9

Existing Notification Services

In this chapter we describe some standards (Sect. 9.1), commercial systems
(Sect. 9.2), and research prototypes (Sect. 9.3) that are closely related to
event-based systems.

9.1 Standards

In this section we describe standards which are related to event-based systems.
This includes the CORBA Event Service, the CORBA Notification Service, the
Java Message Service (JMS), and the Data Distribution Service (DDS).

9.1.1 CorBA Event and Notification Service

The Common Object Request Broker Architecture (CORBA) [283] is a plat-
form- and language-independent object-oriented middleware architecture fa-

Client Object Implementation
ORB DSI Skeleton Object
ol Stub Interface Adapter
—
ORB Core

Fig. 9.1. Internal structure of an object request broker (ORB)

306 9 Existing Notification Services

cilitating interoperability. CORBA is standardized by the Object Management
Group (OMG), and vendors can implement the specification with their prod-
ucts. CORBA is a mature middleware technology that is widely used in finan-
cial and telecommunication systems and has inspired many recent middleware
initiatives. Some reasons for CORBA’s success are its good programming lan-
guage integration across several mainstream languages, the extensibility of the
platform using object services, and its adaptation to heterogeneous distributed
systems. The CORBA specification describes the functionality, structure, and
the interfaces of the object request broker (ORB). An ORB consists of the
following main components (cf. Fig. 9.1):

Object Request Broker (ORB) Core. The ORB core forms the heart of
the middleware and handles communication. It resolves object references
to locations, performs the marshaling and unmarshaling of method pa-
rameters, and sends invocations and results over the network.

Interface Definition Language (IDL). Interfaces of remote objects are
defined in IDL, which is purely declarative and is independent of the pro-
gramming language(s) used for implementations. IDL supports the usual
primitive (integers, floats, etc.) and composite data types (e.g., structs).
Programming language mappings define how an IDL type is mapped to a
type of the programming language that is used.

Static Invocation Interface (SII). An IDL compiler transforms the static
interface definitions given in IDL into client-side stub and server-side skele-
ton source code (in a given programming language). The stubs are called
by the client, do the marshaling and unmarshaling of method arguments
and method results, and pass the results back to the client. The stubs are
also called Static Invocation Interface (SII) because their use requires the
interface of the called object to be known at compile time. This approach
has the advantage that remote method invocations can be statically type-
checked by the compiler.

Dynamic Invocation Interface (DII). The DII allows the remote call to
be constructed at runtime. This is, for example, useful if the interface of
the remote object to be invoked is not known at compile time. Dynamic
invocations are usually less efficient than static invocations since they
require more code and type-checking must be done at runtime. The server-
side complement of the DII is the Dynamic Service Interface (DSI). DII
and DSI can together be used for implementing general-purpose gateway,
proxy, or browser objects.

Object Adapter (OA). An object adapter is interposed between the ORB
and the skeletons. The OA dispatches upcalls received from the ORB to
the skeleton of the called object implementation or to the DSI. Other re-
sponsibilities of the OA include generation and interpretation of object
references, security of interactions, object and implementation activation
and deactivation, mapping object references to implementations, and reg-

9.1 Standards 307

istration of implementations. There can be different types of OAs. The
Portable Object Adapter (POA) is currently most commonly used.

Interface Repositories. The interface repository contains the IDL defini-
tions of interfaces. The repository can be queried either at compile time
or at runtime.

Implementation Repository. The implementation repository contains all
implementations of a remote interface at the server side so that remote
objects can be located and activated on demand.

Although the need for asynchronicity has been recognized by the OMG, the
core design of CORBA is still based on synchronous communication. Before the
Asynchronous Message Invocation (AMI) was standardized, the only possibil-
ity to issue asynchronous two-way calls had been to use deferred synchronous
calls, which depend on the tedious dynamic invocation interface. With the
static invocation interface, only one-way calls had been possible which pro-
vide best-effort method invocations not expecting a return value and thus not
requiring blocking. The AMI closes this gap and enables asynchronous two-
way calls using the SII. It supports two models, the polling model and the
callback model. In the polling model, the issuer of a call can poll a collocated
value-type object to test whether or not the results are now available. In the
callback model, the results are delivered to the client by calling a handler
method with the results as parameters.

The CORBA platform is extensible by means of object services that address
different facets of a distributed computing environment, ranging from transac-
tional support to security. In the next sections, we will take a closer look at the
CorBA Event and Notification Services that explicitly deal with anonymous
asynchronous communication by providing publish/subscribe functionality.

CorBA Event Service

The OMG acknowledged the need for publish/subscribe communication by
introducing the CORBA Event Service [277] as a CORBA service in 1994. The
current version as of 2005 is 1.2 [285]. With the Event Service, communication
among suppliers and consumers can be in push mode, in which case a sup-
plier pushes data to a consumer, or in pull mode, in which case a consumer
requests data from a supplier. Instead of communicating directly with each
other, consumers and suppliers are decoupled by an event channel. This way
it is possible to use push and pull communication at both sides.

The Event Service specification supports two models: typed and untyped
event communication. With the untyped model, which is most common, events
are of the CORBA datatype any and can thus contain any IDL datatype.
Suppliers can call push on the PushConsumer interface to deliver data and
pull-based consumers can call pull on the PullSupplier interface to get data
(Fig. 9.2). Since consumers and suppliers are decoupled by the event channel,
they call these methods not on each other but on the event channel’s interface

308 9 Existing Notification Services

PushConsumer
~
~
N
Interface
\
N
PullSupplier

Fig. 9.2. Push mode vs. pull mode (typed event communication)

PushSupplier

ProxyPullSupplier
push

ProxyPushConsumer

PullSupplier

Fig. 9.3. Typed event communication using an event channel

(Fig. 9.3). For typed event communication, which is less common, suppliers
and consumers agree on a particular IDL interface and use its methods to
exchange information in pull or in push mode.

The Event Service enables CORBA clients to participate in many-to-many
communication through an event channel. However, the asynchronous commu-
nication is implemented on top of CORBA’s synchronous method invocation
and thus has the substantial overhead of performing a remote method invoca-
tion for every event communication. Moreover, event consumers cannot filter
the events they receive from an event channel because no event filtering is
supported. In particular, the lack of filtering mechanisms has led to the de-
velopment of the Notification Service, which can be seen as the successor of
the Event Service.

CoORBA Notification Service

As the successor of the Event Service, the CORBA Notification Service [287]
addresses the shortcomings of the Event Service by providing event fil-
tering, quality of service (QoS), and a lightweight form of typed events,
calledstructured events. With the Notification Service, suppliers can discover
which event types are currently required by all consumers of a channel so
that suppliers can produce events on demand, or avoid transmitting events in

9.1 Standards 309

N
e domain_name
type_name Fixed Header
event_name
=<
Event Header ofh_name, | ofh_value,

ohf_name, | ofh_value, Variable Header

>_ ohf_name, | ofh_value, <
fd_name, fd_value,
fd_name, fd_value,

Filterable Body
Event Body

fd_name, fd_value,

_ remainder of body j Remaining Body

Fig. 9.4. The structure of a structured event (from [287])

which no consumers have interest. Similarly, consumers can discover all event
types offered by suppliers so that consumers may subscribe to new event types
as they become available. The Notification Service Specification also addresses
an optional event type repository that, if present, makes information about
the structure of events which may flow through the channel available.

Structured events are divided into a header and a body (Fig. 9.4). The
header consists of a fixed and an optional variable header, while the body
comprises a filterable and the remaining body. The fixed header contains the
domain name, the type, and the unique name of the event. The variable header
and the filterable body both contain name/value pairs that hold the data as-
sociated with the event. Event consumers can restrict the events that they
receive from the event channel by specifying filters over the name/value pairs.
The Notification Service Specification requires that an implementation sup-
port the Default Filter Constraint Language, which is an expressive content-
based filtering language that also allows users to filter events based on QoS
constraints. Besides the default filter constraint language, an implementation
may support any number of additional filter constraint languages.

The Notification Service suffers from the same problems with regard to
communication efficiency as the Event Service since both use synchronous
two-way calls for event delivery. Moreover, there are still a number of prob-
lems inherent to a channel-based solution. Producers and consumers, that is,
the application components, have to deal with channels explicitly. They have
to select the right ones moving information about the application structure
into the components—there is no support for the role of an administrator to
arrange channels, producers, and consumers from a system point of view. Us-
ing channels also limits system evolution, since the set of channels referenced

310 9 Existing Notification Services

by applications is static, a problem which is only recently addressed by reflec-
tive middleware [96]. Regarding the structure of a system, CORBA channels
cannot reflect any hierarchy because their traffic is completely separated. Al-
though event management domains [282] support the federation of multiple
channels in arbitrary topologies, they do not offer any filtering of notifications
between coupled channels.

Notification Service instances may be federated with the help of ORB do-
mains. However, the necessary bridging between these domains has to be set
up manually. The domains are mostly seen as means to model the network and
broker infrastructure [318]; they are not targeted at engineering issues of ap-
plication design. So, in the end one can only assess that the standardized API
does not support visibility control and system management sufficiently well,
but the CORBA Notification Service may serve as a communication technique
to realize a subset of a scope graph.

