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Abstract We review recent progress
concerning an understanding of the
rheological properties of foams, both
in bulk form and confined in narrow
channels, and including the problem
of foam sliding along a solid wall.
Our calculations contribute not only
to the interpretation of rheological
data, but also to the coupling of foam
drainage and rheology.
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Introduction

Much of the usefulness and appeal of liquid foams lies in
their rheological properties. They combine the properties
of an elastic solid at low stress with those of a liquid when
the yield stress is exceeded [1]. It is this that makes shaving
easy.

There is no mystery in their dual nature. Above the
yield stress, rearrangements of bubbles become possible –
or topological changes, in the language preferred for rela-
tively dry foams.

Many other substances behave in much the same way,
yet this side of the general theory of rheology seems cu-
riously neglected in favour of viscoelastic materials. In
getting to grips with foam rheology we have been ham-
pered by this lack of an adequate theoretical background.

In the present paper we review some of the faltering
attempts to overcome this difficulty1. In addition to sur-
veying bulk rheology we shall report recent progress on
confined foam structures, and the problem of slip at a wall
– the so-called Bretherton problem.

1 An excellent collection of recent papers on foam rheology can be found
in Colloids and Surfaces A: Physicochem. Eng. Aspects, 263, August 2005.

Structure and Properties

The equilibrium structure that undergoes rearrangement
under high stress is surely one of the most beautiful in na-
ture (Fig. 1), a thicket of thin films conspiring to meet ev-
erywhere in the manner prescribed by the rules of Plateau,
with surface tension in balance with pressure differences
across each film. Most basic theories of foam proper-

Fig. 1 An aqueous foam as seen by the photographer Michael
Boran
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Fig. 2 The structure and geometry of dry foam was first described by
the 19th century scientist Joseph Plateau [1]

Fig. 3 The properties of a foam are interdependent and linked to its
structure

ties find their way back to some aspect of that structure
(Fig. 2).

Four main dynamic properties may be identified.
Drainage is the transport of liquid through the foam, rheol-
ogy is the description of the response to stress, coarsening is
the gradual growth of average bubble size (and progressive
elimination of bubbles) by gas diffusion through the films,
and collapse is the eventual fate of most foams, as films rup-
ture. In practice they are often interdependent. For example,
drainage may be the precursor of collapse, and slow creep
below the yield stress may be attributable to the gradual
change of structure associated with coarsening (Fig. 3).

Foam Flows

This heading is the title of an excellent review by A. Kray-
nik [2] in which he stressed from the outset the importance
of the ratio of average bubble diameter d to the character-
istic length scale L of the vessel that contains the foam.
A microflow regime (d ≈ L), may be found in foam flow in

Fig. 4 Viscous froth simulation of a 2D ordered foam flowing aound
a U-bend. As seen in experiments, at a sufficiently high velocity the
bubbles successively change neighbours [4]

a porous medium, but also in the recent area that has been
called “Discrete Microfluidics” [3]. In the latter, individ-
ual bubbles are pushed through a network of specifically
designed channels with the aim of controlled transport and
manipulation of small amounts of gases (or liquids, in the
analogous case of emulsions). An example is shown in
Fig. 4. Relevant experiments pose a variety of questions
concerning the detailed local mechanism of bubble trans-
port, and relate to the Bretherton problem, as described
below.

A continuum description of bulk foam is valid for
d/L � 1. Such macroflow is challenging to theory, partly
due to the non-linearity of the constitutive flow equations.
Above the yield stress, Sy (which depends non-linearly on
the liquid fraction of the foam), the shear stress S may be
described by the Herschel–Bulkley relation as

S = Sy +ηpε̇
m ,

where ε̇ is the strain rate, and ηp is some asymptotic plastic
viscosity (at high strain rate), also called foam consistency.
In theBinghammodel theexponentm = 1,but in theabsence
of convincing experimental data this is only one possible
choice. The corresponding decrease of effective viscosity
(S/ε̇) with strain rate is often called shear thinning [1].

However, the above equation is of limited applicability,
if any. It may be appropriate for such cases as the con-
tinuous application of a positive shear rate, but there is
hysteresis upon its reversal. Various attempts are under-
way to encapsulate such history dependence in a workable
formulation. If the goal of our research is to find a con-
tinuum description, it faces this obstacle, which may well
be the root cause of the deficiency in adequate treatments
of rheology for yield stress materials, lamented above. So
long as it is not overcome, a simulation (whether realistic
or simplified) capturing all the local dynamics of the thin
films is the more practical approach in many cases.

