
8

Advanced Topics

In this chapter we provide an overview of several areas of event-based systems
that are still the focus of ongoing research. The entire space is too vast to be
covered in this book, so we have chosen five topics that are of particular inter-
est to designers of event-based systems instead. In Sect. 8.1 we discuss security
in a publish/subscribe system and describe a secure publish/subscribe model
that can be used as a foundation for access control using events. Section 8.2
investigates the issue of fault tolerance in event-based systems. The goal is to
build systems that are robust in the face of failure, for instance, by designing
self-stabilizing routing algorithms that are guaranteed to reach a correct state
after a finite number of steps. The issue of congestion in publish/subscribe
systems is addresses in Sect. 8.3. Here, we give an example of two congestion
control algorithms that are targeted at the asynchronous, decoupled commu-
nication in a network of event brokers. Finally, in Sect. 8.4 we focus on mobility
in event-based systems. The loose coupling of clients in a publish/subscribe
system has natural advantages when applied to mobile clients that migrate
through the systems, deattaching and reattaching at different points in the
network.

8.1 Security

Security has received surprisingly little attention in publish/subscribe systems
so far. Unlike composite event detection, it affects many different parts of a
publish/subscribe system. In this chapter, we provide an example of a security
service [34] for a distributed event system that uses role-based access control
to provide three mechanisms: restrictions on the interaction of event clients
with the publish/subscribe system, trust levels for event brokers, and the en-
cryption of event data to control information flow in the publish/subscribe
system on a fine-grained basis. An advantage of this approach is that it does
not require separation of the overlay broker network into distinct trust do-
mains but instead any broker can handle any potentially encrypted event.

254 8 Advanced Topics

The described security service is influenced by the security needs of two
applications scenarios discussed in the next section. In Sect. 8.1.2 we define the
requirements of a security service, showing how publish/subscribe communi-
cation impacts on security. After briefly summarizing existing access control
techniques in Sect. 8.1.3, we introduce the secure publish/subscribe model
implemented by the service in Sect. 8.1.4. It includes boundary access con-
trol using restrictions, different levels of event broker trust, and encryption of
event attributes. We finish the overview of related work on security in publish/
subscribe systems in Sect. 8.1.5.

8.1.1 Application Scenarios

In this section we look at two application scenarios and examine how they mo-
tivate the need for security in a publish/subscribe system. When considering
security, we focus on issues of access control to the system and confidentiality
of the event data being disseminated in the system.

The Active City

The Active City is an extension of theActive Office environment introduced
in Sect. 7.1 to a geographically larger system covering an entire city. In an
Active City, different city services, such as police and fire departments, ambu-
lances, hospitals, and news agencies, cooperate using a shared event system for
information dissemination. Since these city services are under separate man-
agement and have individual security implications, the event system must be
flexible enough to accommodate a wide range of security policies and mecha-
nisms to enforce them.

An excerpt of a sample event type hierarchy with event attributes that
could be employed by cooperating services in an Active City is shown in
Fig. 8.1. Information about a road traffic accident reported to the police in an
AccidentEvent should be visible to the emergency services so that an ambu-
lance can be dispatched if there are any casualties, but only anonymized data
should be passed on to a news agency. The challenge is that some information
may flow freely through the Active City, whereas other information has to
be closely controlled. A simple solution would be for each city service to op-
erate a separate, trusted event-based middleware deployment with controlled
gateways between networks, forming an event federation [192]. However, this
would result in complex policy management at the gateways, a significant
waste of resources due to redundancy, and an increased event notification de-
lay between services. It would also prevent event clients from one domain using
the infrastructure of another while roaming. For this application scenario, a
more complex solution is required.

8.1 Security 255

EmergencyEvent
location
severity
isDrill

��

FireEvent
buildingType
enginesPresent

�
FireAlarmEvent
detectorType

PoliceEvent
polCode
source

��

AccidentEvent
roadType
casualties
specialHazard

BurglaryEvent
zoning

isa isa

isaisa

Fig. 8.1. An event type hierarchy for the Active City

News Story Dissemination

In an Internet-wide system for the dissemination of news stories, it is im-
portant that customers only receive the service that they are paying for. For
example, a customer who has subscribed to a premium service should receive
up-to-date news bulletins without delay, as opposed to a standard service sub-
scriber that can only see events relating to older news reports. Moreover, sub-
scribers should only be allowed to subscribe to the news topics that they are
entitled to. To ensure this, it is not sufficient to merely rely on subscriptions
in the publish/subscribe system because event brokers that perform content-
based routing of news events may be under the administration of customers
and thus not trusted to honor subscriptions correctly. Using partially trusted
event brokers for event dissemination in customer networks is otherwise in
the interest of news agencies because it reduces the resource requirements of
their middleware deployments. When the service subscription of a customer
changes, the event system should quickly adapt to the change in policy.

8.1.2 Requirements

Security mechanisms for an event system differ from traditional middleware se-
curity because of publish/subscribe communication semantics. Many-to-many
interaction in a publish/subscribe system mandates a scalable access control
mechanism. The anonymity of the loose coupling between event publishers
and subscribers makes it difficult to use standard security techniques, such
as access control lists, since principals can often not be identified beforehand.
Content-based routing of events conflicts with the encryption of data because

256 8 Advanced Topics

an event broker must have access to the content of an event for its routing
decision [390]. Any access control mechanism should incur little overhead at
publication time because event publications may have a high rate and thus
routing should be carried out as quickly as possible.

Since event clients are not trusted, a security service should include perime-
ter security to control access of event clients to the publish/subscribe system.
As seen in the application scenarios, event brokers are trusted to cooperate
for the sake of event dissemination, but they may not be allowed to see all
event data. Different levels of event broker trust are necessary and must come
with mechanisms to remove compromised event brokers. The confidentiality
of data stored in event attributes must be preserved even in the light of event
matching and content-based routing. At the same time, as much as possible
of the overlay broker network should be used for event dissemination so that a
single infrastructure for both public and private information exists in order to
improve efficiency, administerability, and redundancy in the publish/subscribe
system.

8.1.3 Access Control Techniques

In this section, we describe different access control techniques and highlight
their applicability to publish/subscribe communication. We assume that the
system consists of a set of objects, a set of principals, and a set of permissions.
The goal of an access control scheme is to define what principals have what
permission to access what objects, as shown below. In a publish/subscribe
context, principals correspond to event clients, objects are the event noti-
fications, and permission are the standard operations, such as publish and
subscribe.

Principals Permissions Objects

Our discussion will focus on discretionary access control, where users them-
selves set access control rights, as opposed to mandatory access control, in
which rights are set by a centralized authority for the entire system. Dis-
cretionary access control is more suitable for large-scale distributed systems
because it does not depend on a centralized entity.

Access Control Lists

A simple way to implement discretionary access control are access control
lists (ACLs). An ACL is associated with every object and specifies the access
permissions of principals to that object. For example, an ACL for file foo may
state that the file is writable and readable by user Alice and only readable by
user Bob.

A drawback of ACLs is that they create a direct mapping between objects
and principals. This is undesirable in a publish/subscribe context, in which

8.1 Security 257

the identities of event publishers and event subscribers are not globally known.
In addition, events in a publish/subscribe system are short-lived, which makes
them bad candidates to manage access permissions.

Capabilities

The opposite approach to an ACL is a capability that stores access permissions
with the principal instead of the object. When a principal wants to access a
given object, she must present the capability with the appropriate permissions
first. For example, the capability owned by user Alice may state that she
can read and write file foo and only read file bar. Of course, this means that
capabilities need to be protected from tampering by principals through digital
signatures or secure storage in memory.

Capabilities are more compatible with publish/subscribe communication
because event clients manage their own capabilities. However, they are harder
to manage because access permissions cannot easily be revoked. In addition,
capability-based access control is often not scalable because principals may
end up with a large number capabilities when the set of objects in the system
changes dynamically. Finally, it also suffers from the problem that both prin-
cipals and objects need to know about each other, which is not the case in a
publish/subscribe system.

Role-Based Access Control

An access control model that extends capabilities and attempts to address
some of its short-comings is role-based access control model (RBAC) [332].
RBAC simplifies security administration by introducing roles as an abstrac-
tion between principals and permissions, as shown below. Roles permit prin-
cipals and permissions to be grouped intuitively in the system and addresses
the anonymity of event clients in an event-based middleware. This grouping
increases scalability of the access control mechanism because there are fewer
roles than principals and permission in the system. The access control policy
for the system focuses on the concept of a role, which is long-lived. To obtain
privileges, a principal such as an event publisher or subscriber presents cre-
dentials that allow it to acquire a role membership that is associated with the
desired permissions. In the rest of this chapter, we describe an access control
model for publish/subscribe communication that is based on RBAC.

Principals Roles Permissions Objects

In our secure publish/subscribe model, we assume the decentralized im-
plementation of a RBAC scheme, such as Open Architecture for Secure Inter-
working Services (OASIS) [22]. OASIS includes an expressive policy language
to specify rules for role acquisition. It uses a session-based approach with

258 8 Advanced Topics

B1

B3

B2

B5

B4

P1

S1

cred1

cred2OASIS

OASIS

PoliceEvent

EmergencyEvent

Permitted Event Type

police trainingtraining

Key-Class

police

fire

fire

Fig. 8.2. Illustration of the secure publish/subscribe model

event communication to revoke currently active roles of principals in a timely
manner after prerequisite credentials were revoked. Credentials in the OASIS
implementation are protected with X.509 certificates [207] for authentication
and proof of role membership.

8.1.4 Secure Publish/Subscribe Model

In this section we describe a secure publish/subscribe model for an event
system. As a general design philosophy, the model couples access control with
types of events. If the event space is already structured into event types, it
is intuitive to leverage this for the specification of access control policy, but
more fine-grained specification in terms of event attributes and content-based
subscriptions is also supported by the model.

An example of an distributed publish/subscribe deployment with event
brokers that implement the secure publish/subscribe model is given in Fig. 8.2.
There are three mechanisms in the model to accomplish access control. First,
boundary access control to the middleware, as described in the next sec-
tion, is achieved by controlling access of event clients to local event bro-
kers with an OASIS policy. Services requested by event clients can either
be granted, rejected, or partially granted after imposing restrictions. As ex-
plained in Sect. 8.1.4, the second mechanism assigns an event broker to a
particular trust category that prescribes the types from the event type hier-
archy that the event broker is permitted to handle. Finally, confidential event
attributes in event notifications are encrypted, limiting access to those at-
tributes. A single event publication can contain both public and private data.
Content-based routing decisions on encrypted event attributes can only be
carried out by event brokers that possess the necessary decryption key, other-
wise events need to be flooded. Event attribute encryption will be introduced
in Sect. 8.1.4.

8.1 Security 259

Boundary Access Control

Local event brokers that host event clients are OASIS-aware and perform
access control checks for every request made to them. This ensures that only
authorized clients have access to the publish/subscribe system in compliance
with access control policies. As shown in Fig. 8.2, local event brokers delegate
the verification of credentials passed to them by event clients to an OASIS
engine. Four types of OASIS policy restrict the actions of event clients. The
event client that creates a new event type becomes its event type owner and
is then responsible for specifying policy.

Connection Policy. This policy states the required credentials for an event
client to be permitted hosting by a given event broker. A client can only
use the publish/subscribe system if it maintains a connection with at least
one local event broker.

Type Management Policy. The creation, modification, and removal of
event types in the event type hierarchy is controlled by a type management
policy. Usually, credentials certifying that an event client has the role of
event type owner for an event type allow it to perform type management.
This also avoids conflicts between clients from different applications.

Advertisement Policy. For every event type in the system, an advertise-
ment policy specifies the roles an event publisher must acquire in order
to advertise events of this type. This policy is generally specified by the
event type owner.

Subscription Policy. Similarly, a subscription policy lists the necessary
roles for an event subscriber to subscribe to events of that type. The policy
may also prescribe the content-based filter expressions that are permitted
and is again defined by the event type owner.

When an event client violates the connection or type management policies,
the event broker rejects the operation invoked by the client. For advertisement
and subscription policies, certain requests may be partially accepted by im-
posing a restriction on the original event advertisement or subscription. An
advertisement restriction limits the advertisement by restricting the events
that the event publisher is allowed to publish. Likewise, a subscription restric-
tion transforms the client-requested subscription into a different, less powerful
one. The client may or may not be notified by its local event broker that a re-
striction has been imposed for privacy reasons. The secure publish/subscribe
model supports two flavors of restrictions.

Publish/Subscribe Restrictions

This kind of restriction takes the original submitted advertisement or sub-
scription and replaces it by a different, more limited one, as defined by a
coverage relation. In the case of an event advertisement, the event type in the
advertisement is replaced by a less specific parent type from the event type hi-
erarchy. For event subscriptions, the publish/subscribe restriction specifies an

260 8 Advanced Topics

upper bound on the event type and content-based filtering expression that the
event subscriber is allowed to submit. If the submitted subscription is covered
by the subscription restriction, the subscription is accepted without change,
otherwise it is automatically downgraded to the restricted subscription.