9.1.2 Jini

The Java programming language is popular for network programming and
therefore has some built-in middleware functionality. TheJava Remote Method
Invocation (RMI) specification [367] describes how to synchronously in-
voke methods of remote objects using request/reply communication between
twoJava Virtual Machines (JVMs) running on separate nodes. The Java RMI
compiler generates marshaling code for the proxy object and the server skele-
ton. Because of the homogeneous environment created by JVMs, in which
there is only a single programming language, the burden on the middleware
is lower. It is even possible to move executable code between JVMs by us-
ing Java’s object serialization to flatten an object implementation into a byte
stream for network transport.

Asynchronous event communication within a single JVM is mainly used in
the abstract window toolkit (AWT) [358] libraries for graphical user interfaces.
The EventListener interface can be implemented by a class to become a call-
back object for asynchronous events, such as mouse or keyboard events. The
Jini framework, described below, extends this to provide event communica-
tion between different JVMs. Other variants of asynchronous communication
in Java are provided by the messaging infrastructure of JMS (Sect. 9.1.3).

The Jini specification [360] enables programmers to create network-centric
services by defining common functionality for service descriptions to be an-
nounced and discovered. For this, it supports distributed events between
JVMs. A RemoteEventListener interface is capable of receiving remote call-
backs of instances of the RemoteEvent class. A RemoteEvent object contains
a reference to the Java object where the event occurred and an eventID that
identifies the type of event. A RemoteEventGenerator accepts registrations
from objects and returns instances of the EventRegistration class to keep
track of registrations. It then sends RemoteEvent objects to all interested
RemoteEventListeners. Event generators and listeners can be decoupled by

9.1 Standards 311

third-party agents, for example, to filter events, but the implementation is
outside the Jini specification and left to the programmer.

JavaSpaces [366] are a part of the Jini framework; they are similar to Linda
tuple spaces. With JavaSpaces, tuples can be inserted, read, and removed from
a space which stores each tuple from the time it is inserted to the time it is
removed. The corresponding operations are write, read, and take. read and
take take a template and block until a tuple that matches the given template
is present in the space. readIfExists and takeIfExists are the nonblocking
versions of read and take; they return instantaneously if a matching tuple
is not in the space. To reveal clients from polling for matching tuples, clients
can be notified when a matching tuple is inserted into the tuple space via the
notify operation. However, since there can be multiple listeners notified, it is
not guaranteed that a notified client will actually retrieve a matching tuple.
There can be multiple spaces that can reside on different hosts. Transactions
are also supported. For example, a tuple which is written within a transaction
becomes visible outside the transaction only after the transaction committed.
More details on transactions can be found in the Jini specification. Fairness
and ordering of operations is not addressed by the JavaSpaces specification.
T'Spaces [402] developed by IBM are similar to JavaSpaces.

Summarizing, as is the case for CORBA, event communication in Jini is
built on top of synchronous communication (Java RMI), so the same restric-
tions that limit scalability and efficiency apply.

9.1.3 Java Message Service (JMS)

The Java Message Service (JMS) [364] defines a messaging API for Java.
Differently from the CORBA Event or Notification Service, JMS can be used
without the enterprise object platform, i.e., J2EE [365], of which it is part.
JMS clients can choose any vendor-specific implementation of the JMS spec-
ification, called a JMS provider. JMS comes with two communication modes:
point-to-point and publish/subscribe communication. Point-to-point commu-
nication follows the one-to-one communication abstraction of message queues.
Queues are stored and managed at a JMS server that decouples clients from
each other. Direct communication between a sender and a receiver without
an intermediate server is not supported. In publish/subscribe communication,
the JMS server manages a number of topics. Clients can publish messages to
a topic and subscribe to messages from a topic.

JMS provides a topic-based publish /subscribe service with limited content-
based filtering support in the form of message selectors. A message selector
allows a client to specify the messages it is interested in by specifying a filter
that operates on the fields of the message header; body fields cannot be evalu-
ated. The selector syntax is based on a subset of the SQL92 [101] conditional
expression syntax.

Like structured CORBA events, a JMS message is divided into a message
header and body. The header contains various fields, including the destination

312 9 Existing Notification Services

of the message, its delivery mode, a message identifier, the message priority, a
type field, and a timestamp. The delivery mode can be set to PERSISTENT to
enforce exactly-once delivery semantics; otherwise best-effort delivery applies.
The type of a message is an optional field that can be used by a JMS provider
for type-checking the message. Apart from predefined fields, the header can
also contain any number of user-supplied fields. The message body is in one
of several formats: a StreamMessage, a TextMessage, and a ByteMessage
containing the corresponding Java primitive types. A MapMessage is a dictio-
nary of name/value pairs similar to the fields found in the header. Finally,
an ObjectMessage uses Java’s object serialization feature to transmit entire
objects between clients.

Messages can be consumed synchronously or asynchronously, i.e., either
pull or push can be used to transfer messages to the respective consumer.
There exist two ways of message acknowledgment: messages can either be
acknowledged automatically or specifically by the client. Moreover, messages
can be persistent or volatile. Persistent messages are delivered exactly once
to a consumer. They also do not get lost if the provider fails; they usually are
logged to stable storage. However, this comes at the cost of a much higher
overhead. Volatile messages are delivered at most once; they may get lost if
the provider fails.

With JMS, subscriptions can either be durable or not. With durable sub-
scriptions, notifications are retained while the subscriber is disconnected from
the provider until they have been delivered or expired. To the contrary, with a
nondurable subscription, notifications that are published while the subscriber
is disconnected may get lost.

Sessions can be transactional or nontransactional. Transactional sessions
allow clients to group the publication and the consumption of several mes-
sages into an atomic unit of work. On the producer side, produced messages
are retained until commit and if transaction aborts messages are discarded.
On the consumer side, all consumed messages are kept until commit and are
automatically acknowledged on commit. If the transaction aborts, the mes-
sages are redelivered. Hence, messages are actually sent and received when
the transaction commits. Since the production and the consumption of the
same message cannot be part of the same transaction, only local transactions
are possible. Another consequence is that transacted sessions cannot be used
to implement request/reply interaction. Moreover, point-to-point operations
and publish /subscribe operations cannot be mixed inside a single transaction.

Although, at first sight, JMS appears to be a strong contestant for a large-
scale middleware, it suffers from several shortfalls: First, the entire model is
centralized with respect to JMS servers. As a result, JMS servers are heavy-
weight middleware components and can become bottlenecks because the JMS
specification does not address the routing of JMS messages across multi-
ple servers or the distribution of servers to achieve load balancing. Second,
content-based filtering of messages in JMS only considers the message header
but not the message body. This seriously reduces the usefulness of message

9.1 Standards 313

filtering. Finally, JMS is tightly integrated with the Java language. This has
the advantage that object instances can be published in a message, but comes
with the price of only supporting Java clients, which is not feasible in a large-
scale, heterogeneous distributed system.

Another main problem is that aspects that will be important for any JMS
implementation are not addressed by the JMS specification. This includes,
for example, exception handling, load balancing, fault tolerance, end-to-end
security, administration, and message type repositories. For example, the spec-
ification leaves open how to define topics or how they are interrelated. Many
of these aspects are nevertheless addressed and implemented differently by in-
dividual vendors. Hence, applications using these products are incompatible
if they use these implementation-specific features.

9.1.4 Data Distribution for Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) [286, 299] was
standardized by the OMG in 2004. DDS follows a “data-centric” approach: it
creates the illusion of a global data space populated by data objects that ap-
plications in distributed nodes can access via read and write operations [298].
Related industrial products, e.g., Splice DDS from Thales (US) [375, 384] and
NDDS [324] from Real-Time Innovations (US) are available. The specification
describes two layers of interfaces:

e The mandatory data-centric publish/subscribe (DCPS) level is targeted
toward the efficient delivery of information to interested recipients. It al-
lows for content-based publish/subscribe communication between publish-
ers and subscribers and lays an emphasis on quality of service (QoS).

e The optional higher data local reconstruction layer (DLRL) level allows for
a simple integration of the service into the application layer. The DLRL
automatically reconstructs the state of cached objects locally from updates
and allows applications to access objects as if they were local.

Since real-time systems are the application domain of the DDS, special
care must be taken to design the interfaces such that real-time requirements
can be met by the implementation. The service implementation must be able
to preallocate resources reducing dynamic resource allocation to a minimum.
For example, copying data should be minimized for efficiency reasons and
resource usage should be predictable and bounded. Also due to efficiency
reasons, typed events with interfaces are used such that type-safety can be
ensured at compile time. Here, typed means that for each datatype, specific
classes are generated. Generation tools translate event descriptions into the
proper interfaces bridging the gap between typed interfaces and the generic
service implementation. The specification pays attention to separate producers
from consumers such that they can be implemented independently to facilitate
extensibility. QoS is an important issue for the DDS. QoS is supported through
several QoS policies that declaratively specify which QoS should be provided

314 9 Existing Notification Services

instead of how this QoS should be realized. Publishers offers a maximum
level for each QoS policy, while subscribers request a minimum level for each
QoS policy. For example, a subscriber can request that it wants to receive an
update at least once in a given time interval. The next two sections describe
the DCPS and the DLRL in more detail.

Data-Centric Publish/Subscribe (DCPS)

The Data-Centric Publish/Subscribe (DCPS) layer is responsible for getting
data from publishers to interested subscribers. In the following we describe
the main components of DCPS (Fig. 9.5).

