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Abstract We consider a model to
describe starlike polymers featuring
a steric repulsion accompanied by
a dispersion- or depletion-induced
tunable attraction. The range and
depth of the latter can be controlled
by suitable choices of the solvent,
salt concentration and/or depletant
size and type, whereas the strength of
the steric repulsions is set by the arm
number f of the stars. We focused
on star polymers with arm number
f = 32. Depending on the choice of
the attraction characteristics and on
the temperature, the system exhibits,
in addition to the usual ultra-soft
repulsion, a relatively short range

attraction and a secondary repulsive
barrier at longer distances. Our
results show a variety of structurally
distinct states. In the fluid phase we
find evidence for cluster formation
which is accompanied by fluid-phase
separation. Moreover the system
presents unexpected fluid-solid
transitions which are completely
absent for the purely repulsive case.
The dependence of the cluster and
solid regions, and the location of
the critical point on the potential
parameters is quantitatively analyzed.
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Introduction

Soft matter systems are characterized by a high degree
of structural complexity. This complexity expresses itself
both in terms of the architecture of the constituent par-
ticles and in terms of the vast separation of length- and
time-scales between the dissolved, mesoscopic aggregates
and the microscopic solvent. A statistical mechanical ap-
proach towards analyzing such systems would be therefore
unfeasible if one attempted to keep track of all degrees
of freedom involved. It turns out that an efficient strat-
egy to overcome these difficulties is to integrate out the
fast, microscopic degrees of freedom, so that only the
mesoscopic ones remain in the picture. The result of this
process is the introduction of an effective interaction po-
tential between the heavy particles, which is to a large
extent induced by the degrees of freedom that have been
integrated out [1]. Consequently, the effective interaction
potential can be tuned in a number of ways, giving rise to

an unprecedented flexibility in controlling the interparticle
interactions, a feature absent in atomic systems.

A prominent example of a tunable and, from an atom-
istic point of view, unusual effective interaction is the one
acting between the centers of two star-polymers in good
solvents. These macromolecules consist of f chains an-
chored on a common center [2]. The effective interaction
between star polymers shows a logarithmic dependence on
their center-to-center separation r for small distances and it
crosses over to a Yukawa form for larger ones [3, 4]. More-
over, the overall strength of the interaction scales with
temperature and is also proportional to f 3/2. Thus, f con-
trols the softness of the stars which, formally, reduce to
hard spheres in the limit f → ∞.

Due to recent advances in the synthesis of regular,
monodisperse stars [5], and to their several medical and
industrial applications [2], star-polymer solutions received
a great deal of attention in the recent past. In addition,
star polymers are excellent model systems as colloids
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with tunable softness. Accordingly, there has been a large
amount of theoretical [3, 4, 6–15] and experimental [4,
16–26] work pertaining to their equilibrium and rheolog-
ical properties. Moreover, the non-equilibrium phase be-
havior of mixtures between stars and linear chains has also
attracted considerable attention [27–29]. Here we summa-
rize those findings that are most relevant to the present
work. First simulation and theory have shown that a criti-
cal functionality fc = 34 exists, below which star polymer
solutions never crystallize, at any concentration [10]. Sec-
ondly, the density-functionality phase diagram of the stars
features several regions of reentrant melting upon density
increases [10]. Thirdly, the ideal glass transition lines from
Mode Coupling Theory roughly follow the equilibrium
crystallization transition [12]. And, finally, experiments
and theory have shown that ergodicity can be restored in
a dynamically arrested star solution by addition of smaller
linear homopolymer [27].

One-component solutions of regular star polymers with
a pointlike center, dispersed in an athermal solvent fea-
ture the above-mentioned, purely repulsive and entropic
effective interaction. However, attractions that must be su-
perimposed to the steric chain repulsion can be present
due to a number of additional factors. First, suppose that
the polymer chains are grafted on a colloidal particle of
finite size b (still b � σ , with σ denoting the chains’ spa-
tial extent). In that case, the attraction is caused by the
ubiquitous dispersion force between the compact spherical
colloids [30, 31]. In fact, grafting of the chains has been
originally put forward as precisely a means of providing
a steric barrier to counteract this attraction [3]. Further,
effective, depletion-like attractions between stars emerge
in multicomponent star-chain [28, 29] or star-star mix-
tures [32], which have been looked upon recently, both in
theory and in experiment. Other interesting systems, in this
context, are star polymers with attractive polar end groups,
telechelic associating polymers with hydrophobic terminal
groups and associating polyelectrolytes in homogeneous
solutions [33–35]. Theoretical approaches have been de-
veloped to describe flower-like micelles with hydrophobic
terminal groups that self-assemble in water. Such aggre-
gates show a characteristic “bridging attraction” [36, 37].
Hence, the study of a system interacting by a combina-
tion of a starlike repulsion and an additional attraction is
physically motivated.

Along these lines, a model potential to describe star-
polymer solutions in which, in addition to the excluded
volume effects, attractions emerge, has been recently
studied [38]. For this model the fluid-fluid phase dia-
gram has been determined using mean field theory and
two fluid-state-theories, the modified hypernetted chain
closure (MHNC) [39] and the hierarchical reference the-
ory (HRT) [40, 41] for different f -values. If the strength
of the interaction is strong enough a fluid-fluid phase
transition appears but the density-temperature coexistence
curve bifurcates at a triple point into two lines of coex-

istence terminating at two critical points. This peculiar
phase behavior is related to the unusual form of the repul-
sive contribution. For the same pair interaction, dynamical
properties as well as the appearance of glass transition
have been studied [13]. The interplay between attractive
interactions of different range and ultra-soft core repulsion
has been investigated analyzing the effect on the dynam-
ics and on the occurrence of the ideal glass transition line,
together with the interplay between equilibrium and non
equilibrium phase behavior.