Generic Restrictions

A generic restriction is not expressible by the publish/subscribe system since
it can include any predicate evaluations permitted by OASIS. Although the
original advertisement or subscription submitted by the event client is passed
on to the publish/subscribe system, all later events are restricted according
to the arbitrary predicate function in the generic restriction. For example, a
generic advertisement restriction may reject the publication of events with
certain content, and a generic subscription restriction may perform additional
filtering of events on the message size of the event notification, which otherwise
could not be expressed in an event subscription.

The advantage of publish/subscribe restrictions is that they do not incur
an overhead during the dissemination of events. Since the original advertise-
ment or subscription is replaced by a more limited version, the event-based
middleware implicitly enforces policy and no events need to be dropped at
client-hosting brokers. The same is not true for generic restrictions because
their additional expressiveness comes with the price of having to evaluate ar-
bitrary predicates at client-hosting brokers to decide whether an event client
can publish or be notified of a given event publication.

Event Broker Trust

The previous mechanism for boundary access control using restrictions as-
sumes that all event brokers are equally trusted to process data, which is not
true in practice. When an event broker joins the publish/subscribe system, it
authenticates with its credentials and is then believed to participate correctly
in the routing of events according to a content-based routing algorithm. It
maintains encrypted network connections with its neighbouring event brokers
in the overlay broker network. However, an event broker may not be trusted
enough to gain access to data in particular event notifications or subscriptions.
To make these trust relationships explicit, event brokers are associated with
event types from the event type hierarchy that they are permitted to handle.
This is illustrated in Fig. 8.2. Event broker B3 is only permitted to process
events of type PoliceEvent. Event brokers may be authorized to handle all
event types that are more specific or more general than a given type, in other
words are sub- or supertypes of an event type.

When routing event advertisements, subscriptions, and notifications in the
overlay broker network, an event broker only passes on a message to the next
event broker after obtaining proof in the form of a role membership certificate
that this event broker is authorized to handle that particular event type. Oth-
erwise, the event broker is forced to make a different routing decision. This can

8.1 Security 261

be done by acting as though the untrusted event broker has failed, relying on
the fault tolerance properties of event routing in the publish/subscribe system
that will ensure a different routing path. Note that event broker trust encom-
passes the handling of entire event types only, but we relax this restriction by
using of event attribute encryption, as described in the next section.

Event Attribute Encryption

The mechanism for event broker trust from the previous section excludes
brokers that are not trusted to handle specific event types from routing. As
mentioned before, this coarse-grained approach effectively splits the overlay
broker network into several trust domains, thus weakening the reliability and
efficiency of event routing. A better solution is to prevent an untrusted event
broker from accessing confidential data but still enabling it to perform content-
based routing on other attributes. We achieve the goal of a single event that
can hold private and public information by encrypting event attributes in
event publications with different cryptographic keys. Although this introduces
a larger runtime overhead due to cryptographic operations during event rout-
ing, this is justifiable as it leads to more expressive access control specifications
where event types no longer have to be strictly divided into private and public
categories. Another advantage of this scheme is that access control policy can
also associate event clients, which have access privileges, to event attributes.

In addition to event types, event brokers are also trusted with a number
of key classes . A key class is a collection of cryptographic keys for encrypting
event attributes, that supports key rotation and revocation. Access control to
individual event attributes is achieved by signing and encrypting them with
a key from a given key class so that only trusted event brokers can decrypt
these attributes. An event broker can only read or write an event attribute if
it has a role membership that includes access to the appropriate key classes.
This also means that an event client can only submit an event subscription or
notification that refers to encrypted attributes to its local event broker if it
can prove that it possesses credentials for the required key classes. The event
broker then performs the cryptographic operations on the client’s behalf.

To include event attribute encryption in a typed event model, the event
type hierarchy is extended with a description of the key classes that are nec-
essary to access the content of event attributes, as shown in Fig. 8.3. Each
event attribute is annotated with its key classes in disjunctive normal form.
A conjunction of key classes means that the attribute is encrypted with keys
from several key classes in sequence. For example, the isDrill attribute in
the EmergencyEvent type has to be either encrypted under the police and
training, or under the fire and training key classes. This prevents anyone re-
ceiving emergency-related events in the Active City from finding out whether
this is an exercise drill unless they are a training instructor with access to the
training key class. Unencrypted event attributes are denoted with the empty

262 8 Advanced Topics

EmergencyEvent
locationemergency∨police∨fire∨∅
severity∅
isDrill(police∧training) ∨ (fire∧training)

��

FireEvent
buildingType∅
enginesPresentfire

�
FireAlarmEvent

detectorType∅

PoliceEvent
locationpolice∨fire∨∅
polCodepolice

sourcepolice

��

AccidentEvent
roadType∅
casualtiespolice∨∅
specialHazardpolice∨fire∨∅

BurglaryEvent
locationpolice

zoning∅

isaisa

isaisa

Fig. 8.3. An event type hierarchy with attribute encryption

key class ∅. In Fig. 8.2 event brokers are annotated with the key classes that
they are permitted to use.

Note that the standard subtyping relation between event types must still
hold so that a subtype is more specific than its parent type. As a result, key
classes can only be removed from inherited event attributes but never added.
This is illustrated with the location attribute whose access becomes more
restrictive as new event types are derived.

Encrypted Attribute Coverage

When an event subscriber submits a content-based subscription for an event
type with encrypted attributes, attribute predicates in the subscription must
also be encrypted with appropriate key classes for the subscription to match
events. The subscriber selects one or more key classes for the encryption of the
attribute predicate from all the key classes for which it is authorized. As a con-
sequence, the event model of the publish/subscribe system must be extended
to support a coverage relation between event subscriptions and notifications,
and among event subscriptions that use attribute encryption. Informally, an
encrypted attribute predicate can only be matched by an encrypted event at-
tribute in a notification if it was encrypted with the same key classes. When
an attribute predicate should match attributes encrypted under several differ-
ent key classes, it must be disjunctively encrypted multiple times using these
key classes and several copies of the attribute predicate must be included in
the subscription. For coverage among subscriptions, an attribute predicate
encrypted under particular key classes is covered by another encrypted pred-

8.1 Security 263

s1: PoliceEvent

�
s2: PoliceEvent
p1(locationpolice∨fire∨∅)

� �
s3: PoliceEvent
p1(locationpolice∨fire)

� �
s4: PoliceEvent
p1(locationpolice)

s5: BurglaryEvent
p1(locationpolice∨fire)

s6: BurglaryEvent
p1(locationpolice∨fire∨∅)

�

covers covers

coverscoverscovers

Fig. 8.4. Subscription coverage with attribute encryption

icate if the second predicate covers the first and is encrypted under at least
the key classes of the first predicate.

Definition 8.1 (Encrypted Attribute Coverage). An encrypted event at-
tribute aK is covered by (or matches) an encrypted attribute predicate pL,

aK � pL,

iff
a � p ∧ K ⊆ L

holds, where K is the set of key classes under which a is conjunctively en-
crypted and L is the set of a conjunction of key classes under which p is
disjunctively encrypted. An encrypted attribute predicate pL1

1 is covered by
another encrypted attribute predicate pL2

2 ,

pL1
1 � pL2

2 ,

iff
∀a. a � p1 ⇒ a � p2 ∧ L1 ⊆ L2,

holds, where a is an event attribute and L1 and L2 are sets of conjunctions of
key classes with disjunctive encryption.

We illustrate this extended coverage relation in Fig. 8.4, which shows six
example subscriptions with regard to the previous event type hierarchy. Sub-
scription s1 is the most generic because it does not include any attribute
predicates. The attribute predicate in subscription s3 does not match events
with an unencrypted location attribute, and therefore s3 is covered by s2.
Subscription s4 is most specific because the attribute predicate is only en-
crypted under the police key class.

264 8 Advanced Topics

8.1.5 Further Reading

In this section we provide an overview of previous work in the area of secu-
rity in publish/subscribe systems. Preliminary work on security issues under
publish/subscribe semantics can be found in [390]. It identifies the necessity
for ensuring the confidentiality of event publications and subscriptions and
suggests accountability for billing purposes; however, no mechanisms are pro-
vided. In the work by Miklós [260], upper bound filters on advertisements and
subscriptions in Siena are proposed, but the confidentiality of event publica-
tions within the publish/subscribe system is not guaranteed.

The Narada Brokering project includes a distributed security frame-
work [294, 405] that uses access control lists to control event publishers and
subscribers for a topic, limiting the scalability. Cryptographic keys for encrypt-
ing publications are centrally managed by a key management center (KMC).
An event publisher can choose to use a central topic key from the KMC or the
public keys of all event subscribers for encryption, which contradicts decou-
pled publish/subscribe semantics. Access control can only be provided at the
granularity of whole events, and event brokers are implicitly trusted, rather
than using different trust levels as supported by our security service.

A publish/subscribe system with scopes (Chap. 6) can be extended to
include access control [145]. Scopes, which model visibility in a distributed
publish/subscribe system, can be used to split the event system into different
trust domains. In effect, this creates multiple distinct overlay networks of event
brokers. Secure events only stay within a scope and are therefore never handled
by untrusted event clients or brokers. Interactions between trust domains
are precisely specified through scope interfaces. Scope interfaces express the
access control policies for events crossing trust boundaries. Partitioned overlay
networks can use untrusted brokers to create an encrypted tunnel for secure
events. This work also proposes an implementation strategy based on aspect-
oriented programming [222] to integrate access control with existing publish/
subscribe implementations.

8.2 Fault Tolerance

The behavior of a system in the presence of faults is an important property
of the system. In Sect. 2.5.2 we described the formal specification of a simple
event system. An important goal for such a system was to guarantee safety
and liveness conditions. Recall that a safety condition ensures that nothing
bad will happen, whereas liveness stipulates that eventually something good
will occur. In other words, Def. 2.5 requires that the system is correct, i.e.,
exhibits the desired functionality at its interface under all circumstances. To
satisfy the specification, all faults occurring in the real world would have to
be masked. However, masking all faults is costly if not impossible. Provided

8.2 Fault Tolerance 265

that a temporary failure of the system can be accepted, making a system self-
stabilizing is an attractive alternative or supplement to fault masking. We
will see that self-stabilization comes at cost, namely the weakening of safety
conditions. In the following, we describe fault masking and self-stabilization
in an event system with an emphasis on the latter.

8.2.1 Fault Masking

Fault masking requires redundancy either in time or in space. While time
redundancy repeats actions (e.g., resending a message to cope with message
loss), space redundancy uses independent copies of the resources that can be
affected by faults (e.g., communication channels). Of course, both approaches
can also be combined in a single system. However, research about applying
fault masking to publish/subscribe systems is still in an early stage.

What are typical scenarios for fault masking in publish/subscribe sys-
tems? For example, assume that communication channels fail with in a fail-
stop model. Then, we could connect each pair of neighbored brokers with two
instead of one communication channel. If one of the communications fails,
the brokers can still communicate using the communication channel that is
still working. This way, failed communication channels can be masked by the
system as long as for any pair of neighbored brokers only one of the two
communication channels fails. To be able to mask broker and communica-
tion channel failures, we can use two independent broker topologies that do
not share physical communication links or computers hosting brokers. In this
case, we would have to modify our model such that a client can connect to
two remote brokers. We also must take care that no duplicates are delivered
and that—if required—the FIFO-producer or causal ordering of messages is
ensured. If Byzantine faults can occur, fault masking is much more compli-
cated than in the fail-stop model. This is due to the fact that in the Byzantine
model failed links and brokers can behave arbitrarily.

Another possibility for implementing fault masking is to reconfigure the
broker network in case of failures such that the failed resources are no longer
used in the system. This approach is feasible but not trivial to implement if
concurrent faults can occur. While the reconfiguration is in progress, notifi-
cations must be buffered at certain brokers. We must ensure that no notifica-
tions are lost or duplicated. Extra effort is needed to keep notification ordering
guarantees such as publisher-based FIFO or causal ordering, if required [302].

8.2.2 Self-Stabilizing Publish/Subscribe Systems

An alternative (or sensible addition) to fault masking is self-stabilization, a
concept introduced by Dijkstra [113] in 1974. He defined a system as being
self-stabilizing if “regardless of its initial state, it is guaranteed to arrive at
a legitimate state in a finite number of steps”. In contrast to that, a system
which is not self-stabilizing may stay in illegitimate states forever, leading to

266 8 Advanced Topics

a permanent failure of the system. Self-stabilization models the ability of a
system to recover from arbitrary transient faults within a finite time without
any intervention from the outside. If the time between consecutive faults is
long enough, the system will start to work correctly again. Transient faults
include temporary network link failures resulting in message duplication, loss,
corruption, or insertion, arbitrary sequences of process crashes and subsequent
recoveries, and arbitrary perturbations of the data structures of any fraction
of the processes. The program code running at the nodes and inputs from
the outside, however, cannot be corrupted. Dolev [116] gives a comprehensive
discussion of self-stabilization.

