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Content-Based Models and Matching

3.1 Content-Based Data and Filter Models

This section discusses some important content-based data models in conjunc-
tion with corresponding filter models. Informally, a data model defines how
the content of notifications is structured, while a filter model defines how sub-
scriptions can be specified, i.e., how notifications can be selected by applying
filters that evaluate predicates over the content of notifications. The filter
model always depends on the underlying data model, and there can be more
than one filter model for a given data model. The data/filter model has to be
chosen carefully because it has a large impact on the expressiveness and the
scalability of a content-based notification service. In the following, we discuss
tuples, structured records, semistructured records, and objects.

3.1.1 Tuples

In tuple-oriented models a notification is a tuple, i.e., an ordered set of
attributes. All approaches using tuples deploy some sort of templates as
subscription mechanisms. Similarly, to a query-by-example mask, a tem-
plate specifies matching notifications by a partial tuple which can con-
tain wildcards. The attributes in the notification are matched to the at-
tributes in the template according to their position. For example, the notifi-
cation (StockQuote, “Foo Inc.”, 45) is matched by the subscription template
(StockQuote, “Foo Inc.”, ∗). “Matching by position” is inflexible because at-
tributes cannot be optional. Tuples in conjunction with templates were first
proposed by Gelernter in work onLinda Tuple spaces [174], which use typed
attributes. The original version of Linda, however, did not support a subscrip-
tion mechanism, but newer approaches based on Tuple spaces, e.g., JavaS-
paces [366], do. Also, some notification services are built upon tuples: JEDI
models a notification as a tuple of strings [91] in which the first string cor-
responds to the notification name, while the others are normal attributes.
JEDI supports the equality and the prefix operator for matching. Bates et
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al. [32] define notifications as instances of classes. An instance consists of a
tuple of typed attributes derived from a class definition. Here, a template
either specifies the exact value of an attribute or it does not care about the
value. Concluding, tuples with templates provide a simple model that is not
flexible enough because attributes of notifications and templates are matched
to each other according to their position. This disadvantage is diminished by
record-oriented models which use “matching by attribute names.” However,
“matching by position” is more efficient.

3.1.2 Structured Records

In this section structured records are discussed in detail. In a record-oriented
model a notification consists of a named set of attributes. Record-oriented
models can be divided into two categories, which are structured records and
semistructured records, respectively. Roughly speaking, the models can be dis-
tinguished by the fact that in structured records attribute names are unique,
while in the semistructured models several attributes with the same name can
exist. In this section, structured records are discussed; semistructured records
are discussed in Sect. 3.1.3.

Many systems model notifications similarly to structured records consist-
ing of a set of name/value pairs called attributes. Examples are Siena [65],
Gryphon [6, 26], Rebeca [136], JMS [364], and the Corba Notification Ser-
vice [279]. In this model filters address attributes by their unique names and
impose constraints on the values of the respective attributes. In most models
a constraint is assumed to evaluate to false if the addressed attribute is not
contained in the notification. Therefore, each constraint implicitly defines an
existential quantifier over the notification. Besides flat records in which values
are atomic types, hierarchical records in which attributes may be nested can
also be supported easily by using a dotted naming scheme (e.g., Position .x).

Some systems (e.g., Siena) restrict constraints to depend on a single at-
tribute (e.g., {x = 1}). This class of constraints is called attribute filters. Other
systems, such as Elvin, allow constraints to evaluate multiple attributes which
are combined by operators (e.g., {x+y = 5}). In general, multiple constraints
can be combined to form filters by Boolean operators (e.g., {y < 3∧ x = 4}).
Siena and Rebeca restrict filters to be conjunctions of attribute filters. On
one hand, this restriction reduces the expressiveness of the filter model, but
on the other hand it enables routing optimizations like covering (cf. Chap. 4)
to be applied efficiently. The limitation is also not as serious as it seems first.
For example, a filter that is defined by an arbitrary Boolean expression can
always be converted to and treated as a collection of conjunctive filters.

Although records and tuples seem to be similar at a first glance, records
are clearly more powerful because they allow for optional attributes in the
notifications. They also avoid unnecessary “don’t care” constraints in the
templates, and enable the easy addition of new attributes without affecting
existing filters.
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Data Model

A notification is a message that contains information about an event that
has occurred. Formally, a notification n is a nonempty set of attributes
{a1, . . . , an}, where each ai is a name/value pair (ni, Vi) with name ni and
value vi. It is assumed that names are unique, i.e., i �= j ⇒ ni �= nj , and that
there exists a function that uniquely maps each ni to a type Tj that is the
type of the corresponding value vi.

In the following we distinguish between simple values that are a single
element of the domain of Tj, i.e., vi ∈ dom(Tj), and multi values that are
a finite subset of the domain, i.e., vi ⊆ dom(Tj). An example of a simple
notification is {(type,StockQuote), (name, “Infineon”), (price , 45.0)}.

Filter Model

A filter F is a stateless Boolean function that is applied to a notification,
i.e., F (n) → {true, false}. A notification matches F if F (n) evaluates to true.
Consequently, the set of matching notifications N(F ) is defined as {n | F (n) =
true}. Two filters F1 and F2 are identical, written F1 ≡ F2, iff N(F1) = N(F2).
Moreover, they are overlapping, denoted by F1 � F2, iff N(F1) ∩ N(F2) �= ∅.
Otherwise they are disjoint, denoted by F1 � � F2.

A filter is usually given as a Boolean expression that consists of predicates
that are combined by Boolean operators (e.g., and , or , not). A filter consisting
of a single atomic predicate is a simple filter or constraint. Filters that are
derived from simple filters by combining them with Boolean operators are
compound filters. A compound filter that is a conjunction of simple filters
is called a conjunctive filter. In the model proposed filters are restricted to
be conjunctive filters. It is sufficient to consider conjunctive filters because a
compound filter can always be broken up into a set of conjunctive filters that
are interpreted disjunctively and can be handled independently.

