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1. Introduction 

Almost all complex artifacts nowadays, including physical artifacts such as airplanes, 
as well as informational artifacts such as software, organizations, business processes 
and so on, are defined via the interaction of many, sometimes thousands of 
participants, working on different elements of the design. This collaborative design
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process is challenging because strong interdependencies between design decisions 
make it difficult to converge on a single design that satisfies these dependencies and is 
acceptable to all participants. Current collaborative design approaches are as a result 
typically characterized by heavy reliance on expensive and time-consuming 
processes, poor incorporation of some important design concerns (typically later life-
cycle issues such as environmental impact), as well as reduced creativity due to the 
tendency to incrementally modify known successful designs rather than explore 
radically different and potentially superior ones. 
 Research on negotiation focuses on understanding what local behaviors are to be 
expected from (relatively small numbers of) self-interested agents attempting to come 
to agreements in the face of interdependencies. Complex systems research 
compliments this perspective by attempting to understand the global dynamics that 
emerge as the collective effect of many such local decisions. These two perspectives, 
when brought together, have we believe much to offer to a understanding of the 
dynamics of collaborative design. The remainder of this paper is dedicated to 
exploring some of these insights. 

2. A Model of Collaborative Design 

Let us first establish a working definition of collaborative design. A design (of 
physical artifacts such as cars and planes as well as behavioral ones such as plans, 
schedules, production processes or software) can be represented as a set of issues
(sometimes also known as parameters) each with a unique value. A complete design 
for an artifact includes issues that capture the requirements for the artifact, the 
specification of the artifact itself (e.g. the geometry and materials), the process for 
creating the artifact (e.g. the manufacturing process) and so on through the artifacts’ 
entire life cycle. If we imagine that the possible values for every issue are each laid 
along their own orthogonal axis, then the resulting multi-dimensional space can be 
called the design space, wherein every point represents a distinct (though not 
necessarily good or even physically possible) design. The choices for each design 
issue are typically highly interdependent. Typical sources of inter-dependency include 
shared resource (e.g. weight, cost) limits, geometric fit, spatial separation 
requirements, I/O interface conventions, timing constraints etc.

Figure 1. A Model for Collaborative Design 
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Collaborative design is performed by multiple participants (representing individuals, 
teams or even entire organizations), each potentially capable of proposing values for 
design issues and/or evaluating these choices from their own particular perspective 
(e.g. manufacturability). Figure 1 below illustrates this model: the small black circles 
represent design issues, the links between the issues represent design issue inter-
dependencies, and the large ovals represent the design subspace (i.e. subset of design 
issues) associated with each design participant. In a large artifact like a commercial jet 
there may be millions of components and design issues, hundreds to thousands of 
participants, working on hundreds of distinct design subspaces, all collaborating to 
produce a complete design. 
 Some designs are better than others. We can in principle assign a utility value to 
each design and thereby define a utility function that represents the utility for every 
point in the design space (though in practice we may only be able to assess 
comparative as opposed to absolute utility values). A simple utility function might 
look like the following: 
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Figure 2. A simple utility function, with a single optimum 

The goal of the design process can thus be viewed as trying to find the design with the 
optimal (maximal) utility value, though often optimality is abandoned in favor of 
‘good enough’. 
 The key challenge raised by the collaborative design of complex artifacts is that 
the design spaces are typically huge, and concurrent search by the many participants 
through the different design subspaces can be expensive and time-consuming because 
design issue interdependencies lead to conflicts (when the design solutions for 
different subspaces are not consistent with each other). Such conflicts severely impact 
design utility and lead to the need for expensive and time-consuming design rework.