However, it is, in general, impossible under the fault assumption of self-
stabilization to require any property that prohibits certain states, i.e., safety
properties. For example, the system could deliver a notification n to a client X
although X has no active subscription matching n because a fault corrupted
the state of the system such that that it “thinks” that X subscribed to n.
Therefore, we require that a self-stabilizing publish/subscribe system satisfies
the safety property of Def. 2.5 only eventually. This ensures that the system
starting from any state will eventually satisfy the actual safety property and
continue to do so if no faults occur. The liveness property of Def. 2.5 can be left
unchanged. This leads to the following definition of self-stabilizing publish/
subscribe systems:

Definition 8.2. A self-stabilizing publish/subscribe system is a publish/sub-
scribe system satisfying the following requirements:

1. Eventual Safety Property: Starting from any state, the system eventually
satisfies the safety property of Def. 2.5.

2. Liveness Property: Starting from any state, the system satisfies the live-
ness property of Def. 2.5.

A formal version of this specification can be found in [263].

8.2.3 Self-Stabilizing Content-Based Routing

Under the fault assumption of self-stabilization, the routing configuration can
arbitrarily be corrupted by transient faults. Therefore, the applied routing
algorithm must ensure (a) that corrupted routing entries are corrected or
deleted from the routing table and (b) that missing routing entries are inserted
into the routing table.

We assume that each broker stores the information about its neighbors
in its ROM. This ensures that this information cannot be corrupted. If it
would be stored in RAM or on harddisk, it could also be corrupted by a fault.
In this case, we would have to layer self-stabilizing content-based routing on
top of a self-stabilizing spanning tree algorithm. Layered composition of self-
stabilizing algorithms is a standard technique which is easy to realize when
the individual layers have no cyclic state dependencies [116]. In this case, the

8.2 Fault Tolerance 267

stabilization time would be bounded by the sum of the stabilization times of
the individual layers.

Basic Idea

The basic idea for making content-based routing self-stabilizing is that routing
entries are only leased. To keep a routing entry, it must be renewed before the
leasing period π has expired. If a routing entry is not renewed in time, it is
removed from the routing table. Interestingly, this approach does not only
allow the publish/subscribe system to recover from internal faults but also
from certain external faults. For example, if a client crashes, its subscriptions
are automatically removed after their leases have expired.

To support leasing of routing table entries, we use a second chance al-
gorithm. Routing entries are extended by a flag that can only take the two
values 1 and 0. Before a routing entry is (re)inserted into the routing table, all
existing routing entries whose filter has the same ID (as the ID of the filter of
the routing entry to be inserted) are removed from the routing table. This is
necessary as the IDs of the routing entries can be corrupted, too. We assume
that the clock of a broker can only take values between 0 and π − 1 to en-
sure that if the clock is corrupted, it can diverge from the correct clock value
by at most π. When its clock overruns, a broker deletes all routing entries,
whose flags have the value 0 from the routing table and sets the flags of all
remaining routing entries to 0 thereafter (new subscriptions have their flags
set to 1 initially). Hence, it must be ensured that an entry is renewed once in
π to prevent its expiration. On the other hand, it is guaranteed that an entry
which is not renewed will be removed from the routing table after at most 2π.

The renewal of routing entries originates at the clients. To maintain its
subscriptions without interruption, a client must renew the lease for each of
its subscriptions by “resubscribing” to the respective filter once in a refresh
period ρ. Resubscribing to a filter is done in the same way as subscribing. In
general, π must be chosen to be greater than ρ due to varying link delays.
The link delay δ is the amount of time needed to forward a message over a
communication link and to process this message at the receiving broker. In
our model, it is considered a fault when δ is not in the range between δmin

and δmax. It is important to note that assuming an upper bound for the link
delay is a necessary precondition for realizing self-stabilization.

Flooding

The näıve implementation of a self-stabilizing publish/subscribe system is
flooding: When a broker receives a notification from a local client, the bro-
ker forwards the notification to all neighbor brokers. When it receives a no-
tification from a neighbor broker, the notification is forwarded to all other
neighbor brokers. Additionally, each processed notification is delivered to all
local clients with a matching subscription. Flooding only requires a broker to

268 8 Advanced Topics

keep state about the subscriptions of its local clients. Therefore, errors in this
state can be corrected locally by forcing clients to renew their subscriptions
once in a leasing period. This means that ρ = π. The main advantage of this
scheme is that a coordination among neighboring brokers is not necessary.
Hence, no additional network traffic is generated. Additionally, new subscrip-
tions become active immediately. While a corrupted or erroneously inserted
subscription survives at most 2π in a routing table and a missing subscription
is reinserted after at most π, an erroneously inserted or corrupted notification
disappears from the network after at most d · δmax, where d is the network
diameter, i.e., the length of the longest path a message can take in the broker
network. Hence, for flooding, the stabilization time ∆, i.e., the time it takes
for the system to reach a legitimate state starting from an arbitrary state,
equals max{2π, d · δmax}.

Simple Routing

The solution for flooding can be extended to simple routing. Simple rout-
ing treats each subscription independently of other subscriptions. A (un)sub-
scription is inserted into (removed from) the routing table and flooded into
the broker network. If a broker receives a (un)subscription from a local client,
it is forwarded to all neighbor brokers. If it was received from a neighbor
broker, it is forwarded to all other neighbor brokers. Thus, simple routing is
idempotent to resubscriptions, and a subscription is redistributed through the
broker network when it is renewed by the client. Note that here subscriptions
become active only gradually.

A critical issue is that the timing assumptions must allow the clients to
renew their leases everywhere in the network before they expire. How large
must π be with respect to ρ in this case? To answer this question, consider
two brokers B and B′ connected by the longest path a message can take in
the broker network. This situation is illustrated in Fig. 8.5. Assume a local
client X of B leases a routing table entry of B at time t0 and renews this lease
at time t1 = t0 + ρ. X ’s lease causes other leases to be granted all along the
path to broker B′. Considering the best- and worst-cases of the link delay, the
first lease reaches B′ at time a0 = t0 + d · δmin in the best case, and the lease
renewal reaches B′ at time a1 = t1 + d · δmax in the worst-case. If X refreshes
its leases after ρ time and if network delays are unfavorable, two lease renewals
will arrive at B′ within at most a1 − a0. Hence, π > a1 − a0 must hold to
ensure that the entry is renewed in time. Thus, we get π > ρ+d·(δmax−δmin).

The stabilization time ∆ depends on the value of π. Since corrupted or
erroneously inserted messages can contaminate the network, a delay of d ·δmax

must be assumed before their processing is finished. After at most 2π, their
effects will be removed everywhere. Overall, the stabilization time sums up to
∆ = d · (δmax − δmin) + 2π. For example, assume that d = 10, δmax = 25 ms,
and δmin = 5 ms. To guarantee a stabilization time of ∆ = 30 s, π = 14.9 s
and thus ρ = 14.7 s follows. There is a tradeoff between π and ρ. To have low

8.2 Fault Tolerance 269

21

B′
d · δmin π

t1 time

B

d · δmaxt0 ρ

a1

a0

message

d hops

renewal

Fig. 8.5. Deriving the minimum leasing time

message overhead, ρ should be as large as possible. However, this implies a
large value of π, but π should be as small as possible to facilitate fast recovery.

Advanced Routing Algorithms

The situation is more complicated if advanced content-based routing algo-
rithms such as identity-based, covering-based, or merging-based routing are
applied. Contrary to flooding and simple routing these algorithms are—at
least the versions presented so far—not idempotent with respect to resub-
scriptions. However, they can be made idempotent with some minor changes.
Note that the maximum stabilization time ∆ is not affected by whether an
advanced routing algorithm or simple routing is applied because in the worst-
case a filter will nevertheless travel all along the longest path in the network.

Consider identity-based routing (for more details we refer to [263]). When
a broker B processes a new or canceled subscription F from destination D, it
counts the number d of destinations D′ �= D for which a subscription matching
the same set of notifications exists in TB. Depending on the value of d, F is
forwarded differently. If d = 0, F is forwarded to all neighbors if D ∈ LB and
to all neighbors except D if D ∈ NB. If d = 1 and D′ ∈ NB, F is forwarded
only to D′. If d = 1 and D′ ∈ LB or if d ≥ 2, F is not forwarded at all.
This scheme is not idempotent to resubscriptions because if d ≥ 2 and one of
the identical subscriptions is renewed at B, none of those subscriptions will
be forwarded. This can be circumvented if B takes only those subscriptions
into account when calculating d whose flag is 1. In this case, in each leasing
period that subscription of the identical subscriptions which is renewed first
after the broker has run the second chance algorithm is forwarded, ensuring
correct forwarding.

Covering-based routing can also be made self-stabilizing. In this case, only
routing entries with flag 1 are taken into account when looking for identical
subscriptions. However, when looking for subscriptions that really cover a
given subscription (i.e., match a real superset of notifications), additionally

270 8 Advanced Topics

also those routing entries with flag 0 are considered. This is to avoid sending
covered subscriptions unnecessarily to neighbors because they are refreshed
before a covering subscription is refreshed. To make merging-based routing
self-stabilizing, the refreshing of merged filters must additionally be ensured.

Discussion

The values of π and ρ depend on the delay of the links in the network. So
far, we assumed that these values are fixed and equal for every broker in the
system. In many scenarios, link delays vary a lot such that it could be ad-
vantageous to incorporate this property into the algorithm. We assume that
the value of link delay stored at every adjacent broker cannot be corrupted
(i.e., it is stored in ROM). The values of π and ρ have then to be calcu-
lated individually for every subscription, depending on where the publishers
are. Additionally, π and ρ have to be refreshed the same way as described
previously for subscriptions. Advertisements that are sent periodically by the
publishers could be used for this purpose. Taking this approach, the broker
algorithm can take advantage of faster links and stabilize subtrees of the bro-
ker topology faster if the links allow for this. The application of leasing is a
common way to keep soft states. This technique is used in many protocols
and algorithms such as the Routing Information Protocol (RIP, RFC2453)
and Directed Diffusion [205].

Simulation

We carried out a discrete event simulation to compare self-stabilizing content-
based routing to flooding with respect to their message complexity. Before we
discuss the results, we describe the setup of the experiments.

Setup

We consider a broker hierarchy being a completely filled 3-ary tree with five
levels. Hence, the hierarchy consists of 121 brokers of which 81 are leaf brokers.
Since we use a tree for routing, this implies a total number of 120 communi-
cation links. We use hierarchical routing, but similar results can be obtained
for peer-to-peer routing, too. With hierarchical routing, subscriptions are only
propagated from the broker to which the subscribing client is connected to-
ward the root broker. This suffices because every notification is routed through
the root broker. Hence, control messages travel over at most four links. We use
identity-based routing and consider 1000 different filter classes (e.g., stocks)
to which clients can subscribe.

Subscribers only attach to leaf brokers. Results for scenarios where clients
can attach to every broker in the hierarchy can be derived similarly. Instead
of dealing with clients directly, we assume independent arrivals of new sub-
scriptions with exponentially distributed interarrival times and an expected

8.2 Fault Tolerance 271

time of λ−1 between consecutive arrivals. When a new subscription arrives,
it is assigned randomly to one of the leaf brokers and one of the filter classes
is randomly chosen. The lifetime of individual subscriptions is exponentially
distributed with an expected lifetime of µ−1. Each notification is published at
a randomly chosen leaf broker. Hence, notifications travel over at most eight
links. The corresponding filter class is also chosen randomly. The interarrival
times between consecutive publications are exponentially distributed with an
expected delay of ω−1. We assume a constant delay in the overlay network of
δ = 25 ms, including the communication and the processing delay caused by
the receiving broker.

To illustrate the effects of changing the parameters, we considered two
possible values for some of the system parameters: For each of the 1000 filter
classes, a publication is expected every 1 s (10 s), i.e., ω1 = 1000 s−1 (ω2 =
100 s−1). The expected subscription lifetime is 600 s (60 s), i.e., µ1 = (600 s)−1

(µ2 = (60 s)−1). Each client refreshes its subscriptions once in 60 s (600 s), i.e.,
a refresh period of ρ1 = 60 s (ρ2 = 600 s). Since d = 8 in our scenario, the leas-
ing period is π1 = 60.2 s (π2 = 600.2 s) for ρ1 (ρ2). Hence, a subscription will
on average be refreshed 10 (100) times before it is canceled by the subscrib-
ing client if µ = (600 s)−1. The resulting stabilization time is ∆1 = 120.6 s
(∆2 = 1200.6 s).