In [13, 38], the parameters were chosen in such a way
that the total potential featured just the ultrasoft repulsion
at short distances and a pure attraction for longer ones.
However, this is not the case, e.g., for depletion-induced
attractions: the total potential features both an attractive
part and a secondary, repulsive barrier at longer distances.
It is the purpose of this paper to analyze quantitatively
the behavior of such systems. Our results show a remark-
able variety of structural and thermodynamic phenomena,
including the formation of clusters, fluid-fluid phase coex-
istence as well as the emergence of stable solids, which
are unstable in the absence of attractions. This paper is
organized as follows: in Sect. 2 we introduce the system
and the effective interaction we employed. In Sect. 3 we
describe the theoretical and numerical tools to study struc-
tural properties and phase behavior, whereas in Sect. 4 we
present and critically discuss our results. Finally, in Sect. 5
we summarize and draw our conclusions.

The Model System: Effective Pair Interaction

The steric part of effective pair interaction between star
polymers with f arms in a good solvent, vst(r), is given by
the functional form [4]:
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where β = (kBT)−1, with Boltzmann’s constant kB and the
absolute temperature T , and σ is the corona diameter of the
stars, related to the experimentally measurable radius of
gyration Rg via σ � 1.26Rg [8]. On top of this repulsion,
now superimpose an attraction w(r), introducing thereby
the total interaction potential Vtot(r) = vst(r)+w(r). The
form of w(r) follows from the physical motivation put for-
ward in [38]. In order to maintain the ∼ 1/r-scaling of the
effective force F(r) = −∇Vtot(r) at short distances, the at-
tractive contribution w(r) is chosen to have the form of
a Fermi potential, which is essentially constant for small
r-values, and whose point of inflection and sharpness are
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free parameters. In particular, w(r) reads as:

w(r) = −C

{
exp

[
r − A

B

]
+1
}−1

. (2)

Let us briefly discuss the meaning of the various param-
eters and the physical mechanisms that allow them to be
externally controlled. C is an energy scale, whereas A
and B are length scales. The relevant physical quantity is
the reduced temperature

T∗ ≡ kBT

C
. (3)

If the attraction results from dispersion forces, then C
can be tuned by modifying the solvent that affects the
value of the Hamaker constant [30, 31]. In this case, C is
temperature-independent and the system is thermal. If the
attraction is caused due to the addition of athermal deple-
tants (such as polymer coils [28, 29] or smaller stars [32]),
then C scales with kBT , hence temperature is irrelevant,
but it acquires a dependence on the depletant concentra-
tion. In this case, the above-defined quantity T∗ can be
interpreted, roughly, as an inverse depletant reservoir con-
centration. The length scales A and B can also be tuned
externally. In the case of dispersion-induced attraction,
they can be influenced by screening the dipole–dipole in-
teraction through addition of salt, which remains mainly in
the intermolecular space, not affecting therefore the con-
formation of the stars. In the case of depletant-induced
attraction they can be influenced by modifying the softness
and size of the smaller component.

For this model, the case in which the full potential,
Vtot(r), is deprived of secondary maxima at large r � σ has
been previously discussed in detail, focusing on the equi-
librium phase diagram [38] and the presence of glass tran-
sitions [13]. Some peculiar and interesting characteristics
have been found, such as, e.g., the existence of two critical
points and, for 46� f � 70 and shrinking the well poten-
tial, a progressively shift of the glass region to higher dens-
ity. Moreover, it has been shown that for a two-component
asymmetric star-star mixture, the introduction of small de-
pletant stars determine, for certain ranges of f and density
of the depletant, an attractive contribution to the interac-
tion plus a repulsive bump for long distances [32]. In that
case, the big-macromolecules in solution have a high arm
number, f � 270 value. The phase diagram of asymmetric
mixture has been considered, finding in particular that the
addition of small stars melts the crystal formed by the big
ones.

In this paper we modify the parameters A and B in
order to analyze the effect of the repulsive barrier on the in-
teraction that we obtain by “shrinking” the well potential,
moving at the same time the minimum to lower inter-
particle separations. In order to avoid excessive freedom
associated with many parameters, we fix the value of A
to A = 1.35σ throughout and the functionality to f = 32,
varying solely the parameter B that controls the sharp-

ness of the Fermi potential, (Eq. 2). In Fig. 1a we show
the total interaction potential Vtot(r) for the three values
of B employed in this work, B = 0.15σ , 0.1σ , and 0.05σ .
It can be seen that decreasing B has the effect of lower-
ing the depth of the attractive well, reducing its range and
enhancing the height of the secondary, repulsive barrier.
In the same Figure, we also show the potential shape for
the choice of parameters employed in previous work [38],
namely A = 2.1σ and B = 0.35σ . Here, it can be seen that
Vtot(r) is free of repulsive barriers and that the attraction
is much deeper and longer in range. In Fig. 1b we see that
for high enough temperatures, T∗ � 2.0, Vtot(r) essentially
reduces to the purely repulsive interaction vst(r), as the
thermal energy is sufficiently strong to wash out the attrac-
tion. Finally, in Fig. 1c we show the Fermi-like attraction
w(r) for the same combination of A- and B-values as in
Fig. 1a.