‘ Publisher } } Topic + % Subscriber ‘

|
[¥

Application Application

Fig. 9.5. Conceptual overview of data-centric publish/subscribe (DCPS)

A Publisher is an object responsible for data distribution. A DataWriter
is a typed facade that provides access to a publisher. It is bound to ex-
actly one Topic, Publisher, and application datatype. An application uses
a DataWriter to communicate with a Publisher to the let it know the
existence and the value of data objects of a given type. A Subscriber is
an object responsible for receiving published data. A DataReader provides
typed access to a subscriber, i.e., to the received data. It is bound to ex-
actly one Topic, Subscriber, and application datatype. The application as-
sociates a DataReader to a Subscriber to receive the datatype described by
the DataReader. The QoS experienced by a subscriber is affected by a number
of issues. In addition to the Topic QoS, the QoS of the DataWriter, and the
QoS of the Publisher affect the QoS on the publisher’s side. On the sub-
scriber’s side, the QoS is affected by the Topic QoS, the DataReader QoS,
and the Subscriber QoS. A Topic is conceptually located between publishers
and subscribers. It has a name that is unique in the domain and a QoS policy.
DCPS differs from other notification services by the fix binding of a Topic
to a datatype. ContentFilteredTopic and MultiTopic derive from Topic;
they can only be used by a Subscriber. A ContentFilteredTopic provides
means for content-based filtering that is similar to the WHERE clause of an SQL
query. The optional MultiTopic class allows users to get data from multiple

9.1 Standards 315

topics and to combine, filter, and rearrange this data. The data will then be
filtered and possibly rearranged using aggregation and projection.

Topic, Publisher, and Subscriber objects are created using the respec-
tive create operation of DomainParticipant. A DomainParticipant acts
as an entry point for an application to the service, serves as a factory for
many of the classes, and acts as container for the other objects that make
up the service. It represents the local membership of an application in a do-
main which is a distributed concept, allowing all applications of this domain
to communicate with each other.

Datatypes represent information that is sent and received atomically. In-
stances of a datatype are identified by a key. Data with the same key are
treated as successive values of the same instance, while data with different
keys are treated as referring to different instances. By default, data modifi-
cations are disseminated individually, independently, and uncorrelated from
other modifications. It is, however, possible that an application requests sev-
eral modifications to be sent and also received atomically.

To publish data an application first creates a DomainParticipant using
DomainParticipantFactory. If the respective Topic does not exist, the appli-
cations creates it using the DomainParticipant. Then, the application creates
a Publisher using the DomainParticipant and uses the Publisher to create
a DataWriter. If the application decides to publish data, it calls the write
on the corresponding DataWriter.

To subscribe to data, an application uses a DomainParticipant to find
the Topic of interest. Then, it uses the DomainParticipant to create a
Subscriber and uses the Subscriber to create a DataReader. To receive
data an application can either use a Listener or a WaitSet object. These
represent the two basic ways of receiving data and are called notification-
based and wait-based, respectively.

The notification-based interaction style uses listeners. Applications register
handlers that are invoked by the middleware to notify the applications about
asynchronous events such as the arrival of new data or a QoS violation. From
the Listener interface, more specific listeners such as DataReaderListener
derive; they add methods depending on the concrete Listener.

The wait-based interaction style uses WaitSet objects that allow an
application to wait until one or more of the attached Condition objects
are triggered or else until a timeout expires. Condition is subclassed by
GuardCondition,StatusCondition,and ReadCondition. A GuardCondition
is under the control of an application and can be used by the application to
manually wake up the WaitSet. A StatusConditionis attached to any entity;
it provides information about the communication status of the respective en-
tity such as the arrival of new data. A ReadCondition allows an application to
specify the data samples, in which it is interested. This allows the middleware
to enable the condition only when suitable information is available. If data
are available, the application can either call read or take on the respective

316 9 Existing Notification Services

DataReader. While read allows the data to be read again later, take removes
the data from the DataReader.

Data Local Reconstruction Layer (DLRL)

The Data Local Reconstruction Layer (DLRL) is an optional layer that may
be built on top of DCPS. DLRL allows for a simple integration of the service
into the applications by offering an interface on a higher level than DCPS
does. DLRL defines an object cache that allows the application to access
objects “as if” it were locally available by automatically reconstructing the
state of the cached objects from the updates received. To achieve this, object
modifications are propagated using DCPS to all parties having a copy of the
respective object in their cache and the copies are accordingly updated.

With the DLRL an application can describe DLRL objects with methods,
attributes, and relations. Attributes can be either local or shared. As their
name suggests, only shared attributes take part in dissemination. To ensure
their dissemination, shared attributes are attached to DCPS entities. A DLRL
object has at least one shared attribute. DLRL objects can be manipulated
using the native language constructs, which in turn triggers changes to the
corresponding DCPS entities in the background. Single inheritance of DLRL
objects is supported and different kinds of associations can be used to relate
DLRL objects to each other. The associations can be used to navigate among
the DLRL objects. With the DLRL, the application model is given in OMG
IDL. In addition, for example, the mapping from application types to topics
and which attributes should be shared are defined using XML. The required
classes are then generated automatically by an IDL compiler.

To achieve the dissemination of object modifications, the DLRL specifica-
tion defines several mappings between the DCPS and the DLRL layer:

1. The structural mapping defines the relation between DLRL objects and
DCPS data. It is very similar to an object to relation mapping known
from database management. Each DLRL object is mapped to a DCPS
data sample. Topics correspond to database tables, and data samples cor-
respond to tuples.

2. The operational mapping defines the relation between DLRL objects and
DCPS entities (e.g., Topic). For example, each DLRL class is mapped to
several DCPS topics. The use of the DCPS entities is totally transparent
to the application using DLRL.

3. The functional mapping defines the relation between DLRL functions
(mainly access to the DLRL objects) and the DCPS functions.

Several classes are used by an application to access DLRL objects at run-
time. A Cache contains a set of objects that are locally available and that are
managed consistently. Its contents are updated transparently when updates
arrive. A Cache is created using a CacheFactory. At creation time its mode
is set to read-only, write-only, or read/write. A Cache comprises one or more

9.1 Standards 317

CacheAccess objects that isolate a set of objects in a given access mode. A
CacheAccess allows users to globally manipulate DLRL objects in isolation.

9.1.5 WS Eventing and WS Notification

Most early Web services were based on synchronous request /reply interaction.
After Web services had been on the market for some years, the need for asyn-
chronous push capabilities was recognized. These capabilities are needed for
services such as stock quoting services if they should not be based on resource-
intensive polling. Pushing information to a service requires that the service
can be contacted using a communication endpoint. Web Services Address-
ing (WS-Addressing) introduces service endpoint references for Web services.
These endpoints can be passed as message parameters, for example, to register
a subscription, and to subsequently deliver messages to the registered service.
The different parts of WS-Addressing are currently being standardized by the
World Wide Web Consortium (W3C). On top of WS-Addressing, Web Ser-
vices Fventing (WS-Eventing) [201, 387] resides. It lets a Web service, called
event sink, register at another Web service, called event source, such that the
former can receive notification messages from the latter. A subscription is only
valid until an expiration time, which is passed by the event source to the event
sink as part of the subscription reply message. The event sink can request the
notifications to be filtered by an event filter, which is a Boolean expression
that is by default given as an XML XPath expression.

Web Services Notification (WSN) [200, 386] is an alternative to WS-
Eventing. WSN is currently being standardized by the OASIS (Organiza-
tion for the Advancement of Structured Information Standards). It consists
of Web Services Base Notification (WS-BaseNotification) [274], Web Ser-
vices Brokered Notification (WS-BrokeredNotification) [275], and Web Ser-
vices Topics (WS-Topics) [276]. WSN also builds upon WS-Addressing.
WS-BaseNotification defines the NotificationConsumer interface and the
NotificationProducer interface used for direct motification, and specifies
messages and message exchanges to be implemented by services that wish
to act in these roles along with operational requirements expected of them.
Consumers register their subscriptions directly at the producers. Content-
based filtering is supported by selector expressions. A producer sends a no-
tification directly to the consumers that registered a matching subscription.
WS-BrokeredNotification defines interfaces, messages, and message exchanges
needed for brokered notification, which uses notification brokers as intermedi-
aries to decouple producers from consumers. WS-Topics define the concepts
centered around topic-based publish/subscribe such as topics, topic spaces,
topic trees, and topic expressions.

9.1.6 The High-Level Architecture (HLA)

The High-Level Architecture(HLA) [98] originated at the U.S. Department of
Defense in 1996 and was later standardized by the IEEE (Standard 1516)

318 9 Existing Notification Services

and by the OMG. The corresponding standard of the OMG is described in
the Distributed Simulation Systems (DSS) specification [284]. The HLA is
mainly used to deploy distributed simulations. It provides the specification of
a common technical architecture for use across all classes of simulations in the
US Department of Defense serving as a structural basis for simulation inter-
operability. With the HLA a simulation is carried out by a set of federates.
Each federate manages a set of objects (e.g., tanks), which move in a rout-
ing space. Inside the HLA, Data Distribution Management (DDM) services
support the routing of data among federates during the course of a federa-
tion execution. Especially, DDM allows for content-based subscriptions based
on object attributes. However, content-based filtering is usually done on the
client side. Federates express their interest to receive updates by subscribing
to all updates that occur in a rectangular region of the routing space. Besides
these subscription regions, there are update regions. Regions may change, for
example, when an object moves in the routing space.