3. Strengths and Limitations of Current Approaches 

Traditionally, collaborative design has been carried out using a serialized process, 
wherein for example a complete requirements set would be generated, then given to 
design engineers who would completely specify the product geometry, which in turn 
would then be given to the manufacturing engineers to create a manufacturing plan, 
and so on. This has the problem that if an earlier decision turns out to be sub-optimal 
from the perspective of someone making dependent decisions later on in the design 
process (e.g. if a requirement is impossible to achieve, or a particular design geometry 
is very expensive to manufacture): the process of revising the design is slow and 
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expensive, and often only the highest priority changes are made. The result is designs 
that tend to be poor from the standpoint of later life-cycle perspectives, including for 
example environmental concerns such as recyclability that are becoming increasingly 
important.
 More recently, several strategies have emerged for better accounting for the 
interdependencies among collaborative design participants. These include concurrent 
engineering and least-commitment design: 
 Concurrent engineering involves the creation of multi-functional design teams, 
including representatives of all important design perspectives, for each distinct design 
subspace. Design decisions can be reviewed by all affected design perspectives when 
they are initially being considered, so bad decisions can be caught and revised 
relatively quickly and cheaply. While this approach has proven superior in some ways 
to traditional serial design, it does often incur an overwhelming burden on engineers 
as they have to attend many hours of design meetings and review hundreds of 
proposed changes per week [6]. 
 Least-commitment design is a complimentary approach that attempts to address 
the same challenges by allowing engineers to specify a design incompletely, for 
example as a rough sketch or set of alternatives, and then gradually make the design 
more specific, for example by pruning some alternatives [9, 13]. This has the 
advantage that bad design decisions can be eliminated before a lot of effort has been 
invested in making them fully specific, and engineers are not forced to make arbitrary 
commitments that lead to needless conflicts. 
 While the adoption of these approaches has been helpful, major challenges 
remain. Consider for example the Boeing 767-F redesign program [6]. Some conflicts 
were not detected until long (days to months) after they had occurred, resulting in 
wasted design time, design rework, and often even scrapped tools and parts. It was 
estimated that roughly half of the labor budget was consumed dealing with changes 
and rework, and that roughly 25-30% of design decisions had to be changed. Since 
maintaining scheduled commitments was a priority, design rework often had to be 
done on a short flow-time basis that typically cost much more (estimates ranged as 
high as 50 times more) and sometimes resulted in reduced product quality. Conflict 
cascades that required as many as 15 iterations to finally produce a consistent design 
were not uncommon for some kinds of design changes. All this in the context of 
Boeing’s industry-leading concurrent engineering practices. The dynamics of current 
collaborative design processes are thus daunting, and have led to reduced design 
creativity, a tendency to incrementally modify known successful designs rather than 
explore radically different potentially superior ones. 
 Improving the efficiency, quality and creativity of the collaborative innovative 
design process requires, we believe, a much better understanding of the dynamics of 
such processes and how they can be managed. In the next section we will review of 
the some key insights that negotiation and complex systems research offers for this 
purpose.

4. Insights from Complex Systems and Negotiation Research 

A central focus of complex systems research is the dynamics of distributed networks, 
i.e. networks in which there is no centralized controller, so global behavior emerges  
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solely as a result of concurrent local actions. Such networks are typically modeled as 
multiple nodes, each node representing a state variable with a given value. Each node 
in a network tries to select the value that maximizes its consistency with the 
influences from the other nodes. The dynamics of such networks emerge as follows: 
since all nodes update their local state based on their current context (at time T), the 
choices they make may no longer be the best ones in the new context of node states 
(at time T+1), leading to the need for further changes. 
 The negotiation literature adds the following refinement to this model. Each one 
of the nodes is self-interested, i.e. attempts to maximize its own local utility, at the 
same time it is seeking a satisfactory level of consistency with the nodes it is inter-
dependent with. A central concern of negotiation research is designing the rules of 
encounter between inter-dependent nodes such that each node is individually incented 
to make decisions that maximize social welfare, i.e. the global utility of the collected 
set of local decisions. In this case, we can define global utility simply as the sum of 
node utilities plus the degree to which the inter-node influences are satisfied. 
 Is this a useful model for understanding the dynamics of collaborative design? 
We believe that it is. It is straightforward to map the model of collaborative design 
presented above onto a network. We can map design participants onto nodes, where 
each participant tries to maximize the utility of the subsystem it is responsible for, 
while ensuring its decisions satisfy its dependencies (represented as the links between 
nodes) with other subsystems. As a first approximation, it is reasonable to model the 
utility of a design as the local utility achieved by each participant plus a measure of 
how well all the decisions fit together. Even though real-world collaborative design 
clearly has top-down elements early in the process, the sheer complexity of many 
design artifacts means that eventually no one person is capable of keeping the whole 
design in his/her head and assessing/refining its global utility. Centralized control of 
the design decisions becomes impractical, so the design process is dominated perforce 
by concurrent subsystem design activities (performed within the nodes) done in 
parallel with subsystem design consistency checks (assessed by seeing to what extent 
inter-node influences are satisfied). We will assume, for the purposes of this paper, 
that individual designers are reasonably effective at optimizing their individual 
subsystems.
 The key factor determining network dynamics is the nature of the influences 
between nodes. There are two important distinctions: whether the influences are 
linear or not, and whether they are symmetric or not. We will consider each one of 
these distinctions in turn, with an important side trip into the negotiation literature to 
understand the dilemmas raised by the presence of self-interested agents. This will be 
followed by a discussion of subdivided network topologies, and the role of learning. 
Unless indicated otherwise, the material on complex systems presented below is 
drawn from [2]. 