Dilatancy

Dilatancy traditionally describes the expansion of a dense
packing of granular material when sheared [5] and was
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first described by Osborne Reynolds in 1885 [6]. In 2003
quasi-static computer simulations were reported which
feature the same effect in liquid foams [7]. Its possible
importance was suggested by the late pioneer of foam rhe-
ology, Henry Princen, in 1989 [8]. In foams, dilatancy con-
stitutes the local increase of liquid fraction due to shear.
Experimental evidence is still sparse. Marze et al. [9] de-
signed an experiment where a foam is continuously locally
sheared. Observations and measurements of local elec-
trical conductivity (which increases with liquid fraction)
show that the sheared region is wetter. This is attributed to
dynamic dilatancy, i.e. a shear-rate dependent effect which
differs from the static dilatancy described by current the-
ory [7, 10], and is less easily calculated (see however our
discussion of the Bretherton problem below).

Real Foams

Foams are usually polydisperse and disordered. Around
the time of Kraynik’s review, it began to be possible to
simulate reasonably large (static) samples of disordered

Fig. 5 (a) Early computer simulation of a two dimensional liquid
foam [11] which can be used for the computation of a stress–strain
curve as shown in (b) [12]. The slope of the initially linear varia-
tion of stress with strain is proportional to the shear modulus of the
foam. In large bulk sample the jagged curve is smoothed out

Fig. 6 The structure of three dimensional foams is conveniently
computed using the Surface Evolver software of Ken Brakke [14]
(free download at http://www.susqu.edu/brakke/). Here we show
a simulation of the shearing of a Weaire–Phelan foam [13]. (Repro-
duced with kind permission of A.M. Kraynik)

foam, if only in two dimensions [11], and to compute
stress/strain curves [12] (Fig. 5), and hence shear modulus
and yield stress.

In some ways, such a disordered system is much sim-
pler than the ideal ordered one: for example the yield stress
is not dependent on orientation. The shear elastic modulus
is close to that of the honeycomb structure with the same
mean cell area.

Nowadays similar calculations are pursued for 3d
foams [13] as illustrated in Fig. 6, so we have a good ap-
preciation of many quasi-static properties in both cases.
There is good general agreement with experiment.

Experiments

We have not paid enough attention to experiment up to
this point. There exists a plethora of rheological measure-
ments in foams, with a variety of rheometers, pipes with
and without constrictions etc. Mostly this has drawn on
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Fig. 7 Three different set-ups used for experiments with so-called two-dimensional foam. (i) Bragg raft, (ii) bubbles between a liquid pool
and a glass-plate, (iii) bubbles trapped between two glass plates [19]

strong practical motivations in the field of chemical engin-
eering: the consequent spirit of empiricism has not been
very fruitful. Hence, as a greater interest in basic under-
standing developed in recent years, several groups have
resorted to a familiar tactic of the foam physicist: a retreat
into two dimensions. The shearing of a 2d foam sample
can be viewed and imaged directly, recorded by video, and
analysed in complete detail, in addition to relating the ap-
plied stress to the shear rate [15].

Such experiments have included the 2d equivalent of
a Couette viscometer [16], as well as flow around ob-
stacles [17] and through constrictions [18]. The recorded
results have revealed some surprises and are still being di-
gested.

There are qualitative disagreements between some of
the experiments, which may be due to the use of different
kinds of 2d foam. There are at least three kinds, depend-
ing on whether the bubbles are trapped between two plates,
one plate and underlying liquid, or just floating on the li-
quid (Fig. 7) [19].

Simulations

If such experiments are to be simulated beyond the quasi-
static approximation, we require the inclusion of dissipa-
tive forces. In an attempt to do this, we have developed
the ideal 2d viscous froth model [20]. In this the normal
motion of each line (representing a film) is opposed by
a drag force proportional to velocity. As will be explained
below, this simple linear relation is usually not correct, but
it has served to simplify the computational algorithm used
in an initial search for qualitative understanding. It also
has the merit of forming a bridge between foams and the
curvature-driven boundary problems which are standard in
the description of grain boundary motion [21].

Such understanding can only be transferred to 3d in the
most general, qualitative way. The origin of viscous drag
in that case must be completely different. It was consid-
ered long ago by Kraynik and others [2, 22, 23] but is still
a region of uncharted waters.

One of the first specific applications of the 2d model
concerned the flow of an ordered foam structure around
a narrow bend as part of a feasibility study of discrete mi-

crofluidics [20]. The computer simulations successfully re-
produced the experimentally observed swapping of neigh-
bours of bubbles once a certain flow velocity is exceeded;
see Fig. 4. Whereas it was initially thought that quasi-static
simulations would be a sufficient guide for the design of
components for the use in discrete microfluidics, we have
found that there are large velocity-dependent effects, as il-
lustrated by this case.