For distributing the updates, region-based and grid-based approaches are
used [48]. With the region-based approach usually one multicast group is used
for every update region and the subscribing federates join those groups that
overlap with their subscription regions. With the grid-based approach, the
routing space is divided into cells and for each cell a multicast group is used.
Publishing federates publish updates to those multicast groups the update
belongs to and subscribing federates join all groups that overlap with their
subscription regions.

9.2 Commercial Systems

We discuss IBM WebSphere MQ in Sect. 9.2.1, TIBCO Rendezvous in
Sect. 9.2.2, and Oracle Advanced Queuing in Sect. 9.2.3. Instead of describing
all features of these commercial systems, we put an emphasis on those features
which are related to publish/subscribe.

9.2.1 IBM WebSphere MQ

IBM WebSphere MQ (MQ) [198, 199] (formerly known as IBM MQSeries) is a
messaging platform that is part of IBM’s WebSphere suite. MQ is a powerful
middleware, whose strength lies in the simple integration of legacy applications
through loosely coupled queues. A particular strength of WebSphere MQ is
its availability for many platforms including Windows, Linux, Solaris, and
many others. Its main focus is on point-to-point messaging using queues,
especially request /reply on communication. A gueue manager is a process that
manages a set of queues and offers the queuing services to applications via an
API. Several programming language bindings of the API to send and receive
messages to and from queues exist. WebSphere M(Q comes with advanced
messaging features, such as transactions, clustered queue managers for load

9.2 Commercial Systems 319

balancing and availability, and built-in security mechanisms. Additionally, a
queue manager provides functions to administrators so that they can create
new queues, alter the properties of existing queues, and control the operation
of the queue manager. For a program to use the services of a queue manager,
it must establish a connection to that queue manager.

WebSphere MQ Publish/Subscribe (MQPS)

WebSphere MQ Publish/Subscribe (MQPS) allows MQ applications to com-
municate using publish/subscribe communication. MQPS was originally a
supplement for MQSeries but was later incorporated into WebSphere MQ.
It offers topic-based publish/subscribe communication; no content-based sub-
scriptions are supported. In topic-based subscriptions, two wildcards can be
used: while a 7 can be replaced by any single character, an * can be replaced
by any sequence of characters. It is suggested to use the / to organize the top-
ics into a hierarchy. The publisher specifies the topic of a publication when
it publishes the information, and the subscriber specifies the topics on which
it wants to receive publications. The routing of messages from producers to
subscribers is carried out by a broker that uses standard MQ functionality
to achieve this. Hence, an application using MQPS can use all the features
available to existing MQ applications. Publishers can optionally register their
intention to publish information on a certain topic at the broker. Publishers
and subscribers do not have to be on the same machine as a broker. They can
reside anywhere in the network, provided there is a route from their queue
manager to the broker.

Related topics can be grouped together to form a stream. Streams separate
the information flow of the grouped topics from topics in other streams. At
each broker that supports a stream, there is a queue with name of the stream.
There is a default stream. Streams can also be used to restrict the types of
publication a broker has to deal with. This can, for example, be used for load
balancing. Access control is also done based on streams.

Brokers can be connected to each other to form a hierarchy. Subscriptions
flow to all nodes in the network that support the respective stream. A broker
consolidates all the subscriptions that are registered with it, whether from ap-
plications directly or from other brokers. In turn, it registers subscriptions for
these topics with its neighbors, unless a subscription already exists. Hence,
forwarding of identical subscriptions is avoided. When an application pub-
lishes information, the receiving broker forwards it (possibly through one or
more other brokers) to any applications that have valid subscriptions for it,
including applications registered at other brokers supporting this stream.

MQPS allows publications to be retained such that they can be delivered
to subsequent subscribers. This way, new subscribers can gather information
without having to wait until it (or an updated version) is published again.

320 9 Existing Notification Services

WebSphere Business Integration Event Broker (BIEB)

The WebSphere Business Integration Fvent Broker (BIEB) is a complement
to WebSphere MQ. BIEB provides high-performance nonpersistent publish/
subscribe functionality to clients that can then use content-based subscrip-
tions in addition to topic-based subscriptions. Brokers can be connected to
form a hierarchy. Brokers can also be grouped together to form fully connected
collectives; in this case, the collectives are then connected to form a hierarchy.
Brokers can also be cloned to improve the availability of the publish/subscribe
system. Subscriptions are propagated through the broker network. However,
only the topic filter is propagated and not the content filter. Hence, a bro-
ker might receive publications in which none of its subscribers is interested.
Additionally, it is possible to use IP multicast to distribute subscriptions and
publications in LANs.

Message flows can be defined that describe operations to be performed on
an incoming message, and the sequence in which they are carried out. A flow
consists of a number of flow nodes, each of which corresponds to a processing
step. The flow connections, which connect flow nodes, define which processing
steps are carried out, in which order, and under which conditions. A flow node
can also contain a subflow which allows message flows to be composed. Mes-
sage flows run in a container called message flow project which are deployed
at a broker. Subscription points can be used to make information associated
with a particular topic available in a number of different formats. For exam-
ple, stock prices might be published with a default currency of dollars, but
might be required by subscribers expressed in other currencies. Subscription
nodes are implicitly connected to publication nodes of message flows.

9.2.2 TIBCO Rendezvous

TIBCO Software (US) is a major player in the publish/subscribe middle-
ware market. Its publish/subscribe middleware product TIBCO Rendezvous
has been available for many years and has been applied by major customers,
especially in the area of financial services. For example, the NASDAQ has im-
plemented its trading floor using TIB Rendezvous. According to TIBCO, the
trading floor infrastructure handles 1.8 billion real-time messages per day and
25 thousand trades per second. The current version of TIBCO Rendezvous, as
of January 2006, is Version 7.4 [381]. TIBCO Rendezvous is available for many
platforms including Linux, Windows, Solaris, and FreeBSD, and APIs are
available for many programming languages including Java, C, C++, and Perl
5. TIBCO Rendezvous originally was called TIBCO’s Information Bus (TIB)
and was renamed later. It is based on ideas presented by Oki et al. [289], who
proposed a distributed implementation of a subject-based publish/subscribe
system called the Information Bus.

TIBCO Rendezvous uses patented subject-based addressing [345]. Sub-
scriptions select subjects from a subject hierarchy. A single subject is se-
lected by its dotted name (e.g., stocks.technology.fooInc), where the

9.2 Commercial Systems 321

parts of the name that are separated by dots are called elements. An ap-
plication can use wildcards to select more than one subject. The wildcard *
can be replaced by any element, while the wildcard > can be replaced by any
dot-separated sequence of elements. Hence, stocks.technology.* matches
stocks.technology.foo but not stocks.technology.software.bar, while
stocks.technology.> matches both. The mapping from subjects to underly-
ing transport protocols, in particular to specific IP multicast addresses, has to
be done manually, and it is statically encoded in every producer and consumer.
Although the inherent communication efficiency of IP multicast is appealing,
it comes at the cost of a rather static configuration, which not only compli-
cates maintenance, but also restricts configurability and integration, and thus
the range of possible application domains [382].

A program, which wants to participate in a distributed system in which
hosts communicate by the means of TIBCO Rendezvous, uses a TIBCO Ren-
dezvous API library matching the used platform and programming language.
In such a system each participating host runs a rendezvous daemon (rvd),
which runs as a separate process. Each message published by a program is
handed out to the local daemon via the API library and is then multicast
to all daemons in this network. Programs attempt to connect to a local dae-
mon. If a local daemon process is not yet running, the program starts one
automatically and connects to it. The daemons hide many details from the
programs such as data transport, packet ordering, receipt acknowledgment,
and retransmission requests.

With TIBCO Rendezvous messages are the entities that travel among
programs. A message comprises data fields, a subject indicating its destination,
and an optional reply-to subject. Each field contains one data item which can
be identified by either by its name or by its numerical identifier. Programs
do not have to know the wire format of messages; conversions to and from
the wire format are transparent to the application. The wire format contains,
besides the data itself, also metainformation about the data contained such
that the data is “self-describing” in the sense that the receiver is able to
interpret and use the data properly.

To register interest in a set of event occurrences, a program creates an
event object whose parameters specify that set. The programmer can specify
in which event queue an occurred event is inserted and which callback function
is invoked when the event is dispatched. Dispatching can be done in several
ways. Queues can be prioritized and grouped to have a fine-grained control of
dispatching. Discarding policies can be chosen that specify which event (e.g.,
the first in a queue) is discarded when the queue size exceeds a given limit.
Besides message events, which signal the arrival of a message, timer events
and I/0 events are supported. The event driver recognizes the occurrence of
events and places them in the appropriate event queues for dispatch. To receive
messages, programs create listener events, which specify that messages which
match a subject name (that may contain wildcards) are of interest, define
callback functions to process the inbound messages, and dispatch events in

322 9 Existing Notification Services

a loop. A transport defines the delivery scope of messages. While network
transports deliver messages across a network, intraprocess transports deliver
messages only between program threads within a single process. The creation
of a transport takes a service parameter. Messages do not travel among
transports having different service parameters. Together with all listener
events bound to a transport, a transport defines the actual set of receivers of
a published message.

