

In this case, the ORF ends at position 3, shortening the original ET in four

nodes and creating a new daughter tree very different from the original one.

So, despite their fixed length, each gene has the potential to code for ex-

pression trees of different sizes and shapes, being the simplest composed of

In this case, the termination point shifts 12 positions to the right (position 19),

enlarging significantly the new expression tree.

Obviously the opposite might also happen, and the expression tree might

shrink. For instance, suppose that a mutation occurred at position 2 in chro-

mosome (2.5) above, changing the “+” into “Q”:

0123456789012345678901234567890
*bQa-aQab+//+b+babbabbbababbaaa (2.8)

Now its expression results in the following ET:

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 37

only one node (when the first element of a gene is a terminal) and the largest

composed of as many nodes as the length of the gene (when all the elements

of the head are functions with maximum arity).

It is evident from the examples above, that any modification made in the

genome, no matter how profound, always results in a structurally correct

expression tree. Obviously, the structural organization of genes must be pre-

served, always maintaining the boundaries between head and tail and not

allowing symbols from the function set on the tail. We will pursue these

matters further in the next chapter (section 3.3) where the mechanisms and

the effects of different genetic operators are thoroughly analyzed.

2.1.3 Multigenic Chromosomes

In nature, chromosomes usually code for more than one gene, as complex

individuals require complex genomes. Indeed, the evolution of more com-

plex entities is only possible through the creation of multigenic genomes.

Not surprisingly, gene expression programming also explores the advantages

of multigenic systems.

The chromosomes of gene expression programming are usually composed

of more than one gene of equal length. For each problem, the number of

genes, as well as the length of the head, are chosen a priori. Each gene codes

for a sub-ET and the sub-ETs interact with one another forming a more com-

plex entity. The details of such interactions will be fully explained in section

2.2, Expression Trees and the Phenotype. For now we will focus exclusively

on the construction of sub-ETs from their respective genes.

Consider, for example, the following chromosome with length 39, com-

posed of three genes, each with h = 6 and a length of 13 (the tails are shown

in bold):

012345678901201234567890120123456789012
Qb+/bbbabab-a+QbQbbababa/ba-/*bbaaaaa (2.9)

It has three open reading frames, and each ORF codes for a particular sub-

ET (Figure 2.2). We know already that the start of each ORF coincides with

the first element of the gene and, for the sake of clarity, for each gene it is

always indicated by position zero; the end of each ORF, though, is only evi-

dent upon construction of the respective sub-ET. As shown in Figure 2.2, the

first ORF ends at position 9 (sub-ET
1
); the second ORF ends at position 6

(sub-ET
2
); and the last ORF ends at position 2 (sub-ET

3
).

38 GENE EXPRESSION PROGRAMMING

In summary, the chromosomes of gene expression programming contain

several ORFs, each ORF coding for a structurally and functionally unique

sub-ET. We will see that, depending on the problem at hand, these sub-ETs

may be selected individually according to their respective fitness (for exam-

ple, in problems with multiple outputs), or they may form a more complex,

multi-subunit ET and be selected according to the fitness of the whole, multi-

subunit ET. The patterns of expression and the details of selection will be

often discussed in this book. However, keep in mind that each sub-ET is both

a separate entity and part of a more complex, hierarchical structure, and, as

in all complex systems, the whole is more than the sum of its parts.

2.2 Expression Trees and the Phenotype

In nature, the phenotype has multiple levels of complexity, being the most

complex the organism itself. But tRNAs, proteins, ribosomes, cells, and so

forth, are also products of expression and all of them are ultimately encoded

in the genome.

In contrast to nature, in gene expression programming, the expression of

the genetic information is very simple. Nonetheless, as we have seen in

Figure 2.2. Expression of GEP genes as sub-ETs. a) A three-genic chromosome

with the gene tails shown in bold. Position 0 marks the start of each gene. b) The

sub-ETs codified by each gene.