The reasons to focus on star polymers with functional-
ity f = 32 are many fold. First, we wish to analyze here
a typical intermediate-functionality case right between the
polymer-like ( f � 1) and the colloid-like ( f � 1)-limits.
Secondly, f = 32 is a truly interesting case: below this
value the purely repulsive star solution as well as the
model attraction considered till now (i.e., without repul-
sive bump and with a long range attraction [38]) is always
fluid changing the relevant thermodynamic parameters.
Thus, for this borderline case the peculiar features with re-
spect to the previously analyzed cases are more evident.
And, finally, f = 32-arms star polymers are quite common
experimentally, since they can be synthesized by growing

Fig. 1 a The total interaction potential βVtot(r), versus the inter-
particle separation r∗ = r/σ for temperature T∗ = 0.1, f = 32 and
several value of the parameter B in Eq. 2. The dotted line shows
a case considered in [38]. b Comparison between T∗ = 2.0 for
B = 0.05σ and the purely repulsive interaction. c The attractive
contribution w(r) for the B-values of panel (a)
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living polymers on the reaction sites located at the ends of
dendritic cores.

Modified Hypernetted Chain (MHNC) Integral Equation

Our analysis is based on the examination of the pair corre-
lation functions of the system, in particular the radial dis-
tribution function g(r) and the structure factor S(q) [42].
The latter depends on the momentum transfer �q in a scat-
tering experiment, q being the magnitude of the scattering
wavevector. The relation between S(q) and g(r) reads as:

S(q) = 1+ρ

∫
d3re−iq·r[g(r)−1] , (4)

where ρ is the density of the system. We define the dimen-
sionless density ρ∗ as

ρ∗ = ρσ3 . (5)

The pair correlation functions can be calculated for
any given interaction potential and thermodynamic param-
eters (ρ∗, T∗) by employing approximate closures to the
Ornstein–Zernike relation [42], resulting thereby in a var-
iety of integral equation theories for uniform fluids. In this
work, we employ the modified hypernetted chain (MHNC)
integral equation [39], which is very accurate, both for
purely repulsive potential as well as in presence of at-
tractive contribution. In the particular case of star poly-
mers, the high accuracy of this theory to describe fluid and
metastable states in good solvent [12] as well as in pres-
ence of attractive contributions [13, 38] has been verified
for a large range of f , density values and temperatures.

From a cluster expansion origin, one obtains the exact
relation connecting the radial distribution function g(r) to
any given interparticle potential φ(r):

g(r) = exp[−βφ(r)+ g(r)−1− c(r)+ E(r)] , (6)

where E(r) is the bridge function and c(r) the direct cor-
relation function [42], related to g(r) with the aforemen-
tioned Ornstein-Zernike relation:

g(r)−1 = c(r)+ρ

∫
d3r ′[g(|r′ − r|)−1]c(r ′) . (7)

In the MHNC scheme, the exact bridge function E(r) is
replaced by that of a fluid of hard spheres, EHS(r), of
a suitably chosen diameter d. To optimize this choice,
which depends on the parameter d, the free energy is min-
imized [39] via the relation:∫

dr [g(r)− gHS(r; ηHS)]
∂EHS(r; ηHS)

∂ηHS
= 0 , (8)

where ηHS = πρd3/6 is the packing fraction of the effect-
ive hard sphere system and gHS(r, ηHS) the radial distribu-
tion function of the same. Verlet and Weis [43] provided
an accurate parametrization of gHS(r, ηHS) based on the

Percus–Yevick solution, with a correction which incorpo-
rates thermodynamical consistency through the Carnahan-
Starling state equation [42]. This, together with Eqs. 6–8
gives a closed set of equations which are solved by a stan-
dard iterative method. The dependence of ηHS on the dens-
ity as determined by Eq. 8 reflects the peculiar features of
the interparticle interaction [38].

Results and Discussion

We analyzed three different solutions of star polymers
in presence of attractive interactions, modeled by Eq. 2,
all with functionality f = 32 and at fixed A = 1.35σ . As
mentioned before, three different values of the parameter
B were examined, namely B = 0.15σ (system code SP-
B.15), B = 0.1σ (system code SP-B.1), and B = 0.05σ
(system code SP-B.05). At fixed temperature, a decrease
in B has the effect of increasing the depth of the attractive
well, shrinking its range and at the same time increasing
the height of the accompanying repulsive bump. Our goal
is to gain insight into the influence that these changes of
the interparticle potential have on the phase diagram of the
system and to quantify the effects of the competition be-
tween a relatively short-range attraction and a longer-range
repulsion in a system with a peculiar ultra-soft repulsive
core. Though systems with a combination of attraction and
a repulsive hump have been studied in the past [44–50]
the short-range steric repulsion has always been steep; the
presence of the ultrasoft repulsion in our system, which is
not able to support stable crystals in and of its own [10, 38]
provides an additional novel aspect of the system at hand.