4.1. Linear vs. Non-Linear Networks 

Non-Linearity Produces Multi-Optimum Utility Functions: If the value of nodes is a 
linear function of the influences from the nodes linked to it, then the system is linear, 
otherwise it is non-linear. Linear networks have a single attractor, i.e. a single 
configuration of node states that the network converges towards no matter what the  
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starting point, corresponding to the global optimum. Their utility function thus looks 
like that shown in Figure 2 above. This means we can use a ‘hill-climbing’ approach 
(where each node always moves directly towards increased local utility) because local 
utility increases always move the network towards the global optimum.
 Non-linear networks, by contrast, are characterized by having utility functions 
with multiple peaks (i.e. local optima) and multiple attractors, as in Figure 3: 

Figure 3. A multiple optima utility function, characteristic of non-linear networks 

A key property of non-linear networks is that search for the global optima can not be 
performed successfully by pure hill-climbing algorithms, because they can get stuck 
in local optima that are globally sub-optimal. Consider, for example, what happened 
in Figure 3 above. Hill-climbing took the design to the top of a local optimum, which 
has substantially lower utility than some other designs. 
 To make this concrete, let us examine the following simple example: a network 
consisting of binary-valued nodes where each node is influenced to have the same 
value as the nodes it is linked to, and all influences are equally strong (Figure 4): 
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Figure 4. A simple network illustrating how networks can get stuck in local optima 
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Node A, for example, is influenced to have the same value as Node C, while Node C 
is influenced to have the same value as Nodes A, B and D. For simplicity’s sake, we 
assume that the global utility is determined solely by the degree to which the inter-
node influences are satisfied. We can imagine using this network to model a real-
world situation wherein there are six subsystems being designed, with two equally 
optimal design options for each, and we want them to use matching interfaces. 
 This network has reached a stable state, i.e. no single node change will result in 
an increase in the number of satisfied influences. If we change the value of node A 
from 0 to 1, it will violate its one influence so this change will not be made. If we 
change the value of Node C to 1, it will now satisfy the influence with Node D but 
violate two influences (with Nodes A and B), resulting in a net loss in the number of 
satisfied influences, so this change will not be made either. The analogous argument 
applies to all the other nodes in the network. The system will not as a result converge 
on a global optimum (i.e. an ideal design where all the influences are satisfied), even 
though one does exist (where all nodes have the same value). 
 A range of techniques have emerged that are appropriate for finding global 
optima in multi-optima utility functions, all relying on the ability to search past 
valleys in the utility function. Stochastic approaches such as simulated annealing have 
proven quite effective [5]. Simulated annealing endows the search procedure with a 
tolerance for moving in the direction of lower utility that varies as a function of a 
virtual ‘temperature’. At first the temperature is high, so the system is as apt to move 
towards lower utilities as higher ones. This allows it to range widely over the utility 
function and possibly find new higher peaks. Since higher peaks generally tend to also 
be wider ones, the system will spend most of its time in the region of high peaks. 
Over time the temperature decreases, so the algorithm increasingly tends towards pure 
hill-climbing. While this technique is not provably optimal, it has been shown to get 
close to optimal results in most cases.
 A Social Dilemma with Self-Interested Agents: Annealing runs into a dilemma, 
however, when applied to systems with self-interested agents. Let us assume that at 
least some actors are ‘hill-climbers’, concerned only with maximizing their local 
utilities, while others are ‘annealers’, willing to accept, at least temporarily, lower 
local utilities as part of the exploratory process. We can use a simulation approach to 
explore what happens. Table 1 summarizes the results for such experiments, giving 
the local and global utilities achieved for different pairings of agent strategies in 
simulated non-linear negotiations: 