012345678901201234567890120123456789012

Qb+/ -a+QbQ /ba-/* bbbabab bbababa bbaaaaa

a.

b.

a

b

b

Q

Q

ab

/

b

a

Q

b b b

/

Sub-ET1 Sub-ET3Sub-ET2

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 39

section 2.1, GEP chromosomes can have different structural organizations

and, therefore, the individuals encoded in those structures have obviously

different degrees of complexity. The simplest individuals we have encountered

so far are encoded in a single gene, and the “organism” is, in this case, the

product of one gene – an ET composed of only one subunit. In other cases,

the “organism” is a multi-subunit ET in which the different subunits are linked

together by a particular linking function. And in other cases, the “organism”

is composed of different sub-ETs in which the different sub-ETs are respon-

sible for a particular facet of the problem at hand. In this section we will

discuss different aspects of the expression of the genetic information in gene

expression programming, drawing attention to the different levels of

phenotypic complexity.

2.2.1 Information Decoding: Translation

From the simplest individual to the most complex, the expression of the ge-

netic information in gene expression programming starts with translation or,

in other words, with the construction of all the sub-ETs.

Consider the following chromosome composed of just one gene (the tail

is shown in bold):

0123456789012345
NIAbObbaaaabaabb (2.10)

The symbols {A, O, N, I} represent, respectively, the Boolean functions AND,

OR, NOT, and IF (if a = 1, then b; else c), where the first two functions take

two arguments, NOT takes one argument, and the IF function takes three

arguments. In this case, the product of translation is the following expression

tree with nine elements:

A O

b b

b

a a

N

which, as you can easily check, is a perfect, albeit rather verbose, solution to

the NOR function.

40 GENE EXPRESSION PROGRAMMING

Thus, for this simple individual, a single unit ET is the “organism” and, in

this case, the expression of the genetic information ends with translation.

When the genome codes for more than one gene, each gene is independ-

ently translated as a sub-ET, and two different kinds of “organism” might be

formed: in the first kind, the sub-ETs are physically connected to one an-

other by a particular linking function; in the second kind, the sub-ETs work

together to solve the problem at hand but there are no direct connections

between them. Let’s now make this clearer with two examples.

Consider, for instance, the following chromosome composed of three dif-

ferent genes (the tails are shown in bold):

012345678901234567890123456789
AOaabaaaabNabaaaaaabINNbababaa (2.11)

It codes for three different sub-ETs (Figure 2.3), each one representing a

particular Boolean expression. Usually, these sub-ETs or sub-programs are

part of a bigger program in which the sub-ETs are linked by a particular

linking function. For instance, if we linked the sub-ETs one after the other by

the Boolean function OR or AND, two different programs would be repre-

sented by chromosome (2.11) above. Thus, for this individual, the expres-

sion of the genetic information starts with the translation of the sub-ETs, but

Figure 2.3. Translation of GEP genes as Boolean sub-ETs. a) A three-genic

chromosome with the gene tails shown in bold. b) The sub-ETs codified by each

gene. Note that the full expression of the chromosome will require some kind of

interaction between the sub-ETs. Indeed, the program encoded in the chromosome

only makes sense if the interactions between sub-programs are specified. For

instance, three different programs would be obtained if the linking were done by

OR, AND, or IF.

b

012345678901234567890123456789

AOa Nab INN abaaaab aaaaaab bababaa

a.

b.

N

N Na

Sub-ET1 Sub-ET3Sub-ET2

A

O a

ab ba

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 41

ends only after the linking of the sub-ETs by a particular linking function. And

therefore the “organism” in this case will consist of a multi-subunit expres-

sion tree composed of three smaller subunits.

For problems with multiple outputs, however, the different sub-ETs en-

coded in the genome are engaged in the identification of just one kind of

output and, therefore, they are not physically connected to one another: they

remain more or less autonomous agents working together to solve the prob-

lem at hand. For instance, in classification problems a particular sub-ET is

responsible for the identification of a particular class.

Consider, for instance, the chromosome below composed of three differ-

ent genes created to solve a classification task with three distinct classes:

012345678901201234567890120123456789012
-/dac/dacaccd//-aacbbbabcd-d/+c*dbdbacd (2.12)

It codes for three different sub-ETs, each one representing a rather complex

algebraic expression (Figure 2.4).

Figure 2.4. Translation of GEP genes as algebraic sub-ETs. a) A three-genic

chromosome with the tails shown in bold. b) The sub-ETs codified by each gene.