Unlike purely repulsive star polymers, in the present
system the temperature is a relevant thermodynamic vari-
able. We begin with a relatively high temperature, T∗ =
2.0. In Fig. 2 we show the structure factor of the SP-

Fig. 2 Structure factor of the SP-B.15-model for at T∗ = 2.0
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B.0.15 system at this temperature and for a wide range
of densities. We found essentially the same structure fac-
tors obtained for purely repulsive one component stars [6].
Indeed, at sufficiently high temperatures, the Fermi con-
tribution to our model-interaction becomes unimportant
because it is washed out by the thermal energy. Thus, the
anomalous dependence of S(q) on density, known from
usual star polymers, is recovered. Starting at low densities,
the first peak of S(q) grows in height and moves to higher
q-values, which scale as ∼ ρ1/3, up to the overlap density
ρ∗ � 0.8. For higher values of the density, the main peak
height starts decreasing, the second peak height starts in-
creasing (eventually replacing the first peak as the highest)
and the peak positions become density-independent. All
these features arise from the interplay between the long-
distance Yukawa decay of the interaction of Eq. 1 and
its short-distance ultrasoft, logarithmic dependence. Be-
low the overlap density, the former is felt, giving rise to
normal structure factors, whereas above the overlap dens-
ity the logarithmic repulsion causes the peak anomalies.
These features have been analyzed in detail in [6]. For
the whole density range, the peaks in the structure fac-
tor never exceed the value of 2.85: in agreement with the
Hansen–Verlet criterion [51], this means that the system is
always a fluid, an assertion explicitly confirmed by exten-
sive Monte-Carlo simulations [10] and in full agreement
with experimental results [21]. The indistinguishability of
the structure factors at T∗ � 2.0 from those of the purely
repulsive system has been found for all three systems
studied, SP-B.0.15, SP-B.0.1, and SP-B.0.05.

Let us now look at the effects of decreasing the tem-
perature. We examined temperatures in the range 0.1 ≤

Fig. 3 Structure factor for the system SP-B.15 at T∗ = 0.1. Top: no-
tice the appearance of a low-density small peak. Bottom: for high
density the main peak of the structure factor is considerably higher
than 2.85 at ρ∗ = 1.0

T∗ ≤ 2.0, whereas the density was varied in a wide range,
typically 0 ≤ ρ∗ ≤ 10.0. In Fig. 3 we present the structure
factor for the system SP-B.15 at T∗ = 0.1, which shows
marked differences as compared with the same quantity at
T∗ = 2.0, Fig. 2. For small densities ρ∗ = 0.04, (Fig. 3, up-
per panel), we can already observe a value of S(q = 0) > 1,
which is a signature of a neighboring spinodal, on which
S(q = 0) diverges. At the same time, more unusual fea-
tures of S(q) show up. Unlike its high-temperature coun-
terpart, S(q) has two distinct peaks, a pre-peak at qσ � 1,
whose position moves to higher q-values with increas-
ing density and a main peak at qσ � 6, whose position
is strictly density-independent, up to a density ρ∗ � 0.6.
These characteristics carry the signature of cluster forma-
tion within the uniform fluid [47]. The interparticle po-
tential features a minimum at rmin � 1.3σ , which leads to
particle aggregation with an interparticle separation rmin.
The accompanying repulsive barrier limits the growth of
the aggregates, leading thereby to the formation of finite
clusters of a typical size Rcl and intercluster separation L.
As the length scale rmin is set by the interaction and not
by the concentration, the particle–particle distance within
a cluster manifests itself, in momentum space, in the form
of a density-independent peak at q � 2π/rmin. The low-q
pre-peak, on the other hand, is the cluster-peak that is re-
lated to the intercluster separation as q � 2π/L. Indeed,
as the density grows, the clusters approach each other, re-
sulting into the observed displacement of the cluster peak
to higher q-values. At a density ρ∗ � 0.6 the cluster peak
disappears altogether. We interpret this as a merging of dif-
ferent clusters, which leads to the loss of cluster identity
and thus leaves individual particles as the only distinguish-
able scattering units in the system. This assertion is cor-
roborated by the fact that for ρ∗ � 0.6 the particle–particle
peak, which was previously density-independent in its lo-
cation, now does shift to higher q-values with increasing ρ.

In Fig. 3, lower panel, we see how S(q) then further
develops upon density increase. Whereas the main peak
position shifts to higher q′s up to a density ρ∗ � 1.0, the
usual star-polymer scenario [6] takes over thereafter: the
position of the main peak does not evolve with ρ∗, its
height decreases and that of the second peak increases, as
in the purely repulsive case. These effects are due to the ul-
trasoft logarithmic divergence of the potential. Yet, a very
important quantitative difference with respect to the case
T∗ = 2.0 shows up: the height of the main S(q)-peak now
markedly exceeds the Hansen–Verlet value 2.85, clearly
pointing to the possibility that the added attractions now
stabilize a crystal that is thermodynamically unstable in
their absence.

The same behavior has been found for the systems
SP-B.1 and SP-B.05; selected, representative results are
shown in Figs. 4 and 5, respectively. Referring to Fig. 4
and in comparison with Fig. 3, we see that the effect of
reducing the value of B is to enhance the growth of the
height of the principal peak of S(q) at a given temperature.
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Fig. 4 Structure factor of the SP-.1-system at T∗ = 0.1. In the in-
set, we show the trend of S(q) for high densities and T∗ = 0.2 at
increasing densities

Fig. 5 Structure factor for for the system SP-.05 at T∗ = 0.15 for
several densities. Inset: structure factor for fixed density ρ∗ = 0.1
changing the temperature

Otherwise, clustering is still clearly visible at, roughly, the
same range of densities as in the case B = 0.15. Once
again, we discover that the position of the highest peak
does not change with concentration and it is accompanied
by a cluster pre-peak, whose position moves to slightly
higher q-values. In the inset of Fig. 4, we see the evolu-
tion of S(q) for much higher densities: it can be seen that
the particle peak at qσ � 7, which used to be quite high
at lower densities, has all but disappeared and the peak at
qσ � 12 has taken its role as the main one [6]. Yet, even
this second peak diminishes now in height upon increas-
ing ρ. In conjunction with the Hansen–Verlet freezing rule,
this points to a reentrant melting scenario, similar to the
one occurring in usual star polymers [10] or in other sys-
tems interacting by means of ultrasoft potentials [52, 53].

