
6

Scoping

So far, the presented simple event systems merely provide the functionality
to distribute notifications, but still fails to offer any support for coping with
the complexities of designing and engineering distributed systems. The main
deficiency is the missing control of the interaction in the system, which is only
given implicitly. The resulting problems were recognized in different contexts,
and the means to address the missing control are centered around encapsula-
tion and information hiding, principal engineering techniques that are relevant
here, too.

This chapter investigates visibility as central abstraction to cope with engi-
neering complexity and introduces a scoping concept for event-based systems.
As an design and engineering tool, scopes offer a module construct to struc-
ture applications and compose new functionality. Second, scopes reify aspects
of event communication and thus make them adaptable within the composed
modules, e.g., access to underlying communication technologies, delivery to
module members, forwarding of events out of the module scope, transforming
heterogeneous data sources, etc.

The first section analyzes the notion of visibility in event-based systems
and relates it to the requirements defined in Sect. 5.1. The scoping concept
is defined in Sect. 6.2, including a formal specification of scoped event-based
systems that refines the specification of simple systems given in the previous
chapter. Scopes reintroduce control on communication, which was drawn out
of the components in event-based interaction, without impairing the benefits
of loose coupling. The concept is extended in Sects. 6.3 and 6.4 to include
interfaces and mappings; the former further refine visibility control, the lat-
ter generalize interfaces to transform notifications at scope boundaries, coping
with heterogeneous data models. While communication within scopes is by de-
fault like in traditional publish/subscribe systems, the transmission policies
presented in Sect. 6.5 adapt the semantics of notification dissemination within
scopes. In Sect. 6.6 we sketch a development process for scopes and present
a declarative scope language for defining and manipulating scope graphs. Fi-
nally, we investigate implementation strategies for scopes in Sect. 6.7 and dis-

150 6 Scoping

cuss combining these They open the publish/subscribe service implementation
and allow for the integration of a wide variety of communication techniques.

6.1 Controlling Cooperation

The visibility of transmitted data is of little concern in request/reply systems
where destinations are explicitly addressed. In event-based systems, however,
the visibility of notifications complements subscription techniques, for it deter-
mines which subscriptions have to be evaluated at all. Surprisingly, visibility
was rarely considered so far.

6.1.1 Implicit Coordination and Visibility

The problems of current event-based systems, which are described in the pre-
vious chapter, stem from the loss of control of interaction. This control has
been relinquished deliberately in favor of the loose coupling. It is withdrawn
from the components, replacing explicit addressing with the matching of noti-
fications to subscriptions. The explicit control of interaction given in request/
reply approaches is replaced by the implicit interaction in event-based sys-
tems.

The implicit interaction is characterized by an indirection of communi-
cation. Producers make notifications available and consumers select with the
help of subscriptions. This indirection gives room for a concept complementary
to the notification selection done by consumers. The visibility of a notification
limits the set of consumers that may pick this notification. If a notification is
not visible to a consumer, its subscriptions need not be tested at all. Notifica-
tions and subscriptions are unaltered, and matching takes place as before but
under the constraints of visibility limitations. Clearly, visibility influences the
interaction of components; it can even be seen as a means to govern implicit
coordination.

The implicit coordination1 of the components offers the desired loose cou-
pling but makes the overall functionality an implicit result of all the partici-
pating components. However, extracting control from application components
must not necessarily mean to have it nowhere. In fact, the requirements posed
in Sect. 5.1 demand some form of control on event-based communication. Vis-
ibility may offer such a control of notification dissemination.

The implications are twofold. First, visibility is an important factor of
implicit coordination, and second, it promises to be an important abstraction
in event-based systems. While subscriptions are related to the function of
individual consumers, visibility governs the interaction in the system. Hence,
the visibility of notifications is essential for the overall function of an event-
based system.
1 Explicit and implicit coordination are also termed objective and subjective coor-

dination in coordination theory [326].

6.1 Controlling Cooperation 151

6.1.2 Explicit Control of Visibility

The key to exploiting visibility is to regard it as a first-class citizen. While
existing work has addressed some facets of visibility, it was never taken as a
fundamental concept in event-based systems. Nevertheless, it will prove to be
the basis for both controlling and extending dissemination functionality.

Explicit visibility control constrains the areas where loose coupling and
implicit coordination are applied. It makes bundles of implicitly interacting
components explicit, and these bundles reify the structure of applications.
They serve as a tool for designing and programming event-based systems,
because once the interaction is localized at well-defined points, additional
mechanisms can be applied to control the interaction within and between
definite parts of the system.2

But how is visibility actually represented in an event-based system? Where
is it exposed? Any form of reintegrating control into the components counter-
acts the event-based paradigm. Whenever notifications are annotated to reach
a specific set of consumers, external dependencies are encoded in application
components, which defeats the benefits of the event paradigm. Visibility of
notifications is not a matter of producers because it concerns interaction and
communication, but not the computation within the component. Thus, the
necessary control must be exerted outside of the components themselves.

6.1.3 The Role of Administrators

When designing and engineering event-based systems, only the roles of pro-
ducers and of consumers were considered so far. They represent the tasks
of designing and programming individual application components. The self-
focus of event-based components is mirrored in these roles. They concentrate
on internal computation alone and disregard interaction. Due to the implicit
coordination, responsibility for the overall functionality is not assigned to any
specific role. It is delegated to producers and consumers, but with no adequate
support. The preceding discussion corroborates that an additional role in the
system to handle visibility is needed.

The obvious implication is to introduce the role of an administrator which
is responsible for orchestrating components in an event-based system. An
administrator may be human, but it can also be comprised of programs and
rules that maintain some system properties (cf. autonomic computing).

The main objective of this role is to support component assembling and
the management of their interrelationships. This role is employed to associate
visibility control with a distinguished role different from producers and con-
sumers. It is similar to those identified in component-based development or in
reference architectures of open systems [206]. In terms of coordination theory,
administrators are a means of objective coordination providing an exogenous

2 Technically, this is the essence of the scope concept presented in the following.

152 6 Scoping

extension of event-based interaction [36], which separates the shaping of in-
teraction from, and generally makes it invisible to, the computation in the
base entities.

Effective means to control visibility in event-based systems are necessary
to support the administrator’s role, and with respect to the requirements given
in Sect. 5.1, such a control is a prerequisite to solving the underlying problems
of current event systems. The demanded bundling of related components is
directly addressed by the visibility of notifications. Heterogeneity issues can
only be solved if communication is intercepted and converted, which requires
a limited visibility in the first place. The same holds for the customization and
configuration of the event service itself. With limited visibility the interaction
within certain system parts may receive a dedicated service tailored to its
needs, whereas interaction with the outside is handled differently, like the
case of heterogeneous data models.

Unfortunately, current work disregards this important role and does not
provide any appropriate support. The scoping concept presented in the next
section, however, describes visibility in event-based systems and offers the
explicit control needed by administrators.

6.2 Event-Based Systems With Scopes

This section formally introduces the notion of scoping in event-based sys-
tems.3 It extends the specification of the simple event system presented in
Sect. 2.5.2 and is the basis for further extensions and reasoning about scoping
functionality.

6.2.1 Visibility and Scopes

The notion of scoping in event-based systems is introduced to realize the
visibility of notifications. A scope bundles a set of producers and consumers
and limits the visibility of notifications to the enclosed components. The event-
based style of matching notifications and subscriptions is still used within the
scope, whereas the interaction of this bundle with the outside is no longer
implicit; it is prohibited at first. The notion of scopes serves two purposes.
The term is used to describe the visibility of notifications and to name the
entity that defines visibility.4

Scopes have interfaces to regulate the exchange of notification with the re-
maining system. Scopes forward external notifications to their members and
republish internal ones to the outside if they match the output and input
interfaces of the scope. In addition, scopes can recursively be members of

3 see also [135, 146].
4 In fact, in most cases we refer to the entity, which implies the scope of notifications

in the former meaning.

6.2 Event-Based Systems With Scopes 153

higher level scopes and in this way offer a powerful structuring mechanism.
Scopes thus act as components in an event-based system. They publish and
consume notifications and can be deemed equivalent to the simple base com-
ponents considered so far. So, the system consists of simple components and
of complex components that bundle other simple or complex components.

Component
Interface

2 *

*

Component

SimpleComponent Scope

SessionScope
Mappings

Policy
Security

Policy
Transmission

Fig. 6.1. A metamodel of scopes

The concept of scopes as illustrated in Fig. 6.1 includes further features
that will be described in the course of this chapter. Transmission policies can
be applied between scopes and within a scope to adapt notification forwarding,
allowing for tailoring notification delivery semantics to application needs in a
restricted part of the system. Furthermore, event mappings at scope bound-
aries generalize scope interfaces and are capable of transforming between dif-
ferent data models of notifications. Security policies are a straightforward way
to control the access to the scoping structure.

6.2.2 Specification

The notion of components is extended to distinguish simple and complex com-
ponents. The set of all simple components C includes any possible software
entity that accesses the notification service API. The set of all complex com-
ponents S describes all possible scopes. The set of all components K is defined
to be the union of the disjoint sets of simple components C and complex
components S, K = C ·∪ S.

A scope bundles a set of components, and a component can be a member of
multiple scopes. To denote the relationship between components and scopes,
a graph of scopes is defined.

Definition 6.1 (scope graph). Let K = C ·∪ S be the set of all simple and
complex components. A scope graph is an acyclic directed graph G = (C, E).
The graph consist of a set of components C ⊆ K as nodes and a relation
E ⊂ K × K as edges between the nodes so that (C1, C2) ∈ E ⇒ C2 ∈ S.

154 6 Scoping

U
Scope

Simple componentZ

T

X

S

Y

R

Fig. 6.2. An exemplary scope graph

A scope graph denotes the scope-component relationship. An edge (C, S)
from node C to node S indicates that C is a component of scope S.5 The stated
property (C1, C2) ∈ E ⇒ C2 ∈ S ensures that a simple component cannot be
a superscope of any node in G. C is a subscope if C ∈ S. Conversely, the scope
of a component C is any S such that (C, S) ∈ E. S is also called superscope
of C to emphasize the relationship between S and C, e.g., in cases where C is
a scope itself. In Fig. 6.2, X is a component of S, Y is a component of both
S and T , and T is a component/subscope of R and superscope of Y and Z.

The edges of the scope graph describe a partial order ≤ on C, where
C1 ≤ C2 iff (C1, C2) ∈ E ∨ C1 = C2. Avoiding the reflexivity of ≤, the scope-
component relation is described by �, where C1 � C2 ⇔ (C1, C2) ∈ E. The
transitive closure of� is denoted by

��;� and
��are defined accordingly. In the

example of Fig. 6.2, Y � T and Y
�� R hold. According to the partial order,

the simple components are the minimal elements and those scopes having no
superscopes are the maximal elements of C. Additionally, the following terms
are borrowed from graph theory. T is a parent of Y , and Y is a child of T . Y
is a sibling of Z, and vice versa, i.e., they have the same parent.

Based on these definitions, visibility can be defined formally. In the first
instance, the visibility of components is defined, which implies a visibility of
notifications.6 Informally, component X is visible to Y iff X and Y “share” a
common superscope.

Definition 6.2 (visibility of components). The visibility of components
is a reflexive, symmetric relation v over K, also written as v(X, Y), and is
recursively defined as:

5 Edges could have been defined in the inverse direction to emphasize that compo-
nents do not need to know their scopes and how they are aggregated. However,
the presented notation follows the one originally published in Fiege et al. [140].

6 The more general visibility of individual notifications is discussed in Sect. 6.3.1.

6.2 Event-Based Systems With Scopes 155

v(X, Y) ⇔ X = Y

∨ v(Y, X)
∨ v(X ′, Y) with X ′� X

⇔ ∃Z. X
��Z ∧ Y

��Z

In the graph of Fig. 6.2, for example, v(X, Y) and v(Y, U) hold, but not
v(X, Z).

Using this visibility, the specification of simple event-based systems given
in Def. 2.5 of Sect. 2.5 can be refined. For presentation purposes, the spec-
ification is at first restricted to static scopes, i.e., the scope hierarchy and
membership cannot change once the first notification has been published.
This restriction is relaxed later.

Definition 6.3 (scoped event system). A scoped event system ESS is a
system that exhibits only traces satisfying the following requirements:

� (Safety)

�[
notify(Y, n) ⇒ [��¬notify(Y, n)

]
∧ [∃X. n ∈ PX ∧ v(X, Y)

]
∧ [∃F ∈ SY . n ∈ N(F)

]]
� (Liveness)

�[
sub(Y, F) ⇒(�[�v(X, Y) ⇒ �(

pub(X, n) ∧ n ∈ N(F) ⇒ �notify(Y, n)
)])

∨
(�unsub(Y, F)

)]
Definition 6.3 differs only slightly from Def. 2.5 in Sect. 2.5. The safety

requirement contains an additional conjunct v(X, Y). This means that in ad-
dition to the previous conditions, the producer and the subscriber must also
be visible to each other when a notification is delivered. The liveness require-
ment has an additional precondition �v(X, Y) that can be understood in the
following way: If component Y subscribes to F , then there is a future point in
the trace such that if X remains visible to Y every publishing of a matching
notification will lead to its delivery at Y . The always operator requires the
scope graph to be static.

Note that Def. 6.3 is a generalization of Def. 2.5. A simple event system can
be viewed as a system in which all components belong to the same “global”
scope. This implies a “global visibility,” i.e., v(X, Y) holds for all pairs of com-
ponents (X, Y) and can be replaced by the logical value true in the formulas
of Def. 6.3, resulting in Def. 2.5.

156 6 Scoping

6.2.3 Notification Dissemination

According to the previous definition, a published notification is delivered to
all visible consumers that have a matching subscription. In order to clarify the
impact of the scoping structure and the dissemination of notifications through
the scope graph, the visibility of notifications is analyzed in the following.

The visibility of a notification n to a component C determines C’s ability
to deliver this notification at all, and is denoted by n� C. Visibility is a test
that precedes any subscription matching. Subscriptions decide in a second
step whether to deliver a visible notification or not. The visibility of notifica-
tions in the scope graph is directly related to the visibility of components, of
course. The visibility of a notification n, which is published by X , to a specific
component Y is denoted by X

n� Y , where

pub(X, n) ∧ v(X, Y) ⇒ X
n� Y.

A published notification is made visible in the scopes the producer belongs
to. Y

n1� S in Fig. 6.3a, or simply n1� S to denote the visibility alone if
the specific producer is not important. This rule is applied recursively to
make notifications visible in all further superscopes; Y

n1� T and Y
n1� T ′.

On the other hand, if a notification is visible within a scope S, n� S, it is
visible to all its children. Recursively applying this rule yields in Fig. 6.3b
X

n� T ⇒ X
n� S ⇒ X

n� Y . Note that edge direction indicates scope
membership but notifications can travel in both directions. In summary,
notification dissemination is governed by two rules, a publishing policy PP
and a delivery policy DP:

PP : X
n� S ∧ X� S� T ⇒ X

n� T (6.1)

DP : n� T ∧ S� T ⇒ n� S (6.2)

Consider Fig. 6.3. A notification n1 published by Y is forwarded to S and
to all children of S, and from S to T and T ′ and to all of their children, i.e., to
all siblings of S. n1 is an internal notification of S, T, and T ′, which means it
is visible to their children. X

n2� S is at first an external notification to S and
is made internal by the delivery policy of Eq. (6.2). A notification forwarded
in the direction of an edge, e.g., (S, T) ∈ E, is an outgoing notification with
respect to S; it leaves the scope of S. Conversely, a notification that travels
against an edge is an incoming notification, e.g., from T to X in Fig. 6.3a or
from T to S in Fig. 6.3b; in the latter case n2 is external to S.

The semantics of notification dissemination is that incoming notifications
are forwarded to all children of a scope, and outgoing notifications are for-
warded to superscopes and to all siblings. Note that incoming notifications
are not forwarded to superscopes; n2 is not visible to T ′ in Fig. 6.3 as X is
not visible to T ′. This default transmission of notification dissemination is
the consistent extension of the semantics of simple event systems. The intu-
itive meaning of scope membership corresponds to this definition. That is, (i)

6.2 Event-Based Systems With Scopes 157

S

T ′T

n1X

YZ

(a) outgoing

n2

S

T ′T

X

YZ

(b) incoming

Fig. 6.3. Outgoing and incoming notifications

siblings are eligible consumers as they are in the same scope, (ii) being a sub-
scope also denotes a part-of relationship, which makes it obvious that internal
notifications are also forwarded to superscopes, and (iii) external notifications
are made visible to members of complex components.

Visibility is a set inclusion test so far, which disregards the way a notifica-
tion becomes visible. In practice, however, the paths of dissemination in the
scope graph are of great importance for any analysis of system behavior.

Definition 6.4. A delivery path p between two components X and Y is a
sequence of components p = (Ci) = (X, C2, . . . , Cn−1, Y) for which holds:

1. p is an undirected path in the graph of scopes.
2. p obeys the visibility v in that v(Ci, Cj) holds for all 1 ≤ i < j ≤ n.

Delivery paths are not directed, which means that either (Ci, Ci+1) ∈ E or
(Ci+1, Ci) ∈ E. The dissemination in the scope graph is described by the
following

Lemma 6.1. Every delivery path p = (C1, . . . , Cn) can be subdivided into two,
possibly empty, parts: an upward path (C1, . . . , Cj) where (Ci, Ci+1)i<j ∈ E,
i.e., Ci� Ci+1, and a downward path (Cj , . . . , Cn) where (Ci+1, Ci)i≥j ∈ E.

Proof. Show that p turns at most once. A delivery path p = (C1, . . . , Cn)
connects two components C1 and Cn that are visible, v(C1, Cn). If C1

��Cn,
the downward path is empty and Cn is reached by forwarding notifications
to superscopes according to Eq. (6.1). If C1

��Cn, the upward path is empty
and Cn is reached by propagating visible notifications to children according
to Eq. (6.2). Otherwise, the path turns at least once and two cases can be
distinguished: p starts with an upward or a downward edge.

Assume p starts with a downward edge, C1� C2. Select d such that 1 ≤
d ≤ n and Ci�Ci+1 for all i ≤ d. If d �= n, the downward path is (C1, . . . , Cd)
and Cd � Cd+1. However, Eq. (6.1) allows this upward delivery only if the
notifications originated in Cd. This is not the case and by contradiction the
downward path ends at Cd = Cn.

158 6 Scoping

Assume p starts with an upward edge, C1� C2. In the same way p starts
with an upward path of length u ≤ n such that Ci�Ci+1 for all i ≤ u. If u �= n,
Cu�Cu+1. However, the path p′ = (Cu, . . . , Cn) starts with a downward edge
and from the preceding arguments follow that p′ consists only of downward
edges.

If p starts downwards, C1
�� Cn. If p starts upwards, either C1

�� Cn or the
path turns once downwards at a Cj , proving the lemma. ��

6.2.4 Duplicate Notifications

Between any two nodes of the directed acyclic scope graph there may ex-
ist zero, one, or more different delivery paths—the scope graph is not a tree
(Fig. 6.4). This may lead to duplicate notifications in certain implementations.
The specification of scoped event systems does not consider delivery paths but
demands notifications to be delivered at most once. So, concrete systems may
violate the specification. However, there are two reasons for not eliminating
duplicates in the scope model itself. First, duplicates generation and handling
is highly implementation dependent. And second, in some applications deliv-
ery along different paths leads to different semantics of notifications so that
they are not really duplicates.

S

U T

S

C1

T

C3 C4

C2 U

Fig. 6.4. Two ways of generating duplicates

The utilized implementation of scoping determines whether the conceptual
replication really results in duplicate deliveries. A broad range of possible im-
plementations of scoping exist,7 and in some of them different delivery paths
have no effect. For example, an explicit, externally available scope graph data
structure can be used in a centralized implementation to infer all destinations
before delivery is commenced. Furthermore, available countermeasures for du-
plicate detection are also highly dependent on the underlying implementation
technique.

From an application point of view, there are several reasons for not elimi-
nating duplicates in the scoped event system itself. First of all, in some appli-
cations notification processing is idempotent so that duplicate delivery does
7 Please refer to Sect. 6.7.1 for an overview.