Note that, after translation, the sub-ETs might either form multi-subunit expression

trees composed of smaller sub-ETs or remain isolated as a single-unit expression

tree. For instance, in problems with just one output, the sub-ETs might be linked by

a particular linking function or, in problems with multiple outputs, each sub-ET is

responsible for the identification of a particular output.

012345678901201234567890120123456789012

-/dac/ //-aac -d/+c*dacaccd bbbabcd dbdbacd

a.

b. Sub-ET1

/

a

d

c

Sub-ET2

/

aa c b

Sub-ET3

d

d

d

c

b

42 GENE EXPRESSION PROGRAMMING

In this classification task, for gene expression to be complete, the output of

each sub-ET must first be converted into 0 or 1 using a rounding threshold,

below which the output is converted into 0, 1 otherwise. Then the sub-ETs

must be subjected to the following rules in order to determine the class:

IF (Sub-ET
1
 = 1 AND Sub-ET

2
 = 0 AND Sub-ET

3
 = 0), THEN Class 1;

IF (Sub-ET
1
 = 0 AND Sub-ET

2
 = 1 AND Sub-ET

3
 = 0), THEN Class 2;

IF (Sub-ET
1
 = 0 AND Sub-ET

2
 = 0 AND Sub-ET

3
 = 1), THEN Class 3.

Let’s make this more concrete with a simple example, a small sub-set of

the iris dataset (Fisher 1936) where the first five samples of each type of iris

in the original dataset are used (Table 2.1). Indeed, the program (2.12) above

was created using the training samples shown in Table 2.1. And, as you can

easily confirm with the help of Figure 2.4, this model classifies all the sam-

ples correctly using a rounding threshold of 0.5.

So, for problems with multiple outputs, multiple sub-programs are en-

coded in the chromosome and the “organism” is the result of an intricate

collaboration between all sub-programs, in which each sub-program is en-

gaged in the discovery of a particular facet of the global problem.

Table 2.1. The iris sub-set.

Sepal length (a) Sepal width (b) Petal length (c) Petal width (d) Type

5.1 3.5 1.4 0.2 class 1 (seto.)

4.9 3.0 1.4 0.2 class 1 (seto.)

4.7 3.2 1.3 0.2 class 1 (seto.)

4.6 3.1 1.5 0.2 class 1 (seto.)

5.0 3.6 1.4 0.2 class 1 (seto.)

7.0 3.2 4.7 1.4 class 2 (vers.)

6.4 3.2 4.5 1.5 class 2 (vers.)

6.9 3.1 4.9 1.5 class 2 (vers.)

5.5 2.3 4.0 1.3 class 2 (vers.)

6.5 2.8 4.6 1.5 class 2 (vers.)

6.3 3.3 6.0 2.5 class 3 (virg.)

5.8 2.7 5.1 1.9 class 3 (virg.)

7.1 3.0 5.9 2.1 class 3 (virg.)

6.3 2.9 5.6 1.8 class 3 (virg.)

6.5 3.0 5.8 2.2 class 3 (virg.)

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 43

2.2.2 Posttranslational Interactions and Linking Functions

We have already seen that translation results in the formation of sub-ETs

with different sizes and shapes, and that the complete expression of the ge-

netic information requires the interaction of these sub-ETs with one another.

Only then will the individual be fully expressed. A very common and useful

strategy consists in the linking of sub-ETs by a particular linking function.

Indeed, most mathematical and Boolean applications are problems of just

one output and, therefore, can benefit from this strategy, in which more com-

plex programs are designed by linking together smaller sub-programs.

When the sub-ETs are algebraic expressions or Boolean expressions, any

mathematical or Boolean function with more than one argument can be used

to link the sub-ETs in a final, multi-subunit ET. For algebraic expressions,

the most frequently chosen functions to link the sub-ETs are addition, sub-

traction, multiplication, or division. For Boolean expressions, the most fre-

quently chosen linking functions are all the interesting functions of two ar-

guments (functions 1, 2, 4, 6, 7, 8, 9, 11, 13, and 14, or, more intelligibly,

NOR, LT, GT, XOR, NAND, AND, NXOR, LOE, GOE, and OR, respec-

tively), or functions of three arguments such as the already familiar IF func-

tion (if a = 1, then b; else c) or the 3-multiplexer (also easily described as an

IF THEN ELSE statement: if a = 0, then b; else c, which, as you can see, is

very similar to the IF function).