TIBCO Rendezvous supports two levels of message reliability. With re-
liable delivery the middleware tries to do its best to ensure that a message
reaches all participants. However, certain faults, such as daemon crashes, can
lead to applications not getting all messages they would have gotten without
this fault. The advantage of this scheme is its good performance. With certified
delivery, the delivery of messages is guaranteed. Messages additionally carry
the sender’s name, a subject-independent message ID, and an expiration time.
This information is used by daemons and routers to request retransmissions
of missing messages and to discard expired messages. Despite retransmissions,
the order in which messages are delivered satisfies a FIFO-sender policy. To
ensure that messages can be delivered even in case of daemon crashes and sub-
sequent restarts, messages are stored persistently. However, reliability comes
at a cost: certified delivery greatly degrades the performance of the system.

Independent networks of TIBCO Rendezvous instances can be connected
with information routers. They forward messages between distinct networks
so that subscribers can transparently listen for subject names and receive
messages from other networks. Administrators managing the routers have
control over the subject names (and associated messages) that are relayed and
flow in or out of a network. These routers offer a basic means of structuring.

TIBCO Rendezvous has proven to be scalable to large-scale systems. How-
ever, if the subject-based filtering is not expressive enough, extra filtering of
events is left to the subscribers. In these cases, scalability can become a prob-
lem and the network might be overwhelmed by too many event broadcasts. A
JMS implementation is also available from TIBCO (cf. Sect. 9.1.3).

9.2.3 Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing (AQ)) was the first database-integrated
messaging system in the industry. This approach is contrary to products such
as TIBCO Rendezvous (cf. Sect. 9.2.2), which are not bundled with a da-
tabase. With the release of Oracle 10, AQ was renamed to Oracle Streams
Advanced Queuing. AQ offers a JMS implementation (cf. Sect. 9.1.3) called
Oracle JMS, which is compliant to JMS 1.1 and a proprietary API for queues.
Oracle recommends using the standardized JMS API instead of the propri-
etary AQ API, if Java is used as programming language. As a result of the
database integration of AQ, all the functionality offered by the Oracle 10 da-
tabase can be applied to messaging. This includes query support, indexing,

9.2 Commercial Systems 323

transactions, triggers, consistency constraints, logging, replication, authenti-
cation, access control, backup, recovery, data export, and data import.

The basic abstraction of AQ, which decouples producers of messages from
consumers of messages, are queues. Due to the tight database integration
of AQ, queues are normal database tables and messages are normal rows in
database tables. Hence, messages can be accessed (i.e., queried) using standard
SQL. SQL can be used to access the message properties and the payload.
Message histories are available and indexes can be used to optimize access.

Messages can be enqueued into or dequeued from a queue. Multiple produc-
ers can enqueue messages into a queue, and multiple consumers can dequeue
messages from a queue. AQ distinguishes among single-consumer and multi-
consumer queues. While single-consumer queues are used for point-to-point
messaging, multiconsumer queues can be used for different kinds of point-to-
multipoint messaging, including publish/subscribe communication. To allow
multiple consumers to dequeue the same message from a queue, AQ supports
message recipients and queue subscriber. If a message should be consumed by
multiple consumers, it remains in the queue until it is consumed by all its
intended consumers. While message recipients are specified by the producer
of a message, applications or other queues must subscribe to a queue to be-
come a queue subscriber. Subscriptions can be rule based. In this case, not all
messages that are enqueued can be dequeued by a queue subscriber, but only
those that match the subscription, which is specified in a syntax similar to a
WHERE clause of SQL. A subscriber can specify a callback that is invoked to
notify it asynchronously about the availability of a new matching message.

There are a number of enqueue and dequeue options available, such as
an earliest dequeue time for a message and a message expiration time. Mes-
sages are not necessarily dequeued in the order in which they are enqueued.
Messages can be grouped to form a set that can only be consumed by one
consumer at a time. This feature can, for example, be used to transfer a huge
payload by a set of messages. Messages can be retained for a given period af-
ter consumption. In a message history also the enqueue time and the dequeue
time of a message is saved. Retained messages can be related to each other
and applications can track sequences of related messages and produce event
journals automatically.

Messages can be propagated based their content from a queue to other
queues residing either in the same database or in remote databases. This
enables applications to communicate that are not connected to the same queue
or to the same database. With message propagation, messages can be fanned
out to a large number of recipients without requiring them all to dequeue
messages from a single queue. This is known as compositing or funneling
messages. Messages can also be propagated using HTTP or HTTPS. AQ allows
for message format transformations which are represented by SQL functions.
Messages can be transformed during enqueue or during dequeue.

An alternative to persistent messaging is buffered messaging, which pro-
vides a much faster queuing implementation. Buffered messaging is useful for

324 9 Existing Notification Services

applications not requiring the reliability and transaction support of persistent
messaging. It is faster because it stores messages in main memory and only
writes messages to disk if the main memory is too small to hold all current
messages. Buffered messaging uses the same API as persistent messaging.

In summary, Oracle Streams Advanced Queuing is a feature-rich messag-
ing system that supports different communication styles including publish/-
subscribe. Because of its tight database coupling it exhibits many interesting
features that other systems do not expose. However, this comes at the cost of
a rather heavyweight implementation.

9.3 Research Prototypes

Many research prototypes have emerged since the second half of the 1990s. The
pioneers of this area were the Gryphon (Sect. 9.3.1), the SIENA (Sect. 9.3.2),
the JEDI (Sect. 9.3.3), the READY (Sect. 9.3.8), and the Elvin (Sect. 9.3.7)
event notification services and the Cambridge Event Architecture (CEA)
(Sect. 9.3.6). From the newer approaches we present REBECA in Sect 9.3.4
and HERMES in Sect. 9.3.5. Each of the systems we discuss in the follow-
ing has its own focus (e.g., routing or matching) and differs from the others
in some way. With the above selection of systems we try to cover most of
the area. Of course, there are many other research prototypes that are not
discussed in this book.

9.3.1 Gryphon

The Gryphon project at IBM Research [203] led to the development of an
industrial-strength, reliable, content-based event broker that is now part of
IBM’s WebSphere suite as the IBM WebSphere MQ Event Broker [202]. Tt
is a mature publish/subscribe middleware implementation with a JMS inter-
face that provides a redundant, topic- and content-based multibroker publish/
subscribe service. The Gryphon event broker has been successfully deployed
for large-scale information dissemination at global sports events, such as the
Olympic Games. Opyrchal et al. have also investigated how IP multicast can
be used to improve the efficiency of event distribution [291] (cf. Sect. 4.6.7).
Gryphon includes an efficient event matching engine [6], a scalable routing
algorithm, and security features.

Gryphon is based on an information flow model for messaging [28, 354].
An information flow graph (IFG) specifies the exchange of information be-
tween information producers and consumers. Information flows can be altered
by (1) filtering, (2) stateless transformations, and (3) stateful transformations
(aggregation). A logical IFG is mapped onto a physical event broker topology.
Figure 9.6 shows an example of a Gryphon deployment. Nodes in the IFG are
partitioned into a collection of virtual brokers PHB, IB; 2, and SHB;_4, which
are then mapped onto clusters of physical event brokers called cells. Similarly,

9.3 Research Prototypes 325

Fig. 9.6. A Gryphon network with virtual event brokers

edges connecting nodes in the IFG are virtual links that map onto link bun-
dles, containing multiple redundant connections between event brokers for
reliability and load balancing.

An event broker that has publishing clients connected to it is called a
publisher-hosting broker (PHB). It contains publisher endpoints (or pubends),
which represent a collection of publishers that enter information into the IFG.
Correspondingly, a subscriber-hosting broker (SHB) consumes information
through one or more subscriber endpoints (or subends) from the IFG accord-
ing to its subscriptions. An event broker that is neither publisher-hosting nor
subscriber-hosting is an intermediate broker (IB). The topology mapping is
statically defined at deployment time, although more recent work [410] in-
cludes dynamic topology changes due to failure and evolution. Several exten-
sions are implemented as part of the Gryphon event broker; these are discussed
in the following.

Guaranteed Delivery

A guaranteed delivery service [39] provides exactly-once delivery of events, as
required for JMS persistent events. The propagation of information (knowl-
edge) from pubends to subends is modeled with a knowledge graph. Lost
knowledge due to message loss causes curiosity to propagate up the knowl-
edge graph and trigger the retransmission of events. Curiosity is implemented
as negative acknowledgment (NACK) messages sent by SHBs. A subscriber
that remains connected to the system is guaranteed to receive a gapless or-
dered filtered subsequence of the event stream published at a pubend. A more
detailed description of guaranteed delivery and how it can be extended to
address congestion in an event-based middleware is given in Sect. 8.3.

326 9 Existing Notification Services
Durable Subscriptions

The durable subscription service [40] guarantees exactly-once delivery despite
periods of disconnection of event subscribers from the system. This means that
the event stream is buffered while a subscriber is not available and replayed
upon reconnection. As for the guaranteed delivery service, an event log is kept
at PHBs and cached at intermediate brokers.

Relational Subscriptions

The final extension is the relational subscription service [214]. Its goal is to
implement the stateful transformations supported by Gryphon’s IFG model,
combining messaging with a relational data model. Relational subscriptions
can be seen as a continuous query over event streams, providing event sub-
scribers with the expressiveness of a relational language. This relates to the re-
quirement for composite event detection in an event-based middleware, which
is discussed in Chap. 7.

The Gryphon event broker includes many of the features that a distributed
systems’ programmer expects from an event-based middleware. However, the
overlay network of event brokers is static, as it is defined in configuration
files at deployment time. This makes it difficult for the middleware to adapt
to changing network conditions. Failure within a cell of event brokers can be
tolerated, but major changes to the IFG cannot be compensated for. Although
composite event detection is provided by relational subscriptions, a relational
data model for messaging might be too heavy-weight for many applications.