Table 1. Annealing vs. hill-climbing agents 

 Agent 2 hill-climbs Agent 2 anneals 
Agent 1 hill-climbs [.86] 

.73/.74
[.86]
.99/.51

Agent 1 anneals [.86] 
.51/.99

[.98]
.84/.84

In this table, the cell values are laid out as follows: 



    The Dynamics of Collaborative Design            165 

[<global optimality>] 
<agent 1 optimality >/<agent 2 optimality> 

Details on the negotiation results described in this paper are available, unless 
otherwise specified, in [7, 8]. 
 These results show that, while annealers increase global utility, and are therefore 
highly desirable, annealers always fare individually worse than hill-climbers when 
both are present. Hill-climbing is thus a ‘dominant’ strategy: no matter what strategy 
the other agent uses, it is individually more rationale to be a hill-climber. If all agents 
do this, however, then they forego the higher individual utilities they would get if they 
both annealed. Individual strategic considerations thus drive the system towards the 
strategy pairing with the lowest utility values.
 What can be done about this? This pattern of utility values is an instance of a 
well-known phenomenon in game theory known as the “prisoner’s dilemma” [10]. It 
has been shown that this dilemma can be avoided if there are repeated interactions 
between agents [1]. The idea is simple. Each agent uses an annealing strategy at first, 
but if it determines that the agent it is negotiating with is using hill-climbing, it itself 
then switches to hill-climbing for its future negotiations with that agent, thereby 
forcing them both into the ‘lose-lose’ quadrant of Table 1. It turns out that this ‘tit for 
tat’ approach incents annealing behavior in all agents, assuming that they negotiate 
with each other multiple times. This idea can be refined with the addition of a 
‘reputation mechanism’, wherein agents consult a database of previous negotiations 
(in addition to their individual experience) in order to determine whether the agent 
they currently face tends to be an annealer or hill-climber. Ideally, however, we would 
prefer to find a way to incent annealing behavior within the context of a single 
negotiation, without the requirement of multiple interactions. Can this be done?
 Some apparently reasonable approaches are, it turns out, quite ineffective. One 
approach, for example, is what we can call ‘adaptive’ annealing. A negotiation 
typically consists of a relatively large number of offers and counter-offers, resulting in 
increasingly better interim agreements that eventually are accepted as final by both 
parties. An agent could therefore in principle switch in mid-stream from being an 
annealer to being a hill-climber if it determines that the other agent is being a hill-
climber. Determining the strategy type of the agent you are negotiating with is in fact 
relatively easy: an annealer tends to accept a much higher percentage of interim 
proposals than a hill-climber. The problem with this approach is that determining the 
type of an agent in this way takes time. Our simulations have shown that the 
divergence in acceptance rates between annealers and hill-climbers only becomes 
clear after most of the utility has been committed, so it is too late to fully recover from 
the consequences of having started as an annealer if you negotiated with a hill-
climber. Hill-climbing therefore remains the dominant strategy. Another possibility is 
for annealers to simply be less concessionary, i.e. less willing to accept utility-
decreasing interim agreements. This in fact allows us to eliminate the poor annealer 
payoffs that underlie the prisoner’s dilemma, but only at the cost of radically reduced 
global utility. In both cases, we are unable to incent agent strategies that optimize the 
global utility of the outcome. 
 Resolving the prisoners’ dilemma within the scope of a single negotiation can be 
achieved, however, through the use of what we call a ‘parity-enforcing annealing  
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mediator’. Rather than requiring that the agents anneal, we move the annealing into a 
third party we call a mediator. In this approach, possible agreements are generated (in 
our experiments they were generated by the mediator, but this is a not a critical part of 
the scheme) and then voted on by the negotiating agents. The mediator is a kind of 
annealer: it is endowed with a time-decreasing willingness to at least temporarily 
follow up on design proposals that one or both agents voted against. Agents are free to 
remain hill-climbers in their voting behavior, and thus avoid making harmful 
concessions. The mediator, by virtue of being willing to provisionally pursue utility-
decreasing agreements, can traverse valleys in the agents’ utility functions and 
thereby lead the agents to win-win solutions. Paradoxically, using a mediator that 
occasionally ignores agent preferences leads to outcomes that are better for both 
agents.
 Achieving maximal global utilities in this scheme requires that agents be able to 
annotate their votes with strength information. A binary scheme is sufficient, wherein 
agents annotate their accept votes as being either strong or weak. This allows the 
possibility of ‘over-rides’, wherein the mediator pursues an interim agreement that 
was strongly preferred by one agent and weakly rejected by another. Over-rides are 
important because such agreements are likely to increase global utility. Agents might 
of course be tempted to exaggerate in such contexts, marking every vote as being a 
strong one. But this possibility can be foiled by enforcing running parity on the 
number of times each agent over-rides the other. This works for the following reason. 
One can think of this procedure as giving agents ‘tokens’ that they can use to gain 
over-rides. A truthful agent spends its tokens exclusively on over-rides that truly offer 
it a strong local utility increase. An exaggerator, on the other hand, will spend tokens 
even when the utility increment it derives is relatively small. At the end of the day, the 
truthful agent has spend its tokens more wisely and to better effect. 
 Lessons: How do these insights apply to collaborative design? Generally 
speaking, linear networks represent a special case (only a tiny fraction of all possible 
influence relationships are linear), but they have proven adequate for modeling what 
has been called routine design. Routine design involves highly familiar requirements 
and design options, as for example in automobile brake or transmission design [3]. In 
these contexts, designers can usually start the design process near enough to the final 
optimum that the process acts as if it has a single attractor. Previous research on 
design dynamics has focused on this class of design model, generating such useful 
results as approaches for identifying design process bottlenecks [12] and for fine-
tuning the lead times for design subtasks [4]. 
 Rapid technological and other changes have made it increasingly clear, however, 
that many of the most important collaborative design problems (e.g. concerning 
software, biotechnology, or electronic commerce) involve innovative design, radically 
new requirements, and unfamiliar design spaces. It is often unclear how to achieve a 
given set of requirements. There may be multiple very different good solutions, and 
the best solution may be radically different than any that have been tried before. For 
such cases non-linear networks seem to represent a more accurate model of the 
collaborative design process. 
 This has important consequences. One is a tendency to stay with well-known 
designs. When a utility function has widely separated optima, once a satisfactory 
optimum is found the temptation is to stick to it. This design conservatism is  