However, the linking of sub-ETs with functions of two arguments is much

simpler, as any number of sub-ETs can be linked together one after the other

(see Figure 2.5). On the other hand, the linking of sub-ETs with linking func-

tions of more than two arguments, say n arguments, is more problematic as it

requires nn sub-ETs for a correct linking (see Figure 2.6). Let’s now make

this clearer with two examples.

For instance, consider the following chromosome, encoding three alge-

braic sub-ETs linked by addition (the tails are shown in bold):

012345678901201234567890120123456789012
QaQ+-Qbbaaaba+Q+ab+abababa*-**b+aabbaba (2.13)

As you can see in Figure 2.5, the sub-ETs are linked together one after the

other in an orderly fashion. Note that the multi-subunit ET encoded in chro-

mosome (2.13) could be linearly encoded as the following K-expression:

01234567890123456789012
++*Q+-*aQ+*b+aab+abbaab (2.14)

44 GENE EXPRESSION PROGRAMMING

Figure 2.5. Expression of multigenic chromosomes encoding sub-ETs linked by a

two-argument function. a) A three-genic chromosome with the tails shown in bold.

b) The sub-ETs codified by each gene. c) The result of posttranslational linking

with addition. The linking functions are shown in gray.

Q

012345678901201234567890120123456789012

QaQ+-Q +Q+ab+ *-**b+bbaaaba abababa aabbaba

a.

b.

a

Sub-ET1

a ab

b

b

a

Sub-ET3

Q

a b

a b

Sub-ET2

Q

a Q

a b

a b

a ab

b

b

a

c. ET

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 45

However, the use of multigenic chromosomes is more appropriate to evolve

solutions to complex problems, for they permit the modular construction of

more complex, hierarchical structures, where each gene codes for a smaller

building block (see the section Testing the Building Blocks Hypothesis in

chapter 12). These small building blocks are separated from each other and,

therefore, can evolve with a certain degree of independence.

And now consider another chromosome, this time encoding three Boolean

sub-ETs, linked by a three-argument function (the tails are shown in bold):

012345678901234501234567890123450123456789012345
IOaIAcbaaacaacacAOcaIccabcbccbacIONAAbbbbacbcbbc (2.15)

As you can see in Figure 2.6, at least three genes are required to link the sub-

ETs with the IF(a,b,c) function. Note also that if more sub-ETs were needed,

the simplest organization would require at least nine sub-ETs so that they

could be linked properly by the three-argument function. Again, the multi-

subunit ET encoded in chromosome (2.15) could be linearized, forming the

following K-expression:

0123456789012345678901234567890
IIAIOaIOcONAAcbaaaIAbbbbacccaac (2.16)

In summary, to express fully a chromosome, the information concerning

the kind of interaction between the sub-ETs must also be provided. There-

fore, for each problem, the type of linking function or type of interaction

between sub-ETs is chosen a priori. We can start with addition for algebraic

expressions or OR for Boolean rules but, in some cases, another linking func-

tion might be more appropriate (like multiplication or AND, for instance).

The idea, of course, is to find a good solution, and different linking functions

can be used to explore different recesses of the fitness landscape, increasing

the odds of finding Mount Everest. Notwithstanding, the basic gene expres-

sion algorithm can be easily modified to enable the evolution of linking func-

tions. And an elegant and interesting way of solving this problem consists in

the creation of homeotic genes that encode a developmental program or cell

in which different combinations of sub-ETs are brought together by follow-

ing the linking interactions operating in that particular cell (see how this is

achieved in the next section).

46 GENE EXPRESSION PROGRAMMING

Figure 2.6. Expression of multigenic chromosomes encoding sub-ETs linked by a

three-argument function. a) A three-genic chromosome with the gene tails shown in

bold. b) The sub-ETs codified by each gene. c) The result of posttranslational

linking with IF. The linking function is shown in gray.

b

b b b

012345678901234501234567890123450123456789012345

IOaIA AOcaI IONAAcbaaacaacac ccabcbccbac bbbbacbcbbc

a.

b.