In Fig. 5, the evolution of the structure factor for the
system SP-B.05 is shown. Note that here we had to move
to a higher temperature than in the preceding cases, T∗ =
0.15, because large parts of the T∗ = 0.10-isotherm are,
for this system, subcritical (see below). In the main plot
of Fig. 5, the evolution of S(q) with density is shown,
featuring once again the typical characteristics of cluster
formation. More insight into the nature of the clusters and
the incipient macroscopic phase separation can be gained
by looking at S(q) at fixed density and lower tempera-
tures, shown the inset of Fig. 5. Here, it can be seen that
the position of the particle–particle peak of S(q) hardly
moves upon temperature changes. However, the cluster
peak moves to lower q-values, signaling a growth of the
cluster size Rcl and, concomitantly, the cluster separa-
tion L. At fixed density, this corresponds to a growth of
the population of the individual clusters, i.e., the number of
particles participating in a particular cluster. Consequently,
the intercluster separation grows, and the compressibility
of the system, which is proportional to S(q = 0) [42], in-
creases as well. Further lowering of the temperature leads
then to a formation of a cluster of macroscopic dimen-
sions. The local minimum of S(q) at q = 0 turns into
a maximum at the Lifshitz line [54, 55] and at the spinodal
line this maximum diverges. In other words, a macroscopic
phase separation into two fluids at different concentration
takes place.

Before proceeding into a quantitative description of all
phenomena associated with such systems (clustering, con-
densation, and crystallization), it is informative to take
a look at the emergence of clustered phases in real, as
opposed to reciprocal, space. In Fig. 6 we show the ra-
dial distribution function g(r) for all three systems con-
sidered here at fixed density ρ∗ = 0.05 and temperature

Fig. 6 The radial distribution function g(r) of the systems consid-
ered in this work at density ρ∗ = 0.04 and temperature T∗ = 0.125.
Inset: detail of the second peak region
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T∗ = 0.125, together with the same quantity for the purely
repulsive star polymer solution interacting by means of the
potential of Eq. 1. Whereas the radial distribution function
of the latter is rather flat and has a very weak maximum
at a � ρ1/3, the corresponding quantities for the models
SP-B.15, SP-B.1, and SP-B.05 are very different. A pro-
nounced maximum at r = rmin can be seen, clearly signal-
ing the tendency of the particles to stick together at this
distance. Note, however, at the same time, the depression
at distances 1.5� r/σ � 2.0, arising from the repulsive
barrier, which limits the growth of the clusters. Moreover,
it can be clearly seen that the stiffness of the clusters is
most pronounced for the SP-B.05-system, which features
the deepest and shortest-range attraction, together with the
strongest repulsive bump. In the inset of Fig. 6, we show
the region around the second peak of g(r). For SP-B.15
a broad second peak appears around r/σ = 3.5, this dis-
tance roughly corresponding to the cluster–cluster sepa-
ration. Decreasing B we can observe a more structured
second peak. In particular, for SP-B.05 there is a small
additional first peak around r/σ = 2.5 which can be inter-
preted as a weak second-shell of neighbors within a given
cluster. The height and the number of the peak around
r/σ = 3.5 increases with the density until, as sufficiently
high ρ∗, the clusters come close to each other, merge, and
thereafter the radial distribution function recovers a shape
that describes a usual, unclustered fluid.

The competition between attraction, which favors clus-
ter formation for low T∗, and long range repulsion that
favors small aggregates [47, 48], is evident under consid-
eration of all three cases investigated. Whereas the occur-
rence of macrophase separation is sharply defined through
the divergence of S(q) at q = 0, marking the spinodal line
of the system, cluster formation in a thermodynamically
stable fluid is not associated with any accompanying phase
transition. In this respect, the emergence of clusters on
a supramolecular scale is akin to the formation of meso-
scopic spatial structures in other soft matter systems, such
as the random, “sponge” phase in ternary mixtures of oil,
water and amphiphilic surfactants [56]. Indeed, also in this
case, there is no clear phase boundary between the sponge-
and random-mixture states, and one has to resort to some-
what arbitrary structural criteria in order to delineate the
regions of stability of the two [54–56]. In our case, we de-
cided to use the existence of the cluster pre-peak in S(q)
at low but finite q-values in order to characterize a clus-
tered fluid. In particular, we introduce the criterion than
whenever the pre-peak local maximum exceeds the neigh-
boring local minima by more than 0.05, the fluid consists
of clustered superstructures.