    The Dynamics of Collaborative Design            167 

exacerbated by the fact that it is often difficult to compare the utilities for radically 
different designs. We can expect this effect to be especially prevalent in industries, 
such as commercial airlines and power plants, which are capital-intensive and risk-
averse, since in such contexts the cost of exploring new designs, and the impact of 
getting it wrong, can be prohibitive. 
 Another consequence is that collaborative design as currently practiced is 
probably quite prone to getting stuck in local optima that may be significantly worse 
than radically different alternatives. Annealing-like processes potentially applicable to 
addressing this problem are widely used in human collaborative design settings. 
‘Brainstorming’, for example, with its emphasis on not pruning candidate solutions 
too quickly, can be viewed as a kind of annealing. Designers are, however, generally 
much more strongly encouraged to create a good design for their own subsystems, 
than to concede to make someone else’s job easier. This incentive structure leads to 
the “prisoner’s dilemma” described above. 
 The prisoner’s dilemma can, as we have seen, be avoided if we assume that 
agents have multiple negotiation encounters and use a ‘tit for tat’ scheme for deciding 
when to be concessionary or not. Such schemes are probably used, in fact, by many 
designers in collaborative settings. The relative infrequency of major negotiations, the 
absence of reputation databases, and high turnover in personnel may, however, 
sabotage the efficacy of such strategies. It seems likely, in addition, that many 
engineers make some use of the other approaches we described above, being adaptive 
or simply highly sparing in how much they concede. These are, after all, apparently 
reasonable strategies. They do not, however, have the desired result of fostering the 
discovery of more optimal overall designs. Mediation, as we have seen, has the 
potential of resolving the prisoner’s dilemma, and it in fact has an important place in 
current collaborative design practice. Senior engineers, and in some cases teams of 
such engineers (sometimes called “change boards”) are often called upon to mediate 
situations where the achievement of satisfactory global utility appears to be 
threatened. Engineers with that level of experience are, however, a scarce resource, so 
this tactic is typically reserved for only the most serious problems. 
 In brief, it appears likely that current collaborative design practice, particularly 
for highly innovative design, is prone to getting stuck in unnecessarily suboptimal 
solutions. We will discuss possible solutions to these problems in the section “How 
We Can Help” below. 