N

c

c cc

Sub-ET1

Sub-ET3

Sub-ET2

A

A

A

O

O

O

a

a

a

ca

b

c

A

aa

a

ET

bc

c

A

O

a

a

a

a

cc

O c

A

a

a

b b b

N

A

AO

ca

b

c.

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 47

2.3 Cells and the Evolution of Linking Functions

The linking of sub-ETs by a particular linking function is simple and highly

efficient in evolutionary terms. Indeed, from unigenic to multigenic systems,

efficiency increases considerably (see, for instance, section 5 of chapter 12

for a discussion of The Higher Organization of Multigenic Systems). De-

spite this artificial increase in complexity (“artificial” in the sense that it was

not evolved by the system itself), evolution in multigenic systems still oc-

curs efficiently and therefore they can be efficiently used to evolve good

solutions to virtually all kinds of problems.

In principle, it is possible to impose from outside higher levels of com-

plexity, but this is no guarantee that an increase in performance will be

achieved. Natural evolutionary systems are not created this way: higher lev-

els of complexity are created above lower levels and the evolution of com-

plexity occurs more or less continuously.

Notwithstanding, the linking of sub-ETs in gene expression programming

can be implemented by using a higher level of complexity. For that purpose

a special class of genes was created – homeotic genes – that control the

development of the individual. The expression of such genes results in dif-

ferent main programs or cells, that is, they determine which genes are ex-

pressed in each cell and how the sub-ETs of each cell interact with one an-

other. Or stated differently, homeotic genes determine which sub-ETs are

called upon (and how often) in which main program or cell and what kind of

connections they establish with one another. How this is done is explained in

the next section.

2.3.1 Homeotic Genes and the Cellular System

Homeotic genes have exactly the same kind of structural organization as

conventional genes and they are built using an identical process. This means

that they also contain a head and tail domain, with the heads containing, in

this case, linking functions (so called because they are in fact used to link the

different sub-ETs encoded in the conventional genes) and a special class of

terminals – genic terminals – representing conventional genes, which, in the

cellular system, encode different sub-ETs or sub-programs; the tails contain

obviously only genic terminals.

48 GENE EXPRESSION PROGRAMMING

Consider, for instance, the following chromosome:

01234560101234560101234560101234560123
/+a/abbba+*-abbabb/b*+abaab+Q/0*210212 (2.17)

It codes for three conventional genes and one homeotic gene (shown in bold).

The three conventional genes code, as usual, for three different sub-ETs, with

the difference that now these sub-ETs may be invoked multiple times from

different places, or, stated differently, they will act as automatically defined

functions (ADFs). And the homeotic gene controls the interactions between

the different sub-ETs or, in other words, determines which functions are used

to link the sub-ETs or ADFs and how the linking is established (Figure 2.7).

Figure 2.7. Expression of chromosomes with a single homeotic gene encoding a

main program or cell. a) The chromosome composed of three conventional genes

and one homeotic gene (shown in bold). b) The sub-ETs or ADFs codified by each

conventional gene. c) The final main program or cell. Note that the cellular system

allows code reuse as each ADF might be called several times by the main program.

012345601012345601012345601

/+a/abbba+*-abbabb/b*+abaab

01234560123

+Q/0*210212

a.

b.

c.

ADF0 ADF1 ADF2

Cell

b

/

/

a

a

a

b

/ a

a

b

a b b

b

Q

ADF0

ADF0ADF1

ADF2

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 49

It is worth emphasizing how flexible and dynamic the linking of sub-ETs

became with this new method, allowing not only the use of any kind of link-

ing function (even functions of just one argument can now be used as linkers)

but also the use of different linking functions at a time as opposed to just one

static linker. And to top it off, this new system is totally unsupervised, being

the linking functions totally sorted out by the evolutionary process itself.

As Figure 2.7 clearly shows, this kind of representation not only allows

the evolution of linking functions but also allows code reuse. Thus, this is

also an extremely elegant form of implementing ADFs in gene expression

programming. Indeed, any ADF in this cellular representation can not only

be used as many times as necessary but also establish different interactions

with the other ADFs in the main program or cell. For instance, in the particu-

lar case of Figure 2.7, ADF
0
 is used twice in the main program, whereas

ADF
1
 and ADF

2
 are both used just once.