6.2 Event-Based Systems With Scopes 159

not influence the function of an application. On the other hand, if duplicates
are not wanted, it is often easier to handle the elimination in the application
layer, or at least as an additional layer on top of simple notification dissem-
ination. In fact, the scope boundaries themselves offer a platform to install
such logic.

The most interesting point, however, is that on application level different
delivery paths may connote different notification semantics. Consider the left
example of Fig. 6.4, where two different delivery paths connect C1 and C2, and
assume that C1

n� C2 results in two notifications n′ and n′′ being forwarded
by T and U , respectively. Are the two notifications really equal? Are these
notifications really duplicates if they originate, at least from the consumer’s
point of view, from different components T and U? Within S, these two noti-
fications were published from different producers in the first place. The base
event notified with n′ may have a different meaning in the context of T than
the event notified with n′′ in U . Scope interfaces and mappings presented in
the next section will enable administrators to control notification forwarding
in a finer way.

In summary, there is no generic solution to handle duplicate notifications
in a scoped event-based system. The many available choices of possible imple-
mentation techniques offer all sorts of corresponding duplicate handling ca-
pabilities, which are too divergent to be included in the general scope model.
Note that duplicate notifications are forbidden in the specification of simple
event systems but are possible in scoped systems. Different delivery paths
conceptually deliver different notifications, even if triggered by the same base
event.

6.2.5 Dynamic Scopes

The above definition assumed a static scope hierarchy to provide a basic def-
inition that can be adapted and refined based on further requirements. In
the case of dynamic scopes, four additional operations have to be offered:
cscope(S) and dscope(S) to create and destroy a scope S, jscope(X, S) and
lscope(X, S) to join X to scope S or leave it, respectively. These operations are
typically available to the administrator role only, for individual components
do not necessarily need to know about their scope membership.

A system with static scopes can then be simulated by having the admin-
istrator set up the scope hierarchy with the appropriate operations before
clients start. However, dynamic scopes are not directly covered by the above
specification. A changing scope graph may conflict with the safety condition,
which is ambiguous in dynamic asynchronous system models. A notification
n is only allowed to be delivered to Y if the producer X is visible to Y . But
because delivery cannot be instantaneous, X may leave the scope in which
n was published before it is delivered, and so v(X, Y) may hold at time of
publication but not on delivery, rendering the specification ambiguous. The
specification does not cover systems that allow traces of the form

160 6 Scoping

σ4 = pub(X, n), . . . , lscope(X,S), . . . ,notify(Y, n),

where scope graph reconfigurations and notification publication and delivery
are mixed.

Several approaches to this problem exist. First of all, the assumed system
model may require delivery to be instantaneous so that notification dissem-
ination and scope reconfiguration cannot interleave. Any form of centralized
implementation is able to achieve this guarantee. A second approach is to
allow producers to leave a scope only if all their published notifications have
been delivered, preventing the interleaving in σ4 so that the resulting traces
are equivalent to the static case with respect to the safety condition. In effect,
this results in a type of synchronization similar to that of a global transaction:
scope joins and scope leaves must be reliably acknowledged by all other brokers
before the action is performed. Obviously, this type of dynamic scope seman-
tics is unfavorable since it incurs a high synchronization overhead. However,
scope reconfigurations may be so infrequent in practice that this is tolerable
for medium-size systems. At least these semantics have the advantage that
the safety part of Def. 6.3 can be used in the simple unmodified form. Inter-
estingly, this restriction resembles an object-oriented programming approach
where new subclasses and new methods are readily added, but modifying the
inheritance hierarchy is complicated.

A different approach would be to not hide scope graph changes but to
explicitly consider them in the specification. For the safety condition the vis-
ibility restriction v(X, Y) would have to reflect time delays in notification
delivery. On the other hand, the liveness part of Def. 6.3 does not consider
dynamic scopes at all. By including �v(X, Y) in its precondition, only static
graphs can fulfill liveness in the current definition. This specification is inten-
tionally restricted because it is intended to specify only basic functionality. It
currently covers a broad range of system models, and it can be refined (safety)
and extended (liveness) to incorporate dynamic scopes in more specific system
models. So, currently the following trace complies to the specification:

σ5 = sub(Y, F), jscope(X, s), jscope(Y, s), pub(X, n1), lscope(Y, s), . . . ,
jscope(Y, s), pub(X, ni), lscope(Y, s), . . .

In σ5 components X and Y start off in the same scope and X publishes
an “infinite” sequence of notifications ni. However, since Y leaves the scope
again after every publish operation, there is no point in time from which on
X and Y remain in the same scope. Therefore, delivery is not required and σ5

satisfies the liveness requirement. Of course, without knowing future traces a
notification service has to try to deliver any pending notifications.

So, dynamic changes of a scope graph can be supported if changes and
publications are serialized, or the safety condition has to be relaxed to cover
only durations in which the visibility of producer and consumer remain un-
changed.

6.2 Event-Based Systems With Scopes 161

6.2.6 Attributes and Abstract Scopes

The layout of a scope graph carries information on system structure. Anno-
tations of scopes allow the administrator to associate further information on
system operation, which will be done in the next subsections. Or annotations
are simply used to add application-specific data into the structure. Techni-
cally, the notion of scope attributes is introduced. Attributes associate data
to a specific scope according to a simple name/value pair model.

For example, a scope S is named and stores its time of creation in two
attributes:

S.name = “ItsMe” S.creation = “2004-12-20 12:22”

How attributes are set and used is described in Sect. 6.6.
Attributes may carry information about system configuration and man-

agement. Section 6.7.1 introduces alternative implementation approaches, and
attributes can store such annotations that refine the model expressed in the
scope graph. However, these kinds of information are typically valid for more
than one component of the graph. An obvious way to assign this information
to a group of components is to use a scope, which bundles the components
in question, just as a container carrying configuration data. This scope would
be a special type of scope, termed abstract scope.

Abstract scopes group components, but there is no communication within.
They are created for descriptive purposes and not to control communication
of their members. They are used for system management (cf. Sect. 6.6).

6.2.7 A Correct Implementation

The following presents a possible implementation of Def. 6.3 as a proof of con-
cept. The implementation uses a simple event system as specified in Sect. 2.5.2
as basic transport mechanism. This modular approach underlines the system’s
structure and shows the possibility of implementing the specification. But as
before, it does not concentrate on efficiency issues, and any available noti-
fication service satisfying the simple event system specification can be used
instead.

The architecture of the implementation is sketched in Fig. 6.5. The in-
terface operations of the scoped event system are local library calls, which
are mapped to appropriate messages of the underlying simple event system.
Again, this part of the client process is the local event broker of the client.
Conceptually, for every client an additional process at the interface of the sim-
ple event system is generated, the client’s proxy. Practically, the proxy will
be part of the local event broker. Note that the clients’ proxies are the only
components accessing the underlying simple service; no complex components
are instantiated in this implementation scenario.

162 6 Scoping

Simple Event System

Proxies

Client Local Event Broker

Fig. 6.5. A possible implementation of a scoped event system

Although dynamic scoping is not considered in the specification, the pre-
sented algorithm includes dynamic scopes in the style of Sect. 6.2.5. To sim-
plify the implementation, changes to the scope graph G = (C, E) are restricted:
only components with no incoming edges may join or leave scopes. This re-
striction prevents individual brokers from having to store G completely.

As noted above, the scope graph describes a transitive partial order ≤
on C with X ≤ X ′ ⇔ (X, X ′) ∈ E. The maximal elements of C have no
outgoing edges, i.e., they have no superscopes. These elements are termed
visibility roots, as the recursive definition of v(X, Y) is terminated by common
superscopes. The maximal elements that are visible from a component are
used to determine visibility of notifications.

Data Structures

For every client X , its proxy ProxX holds a list VX of its visibility roots. In
a system with static scopes, VX is initialized to the set of its visibility roots
in the given scope graph. With dynamic scopes where changes are limited to
the addition of new leaves—nodes with no incoming edges—VX is set at the
time of addition. In both cases, it remains constant and is not changed until
the whole systems stops or X is deleted.

Algorithm

If a client invokes pub(X, n), a message (pub, X, n) is sent to the client’s proxy.
At the interface of the simple event system, the proxy then invokes pub(ProxX ,
(n, R)), where R is set to the constant value VX .

Calls to sub(X, F) and unsub(X, F) are sent in a similar way to ProxX .
Using F , the proxy derives a filter F̃ that matches all notifications ñ = (n, R)
for which n matches F , and subsequently calls sub(ProxX , F̃).

6.2 Event-Based Systems With Scopes 163

Whenever the simple event system notifies the proxy of Y about a notifi-
cation ñ = (n, R), the proxy checks whether VY ∩R �= ∅. If the test succeeds,
a message is sent to the local broker of Y to invoke notify(Y, n). Otherwise
the notification is discarded.

Correctness

In order to show that Def. 6.3 is satisfied, the presented implementation must
obey the visibility v(X, Y) of the safety condition and the additional precon-
dition �v(X, Y) of the liveness condition. The remaining part is satisfied by
using the simple event system which satisfies Def. 2.5.

Lemma 6.2. For every pair of clients X and Y and for the set of visibility
roots VX and VY stored at the proxies, the following holds:

v(X, Y) ⇔ VX ∩ VY �= ∅

Proof. We need to show two implications. The first implication (⇒) is proved
by induction over the “visibility” path from X to Y . The second implication
(⇐) is shown as follows: If VX ∩ VY �= ∅, there exists a maximal element Z of
≤ such that X ≤ Z and Y ≤ Z. By the definition of ≤ this implies v(X, Y).
��

Now, the correctness of the sketched implementation can be proved in
terms of the safety and liveness conditions of scoped event systems.

Proof of Safety

Assume that notify(Y, n) is invoked at client Y . It must be shown that this
implies validity of the three conjuncts of the implication in the safety property
of Def. 6.3.

The first conjunct follows directly from the safety property of the simple
event system.

To prove the second and the third conjuncts, assume that the local broker
issues notify(Y, n) at client Y . This means that (a) the proxy of Y has pre-
viously received a notification ñ = (n, R) and that (b) the test VY ∩ R �= ∅
succeeded.

From (a) and the safety property of the simple event system follows that
ñ was previously published by some proxy ProxX . From Lemma 6.2 and (b)
follows that v(X, Y) holds. This proves the second conjunct.

From (a) and the safety property of the simple event system follows that ñ
matches some transformed filter F̃ of ProxY . This together with the algorithm
proves the third conjunct. This concludes the proof of the safety property.

164 6 Scoping

Proof of Liveness

Assume a client Y invokes sub(Y, F) and never unsubscribes to F . From the
algorithm it is implied that an “equivalent” subscription F̃ is issued into the
simple event system. Since scope reconfigurations are restricted to occur at
leaves, the values of VX and VY of existent components are constant. From
Lemma 6.2 this implies that v(X, Y) is always true for all clients X and Y
for which VX ∩ VY �= ∅.

From the liveness property of the simple event system and the algorithm
follows that there is a point in time after which every published notification
ñ = (n, R) that matches F̃ is delivered to every client proxy. So assume that
after this point in time some client X publishes a notification n matching F .
From the algorithm we have that ñ = (n, VX) is published within the simple
event system. Its liveness property gives us that ñ is eventually delivered at
the client proxy of Y . From the algorithm and because v(X, Y) holds, the test
VX ∩ VY �= ∅ will succeed and Y will eventually be notified of n.

6.3 Event-Based Components

6.3.1 Component Interfaces

So far, visibility is an only two-level hierarchy induced by the topmost super-
scopes, the visibility roots of the graph G. Any two components are either able
to see all of their published notifications or none at all. In order to overcome
this problem and to improve the structuring abilities, visibility is refined by
assigning input and output interfaces to scopes.

Input and output interfaces for simple components are subscriptions and
advertisements, respectively. Both include filters that describe the set of no-
tifications allowed to cross a component’s boundary. As defined in Sect. 3.1,
a notification n is either mapped on itself or to ε, indicating that n is either
matched or blocked. In the following, similar filter sets are associated with
scopes to make interfaces a feature of all components.8

6.3.2 Scope Interfaces

Scope input and output interfaces describe the set of notifications that are
allowed to cross the scope boundary. Only those notifications that match one
of the scope’s output filters are forwarded up into its superscopes as outgoing
notifications, and only those matching at least one of its input filters are
treated as incoming notifications that are forwarded to scope members. Filters
of scope interfaces are expressed in the same filter model used for subscriptions
and advertisements of simple consumers and producers.
8 The relationship between scopes and simple components is shown in the UML

class diagram in Fig. 6.1.

6.3 Event-Based Components 165

The base interface IC of a component C contains two sets of filters, iFC

and oFC , representing the input and output interfaces of the currently active
subscriptions and advertisements of the component. This base interface is
associated with every component of the event-based system with the known
function of letting notifications pass if they match one of the filters in iFC for
incoming notifications or oFC for outgoing notifications.

Formally, the interfaces are bound to edges of the scope graph. Depending
on the conceptual placement of filters with respect to the starting or ending
node of an edge, two refinements and the resulting combination of filters are
distinguished: selective, imposed, and effective interfaces (Fig. 6.6). While
the next paragraphs discusses the different forms of interfaces, the formal
definition of a scoped event system with interfaces is given in Sect. 6.4.1.

C

ST

IC

IC|S

IS
C

selective interface
component interface

imposed interface

Fig. 6.6. Different scope interfaces

Selective Interfaces

According to the preceding definition a component has an interface indepen-
dent of its scopes; it does not distinguish between superscopes. This conforms
to the intended loose coupling of event-based interaction. However, the ad-
ministrator knows the configuration of scopes and as part of this role it is
possible to distinguish superscopes.

A selective interface IC|T controls the communication between a compo-
nent C and a specific superscope T . It functions in the same way IC does, but
governs communication only between C and T . It is applied in addition to the
base component interface. In Fig. 6.6, for instance, some of the notifications
published by C are forwarded to S but not to T . If, in a type-based scheme,
IC|T contains an output filter that accepts notifications of type A but not B,
and if C happens to publish notifications nA and nB of type A and B, nA

would be visible in T but nB not. Communication with S is not affected by
IC|T .

So, notification forwarding depends on the destination scope. A component
may now exhibit different interfaces toward different superscopes. From an

166 6 Scoping

engineering point of view, this offers a fine control of interaction, which is
especially important when composing existing subsystems. Furthermore, the
functionality of the selective interfaces may be used to mitigate problems
of duplicate notifications by blocking certain delivery paths. On the other
hand, the administrator must be aware of possible effects of discriminating
interfaces. If the distinguished superscopes share a common visibility root
two different delivery paths may exist that preclude duplicate notifications
but break causal order of messages. Consider S and T in Fig. 6.6 having a
common superscope Z, then a short path exists connecting C and T directly,
and a longer one crossing S and Z to reach T . A first notification n1, which
is blocked by IC|T , may reach T after a second notification n2 that matches
IC|T . Although the specification of simple event systems does not assume a
specific ordering, many concrete systems provide a sender FIFO ordering that
would be broken in this way.

Imposed Interfaces

A converse refinement of interface definition is to install filters at the “other”
end of the scope graph edge. An imposed interface IS is specified within a
scope and wraps all of its members with an extra interface. It allows only
those notifications that match the imposed interface to be exchanged within
this scope, dedicating the scope to a specific kind of data. This interface does
not influence the communication of the affected component in other scopes.
Furthermore, interfaces can also be imposed on individual components. IS

C

in Fig. 6.6 restricts the interaction of C with S, without affecting the other
children in S. If IS

C contains an output filter that accepts notifications of type
B but rejects A, the above-mentioned notification nB published by C would
be forwarded into S, but nA is rejected by the imposed interface. Note that
notifications of type A may published by other members of S, which are not
affected by IS

C .
Imposed interfaces are a means to control communication within a scope.

Especially when an administrator integrates existing preconfigured compo-
nents, not all of their provided interfaces are of interest within the new scope,
or on the other hand, not all of the scope’s internal traffic shall be visible to
all components. As such, imposed interfaces are a security mechanism, too.
They enforce predefined filters on scope members and thus control what is
published and consumed within the scope. For instance, depending on secu-
rity credentials, different interfaces may be imposed on newly connected scope
members.

Effective Interfaces

The effective interface of a component concatenates the previously introduced
base interface with the selective and imposed interfaces. It is given with re-
spect to a specific outgoing edge of the component and describes the set of

6.3 Event-Based Components 167

notifications that are effectively allowed to cross the respective edge of the
scope graph. A notification matches the effective interface ÎS

C of a component
C� S iff it matches IC and IC|S and IS

C and IS .

6.3.3 Event-Based Components

Scopes are a composition mechanism that facilitates creating new, more com-
plex event-based components, showing essential characteristics of component
frameworks in the flavor of Szyperski [369]. They encode the interactions be-
tween components and act themselves as components on a higher level of
abstraction. The composed function is provided through a defined interface,
thus facilitating the reuse of the bundle while abstracting from its internal
configuration. Scopes are distributed event-based components (Sect. 6.6).

6.3.4 Example

The example stock trading application introduced in Sect. 5.1.2 is expanded
to illustrate the use of scopes (Fig. 6.7). There are two main scopes, M1
and M2, denoting two different stock markets. Within each market customers
are grouped into subscopes distinguishing private and professional customers.
Each customer is permanently represented by one of the scopes C1, C2, etc.,
which remain connected in the graph of scopes even if customers are not per-
sonally logged in. They group a customer’s PCs, cellular phones, or agents run-
ning on a remote server. An example “agent” would be a limit watcher which
continuously monitors a share’s price and issues a notification when a specific
share deviates from the overall market performance. Such agents can be in-
stalled within a customer’s scope without changing existing components—one
of the obvious benefits of event-based systems—and without affecting other
parts of the system, which is the prime attribute of scoping.

For the sake of simplicity, interest for at most one share is indicated be-
low the rectangles representing the customers’ PCs. The figure illustrates the
scenario when the trading floor TF participates in the stock market M1 and
issues a notification concerning SAP quotes. Although both consumers C3 and
C4 have subscribed for notifications on SAP quotes, this notification will only
reach C3, because C4 is not visible from the trading floor and C1 has sub-
scribed to a different share. On the other hand, consumer C3 listens to both
markets and may receive “duplicate” SAP quotes.

To illustrate how scope interfaces help in structuring event-based applica-
tions, let us consider the interfaces of the components in our running example
as summarized in Fig. 6.8.

Customers send out notifications of type Order which contain a share
identification, the number to be sold or bought, and potential price limits.
The trading floor TF listens to these orders, issues acceptance notifications, and

9 Delayed forwarding is discussed in Sect. 6.5.

168 6 Scoping

SAP

IBM

PC
Agent

DB ME

M2M1

N
N

TF

C1

C2 C3

PC

C4

PC

SAP

...

...

...

Private

Professional

...

Fig. 6.7. The graph of the stock application

Component Description Input Output

M1,M2 The Stock Markets – –

Private scope of all private customers – Trade

Prof. scope of all professionals Order
Accept,
Quote(delayed)9

C1,C2,... Customer representation Accept Order

TF Trading Floor Order Accept, Quote

ME Matching engine Order
Accept, Quote,
OrderBook

DB The logging database
Order,
Quote

–

Fig. 6.8. Interfaces of the components in the example application

sends out Quotes, informing about successfully executed orders. The trading
floor itself is composed of the matching engine ME and the database DB. While
the database only logs all Orders and Quotes, the matching engine receives
orders and issues Quotes of current prices. It maintains a list of open orders
and executes the matching algorithm that leads to acceptance notifications
(Accept) of matched orders. Additionally, the matching engine publishes an
orderbook summary with prices and volumes of the ten best bid and ask
orders. The summary is only visible within the trading floor, because the
interface of TF prohibits further distribution. Based on this data, additional
services may be integrated into the trading floor, like market makers ensuring
that there is always at least one buy and one sell order open.

6.4 Notification Mappings 169

6.4 Notification Mappings

So far, uniform data and filter models were assumed, which prescribe syntax
and semantics of notifications and filters throughout the whole system. In
large systems, however, characteristics and demands of applications are likely
to diverge and homogeneous models will not fit the needs, as pointed out in
the discussion of the engineering requirements in Sect. 5.1. If all components
are forced to agree on the same data and filter model, system integration and
efficiency is impeded drastically.