4.2. Symmetric vs. Asymmetric Networks 

Asymmetry Allows Non-Convergence: Symmetric networks are ones in which 
influences between nodes are mutual (i.e. if node A influences node B by amount X 
then the reverse is also true), while asymmetric networks do not have this property. 
Asymmetric networks (if they have cycles in them; see below) add the complication 
of having dynamic attractors, which means that the network does not converge on a 
single configuration of node states but rather cycles indefinitely around a relatively 
small set of configurations. Let us consider the simplest possible cyclic asymmetric 
network: the ‘odd loop’ (Figure 5): 
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Figure 5. The simplest possible cyclic asymmetric network – an ‘odd loop’ 

This network has two links: one where node B influences node A to have the same 
value, and another where node A influences node B to have the opposite value. 
Imagine both nodes have the initial value 1, and update each other in parallel. The 
states of the two nodes will proceed as follows: 

State Value of Node A Value of Node B 
Initial state 1 1 

State 1 1 -1 
State 2 -1 -1 
State 3 -1 1 
State 4 1 1 

After one time step (state 1) node A will cause node B to ‘flip’ to –1, and node B will 
leave node A unchanged. After a second iteration (state 2) node A leaves node B 
unchanged, but node B causes the value of node A to flip. If we trace this far enough 
we find that the system returns to its initial state (State 4) and thus will repeat ad
infinitum. If we plot the state space that results we get the following simple dynamic 
attractor:

Figure 6. The dynamic attractor for the odd loop 
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 More complicated asymmetric networks will produce dynamic attractors with 
more complicated shapes, including ones where states are never exactly repeated, but 
the upshot is the same: the system will not converge. One can always of course stop 
the system at some arbitrary point along its trajectory, but there is no guarantee that 
the design utility at that point will be better than that at any other point because the 
system, unlike the symmetric case, does not necessarily progress monotonically 
towards higher utility values. This can be understood in the following way. Every 
utility function can, in principle, be ‘compiled’ into a (symmetric) network that will 
progress monotonically towards higher utility values as long as the individual nodes 
perform local optimization. The opposite, however, is not true. There are many 
networks (including most asymmetric ones) that do not correspond to any well-
formed utility function, so their sequences of states clearly can not be viewed as 
progressing towards a utility optimum [2].
 If a network is acyclic however (also known as a feed-forward network, wherein 
a node is never able to directly or indirectly influence its own value), it has a well-
defined utility function and thus will not have a dynamic attractor. 
 Lessons: How does this apply in collaborative design settings? Traditional 
serialized collaborative design is an example of an asymmetric feed-forward network, 
since the influences all flow uni-directionally from the earlier product life cycle stages 
(e.g. design) to later ones (e.g. manufacturing) with only weak feedback loops if any. 
In such contexts the attractors should be static and convergence should always occur, 
given sufficient time. In such settings we may not, however, expect particularly 
optimal designs. It is typically very difficult, given the bounded rationality of human 
beings, for designers earlier in the design life cycle to ensure that the designers later 
on in the life cycle will be able to produce near-optimal solutions for their very 
different but highly dependent problems. This is in fact the rational underlying the 
adoption of concurrent engineering approaches. ‘Pure’ concurrent engineering, where 
all design disciplines are represented on multi-functional design teams, encourage 
roughly symmetric influences between the participants and thus can also be expected 
to have convergent dynamics with static attractors. Current collaborative design 
practice, however, is a hybrid of these two approaches, and thus is likely to have the 
combination of asymmetric influences and influence loops that produces dynamic 
attractors and therefore non-convergent dynamics. 
 This, moreover, is a fundamental problem. As noted above, it is in principle 
straightforward to compute the proper inter-node influences given a global utility 
function. In design practice, however, we do not know the global utility function, 
especially once we have reached the realm of detailed design. The space of possible 
designs, and the cost of calculating their individual utility values, is simply too large. 
At best the global utility function is revealed to us incrementally as we generate and 
compare different candidate designs. The influence relationships between designers 
are, as a result, invariably defined directly based on experience and our knowledge of 
design decision dependencies. But such a heuristic approach can easily lead to the 
creation of influence networks that do not instantiate a well-formed utility function, 
and thus display dynamic attractors. 
 Dynamic attractors were found to not to have a significant effect on the dynamics 
of at least some routine (linear) collaborative design contexts [4], but may prove more  
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significant in innovative (non-linear) collaborative design. It may help explain, for 
example, why it sometimes takes so many iterations to fully propagate changes in 
complex designs [6]. 