It is worth pointing out that homeotic genes have their specific length and

their specific set of functions. And these functions can take any number of

arguments (functions with one, two, three, ..., n arguments). For instance, in

the particular case of chromosome (2.17), the head length of the homeotic

gene h
H
 is equal to five, whereas for the conventional genes h = 4; and the

function set of the homeotic gene consists of F
H
 = {+, *, /, Q}, whereas for

the conventional genes the function set consists of F = {+, -, *, /}.

In summary, as Figure 2.7 emphasizes, the cellular system of gene expres-

sion programming is not only a form of elegantly allowing the totally uncon-

strained evolution of linking functions in multigenic systems, but also an

extremely elegant and flexible way of encoding automatically defined func-

tions that can be called an arbitrary number of times from an arbitrary number

of different places.

2.3.2 Multicellular Systems with Multiple Main Programs

The use of more than one homeotic gene results obviously in a multicellular

system where each homeotic gene puts together a different combination of

sub-expression trees.

Consider, for instance, the following chromosome:

01234560101234560101234560101234560123456
/Q+*babab/+a/abbab*Q-bbaaab*1+1020*Q*1202 (2.18)

It codes for three conventional genes and two homeotic genes (shown in

50 GENE EXPRESSION PROGRAMMING

bold). And its expression results in two different cells or main programs, each

expressing different genes in different ways (Figure 2.8). And as you can see

in Figure 2.8, in this particular case, ADF
0
 is called both from Cell

0
 and Cell

1
;

ADF
1
 is called twice from Cell

0
 and just once from Cell

1
; and ADF

2
 is only

called from Cell
1
.

The applications of these multicellular systems are multiple and varied

and, like the multigenic systems, they can be used both in problems with just

one output and in problems with multiple outputs. In the former case, the

best program or cell accounts for the fitness of the individual; in the latter,

each cell is responsible for a particular facet of a multiple output task such as

a classification task with multiple classes. We will pursue these questions

further in chapter 6, where automatically defined functions are discussed in

more detail.

Figure 2.8. Expression of chromosomes with two homeotic genes encoding two

different main programs or cells. a) The chromosome composed of three conven-

tional genes and two homeotic genes (shown in bold). b) The sub-ETs or ADFs

codified by each conventional gene. c) Two different main programs expressed in

two different cells. Note how different cells put together different consortiums of

genes.

012345601012345601012345601

/Q+*babab/+a/abbab*Q-bbaaab

01234560123456

*1+1020*Q*1202

a.

b.

c.

ADF0 ADF1 ADF2

Cell0 Cell1

Q

b b a

ADF0ADF1

ADF1

b

/ a

a

b

Q

ab

/

b a

ADF1

Q

ADF2 ADF0

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 51

2.4 Other Levels of Complexity

As we have seen in the examples above, although a very simple system, gene

expression programming exhibits already a complex development and also

uses different chromosomal organizations. So far, we have been dealing with

genes (both conventional and homeotic) containing only head/tail domains.

But gene expression programming regularly uses other chromosomal organi-

zations that are more complex than the basic head/tail domain. These com-

plex chromosomal structures consist of clusters of functional units composed

of conventional head/tail domains plus one or more extra domains. The extra

domains usually code for several one-element sub-ETs. And all the sub-ETs

encoded in the different domains interact with one another, forming a more

complex entity with a complex network of interactions.

One such architecture was developed to manipulate random numerical

constants for function finding problems (Ferreira 2001, 2003). For instance,

the following chromosome contains an extra domain Dc (shown in bold)

encoding random numerical constants:

01234567890123456789012
+*?+?*+a??aaa??09081345 (2.19)

As you can see in Figure 2.9, the translation of the head/tail domain is done

in the usual fashion, but, after translation, additional processing is needed in

order to replace the question marks in the tree by the numerical constants

they represent. In chapter 5, Numerical Constants and the GEP-RNC Algo-

rithm, we will learn how these sub-ETs interact with one another so that the

individual is fully expressed.