The diverging requirements will best be met with tailored data and filter
models—an idea which is obvious but hardly considered in the context of event
systems. Different system parts will use different representations and seman-
tics of events. With an appropriate support, one part of an application can
exchange binary encoded notification while still being able to communicate
with other parts of the system via serialized Java objects or XML encoded
notifications. Efficiency considerations result in differentiating low-volume ex-
ternal representations in XML from more efficient, optimized internal repre-
sentations.

An obvious implication of decomposing applications is that bundling of
related components should not only encapsulate functionality but also de-
limit common syntax and semantics. Constraining the visibility of notifications
is the basis for dealing with heterogeneity issues. Consequently, notification
mappings are introduced as extensions of scope interfaces. They transform
notifications at scope boundaries to map between internal and external rep-
resentations, without interfering with internal notifications.

Scopes are an appropriate place to localize such transformations because
bundled components are likely to agree on a common data and filter model,
whereas the interaction with the remaining system is decoupled by the scope
boundary. Notification mappings clearly address the heterogeneity require-
ments stated in Sect. 5.1 and facilitate construction and maintenance of large
event-based systems.

6.4.1 Specification

Notification mappings transform notification from one data model to another.
Mappings, however, do not primarily block notifications but transform them.
Notification mappings are defined as binary, asymmetric relations on the set N

of notifications. They are associated with scope graph edges, like scope inter-
faces, and two mappings ↗e and ↘e are attached to every edge e = (C, S) ∈ E.
Let n1 and n2 be two notifications. For any edge e and its associated rela-
tion ↗e, the mapping n1 ↗e n2 means that when “traveling” upwards along
the edge (i.e., in direction of the superscope) n1 is transformed into n2. The
relation ↘e is defined analogously for the reverse direction. Note, in order
to support heterogeneous data models the relations map between two sets

170 6 Scoping

X ′

Y

n1

n′ n′

n2

X

S

Y ′

Fig. 6.9. Recursive definition of the relation (n1, X) � (n2, Y)

of notifications used in C and S, respectively, i.e., ↗e⊂ NC × NS , but it is
implicitly assumed that N contains the different models for simplicity.

Now, the general visibility of notifications can be defined using these rela-
tions.

Definition 6.5. The visibility of notifications in a scope graph G = (C, E) is
defined by the relation � on N × K, where

(n1, X) � (n2, Y) or shorter X
n1�n2 Y

means that n1 visible to X is also visible to Y :

(n1, X) � (n2, Y) ⇔(
X = Y ∧ n1 = n2

)
∨ (∃e = (X, X ′) ∈ E. ∃n′ �= ε. n1 ↗e n′

∧ [
(n′, X ′) � (n2, Y)

])
∨ (∃e = (Y, Y ′) ∈ E. ∃n′ �= ε. n′ ↘e n2

∧ [
(n1, X) � (n′, Y ′)

])
The recursive definition of (n1, X) � (n2, Y) is illustrated by Fig. 6.9.

Intuitively, notification n1 “flows” from X to Y and, after potentially being
transformed several times, it is received as notification n2. The path on which
n1 flows to n2 is the same as for the visibility relation defined in Sect. 6.2, i.e.,
it can be characterized by a path from X up to a common superscope and
then down to Y . But in addition the notification is subject to any mappings
assigned to the relevant edges.

The semantics of scoped event systems with mappings are derived from
those of scoped event systems by the refined visibility definition. With like
arguments the graph of scopes and the relations ↗ and ↘ are assumed to be
static in the sense that a component’s mappings are not allowed to change
until all of its published notifications are delivered; otherwise the visibility
clause may corrupt the safety condition in the specification.

6.4 Notification Mappings 171

Definition 6.6 (scoped event system with mappings). A scoped event
system with mappings ESM is a system that exhibits only traces satisfying
the following requirements:

� (Safety)

�[
notify(Y, n′) ⇒ [��¬notify(Y, n′)

]
∧ [∃n. ∃X. n ∈ PX ∧ (

(n, X) � (n′, Y)
)]

∧ [∃F ∈ SY . n′ ∈ N(F)
]]

� (Liveness)

�[
sub(Y, F) ⇒(�[�(

(n, X) � (n′, Y)
) ⇒

�(
pub(X, n) ∧ n′ ∈ N(F) ⇒ �notify(Y, n′)

)])
∨

(�unsub(Y, F)
)]

The difference between this definition and that of scoped event systems
(Def. 6.3) is that the term v(X, Y) is replaced by the term (n, X) � (n′, Y)
and that the published notification n is not necessarily equal to the delivered
n′. This formulation extends the system to not only obey the visibility of
components but the visibility of individual notifications. The delivered noti-
fication n′ is the result of repetitive applications of the mappings ↗ and ↘
along the path implicitly defined by �. The present definition is even a gen-
eralization of the scoped delivery. This is because a scoped event system can
be regarded as one with event mappings where all mappings are the identity
relation, i.e., they do not change anything along the delivery paths. In such
a system, v(X, Y) is implied by the existence of a notification n such that
(n, X) � (n, Y).

Interfaces as Mappings

Notification mappings are a generalization of and subsume scope interfaces.
The relation ↗ might be undefined for an outgoing notification n1 so that
there is no n2 such that n1 ↗ n2. This blocks the notification just as a
nonmatching filter does. In order to seamlessly extend scope interfaces, ↗
and ↘ are constrained to always map to some notification, with the empty
notification ε as default.

Definition 6.7 (notification mappings). A notification mapping is given
by a function in M = {m | m : N → N}.

n1 ↗ n2 ⇒ ∃m ∈ M. m(n1) = n2

172 6 Scoping

Whenever a notification is mapped to ε it is considered to be blocked so
that filters are but special mappings: F = {f ∈ M | f(n) = n ∨ f(n) =
ε} ⊂ M. With this definition, a uniform way of filtering and transforming
notifications is accomplished so that, conceptually, interfaces and mappings
can be concatenated at scope boundaries, e.g., F1 ◦ F2 ◦ M1 ∈ M.

Next, interfaces and their concatenation are defined more formally to de-
fine ↗ and ↘ as concatenated interfaces and mappings.

Definition 6.8 (interface). An interface I consists of an input mapping iI
and an output mapping oI: I = (iI, oI) ∈ M × M. The base interface IC of a
component C represents the sets of open subscriptions and advertisements of
C:

IC = (iIC , oIC) ∈ M × M

� (iFC , oFC) =
{{F1, F2, . . . , Fk}, {F ′

1, F
′
2, . . . , F

′
l }

} ∈ P (F) × P (F)

where iIC and oIC are defined as

iIC(n) =

{
n ∃F ∈ iFC . F (n) = n

ε otherwise

oIC(n) =

{
n ∃F ∈ oFC . F (n) = n

ε otherwise

Selective interfaces IC|S and imposed interfaces IS and IS
C are defined likewise.

According to this definition an interface can transform notifications for the
seamless concatenation of filters and mappings.

Definition 6.9 (concatenation of interfaces). Two interfaces I1 and I2

are concatenated by
I1 ◦ I2 = (iI1 ◦ iI2,

oI2 ◦ oI1).

Note that the resulting interface evaluates the composed input and output
interfaces in inverse order. This is not necessary if only filters are considered,
but by incorporating mappings the sequences are no longer commutative. The
effective interface between two components C� S describes the notifications
transmitted along this edge in the scope graph and combines the aforemen-
tioned interfaces and notification mappings assigned to this edge, extending
the informal description given in Sect. 6.3.2.

Definition 6.10 (effective interface). The effective interface ÎS
C between

two components C� S is given by concatenating base interface, selective in-
terface, mapping, and imposed interface:

ÎS
C = IC ◦ IC|S ◦ MS

C ◦ IS
C ◦ IS

6.4 Notification Mappings 173

Finally, the interfaces between two components C�S are correlated to the
mapping relations ↗ and ↘ as follows:

n1 ↘ n2 ⇔ (IC ◦ IC|S ◦ iMS
C ◦ iIS

C ◦ iIS)(n1) = n2

⇔ iÎS
C(n1) = n2

n1 ↗ n2 ⇔ (oIS ◦ oIS
C ◦ oMS

C ◦ oIC|S ◦ oIC)(n1) = n2

⇔ oÎS
C(n1) = n2

The rules of notification forwarding in the scope graph given by the pub-
lishing and delivery policies in Eqs. (6.1) and (6.2) can be refined correspond-
ing to the above discussion:

PP : X
n1� S ∧ X� S� T ∧ oÎT

S (n1) = n2 ⇒ X
n1�n2 T (6.3)

DP : n1� T ∧ S� T ∧ iÎT
S (n1) = n2 ⇒ n2� S (6.4)

Despite the integration of interfaces and mappings, the scope overview in
Fig. 6.1 still distinguishes interfaces and mappings to underline their different
intentions, and also because their implementations are apt to diverge.

Some Further Comments

The already mentioned issue of duplicate notifications has to be reconsidered
here. A notification is duplicated if it travels along different paths from pro-
ducer to consumer, but it may now be subjected to different mappings so that
different versions of the same original notification are created. The specifica-
tion cannot rule out this case since it is highly application-dependent whether
this is an unwanted situation or not. The mappings may help handling al-
ternative delivery paths as they can annotate passing notifications, e.g., to
include information about the delivery path in the notification.

Trying to offer a sophisticated concept of heterogeneity support in event-
based systems is beyond the scope of this book, and thus notification mappings
are presented as a starting point for including appropriate enhancements. The
mappings underline the extensibility of the scoping concept and open it to
integrate existing works in the area of syntactic and semantic transformations
that are applicable here [46, 79, 232]. Furthermore, the current if implicit
assumption that notifications are mapped one-to-one is used for simplicity
only. Scope boundaries may turn out as the appropriate place to implement
more sophisticated event composition [146, 406].

6.4.2 A Correct Implementation

The following presents an implementation sketch of the scoped event system
with mappings. The implementation of a scoped event system with mappings

174 6 Scoping

YY
K

X
...

X

SS

n′

n
K

n′

n

K1
m K2

m

Fig. 6.10. Transformation of mappings into components

ESM is based on a scoped system ESS and a transformation of the graph of
scopes G that essentially follows the idea of adding activity to edges. Fig-
ure 6.10 sketches the transformation that creates G′ by replacing every edge
(K, S) that does not apply the identity mappings n ↗ n and n ↘ n for two
extra mapping components K1

m and K2
m. Two mapping components are taken

to constrain the visibility of the transformed notifications to the appropriate
scopes. If only one Km would be inserted, additional measures had to be taken
to distinguish the superscopes.

Figure 6.11 describes the architecture of the implementation for the exam-
ple system in Fig. 6.10. A component X connected to ESM is also directly con-
nected to an underlying scoped event system ESS. Calls to pub(X, n) of ESM

are forwarded to ESS without changes, and vice versa, calls to notify(X, n)
of ESS are forwarded to ESM.

X Y

Scoped Event System

K2
mK1

m

Fig. 6.11. Architecture of scoped event system with mappings

In general, if a scope K is to be joined to a superscope S by calling
jscope(K, S), two mapping components K1

m and K2
m are created that com-

municate directly via a point-to-point connection. K1
m joins K, subscribes

to all notifications published in K, and transforms and forwards them to its

6.4 Notification Mappings 175

peer. Furthermore, subscriptions in K have to be transformed before they are
forwarded. The implementation relies on externally supplied functions that
map notifications and filters/subscriptions between the internal and exter-
nal representations in K and S, respectively. K2

m joins S and republishes all
notifications it gets from its peer K1

m. It subscribes in S according to the
subscriptions forwarded by K1

m, transforms any notifications received out of
S, again with externally supplied functions, and forwards them to K1

m, which
republishes them into K.

Correctness

The algorithm from the previous section has to satisfy the requirements given
in Def. 6.6 of ESM, i.e., safety and liveness conditions. The correctness proof
largely depends on the correctness of the underlying scoped event system ESS.
The next lemma relates the graph transformation to the structure of delivery
paths.

Lemma 6.3. If (n, X) � (n′, Y) holds, then in the implementation of ESM

exists a sequence ρ = C1, C2, . . . , Cm of components for which holds:

1. C1 = X and Cm = Y .
2. for all 1 < i < m holds that Ci is a mapping component.
3. for all 1 ≤ i ≤ m−1 holds that Ci and Ci+1 either share a communication

link or reside in the same scope of ESS.

Proof. Assume (n, X) � (n′, Y) holds. From the definition of � follows that
there exists a delivery path τ = (X, S1, S2, . . . , Sl, Y) in the scope graph G.
Since visibility is recursively defined by having common superscopes, all Si

must be scopes.
The construction method of building G′ from G implies that every consec-

utive pair of scopes (Si, Si+1) in τ where mappings are applied is enhanced
with two mapping components K1

i and K2
i , which are joined by a direct

communication link. The mapping components K2
i and K1

i+1 of neighboring
edges reside in the same scope Si+1 or are visible to each other. The pro-
jection of τ to mapping components (and X and Y) results in a sequence
X, K1

1 , K2
1 , K1

2 , K2
2 , K1

3 , . . . , K2
l , Y , which is the witness for the sequence ρ of

the lemma. ��

Proof of Safety

Assume that Y is a simple component and that notify(Y, n′) of ESM is called.
It must be shown that the three conjuncts of the implication in the safety
property of Def. 6.6 hold.

From the algorithm description follows that notify(Y, n′) of ESS was called
before, implying that n′ is notified at most once and that n′ matches an active
subscription of Y . This proves the first and the third conjuncts.

176 6 Scoping

The second conjunct is proved by a backward induction on the path guar-
anteed by Lemma 6.3. The fact that Y is notified about n′ implies that there
is a component Z that has published n′ which resides in the same scope. If
this Z is not a mapping component, Z plays the role of X in the formula,
n′ = n, and the second conjunct follows immediately (this is the base case of
the induction). The step case of the induction is as follows: Assume that a
component Z ′′ along the path has published some notification n′′ which from
backward notification mappings resulted from n′. Then there exists a compo-
nent Z ′′′ which is either in the same scope or connected by a communication
link to Z ′′. In the first case, the step follows from the properties of ESS, and
in the second case from the algorithm. This implies that n ∈ PX and that(
(n, X) � (n′, Y)

)
, giving the second conjunct.

Proof of Liveness

The liveness property is proved by forward induction on the path guaranteed
by Lemma 6.3 in a similar way as in the proof of the safety property. As-
sume that Y subscribes to F and never unsubscribes. Then assume that after
subscribing, (n, X) � (n′, Y) begins to hold indefinitely. Then Lemma 6.3
guarantees a path between any publisher X of a relevant notification n and
Y . A similar way of reasoning as in the safety proof implies that n is forwarded
and transformed along the path resulting in n′, which Y is eventually notified
about.

6.4.3 Example

Returning to the stock exchange example, mappings can be exploited to con-
vert between different currencies.10 Quotations are typically given in a local
currency which needs to be transformed at the boundary of the local scope
in order to achieve comparability. As another example for the usefulness of
mappings, consider XML languages like FIXML [273] that standardize finan-
cial data exchange. These languages are used to connect external partners,
but they are typically too expensive for internal representations due to effi-
ciency reasons. Also, most likely, different representations of events will be
used inside the consumers, within the market, and within the trading floor,
e.g., Java objects, XML financial data, and EBCDIC mainframe text fields.
Notification mappings are installed at the consumers and at the trading floor
to map between serialized Java objects and their XML representation and
between XML and EBCDIC, respectively.

6.5 Transmission Policies

The discussion of engineering requirements in Sect. 5.1 argued not only for the
heterogeneity of data models but also emphasized the necessity to adapt noti-
10 At least from a technical point of view, disregarding varying exchange rates.

6.5 Transmission Policies 177

fication delivery semantics. The ability to accommodate diverging application
needs improves the utilizability of the event service. It helps to provide tai-
lored and efficient implementations, and it avoids a one-size-fits-all approach,
which is not appropriate for a communication substrate targeted at evolving
networked systems.

The next paragraphs distinguish transmission policies to describe how
notifications are forwarded in the scope graph. Transmission policies are a
way to influence notification dissemination beyond filtering on notifications.
While filters operate independently on independent notifications, i.e., they
are stateless, transmission policies may have their own state and they exploit
additional information not available in filters and interfaces. They refine the
visibility definition both within a scope and with respect to its superscopes.
Changing it affects the functionality of the overall system in a fundamental
way. However, once delimited by scope boundaries, such modifications are the
means that allow administrators to customize the interaction within and the
composed functionality of specific scopes.

Conceptually, notification forwarding at a node in the scope graph first
determines a set of eligible next-hop destinations according to the effective
interfaces and then applies the policies to refine this set before transmission.
Default policies implement the known semantics of notification delivery, and
by explicitly binding them to individual scopes in the specification of event
systems, they are subjected to modification on a per-scope basis. This gives
the administrator a tool to not only compose but to program scopes. Three
different policies are involved in notification transmission: publishing, delivery,
and traverse policies.

S

T T ′

publishing policy
delivery policy

delivery policy
internal

YX

Fig. 6.12. Three important transmission policies in scope graphs

6.5.1 Publishing Policy

A publishing policy is associated with a component and controls into which
superscopes an outgoing notification is forwarded. In Fig. 6.12, a publishing

178 6 Scoping

policy at S can prevent a notification Y
n1� S from being forwarded to T , even

if the notification conforms to the effective output interface oÎT
S . Out of the

set of eligible superscopes the publishing policy selects the subset to which
a notification is actually forwarded. One might reject the idea of manually
selecting the scopes into which data is published as contradicting the event-
based paradigm. However, the same arguments as for selective interfaces apply
here, too. The selection is part of the administrator’s role and is not interwoven
with application functionality in simple components. It can be seen as an
additional way to control interaction of components outside of the components
themselves.

In general, a publishing policy of a component C is a mapping of notifica-
tions to a subset of its scopes:

ppC : N → P (S)

The mapping relation ↗, which determines the visibility of notifications, can
be extended to respect publishing policies. For an edge e = (S, T) of G let

n1 ↗e n2 ⇔ oÎT
S (n1) = n2 ∧ T ∈ ppS(n1)

The general rule of forwarding outgoing notifications in the scope graph
is implied as follows. Assume Y made a notification n1 visible in its scope S,
Y

n1� S, and S is a subscope of T , S� T , then the notification shall be visible
in T if n1 matches the effective output interface between S and T and the
publishing policy (PP) does not object to T . That is,

PP : Y
n1� S ∧ Y � S� T︸ ︷︷ ︸

component
visibility

∧ oÎT
S (n1) = n2︸ ︷︷ ︸

interface
mappings

∧T ∈ ppS(n1)︸ ︷︷ ︸
publishing

policy

⇒ S
n1�n2 T (6.5)

This definition of PP refines the previous one of scoped delivery with
mappings given in Eq. (6.3). It can be reduced to the former definition by
setting ppS(n1) = S, which always validates T ∈ ppS(n1) and makes Eqs. (6.5)
and (6.3) equivalent. Note that the equation also implies Y

n1�n2 T .
A publishing policy might be used to check for attributes not available in

filters and interfaces. Since it is implemented as part of the administrator role,
it possibly has access to the scope graph layout and associated metadata. If the
availability of security credentials can be checked by the policy, a scope may
thus mandate that its notifications are only delivered if a certain privilege level
is held by the destination scope. But this simple definition leaves room for any
form of implementation. In the stock exchange example a market was divided
into a professional and a private market. The former gets undelayed stock
quotations and is modeled as a subscope of the private market. A publishing
policy at the boundary between these two scopes may be used to delay each
notification for a certain amount of time. Such implementation-specific issues
are not excluded by the above definition.

6.5 Transmission Policies 179

6.5.2 Delivery Policy

A delivery policy is associated with a scope and guides notifications that are to
be delivered to scope members. They may either be published in a superscope
or by some other constituent component. The delivery policy determines to
which members of the scope a notification is forwarded. In Fig. 6.12, a delivery
policy at S might direct a notification T

n� S to X , prohibiting the delivery
to Y even if the notification conforms to the effective input interface iÎS

Y . Out
of the set of eligible children the delivery policy selects a subset to which the
notification is actually forwarded.