We are interested in how the system behaves in equilibrium for different
numbers of active subscriptions N . In equilibrium, dN/dt = 0 where dN/dt =
λ−µ·N(t), implying N = λ/µ. Thus, if N and µ is given, λ can be determined.
If the system was started with no active subscriptions, we would have to
wait until the system approximately reached equilibrium before we begin the
measurements. However, in our scenario it is possible to start the system right
in the equilibrium. At time 0, we create N subscriptions. For each of these
subscriptions, we determine how long it will live, for which filter class it is, and
at which leaf broker it is allocated. Since we use an exponential distribution
for the lifetime, this approach is feasible because the exponential distribution
is memoryless.

Results

The results of our simulation are depicted in Fig. 8.6. Note that the right plot
is a magnification of the most interesting part of the left plot. In Fig. 8.6, bs1/2

is the notification bandwidth saved if filtering is applied instead of flooding.
The figure shows bs1 and bs2, which correspond to the publication rate ω1 and
ω2, respectively. Because bs linearly depends on ω, a decrease of ω by a factor
of 10 leads to a use of one tenth as much notification bandwidth. If there
are no subscriptions in the system, bs1 = 116, 000 s−1 and bs2 = 11, 600 s−1,
respectively. These numbers are 4000 s−1 and 400 s−1 less than the overall
number of notifications published per second. This is because with hierarchical
routing, a notification is always propagated to the root broker. The control
traffic bc is caused by subscribing, refreshing, and unsubscribing clients. It only

272 8 Advanced Topics

0

20000

40000

60000

80000

100000

120000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

bs1

bs2

bc1

bc2

bc3

bc4

0

500

1000

1500

2000

2500

3000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

Fig. 8.6. Notification bandwidth saved by doing filtering instead of flooding (bs1 :
ω1 = 1000 s−1, bs2 : ω2 = 100 s−1) and control traffic caused by filtering and leasing
(bc1, bc4 : ρ1 = 60 s, bc2, bc3 : ρ2 = 600 s, bc1, bc2 : µ1 = (600 s)−1, bc3, bc4 : µ2 =
(60 s)−1). The lower figure magnifies the most interesting part of the upper figure

arises if filtering is used. The figure shows bc1, bc2, bc3, and bc4, which result
from the different combinations of µ and ρ. The value to which bc converges for
large numbers of subscriptions mainly depends on the refresh period ρ. Thus,
bc1 and bc3 converge to 120, 000/ρ1 = 2000s−1, while bc2 and bc4 converge
to 120, 000/ρ2 = 200s−1. The evolution of bc for numbers of subscriptions in
the range between 0 and 200, 000 is largely influenced by the value of µ. A
small µ such as µ2 leads to a hump (cf. bc3 and bc4 in Fig. 8.6). Filtering saves
bandwidth compared to flooding if bs exceeds bc. The points where the curve
of the respective variants of bs and bc intersect are important: If the number
of subscriptions is smaller than at the intersection point, filtering is superior,
while for larger numbers flooding is better. For example, the curves of bs1 and
bc1 intersect for about 300, 000 subscriptions. Thus, filtering is superior for less
than 300, 000 subscriptions, while flooding is superior for more than 300, 000

8.2 Fault Tolerance 273

subscriptions. Since we consider eight scenarios, we have eight intersection
points in Fig. 8.6.

The results gained through the simulation show that applying self-stabi-
lizing filtering makes sense if the average number of subscriptions in the system
does not grow beyond a certain point. However, it is important to note that all
assumptions taken for the simulation depict worst-case scenarios. For example,
the equal distribution of subscriptions to leaf brokers is disadvantageous for
filtering. If there was locality in the interests of the clients, filtering would
always save a portion of the notification traffic, regardless of how large the
number of subscriptions grows [263], and the control traffic would also be
smaller. In such scenarios, filtering can be superior to flooding for all numbers
of subscriptions. Recently, Jaeger and Mühl [212] have published analytical
results that come to the same results as those presented here.

8.2.4 Generic Self-Stabilization Through Periodic Rebuild

In a self-stabilizing system, arbitrary transient faults can occur. The only
parts that cannot be corrupted are the program code and the data stored
in ROM. In general, we cannot reason about how a routing algorithm (that
works correctly in a fault-free system) behaves when it receives corrupted
messages or when it is applied to perturbed routing tables. What can merely
be assumed is that it will eventually work correctly again when it is restarted
from a legitimate initial routing configuration.

In this section, we present a generic wrapper algorithm A that makes a
publish/subscribe system self-stabilizing, regardless of which correct routing
algorithm R it wraps. The only assumptions are that (a) R has no private state
but draws its decision solely on the basis of the respective routing table, that
(b) R terminates after finite time when called, and that (c) each client refreshes
its subscriptions once in a refresh period ρ. The wrapper algorithm periodically
rebuilds the routing tables starting from an initial routing configuration that
is stored in the ROM of each broker. Note that most routing algorithms use
an empty initial routing configuration [263]. Our algorithm can be seen as a
periodic precautionary distributed reset [16].

Basic Idea

Each broker B maintains two routing tables T 0
B and T 1

B, which are alternately
rebuilt on a periodic basis, and a flag aB ∈ {0, 1} that determines which of
both routing tables is currently rebuilt.1 However, notification routing always
uses both routing tables to determine the target destinations of a notification.
A notification is forwarded to a destination if it matches a routing entry for

1 An optimized solution can be implemented with only one table and two flags for
every entry indicating to which routing table(s) the entry belongs.

274 8 Advanced Topics

B′

ππswitch(x) switch(¬x) switch(x)

x¬xx

“old” “new”

d hops

d · δmin d · δmaxd · δmax

message

R

Fig. 8.7. Choosing π such that “old” and “new” update messages do not interleave

this destination in any of the two routing tables. If the routing tables are in
a correct state, this does no harm.

Since A wraps R, every call to R is intercepted by A. This way, A de-
termines which routing table the next call of R operates on in the following
way: For every (un)subscription from a local client of B, T aB

B will be used. If
update messages are generated by R in reaction to the (un)subscription, they
will be tagged with aB. Accordingly, when a broker B′ receives an update
message tagged with x from a neighbor broker, then T x

B′ will be used by R

for this call.
The periodical rebuild is triggered by a modulo clock on the root broker R

every π. The rebuild sets aR ← ¬aR. Then, it initializes T aR

R with the initial
routing configuration stored in ROM and propagates a switch(aR) message to
all of its neighbors. Similarly, when a broker B′ receives a switch(x) message
from a neighbor, it sets aB′ ← x, initializes T

aB′
B′ , and forwards a switch(x)

message to all other neighbors. If a (un)subscription is issued twice by a client
between two consecutive switch messages without an intervening unsubscrip-
tion (subscription), this could raise a problem because R might not tolerate
resubscriptions. To avoid this potential problem, a (un)subscription from a
local client will be discarded by the wrapper algorithm A if it is redundant
with respect to the contents of the currently active routing table.

Correctness

Before we show the correctness of our scheme, we prove a preparatory lemma.

Lemma 8.1. In a correct system, if π > 2d · δmax, no “old” update messages
tagged with x can arrive at any broker after the root broker issued the next
“new” switch(x) message.

Proof. Old update messages tagged with x disappear at most d·δmax after the
last broker has received the switch(¬x) message. This means that at most

8.2 Fault Tolerance 275

2d ·δmax after the root broker has sent the switch(¬x) message no old update
messages tagged with x can arrive. Since π is greater than this value, only
new update messages tagged with x can arrive at any broker after the next
new switch(x) message is issued by the root broker (Fig. 8.7). ��
Theorem 8.1. When the wrapper algorithm is applied and π ≥ ρ+2 ·d · δmax

holds, the publish/subscribe system is self-stabilizing and the stabilization time
∆ is bounded by 2 · π + d · δmax.

Proof. For the correctness, we have to show that (a) the system stays in a
correct state if it currently is in a correct state and that (b) the system will
eventually enter a correct state if it is currently in an incorrect state.

(a) For the system to stay in a correct state, we have to ensure that (a1) at
each broker the rebuild process of the routing table which is currently rebuilt
is completed before the next switch message is received, that (a2) the rebuild
is based only on new update messages, and that (a3) all new updates messages
are received after the respective switch message.

(a1) This means that at each broker the time between two consecutive
switch messages must be large enough to ensure that all necessary update
messages are received in time. The time difference at which two brokers receive
the same switch message cannot be greater than d · δmax. At all brokers, the
clients need at most ρ to reissue all their subscriptions after the broker has
received the switch message. The resulting update messages need at most
d · δmax to travel through the broker network. Therefore, π ≥ ρ + 2 · d · δmax

must hold to guarantee that at each broker the rebuild is complete before the
next switch message is received.

(a2) By Lemma 8.1 and the fact that π ≥ ρ + 2 · d · δmax.
(a3) Due to the FIFO property of the communication channels and the

fact that the topology is acyclic, a broker B′ can only receive update messages
and (un)subscriptions of local clients tagged with x after B′ received the
corresponding switch(x) message.

(b) Starting from an arbitrary state, every broker receives the next switch
message after at most π + d · δmax. This message causes the receiving broker
to reinitialize one of its two routing tables. As a result of (a) it is guaranteed
that this routing table will be completely rebuilt before the subsequent switch
message is received. This second switch message is received by all brokers at
most 2π + d · δmax from the beginning. It causes the other routing table to be
reinitialized. After all brokers have received and processed the second switch
message, the system is guaranteed to be in a correct state again. This is
because at all brokers the one routing table is completely rebuilt, while the
other is reinitialized. Therefore, the stabilization time ∆ is 2 · π + d · δmax in
the worst-case (Fig. 8.8). ��

276 8 Advanced Topics

B′

π

d ∗ δmax

switch(x)

ρ

t0 t1

d hops

R

∆ = t1 − t0

π

message

d · δmax d · δmax

switch(¬x)

Fig. 8.8. Derivation of the maximum stabilization time

8.2.5 Further Reading

Many self-stabilizing algorithms have been proposed for various kinds of sce-
narios, while there are only a few contributions that cover publish/subscribe
systems. Recently, Shen and Tirthapura [343] presented an alternative ap-
proach for self-stabilizing content-based routing. In their approach, all pairs of
neighboring brokers periodically exchange sketches of those parts of their rout-
ing tables concerning their other neighbors to detect corruption. The sketches
that are exchanged are lossy because they are based on bloom filters (which are
a generalization of hash functions). However, because of the information loss,
it is not guaranteed that an existing corruption is detected deterministically.
Hence, the algorithm is not self-stabilizing in the usual sense. Moreover, al-
though generally all data structures can be corrupted arbitrarily, the authors’
algorithm computes the bloom filters incrementally. Thus, once a bloom fil-
ter is corrupted, it may never be corrected. Furthermore, in their algorithm,
clients do not renew their subscriptions. Without this, corrupted routing en-
tries regarding local clients are never corrected. Finally, their algorithm is
restricted to simple routing in its current form.

8.3 Congestion Control

Many existing research prototypes of publish/subscribe systems make the as-
sumption that event publication messages are negligible in size and therefore
cannot saturate the available network bandwidth or processing power. How-
ever, this is not true in practice, and a publish/subscribe system can suffer
from congestion leading to a degradation of service to clients. In this section
we discuss the connection problem in the context of a publish/subscribe sys-
tems. We describe a scalable congestion control mechanism [313] that prevents
the occurrence of congestion in a reliable publish/subscribe system. It con-
sists of two algorithms, PDCC and SDCC, that are used in combination to

8.3 Congestion Control 277

address different aspects of congestion control in the event-based middleware.
To motivate the need for congestion control in an event-based middleware,
we begin with an overview of the congestion control problem and the require-
ments for a mechanism to handle congestion. The main part of this section
is the description of the two congestion control algorithms as an example of
how to perform congestion control in a publish/subscribe system.

8.3.1 The Congestion Problem

We argue that it is necessary to provide congestion control for overlay net-
works, such as the one established by a distributed publish/subscribe system.
Congestion occurs when there are not enough resources to sustain the rate at
which event publishers send publication messages in an event-based middle-
ware. We distinguish between two kinds of congestion,

1. network congestion, where the network bandwidth between event brokers
is the limiting resource

2. event broker congestion, when the processing of messages at an event
broker cannot cope with the data rate

Both kinds of congestion may lead to the loss of messages at event brokers.
Message loss is especially undesirable under guaranteed delivery semantics be-
cause the resulting retransmission of messages worsens the level of congestion
in the system. An event-based middleware suffers from congestion collapse
when the message loss dominates its operation and prevents event clients
from receiving any useful service.

Usually there are two reasons for congestion in an event-based middle-
ware. In many cases, congestion is caused by the underprovisioning of the
deployed middleware in terms of network bandwidth or processing power of
event brokers so that the middleware cannot handle resource requirements of
event dissemination during normal or peak operation. A second, more subtle
cause for congestion is the temporary need for more resources as a result of
recovery after a failure under guaranteed delivery semantics.

Note that even though connections between event brokers use TCP con-
gestion control, this is not sufficient to prevent congestion in the overlay
broker network because of application-level queuing at event brokers. Both
network and event broker congestion manifest themselves as the buildup of
buffer queues at event brokers. To deal with congestion, current middleware
deployments are often vastly overprovisioned, which is a waste of resources.
Instead, a congestion control mechanism can address this problem directly.