To date, a variety of standard rheological experiments,
such as Couette shear (Fig. 8), creep (due to coarsening)
or constant stress experiments have become accessible to
similar modelling [24].

Our intention in introducing the viscous froth model
has been to explore it exhaustively in a search for qualita-
tive understanding of the role of dissipative effects. Its dir-

Fig. 8 Viscous froth simulation of a Couette shear experiment in
which the outer boundary (with its contacting vertices) is moved
clockwise, while the inner boundary (and its associated vertices) re-
mains fixed. The solid lines demarcate the region used in the actual
computation [24]
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ect relevance to any particular system is questionable since
other kinds of dissipative forces may well enter. Indeed
Durand and Stone [25] have performed experiments with
simple 2d configurations, accurately measuring their relax-
ation to equilibrium, and found rather different behaviour
in some cases. Whenever a T1 change was produced the
initial displacement of the vertices scaled linearly with
time rather than with the square root which is the implica-
tion of the viscous froth model.

Moreover, the present viscous froth model is confined
to the simulation of dynamic effects in dry foams. A re-
cently developed lattice-gas based model allows for the
simulation of foams over the entire range of liquid frac-
tion [26]. It was applied to the flow of foam past an obsta-
cle with the aim of determining the scale of the resulting
bubble rearrangements [27]. Although this is a dynamic
model, its representation of viscosity is inherently undeter-
mined in lattice-gas models.

Weaire et al. [30] have recently formulated an elemen-
tary continuum model which can account for the localisa-
tion in the experiment of Debregeas et al. [16]. It combines
the elements of the Bingham model with a viscous drag
term associated with the two plates; the localisation length
is given by the square root of ratio of the coefficients of
Bingham viscosity and viscous drag.

The Bretherton Problem

One important source of drag in the 2d case is a wall ef-
fect. Whenever a foam slides along a wall, as in two of the
2d foams shown in Fig. 5, it is opposed by a dissipative
force that depends on its velocity, which we had in mind in
framing the viscous froth model.

It arises in 3d foam rheology as well, wherever there
are walls. It is also a key factor in the motion of bubbles
in channels (Fig. 4), in the context of the kind of microflu-
idics mentioned above.

In a classic paper [22], Bretherton concluded that the
wall stress due to the frictional force of a single bubble ris-
ing in a tube scales as τw ∝ (Ca)2/3, where the capillary
number Ca is given by Ca = ηV/γ (for many purposes it
represents velocity). Here η is the liquid viscosity, γ is the
surface tension and V is the relative velocity of the bubble
with respect to the wall. Naively, the power-law index for
this viscous effect might be expected to be unity: it is the
presence of free surfaces in the system and their variation
with velocity that lies behind this non-trivial result.

This result has been found to apply to other situations
that involve wall slip. Further afield, but still highly rele-
vant here, is the relationship found for tension and rate of
extension for the pulling of a film out of a Plateau border.

Bretherton’s result was derived for a model in which
the surfaces are mobile (that is, have zero surface viscos-
ity). Denkov pursued the same approximations for immo-
bile surfaces and found the exponent 1/2 in this case [28].

Fig. 9 Schematic of the key features of foam flow along a wall

Fig. 10 Computed velocity profile and pressure fields for the flow
of a foam along a wall

All of this has been based on analytic approximations
for the flow in the thin film which adjoins the wall. It is the
variation of the thickness of this film with velocity that is
the root cause of the surprising nonlinear relationships that
have been found in the above theories (and confirmed to
a large degree by experiment).

We have recently succeeded in setting up a complete
2d simulation of the Bretherton problem, including the free
surfaces which lie at its heart [29]. This exposes the full
details of flow and the associated dissipation. At low vel-
ocities, Bretherton’s semi-analytic result was confirmed.
The simulation will be helpful in understanding the previ-
ous work and extending it to other situations.

Figure 9 illustrates the essential features of these calcu-
lations, and Fig. 10 is a detailed example. These calcula-
tions corroborate all of Bretherton’s findings. In the case
of wholly or partially immobile surfaces, there are difficul-
ties in developing a 2d model. Pursuing the same line as
Denkov, the same result was found. However, the role of
surface stresses has yet to be incorporated.

Conclusions

Foams can provide a prototype for all those complex fluids
that exhibit a yield stress. For that reason, as well as their
intrinsic interest and applications, the rheological proper-
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ties of foams are likely to be assiduously pursued in the
years to come. It will take some time to reach the same
competence that we enjoy in relation to static properties,
but that end is almost in sight. Systematic and disciplined
simulations offer a way forward.
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