Similar to publishing policies, a delivery policy of a scope S is a mapping
of notifications to a subset of components:

dpS : N → P (K)

The mapping relation ↘ can be refined so that it obeys scope interfaces and
reflects delivery policies on incoming notifications. Consider e = (X, S) as
given in Fig. 6.12 and a notification visible to S in T , T

n1� S. The visibility
of the notification within S is then determined by

n1 ↘e n2 ⇔ iÎS
X(n1) = n2 ∧ X ∈ dpS(n1).

Please note that this equivalence not only guides forwarding of incoming
notifications but also of internal notifications published by scope members; in

the example, T
n1� S and Y

n′
1� S would go down the same edge e = (X, S).

However, since internal and external communication is typically treated dif-
ferently, an additional internal delivery policy idpS is introduced to facilitate
this differentiation. The definition of ↘e has to distinguish between applying
dpS and idpS. In the first case, n1 is an incoming11 notification that is made
visible by a superscope T , i.e., X� S� T and T

n1� S. In the second case n′
1 is

an internal notification that is made visible by a member of S, i.e., a sibling

of the considered consumer X , X� S� Y and Y
n′

1� S.

n1 ↘e n2 ⇔
⎧⎨
⎩

iÎS
X(n1) = n2 ∧ X ∈ dpS(n1), if X� S� T ∧ T

n1� S

iÎS
X(n1) = n2 ∧ X ∈ idpS(n1), if X� S� Y ∧ Y

n1� S

The rule of downward notification delivery (p. 173) is thus given as follows:

11 The term “internal” and “incoming” notifications are also discussed on page 157
in Fig. 6.3a.

180 6 Scoping

DP : T
n1� S ∧ X� S� T︸ ︷︷ ︸
component visibility
incoming notification

∧ iÎS
X(n1) = n2︸ ︷︷ ︸

interface
mappings

∧X ∈ dpS(n1)︸ ︷︷ ︸
delivery
policy

⇒ S
n1�n2 X

(6.6)

iDP : Y
n1� S ∧ X� S� Y︸ ︷︷ ︸
component visibility
internal notification

∧ iÎS
X(n1) = n2︸ ︷︷ ︸

interface
mappings

∧X ∈ idpS(n1)︸ ︷︷ ︸
internal

delivery policy

⇒ S
n1�n2 X

(6.7)

Again, from the equations and the definition of � also follows that T
n1�n2 X

and Y
n1�n2 X .

An example of a delivery policy is an 1-of-n delivery where an incoming
notification is forwarded to only one out of a group of possible receivers. In this
way load-balancing characteristics may be implemented in a specific scope.
Internal delivery policies are pertinent whenever the data flow within a scope
shall be controlled in addition to the established filters. An internal delivery
policy is able to arrange multiple consumers into a chain. Consider a sequence
of exception handlers, each subscribed to the same type of failure, which it
tries to solve, and if not possible it republishes the received notification. An
internal delivery policy can forward each published error notification to the
next hop in the preconfigured list of consumers/handlers.

6.5.3 Traverse Policy

The last, only informally presented policy is the traverse policy, which is as-
sociated with a scope S and controls the downward path of incoming notifica-
tions in a scope. In contrast to the preceding policies, the traverse policy does
not select destinations within a certain scope but selects the scope into which
to descend first. It searches at different levels in the scope hierarchy below S
for a scope with eligible consumers, and if one is found it will stop searching
and refer the notification to the respective scope.

Actually, this policy allows a notification to deviate from a default path
through the graph of scopes. In a top-down traverse policy eligible receivers,
i.e., simple components with a matching subscription, are searched in the cur-
rent scope first. If no consumer is found at this stage, the search is continued
in the next lower level of scopes if the policy still applies there (same ad-
ministrative domain). The bottom-up traverse policy starts the search in the
deepest subscopes. “Broadcast” is the default policy, which does not inhibit
descending the scope graph and delivers to all eligible consumers C

��S below
the current scope S, subject to interfaces and delivery policies, of course.

This kind of dissemination control is apparently inspired by dynamic bind-
ing and method lookup in object-oriented class hierarchies. Multiple con-
sumers of the same notification, which are located at different levels in the
inheritance/scope hierarchy, can be considered to implement some form of
generalized method overriding. While traditional programming languages like

6.5 Transmission Policies 181

C++ and Java use only one static policy to resolve calls to overridden meth-
ods, traverse policies draw ideas from metaobject protocols [221] to determine
what kind of method lookup is used. The bottom-up policy resembles a vir-
tual method call in Java in that the implementation of the most derived class
is used. Other policies are possible that implement other kinds of method
lookups.

6.5.4 Influencing Notification Dissemination

Transmission policies are a means to adapt the event-based dissemination
within scopes, i.e., to tailor the quality of service (QoS). They make the in-
teraction in the graph programmable.

To some extent transmission policies bear similarities to metaobject pro-
tocols (MOP) known in object-oriented programming [221]. Metaobject pro-
tocols offer the ability to redirect or transform messages sent as method calls,
and this control allows one to influence object interaction outside of the ob-
jects’ implementation. Here, notifications are selected, transformed, ordered,
or queued, to manipulate the default visibility of notifications and to adapt
event-based interaction within the bounds given by the scoping structure to
which the policies are associated.

As for the expressiveness and possible implementations of transmission
policies, note that the above definition is not intended as an algorithmic de-
scription. It integrates with the specification of scoped event systems with
mappings given in Def. 6.6, and since the specification relies on linear tempo-
ral logic, it only describes valid traces of system execution. In particular, any
implementation that exhibits such traces conforms to the specification. So,
even if the rules PP, DP, and iDP might connote an algorithm for notification
forwarding, possible implementations covered by the definition of ppS , dpS ,
and idpS, and of ↗e and ↘e, can be Turing-complete. For instance, delaying
notification as part of a transmission policy is sanctioned as long as any later
delivered notification still adheres to the visibility definition and the safety
condition of the specification.

The decision made by a transmission policy is based on additional data not
available in filters and interfaces. Various characteristic approaches to decision
making can be distinguished. There are policies that essentially implement
filters on notifications like component interfaces, but which are able to exploit
additional metadata. Notifications carry management information, which is
annotated by the event system and stripped off before delivery, and as a tool
of the administrator policies might access this data. So, they would be able
to differentiate producers, e.g., to check security credentials. Furthermore,
transmission policies probably have (limited) knowledge about the current
scope graph layout and of a notification’s (partial) path through the graph.

The second, more complex form of transmission policy does not filter any
data contained in notifications, but compares all eligible destinations, ranking
them to do a top-k selection. The ranking may be random, based on lowest

182 6 Scoping

utilization, etc. And finally, when the policy implementation maintains its own
state, it might keep a record of the last sent notifications in order to limit the
maximal bandwidth toward a consumer by rejecting too frequent notifications.
Or it might realize a round robin 1-of-n delivery. With its own state the policy
is capable of delaying notifications for a certain amount of time or until a
specific condition becomes valid, i.e., a “releasing” event occurs. This opens
a venue to bind event composition to scope boundaries, or to implement a
form of acknowledged notification forwarding where acknowledgment is given
components other than the original producer.12

6.6 Engineering With Scopes

Scopes are an engineering abstraction for event-based systems. To some extent
they are comparable to classes and objects in object-oriented design and pro-
gramming. They can be used to model system entities and their relationship
and, on the other hand, they provide the basis for system implementation in
form of a specific object/component model.

So far, there was no clear distinction made between using the scope graph
as a modeling tool or as means of implementing system structure. In order to
reflect the different objectives, two types of scope graphs are distinguished.
Descriptive scope graphs describe a set of components, their relationships,
and visibility constraints as expressed by the scope features annotated in the
graph. An instantiated scope graph scoped event system, describes a running
which contains instances of various descriptive scope graphs. The former can
be seen as a collection of scope types and classes, while the latter constitutes
the runtime environment. Interestingly, both can be combined in one graph.
If the descriptive graph is treated as abstract scopes (cf. Sect. 6.2.6) in a
combined graph, instantiated components are members of their respective
descriptive scopes. This combination does not affect communication within
the instantiated scope graph, but allows for instance grouping and runtime
reflection [245].

In the remaining subsections a development process is described that shows
how scope graphs are created and how they are deployed. A language for
specifying and programming scopes and scope graphs is introduced afterwards.

6.6.1 Development Process

The development process for scoped event systems consists of four stages:

1. Component design. Individual simple components and preconfigured
scopes are created and put into repositories for later use. The design at
this stage specifies required and provided interfaces and employed scope

12 Let us call the releasing notifications commit and abort and you see the link to
transactions.

6.6 Engineering With Scopes 183

features. Larger descriptive scope graphs can be built up from these pre-
configured components.

2. Scope graph design. From a selection of existing and newly created
components a descriptive scope graph is created. This step concentrates
on orchestrating preconfigured components, resolving open interface con-
straints. No implementation issues are handled.

3. Scope graph deployment. An existing descriptive scope graph is trans-
lated into a running system. Implementation techniques are chosen, inte-
gration code to bridge with existing systems is generated, infrastructure
code is deployed to selected nodes of the network, etc.

4. System management. A running system is monitored and adapted at
runtime. This is necessary to react to failures, to install new components,
and to evolve the system where necessary.

6.6.2 Scope Graph Handling

Component Definition

From the engineering point of view, a scope can be considered as a module
construct for event-based systems, being an abstraction and encapsulation
unit at the same time. As an abstraction unit, a scope provides the rest
of the world with common higher-level input and output interfaces to the
bundled subcomponents, eventually mapping these interfaces to the interfaces
of the individual constituents. As an encapsulation unit, a scope constrains
the visibility of the notifications produced by the included components. It
hides the details of the composition implementation. The engineering of single
scopes is about building new event-based components.

Generally, programming of scopes has two sides. First, it is about arranging
and orchestrating a set of components; this is the structure of the scope. Sec-
ond, programming is about specifying the dependencies on other components
that are not part of the predefined scope. At runtime a certain environment of
available producers and consumers might be required, which are essential for
the operation of this scope, but not part of its definition; this is the context
of the scope.

How are these two tasks accomplished? Three ways for specifying and
programming scopes are considered here: scope API, XML description, and
SQL-like language. A basic programming API, e.g., in Java, is easily conceiv-
able. A scope class is the base class with a default implementation of scope,
which can be specialized in subclasses. On the programming language level,
scope classes are part of the descriptive scope graph and objects constitute
the instantiated scope graph. However, the scope concept is too generic to
come up with exactly one API proposition; an example can be found in [135].

The context of a scope is a list of requirements that is better encoded in
a descriptive language, like XML or SQL. An XSchema definition of scope
graphs defines the entities that compose a descriptive scope graph in form of

184 6 Scoping

an XML document. It includes descriptions of single scopes and their depen-
dencies in a scope graphs, but may also contain information about network
layout and broker networks; an example is available in [268].

The specification of dependencies to other points are called coupling points ,
which is a variation of UML (Unified Modeling Language) ports and inter-
faces. A coupling point is a description of what other components are needed
at deployment. It contains an expression on scope attributes, required inter-
faces, and the roles eligible components must play. Roles are introduced as a
suggestion to describe functionality on a level more abstract than interfaces.
Technically, roles involve only string matching on a well-defined attribute.
However, they enable system engineers to distinguish components even if they
have identical interfaces. As an example consider two components subscrib-
ing for temperature events. One component calculates the average, the other
one logs all published temperatures. Both would use the same interface and
a role annotation could help distinguish them. Roles are used to name sets of
interfaces and/or semantics of interfaces. A meaningful interpretation of the
names relies on agreements made outside of the notification service.13

The SQL-like language presented in later in this section facilitates the
definition of scopes and their features, and includes coupling points to ex-
press dependencies, rules for modifying scopes, and their position in the scope
graph.

Who is responsible for setting up and maintaining the scope graph? In
order to not impair the loose coupling of application components, they should
not be forced to interact with the scope graph. For this reason, they may
access the graph structure through the Java API, but typically programming
and configuration is done by the administrator, who knows the included com-
ponents and is able to govern their interaction. Of course, different adminis-
trators may be responsible for different scopes. We can use abstract scopes to
define different administrative domains [268].

As a result of component design a repository of components, i.e., a de-
scriptive scope graph, is created for later composition in bigger scope graphs
and for later deployment.

Scope Graph Composition

This second stage of the development process creates the descriptive scope
graph. From a selection of existing and newly created components a graph is
designed, typically for a specific application. This task includes the resolution
of dependencies on interfaces, attributes, and roles, and the specification of
application-specific implementation requirements.

The graph describes the relationship between components and stores pre-
defined configurations on a larger scale than single components. Similar to

13 The use of ontologies like in concept-based publish/subscribe [79] is an example
of such externally provided agreements.

6.6 Engineering With Scopes 185

class hierarchies, the scope graph offers a way to statically describe system
structure. The graph is created for a specific application, and so the question
is raised, what can be modeled with a scope graph? Since scopes are a generic
concept to partition applications and control their interaction, this question
asks for a methodology and design guidelines. Unfortunately, there are no
general guidelines available so far.

The question by what means an administrator creates this graph is an-
swered, though. Scope graph design must comprise tools and primitives to
compose scope graphs from given specifications, to create and configure con-
nections in the graph, and to resolve open dependencies. The Java API can be
used to wire specific components or to resolve dependencies by application-
specific rules. Existing scope specifications based on the XSchema grammar
can be joined, whereby unambiguous dependencies can be resolved with a
simple search on the available component definitions. The SQL-like scope lan-
guage also facilitates this step by altering existing definitions, substituting
descriptions of coupling points with lists of concrete components.

However, it may happen that not all dependencies can be resolved before
deployment, especially if the runtime environment consists of instances of
different descriptive scope graphs. They must be resolved at deployment time
or even at runtime. The scope language offers event–condition–action (ECA)
rules for this purpose.

Finally, the descriptive scope graph can carry annotations that have no
immediate meaning in this step, but are interpreted in later on, similar to
stereotypes in the Unified Modeling Language (UML, [154]). For example,
annotations of required quality of service attributes may govern the following
deployment step, hinting at appropriate implementation techniques.14

Scope Graph Deployment

Scope deployment creates or extends an instantiated scope graph, which
contains all scopes currently running in the system. This step deploys pre-
configured scopes of one or more descriptive scope graphs, it resolves open
dependencies, and chooses and parameterizes the implementation techniques
for the deployed scopes.

The remaining context dependencies of the descriptive scope graph are
resolved at deployment time. Often multiple descriptive graphs are used to
describe different applications and subsystems. Their models evolve indepen-
dently and they only rely on some of the services provided by others. So
the deployment step is also an integration step that combines (independently
administered) systems at a high level of abstraction.

Some dependencies are not resolved once and for all at deployment. They
do not pertain to the static structural layout of the system, but rather depend

14 Obviously, the stepwise transformation and deployment of the scope graph re-
sembles the ideas of model-driven development [155].

186 6 Scoping

on the execution of the event-based system. This is described as part of the
management paragraph below.

An important point, not only in this step but for the scope concept in
general, is the fact that the choice of a concrete implementation technique
is postponed until now. The implementation of a scope and its communica-
tion facilities is determined here based on annotations made in the descriptive
scope graph and/or based on decisions made by the administrator. This ap-
proach allows for a model-driven implementation, which fits the needs of the
application to the services available in the system. Requirements on causal
ordering or security considerations can be part of the application model, and
the administrator decides how these things are implemented using available
group communication protocols and encryption and key management schemes.
Consequently, scopes are the appropriate place to customize specific parts of
a system, as demanded in Sect. 6.1.

Management

Scope graph management comprises tools and primitives to maintain and
update the instantiated scope graph. All features of scopes are subject to up-
dates and even the layout of the scope graph can be changed, establishing and
destroying edges by joining and leaving scopes. It also covers the manual cre-
ation of new scopes, and thus deployment is part of scope graph management.
These tasks must be available in the API of the publish/subscribe service.

It gets interesting when considering automatic updates. As mentioned
above, scope graph layout can be dynamic depending on the execution of
the system. Automatic updates of the graph use the management functions
to react to events and conditions observed in the system. The scope language
presented below allows ECA rules to be associated with scopes. Each rule
reacts to arbitrary notifications visible to the respective scope, and if an op-
tional conditional expression is fulfilled arbitrary management commands are
executed. Binding these rules to scopes uses the visibility constraints of the
scope graph to apply them only in limited areas of the graph. As for the
scoped communication, this controls the execution of rules and reduces the
complexity of rule analysis [29].

Such rules can be used to define scopes that automatically include all
components conforming to a certain condition. One example is mobile systems,
which are an apparent application domain of scoped notification delivery.
The geographic vicinity to a reference location groups all components within
this area.15 In fact, whenever location models do not strictly correlate to
the topology of the network infrastructure, some form of application-specific
scoping is necessary [142].

15 Grouping always implies a common context, and scoping thus may contribute to
the discussion about context in mobile systems [335].

6.6 Engineering With Scopes 187

6.6.3 Scope Graph Language

In order to support the development process a specification language for scope
graphs is defined next. Corresponding to the generic nature of the scope con-
cept, the language definition is intended to be open for further refinements,
which are probably domain dependent. A Backus–Naur form is used to specify
the syntax in form of production rules like

rule1 ::= ("A" | rule2) [rule3] rule4-commalist

Here, rule rule1 is expanded to either the literal “A” or the result of
rule2, followed by zero or one expansion of rule3, followed by one or more
comma-separated expansions of rule4.

The next paragraphs introduce a grammar for defining scopes, their fea-
tures and dependencies. It includes the rule “...” at places of possible future
extensions.

Component References

In order to identify any specific component, a reference scheme for components
must be defined. For the sake of simplicity only symbolic names are considered
here.

simple-component-name ::= symbolic-name
simple-component-ref ::= simple-component-name

scope-ref ::= symbolic-name | ("MEMBERS(" scope-ref ")")

component-ref ::= simple-component-ref | scope-ref

Wherever a scope is referenced by its name, e.g., scope1, the scope itself
is meant, that is, the node in the scope graph. The MEMBERS(scope1) ex-
pression is used to refer to the members of the scope, that is, the set of nodes
Ci�scope1 of the scope graph.

Names are not globally unique; they are scoped. A component is part of
some scope and its name is, at first, only valid within its scope. A reference to
a scope is always resolved from a specific node in the scope graph. If for a given
name no component exists in the current scope, all superscopes are considered
recursively. This approach is similar to references to overloaded methods in
object-oriented programming languages, where the “nearest” definition is used
up the inheritance hierarchy. Of course, it may happen that a name cannot
be resolved or a name is ambiguous. For a concrete system, rules may be
established to devise globally unique names.

188 6 Scoping

Scope Definition

The definition of a scope consists of several parts: component selection, in-
terface and attribute definitions, actions, and update rules. Implementation
issues are not specified here. Defining a scope makes it part of the descriptive
scope graph; deployment is a second step described later in this section.

scope-definition ::=
"DEFINE SCOPE" component-name "AS"
component-selection-clauses
scope-feature-clauses

component-selection-clauses ::=
component-selection-clause [component-selection-clause]

component-selection-clause ::=
[component-identifier ":"]
(super-selection | member-selection)
["WHERE" boolean-expression]
[":" selection-property-clause]

super-selection ::= "SUPERSCOPE"
selection-qualifier
"FROM" (scope-ref-commalist | "*")

member-selection ::= ["MEMBER"]
selection-qualifier
"FROM" (component-ref-commalist | "*")

scope-feature-clauses ::=
scope-feature-clause [scope-feature-clause]

scope-feature-clause ::= (
(component-identifier ":"

selection-property-clause) |
interface-clause |
role-clause |
set-clause |
action-clause |
update-clause)

selection-property-clause ::= "{"
[interface-clause]
[action-clause]
"}"

6.6 Engineering With Scopes 189

boolean-expression ::=
(attribute-test | interface-test | role-test | ...)
[("OR" | "AND") boolean-expression]

attribute-test ::=
attribute-name
(numerical-comparison | string-comparison | ...)

numerical-comparison ::= numerical-operator number
string-comparison ::=

(string-comparison-op | string-matching-op) string

Component selection determines superscopes and members of the defined
scope if it starts with SUPERSCOPE or MEMBER, respectively. Any selec-
tion consists of two steps. First, a base set of components is given after the
FROM keyword, and the where clause selects in a second step those satisfying
a boolean expression.