8.3.2 Requirements

A congestion control mechanism in a publish/subscribe context differs from
traditional congestion control found in other networking systems. This is due

278 8 Advanced Topics

to the many-to-many communication semantics supported by the publish/
subscribe model and the content-based filtering of messages at application-
level event brokers during event dissemination. Not all event subscribers re-
ceive the same set of publication messages sent by event publishers, as opposed
to the case in application-level multicast, for example. Reliable event dissemi-
nation semantics leads to the selective retransmission of publication messages
to a subset of recovering event subscribers, which further complicates con-
gestion control. To guide the design of our congestion control mechanism, we
formulate six requirements for congestion control in an event-based middle-
ware:

Burstiness. The processing of publication messages at event brokers is
bursty because of application-level scheduling and the variable process-
ing cost of content-based filtering of event publications. This means that
a congestion condition can arise quickly, requiring early detection by the
congestion control mechanism.

Queue Sizes. Due to the burstiness of event routing and the need to cache
event streams for retransmission, buffer sizes at event brokers are much
higher compared to standard networking components. Buffer overflow only
occurs when significant congestion already exists in the system. As a con-
sequence, message loss cannot be used as an indicator for congestion in
event-based middleware.

Recovery Control. The congestion control mechanism must ensure that
event brokers that are recovering event publications that were previously
lost will eventually complete recovery successfully. At the same time, re-
covering event brokers must be prevented from contributing to conges-
tion. Although negative acknowledgment (NACK) messages are small and
themselves cause little congestion, they potentially trigger the retransmis-
sion of large event publication messages.

Robustness. It is important that the congestion control mechanism is robust
and can protect itself against malicious event clients. A possible design
choice is to provide congestion control in the overlay broker network only,
ensuring that the publication rate of messages by publisher-hosting bro-
kers can be supported by all interested subscriber-hosting brokers. Flow
control between client-hosting brokers and event clients is handled by a
separate mechanism that can disconnect malicious clients.

Architecture Independence. The congestion control mechanism should
not be tightly coupled to internal implementation details of an event bro-
ker. Instead, as a higher-level middleware service, it should support the
evolution of the event broker implementation. For example, the detection
of congestion should not depend on a particular buffer implementation or
queuing discipline used by event brokers.

Fairness. When congestion requires the reduction of publication rates, fair
throttling of event publishers must be ensured. The available resources at

8.3 Congestion Control 279

publisher-hosting brokers should be split equally among all hosted event
publishers.

8.3.3 Congestion Control Algorithms

Typically a congestion control mechanism first detects congestion in the sys-
tem and then adapts system parameters to remove its cause. In this section
we describe two such algorithms that provide congestion control for a pub-
lish/subscribe system in accordance with the requirements stated in the pre-
vious section. The algorithms involve publisher-hosting brokers (PHB) and
subscriber-hosting brokers (SHB).

1. A PHB-driven congestion control algorithm ensures that publisher-hosting
brokers cannot cause congestion because of too high a publication rate.
This is achieved by a feedback loop between publishers and subscribers to
monitor congestion in the overlay broker network and control the event
publication rate at the publishers.

2. An SHB-driven congestion control algorithm manages the recovery of sub-
scribers after failure. It limits the rate of NACK messages that cause the
retransmission of event publications from publisher-hosting brokers de-
pending on congestion.

These two congestion control algorithms are independent of each other
but should be used in conjunction to prevent congestion during both regular
operation and recovery. Both algorithms need to distinguish between recover-
ing and nonrecovering event brokers in order to ensure that subscribers can
recover successfully. For a simpler presentation of the algorithms, we assume
that only event brokers are internal nodes in event dissemination trees with
client-hosting brokers constituting the root or leaf nodes. Next we will describe
the two algorithms in turn.

PHB-Driven Congestion Control

The PHB-driven congestion control algorithm (PDCC) controls the rate at
which new publication messages are published by a publication endpoint
(pubend), such as a set of event publishers. The publication rate is adjusted
depending on acongestion metric. We use the observed rate of publication mes-
sages at subscriber-hosting brokers as our congestion metric, which is similar
to the throughput-based metric of TCP Vegas [50]. The rationale behind this
is that a decrease in the message rate at a subscriber-hosting broker with an
unchanged publication rate at the pubend is an indication of more queuing
in the overlay broker network. This queue buildup is considered to be caused
by network or event broker congestion in the system. Subscriber-hosting bro-
kers calculate their own congestion metric and notify the publishers upstream
whenever they believe that they are suffering from congestion. Congestion in-
dications are aggregated at intermediate brokers so that the pubend is only

280 8 Advanced Topics

informed of the worst congestion point. Two types of control messages are used
to exchange congestion information between event brokers in an aggregated
fashion.

Downstream Congestion Query (DCQ) Messages

The PDCC mechanism is triggered by DCQ messages sent by a publisher-
hosting broker down the event dissemination tree to all subscriber-hosting
brokers. Since congestion control is performed per tree, a DCQ message carries
a tree identifier (treeID). A monotonically increasing sequenceNo is used for
aggregation and the mPos field stores the current position in the event stream,
which is, for example, the latest assigned event timestamp.

pubendID sequenceNo mPubend

Upstream Congestion Alert (UCA) Messages

UCA messages are sent by subscriber-hosting brokers to inform about conges-
tion. They flow upwards in the event dissemination tree and are aggregated at
intermediate brokers so that a publisher-hosting broker only receives a single
UCA message in response to a DCQ message. Apart from the tree identifier
and the sequence number of the triggering DCQ message, a UCA message con-
tains the minimum throughput rates observed at recovering (minRecSHBRate)
and nonrecovering (minNonRecSHBRate) subscriber-hosting brokers.

pubendID sequenceNo minRecSHBRate minNonRecSHBRate

PHB

IB

SHB1 SHB2

UCA

UCA

DCQ

DCQ DCQ

Fig. 8.9. Flow of DCQ and UCA messages

8.3 Congestion Control 281

Figure 8.9 summarizes the propagation of DCQ and UCA messages
through an overlay broker network in the PHB-driven congestion control al-
gorithm. For the PDCC scheme to be efficient, DCQ and UCA messages must
not suffer from congestion and should maintain low delays and loss rates. Next
we describe the behavior of the three types of event brokers when processing
DCQ and UCA messages in the PDCC algorithm.

Publisher-Hosting Broker (PHB)

A publisher-hosting broker triggers the PDCC mechanism by periodically
sending DCQ messages with an incremented sequence number. The inter-
val tdcq at which DCQ messages are dispatched determines the time between
UCA responses in a congested system. The higher the rate of responses, the
quicker the system adapts to congestion.

When the PHB has not received any UCA messages for a period of
time tnouca, it assumes that the system is currently not congested. There-
fore, it increases the publication rate if the rate is throttled and the pubend
could publish at a higher rate. To increase the publication rate, we use a hy-
brid scheme with additive and multiplicative increase. The new rate rnew is
calculated from the old rate rold according to

rnew = max
[

rold + rmin, rold + fincr · (rold − rdecr)
]
, (8.1)

where rdecr is the publication rate after the last decrease, fincr is a multi-
plicative increment factor, and rmin is the minimum possible increase. The
multiplicative use of fincr allows the publication rate to grow faster than a
fixed additive increase. However, when the publication rate is already close to
the optimal operation point before congestion occurs, it is necessary to limit
the increase. This is done by recording the publication rate rdecr at which
the increase started and using it to restrict the multiplicative increase. This
scheme results in the publication rate probing whether the congestion con-
dition has disappeared and, if not, oscillating around the optimal operation
point.

When the PHB receives a UCA message, a decision is made about a reduc-
tion of the current publication rate. The rate is kept constant if the sequence
number in the received UCA message is smaller than the sequence number of
the DCQ message that was sent after the last decrease. The reason for this is
that the system did not have enough time to adapt to the last change in rate
and therefore more time should pass before another adjustment. The rate is
also not reduced if the congestion metric in the UCA message is larger than
the value in the previous message. This means that the congestion situation
in the system is improving, and further reduction of the rate is unnecessary.
Otherwise, the publication rate is decreased according to

rnew = max
[

fdecr1 ·rold, rdecr+fdecr2 ·(rold − rdecr)
]

iff rdecr �= rold (8.2)

282 8 Advanced Topics

rnew = fdecr1 · rold otherwise, (8.3)

where fdecr1 and fdecr2 are multiplicative decrement factors. The first term
in Eq. (8.2) multiplicatively decreases the rate by a factor fdecr1, whereas the
second term reduces the rate relative to the previous decrement rdecr. Simi-
lar to Eq. (8.1), the second term prevents an aggressive rate reduction when
congestion is encountered for the first time after an increase. Since the PDCC
mechanism constantly attempts to increase the publication rate in order to
achieve a higher throughput, it will eventually cause SHBs to send UCA mes-
sages if there is resource shortage in the system, but this should not result in
a strong reduction of the publication rate. Taking the maximum of the two
decrement values ensures that the publication rate stays close to the optimal
operating point. If the congestion situation does not improve after one reduc-
tion, the publication rate is reduced again. This time a strong multiplicative
decrease according to Eq. (8.3) is performed because the condition rdecr = rold

holds.

Intermediate Broker (IB)

To avoid the problem of feedback implosion [100], aggregation logic for UCA
messages at intermediate brokers (IB)must consolidate multiple messages from
different SHBs such that the minimum observed rate at any SHB is passed
upstream in a UCA message. This enables the publisher-hosting broker to
adjust its publication rate to provide for the most congested SHB in the
system. Another requirement is that UCA messages that occur for the first
time are immediately sent upstream, allowing the publisher-hosting broker to
respond as quickly as possible to new congestion in the system.

In Fig. 8.10 the algorithm for processing DCQ and UCA messages at an in-
termediate broker is given. An IB stores the maximum sequence number seqNo
and the minimum throughput values for nonrecovering (minNonRecSHBRate)
and recovering (minRecSHBRate) SHBs from the UCA messages that it
has processed. After the initialization of these variables (line 1), the func-
tion processDCQ handles DCQ messages by relaying them down the event
dissemination tree in line 6. When a UCA message arrives, the function
processUCAMsg is called, which first updates the throughput minima (lines 10–
11). A new UCA message is only sent upstream if the sequence number of the
received message is greater than the maximum sequence number stored at
the IB (line 12). This ensures that UCA messages with the same sequence
number coming from different SHBs are aggregated before propagation. The
first UCA message with a new sequence number immediately triggers a UCA
message so that the pubend is quickly informed about new congestion. Subse-
quent UCA messages from other SHBs that have the same sequence number
will be aggregated and contribute toward the throughput minima in the next
UCA message. After a UCA message has been sent in line 13, seqNo is up-
dated (line 14) and both throughput minima are reset in line 15.

8.3 Congestion Control 283

1 initialization:
2 seqNo ← 0
3 minNonRecSHBRate ← ∞
4 minRecSHBRate ← ∞
5

6 processDCQ(dcqMsg):
7 sendDownstream(dcqMsg)
8

9 processUCA(ucaMsg):
10 minNonRecSHBRate ←
11 MIN(minNonRecSHBRate, ucaMsg.minNonRecSHBRate)
12 minRecSHBRate ←
13 MIN(minRecSHBRate, ucaMsg.minRecSHBRate)
14 IF ucaMsg.seqNo > seqNo THEN
15 sendUpstream(ucaMsg.seqNo, minNonRecSHBRate,
16 minRecSHBRate)
17 seqNo ← ucaMsg.seqNo
18 minNonRecSHBRate ← ∞
19 minRecSHBRate ← ∞

Fig. 8.10. Processing of DCQ and UCA messages at IBs

The example in Fig. 8.11 demonstrates the operation of the aggregation
logic at IBs. The topology of six event brokers has two congested event brokers,
SHB1 and SHB2, and three intermediate brokers IB1,2,3 that aggregate UCA
messages. Congestion in the system is first detected by SHB1, and its UCA
message with a congestion metric of 0.8 is directly propagated to the PHB.
When SHB2 notices congestion, its UCA message is consolidated at IB2, which
updates its throughput minimum to 0.4. Eventually a UCA message with the
congestion value of SHB2 will propagate up the event dissemination tree in
response to a new DCQ message because SHB2 is more congested than SHB1.