5. Subdivided Networks 

Subdivision Can Speed Convergence: Another important property of networks is 
whether or not they are sub-divided, i.e. whether they consist of sparsely 
interconnected ‘clumps’ of highly interconnected nodes, as for example in Figure 7: 

Figure 7. An example of a subdivided network 

When a network is subdivided, node state changes can occur within a given clump 
with only minor effects on the other clumps. This has the effect of allowing the 
network to explore more states more rapidly. Rather than having to wait for an entire 
large network to converge, we can rely instead on the much quicker convergence of a 
number of smaller networks, each one exploring possibilities that can be placed in 
differing combinations with the possibilities explored by the other sub-networks [11]. 
 Lessons: This effect is in fact widely exploited in design communities, where it is 
often known as modularization. This involves intentionally creating subdivided 
networks by dividing the design into subsystems with pre-defined standardized 
interfaces, so subsystem changes can be made with few or any consequences for the 
design of the other subsystems. The key to using this approach successfully is 
defining the design decomposition such that the utility impact of the subsystem 
interdependencies on the global utility is relatively low, because standardized 
interfaces rarely represent an optimal way of satisfying these dependencies. In most 
commercial airplanes, for example, the engine and wing subsystems are designed 
separately, taking advantage of standardized engine mounts to allow the airplanes to 
use a range of different engines. This is almost certainly not the optimal way of 
relating engines and wings, but it is good enough and simplifies the design process 
considerably. If the engine-wing interdependencies were crucial, for example if 
standard engine mounts had a drastically negative effect on the airplane’s 
aerodynamics, then the design of these two subsystems would have to be coupled 
much more closely in order to produce a satisfactory design. 

6. Imprinting 

Imprinting Captures Successful Influence Patterns: One common technique used to 
speed network convergence is imprinting, wherein the network influences are 
modified when a successful solution is found in order to facilitate quickly finding 
(similar) good solutions next time. A common imprinting technique is reinforcement 
learning, wherein the links representing influences that are satisfied in a successful  
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final configuration of the network are strengthened, and those representing violated 
influences weakened. The effect of this is to create fewer but higher optima in the 
utility function, thereby increasing the likelihood of hitting such optima next time. 
 Lessons: Imprinting is a crucial part of collaborative design. The configuration of 
influences between design participants represents a kind of ‘social’ knowledge that is 
generally maintained in an implicit and distributed way within design organizations, 
in the form of individual designer’s heuristics about who should talk to whom when 
about what. When this knowledge is lost, for example due to high personnel turnover 
in an engineering organization, the ability of that organization to do complex design 
projects is compromised. It should be noted, however, that imprinting reinforces the 
tendency we have already noted for organizations in non-linear design regimes to 
stick to tried-and-true designs, by virtue of making the previously-found optima more 
prominent in the design utility function, and thus may be counter-indicated for 
challenges requiring highly innovative designs. 