The base set can be given as an enumeration of specific components, for
example

DEFINE SCOPE example AS ALL FROM prod1, prod2, scope1

which defines a scope example that contains exactly the components prod1,
prod2, and scope1. Or specific components and members of other scopes can
be mixed.

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world), A, B
WHERE has-temp-sensor = 1

defines a scope temp containing those components of the predefined scope
world plus A and B, which have an attribute has-temp-sensor set to one. The
star ∗ is a special scope name available for template definitions. It is later
replaced with the superscopes and siblings of the current scope when it is
deployed. It denotes all components visible at deployment time.

The where clause is a boolean expression on component attributes and
acts as filter. The expression tests individually each of the components given
in the from clause; no pairwise comparisons of components are done here. If
the where clause is omitted, a scope is defined containing exactly the specified
list of components.

The same syntax is used for selecting superscopes. The following definition
additionally specifies the superscopes S1, S2 of temp.

DEFINE SCOPE temp AS
m: ALL FROM MEMBERS(world), A, B

WHERE has-temp-sensor = 1
s: SUPERSCOPES ALL FROM S1, S2

190 6 Scoping

A component identifier is a name that is valid only within the scope def-
inition. It denotes each component included by the selection it is prepended
to. The names do not correspond to nodes in the scope graph; they rather
identify selections for later references, for example, when updating or refining
a scope definition. In the above example, s refers to S1 and S2 and m refers
components selected by the first selection clause.

Selection Qualifier

So far, all components matching the where clause are selected for the new
scope. However, sometimes a comparison and ranking of eligible components
is necessary. For example, the administrator may want to select those that
are nearest to a specific location or have the most free computing resources.
A selection qualifier is part of the selection:

selection-qualifier ::=
(ALL |
(TOP "(" attribute-name "," number ")") |
("[" [number] ".." [number] "]"))

The default qualifier is ALL (as in the previous examples). TOP performs
a top-k selection of all components satisfying the where clause. It sorts com-
ponents by the given attribute and chooses the first k of them. A qualifier of
the form [n..m] specifies the size of the respective selection. A minimum of n
matching components up to a maximum of m are chosen here. Either bound-
ary can be omitted, denoting a cardinality of zero and as many as possible,
respectively. Omitting both is like choosing ALL.

Many extensions are conceivable at this point. The top selector may
take a predicate as argument that evaluates expressions like “fixed-location -
location-attribute”, which sorts according to a distance metric. Other domain-
dependent functions may be added in specific implementations.

Interfaces

Component interfaces are defined as part of the scope feature clauses after all
selections. Selective and imposed interfaces are specified in selection property
clauses, which are either appended to the respective selection clauses or are
also given after all selections (see below). The interface clause begins with
the keyword “INTERFACES” and then includes a comma-separated list of
interface specifications. There is no specific filter model preset in the language
(cf. Sect. 6.3.1), and so a syntax corresponding to the available filter model
must be chosen.

interface-clause ::= ["INTERFACES" interface-commalist]
interface ::= ("INPUT(" | "OUTPUT(")

["0" | "1" | channel-interface | topic-interface |

6.6 Engineering With Scopes 191

typebased-interface | content-interface | ...]
")"

channel-interface ::= channel-name-commalist
topic-interface ::= topic-commalist
topic ::= "/" topic-name [topic]
typebased-interface ::= notification-type-name-commalist
content-interface ::=

boolean-attribute-expression-commalist

The two special interfaces “0” and “1” denote filters rejecting and accepting all
notifications. The following snippet defines a scope that outputs temperature
alarm notifications, but it does not receive any input from its superscopes S1
or S2.

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world)
WHERE has-temp-sensor = 1
SUPERSCOPE ALL FROM S1, S2
INTERFACES OUTPUT(AlarmNotification)

The next example is an extension that also includes imposed interfaces on the
components of temp that allow them only to send temperature notifications.
All other kinds of input or output traffic of members is prohibited.

DEFINE SCOPE temp AS
m: ALL FROM MEMBERS(world)

WHERE has-temp-sensor = 1
SUPERSCOPE ALL FROM S1, S2
m:{
INTERFACES OUTPUT(TempNotification), INPUT(0)

}
INTERFACES OUTPUT(AlarmNotification)

or alternatively

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world)
WHERE has-temp-sensor = 1 : {
INTERFACES OUTPUT(TempNotification), INPUT(0)

}
SUPERSCOPE ALL FROM S1, S2
INTERFACES OUTPUT(AlarmNotification)

Note that omitting a component interface is like setting it to “0”, whereas
omitting a selective or imposed interface is like setting it to “1” (cf. Sect. 6.3.2).

192 6 Scoping

Coupling Points

Coupling points generalize component selection. Coupling points are queries
on available components and their properties. They are half-edges in the scope
graph that describe dependencies on other components based on properties
like component interfaces, roles, or attributes.16 The dependencies must be
resolved at deployment by creating the necessary edges in the scope graph.

A coupling point either provides or demands a specific property. If it de-
mands, the coupling point of matching components must provide the required
properties, and vice versa. So far, where clauses request for attributes and
interface clauses provide interfaces. What is still needed are means to set at-
tributes, to require interfaces, and to set and require roles. References to the
following grammar rules are already part of where clause and scope feature
clause:

interface-test ::= ["HAS"] interface
role-test ::= "IS ROLE(" role-name ")"

role-clause ::= "ROLES" role-name-commalist
role-name ::= symbolic-name

set-clause ::= "SET" set-attribute-commalist
set-attribute ::= attribute-name "="
(value | notification-attribute | component-attribute)

The set clause supports setting scope attributes to constant values as well as
to values of notification or components declared in the update clause of the
scope (see below).

The next statements define two scopes admin and company. The latter in-
cludes one instance of the former due to its role definition. It imposes an output
interface so that only notifications conforming to the holidayAnnouncement
type can be passed into company. The latter also includes the top ten com-
ponents, termed worker, that either produce or consume other important no-
tifications.17

DEFINE SCOPE admin AS
ALL FROM c1, c2, c3
INTERFACES INPUT(something), OUTPUT(else)
ROLES boss

DEFINE SCOPE company AS
b:[1..1] FROM world

16 Dependencies on attributes can subsume the other two if a sufficiently rich data
model is available.

17 Actually, two distinct clauses should select producers and consumers to avoid
getting only one kind of components.

6.6 Engineering With Scopes 193

WHERE IS ROLE(boss)
INTERFACES OUTPUT(holidayAnnouncement)

worker:TOP(experience,10) FROM world
WHERE OUTPUT(necessaryInformation) OR

INPUT(furtherProcessing)
SET name = "Acme, Inc."

Actions

Scopes put components into groups for visibility purposes, but they can also
perform actions on notifications and components. Scope features like mappings
and transmission policies are functions executed on notifications.

action-clauses ::=
(map-clause | policy-clause | do-clause)
[action-clauses]

map-clause ::= "MAP" ("INWARD" | "OUTWARD")
("{" set-attribute-commalist "}" |
external-code-ref)

policy-clause ::=
(delivery-policy | publication-policy | ...)
[policy-clause]

The map clause defines a mapping which is either inward or outward,
transforming incoming or outgoing notifications, respectively. If only one di-
rection is specified, the other one must be derivable or prohibited by interface.
Mappings may be defined within the specification language, but most likely
externally provided functionality will be used as implementation. So, the map
clause includes a reference to external code, which could be a symbolic name
that refers to a repository of the notification service or a URL to an external
code repository. For the same reason there is no syntax for defining transmis-
sion policies; they are supposed to be externally provided, too.

do-clause ::= "DO" command

The do clause is included as hint for future extensions, but is not used so
far. It may provide a way to customize scope functionality or even to apply
code to all members of the scope. The latter is sketched in [349] for a scenario
of wireless sensor networks: application code is assigned to network nodes
based on scoped definitions.

Updates

The update clause defines ECA rules to adapt instantiated scopes. Any kind
of (application-specific) event visible to the scope can be used in these rules.

194 6 Scoping

There are special event types like pub(F(n)), which is the publication of a
notification n conforming to filter F , and sub(F), which is the event of some
component subscribing to the filter F , etc.

update-clause ::= "UPDATE ON" event
[condition]
DO action-commalist

event ::=
(("pub(" | "con(")

notification-identifier ":" interface ")" |
("sub(" | "unsub(" | "adv(" | "unadv(")
interface ")" |

join(C,S) | leave(C,S) | ...)

condition ::= "IF" boolean-attribute-expression

action ::= scope-change | create-clause

create-clause ::=
"CREATE NOW"
[INCLUDE COMPONENT [component-identifier]]

The notification identifier is a symbolic name valid within the scope defi-
nition. It is bound to the actual notification triggering the action and can be
used in other parts, e.g., in the set clause to update scope attributes.

Actions comprise the alter scope statement explained below and creation
rules. The create clause is a powerful tool to control the dynamics of scope
graphs. It defines rules to automatically create predefined scopes when spe-
cific events occur. Because this automatic creation can be combined with join
actions, new scopes can be created with the publisher of the triggering noti-
fication as first member of the scope. “INCLUDE COMPONENT” joins the
component that triggered the action. This is the producers or the consumer
of a notification (consuming a notification is considered as an event here), the
component changing its interface, etc.

In this way session scopes can be defined. They include the initial pub-
lisher, all consumers, and consumers of subsequently produced notifications.
The condition of the ECA rule controls the extension of such a dynamic
scope—a precondition to implement spheres of control or transaction con-
texts in event-based systems.

Deploying Scopes

Scope definitions extend the descriptive scope graph of the system. It is like
defining a class or type in a programming language; it does not create an

6.6 Engineering With Scopes 195

instance of the subject. An instance of a scope is created and deployed with
the following statement:

scope-deployment ::= "DEPLOY SCOPE" scope-ref
[component-selection-clauses]
[scope-feature-clauses]
architecture-clause

architecture-clause ::=
(brokerscope-clause | intergrated-routing-clause | ...)

brokerscope-clause ::= "BROKERSCOPE(" host ")"

To deploy a scope, an existing definition and an implementation is neces-
sary. The architecture clause lists scope architectures, which are introduced
in Sect. 6.7.1. Essentially, it refers to a scope implementation available in the
system. It carries implementation-specific parameters, like a host name for a
brokerscope implementation.

DEFINE SCOPE temp AS
a: ALL FROM *

WHERE has-temp-sensor = 1

DEPLOY temp
SUPERSCOPE ALL FROM S
a:{ INTERFACES OUTPUT(TempNotification) }
BROKERSCOPE(localhost)

This example defines a scope containing all members of S that have tem-
perature sensors. The scope is deployed in an existing scope S using a bro-
kerscope implementation on host localhost. It also adds imposed interfaces on
selection a permitting only temperature notifications.

Changing Scopes

An ALTER SCOPE statement is introduced to change any part of a scope.
It may refer to a definition as well as to an instantiated scope.

scope-change ::= "ALTER SCOPE" scope-ref
["ADD" | "DEL"]
[component-selection-clause]
[scope-definition-clauses]

The statement adds new selections or features to an existing scope, or deletes
or replaces existing parts of it.

ALTER SCOPE temp ADD
ALL FROM c
SUPERSCOPES ALL FROM S

196 6 Scoping

attribute

variability
static

update

frequency

real-time

never

attributes

highly dynamic

attributes

Fig. 6.13. Scope definition accuracy

The above statement adds a component c to the scope temp and joins it
to S, i.e., temp� S.

Maintenance and Definition Accuracy

The where clauses of component selections are rules that determine to which
of the available components edges are established in the scope graph. But
when are these rules evaluated? Once at deployment? Every t seconds? Or if
attributes deviate by more than 20%? Fig. 6.13 sketches alternative views on
the accuracy of scope definitions.

The degree of correlation between the rules expressed in the where clauses
and the currently established connections in the scope graph is called scope
definition accuracy. It depends on the variability of attributes and the fre-
quency with which rules are reevaluated.

We assume that queries are evaluated at deployment time only and that
their result is not automatically updated afterwards. This corresponds to the
lower left point in Fig. 6.13. However, the update clauses in scope definitions
allow system engineers to install custom ECA rules to maintain accuracy.

6.7 Implementation Strategies for Scoping

The concept of scopes can be implemented on top of a variety of techniques. In
fact, the ideas underlying the scope concept are quite common, but visibility
control is often implemented only partially and in an ad hoc manner.

This section investigates a number of approaches for implementing scopes.
They differ in the characteristics of the communication media used to con-
vey messages and in the strategies for scope graph distribution. The resulting
scope architectures are the blueprints of the implementation. All the architec-
tures implement the visibility constraints defined by scopes, but they diverge

6.7 Implementation Strategies for Scoping 197

Fig. 6.14. Design dimensions of scope architectures

in their support of other quality of service parameters, like communication
reliability and performance, and they also influence system extensibility and
adaptability. They emphasize different aspects of the visibility abstraction and
are therefore eligible for different application environments.

6.7.1 Scope Architectures

The concept of scopes can be implemented to target any of a wide range
of diverse requirements. The implementation influences the functionality and
quality of service an application can count on. The architectures presented
in this chapter cannot be ranked in general; they may fit the needs of an
application or not. There is no best architecture.

Two architectural dimensions are distinguished (Fig. 6.14): communication
medium and scope implementation. The combination of these dimensions gives
rise to a number of scope architectures that determine the principal layout of
the scoped event service (cf. Fig. 6.16). The third dimension turns out to clas-
sify the architectures’ ability to control communication. This section details
the architectural choices and defines a metric for comparing the architectures
presented later.

Communication Medium

The notion of a communication medium denotes any technology that is used
to convey notifications between nodes of the scope graph. The communication
medium is the basic building block of scope implementation and determines
which scope features are supported directly, which features can be imple-
mented efficiently on top, and which features are hardly achievable at all.
Any means of data sharing and transport can act as communication medium,
ranging from shared memory and TCP [370] connections to IP multicast [106]
and peer-to-peer networks [310, 374]. Moreover, existing publish/subscribe
services, database management systems [172], and tuple spaces [174] are also

198 6 Scoping

eligible candidates for implementing scope graphs. They offer different qual-
ity of service and determine the flexibility and functionality of a scoped event
system beyond visibility rules.

Although within a single scope different kinds of traffic might be conveyed
on top of different communication media, a single medium per scope is as-
sumed for simplicity here. Please refer to Sect. 6.8 for a general discussion on
combining media and scopes.

In the following, communication media are differentiated according to their
support for unicast/multicast delivery and their addressing capabilities. These
are not orthogonal dimensions, rather they highlight different technical aspects
that affect scope implementation.

Unicast vs. Multicast

The basic distinguishing feature of communication media is whether they for-
ward data point-to-point or point-to-multipoint, i.e., unicast versus multicast.
Unicast media send data directly to a specific, identified receiver. In order to
reach a number of recipients the send operation must be repeated. Examples
include TCP, RPC, and messaging systems. Perhaps surprisingly, unicast me-
dia are viable implementation techniques for certain classes of event-based
systems; they are considered as a medium to implement scopes, while the
producer’s and consumer’s view (API) on the notification service remains un-
changed. Multicast media send data to groups of receivers. Multicast media
like shared memory, IP multicast, existing notification services, and database
tables are common implementation techniques that intuitively correspond to
the characteristics of notification distribution.

Obviously, multicast media distribute notifications more efficiently than
unicast media. On the other hand, multicast limits the ability to distinguish
recipients and control the actual set of receivers. Scope features like deliv-
ery and security policies, which are meant to re-introduce control, cannot be
implemented directly on top of multicast media without additional filtering
(cf. client-side filtering later in this section). Exploiting the knowledge about
scope members enables system engineers to shape traffic, implement advanced
transmission policies, encrypt data, etc. At the cost of multiple send opera-
tions and the need to maintain the current set of scope members, unicast
media are more flexible than multicast media. In practice there are applica-
tions for both unicast and multicast media, and the main issue is a tradeoff
between efficiency of data distribution and addressing granularity.

Direct, Group, and Indirect Addressing

Communication media can be further distinguished according to their ad-
dressing schemes. While unicast media use direct addressing, which identifies
an individual receiver uniquely in the network, multicast media can be sub-
divided into group addressing and indirect addressing. In group addressing

6.7 Implementation Strategies for Scoping 199

data are sent to a named group of recipients. The name of the group is spec-
ified by the sender, and all members of the group get messages sent within.
Group membership is handled separately via membership protocols. IP mul-
ticast and group communication protocols [319] are examples of this form of
communication.

In indirect addressing, the second form of multicasting to a set of receivers,
no destinations are specified. Instead of naming groups of receivers, the set of
receivers is determined indirectly with the help of information given in mes-
sages and by potential receivers. For instance, content-based routing delivers
notifications according to consumer-provided filters that test notification con-
tent. Another example is proximity group communication [258, 320], where
messages are sent only to receivers that are physically close by, i.e., addressees
are implicitly determined by location metadata.

Communication Media, Publish/Subscribe, and Visibility

The choice between unicast and multicast media is mainly a tradeoff between
efficiency and control, as described above. But what media are good candidates
to implement a publish/subscribe service, and do some of them even offer a
visibility mechanism comparable to scopes? What are the characteristics of
group and indirect addressing that influence the implementation of scopes?

As for the general applicability to implement a publish/subscribe API,
group and indirect addressing is related to the discussion on filter models
(channel-, subject-, and content-based filtering) given in Sect. 2.1.3. Group
addressing is like channels in that a name representing a set of receivers is used
by the sender to disseminate data. Subject-based addressing is an extension
that allows for subgroups [289, 380], which is, to some extent, also supported
by IP multicast [259].

Group-based multicast media establish visibility constraints in that they
encapsulate intragroup traffic. Notifications published within a multicast
group, or under a specific subject, are a priori not visible to outside consumers.
However, groups classify messages either based on content (all notifications
of type A) or based on application structure (all database servers in a com-
pany’s back-end infrastructure). Furthermore, groups are often not able to
reflect the acyclic scope digraph, because they are mostly arranged in trees,
as in IP multicast and subject-based addressing. Even if one tries to model
different viewpoints with the help of subgroups, the exponentially growing
number of necessary groups limits practical applicability (see Sect. 2.1.3).

Scopes, on the other hand, are orthogonal to consumer subscriptions. They
handle interfaces (i.e., subscriptions, group names, etc.) and system structure
(the organization of scopes in the scope graph) independently. Thus, groups
do not directly implement scopes.

Indirect addressing media can avoid many of the problems of group ad-
dressing. They are typically more flexible, but less efficient as they do not
easily map to hardware-supported multicast mechanisms. In the generic form,

200 6 Scoping

like in content-based publish/subscribe, implementations based on database
management systems (DBMS), and tuple spaces, they are able to carry dif-
ferent viewpoints (content vs. structure) simultaneously. Available products/
prototypes are able to offer only a few of the features of scopes, but they are
an ideal basis for their implementation.

Scope Distribution

Considering individual scopes, there are three basic choices of how a scope can
be realized: implicit with all the control in the local event brokers of mem-
bers; instantiated with an explicit administrative component that represents
the scope and is responsible for membership control, transmission policies, and
mappings; and finally, the implementation of a single scope can be distributed
on multiple administrative components residing in different nodes of the net-
work. Note that similar alternatives exist for the scope graph. Implicit scopes
imply an implicit scope graph, administrative components can either be cen-
tralized in a single node or run on different nodes of the network (centralized
or distributed scope graph), and distributed scopes imply a distributed scope
graph.

Implicit Scope Implementation

The first approach is to collocate scoping with application components. The
implementation is shifted into the communication library used to connect
application components to the notification service, i.e., into the local event
brokers in Rebeca terminology (cf. Sect. 2.4). The local event brokers use the
addressing and filtering capabilities of the underlying communication medium
to implement scope boundaries. The main idea is to annotate notifications to
carry scope graph data. Extended subscriptions then exploit these annotations
to filter not only on the original consumer’s interest, but also on visibility
constraints imposed by the scope graph. Consider, for instance, a scope graph
with unique scope names, local event brokers that annotate notifications with
scope names (n.scope = “MY-SCOPE”) and modify each original subscription
F to F ′ = F ∧ n.scope = “MY-SCOPE” + interfaces.