PHB

IB2

IB1

SHB1

SHB2

UCA1

UCA1

UCA1

1 0.8

1 0.8

1 0.8

PHB

IB3

IB2

IB1

SHB1

SHB2

UCA2

UCA2

1 0.4

1 0.4

IB3

1 0.4

1 0.8

minNonRec
SHBRate

seqNo

1 0.8

(a) (b)

Fig. 8.11. Consolidation of UCA messages at IBs

284 8 Advanced Topics

Subscriber-Hosting Broker (SHB)

The congestion metric used by subscriber-hosting brokers depends on their
observed throughput of publication messages and is independent of the actual
publication rate of the pubend. An SHB monitors the ratio of PHB and SHB
message rate,

t =
rpubend

rSHB
, (8.4)

and uses this to decide when to send UCA messages with congestion alerts.
To allow for burstiness in the throughput due to application-level routing as
mentioned previously, t is passed through a standard first-order low-pass filter,

t̄ = (1 − α) t̄ + α t, (8.5)

to obtain a smoothed congestion metric t̄ with an empirical value of α = 0.1.
An SHB has to apply a different strategy for sending UCA messages depending
on whether it is recovering event publications or not. We assume that an SHB
can determine whether it is a recovering or a nonrecovering event broker. A
suitable criterion to detect recovery would be, for example, that the SHB is
ignoring new event publications because its event stream is saturated with old
events caused by NACK messages.

Nonrecovering SHB. A nonrecovering SHB should receive publication mes-
sages at the same rate at which they are sent by the pubend. Therefore, if the
smoothed throughput ratio t̄ drops below unity by a threshold ∆tnonrec,

t̄ < 1 − ∆tnonrec, (8.6)

the SHB assumes that it has started falling behind in the event stream be-
cause of congestion. In rare cases, an SHB could be falling behind slowly
because t̄ stays below 1 but above 1−∆tnonrec for a long time. Unless there is
already significant congestion in the system, this will not cause a queue over-
flow if buffer sizes are large. An SHB can detect this situation by periodically
comparing its current position in its event stream mSHB to the event stream
position mtree from the last received DCQ message. If the difference is larger
than ∆ts,

mSHB < mtree + ∆ts, (8.7)

a UCA message is triggered, even though the congestion metric t̄ is above its
threshold value.

Recovering SHB. A recovering SHB must receive publication messages at a
higher rate than the publication rate, or it will never manage to successfully
catch up and recover all lost publication messages. In some applications there
is an additional requirement to maintain a minimum recovery rate 1 + ∆trec

8.3 Congestion Control 285

in order to put a bound on recovery time. Thus, a recovering SHB sends a
UCA message if

t̄ < 1 + ∆trec. (8.8)

The threshold value ∆trec influences how much of the congested resource will
be used for recovery messages as opposed to new publication messages and
hence controls the duration of recovery.

SHB-Driven Congestion Control

The SHB-driven congestion control algorithm (SDCC) manages the rate at
which an SHB requests missed event publications by sending NACK messages
upstream to the corresponding PHB. An SHB maintains aNACK window to
decide which parts of the event stream to request. To control the rate of NACK
messages being sent, the NACK window is open and closed additively by the
SDCC algorithm depending on the level of congestion in the system. As for
the PDCC mechanism, the change in recovery rate throughput is used as a
metric for detecting congestion.

At the start of recovery, an SHB uses a small initial NACK window
size nwnd0. The NACK window is adjusted during recovery when the re-
covery rate rSHB changes. The recovery rate rSHB is defined as the ratio be-
tween the current NACK window size nwnd and the estimate of the round
trip time RTT , which it takes to retrieve a lost event publication from the
pubend,

rSHB =
nwnd

RTT
. (8.9)

The NACK window size is changed in a similar fashion to TCP Vegas. When
the recovery rate rSHB increases by at least a factor αnack, the NACK window
is opened by one additional NACK message per round trip time. When rSHB

decreases by at least a factor βnack, the NACK window is reduced by one
NACK message,

nwndnew = nwndold ± sizenack. (8.10)

This is sufficient to ensure that resent event publications triggered by NACK
messages from recovering event brokers do not overload the publish/subscribe
system.

8.3.4 Further Reading

A large body of work exists in the area of congestion control in networks,
although these solutions do not address the special requirements for congestion
control in an publish/subscribe system. In this section we provide a brief
overview of applicable work, contrasting it with our approach for congestion
control.

286 8 Advanced Topics

Transmission Control Protocol (TCP)

The TCP protocol comes with a point-to-point, end-to-end congestion control
algorithm with a congestion window that usesadditive increase, multiplicative
decrease (AIMD) [211]. Slow start helps open the congestion window more
quickly. Packet loss is the only indicator for congestion in the system, and
fast retransmit enables the receiver to signal packet loss by ACK repetition to
avoid timeouts. TCP Vegas [50] attempts to detect congestion before packet
loss occurs by using a throughput-based congestion metric, which is similar
to the congestion metric used in the PDCC and SDCC algorithms.

Reliable Multicast

Reliable multicast protocols are similar to reliable publish/subscribe systems
due to their one-to-many communication semantics, but typically they have
no filtering at intermediate nodes and do not guarantee that all leaves in the
multicast tree will eventually catch up with the sender. In general, multicast
congestion control schemes can be divided into two categories [407], namely:

1. sender-basedschemes, in which all receivers support the same message rate
2. receiver-basedschemes with different message rates by means of transcoded

versions of data

Since we can make few assumptions about the content of event publica-
tions, a receiver-based approach is not feasible. Congestion control for multi-
cast is often implemented at the transport level relying on router support. It
must adhere to existing standards to ensure fairness and compatibility with
TCP [149, 179]. Since there are many receivers in the multicast tree, scalable
feedback processing of congestion information is important. Unlike feedback
suppression [107], our approach does not discard information because it con-
solidates feedback in a scalable way.

The PGMCC congestion control protocol [328] forms a feedback loop be-
tween the sender and the most congested receiver. The sender chooses this
receiver depending on receiver reports in NACK messages. The congestion
control protocol for SRM [344] is similar except that the feedback agent can
give positive and negative feedback, and a receiver locally decides whether
to send a congestion notification upstream to compete for becoming the new
feedback agent. An approach that does not rely on network support, except
minimal congestion feedback in NACK messages, is LE-SBCC [376]. Here a
cascaded filter model transforms the NACK messages from the multicast tree
to appear like unicast NACKs before feeding them into an AIMD module.
However, no consolidation of NACK messages can be performed. All these
schemes have in common that they use a loss-based congestion metric, which
is not a good indicator for congestion in an application-level overlay network.

8.4 Mobility 287

Multicast Available Bit Rate (ABR) ATM

The ATM Forum Traffic Management Specification [334] includes an available
bit rate (ABR) category for traffic though an ATM network. At connection
setup, forward and backward resource management (FRM/BRM) cells are
exchanged between the sender and receiver to create a resource reservation,
which is modified at intermediate ATM switches. All involved parties agree
on an acceptable cell rate depending on the congestion in the system. In our
case, it is difficult to determine an acceptable message rate for an IB since the
cost of processing event publications varies depending on size, content, and
event subscriptions.

Multicast ABR requires flow control for one-to-many communication. An
FRM cell is sent by the source and all receivers in the multicast tree respond
with BRM cells, which are consolidated at ATM switches [329]. Different ways
of consolidating feedback cells have been proposed [134]. These algorithms
have a trade-off between timely response to congestion and the introduction
of consolidation noise when new BRM cells do not include feedback from all
downstream branches. Our consolidation logic at intermediate brokers tries to
balance this trade-off by aggregating UCA messages with the same sequence
number, but also short-cutting new UCA messages. The scalable flow control
protocol in [409] follows a soft synchronization approach, where BRM cells
triggered by different FRM cells can be consolidated at a branch point.

Overlay Networks

Congestion control for application-level overlay networks is sparse, mainly
because application-level routing is a novel research focus. A hybrid system for
application-level reliable multicast in heterogeneous networks that addresses
congestion control is RMX [76]. It uses a receiver-based scheme with the
transcoding of application data. Global flow control in an overlay network
can be viewed as a dynamic optimization problem [13], in which a cost-benefit
approach helps find an optimal solution.

8.4 Mobility

The emergence of mobile computing has opened up a whole new field of ser-
vices provided for the benefit of the mobile user. Many such services can
exploit the fact that the mobile device is aware of its current location. For
example, car navigation systems use knowledge about current and past lo-
cations to aid drivers in finding their way through unknown cities. Location
information can even be combined with other sources of data, e.g., the weather
report, information on traffic jams, or free parking spaces. In such cases, the
system can propose routes that avoid places where traffic is high or weather

288 8 Advanced Topics

conditions are unpleasant, or can direct the driver to the nearest free parking
space. All these are examples for location-based services.

A convenient way to construct location-based services is to build them
using event infrastructures, such as those provided by publish/subscribe sys-
tems. Here, producers and consumers are enabled to exchange information
based on message type or content rather than particular destination identifiers
or addresses. This loose coupling of producers and consumers is the premier
advantage of publish/subscribe systems, which facilitates mobile communica-
tion. Producers are relieved from managing interested consumers, and vice
versa. In the following we study how these advantages can be exploited and
what extensions are eligible in the context of mobile services.

We argue that support for mobility should be an issue of the publish/
subscribe middleware itself and not be delegated to the application layer.
Three kinds of application scenarios have to be supported: (i) existing ap-
plications in a static environment, (ii) existing applications in a mobile envi-
ronment, and (iii) mobility-aware applications. Since publish/subscribe sys-
tems and applications have been deployed very successfully, extending existing
systems and models is preferred to creating new “mobile” middleware from
scratch in order to facilitate the integration of the first two scenarios. As a con-
sequence, the middleware must transparently handle some of the new mobility
issues. This allows existing event-based applications to directly interact with
and even to be deployed as mobile applications. On the other hand, mobility-
aware applications (the third scenario) require the middleware to support a
semiautomated handling of location changes. If no such support is available,
mobility is actually controlled by the application and not by the movement
of the client.

We differentiate among support for two different and orthogonal types of
mobility. The first type of mobility is called physical mobility, where clients
may temporarily disconnect from the publish/subscribe system (due to power-
saving requirements or the network characteristics). This means that applica-
tions are not necessarily aware of the fact that the client is moving, allowing
existing applications to be transferred to mobile environments. The second
type of mobility is called logical mobility, where clients remain attached to
the their broker and have an application-level notion of location, which is
described by location-dependent subscriptions. As an example, consider a car
looking for a free parking space in the street it is currently driving along. In
this situation it may subscribe to “New free parking space on Rebeca Drive”.
However, if Rebeca Drive is a very long street, the same driver will also re-
ceive notifications about free parking spaces very far down the road (or behind
him), which are impossible to reach in good time. What the user would like
to do is to specify a subscription such that he receives all notifications about
“vacancies in the vicinity of his current location”. We call these subscriptions
location-dependent.

In this section we analyze and discuss the basic issues involved when adding
mobility support to a publish/subscribe infrastructure. We identify and define

8.4 Mobility 289

two orthogonal forms of mobility (physical and logical mobility) and discuss
the requirements of a system supporting both types of mobility.

8.4.1 Mobility Issues in Publish/Subscribe Middleware

Mobile clients have many characteristics, among them the need to disconnect
from the network for different reasons. Be it for geographical, administrative,
or power saving reasons, being connected to the same broker all the time is no
longer possible. Hence, we have to take into account that clients will disconnect
from their border broker once in a while. The middleware has to deal with
moving clients and the possibility that a disconnected client reconnects at the
same or a different broker later.

A first step toward mobility is to enhance existing publish/subscribe mid-
dleware to allow for roaming clients so that existing applications can be used
in mobile environments. This means that the existing interface operations
for accessing the middleware and the applications on top are not required to
change. More important, the quality of service offered by the middleware must
not degrade substantially. The resulting location transparency is necessary to
make existing applications mobile, e.g., stock quote monitoring seamlessly
transferred from PCs to PDAs.

On the other hand, future applications do not want complete transparency,
but rely on mobility awareness. More specifically, mobility support should
blend out unwanted phenomena, like disconnectedness, and enforce wanted
behavior, like the location awareness in location-based services. Consequently,
extending the interface of the publish/subscribe middleware to facilitate lo-
cation awareness is a promising open issue, since most existing work concen-
trated on the transparency only.

When roaming, clients change (at least some portion of) the context they
are operating in, and they might want to react to these changes, e.g., to adapt
their subscriptions. However, an appropriate infrastructure support has to
relieve the application from having to react “manually” to all changes. The
middleware should rather offer an automated adaptation to context changes,
i.e., facilitating location dependency. This leads to different notions of mobility
and we distinguish:

� Physical mobility: A client that is physically mobile disconnects for certain
periods of time and has different border brokers along its itinerary through
the infrastructure. The main concern of physical mobility is location trans-
parency.

� Logical mobility: A client that is logically mobile is aware of its location
changes. In order to relieve the client from adapting manually to new loca-
tions, the main concern of logical mobility is automated location awareness
within the publish/subscribe middleware.

Physical and logical mobility are two orthogonal aspects of mobility. Since
the physical layout of a publish/subscribe system does usually not correspond

290 8 Advanced Topics

to geographical realities, it seems reasonable to separate the two notions of
mobility. In the following, we assume logical mobility to be a refinement of
physical mobility in that a client remains connected to the same broker when
roaming logically. The two notions have different quality of service require-
ments and therefore different solutions are developed to match both.