In Fig. 7 we show the cluster regions as well as the
spinodal curves for the systems we investigated. For
fixed B, an increase in temperature reduces the range of
stability of the cluster region, due to the reduction of the
attractive forces in our system. Decreasing B leads to
a broadening of the region of the clustered fluid. This be-

Fig. 7 Cluster region and fluid–fluid coexistence region as delim-
ited by the spinodal line

havior is connected to the intensity of the attraction which
for such low density has to be strong enough to deter-
mine cluster aggregation. In the same figure, the spinodal
curves are shown as well: the critical temperature in-
creases with decreasing B and the critical density moves to
slightly lower densities. This trend is in agreement with the
evolution of the second virial coefficient B2(T) of the inter-
action potential, which becomes more and more negative,
at fixed temperature, passing from SP-B.15 to SP-B.1 and
finally to SP-B.05. More precisely, at T∗ = 0.1, we have
B2 = −0.13σ3 for SP-B.15, B2 = −0.20σ3 for SP-B.1,
and B2 = −2.66σ3 for SP-B.05. To provide a comparison,
we calculated this coefficient also for the case investigated
in [38], which is free of repulsive barriers, finding a value
B2 = −4.59σ3 at the same temperature. This is consistent
with the result that the critical temperature there has a high
value, T∗

crit = 0.623 (MHNC calculation).
The occurrence of finite-size clusters in the system is

a direct consequence of the existence of a repulsive po-
tential barrier that accompanies the short-range attraction.
In this respect, our results are in line with a wealth of
theoretical [45–49] and experimental [29, 50] results in
three-dimensional systems as well as with a recent theor-
etical analysis of a two-dimensional model that shows the
formation of stable circular and stripe patterns [44]. The
phenomena observed here can be understood in terms of
the competition between the (generally complex) poles of
the structure factor S(q) [46, 57, 58]. Let qR + iqI be such
a pole, with qR and qI denoting its real and imaginary
parts, respectively. If qi = 0 and qR �= 0, then the fluid is
thermodynamically unstable with respect to microphase
separation, i.e., ordered microstructures of wavelength
λ = 2π/qR, such as lamellae or periodic crystals, spon-
taneously form. On the other hand, the case qi = 0 and
qR = 0 leads to a spinodal curve and macrophase separa-
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tion. In the case of the systems we examined, the former
pole does not occur, but the imaginary part qi is suffi-
ciently small, so that the cluster pre-peak shows up. At
appropriate thermodynamic conditions, the second type of
pole occurs and the system phase-separates. The system at
hand shows a tendency to form microregions of clustered
particles, however true microphase separation is inhibited.
The structure factor pre-peak remains finite and the clus-
ter phase possesses full translational symmetry (uniform
fluid). Under competition between the attractive plus re-
pulsive parts of the potential, we expect the cluster peak
to become the dominant feature of S(q), leading to true
microphase separation which at least in 2D gives rise to
a thermodynamic signature in terms of a peak in the spe-
cific heat [44].

Depending on the potential parameters, only one, both,
or none of the two scenarios regarding the existence of real
poles of S(q) will materialize. In some cases, the existence
of the repulsive barrier may lead to a complete disap-
pearance of the spinodal line, which would be otherwise
present under the influence of the attraction alone. Here,
we rather have a situation in which the repulsive barrier
suppresses the critical point without altogether eliminating
it, in agreement with the recently studied case of mixtures
between multiarm star polymers and depleting, homopoly-
mer chains [29].

Finally, we briefly discuss the occurrence of stable
crystals in the system, which are unstable both in the com-
plete absence of attractions [10] and in the presence of
long-range, smooth attractions [38]. The very high values
of the structure factor peak, see Figs. 3–5, are a clear
structural signature of the stability of crystal phases. More-
over, there exist regions in the density-temperature plane,
deep in the solid, where the MHNC fails to converge or
yields physically unacceptable results, e.g., negative parts
of S(q). Thus, the interactions at hand give rise to freez-
ing transitions. Tracing out the precise phase boundaries
would require the calculation of the free energies of the
competing, fluid and solid phases. This is a cumbersome
task, which is additionally complicated by the fact that
the precise crystal structure is unknown. Therefore, we re-
sort here to a structural criterion to delineate roughly the
freezing lines, namely we trace out the locus of points
for which the maximum of S(q) attains the Hansen–Verlet
value 2.85. This approach has been shown to reproduce
phase boundaries quite well, even for ultrasoft potentials,
such as the Gaussian interaction [52]

In Fig. 8 we describe the full “phase diagram”, drawn
under the procedure described above. The system shows
a spinodal line, a cluster line and a line of crystallization.
The solid region increases with decreasing B. Irrespec-
tive of quantitative details, we can distinguish within the
solid region two structures: one region centered around
ρ∗ = 0.85 plus a tail for higher densities. The first re-
gion is connected to the evolution of the main peak of
S(q), which corresponds to the first peak for ρ∗ � 0.6.

Fig. 8 Full “phase diagrams” for SP-B.15, SP-B.1, and SP-B.05

The second density region is connected to the evolution
of the second peak in the structure factor. We observe that
for SP-B.15 and ρ∗ � 5.0, the first/main peak disappears
and the second peak becomes the main one, but for all
the temperatures investigated this peak did not exceed the
value 2.85. On the contrary, for SP-B.1 and SP-B.05 there
exist some regions where the second peak in the struc-
ture factor becomes higher then 2.85 and the first peak
becomes lower than this value, at temperatures around
T∗ � 0.4 and T∗ � 0.8, respectively. In this high dens-
ity tail, we can have small intervals of reentrant melt-
ing.