The extended subscriptions F ′ must be mapped to the medium’s filter
capabilities, which is possible if expressive filter models are available like in
the Java Message Service or in Rebeca. If this mapping is not possible,
client-side filtering must enforce the visibility constraints to guarantee that
all requirements of the safety condition of scoped event systems are met, cf.
Def. 6.3 in Sect. 6.2.2.

For example, consider the members of a scope forming a group that com-
municates notifications via a group-addressing medium like subject-based
publish/subscribe to all scope members. This floods all notifications to all
members of this scope, postponing original subscription processing to the

6.7 Implementation Strategies for Scoping 201

S T

c3c2c1

c1 c2 c3

S, TS T

c

Fig. 6.15. Implicit implementation shifts visibility control into application compo-
nents

client side. If content-based filters are available, processing of both client sub-
scriptions and scope interfaces can be shifted into the medium; the former F ′

could be supplied to JMS or Rebeca.
In an implicit scope implementation the structure modeled by the scope

graph is transformed into a flat implementation, as illustrated in Fig. 6.15.
Every component is connected to the same medium, and conventions must
determine how visibility constraints are implemented on top of the addressing
mechanisms offered by the medium. In order to meet the safety and liveness
conditions, each component must maintain the necessary management infor-
mation about the layout of the scope graph and the current scope interfaces.
So, scoping structure can be transparently implemented in the local event
brokers without modifying application code, but scope graph changes require
update processing in potentially many of the components.

The problem of shifting scope control into local event brokers is that com-
ponents not adhering to these conventions may bypass visibility constraints,
both as consumer and as producer. Since the scope structure exists only im-
plicitly in the components of the system, no external entity controls and en-
forces scope boundaries, giving rise to both reliability and security concerns.
Consumers might arrange to listen to notifications they are not intended to
receive, and even worse, they may send notifications to any component, dis-
rupting correctness in other parts of the system as well. Moreover, more ad-
vanced features of scopes, namely transmission policies and mappings, are
even harder to implement using an implicit implementation.

Instantiated Scope Implementation

To exert more control on notification dissemination the scope graph must be
managed within the notification service infrastructure. A basic approach is
to explicitly instantiate administrative components to represent scopes. They
are generated and controlled by the notification service itself and contain an
implementation of scopes outside of application components.

This scenario is further subdivided into a centralized graph and a central-
ized scope form. The former implements the whole scope graph in a single
node of the distributed system and amounts to a central information hub.
This is a widely used approach for implementing unscoped event systems,
because it simplifies notification routing and access control, but comes at

202 6 Scoping

the expense of scalability and diversity support. Examples range from cen-
tralized databases [172, 292] (see later in this section) to content delivery
networks [333], which can be seen as logically centralized nodes optimized for
one-way delivery efficiency. In the centralized scope form, each scope is repre-
sented by one administrative component, but each such component may run
on a different node in the network.

Administrative components make the scope structure explicit and acces-
sible to the system engineer, who is now able to customize (parts of) it to
the local needs of an application. This approach facilitates configuration and
integration of heterogeneous components on a per-scope basis as each ad-
ministrative component may act as bridge between different implementations
(different data/filter models, communication medium, etc., see Sect. 6.8). In
contrast to an implicit solution, instantiated scopes make it easier to control
adherence to a specific scope graph and it relieves clients from management
tasks.

Distributed Scope Implementation

A single, distributed scope consists of multiple administrative components
that together constitute this scope. Each scope member is assigned to one
administrative component. The same type of communication medium is still
assumed for delivery to scope members, but communication between the ad-
ministrative components may be based on a different technique. Scalability is
obviously improved since multiple administrative components share and sub-
divide the load to distribute intrascope notifications; they may even exploit
effects of locality when notifications are only forwarded within one adminis-
trative component.

For example, consider two groups of application components belonging to
the same scope, but located at two different border brokers of the underlying
network, e.g., an Internet of two LANs connected by a WAN. Instantiating
a scope implementation solely in one LAN would diminish the benefits of
locality for the other side. But if administrative components are available on
both sides, they may draw on a local broadcast medium and connect each
other using a point-to-point link.

Example Architectures

Figure 6.16 shows possible architectures that are defined as specific combina-
tions of scope distribution and communication medium. They are sketched in
the following and two of them are detailed in Sects. 6.7.3 and 6.7.4.

Static Deployment

The combination of implicit scope implementation and point-to-point com-
munication leads to a static deployment where every scope member knows its
siblings and communicates directly with them. When subscriptions are known

6.7 Implementation Strategies for Scoping 203

communication
medium

scope
implementation distributed

S
ta

ti
c

D
e
p
lo

y
m

e
n
t

Addressing Scopes

instantiated

Pub/SubMulticast

implicit

Pt-to-Pt

Brok
er

Sc
op

es

Inte
gra

ted
Routing

Collapsed Filters

Client-Side
Filtering

indirect

DB

Hub

direct group

Fig. 6.16. A comparison of scope architectures

to all members, notifications are sent to subscribed consumers only. Otherwise,
notifications are sent to all scope members, which evaluate their own filters on
any notification published in the scope. Output interfaces toward superscopes
and input interfaces of sibling subscopes must be known as well so that cross-
scope notifications can be sent to a consumer in the destination scope, which
in turn relays them within. This scenario is called static deployment since it
is an eligible architecture option if the scope graph is static, rather small, and
does not change at runtime. System configuration can then be compiled into
the local event brokers without affecting the publish/subscribe API, as it is
for any of the presented architectures. In such a situation even remote proce-
dure calls are a suitable implementation technique to convey notifications. If
the system is not static the necessary configuration data in the components
must be kept up to date. Examples of this approach are data-driven coor-
dination languages (e.g., Manifold [296, 297]), which connect input/output
ports of coordinated entities, and even an implementation using TCP/IP to
connect the participants is eligible, particularly if the system footprint has
to be kept small. Interestingly, the JavaBeans programming model [84, 359]
and component-oriented programming in general [234, 369] are related to this
approach in that they facilitate the wiring of interfaces and ports.

Another application of static deployment is to wrap a callback-based sys-
tem with a publish/subscribe API. That is, undirected subscriptions are re-
solved and directly registered at corresponding callback handlers that are vis-
ible according to the locally stored scope graph. Although somewhat unusual,
this might offer a way to draw from existing request/reply or directed messag-
ing systems, when possible, and from their established benefits, for instance,
in security and transactional data management.

Client-Side Filtering

The client-side filtering architecture also utilizes an implicit scope implemen-
tation but is built on a multicast medium that provides group-based address-
ing, like IP multicast. Each scope is assigned a multicast group address and

204 6 Scoping

all members of a scope are reached with only one call to the medium. Com-
pared to static deployment, the required network bandwidth is considerably
reduced. However, since there are still no administrative components the vis-
ibility constraints defined by the current scope graph must be enforced on
producer and/or consumer side. As described earlier in this section, the local
event brokers may annotate notifications and must select appropriate des-
tination group addresses on producer side. And on consumer side incoming
notifications must be filtered out so that in combination only matching notifi-
cations are delivered that comply with the scope graph and satisfy the safety
condition of the scoped event systems definition.

A different way of using group-based multicast here is to group according
to content instead of structure. In such a scenario multicast groups might be
used to group subscriptions, which is the common use of multicast in publish/
subscribe systems [87, 291]. Consumers would have to determine the visibility
of incoming notifications by evaluating the interfaces of the scope graph as part
of their client-side filtering. Thus, in the first approach producers have to know
the current scope graph layout to select the correct destination scopes, while
in the second approach consumers are in charge of this. The two approaches
differ mainly in the selectivity of the grouping and the implied costs of keeping
the graph information up-to-date.

Another extension is to instantiate administrative components within
scopes that are responsible for relaying incoming and outgoing notifications.
In this way the need to store the full scope graph in local event brokers is
removed, since these relaying components have to know their adjacent nodes
only.

Client-side filtering is obviously applicable when scope graphs are rather
static and of limited size. For instance, if scope graph changes are just induced
by moving simple components the assignment of group addresses to scopes
remain unchanged. The moving components have to join the respective groups,
but the scope graph information need not be updated elsewhere. Scope graph
management is thus reduced to group membership management, which is
provided by the communication medium. Nevertheless, this architecture is
left out of consideration in favor of more flexible solutions.

Collapsed Filters

In the Collapsed Filters architecture, the visibility constraints expressed in
the scope graph are merged into the subscriptions issued by consumers. This
leads to a flat notification service where enhanced subscriptions implement
the scope graph implicitly, requiring an expressive subscription like in content-
based publish/subscribe. Extra effort is necessary on both the producer and
consumer sides. Producers, i.e., their local event broker, annotate notifications
and add data necessary for visibility filtering. Consumers have to extend their
subscriptions to test as much of the imposed visibility constraints as possible.
If the filter model is not expressive enough, they must locally evaluate the
remaining filters on every received notification.

6.7 Implementation Strategies for Scoping 205

The collapsed filters approach is a simple implementation of scoping as
a layer on top of an existing communication infrastructure. But it does not
provide the full control of visibility at runtime. Notification mappings and
delivery polices are not always implementable. Furthermore, graph changes are
difficult and costly to deploy, because application components are not easily
reconfigurable and changes to the graph have to be consistently distributed
to all affected components.

The system’s functionality in a collapsed graph depends on the correct
function of all participating components. It renders control of the visibility to
the components. A corrupted or malevolent component may publish or eaves-
drop in any scope. The discussion on combining different scope architectures
in Sect. 6.8 leads to a possible solution when gateway components bridge
two separated subgraphs and provide an explicit encapsulation of visibility
constraints.

Central Hub

The “classic” data management approach of using a central database may
also be beneficial in an event scenario. It is an alternative implementation of
collapsed filters and it easily offers sophisticated quality of service guaran-
tees in addition to the basic safety and liveness requirements of scoped event
systems.

Using databases for implementation blurs the distinction between the col-
lapsed filter and the central hub scope architectures. Similar to the content-
based publish/subscribe medium assumed above, a database table can hold
all published notifications, and subscriptions are merely queries to this table.
In fact, database technology provides a wide spectrum of functionality [172]
that may be exploited to extend the quality of service offered by the event
system beyond the definitions given in Chap. 2. On the other hand, there
are drawbacks like their maintenance complexity, resource consumption, and
acquisition and operation costs.

Addressing Scopes

Addressing scopes is an extension of the client-side filtering approach that
no longer relies on multicast but instead on content-based publish/subscribe.
Each scope has a unique name that is appended to published notifications.
Every subscription is extended to accept notifications only if they are issued
in the consumer’s scope. The scope address type of architecture introduces ad-
ministrative components that localize the implementation of interfaces, pub-
lishing policies, and mappings. They offer a finer control of interscope com-
munication than the collapsed scopes.

Scoping is still implemented on a shared multicast medium and the imple-
mentation is not aware of the underlying network layout. In fact, intrascope
communication is not directly governed by the administrative components and
relies on the filtering capabilities of the communication medium. The local

206 6 Scoping

event brokers of producers and consumers modify notifications and subscrip-
tions before sending them out. With respect to intrascope communication,
scope addressing is similar to collapsed scopes. Internal delivery policies, ad-
mission to scopes, and, in general, conformance to the visibility defined in the
scope graph is achieved only if producers and consumers operate cooperatively
and correct.

Compared to the collapsed scopes, which need only one access to the
medium to reach every consumer, the administrative components repetitively
access the medium to forward a notification along a delivery path in the
scope graph. In situations where some consumers are connected via long de-
livery paths, this approach apparently induced a considerable communication
overhead. But the indirection introduced by the administrative components
relieves simple components from maintaining the current graph structure. Es-
pecially the last point touches on a well-known tradeoff between scalability
and expressiveness [69]. In the collapsed scope graph approach lots of extended
filters are issued, whereas with scope addresses the filter complexity is limited
at the expense of increasing communication bandwidth.

Broker Scopes

Broker scopes are a one-to-one implementation of the scope graph in that each
scope is explicitly represented by an event broker of the broker network (cf.
Sect. 2.4). This approach is detailed in Sect. 6.7.3.

Integrated Routing

Integrated routing fully integrates scoped notification delivery into the routing
infrastructure. The routing tables themselves are extended to reflect visibility
constraints of the scope graph. This architecture is described in Sect. 6.7.4.

Scope Graph Distribution—Types of Architectures

While the choices described above consider individual scopes only, the follow-
ing looks at scope graph implementation as a whole. The general processing
steps of scoped notification delivery are described, which identify potential
places to implement scoping functionality in the system. These steps serve
as a basis to compare the preceding example architectures and to classify
them in three types of architectures. These types differ in the degree they
support scope graph reconfigurations, transmission policies, and, in general,
any distribution control beyond scope interfaces.

Figure 6.17 sketches the delivery in a scoped event system. The numbered
course shows the forwarding of a notification that moves along an exemplary
delivery path (p, S2, . . . , Sn−1, c) between producer p and consumer c in an
arbitrary scope graph.

1. In the first step a notification is published by producer p.

6.7 Implementation Strategies for Scoping 207

Local Event Broker

Scope Distribution
Scopes

Components
Application

S2

1.
2.

4a 4c

3c

3aCommunication Medium

3b

Sn−1

6.

Event Service

Communication Hops

cc′p

5.5a

...

Fig. 6.17. Steps of scoped notification delivery

2. The access to the event notification service is provided by the local event
broker, which is conceptually part of the application component. The
broker may process the notification as part of an implicit scope imple-
mentation (cf. static deployment) before it is forwarded by accessing the
communication medium.

3a. If scopes are instantiated in administrative components, the notification
is delivered to an instance of S2 of the example delivery path.

3b. If scopes are distributed, the notification is also sent to other instances of
this scope if needed.

3c. Delivery in S2 is completed when the notification is forwarded toward
its members and superscopes, accessing the underlying medium for the
second time.

4. The previous three steps are repeated for all other scopes.
5. The notification is received by the local event broker of the potential

consumer, which may again process and filter the notification before it is
delivered to the consumer.

6. Finally, the notification is delivered to the consumer c.

An implementation of scope graphs may stretch across up to three layers:
On the lowest layer, the communication medium is parameterized to distin-
guish scopes or at least administrative components representing scopes. On
the middle layer explicit administrative components implement scope fea-
tures within the notification service. At the highest layer, code is collocated
to application components in local event brokers to modify notifications and
subscriptions.

The figure illustrates all possible steps although only a subset is relevant
for a specific architecture. In an implicit scope implementation no scopes are
instantiated within the event service and steps 3 and 4 are omitted. With a
centralized scope implementation step 3b is not needed. Whether any process-
ing is done in the local event brokers (steps 2 and 5) depends on the concrete
implementation, but it is definitely required in implicit approaches. When
group-based multicast is used to address all members of a scope additional
client-side filtering is also needed in step 5.

208 6 Scoping

publication
control

inter-scope
control

full control

accesses 1 n − 2 n − 1

possible
medium

any group or indirect direct

scope
distribution

implicit
central./

distributed
central./

distributed

data flow
control

no explicit
control

control
inter-scope traffic

control every
edge

examples

static
deployment,
client-side
filtering,

collapsed filters

addressing scopes
broker scopes,

integrated
routing

Fig. 6.18. Types of architectures, their characteristics, and examples

The different choices to partition scope implementation among these steps
turn out to be a fundamental characteristic of scope architectures. It de-
termines their ability to adopt scope graph changes and to implement any
sophisticated control of communication beyond interfaces. For an assessment
it is crucial to compare the amount of control residing within the notification
service with the amount shifted into the communication medium and the ap-
plication components, respectively. For this purpose the number of accesses to
the communication medium that are necessary to forward a notification along
a delivery path is taken as a measure to distinguish architecture types. These
accesses are labeled as communication hops in Fig. 6.17, whereas communica-
tion between instances of the same distributed scope (step 3b) is not counted,
since it does not leave the scope’s sphere of control. Based on this consider-
ation, three modes of notification forwarding are identified and depicted in
Fig. 6.18.

1. Publication control. All consumers are reached with only one access to
the medium. All interfaces and delivery policies bound to the scope graph
must therefore be evaluated within the communication medium or as part
of the local event brokers of producers and consumers. There is no control
within the medium or the publish/subscribe service infrastructure once
the message is sent. Accessing the communication medium means here
that all eligible consumers in the whole system get the notification.

2. Inter-scope control. In this approach, scopes are represented by admin-
istrative components that govern the interfaces toward superscopes and
relay incoming and outgoing notifications if they match the respective in-
put and output interfaces. Within scopes, however, lists of members are

6.7 Implementation Strategies for Scoping 209

not maintained and notifications are not directed to specific addressees. A
multicast medium is used that may reach all scope members in one step.
Since producers do not distinguish any siblings, the consumers’ subscrip-
tions must either be completely handled by the communication medium
or, if all scope members are indistinctively addressed as a group, consumer-
side filtering must be applied.
Accessing the communication medium means here that a scope and all
of its members get the notification. For an arbitrary delivery path, one
access to the communication medium is needed for every edge, except for
the root scope of the path where sending and receiving components are
siblings. This leads to n−2 calls to the communication medium for a path
of length n.

3. Full control. Each scope is represented by an administrative component,
and notifications are forwarded strictly along the edges in the scope graph,
resulting in n− 1 accesses to the medium for a delivery path of length n.
Each scope is implemented in one or more brokers in the routing network.
Delivery is controlled even within a scope.
This is an one-to-one implementation of the scope graph, and accessing
the communication medium means here that notifications are sent to the
next hop node in the scope graph or only within one scope graph node
that resides on multiple network nodes (e.g., integrated routing).

This classification describes what part of the scope graph is offered through
the communication medium and the implicit implementation in application
components, on the one hand, and what part is implemented in administra-
tive components instantiated in the infrastructure, on the other hand. This
distinction determines how the different number of accesses to the commu-
nication medium determines the ability of a scope architecture to adapt the
current configuration of the system. While explicit administrative components
are readily adaptable, it is far more difficult to update infrastructure code in
a consistent and transparent way when it resides in local event brokers.

An even more important fact is that the granularity of the control exerted
on notification distribution gets inevitably more coarse if fewer accesses to
the medium are needed. With fewer accesses more consumers are reached in
one step, which implies uniform delivery to larger sets of nondiscriminated
components. However, any form of refining and controlling dissemination will
have to differentiate subsets of these components. And the number of accesses
to the medium characterize how much of the structure identified in the scope
graph is reflected in the implementation.

6.7.2 Comparing Architectures

Scope architectures can be classified in the architectural dimensions given
above. However, further criteria are necessary for comparing and assessing
their functionality from an application point of view. The architectures pre-
sented in the next sections are compared according to the following criteria:

210 6 Scoping

� Impact on infrastructure and components: What must be changed to im-
plement scoping?

� Implementation overhead: What is the overhead implied by a given scope
architecture? What are the communication costs compared to unscoped
publish/subscribe and compared to other scope architectures?

� Reliability: How do failures of components affect single scopes or overall
system correctness?

� Reconfiguration: What kinds of changes of the scope graph are possible in
the running system? What are the costs of scope graph updates? Adapt-
ability and flexibility to change system structure are the main issues here.

� Customization: While all scope architectures obey the visibility constraints
expressed in a scope graph, which of the other features of scopes are sup-
ported? What kinds of mappings, transmission policies, security policies,
etc. can be established?

The comparison of the scope architectures is summarized in Fig. 6.19.

impact on ability to

infrastr. components overhead reliability reconfigure customize

collapsed filters + – � – – –

hub + � � + � +

static deploy. + – + � – �
addressing scopes + � � � + �
broker scopes � + � + + +

integrated routing – + + + + +

Fig. 6.19. Comparison of scope architectures (+ means low impact and overhead,
and high ability to achieve reliability, reconfiguration, and customization)

6.7.3 Implement Scopes as Event Brokers

The broker scope approach is the most general implementation of scopes. It
uses administrative components representing scopes, as before, but relies on
their forwarding even for intrascope communication. It directly implements
the structure of the scope graph in the sense that publishing within a scope
first requires accessing the communication medium to send the notification to
the representing scope instance, which, in the second step, sends the notifi-
cation to all its children and, after applying the output filters, to the eligible
superscopes. In terms of Fig. 6.17, all the steps are explicitly implemented.
With brokering each notification individually, even the delivery of notifica-
tions to separate consumers could be distinguished in steps 5 and 5a. The

6.7 Implementation Strategies for Scoping 211

existence of step 3b depends on the internal implementation of each scope
representative, of course.