9.3.2 SIENA

One of the first implementations of a distributed content-based publish/
subscribe system was the scalable internet event notification architecture
(SIENA) [65, 71]. SIENA is a multibroker event notification service that targets
at Internet-scale deployment. Brokers are called servers in SIENA. As usual,
event publishers and subscribers connect to a server in the logical overlay
network. Events published by publishers are then routed through the overlay
network of servers depending on the subscriptions submitted by subscribers.

SIENA uses covering-based routing in its hierarchical and its peer-to-peer
variants. Other routing algorithms are not supported. The algorithms used by
SIENA are similar to those presented in Sects. 4.5.4 and 4.6.2. In case the peer-
to-peer variant is applied, advertisements are supported. The algorithms build
upon a partially ordered set (POSET), which allows brokers to keep track of
the covering relations among filters. More precisely, the transitive reflexive
reduction of the partial order induced by the covering relation is stored. Each
server manages a POSET that is accordingly updated when a subscription or
unsubscription is processed by the server.

9.3 Research Prototypes 327

Fig. 9.7. A hierarchical topology in SIENA

Fig. 9.8. An acyclic peer-to-peer topology in SIENA

The POSET can also be used for matching [71] by traversing it, for example
in depth-first order, starting from the root filters, i.e., from those filters which
cover all other filters. If a visited filter does not match, then no child filter can
match the notification. Carzaniga et al. [67, 70] also presented an alternative
matching algorithm that is based on the counting algorithm (cf. Sect. 3.2.2)
and that is similar to those presented by Miihl [262].

In SIENA a notification consists of a set of typed attributes. Subscrip-
tions and advertisements are conjunctions of attribute filters, which are sim-
ple predicates (e.g., comparisons) over the event attributes. If there is only
one attribute filter per attribute, a notification matches a subscription (an
advertisement) if it satisfies all attribute filters. However, the interpretation
is different for subscriptions and advertisements if there is more than one at-
tribute filter for an attribute. For a subscription, a notification has to match
all of these attribute filters, while for an advertisement, a notification has to
match at least one of these attribute filters. Hence, the models of subscrip-
tions and advertisements differ. This fact complicates computing overlapping
and covering among filters for more complex data types.

SIENA considers three different types of topologies: hierarchical (Fig. 9.7),
acyclic peer-to-peer (Fig. 9.8), and generic peer-to peer (Fig. 9.9). In contrast
to an acyclic topology, a generic peer-to-peer topology is not restricted to be
a tree. Here, peer-to-peer only means that there is no master/slave relation
among servers as there is for hierarchical topologies. In a hierarchical topol-
ogy, hierarchical covering-based routing is used. In this case, the protocol that

328 9 Existing Notification Services

Fig. 9.9. A generic peer-to-peer topology in SIENA

clients use to interact with the respective server they are connected to is the
same that a server uses to interact with its master server. Hence, there is an
unidirectional flow of subscriptions from servers to their parent servers. In an
acyclic or a generic peer-to-peer topology, peer-to-peer covering-based rout-
ing is applied. In this case, for the communication among servers a different
protocol is used that allows for a bidirectional flow of subscriptions and adver-
tisements. While in an acyclic peer-to-peer topology one common tree is used
for filter and notification propagation, in a generic peer-to-peer topology for
each producer the minimum spanning tree is used that connects this server
with all others servers. A filter is then only forwarded by a server B if it comes
from those neighbor servers being on the shortest path from the originating
server to B.

There exists no precise specification of the semantics of notification deliv-
ery, and the informally described semantics has several peculiarities. A no-
tification should only be delivered to a client if the client had a matching
subscription at the time the notification was published, and notifications may
be delivered after cancellation of the respective subscriptions. A client that
unsubscribes to a filter implicitly unsubscribes to all filters that are covered
by the former filter, too. This approach burdens the client with keeping track
of covering relations among the issued subscriptions. Hence, it makes clients
depend on the applied routing algorithm. The benefit of this approach is that
it simplifies routing because (un)subscriptions from neighbors and local clients
can then be treated in the same way.

SIENA lacks support for type-checking of events. The complete freedom
given to publishers to advertise and publish any event makes it harder to
catch type-mismatch errors during system development. SIENA also addressed
security issues [390]. Even though the idea of event patterns is introduced as
a higher-level service, little detail is given on detection and temporal issues.
Only the detection of sequences of events is discussed. The topology of the
overlay network of event servers is static and must be specified at deployment
time. The efficiency of the content-based routing will therefore depend on the
quality of the overlay network topology.

9.3 Research Prototypes 329

Fig. 9.10. Hierarchical event routing in JEDI

9.3.3 JEDI

The Java Event-Based Distributed Infrastructure (JEDI) [92] is a Java-based
implementation of a distributed content-based publish/subscribe system from
the Politecnico di Milano, Italy. Events in JEDI are tuples having a name
and a list of values called event parameters. Subscriptions are specified as
templates (cf. Sect 3.1.1). A JEDI system consists of active objects, which
publish or subscribe to events, and event dispatchers, which route events.
Event dispatchers are organized in a tree structure, and routing is performed
according to hierarchical covering-based routing. Subscriptions propagate up-
wards in the tree, and state about them is maintained at the event dispatchers.
Events also propagate upwards but follow downward branches whenever they
encounter a matching subscription, as shown in Fig. 9.10. Since hierarchical
routing is applied, advertisements are not used to restrict the propagation of
subscriptions.

Support for Mobile Clients

The system has been extended to support mobile computing [89]. Event dis-
patchers support moveOut and moveIn operations that enable subscribers to
disconnect and reconnect at a different dispatcher in the network. There is
no single event dissemination tree for all subscriptions, but instead a tree is
built dynamically as a core-based tree [24]. The core, called a group leader,
has to make a global broadcast to announce its presence. A new event dis-
patcher, wanting to become part of the dissemination tree, directly contacts
the group leader. The group leader then delegates the request to an appro-
priate event dispatcher in the dissemination tree, which becomes the parent
of the new node. As a downside, this algorithm requires that every event
dispatcher must have knowledge of all group leaders in the system.

330 9 Existing Notification Services
Dynamic Reconfigurations

An approach for dynamically reconfiguring the dissemination tree is proposed
by Cugola et al. [93, 308]. They focus on the reconfigurations that substitute
one link by another one (Fig. 9.11). Instead of intentionally reconfigurations

removed

Fig. 9.11. Substituting one link with another link

(e.g., triggered by an administrator), their approach also works for reconfigu-
rations caused by link faults. Regarding routing algorithms, they only consider
simple and identity-based routing; however, they state that their algorithms
could be generalized to covering-based routing. The use of advertisements is
not discussed.

First, the authors describe more precisely than previous work the straw-
man approach. With this approach, both endpoints of the removed link behave
as if they had received an unsubscription for each of the subscriptions of the
other that are currently active. The endpoints of the added link exchange all
to establish the delivery of all notifications needed at the other side. The pro-
cesses of tearing down the old link and establishing the new link are carried
out concurrently. As the authors explain, this has the consequence that no-
tifications might get lost, duplicated, or reordered (violating FIFO-producer
or causal ordering). The approach is also inefficient with respect to the filter
forwarding overhead because subscriptions might be canceled that are shortly
later reinserted, and vice versa. The strawman approach also leads to correct
routing tables if multiple links are exchanged concurrently.

After discussing the strawman approach, the authors also propose a so-
lution that (is according to their simulation results) more efficient than the
strawman approach but which exhibits the same deficiencies with respect to
notification loss, duplication, and reordering. With this solution, the new link
is established a bounded delay (i.e., a timeout is used) before the old link is re-
moved, i.e., subscription propagation starts earlier than unsubscription prop-
agation. However, choosing a sensible value for the timeout seems difficult.
To avoid the propagation of subscriptions that would otherwise be removed
a short time later, subscriptions located at an endpoint of a removed link are
removed from the routing tables of the respective brokers instantaneously and
only their propagation is delayed.

9.3 Research Prototypes 331

More recently, the authors presented a more advanced approach to deal
with reconfigurations [94] based on reconfiguration paths which identify the
minimal portion of the system affected by a fault. This approach is better
suited for controlled administration than for dealing with faults.

9.3.4 REBECA

The REBECA notification service [136] implements the publish/subscribe in-
terface and conforms to the definition of simple event systems (cf. Sect. 2.1).
Its basic architecture is a representative example of a distributed notification
service, which is comparable to that of other services such as SIENA, JEDI.
However, REBECA is different from other services:

Formal Specification. REBECA is based on a formal specification that de-
fines the intended behavior of the notification unambiguously.

Extensible Data and Filter Model. The default data model of REBECA
is the name/value pair model. However, the set of datatypes and con-
straints that can be used is not fixed but extensible.

Extensible Routing Framework. REBECA is designed to support various
routing algorithms [263, 267]. Peer-to-peer and hierarchical variants of the
algorithms as well as advertisements can be used.

Visibility Control. With REBECA it is possible to control the visibility of
notifications [139, 144] by using the scopes.