The stabilization of the crystal phase is an effect of
the attractive part of the potential and of its range. Indeed
solid phases are not present neither for the purely repul-
sive interaction or for the case studied e.g., in [38] where
the attractive interaction is really longer ranged. Changing
density and temperature, for the three different model at-
tractions, we could have also a change in the symmetry of
the lattice in relation to the position of the repulsive bump
with respect to characteristic nearest neighbor and second
neighbor distances. The observed trend of broadening of
the region of stability of the solid upon shrinking of the at-
tractive well is fully consistent with previous results on the
double Yukawa system [59]. Contrary to the case of [59],
however, our freezing transition is forced to disappear at
sufficiently high temperatures, since then we recover the
purely repulsive case, which does not support stable solids.
Consequently, the freezing line is of reentrant type, sim-
ilarly to the case of the Gaussian model [52] or indeed
a whole class of ultrasoft potentials [53].

Finally, we remark that for high densities and low tem-
peratures, T∗ � 0.1 we found evidence of the increasing
of S(q = 0), signaling the appearance of a fluid–fluid phase
separation, in agreement with the occurrence of a second
critical point (ρ∗ = 1.96, T∗ = 0.247) in [38]. However,
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for such a low temperature and high density, this region is
metastable with respect to the freezing.

Conclusions

We have examined the structural and thermodynamic be-
havior of a system of intermediate-functionality star poly-
mers with additional attractions. The resulting total poten-
tial features the original, logarithmic repulsion for close
interparticle approaches, dressed with a short-range at-
traction, which is followed by a repulsive hump at large
separations. This is a flexible and tunable system, since
the characteristics of the interaction can be tuned by, e.g.,
suitable choices of smaller polymeric entities to be added
to the star polymer solution. We found a wealth of new
phenomena, such as a fluid–fluid phase separation, ac-
companied by a formation of clusters in the stable fluid
at supercritical temperatures. The internal structure of the
clusters can not be resolved with the tools at hand and it
will be the subject of future work. Moreover, the attraction
brings about a stabilization of crystal phases, which can-
not be supported by the ultrasoft repulsions alone, for the
functionality value f = 32 studied here. This freezing tran-
sition features a maximum crystallization temperature and
is reentrant along the density axis.

A number of questions open up, which are related to
both the equilibrium and the dynamical behavior of the

system at hand. The crystal structures should be identi-
fied and the question should be answered as to whether
we have polymorphic transitions between lattices of dif-
ferent symmetry. To this end, the powerful tool of genetic
algorithms [60] can be employed, to allow for a bias-free
search of the crystal structures. Associated with freezing is
the possibility of formation of repulsive glasses, in analogy
with the case of usual star polymers, for which indeed the
region of ideal glass formation is strongly correlated with
the domain of stability of the solid [12]. In this respect, the
depletants here could have an effect opposite to that seen
for multiarm star polymers [27]: whereas for f � 1 added
chains melt the glass formed by the stars, in our case the
exciting possibility opens up that they might induce a glass
transition in a system that shows no vitrification, at arbi-
trary densities [12]. At the same time, the property of this
system to form clusters makes it possible that a gelation
transition could find place at low densities, in analogy with
the recently-studied case of Sciortino et al. [47]. Applica-
tion of computer simulations and Mode-Coupling Theory
should help clarify the questions of the types of arrested
states that can occur in our system. The investigation of
these questions is the subject of ongoing work.

Acknowledgement This work was funded in part by a grant
of the Marie Curie Programme of the European Union, con-
tract number MRTN-CT2003-504712, and in part by the Deutsche
Forschungsgemeinschaft (DFG) within the SFB-TR6, Project Sec-
tion C3.

References
1. Likos CN (2001) Phys Rep 348:267
2. Grest GS, Fetters LJ, Huang JS,

Richter D (1996) Adv Chem Phys
XCIV:67

3. Witten TA, Pincus PA (1986)
Macromolecules 19:2509

4. Likos CN, Löwen H, Watzlawek M,
Abbas B, Jucknischke O, Allgaier J,
Richter D (1998) Phys Rev Lett
80:4450

5. Zhou L-L, Roovers J (1993)
Macromolecules 26:963

6. Watzlawek M, Löwen H, Likos CN
(1998) Phys J: Condens Matter
10:8189

7. Likos CN, Löwen H, Poppe A,
Willner L, Roovers J, Cubitt B,
Richter D (1998) Phys Rev E 58:6299

8. Jusufi A, Watzlawek M, Löwen H
(1999) Macromolecules 32:4470

9. Witten TA, Pincus PA, Cates ME
(1986) Europhys Lett 2:137

10. Watzlawek M, Likos CN, Löwen H
(1999) Phys Rev Lett 82:5289

11. Dzubiella J, Likos CN, Löwen H
(2002) Chem J Phys 116:9518

12. Foffi G, Sciortino F, Tartaglia P,
Zaccarelli E, Lo Verso F, Reatto L,
Dawson KA, Likos CN (2003) Phys
Rev Lett 90:238301

13. Lo Verso F, Reatto L, Foffi G,
Tartaglia P, Dawson KA (2004) Phys
Rev E 70:061409

14. Benzouine F, Benhamou M, Himmi M
(2004) Eur Phys J E 13:345

15. Benhamou M, Himmi M, Benzouine F,
Bettachy A, Derouiche A (2004) Eur
Phys J E 13:353

16. Dozier WD, Huang JS, Fetters LJ
(1991) Macromolecules 24:2810

17. Richter D, Jucknischke O, Willner L,
Fetters LJ, Lin M, Huang JS,
Allgaier J, Roovers J, Toporowski C,
Zhou L-L (1993) Physique J IV 3:3