The characteristics of this approach are the independently operating ad-
ministrative components that represent each scope and have full knowledge
about adjacent subcomponents and superscopes. And, in principle, a point-to-
point communication between the nodes is assumed so that arbitrary delivery
can be implemented in scopes. In practice, a number of different commu-
nication media and schemes for implementing and locating administrative
components are possible.

One Scope, One Broker

The simplest form is a one-to-one implementation of the scope graph, which
instantiates exactly one administrative component per scope and uses point-
to-point media to convey data as defined by the edges of the graph. The point-
to-point communication to all children offers the full control of intrascope
traffic. Any constraint bound to the scope graph is easily implemented at this
explicit point in the infrastructure: no restrictions of applicable transmission
policies, mappings, and security measures are imposed.

From a technical point of view, an implementation with scopes as brokers
is similar to the architecture described in Sect. 2.4, only that a strict treelike
network is no longer mandated. Instead, the undirected form of the directed
acyclic scope graph constitutes the overlay network used to convey the data.
The original restriction to trees was made to simplify analysis and implemen-
tation of general routing protocols, which is a reasonable initial assumption
for a research prototype. Here, this restriction is removed. However, the prob-
lems inherent to arbitrary graphs are not solved in general, rather scoping
and the definition of visibility constrains the possible routing configurations
in the graph. The network layout is no longer an infrastructure independent
of the application components; the administrator of the system is provided
with means to shape its layout and control the distribution of notifications.
Routing is the implementation of visibility, and the responsibility of ensuring
sensible routing is now partially transfered to the administrator.

A possible drawback of this approach might be its degradation of com-
munication efficiency. To convey data along a given delivery path of length
n, n − 1 accesses to the underlying medium are necessary, which is only one
more than in the scope address approach. But if only intrascope traffic is
considered, which may dominate in many systems anyway, the necessary ac-
cesses are doubled. However, even if other implementation approaches may
be more efficient for certain system configurations, broker scopes provide the
most general implementation of scope graphs, and the ones most adaptable
to any kind of reconfigurations. So, the alleged inefficiency has to be com-
pared with the indirection of the scope brokers and the enhanced control they
introduce thereby.

212 6 Scoping

Distributed Scopes

The above discussion assumed a single administrative component per scope,
which is responsible for filtering incoming and outgoing traffic and internal for-
warding. With distributed scopes, this task is performed by multiple instances,
that is, by distributed administrative components of one scope. Whenever the
instances are not independent, they have to communicate with each other and
thus implement step 3b of Fig. 6.17. For the communication between these
instances a communication medium can be used that is different from the one
conveying data between the scope graph nodes. However, the same arguments
regarding addressing capabilities, scalability, and flexibility hold as before.

A number of objectives are achievable with distributed scopes. An obvious
improvement is to instantiate multiple administrative components for each
scope to prevent single points of failure. The instances may be identical repli-
cas using a primary/backup approach [11] or operating in parallel indepen-
dently of each other. Alternatively, each of the instances may be responsible
for a different subset of the scope’s components so that in case of failure only
one subset is affected, but not all components of the scope. In these cases, a
point-to-point communication within a known set of scope representatives is
indicated.

Furthermore, scope distribution facilitates adaptation. For example, if one
administrative component is instantiated per superscope, each instance han-
dles the interfaces, mappings, and transmission policies with respect to one
superscope. The addition of edges simply requires adding the respective ad-
ministrative components. And if a multicast medium is used to forward no-
tifications from scope members to all the administrative instances, edge con-
figuration does not even influence any other parties in the scope. Another
option is to provide specialized services by different scope representatives for
certain types of notifications, such as internal delivery policies or encryption
for specific notifications. This implementation partially backs off the initially
stated assumption that only one communication medium is used per scope.
The same result could be achieved if each of the specialized administrative
components is created as a full scope in the scope graph.

The above examples employ separate administrative components to fa-
cilitate the implementation and reconfiguration of a scope graph, but they
do not consider distribution with respect to the actual layout of the phys-
ical network. A very important aspect of distributed scopes is their ability
to bridge between the structure of the application given in the scope graph
and the structure of the underlying network. Consider a scope that groups
physically dispersed members located in two different subnetworks. With a
single administrative component all traffic would be centralized, whereas dis-
tribution helps exploit locality. If an instance of the scope is present in each
of the subnetworks, notification forwarding is decoupled and done locally in
each network. And the bandwidth necessary between the networks can be re-

6.7 Implementation Strategies for Scoping 213

duced once the connected administrative components remember the remotely
published subscriptions, i.e., they maintain a routing table.

The previous description shows clearly that multiple explicit scope in-
stances constitute a distribution network by itself. When several scopes are
distributed, several of these overlay networks coexist. In this situation scoping
and routing are mixed, which is investigated in Sect. 6.7.4.

Collocating Broker Scopes

A special solution is to collocate all administrative components at one node in
the network. Scope-internal traffic still needs two accesses to the underlying
medium, but all interscope communication is done locally. Although closely
related to the central hub approach, cf. Sect. 6.7.1, the scope graph is explic-
itly instantiated here, only that interscope communication is implemented by
interprocess communication (IPC). Separate administrative components can
still evolve independently, they just happen to be collocated, so to speak, to
improve efficiency, auditability, or other global constraints.

Evaluation

Scopes as brokers are the most flexible implementation of the scope graph.
They offer all features of the scoping concept and the flexibility to adapt all as-
pects of the one-to-one realization of the scope graph. Every feature is localized
in the infrastructure. Apart from this configuration viewpoint, broker scopes
make the infrastructure itself visible and adaptable, for it provides administra-
tors with means to map application structure to infrastructure components,
that is, to event brokers.

This scope architecture is possibly not the most efficient implementation
of a certain scope graph, but it is the most generic one. It is not a service of the
publish/subscribe infrastructure, but instead a way to define and adapt the
infrastructure itself, and it will serve as a basis for refining the implementation
of subgraphs, as discussed in Sect. 6.8. However, it is not always acceptable
to have such a close correlation between the application structure supposedly
encoded in the scope graph and the implied, dependent layout of the network
infrastructure.

6.7.4 Integrate Scoping and Routing

The explicit instantiation of administrative components described in the previ-
ous section makes the full range of scope features available to system engineers,
i.e., administrators. However, it also determines the layout of the underlying
network infrastructure, which is no longer independent of the applications.
In contrast, the following integrates scoping into the routing infrastructure.
Visibility control becomes an inherent service of the event notification service
and is no longer implemented as a layer above the underlying broker network.

214 6 Scoping

S

T

c5 c2

c4c3c1

U

c6

Fig. 6.20. An exemplary scope graph

Scopes as Overlays

Given a network of brokers and a scope graph, the simple components of a spe-
cific scope are in general connected to arbitrary border brokers, irrespective
of their scope membership. They are reachable via a subset of the border bro-
kers, and the notification service must ensure that notifications are forwarded
to these brokers if they match one of the subscriptions of the respective sim-
ple components. Consider the exemplary scope graph and the broker network
depicted in Figs. 6.20 and 6.21. Brokers B1, B2, and B4 are part of scope T ,
that is, they are scope brokers18 of T . Together with B3, they are also scope
brokers of S. B2 is in both cases an intermediate broker that currently does
not have any directly connected scope members. B1 and B5 are scope brokers
of U .

c5

B5

B1

c1 c2
c3

c6

c4

B4

B3

B2

T
S

U

Fig. 6.21. Scopes as overlays within the broker topology

18 Mind the difference between scope brokers and broker scopes. The former are
part of an independent broker network and sustain a specific scope, whereas the
latter is a scope architecture and a different way to implement the scope graph
(Sect. 6.7.3).

6.7 Implementation Strategies for Scoping 215

Filter Destination

iIc1 c1

iIc2 c2

iIc3 B2

iIc4 B2

iIc6 B2

iIc5 B5

Fig. 6.22. A flat routing table for broker B1

The main idea is to rely on any of the existing routing schemes, e.g., those
offered by Rebeca (Sect. 2.4), as before, but to use it for intrascope traffic
only and for each scope separately. Still, the same broker network is used
to route all notifications and a connected subset of brokers routes the traffic
internal to a given scope without heeding other scopes. The separate routing
for each scope effectively establishes scope overlays in the broker network,
which are sketched in Fig. 6.21. On the other hand, the separation of scope-
internal routing necessitates a special handling of interscope transitions. In
Fig. 6.21, B1 is scope broker of both S and U to bridge between the overlays
of the two scopes.

Consequently, two kinds of routing are utilized to integrate scoping into
the broker network: intrascope within a specific scope and interscope rout-
ing between scopes adjacent in the scope graph. In intrascope routing each
scope overlay maintains its own routing tables so that each broker has a rout-
ing table per scope it supports. The employed routing scheme maintains the
independent routing tables and handles advertisements and notifications as
before. Hence, brokers constituting a scope overlay behave like a traditional
flat publish/subscribe service in which no visibility constraints exist. In inter-
scope routing brokers must arrange for the transition of notifications between
scope overlays according to the scope graph and the assigned interfaces and
mappings. The current assumption is that two scopes S� T have to share at
least one common scope broker to implement the scope graph edge at this
point. In the previous example both B4 and B5 support scopes S and T , and
both are able to let notifications cross the respective boundaries; the same
holds for B1 and S and U .

Enhancing Routing Tables

The original flat routing tables maintained in each broker contain filter-desti-
nation pairs that list issued subscriptions and the next-hop nodes from which
they were received, describing the paths to consumers. Figure 6.22 shows
the flat routing table RTB1

of broker B1 of the previous example. The en-
hanced routing tables subdivide these entries and group them in separate
scope-specific tables RTS

B1
, RTT

B1
, and RTU

B1
, sketched in Fig. 6.23. From the

216 6 Scoping

point of view of a specific scope S, both simple and complex components are
entries in a scoped routing table RTS

B1
. Although technically equal, entries of

subscopes are distinguished from entries of superscopes, which is necessary
to correctly implement the visibility of components as described in the next
subsection.

The “Filter” and “Destination” columns have still the same semantics
as before: an entry indicates that notifications are to be forwarded to the
given destination if they match the respective filter. In distinction to the
original flat table, however, the new tables store arbitrary mappings instead
of just filters. In this way the effective interfaces between components can
be tested, including any mappings assigned in the scope graph. Of course,
any implementation is free to still store simple filters separately from more
complex notification processing functions. For instance, the filter–link pairs of
the original routing tables may be transformed into triples of filter sequences
and links plus mapping sequences.

The destinations stored in the enhanced tables are either network links
or locally stored data structures. The former represents an implementation
to communicate with next-hop brokers and clients, the latter are the routing
tables of next-hop nodes in the scope graph. They mix and integrate the two
levels of routing between physical brokers, on the one hand, and between scope
overlays, on the other hand.

The scoped routing tables RTSi

Bi
govern notification forwarding both within

and between scopes, once set up properly. But in order to establish new edges
in the scope graph and to create and link the respective routing tables, ad-
ditional information must be maintained in the broker network. Each broker
keeps a scope lookup table STBi that contains pairs of scope identifiers and net-
work links, indicating in which direction scope brokers of the specified scope
can be found. These tables are updated upon scope creation and deletion, as
discussed below. For the previous example they look like in Fig. 6.24.

iÎc1

iÎc3

iÎc4

oÎT
S

oÎU
S iÎc5

iÎU
S

iÎc2

iÎc6

iÎT
S

B2

B2

c1

B5

B2

c1

RTT
B1

RTT
B1

RTS
B1

RTU
B1

RTS
B1

RTU
B1

RTS
B1

super-

scopes

scope

members

Fig. 6.23. Enhanced routing tables of B1 incorporating scopes

6.7 Implementation Strategies for Scoping 217

STB1 STB2 STB3

· · ·S B1 S B2 S B2

T B1 T B2 T B3

U B1 U B1 U B2

Fig. 6.24. Scope lookup tables

Setting Up Routing Tables

Once created, the routing tables are filled when consumers subscribe, and
the underlying routing algorithm must forward and register these subscrip-
tions. Chapter 2 described simple routing and covering and merging, which
may be applied to accomplish this task. The scoped routing tables themselves
and the references between them are set up as reactions to scope graph re-
configurations. In addition to the plain publish/subscribe primitives pub, sub,
and notify , Sect. 6.2.5 on dynamic scopes introduced four new operations:
cscope(S), dscope(S), jscope(X, S), and lscope(X, S), which create and de-
stroy a scope S, and join X to scope S and remove it, respectively. While the
network of brokers is still assumed fixed, the following describes how routing
tables are adjusted to reflect these operations. Section 6.6 has suggested tools
that support system engineers in this task.

Adding and Removing Scopes

The primitive cscope(S) creates a new scope S if invoked by the system en-
gineer at a specific broker B. If no scope of this name is known before, a new
routing table RTS

B is created and the scope lookup table STB is updated. By
default the creation is announced as unscoped notification and every broker
listening to these kinds of notifications updates its scope lookup table accord-
ingly. If a new scope shall not be made publicly available but only as a member
of a specific superscope T , the initial announcement can be postponed until
it has joined T . The announcement is then sent within T and its visibility is
governed by the installed interfaces. Without such restrictions the full list of
all scopes instantiated in the system would be listed in all lookup tables, as is
the case for advertisements or subscriptions in flat publish/subscribe systems.
Applying scope interfaces to restrict the distribution of scope announcements
helps limit the amount of management information kept in the system.

To complete the scope configuration, additional data about its interfaces,
transmission policies, or security policies is necessary. This information is also
provided by the system engineer and is stored as an extension of its routing
tables RTS

Bi
in all scope brokers.

A scope is removed from the system by calling dscope(S) at one of its scope
brokers. Following the entries in its routing table a message is sent to all of
its scope brokers to remove its routing tables and any references from rout-

218 6 Scoping

ing tables of adjacent scopes. Its members are notified with a corresponding
notification.

Joining a Scope

An arbitrary component C is joined to a scope S by calling jscope(C, S)
at the local or border broker of C. The scope lookup table is used to route a
ScopeJoin message to the first scope broker of S. These special messages leave
a trail of temporarily stored source-pointers in the visited brokers that allows
a response to be routed backwards to C. A scope broker of S that receives
a ScopeJoin message takes two steps. It includes the border broker of C as
scope broker of S and forwards the interface of the new component to existing
scope brokers to get the routing tables updated. The first step requires that
the current routing table is forwarded along the stored trail toward C so that
each visited broker creates an initialized routing table for scope S. If security
policies are installed in the scope brokers, a join request may be denied, which
results in a rejection sent toward C.

A simple component leaving a scope is similar to just unsubscribing to
all issued subscriptions. Scope brokers may regularly test if any members are
locally connected, and if other scope brokers are reachable via only one link,
this scope broker is an unused border broker of the scope overlay and may
be shut down. If a scope leaves one of its superscopes, i.e., lscope(S, T), an
appropriate message is distributed to the scope brokers of both scopes and the
references to the respective other scope are removed from all involved RTS

Bi

and RTT
Bi

routing tables.

Scoped Routing

Scoped routing uses the enhanced routing tables to forward notification in
accordance with the current scope graph. The algorithm basically extends the
plain Rebeca algorithm of flat publish/subscribe routing. It is executed in
each broker B and operates on a set of enhanced routing tables RTSi

B of scopes
Si, of which B is currently a scope broker.

Notification Layout

The algorithm needs some additional management information to operate
properly. This information is annotated to notifications by the routing imple-
mentation and is not accessible to applications.

To prevent loops and infinite forwarding, notifications must not be sent
back on links they were received from, both network links and scope graph
edges. As in the original Rebeca routing, notifications are annotated in each
broker with an identifier of the source network link to prevent it from being
sent back in the direction from where it was received. Additionally, each noti-
fication carries an identifier of the current scope and of the source component,

6.7 Implementation Strategies for Scoping 219

which are accessed by get scope(n) and get source(n), respectively. These
identifiers signify the scope in which the notification is currently visible and
the (last) component from where it was forwarded into this scope. Note that
the latter does not name the original publisher but the last node in the scope
graph visited before the current one. The local event broker of the original
producer is responsible for setting the identifiers initially.

These component identifiers must be unique with respect to the current
scope and its adjacent nodes in the scope graph so that they identify its
components or superscopes unambiguously. However, such edgewise distinct
names may not suffice, because many scopes may be hosted in one broker
and naming must be unambiguous within a broker. So, besides the simple
but restrictive assumption of globally unique identifiers, a scheme similar to
the mappings of virtual channel identifiers in Asynchronous Transfer Mode
(ATM) networks [233] might be devised that maps identifiers on both sides
of a network link to guarantee uniqueness.

The next paragraphs introduce different states of routing that are accessed
by get state(n). Of course, all get-functions are accompanied by the respec-
tive set methods.

Routing States

Following the discussion about delivery paths in scope graphs and transmis-
sion policies, three states of routing are distinguished:

� scope internal routing: A notification is forwarded to siblings in the same
scope.

� downward routing: An incoming notification is forwarded to scope mem-
bers.

� upward routing: An outgoing notification is forwarded to superscopes.

A notification published by a simple component is initially handled in the
internal routing state. It may alternate between internal and upward states,
but once in downward routing it may not switch back. Adherence to this
sequence is mandatory to not break the bipartite nature of delivery paths,
that is, notifications are always first sent up in the scope graph before they
solely travel down against the edges of the graph. Internal routing is expressly
distinguished to facilitate the respective transmission policy, cf. Sect. 6.7.4.

The Algorithm

Figures 6.25 and 6.26 illustrate the algorithm, which basically extends the
plain Rebeca algorithm of flat publish/subscribe routing and is executed in
each broker B. The main control loop main loop is triggered whenever new
data is appended to the receiving queue, which may either be due to incoming
network traffic or via cross-scope traffic. The expected pair (n, l) contains the
notification to be forwarded and a link from which it was received. The latter

220 6 Scoping

procedure main_loop

loop

// the queue is fed from network links

4 (n, l) = get_next (recvQ)
scoped_routing(n, l)

end

end

9 procedure scoped_routing (n, l)
Input n: notification

l: source link

s := get state(n)
S := scope(n)

14

--- internal routing

D := destinations(n, remote components(RTS
B))

foreach (n′, l′) ∈ D
if l �= l′ then send (n′, l′)

19 end

--- downward routing

D := destinations(n, subscopes(RTS
B))

cross_scope(S, D, “downward′′)
24

--- upward routing

if not s = “downward′′ then

D := destinations(n, superscopes(RTS
B))

cross_scope(S, D, “upward′′)
29 fi

end

Fig. 6.25. Overall routing algorithm

may be either a network link or a local routing table, i.e., a routing destination
in the enhanced routing tables.

The procedure scoped routing determines the next destinations of a no-
tification currently visible in a scope S. It interprets the current routing state
and accordingly queries different parts of the routing table RTS

B . The function
subscopes(RTS

B) returns a routing table that contains all entries that point to
a locally stored routing table of a subscope of S. Similarly, superscopes(RTS

B)
contains entries of local superscope routing tables. Conversely, remote com-
ponents(RTS

B) returns the remaining entries, which are reachable via network
connections. In the case of RTS

B1
of Fig. 6.23, the three functions return en-

tries of {}, {RTT
B1

, RTU
B1

}, and {c1, B2}, respectively. First, eligible destinations
within the considered scope and then the locally available routing tables of

6.7 Implementation Strategies for Scoping 221

function destinations (n, T)
Input n: notification

T: routing table

Output D: list of notification-destination pairs

5 foreach (I, d) ∈ T
n′ := I(n)
if n′ �= ε then

D := D ∪ (n′, d)
fi

10 end

end

Fig. 6.26. The näıve matching algorithm with mappings

subscopes are determined; both must be done for all routing states. A dis-
tinction of states is at this point only necessary when transmission policies
are applied, cf. Sect. 6.7.4. Last, the upward direction is examined to find
all locally available routing tables of eligible superscopes, which is only done
if routing is not in downward state. Taken together, these steps follow the
default delivery and publishing policies of Sect. 6.4.1 that describe visibility
in the scope graph.