Architecture

X4’s Access Broker Inner Broker Lacal Broker

Fig. 9.12. An exemplary router network of REBECA

The constituents of the system are the components (i.e., producers and
consumers)and the notification service (Fig. 9.12). The notification service

332 9 Existing Notification Services

Notification

%

1
AttributeName H AttributeFilter l

’ Distinguishable }e ----------------------

e

Fig. 9.13. The filtering framework of REBECA

consists of a number of brokers that form an overlay network in the underly-
ing physical network. Brokers are processes that run on physical nodes. The
communication topology of the overlay is an acyclic graph. Edges are commu-
nication links that are mapped to TCP/IP connections. As an alternative, IP
multicast can be used. Obviously, an acyclic topology is can become a bottle-
neck, but extensions exploiting redundancy are available to tackle problems
of scalability and single points of failure [86, 311, 374].

REBECA distinguishes three types of brokers: local, border, and inner bro-
kers. Local brokers provide access to the middleware by offering the publish/
subscribe interface to the components. Usually, they are part of the communi-
cation library loaded into application components; they are not represented in
the graph, but only used for implementation issues. A local broker is connected
to one border broker. Border brokers form the boundary of the distributed
communication middleware and maintain connections to local brokers, i.e.,
the clients of the service. Inner brokers are connected to other inner or border
brokers; they do not maintain connections to clients.

Local brokers put the first message containing a newly published notifi-
cation into the network. Border and inner brokers forward the messages to
neighbor brokers according to filter-based routing tables and respective rout-
ing strategies. At the end, the messages are sent to the local brokers of the
consumers, and from there the notifications are delivered to the application
components.

Extensible Data and Filter Model

In the default data model of REBECA, a notification consists of a set of at-
tributes that are name/value pairs. Attribute values can be of different types,

9.3 Research Prototypes 333

including the usual primitive types such as integers, strings, Booleans, and
floats but also composite types such as points or rectangles. It is possible to
add new datatypes to the filtering framework (Fig. 9.13) easily. New data
types should support the operations which are needed by the applied routing
algorithms such that routing optimizations become possible. The set of con-
straints that can be imposed on attributes contains the usual operator such as
equality, inequality, and comparisons. It can be extended by new constraints.
For more details regarding the data and filter model of REBECA please refer
to Chap. 3.

Extensible Routing Framework

REBECA is based on a flexible routing framework which allows new routing
algorithms to be added easily. If a new algorithm is added, it can be used for
subscriptions and for advertisement propagation. It can also be combined with
other routing algorithms in the sense that, for example, the new algorithm
is used for subscription forwarding and a previously existing algorithm is
used for advertisement forwarding. In contrast to, for example, SIENA, the
publish/subscribe interface used by components is independent of the applied
routing algorithm. Thus, applications need not to be changed if a new routing
algorithm is applied.

Currently, REBECA supports flooding, simple, identify-based, covering-
based, and merging-based routing (cf. Sect. 4.5). The implementation of the
routing algorithms closely follows the pseudocode we have presented and so
we can place high confidence on the correctness of the implementation. The
following combinations of routing algorithms are possible: If only subscrip-
tions are used, any of the four filter-based routing algorithms can be applied.
If advertisements are used, for subscription forwarding and for advertisement
forwarding one of the filter-based routing algorithms can be used, resulting in
ten possible combinations. The use of advertisements can greatly enhance the
efficiency of the system if certain kinds of notifications can only be produced
in certain parts of the broker network. In this case, the size of the subscription
routing tables and the filter forwarding overhead is reduced. In the hierarchi-
cal setting, again any of the four filter-based routing algorithms can be used.
Together with flooding, this results in altogether 19 different combinations of
routing algorithms. Flooding can only be combined with a filter-based routing
algorithm in a hybrid routing scheme. In this case, in a subtopology notifi-
cations are flooded and filters are only forwarded to the root broker of this
subtopology. For more details regarding the routing framework please refer to
Chap. 4.

Visibility Control

In large-scale publish/subscribe systems, the ability to control the visibility
of notifications is a crucial feature. If a notification should not be visible

334 9 Existing Notification Services

in some part of the system, then it is also not necessary to distribute the
notification into this part. The visibility of events can be controlled with scopes
that facilitate information hiding. Together with input and output interfaces
this points the way toward event-based components. Event mapping can be
used to transform notifications from one representation to another, which is a
necessity in heterogeneous systems. For more details regarding scopes please
refer to Chap. 6.

Available Prototypes

Two prototypes have emerged and are available: a Java-based prototype and a
prototype based on Microsoft’s .NET platform. We are implementing a bridge
between the two prototypes to make them interoperable. Other developers in
the REBECA project are currently implementing the scoping concept [138, 140,
144] that allows the visibility of notifications to be constrained using a scope
graph. Histories supporting caching of past notifications [81] and that support
client and broker mobility [141, 142, 408] as well as P2P-based routing [374]
are also part of current implementation and research efforts.

9.3.5 Hermes

Another research prototype is HERMES [310], a distributed, event-based mid-
dleware platform. HERMES is aimed at a generic class of large-scale data dis-
semination applications, such as Internet-wide news distribution and a sensor-
rich, active building. It follows a type- and attribute-based publish/subscribe
model that places particular emphasis on programming language integration
by supporting type-checking of event data and event type inheritance.

To handle dynamic, large-scale environments, HERMES uses peer-to-peer
techniques for autonomic management of its overlay network of event brokers
and for scalable event dissemination. It is based on an implementation of a
peer-to-peer routing layer to create a self-managed overlay network of event
brokers for routing events. Its content-based routing algorithm is scalable be-
cause it does not require global state to be established at all event brokers. Its
routing algorithms use rendezvous nodes, as explained in Sec. 4.6.3, to reduce
routing state in the system, and include fault tolerance features for repairing
event dissemination trees. HERMES is also resilient against failure through the
automatic adaptation of the overlay broker network and the routing state at
event brokers. An emphasis is put on the middleware aspects of HERMES so
that its typed events support a tight integration with an application program-
ming language.

A primary feature of the HERMES event-based middleware is scalability.
HERMES includes two content-based routing algorithms to disseminate events
from event publishers to subscribers. The type-based routing algorithm only
supports subscriptions depending on the event type of event publications.
It is comparable to a topic-based publish/subscribe service but differs by

9.3 Research Prototypes 335

Event @ @
Dissemination e
Tree 3
__
3 =2 =
Overlay =, A
Network @
Physical = oy = Gy
Network E—E= 722
Gz

Fig. 9.14. Layered networks in HERMES

observing inheritance relationships between event types. The second algorithm
is type- and attribute-based routing, which extends type-based routing with
content-based filtering on event attributes in publications. In both algorithms,
event-type specific advertisements are sent by publisher-hosting brokers to set
up routing state. Advertisements are not broadcast to all event brokers, but
instead event brokers can act as special rendezvous nodes that guarantee that
event subscriptions and advertisements join in the network in order to form
valid event dissemination trees.

System Model

Both routing algorithms use a distributed hash table to set up state for event
dissemination trees. The distributed hash table functionality is implemented
by a peer-to-peer routing substrate, called PAN, formed by the event brokers
in HERMES. PAN is an extended implementation of the Pastry routing al-
gorithm. The advantage of such peer-to-peer overlay networks are threefold:
first, the overlay network can react to failure by changing its topology and thus
adding fault tolerance to HERMES. Second, the peer-to-peer routing substrate
that manages the overlay network is responsible for handling membership of
event brokers in a HERMES deployment. Third, the discovery of rendezvous
nodes, which must be well-known in the network, is simplified by the standard
properties of the distributed hash table.

The three layers of networks in HERMES are illustrated in Fig. 9.14. The
bottom layer is the physical network with routers and links that HERMES is
deployed in. The middle layer constitutes the peer-to-peer overlay network
that offers a distributed hash table abstraction. The top layer consists of
multiple event dissemination trees that are constructed by HERMES to realize
the event-based middleware service. When a message is routed using the peer-
to-peer overlay network, a callback to the upper layer is performed at every
hop, which allows the event broker to process the message by altering it or its
own state.

In addition to scalable event dissemination, HERMES supports event typ-
ing, the creation of event type hierarchies through inheritance, and generic, su-

336 9 Existing Notification Services

QoS Transactions Composite Events Security

Services Layer
Event-based Middleware Layer
Type- and Attribute-based Publish/Subscribe Layer
Type-based Publish/Subscribe Layer
Overlay Routing Layer

Network Layer

Fig. 9.15. Overview of the HERMES architecture

pertype event subscriptions. This enhances its integration with current object-
oriented programming languages such as Java or C++.

Architecture

As shown in Fig. 9.15, the architecture of HERMES has six layers. Each layer
builds on top of the functionality provided by the layer underneath and ex-
ports a clearly defined interface to the layer above. Apart from that, the
layers are independent of each other. A layered architecture for a communica-
tions system has the advantage that each layer can have its implementation
easily replaced by a different implementation if necessary. For example, if a
more efficient implementation of a distributed hash table becomes available,
HERMES can benefit from this without major modification. Since HERMES is
implemented by the event brokers, its layered structure is also reflected in the
implementation of an event broker. Next, we describe the role of each layer,
starting with the lowest one.

Network Layer. The lowest layer is the network layer that represents the
unicast communication service of the underlying physical network. This
assumes that HERMES is deployed in a network with full unicast connec-
tivity between nodes, such as the Internet. No other network-level services,
such as group communication primitives, are necessary.