18. Willner L, Jucknischke O, Richter D,
Roovers J, Zhou L-L, Toporowski PM,
Fetters LJ, Huang JS, Lin M,
Hadjichristidis N (1994)
Macromolecules 27:3821

19. Kapnistos M, Vlassopoulos D,
Fytas G, Mortensen K, Fleischer G,
Roovers J (2000) Phys Rev Lett
85:4072

20. Loppinet B, Stiakakis E,
Vlassopoulos D, Fytas G, Roovers J
(2001) Macromolecules 34:8216

21. Vlassopoulos D, Fytas G, Pakula T,
Roovers J (2001) Phys J: Condens
Matter 13:R855

22. Bang J, Lodge TP, Wang X,
Brinker KL, Burghardt WR (2002)
Phys Rev Lett 89:215505

23. Lodge TP, Bang J, Park MJ, Char K
(2004) Phys Rev Lett 92:145501

24. Bang J, Lodge TP (2004) Phys Rev
Lett 93:245701

25. Stellbrink J, Rother G, Laurati M,
Lund R, Willner L, Richter D (2004)
Phys J: Condens Matter 16:S3821

26. Laurati M, Stellbrink J, Lund R,
Willner L, Richter D, Zaccarelli E
(2005) Phys Rev Lett 94:195504

27. Stiakakis E, Vlassopoulos D,
Likos CN, Roovers J, Meier G (2002)
Phys Rev Lett 89:208302



Star Polymers with Tunable Attractions: Cluster Formation, Phase Separation, Reentrant Crystallization 87

28. Stiakakis E, Petekidis G,
Vlassopoulos D, Likos CN, Iatrou H,
Hadjichristidis N, Roovers J (2005)
Europhys Lett 72:664

29. Likos CN, Mayer C, Stiakakis E,
Petekidis G (2005) Phys J: Condens
Matter 17:S3363

30. Russel WB, Saville DA,
Schowalter WR (1989) Colloidal
Dispersions. Cambridge University
Press, Cambridge

31. Pusey PN (1991) In: Hansen J-P,
Levesque D, Zinn-Justin J (eds) Les
Houches, Session LI, Liquids,
Freezing and Glass Transition.
North-Holland, Amsterdam

32. Mayer C, Likos CN, Löwen H (2004)
Phys Rev E 70:041402

33. Pitsikalis M, Mays JW,
Hadjichristidis N (1996)
Macromolecules 29:179

34. Vlassopulos D, Pakula T, Fytas G,
Pitsikalis M, Hadjichristidis N (1999)
Chem J Phys 111:1760

35. Clément F, Johner A, Joanny J-F,
Semenov AN (2000) Macromolecules
33:6148

36. Semenov AN, Joanny J-F,
Khokhlov AR (1995) Macromolecules
28:1066

37. Bhatia SR, Russel WB (2000)
Macromolecules 33:5713

38. Lo Verso F, Tau M, Reatto L (2003)
Phys J: Condens Matter 15:1505

39. Lado F, Foiles SM, Ashcroft NW
(1983) Phys Rev A 28:2374

40. Parola A, Reatto L (1984) Phys Rev
Lett 53:2417; Phys Rev A 31:3309
(1985)

41. For an ample review of the HRT, see:
Parola A, Reatto L (1995) Adv Phys
44:211

42. Hansen JP, McDonald IR (1986)
Theory of Simple Liquids, 2nd edition.
Academic, London

43. Verlet L, Weis J-J (1972) Phys Rev A
5:939

44. Imperio A, Reatto L (2004) Phys J:
Condens Matter 16:S3769

45. Peyre V, Spalla O, Belloni L,
Nabavi M (1997) Colloid J Interface
Sci 187:184

46. Sear RP, Gelbart WM (1999) Chem J
Phys 110:4582

47. Sciortino F, Mossa S, Zaccarelli E,
Tartaglia P (2004) Phys Rev Lett
93:055701

48. Mossa S, Sciortino F, Tartaglia P,
Zaccarelli E (2004) Langmuir
20:10756

49. Liu Y, Chen W-R, Chen S-H (2005)
Chem Phys J 122:044507

50. Stradner A, Sedgwick H, Cardinaux F,
Poon WCK, Egelhaaf SU,
Schurtenberger P (2004) Nature
432:492

51. Hansen JP, Verlet L (1969) Phys Rev
184:151

52. Lang A, Likos CN, Watzlawek M,
Löwen H (2000) Phys J: Condens
Matter 12:087

53. Likos CN, Lang A, Watzlawek M,
Löwen H (2001) Phys Rev E 63:31206

54. Hornreich RM, Liebmann R,
Schuster HG, Selke W (1979)
Phys Z B 35:91

55. Gompper G, Schick M (1990) Phys
Rev B 41:9148

56. Likos CN, Mecke KR, Wagner H
(1995) Chem J Phys 102:9350

57. Archer AJ, Likos CN, Evans R (2002)
Phys J: Condens Matter 14:12031

58. Archer AJ, Likos CN, Evans R (2004)
Phys J: Condens Matter 16:L297

59. Tejero CF, Daanoun A,
Lekkerkerker HNW, Baus M (1995)
Phys Rev E 51:558

60. Gottwald D, Kahl G, Likos CN (2005)
Chem J Phys 122:204503