The above procedures rely on the function destinations to determine all
eligible destinations in the specified routing table. The näıve matching algo-
rithm, extended with mappings, is given in Fig. 6.26 for illustrative purposes.
It returns pairs of destinations and notifications to send there, allowing for a
seamless integration of mappings in the routing decision. Of course, in practice
more efficient matching algorithms, e.g., [133, 404], and a more sophisticated
handling of notification copies may be applied.

Crossing Scopes

The scoped routing algorithm relies on cross scope to forward a notification
between scopes (Fig. 6.27). It is responsible for relaying the current notifica-
tion to other routing tables stored in the same broker. In fact, an underlying
assumption is that scope transitions take place only within a broker. Routing
tables of a super- and subscope pair S� T must be collocated at the same
broker to enable interscope routing. In the above example B1 is a scope broker
of all scopes and may route between S, T , and U , whereas B2 and B4 can
route between S and T only.

cross scope takes a list D of pairs of eligible destination scopes, whose
interfaces match, and notifications that shall be sent there. In this way, the
current notification may be forwarded in different representations. With the
help of the reference to the source component (get source(n)) the algorithm
prevents notifications from being sent back along the scope graph edge they

222 6 Scoping

procedure cross_scope (S,D, s)
--- forward all notifications to next routing tables

Input S: current scope

D: list of notification-routing table pairs

s: routing state

4

foreach (n, RTS′
B) ∈ D

if get_source(n) �= S′ then

set_source(n, S)
set_scope(n, S′)

9 set_state(n, s)

put_in_front(recvQ, (n, RTS
B))

fi

end

end

Fig. 6.27. Interscope forwarding

were received from. This does not preclude duplicates because of alternative
paths in the scope graph, but it rules out erroneous duplication because of
repeated processing, at least in one broker. How to prevent this repetition in
different brokers is detailed below.

The procedure sets the source component to the current scope and the
intended destination as new current scope and then puts the relayed notifi-
cation into the incoming queue recvQ. This eventually triggers the main loop
and starts routing of n in the destination scope. The routing state recorded
in each notification is updated according to the specified parameter s that is
supplied by the main scoped routing algorithm.

Crossing at Different Locations

Although interscope routing is not possible at arbitrary brokers, there still may
be multiple brokers where two scopes S� T coincide. And thus a notification
might cross a scope boundary repetitively at different brokers, duplicating
notifications even along a single edge of the scope graph. Furthermore, security
considerations or the implementation of advanced ordering schemes might
necessitate a designated broker that bridges all traffic between the respective
scopes. In the previous example, a notification published by c1 is distributed
in its scope S and may enter superscope T at B1, B2, or B4.

Three choices for placing interscope routing are distinguished according
to the following criteria. First, are the scope-crossing functions applied at
only one broker or at several different brokers? Second, if only at one, is it
a designated gateway broker or an arbitrary broker that conveys the traffic
between the respective two scopes? The following alternatives are available:

6.7 Implementation Strategies for Scoping 223

1. Transition at designated central gateway: All interscope traffic of a scope
S is handled by a single gateway broker Bi of that scope. Only at this
gateway the routing table RTS

Bi
contains an entry pointing to sub- and

superscopes.
2. Transition anywhere, but only once: Interscope traffic is transfered into

its destination scope at the first possible broker, and nowhere else.

The first approach of having a designated gateway is the simplest solution.
It instantiates the respective scope graph edge at a single point in the broker
network. Only at this gateway broker a routing entry for the specific super-
scope is stored, say (oÎT

S , RTT
B1

) as part of RTS
B1

if B1 is the gateway broker
of S � T . All other scope brokers of S register an entry oÎT

S that points
toward this gateway broker, e.g., (oÎT

S , B2) is stored in B4. This is necessary
to get published notifications matching the output interface forwarded to the
gateway broker. Within T all routing table entries pointing to the subscope
S are similarly adapted to direct downward traffic to B1 as well. Each gate-
way broker links a specific pair of scopes, but generally system engineers may
decide to group all gateway brokers at one network node, to group them for
each scope, or to place all gateways independently.

A drawback of this strict separation of inter- and intrascope routing is
wasted network bandwidth. Consider c4 and c6 connected to broker B4 in the
previous example. Notifications from c4 to c6 are routed through broker B1 to
enter T there and go back to B4 again. The adequate placement of gateway
functionality has a major influence on network utilization. On the other hand,
the centralized gateway offers full control of the incoming and outgoing traffic
at a designated broker. This allows trusted software modules to be employed
for cross-scope communication at a single trusted broker, for example, to
authenticate all outgoing notifications or to link separate security domains
without disclosing other scope brokers. The implementation of transmission
policies is simplified, too, as pointed out in the next subsection. In general,
if the placement of scope brokers corresponds to the physical layout of the
underlying network, gateway brokers may also represent the physical gateway
between different networks hosting the adjacent scopes.

The second approach allows notifications to cross-scope boundaries be-
tween two two scopes S � T at the first possible broker that sustains both
scopes. When c1 publishes n, it is forwarded into S, T , and U at B1, assum-
ing matching interfaces, of course. An appropriate countermeasure must be
provided to prohibit repeated scope transitions in B2 and B4. This is achieved
by testing whether the destination scope T was already seen in the last broker
from which n is received, in which case the transition has already happened
in a previous broker. Notification forwarding in cross scope is denied if an
entry in RTT

B exists that points toward link(n). In the example, B2 has stored
an entry (iIT

c2
, B1) in RTT

B2
and does not forward n into T again.

Unfortunately, so far each scope transition generates a new notification
and the transition at the earliest encountered broker leads to messages being

224 6 Scoping

sent on the network that differ only in the annotated current scope they are
visible in. In the example, two messages are sent to B2 and B4, one visible in
S and one in T . A possible improvement is a combined delivery to all eligible
superscopes, which are identified by a list of scopes annotated on the notifi-
cation instead of just one identifier. The multiplicity of messages is replaced
by a list of scopes, at least as long as no mappings transform the notifica-
tion. The routing decision is evaluated as before, only that scoped routing
is called multiple times to fill the list of next-hop destinations. At each broker,
the available routing tables are checked, and whenever additional scopes are
detected and entered the list of visible scopes is updated. In the example,
a notification forwarded from S to T is annotated with both scopes and is
transmitted only once between B1, B2 and B4.

Transmission Policies

The distinguished routing states directly correspond to the delivery, internal
delivery, and publishing policy. The policies are encoded as part of the en-
hanced routing tables, even if they include general mappings in the routing
decision. As discussed in Sect. 6.5, the policies operate on sets of notifications
and must be evaluated after the eligible destinations are determined by the
matching algorithm in destinations.

The three policies can be inserted into the three parts of the sketched
scoped routing algorithm. Internal routing is refined by evaluating

D := idpS(D)

on the set of eligible consumers before it is processed in the foreach loop.
Delivery and publishing policy are intended to be applied at scope boundaries,
and so they are evaluated in cross scope,

D := ppS(D)

for upward routing and
D := dpS(D)

for downward routing, again just before sending the notifications in the foreach
loop.

Scope Multicast

So far, intrascope routing has stuck to strict routing where notifications are
forwarded only if a matching subscription is available. This prevents notifi-
cations from being always sent to all scope brokers of a scope, but induces
multiple point-to-point messages and repeated routing decisions. An alterna-
tive strategy for routing in a scope S is to send all notifications to all of its
scope brokers irrespective of any subscriptions. In a second step, the so-called

6.8 Combining Different Implementations 225

fan-out of the broker network to the consumers is implemented via point-to-
point communication. The routing tables of S are evaluated in every scope
broker of S and each matching and locally connected consumer is notified
separately.

If implemented as part of the broker implementation, an application layer
multicast scheme is established within the broker network. This approach does
not avoid multiple point-to-point messages between the scope brokers, but is
readily applicable in most networks. On the other hand, IP multicast offers
an established, well-known facility to speed up communication to a group
of receivers. The original decision of using point-to-point communication in
the broker topology is partially inspired by the assumption that the sets of
consumers are rather volatile and vary frequently. A multicast solution that
directly communicates to consumers requires frequent group changes, and
the explicit control of individual delivery is lost. However, IP multicast is a
convenient technique to connect scope brokers. The broker topology can be
supposed to change less frequently than the consumers and thus does not
overwhelm multicast group management. So, intrascope routing is reduced to
a notification being conveyed to all scope brokers with one multicast datagram
before it is explicitly directed to any matching consumers. This approach
combines multicast efficiency with the full control of notification delivery.

Evaluation

The integrated routing architecture is possibly the most generic scope ar-
chitecture. It combines the efficiency of a distributed solution, incorporates
multicast delivery, and still offers the flexibility to control the hop of noti-
fication delivery to consumers. It extends the known routing tables and can
build on various existing routing protocols, such as covering- or merging-based
routing provided by Rebeca and other notification services. Scoping is here
offered as a service of the event infrastructure. The layout of the publish/
subscribe network is independent from the actual application structure given
by the scope graph.

On the other hand, the option to connect scope members to arbitrary
brokers may increase network utilization, and the dispersion of components
and traffic may increase the complexity of the system. But this is essentially
always the case for distributed solutions.

6.8 Combining Different Implementations

The preceding discussion assumed the same type of architecture for all scopes
in the system, which is, obviously, a severe limitation of potential application
domains. In fact, one of the primary benefits of the scoping concept is its
ability to facilitate the customization of the infrastructure. Once groups of
components are identified, their scopes can be based on those architectures

226 6 Scoping

T

S

B B

c1 c2

S1 S2

T

A

c1 c2

A A

A

Fig. 6.28. Duplicate scopes to separate QoS requirements

that fit their respective needs best. The special requirements of their inter-
action are addressed by employing appropriate implementations of scoped
notification dissemination. But yet, the different implementations must be
seamlessly integrated.

6.8.1 Architectures and Scope Graphs

In the first place, scopes model application structure. But they are also a
tool for determining notification semantics within the application structure.
Different types of notifications may demand different quality of service (QoS)
even within a specific scope. For example, consider noncritical timer informa-
tion sent in bulk (type A in Fig. 6.28) and personnel record updates (type B)
that are supposed to be encrypted and delivered to authenticated consumers
only. While both are consumed in the same part of the application, i.e., in
the same scope, these two data types obviously ask for different architectures
and communication media that facilitate scalable delivery of the former and
secured delivery of the latter.

In principle, several different communication media might be used in one
scope to facilitate different QoS. Alternatively, a scope with complex semantics
is duplicated in Fig. 6.28, and each instance is tailored for a different kind
of QoS supported. The interfaces are split so that the same notifications are
forwarded into T as before. Publishing policies and imposed interfaces assigned
to c1 and c2 ensure that the traffic within S1 and S2 is separated and directed
to the scopes that offer the necessary quality of service. In the above example,
the timer notifications would be distributed via scope S1 operating on top of
a scalable messaging system, and S2 would employ encrypted point-to-point
connections to meet the security requirements of type B. The edges (c1, S2)
and/or (c2, S1) are necessary if the c1 and c2 shall get the same notifications
as before, but additional interfaces are necessary to prevent messages from
leaking with wrong QoS.

Instead of dealing with arbitrary combinations of communication media,
dissemination semantics, and scopes, the following assumes a specific scope
architecture per scope. For implementation purposes, bridging takes place
between connected subgraphs of the graph of scopes that share a common

6.8 Combining Different Implementations 227

architecture. However, to simplify the discussion, only pairs of scopes and the
bridging in between are investigated next.

6.8.2 Bridging Architectures

Combining different scope architectures requires a gateway between the dif-
ferent implementations of two scopes S�T . The simple components of a scope
have as part of their local event brokers an architecture-specific implementa-
tion for accessing the underlying communication medium (cf. Fig. 6.17). The
gateway relies on two local event brokers to bridge the respective implemen-
tations of the architectures. Gateway functions are assigned to the considered
subscope, S, and enforce the input and output interfaces of S, its publishing
and delivery policies, and any mapping applied on the edge (S, T).

Collapsed Filters

The collapsed filters architecture does not instantiate administrative com-
ponents and so gateway functions must reside in all members of the scope.
Because of the required duplication of code in simple components, an extra
gateway component is preferable. Such a component would not interfere with
the internal delivery of notifications. It is similar to the mapping components
used in Sect. 6.4.2 to sketch the feasibility of scoped systems. It acts as an
additional producer/consumer in scope S and manually implements the edge
to superscope T , being a regular member there as well.

The distinguished scope destination and visibility roots approaches to an-
notate notifications and extend subscriptions are hardly different regarding
the implementation of the gateway. In both cases a gateway component is
instantiated for each bridged scope–superscope pair or for all bridged super-
scopes collectively. Only their subscriptions must reflect the differences in the
lists of annotated scope identifiers: the former lists all reachable scopes while
the latter lists only visibility roots on upward paths. Upon receiving a notifi-
cation, the gateway component tests which of the edges it controls is eligible,
applies the assigned output interfaces and publishing policies, and forwards
the data, if appropriate.

In the same way, the gateway registers in the superscope(s) and, upon
receiving a notification from there, evaluates the assigned input interfaces
and delivery policies. Since delivery policies need cooperative filtering in all
consumers, the gateway’s functionality depends on the filtering supported in
the present implementation of the collapsed scope graph.

Scope Address

In the scope address architecture there are administrative components avail-
able to execute gateway functions. Cross-scope traffic is matched against the
interfaces, while publishing and delivery policies are applied as before. The
same implementation can be used, only a second local event broker to bridge
the different architecture’s implementations must be present.

228 6 Scoping

Broker Scopes

Broker scopes are administrative components that represent a specific scope
and explicitly control all internal and external traffic. Thus, they may directly
implement any gateway to other architectures.

Integrated Routing

Although no individual representatives of scopes exist, scopes and transitions
between scopes are explicitly recorded as routing tables with entries referenc-
ing other routing tables. Instead of pointing to other tables, the entries may
refer to a second local event broker to access another’s scope architecture.
Interface and transmission policies are handled as before—they are always
explicitly applied. The discussion about locating cross-scope transitions (cf.
Sect. 6.7.4) holds for gateways as well.

6.8.3 Integration With Other Notification Services

The gateway of a scope may not only bridge different scope architectures,
but may also facilitate coupling of a scoped system with other notification
services. The gateway functions simply have to implement another service’s
API to act as a regular producer/consumer within that service. The traf-
fic flowing between the scoped and the external system is controlled by the
gateway functions, i.e., interfaces, mappings, and transmission policies. By
creating an “outside” scope and a gateway that connects other communica-
tion services, external data is incorporated into the scoped system without
impairing visibility control. On the other hand, this gateway retains the com-
ponent characteristic of scopes with respect to the outside system. The flow
of notifications leaving the scope follows the definition of the scope graph.

Of similar importance is the coupling of scoped and unscoped applica-
tions, which are likely to coexist. Consider the integrated routing approach,
for instance, and two applications, one scoped and one unscoped. The scoped
routing tables are used in addition to a traditional implementation, which is
nothing more than a further routing table not connected to the scope rout-
ing tables. All scoped clients are assigned to some RTSi

Bi
, and the nonscoped

(“legacy”) clients are still maintained in separate old-style routing tables RTBi
.

In fact, the overlay of all RTBi
constitutes a default scope to which every newly

created simple component may be assigned. In this way, scoped and nonscoped
clients can interact in a controlled way.

6.9 Further Reading

This chapter has introduced the concept of scoping in event-based systems.
It offers a module construct; it is an extension point for the integration of

6.9 Further Reading 229

different communication techniques, for handling quality of service, security,
and data heterogeneity; and it facilitates the management of event-based sys-
tems. Accordingly, related work is very broad and comes from many areas of
computer science [135].

The Common Object Request Broker Architecture (Corba) provides a
number of mechanisms to organize and structure distributed systems [283].
It includes the Corba Notification Service [287]. Event management do-
mains [282] support the federation of multiple notification channels in arbi-
trary topologies. However, applications have to select their channels and thus
move information about application structure into the components—there is
no support for an administrator to orchestrate channels and components. A
generic solution to avoid static configurations is reflective middleware [96, 223].

The enterprise edition of Java (J2EE, [365]) specifies an execution environ-
ment that contains a component model and a number of standardized services,
including a notification service (JMS), which is described in Sect. 9.1.3. The
standard offers the plain publish/subscribe API (plus transaction support),
but not the engineering features of scopes. Many JMS implementations exist,
some offer extensions like topic hierarchies, e.g., [97]. In terms of managing
application components, Java Management Extensions (JMX) defines a stan-
dardized Java way to management and monitoring [363].

If a database management system such as Oracle Streams Advanced Queu-
ing (AQ), cf. Sect. 9.2.3, transports our notifications, we can exploit all the
features offered by a database, like transactions, rules, consistency constraints,
logging, high availability, authentication, access control, etc., and apply them
to the publish/subscribe communication as well [172]. The focus is then more
on advanced QoS features than on lean implementation.

Many domain-specific implementations of publish/subscribe run into the
engineering issues addressed by scopes. Eder and Panagos [118] pointed out
the problems that arise from missing structures in workflow systems. They
connected workflow engines from multiple sites with the READY notifica-
tion service [185]. The service introduced event zones to cluster components
based on (either) logical, administrative, or geographical boundaries. Bound-
ary brokers connect zones and control the communication between them. A
component can belong to only one zone, which limits the structuring capabil-
ities and prohibits composition and mixing of aspects [147, 188].

Wireless sensor networks (WSNs, [95]) also exploit eventing, and the need
for structuring mechanisms was identified before, cf. [350, 397].

The field of software architecture is concerned with the overall organi-
zation of a software system [165]. Architecture definition languages (ADLs)
are employed to describe the high-level conceptual architecture consisting of
components, connectors, and specific configurations [256] of these. Typical,
well-understood arrangements of connectors and configurations are identified
as architectural styles [3], the patterns of software architecture, and events and
implicit invocation are among them. Luckham [242] presented the RAPIDE
language family. It includes event processing agents to encapsulate event pro-

230 6 Scoping

cessing rules behind input and output interfaces. The architecture definition
language can be used to arrange a number of these agents, similar to scope
graphs.

Sullivan and Notkin introduced mediators as a design approach that ex-
plicitly instantiates and expresses integration relationships and separates them
from component function [356]. In a less general approach, Evans and Dick-
man defined zones to support partial system evolution [130]. Barrett et al. [31]
proposed an event-based integration (EBI) framework that also covers scope
features like transmission policies, mappings, and hierarchical grouping.

As event services are the basis for application integration and evolution,
they cannot be expected to run in homogeneous environments. Heterogene-
ity issues can be handled in traditional request/reply systems, but they are
rarely considered in event systems [32]. Database research contributes to the
necessary syntactic and semantic data mappings [54, 80].

The field of coordination theory investigates techniques for managing the
dependencies between a set of active components [246]. It differentiates com-
putation from coordination [295] and localizes interaction in coordination me-
dia [64, 78]. Scopes event-based communication directly corresponds to this
viewpoint.

A key point of scoping is that it does not imply a specific implementation
per se. Depending on the intended semantics, adaptability, communication
efficiency, etc., alternative implementations are applicable. The system engi-
neer can incorporate existing work on group communication [319]. A wide
variety of work exists in this area that supports nested groups [42] and re-
liable communication [43, 213]. Peer-to-peer systems are another candidate
[311, 331, 374].

On lower layers, IP multicast is an obvious implementation candidate.
Deering and Cheriton [106] introduce multicast scope control with the help
of time-to-live fields (TTL). Administratively scoped IP multicast exploits hi-
erarchical administrative boundaries [259]. Multicast scopes bundle network
nodes, but do not support communication between scopes and require static
configuration within the IP network routers. Interestingly, such multicast
scopes allow us to implement publish/subscribe on IP multicast [26, 291, 357]
only within restricted parts of the scope graph.