Multiple domains are also used to design neural networks totally encoded

in a linear genome. These neural networks are one of the most complex indi-

viduals evolved by GEP. In this case, the neural network architecture is en-

coded in a conventional head/tail domain, whereas the weights and thresh-

olds are encoded in two extra domains, Dw and Dt, each encoding several

one-element sub-ETs. For instance, the chromosome below contains two ex-

tra domains encoding the weights and the thresholds of the neural network

encoded in the head/tail domain (the domains are shown in different shades):

0123456789012345678901234567890123456789010
DUDTUDcdabdcabacbad429984097914824092675841 (2.20)

As you can see in Figure 2.10, the translation of the head/tail domain encod-

ing the neural network architecture is also done in the usual fashion, but the

52 GENE EXPRESSION PROGRAMMING

weights of the connections and the thresholds of the neurons must be as-

signed posttranslationally. In chapter 10, Design of Neural Networks, we

will learn the rules of their complete development and how populations of

these complex individuals evolve, finding solutions to problems in the form

of adaptive neural networks totally encoded in linear genomes.

2.5 Karva Language: The Language of GEP

We have already seen that each gene codes for a particular sub-ET, and that

each sub-ET corresponds to a specific K-expression or open reading frame.

Due to the simplicity and elegance of this correspondence, K-expressions

are, per se, extremely compact, intelligible computer programs. We have

already seen how multi-subunit expression trees can be easily converted into

linear K-expressions, and this can be easily done for any algebraic or Boolean

Figure 2.9. Translation of chromosomes with an additional domain for handling

random numerical constants. a) The chromosome composed of a conventional

head/tail domain and an extra domain (Dc) encoding random numerical constants

represented by the numerals 0-9 (shown in bold). b) The sub-ETs codified by each

domain. The one-element sub-ETs encoded in Dc are placed apart together. “?”

represents the random numerical constants encoded in the numerals of Dc. How all

these sub-ETs interact will be explained in chapter 5.

012345678901234

+*?+?*+a??aaa??

56789012

09081345
a.

b.

a a

?

?

? ?

0

9

0

8

1

3

4

5

Dc

THE ENTITIES OF GENE EXPRESSION PROGRAMMING 53

Figure 2.10. Translation of chromosomes with two extra domains for handling the

weights and thresholds of neural networks. a) A multi-domain chromosome

composed of a conventional head/tail domain encoding the neural network

architecture, and two extra domains – one encoding the weights (Dw) of the neural

network encoded in the head/tail domain and another the thresholds (Dt). Dw and

Dt are shown in different shades. b) The sub-ETs codified by each domain. The

one-element sub-ETs encoded in Dw and Dt are placed apart together. “U”, “D”,

and “T” represent, respectively, neurons or functions with connectivity one, two,

and three. How all these sub-ETs interact will be shown in chapter 10.

0123456789

DUDTUDcdabdcabacbad 675841429984097914824092

012345678 789010901234567890123456

ac d

T

U D

D

D

d c

U

b

0

2

9

0

22

4

44

4

7

8

8

9

9

9

9

1

Dw

1

4

5

6

7

8

Dt

a.

b.

expression. Indeed, the language of gene expression programming – Karva

language – is a versatile representation that can be used to evolve relatively

complex programs as simple, extremely compact, symbolic strings. In fact,

there is already commercially available software such as Automatic Problem

Solver by Gepsoft that automatically converts K-expressions and GEP chro-

mosomes into several programming languages, such as C, C++, C#, Visual

Basic, VB.NET, Java, Fortran, VHDL, Verilog, and others.

Another advantage of Karva notation is that it can be used to evolve highly

sophisticated programs using any programming language. Indeed, the origi-

nal GEP implementation was written in C++, but it can be done in virtually

any programming language, as it does not rely on any quirks of a particular

programming language. As a comparison, it is worth pointing out that early

GP implementations relied greatly on LISP because the sub-tree swapping

that occurs during reproduction in that system is very simple to implement in

that programming language.

54 GENE EXPRESSION PROGRAMMING

In the next chapter, the implementation details of the gene expression algo-

rithm will be fully analyzed, starting with the creation of the initial population

and finishing with selection and reproduction to generate the new individuals

of the new generation.