7. How Can We Help? 

What can we do to improve our ability to do innovative collaborative design? We will 
briefly consider several possibilities suggested by the discussion above. 
 Information systems are increasingly becoming the medium by which design 
participants interact, and this fact can be exploited to help monitor the influence 
relationships between them. One could track the volume of design-related exchanges 
or (a more direct measure of actual influence) the frequency with which design 
changes proposed by one participant are accepted as is by other participants. This can 
be helpful in many ways. Highly asymmetric influences could represent an early 
warning sign of non-convergent dynamics. Detecting a low degree of influence by an 
important design concern, especially one such as environmental impact that has 
traditionally been less valued, can help avoid utility problems down the road. A record 
of the influence relationships in previous failed and successful design projects can be 
used to help better manage future projects. This will require being able to determine 
which influences were critical in these previous efforts. If a late high-impact problem 
occurred in a subsystem that had a low influence in the design process, for example, 
this would suggest that the relevant influence relationships should be modified in the 
future. Incentive mechanisms can be put in place that reward engineers not just for 
producing good subsystem designs, but also for participating in what are believed to 
be productive patterns of mutual influence with other designers. Note that this has the 
effect of making a critical class of normally implicit and distributed knowledge more 
explicit, and therefore more amenable to being preserved over time, as well as 
transferred between projects and even organizations. 
 Information systems can also potentially be used to help assess the degree to 
which the design participants are engaged in routine (i.e. optimization-driven) vs 
innovative (i.e. highly exploratory) design strategies. We could use such systems to 
estimate for example the number and variance of design alternatives being considered 
by a given design participant. This is important because, as we have seen, a premature 
commitment to a routine design strategy that optimizes a given design alternative can 
cause the design process to miss other alternatives with higher global optima. 
Tracking the degree of innovative exploration can be used to fine-tune the use of  
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innovation-enhancing interventions such as incentives, competing design teams, 
introducing new design participants, and so on. As with simulated annealing, it will 
probably make sense to encourage more conceding and exploration early on in the 
design process, and gradually transition to hill-climbing as time goes on. 
 The prisoner’s dilemma incentive structure that leads to suboptimal designs can 
be addressed in at least two ways that are probably under-utilized in current practice. 
One is by the introduction of reputation mechanisms. If we simply make information 
available on which designers have a history of conceding sparingly, we are likely to 
find an increase in concessionary behavior, and therefore improved design outcomes, 
even in the absence of explicit (e.g. salary) incentives. Another possibility is the wider 
use of mediators. Mediators in collaborative design contexts have traditionally been 
senior engineers capable of dictating the content of a design outcome. Our work on 
negotiation algorithms suggests, however, that mediators can be effective by guiding 
the design process, for example as we suggested above by occasionally having the 
agents follow up on design options that one or both rejected, and by enforcing rough 
parity in the number of mixed wins. Process-oriented mediation does not require the 
same depth of domain expertise as content-oriented mediation, and it is therefore 
likely that designers can be trained to provide that for each other, and that such 
mediation can become much more widely available as a result. 
 Finally, information systems can be used to track the history of design 
alternatives explored and thereby detect the design loops that indicate a non-
convergent design process.

8. Conclusions 

Existing collaborative design approaches have yielded solid but incremental design 
improvements, which has been acceptable because of the relatively slow pace of 
change in requirements and technologies. Consider for example the last 30 years of 
development in Boeing’s commercial aircraft. While many important advances have 
certainly been made in such areas as engines, materials and avionics, the basic design 
concept has changed relatively little (Figure 8): 

Figure 8. The Boeing 737 (inaugurated 1965) and the Boeing 777 (1995) 

Future radically innovative design challenges, such as high-performance commercial 
transport, will probably require, however, substantial changes in design processes: 
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Figure 9. The Boeing Sonic Cruiser (under development) 

This paper has begun to identify what recent research on negotiation and complex 
systems can offer in this regard. The key insights are that important properties of 
collaborative design dynamics can be understood as reflecting two basic facts: (1) 
collaborative design is a kind of distributed network, and (2) the agents in this 
network are self-interested and respond to local incentives. This is powerful because 
this means that our growing general understanding of networks and negotiation can be 
applied to help us better understand and eventually better manage collaborative design 
regardless of the domain (e.g. physical vs informational artifacts) and type of 
participants (e.g. human vs software-based). 
 This insight leads to several others. Most prominent is the suggestion that we 
need to fully embrace an influences- and incentives-centric perspective on how to 
manage complex collaborative design processes.  It is certainly possible for design 
managers to have a very direct effect on the content of design decisions during 
preliminary design, when a relatively small number of high-level global utility driven 
decisions are made top-down by a small number of players. But once the detailed 
design of a complex artifact has been distributed to many players, the global utility 
impact of local design changes is too difficult to assess, and design decisions are too 
voluminous and complex to be made top-down, so the dominant drivers become local 
utility maximization plus fit between these local design decisions. In this regime 
encouraging the proper influence relationships and concession strategies becomes the 
primary tool available to design managers. If these are defined inappropriately, we 
can end up with designs that take too long to create, do not meet important 
requirements, and/or miss opportunities for significant utility gains through more 
creative (far-ranging) exploration of the design space. 
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