8.4.2 Physical Mobility

Physical mobility is similar to what in the area of mobile computing is called
terminal mobility or roaming. A client accesses the system through a certain
number of access points (GSM base stations, WLAN access points, or border
brokers). When moving physically, the client may get out of reach of one
access point and move into the reach of a second access point which are not
necessarily overlapping. In general we cannot expect to have seamless access
to the broker network but more a sequence of phases of connectedness, e.g.,
on the daily route between home and office. In this setting we analyze the
quality of service requirements from the viewpoint of roaming clients:

� Interface. Obviously, the existing interface to the publish/subscribe sys-
tem must not change as legacy applications are not aware of mobility.

� Completeness. Despite intermittent disconnects, the liveness condition of
Def. 2.5 must be satisfied, i.e., a finite time after subscribing, the delivery of
notifications that are published after this time and match the subscription
is guaranteed.

� Ordering. In Sect. 2.5.3 FIFO-producer and causal ordering were dis-
cussed; they are eligible features in the mobile case, too.

� Responsiveness. The delay of relocating a roaming client should be min-
imal to maximize the responsiveness of the system. This has to be taken
into account when designing a relocation protocol.

Possible Solutions

One solution would be to rely on Mobile IP [306] for connecting clients to
border brokers, hiding physical mobility in the network layer. The drawback,
however, is that the communication is also hidden from the publish/subscribe
middleware, which is then not able to draw from any notification delivery
localities or routing optimizations, thereby possibly violating the requirement
of responsiveness. Such an approach might only be feasible if the physical and
logical layout of a given system is completely orthogonal.

A different, näıve solution to implement physical mobility would be to
use sequences of sub-unsub-sub calls to register a client at a new broker.
When a client moves from border broker B1 to B2, it simply unsubscribes
at B1 and resubscribes at B2, without any support in the middleware. But
a client may not detect leaving the range of a broker and is in this case
not able to unsubscribe at its old location. Even more severely, during its

8.4 Mobility 291

B1

B2

B3

event is delivered twice event is not delivered

producer

Fig. 8.12. Missing notifications in a flooding scenario

time of disconnectedness, the client might miss several notifications or or get
duplicates, even if notifications are flooded in the network and the location
change is instantaneous. This problem is depicted in Fig. 8.12. Hence, this
solution is not complete and we outline an algorithm in Sect. 8.4.2 that takes
into account all requirements stated above. The complete algorithm is detailed
by Zeidler and Fiege [408].

Notification Delivery with Roaming Clients

In this section we introduce an algorithm for extending standard brokers
(cf. Chap. 4) to cope with mobile clients, maintaining their subscriptions as
well as guaranteeing the required quality of service as described in the previous
section. Apart from guaranteeing complete notification delivery, our algorithm
also ensures that the old border broker will eventually receive an equivalent
to an explicit sign-off from the client, even if an explicit unsubscribe was not
possible.

Our mechanism uses a natural way of distributed caching, which seems in
general preferable to a potentially problematic central caching proxy.

Prerequisites

The solution sketched below can be used in every environment that meets the
following requirements:

1. Border brokers have to install and maintain a buffer for all notifications
that are not yet delivered in order to deal with disconnects.

2. The underlying routing infrastructure uses advertisements. Although not
strictly necessary, the relocation effort is reduced substantially in that
they guide the search for the old delivery path. Simple routing is assumed
as routing strategy for now, and more advanced routing algorithms are
discussed later.

3. Border brokers or clients must have some means of detecting the new
configuration that a client has entered the range of the broker. Some form
of beacon or heartbeat is presupposed; we do not go into the details here.

292 8 Advanced Topics

4. For now, we assume that only subscribers are mobile and that clients
acting as producers remain stationary.

Algorithm Outline

We use a stepwise refinement of traditional subscription forwarding, as dis-
cusses in Chap. 4, to devise the algorithm:

1. When reconnecting to a broker, subscriptions are automatically reissued
so that clients do not need to resubscribe manually.

2. The broker network configuration is updated to accommodate to client
relocation rather than handling an independent new (re)subscription from
a new location.

3. Notifications forwarded to the old location have to be replayed to the new
one in order to bridge disconnectedness.

4. Delivery of new notifications has to be postponed until the replay is fin-
ished. In this way, moving does not influence the FIFO-producer order of
notifications, fulfilling the ordering requirement.

Consider the scenario of Fig. 8.13(a) with a single consumer. Client C is
moving from broker B6 to broker B1 (step 1 in the figure). The local broker,
which resides on the client, e.g., in the form of libraries, is informed by the new
border broker (i.e., B6) about its relocation, according to the prerequisites.
The local broker then reissues the active subscriptions, which were previously
forwarded through and recorded in the local broker anyway. By avoiding man-
ual resubscriptions of the client application, the first requirement stated at
the beginning of this section is achieved, i.e., the interface to the middleware
is not changed.

In the second step, we enable the publish/subscribe middleware to relocate
the client. The goal of the relocation process is to update the routing configu-
ration by redirecting the delivery paths currently leading to the old destination
of C to the new destination. During this process, reissued subscriptions are
propagated as usual, e.g., in the direction of any received advertisement if
advertisements are used, through B2 and B3 to broker B4, setting up their
routing tables. At B4 the old and new path from producer P to client C
meet (dotted and dashed line, respectively). Broker B4 is aware of the junc-
tion because an entry of the old path of this subscription/ client is already
in its routing table.2 When the routing table in the junction is updated, new
published notifications will be delivered to the relocated client. Without as-
suming any knowledge about the old location of the moving client, the system
is able to draw from localities in that only a portion of the delivery path is
changed. Changes are limited to the smallest subgraph necessary for diverting
routing paths, facilitating the timeliness/efficiency requirement, which is only
available with inherent middleware support.

2 Subscriptions can be identified if simple routing is used.

8.4 Mobility 293

C

C

1

2

6

87

3
5

4

Virtual World

Real World

1. move
2. new

4. Relocate!

3. Re

Junction

Old Path

New Path

NewBorder Broker
Old

Border Broker

P

Moving

Client

Producer of
Notifications

5. fetch!

subscription(C,F,123)

 location!

6. Replay&
 clean up

(a) Single Producer

C

C

1

2

6

87

3
5

4

Virtual World

Real World

1. new location
2. "new

location!"

4. Relocate!

3. Re

Junction

Old Path

New Path

NewBorder Broker
Old

Border Broker

P

Moving

Client

Producer of
Notifications

P

9

6. Replay&
clean up

5. fetch!

subscription(C,F,123)

(b) Multiple Producer

Fig. 8.13. Moving client scenarios with one and multiple producers

The third step ensures completeness over phases of disconnectedness dur-
ing movement. The junction broker B4 sends a fetch request along the old
path to B6 following the routing table entries for the given subscription. All
brokers along this path update their routing tables such that they are pointing
into the direction the fetch originates from, i.e., B4. Border broker B6 as last
recipient replays all buffered notifications. If delivered notifications are anno-
tated with sequence numbers by the border broker, reissued subscriptions can
in turn carry the last received number to qualify the replay. Note that replays
are forwarded only in the direction of a specific subscription and do not min-
gle with other clients’ data. After replaying, the path from the old broker to
the junction broker can be shut down by deleting the subscription’s routing
table entries as long as advertisement and routing entry point into the same
direction; thereby excluding and stopping at the junction. In this way the
notifications that passed the junction broker before its update are collected
and sent toward the new location, ensuring the required completeness.

The last step finally reorders the notifications so that the sender FIFO
condition remains valid after relocation. The new border broker has to block
and cache all incoming notifications that are to be delivered to the given client
(not impeding communication of other clients) until the replay is finished. As
with all buffering, consistency can always only be guaranteed for a predefined,
finite amount of time or space.

Figure 8.13(b) shows a scenario with multiple producers. In this case,
several junctions exist which all lie on the path from the first junction to the
old border broker of the client. For the two producers, the junctions are at
brokers B4 and B5, respectively.

294 8 Advanced Topics

Extensions

Mobile Producers. So far we have assumed that only consumers can be
mobile. When a producer is mobile, the notifications it publishes while it is
disconnected from the system are not forwarded but are queued by its lo-
cal broker. When the producer reconnects to a new border broker, the local
broker reissues the advertisements currently active, while still queuing newly
published notifications. The forwarding of these advertisements will in turn
lead to overlapping subscriptions being forwarded to the new location of the
producer. When this process has finished, the queued notifications are for-
warded if a matching subscription exists or they are discarded, otherwise.
Then, the normal handling of published notifications starts again. Delivery
paths that lead to the old location of the producer and which are no longer
needed are similarly dropped as described above.

Covering-Based Routing. If covering-based routing instead of simple
routing is used, the fetch phase of the algorithm has to be extended. Now, the
junction is reached if an entry with a covering subscription F ′ ⊃ F is already
registered. At this point the delivery path to the new location is correctly built
up, but we do not know whether the old location lies in the direction of F ′ or in
the direction of the advertisements. The fetch phase is extended in that fetch
requests are sent toward all advertisements and all covering subscriptions; it is
a kind of flooding in the overlay network of matching producers and consumers
of similar interests. Only one of the fetch requests will not get dropped and
reach the old border broker. The replay has to be flooded in the same overlay
network if no tunneling mechanisms, internal or external, are used.

Merging-Based Routing. The extension for covering stated above can
also cope with a broker network applying merging. Only the number of poten-
tial covers increases, and hence the size of those parts of the overlay network
that are flooded. Both covering and merging promise to increase routing effi-
ciency, but, on the other hand, aggravate relocation management.

Movement Speed. For simplicity reasons we assume that the client’s
movement speed is not too fast for the relocation process to terminate be-
fore the client moves again, i.e., the process always terminates at the correct
broker. However, if resubscriptions of the local broker are annotated with a
relocation counter, which is reset after a successful replay, concurrent relo-
cation processes can be identified and controlled in the middleware, avoiding
the speed limit.

Cache Management. Even if storage constraints in the border brokers
are not of concern, mobile clients may be disconnected for a long period of
time in which more missed notifications are cached than the client can handle
during replay. The possibly limited resources of mobile clients must be taken
into account when designing cache sizes or limiting the replay by semantic
filtering [195].

8.4 Mobility 295

Discussion

The above algorithm shows how relocation and adaptation of the delivery
paths is performed in a fully distributed fashion. Many optimizations exist for
this algorithm (e.g., [59, 92]). They typically reduce the number of necessary
messages, but they also impose further constraints on network layout or re-
quire additional information about client movement. The approach presented
here is a generalization that is robust and simple. Its central features are:

� No explicit moveOut. The algorithm ensures by design that the new
broker can identify a relocated client and handle this appropriately. More-
over, the algorithm ensures that the broker at the old location eventually
receives an equivalent to a moveOut for proper garbage collection.

� No central caching proxy. The algorithm is fully distributed and buffers
information wherever necessary, thereby drawing optimally from localities.

� No information loss. By buffering information appropriately, the algo-
rithm ensures that no information is lost due to relocation. As with all
buffering schemes, this is only true modulo space and/or time constrains.

� No “out-of-band” communication. All messages sent related to a re-
location process are sent explicitly within the broker network and not leav-
ing the paradigm of publish/subscribe. Therefore, we do not need globally
unique sequence numbers and can guarantee FIFO-producer ordering as
well as not sending duplicates.

� Optimal use of localities. The algorithm draws optimally from localities
and ensures that only the least necessary subgraph is reconfigured.

8.4.3 Logical Mobility

While physical mobility is a rather technical issue invisible to the application,
logical mobility involves location awareness. An example for logical mobility
is when clients move around a house or building that is served by only one
border broker. In this case, the user might be interested to receive just those
notifications that refer to the room in which he is currently located. Note that
a client can be both logically and physically mobile at the same time.

A logically mobile client moving from one location to another, e.g., from
one room to the other in a company building, will expect a frictionless change
of location explicitly without a notable setup time after having changed from
its own office to the conference room next door. The adaptation of some
location-dependent subscription should take place “instantaneously”. Intu-
itively, we would like to experience the notion of being subscribed to “every-
thing, everywhere, all the time” and increase the reactivity of the system to
moving clients.

Location-Dependent Filters

A publish/subscribe system offering location-dependent filters has the same in-
terface as a regular publish/subscribe system (i.e., it offers the pub, sub, unsub,

296 8 Advanced Topics

notify primitives). However, in specifying subscription filters for name/value
pairs referring to “location”, it supports a new primitive to specify things like
“all notifications where the attribute location equals my current location”.
More precisely, we postulate a specific marker myloc that can be used in a
subscription. The marker stands for a specific set of locations that depend
on the current location of the client. For example, a client could issue a sub-
scription for all free parking spaces in the vicinity of his current location as
follows: (service = “parking”), (location ∈ myloc), (car-type ≥ “compact”).