Overlay Routing Layer. This layer implements an application-level rout-
ing algorithm that provides the abstraction of a distributed hash table.
A peer-to-peer implementation of this layer is chosen for reasons of scala-
bility and robustness. It takes application-level nodes, which are HERMES
event brokers, and creates routing state in order to hash keys to nodes. It
also handles the addition, removal, and failure of nodes in the overlay net-
work. The topology of the overlay routing layer is optimized with respect
to a proximity metric of the underlying physical network.

9.3 Research Prototypes 337

Type-Based Publish/Subscribe Layer. This layer exports a primitive
type-based publish/subscribe service on top of the distributed hash table
established by the previous layer. Type-based routing supports subscrip-
tions according to an event type and observes the inheritance relationships
between event types. Event dissemination trees are then created with the
help of rendezvous nodes in the system. Trees are also repaired by retrans-
mitting messages after state at event brokers has been lost.

Type- and Attribute-Based Publish/Subscribe Layer. This layer ex-
tends the type-based service with content-based filtering on event at-
tributes. The same rendezvous node mechanism is used for the construc-
tion of event dissemination trees. However, the trees are annotated with
filtering expressions derived from the type- and attribute-based subscrip-
tions. These filtering expressions are placed at strategic locations in the
network, usually as close to event producers as possible in order to discard
unnecessary events as early as possible.

Event-Based Middleware Layer. At this layer, event-based middleware
functionality is added to the content-based publish/subscribe system of
the previous layers. Typing information is maintained by the rendezvous
nodes so that event publications and subscriptions can be type-checked
automatically by HERMES. The event-based middleware layer also extends
the APT used by event clients to invoke HERMES.

Services Layer. The services layer is a set of pluggable extensions to the
event-based middleware layer. It allows the HERMES middleware to pro-
vide a wide range of higher-level middleware services. For example, dif-
ferent guarantees of publication and subscription semantics can be sup-
ported by a QoS module at the services layer. Another service may deal
with composite event detection or transaction support. Services may vio-
late the strict layering of the architecture and obtain direct access to lower
layers if this is necessary for their functionality.

9.3.6 Cambridge Event Architecture (CEA)

The Cambridge Event Architecture (CEA) [18, 20] was created in the early
1990s to address the emerging need for asynchronous communication in
multimedia and sensor-rich applications. It introduced the publish—register—
notify paradigm for building distributed applications. This design paradigm
allows the simple extension of synchronous request/reply middleware, such
as CORBA, with asynchronous publish/subscribe communication. Middleware
clients that become event sources (publishers) or event sinks (subscribers) are
standard middleware objects.

The interaction between an event source and sink is illustrated in Fig. 9.16.
First, an event source has to advertise the events that it produces, for example,
in a name service. In addition to regular methods in its synchronous interface,
an event source has a special register method so that event sinks can sub-
scribe (register) to events produced by this source. Finally, the event source

338 9 Existing Notification Services

ﬁ
1. Publish
G
Event) — CVvent
Source 2. Register — Sink
3. Notify >

Fig. 9.16. The publish-register-notify paradigm in the CEA

performs an asynchronous callback to the event sink’s notify method (notify)
according to a previous subscription. Note that event filtering happens at the
event sources, thus reducing communication overhead. The drawback of this
is that the implementation of an event source becomes more complex since it
has to handle event filtering. Another drawback is that the transmission of
notifications to multiple consumers are independent unicast communications.

Direct communication between event sources and sinks causes a tight cou-
pling between clients. To address this, the CEA includes event mediators,
which can decouple event sources from sinks by implementing both the source
and sink interfaces, acting as a buffer between them. Chaining of event me-
diators is supported, but general content-based routing, as done by other
distributed publish/subscribe systems, is not part of the architecture. More
recent work [192] investigates the federation of separate CEA event domains
using contracts that are enforced by special mediators acting as gateways be-
tween domains. A Java implementation of the CEA, Herald [346], supports
storage of events.

The design goal of the CEA is to seamlessly integrate publish/subscribe
with standard middleware technology. Therefore, events are strongly typed
objects of a particular event class and are statically type-checked at compile
time. Initially, subscriptions were template-based for equality matching only,
but they were then extended with a predicate-based language withname/value
pairs. These subscriptions are type-checked dynamically at runtime. Further-
more, the CEA provides a service for complex subscriptions based on compos-
ite event patterns [189]. This is an important requirement for an event-based
middleware. We presented our approach for detecting composite events in
Chap. 7.

COBEA

The CEA was implemented on top of CORBA in the CORBA-based event archi-
tecture (COBEA) [244]. Events are passed between event sources and sinks as
parameters in CORBA method calls. Event clients can by typed or untyped: a

9.3 Research Prototypes 339

typed client encodes the structure of an event type in an IDL struct datatype,
whereas an untyped client uses the generic any datatype. Type-checking for
typed clients is done by the IDL compiler. The subscription language consists
of a conjunction of predicates over the attributes defined in the event type.

ODL-COBEA

The use of CORBA IDL to express event types is cumbersome since its original
purpose is the specification of interfaces for remote method calls. In [309),
COBEA is extended with an event type compiler that transforms event type
definitions in the Object Definition Language (ODL) [72] into appropriate
CoRrBA IDL interfaces. ODL is a schema language defined by the Object Data
Management Group (ODMG). With ODL, objects can be described language-
independently for storage in an object-oriented database. The advantage of
using ODL for event definitions is that it provides support for persistent events
because it unifies the mechanisms for transmission and storage of events [19].

An example of an ODL-defined event type, as it would be used in the
Active Office application scenario, is given in Fig. 9.17. Event types consist of
a set of typed attributes and form an ODL inheritance hierarchy, in which all
types are derived from the BaseEvent ancestor class. The BaseEvent type has
attributes that all event types inherit, namely a unique id field, a priority
field, a source field with the name of the event source that generated this
event, and a timestamp. ODL-COBEA is aware of inheritance relationships
between event types and supports supertype subscriptions. When an event
subscriber subscribes to an event type, it will also receive any published events
that are of a subtype of the type specified in the subscription. This means that
an event subscriber that subscribes to the BaseEvent type will consequently
receive all events published at a given event source.

The CEA and in particular the ODL-COBEA implementation recognize
the importance of type-checking for events in a publish/subscribe system.
The object-oriented approach for defining event types cleanly integrates with
current object-oriented programming languages and middleware architectures.
Static type-checking, as done by an event type compiler, does not introduce
a runtime cost, but it tightly couples event sinks to sources.

The main disadvantage of the CEA is the lack of content-based event
routing between event mediators. This limits the scalability of the architec-
ture as it forces a subscriber to know the publisher (or mediator) that offers

class LocationEvent extends BaseEvent {
attribute short id;
attribute string location;
attribute long lastSighting;

+s

[N N

Fig. 9.17. An ODL definition of event types in ODL-COBEA

340 9 Existing Notification Services

a particular event type. In addition, it makes the implementation of event
sources challenging because they are required to perform event filtering de-
pending on subscriptions. Several distributed content-based publish/subscribe
systems were proposed after the CEA to address these problems.

9.3.7 Elvin

Elvin [341] is a notification service for application integration and distributed
systems monitoring developed by the Distributed Systems Technology Centre
in Australia. It features a security framework, internationalization, and plug-
gable transport protocols, and has been extended to provide content-based
routing of events [340]. Events are name/value pairs with a predicate-based
subscription language. An interesting feature of Elvin is a source quenching
mechanism, where event publishers can request information from event bro-
kers about the subscribers currently interested in their events. This enables
publishers to stop publishing events when there are no subscriptions, reducing
computation and communication overheads.

Clients for a wide range of programming languages are available, which led
to the implementation of many notification applications. Applications, such as
a ticker-tape, were evaluated as means for collaboration in a pervasive office
environment [148]. Other work investigates event correlation and support for
disconnected operation in mobile applications [368].

9.3.8 READY

The READY event notification service [184] introduced event zones to parti-
tion components based on logical, administrative, or geographical boundaries
and to delimit the visibility of events. Boundary brokers connect zones and
control the communication between them, and may enforce security policies
on connected clients. Although similar to scoping, zones resemble more the
domain idea of CORBA as it mainly addresses control on the physical routing
network; the engineering aspect is lacking. For instance, in READY a compo-
nent belongs to exactly one zone so that there is only a two-level hierarchy.
The system is structured only based on one specific point of view, prohibiting
composition and mixing of aspects [188]. Heterogeneity issues are only men-
tioned in READY: boundary brokers could apply transformations on crossing
notifications. Following the idea of CORBA domains, brokers operate here on a
rather coarse and static granularity, whereas event mappings (Sect. 6.4) allow
for syntactic and semantic mappings in the formal model and at every layer
of abstraction in a scoped system.

9.3.9 Narada Brokering

The Narada Brokering project [293] aims to provide a unified messaging envi-
ronment for grid computing, which integrates grid services, JMS, and JXTA.

9.3 Research Prototypes 341

It is JMS compliant (Sect. 9.1.3), but also supports a distributed network
of brokers as opposed to the centralized client/server solution advocated by
JMS. The JXTA specification [180] is used for peer-to-peer interactions be-
tween clients and brokers.

Events can be XML messages that are matched against XPath [398] sub-
scriptions by an XML matching engine. The network of brokers is hierarchical,
built recursively out of clusters of brokers. Every broker has complete knowl-
edge of the topology, so that events can be routed on shortest paths following
the broker hierarchy. In general, there is the additional overhead of keeping
event brokers organized hierarchically, which can be costly. Dynamic changes
of the topology are propagated to all affected brokers.