The set of locations associated with the marker is taken from a particu-
lar range L of locations. This set is application dependent and can, for in-
stance, contain all the different rooms of a building, all the streets of a town,
or all the geographical coordinates given by a GPS system up to a certain
granularity. Given a notification with the attribute location , the subscription
(location ∈ myloc) will evaluate to true for a particular client at location y iff
x ∈ myloc(y), where myloc(y) is the specific set of locations associated with
y. Then, we say that the notification matches the location-dependent filter.

The simplest form of myloc(y) is simply the set {y}. In this case a noti-
fication matches the subscription if x = y. But in the car example, the car
driver looking for a parking space might want to specify:

(location = “at most two blocks away from myloc”)

Then, myloc corresponds to all elements of L that satisfy this requirement.

A Tentative but Incomplete Solution for Logical Mobility

While location-dependent filters are not directly supported by current pub-
lish/subscribe middleware, one might argue that it is not very difficult to
emulate them on top of currently available systems in this case. The idea
would be to build a wrapper around an existing system that follows the loca-
tion changes of the users and transparently unsubscribes to the old location
and subscribes to the new one when the user moves. However, depending on
the internal routing strategy of the event system, it may lead to unexpected
results. The routing strategies deployed in many existing content-based event
systems such as Siena [71], Elvin [341], and Rebeca [136] lead to blackout
periods where no notifications are delivered. The problem is that it usually
takes a significant time delay to process a new subscription. After subscrib-
ing to a filter, it takes some time td until the subscription is propagated to
a potential source. Then it takes at least another td time until a notification
reaches the subscriber. This phenomenon is depicted in Fig. 8.14. (Note that
the delay td may be different for different notification sources and may change
over time.) If the client remains at any new location less than 2td time, then
the subscriber will “starve”, i.e., it will receive few or no notifications.

An intuitive but inefficient solution

Another basic solution that can immediately be built using existing technol-
ogy is again based on flooding. The local broker can then decide to deliver a

8.4 Mobility 297

Fig. 8.14. Blackout period after subscribing with simple routing

Fig. 8.15. Blackout period with flooding and client-side filtering

notification to a client depending on the client’s current location (Fig. 8.15).
Obviously, flooding prevents the blackout periods, which were present in the
previous solution, but it should be equally clear that flooding is a very expen-
sive routing strategy, especially for large pub/sub systems [267].

Quality of Service of Logical Mobility

Interestingly, while flooding is very expensive and therefore not desirable, it
comes very close to the quality of service that we would like to achieve for
logical mobility, namely to the notion of being subscribed to “everything,
everywhere, all the time”. The problem is that it is hard to precisely define
the behavior of flooding without reverting to some unpleasantly theoretical
constructions of operational semantics.

With logical mobility there is, however, no danger of receiving a notifi-
cation twice because the consumer remains attached to the same “delivery
path”. The quality of service we require for logical mobility therefore is sim-
ply stated as follows: On change of location from x to y, all notifications
should be delivered to the consumer “as if” flooding were used as underlying

298 8 Advanced Topics

Fig. 8.16. Defining the quality of service for logical mobility using virtual notifi-
cations ny→z that arrives at the consumer just at the time of the location change
from y to z

routing strategy. This statement is made a little more concrete in Fig. 8.16,
where the sequence of notifications generated by any consumer is divided
into epochs that correspond to when the notification actually arrives at the
consumer (the epoch borders between locations y and z are drawn as a vir-
tual notification ny→z). We require that all notifications matching the current
location-dependent subscription from every such epoch must be delivered. In-
tuitively, the epochs define the semantics of flooding.

Location-Dependent Filters for Logical Mobility

We now describe the algorithmic solution to the scenario where clients are
only logically mobile, i.e., they remain attached to a single border broker.

Main Idea

Consider an arbitrary routing path between a producer and a consumer. This
path consists of a sequence of brokers B1, B2, . . . , Bk−1, Bk, where B1 is the
local broker of the consumer and Bk is the local broker of the producer
(Fig. 8.17 shows the setup for k = 3). Assume the consumer has issued a
location-dependent subscription F . Using the “usual” content-based routing
algorithms, the current value F̃ of F , which instantiates the marker variable
with the current location, would permeate the network in such a way that
the filters along the routing path allow a matching subscription published
by the producer to reach the consumer. Formally, the filters F1, F2, . . . , Fk

along the links between the brokers should maintain a set-inclusion property
(cf. Sect. 4.3.2))

Fk ⊇ Fk−1 ⊇ . . . ⊇ F2 ⊇ F1 ⊇ F0 = F̃.

8.4 Mobility 299

Fig. 8.17. Network setting for the example

Fig. 8.18. Movement graph defining movement restrictions of a consumer

Obviously, if for any new value F̃ of F a new subscription must flow
through the network toward the producers, notifications published in the
meantime might go unnoticed. The idea of the proposed scheme is to always
have the local broker of the consumer do perfect client-side filtering (i.e., set
F0 = F̃), but to let possible future notifications reach brokers that are nearer
to the consumer so that their delay to reach the consumer is lower once the
consumer switches to a new location.

Let T denote the set of time values, which for simplicity we will assume
to be the set of natural numbers N. Let L denote the set of all consumer
locations. Then we define a function loc : T → L that describes the movement
of the consumer over time. For example, for a location set L = {a, b, c, d} a
possible value of loc is {(1, a), (2, b), (3, d), . . .}, meaning that at time 1, the
consumer’s location is a, at time 2 it is b, and so on.

We assume that loc is subject to some movement restrictions, which in
effect define a maximum speed of movement for the consumer. We assume
that such a restriction is given by a movement graph such as the one depicted
in Fig. 8.18. The graph formalizes which locations can be reached from which
locations in one movement step of the consumer. One movement step has some
application-defined correspondence to one time step.

Given the function loc and a movement graph, it is possible to define a
function ploc : L × N → 2L of possible (future) locations (the notation 2L

denotes the powerset of L, i.e., the set of all subsets of L). The function takes
a current location x and a number of consumer steps q ≥ 0 and returns the
set of possible locations, which the consumer could be in starting from x after
q steps in the movement graph.

Since a possible move of the consumer always is to remain at the same
location, for all locations x ∈ L and all q ∈ N we should require that

ploc(x, q) ⊆ ploc(x, q + 1). (8.11)

Taking the example values from above, possible values for ploc are as follows:

ploc(a, 0) = {a} ploc(a, 1) = {a, b, c} ploc(a, 2) = {a, b, c, d}

300 8 Advanced Topics

Now, if the consumer is at location a, for example, every broker Bi along the
path toward a producer should subscribe for ploc(a, q) for some q, which is
an increasing sequence of natural numbers depending on i and the network
characteristics. If the time it takes for a broker to process a new subscription
is on the order of the time a client remains at one particular location, then the
individual filters Fi along the sample network setting in Fig. 8.17 should be set
as Fi = ploc(a, i), e.g., F0 = ploc(a, 0) = {a}, F1 = ploc(a, 1) = {a, b, c}, and
so on. This requirement should be maintained throughout location changes by
the consumer. For example, whenever a consumer moves from an old location
x to a new location y, this will cause B1 to change the location-dependent part
of filter F0 for client-side filtering from the old to the new location. Broker B1

updates its routing table appropriately.
In general, broker Bi sends a message with the new location to Bi+1 in-

structing it to change Fi from ploc(x, i) to ploc(y, i) and consequently to
update the routing table by removing certain locations and adding new loca-
tions. Removing and adding new locations corresponds to unsubscribing and
subscribing to the corresponding filters. The normal administration messages
can be used to do this. Note that Eq. (8.11) guarantees the subset relationship,
which should always hold on every path between a producer and a consumer.

Example

As an example, consider the value of loc where at time 1 the client is in
location a, at time 2 at b, and at time 3 at d in the movement graph depicted
in Fig. 8.18. Table 8.1 gives the values of ploc for all locations and the first
four time instances. For t = 0 the value of ploc is equal to the current location.
For t = 1 it returns all locations reachable in one time step in the movement
graph, etc.

Table 8.1. Values of ploc(x, t) for the example setting

t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Now assume again the setting depicted in Fig. 8.17. The values of Table 8.1
directly determine the filter settings for F0, . . . , F3 as shown in Table 8.2. At
time t = 1 the client moves to location b. This means that F0 changes from
{a} to {b} and that F1 must unsubscribe to c and subscribe to d, yielding
F1 = {a, b, d}. At time t = 2 the client moves to d, causing F0 to change to
{d} and F1 to unsubscribe to a and subscribe to c. All other filters remain
unchanged.

8.4 Mobility 301

Table 8.2. Values of filters in example setting

time t F3 F2 F1 F0

0 {a, b, c, d} {a, b, c, d} {a, b, c} {a}
1 {a, b, c, d} {a, b, c, d} {a, b, d} {b}
2 {a, b, c, d} {a, b, c, d} {b, c, d} {d}

10000

100000

1e+06

1e+07

1e+08

0 10 20 30 40 50 60 70 80 90 100

flooding
new alg. for Delta=1

new alg. for Delta=10

Fig. 8.19. Total number of messages generated for flooding and two scenarios of
the new algorithm (∆ = 1s and ∆ = 10s). Note that the y-axis has a logarithmic
scale. The x-axis denotes time in seconds

The example nicely shows that the method does some sort of “restricted
flooding”, i.e., all notifications reach broker B2, but from there the uncertainty
is restricted and so is the flow of notifications forwarded by B2. In fact, the
method described above using the ploc function can be regarded as an abstrac-
tion of both “trivial” implementations discussed (i.e., both implementations
are instantiations of our scheme).

We have informally analyzed the total number of messages (notifications
and administrative messages) generated by our new algorithm for an arguably
realistic network setting, exactly one consumer and two different speeds of con-
sumer movement: fast movement (∆ = 1s) and slow (∆ = 10s). We compare
the results of these calculations with the total number of messages generated
by flooding in Fig. 8.19 (see [143] for a detailed description of the system
assumptions and the derivation of these numbers). It is interesting to see that
although our algorithm generates administrative messages on all network links
for every location change of the consumer, the fraction of messages saved is
still considerable. We also note that many of the assumptions made in cal-
culating these figures have been very conservative. For example, we assume
that there is only one consumer in the network and that notifications are
generated by the producers according to a uniform distribution over set of
locations. Both assumptions prevent routing strategy optimizations to play
to their strengths.

302 8 Advanced Topics

Concluding Mobility

The presented approach to support mobility in publish/subscribe middleware
can only be seen as a first start for generic mobility support. We have analyzed
the problem of mobility from the viewpoint of the event-based paradigm and
have identified two separate flavors of mobility. While physical mobility is tied
to the notion of rebinding a client to different brokers and can be implemented
transparently, logical mobility refers to a certain form of location awareness
offering a client a fine-grained control over notification delivery in the form of
location-dependent filters.

Many other interesting problems concerning the combination of mo-
bility and publish/subscribe infrastructures remain. For example, location-
dependent filters may be generalized to “dynamic filters” that depend on a
function of the local state of the client (not only its current location), like a
client interested in receiving notifications for sales that he still can afford.

8.4.4 Further Reading

Further details on the movement algorithms can be found in [141, 142, 408].
Work on middleware for mobile computing usually concentrated on classical
synchronous middleware like CORBA. Only recently, position papers have
stated that publish/subscribe systems have an enormous potential to better
accommodate the needs of large mobile communities [89, 208]. Research in
publish/subscribe systems has mainly focused on static systems, where clients
do not move and the publish/subscribe infrastructure remains relatively sta-
ble throughout the system’s lifetime, e.g., Elvin [341], Gryphon [197], Re-
beca [144], and Siena [71]. If present at all, mobility support is a concern of
the application layer. Applications detect the need to change a subscription
and have to react explicitly and manually to this detection.

Huang and Garcia-Molina [195, 196] provide a good overview of possi-
ble options for supporting mobility in publish/subscribe systems. They de-
scribe algorithms for a “new” middleware system tailored and optimized to
mobile and ad hoc networks, not so much an extension of an existing sys-
tem. Cambridge Event Architecture (CEA) [20] and JEDI [92] also address
problems of mobility. JEDI uses explicit moveIn and moveOut operations to
relocate clients. Hence, mobility is controlled by the application, which is not
transparent and even is unrealistic since clients usually only can react after
having been moved. The mobility extensions of Siena [59] are very similar.
Explicit sign-offs are required and interim notifications stored during discon-
nectedness are directly forwarded to a new location upon request. Cugola et
al. [89] proposes a leader election and group management protocol for dy-
namic dispatching trees to dynamically adapt the internals of the JEDI event
system, their implementation model is based on multicast and it groups iden-
tical subscribers. An extension for Elvin allows for disconnectedness using a

8.4 Mobility 303

central caching proxy [368], which is a potential performance bottleneck. Ja-
cobsen [208] presents some very interesting ideas on location-based services
and the possible expressiveness of subscription languages. STEAM [257] is an
event service designed for wireless ad hoc networks. Subscribers consume only
events produced by geographically close-by publishers. It relies on proximity-
based group communication.