An attribute filter is a simple filter that imposes a constraint on the value
of a single attribute (e.g., {name = “Foo Inc.”}). It is defined as a triple
Ai = (ni, Opi, Ci) , where ni is an attribute name, Opi is a test operator
and Ci is a set of constants that may be empty. The name ni determines to
which attribute the constraint applies. If the notification does not contain an
attribute with name ni then Ai evaluates to false . Therefore, each constraint
implicitly defines an existential quantifier over the notification. Otherwise, the
operator Opi is evaluated using the value of the addressed attribute and the
specified set of constants Ci. It is assumed that the types of operands are
compatible with the used operator. The outcome of Ai is defined as the result
of Opi that evaluates either to true or false. Furthermore, an attribute filter is
provided that simply checks whether a given attribute is contained in n. For
the sake of simplicity the more readable notation {price > 10} is used instead
of {(price, >, {10})}. In contrast to most other work (e.g., )Siena, constraints
that depend on more than one constant are considered in this chapter. This
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enables more operators and enhances the expressiveness of the filtering model
and can be done without affecting scalability.

By LA(Ai) ⊆ dom(Tk) the set of all values is denoted that cause an
attribute filter to match an attribute, i.e., {vi | Opi(vi, Ci) = true}. It is
assumed that LA(Ai) �= ∅. An attribute filter A1 covers an attribute fil-
ter A2, written A1 � A2, iff n1 = n2 ∧ LA(A1) ⊇ LA(A2). For example,
{price > 10} covers {price ∈ [20, 30]}. A1 and A2 are identical, denoted by
A1 ≡ A2, iff n1 = n2 ∧ LA(A1) = LA(A2). A1 and A2 are overlapping iff
n1 = n2 ∧ LA(A1) ∩ LA(A2) �= ∅, denoted by A1 � A2. Otherwise they are
disjoint, denoted by A1 � � A2. For example, {price > 10} and {price < 20}
are overlapping, while {price < 10} and {price > 20} are disjoint.

In the described model a filter is defined as a conjunction of attribute fil-
ters, i.e., F = A1∧ . . .∧An. To enable efficient evaluation of routing optimiza-
tions like covering and merging, at most one attribute filter for each attribute
is allowed. A notification n matches a filter F iff it satisfies all attribute fil-
ters of F . Moreover, a filter with an empty set of attribute filters matches any
notification. An example for a conjunctive filter consisting of attribute filters
is {(type = StockQuote), (name = “Foo Inc.”), (price /∈ [30, 40])}.

The limitation to at most one attribute filter for each attribute is not as
serious as it seems at first glance because the proposed model provides complex
data types as attribute values and an extensible set of constraints that can be
imposed. Moreover, it is often possible to merge several conjunctive constraints
imposed on a single attribute into a single constraint on the same attribute.
Especially suited for this kind of merging are constraints which are either
contradicting (if they are conjuncted) or can be replaced by a single constraint
of the same type. Such types of constraints and their corresponding attribute
filters are called conjunction-complete. For example, interval constraints and
constraints testing whether a point is in a given rectangle in a two-dimensional
plane are conjunction-complete. As an example, {x ∈ [3, 7] ∧ x ∈ [5, 8]} can
be substituted by {x ∈ [5, 7]}. If a constraint type is not conjunction-complete
it is often possible to substitute a set of such constraints by a single constraint
of a more general type. For example, a set of ordering constraints defined on
a totally ordered set (e.g., integer numbers) are either contradictory or can
be replaced by a single interval constraint. As an example, {x ≥ 3 ∧ x ≤ 5}
can be merged to {x ∈ [3, 5]}.

Subscriptions and advertisements are simply filters that are issued by con-
sumers and producers of notifications, respectively. There is no difference in
their model, and hence, subscriptions and advertisements are the exact dual
of each other. This is in contrast to Siena, where subscriptions and adver-
tisements are not exactly complementary, raising a number of problems.

Generic Constraints and Types

Earlier work dealing with content-based notification selection mechanisms of-
ten tightly integrated the constraints that can be put on values and the types
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of values supported by the matching and the routing algorithms [6, 26]. An ex-
ception is Siena, where matching and routing algorithms are separated from
constraints. However, Siena only supports a fixed set of constraints on some
predefined primitive types.

We propose to use a collection of abstract attribute filter classes. Each of
these classes offers a generic implementation of the methods needed by the
matching and the routing algorithms (e.g., a covering and a matching test)
and imposes a certain type of constraint on an attribute that can be used with
values of all types that implement the operators needed. The appropriate im-
plementation of the operators is called by the constraint class at runtime using
polymorphism. This enables new constraints and types to be defined and to
be supported without requiring changes to the routing and or to the matching
algorithms. Note that although an object-oriented approach is suggested, it
is not mandatory to use it.

For example, a constraint class can realize comparison constraints on to-
tally ordered sets. This class can be used to impose comparison constraints
on all kinds of ordered values (e.g., integer numbers). Consider a type “per-
son” that consists of first and second name, the date of birth, and the place
of birth. This type is easily supported by providing implementations for the
comparison operators which are called by the constraint class to provide the
covering and matching methods using polymorphism.

In the following subsections, some generic attribute constraints are pre-
sented that cover a wide range of practically relevant constraints, but more
important, they illustrate the feasibility of the approach. Of course, this col-
lection is not exhaustive, but other constraints can be integrated easily. For
example, intervals could be used as values. In this case the same operators as
for set constraints can be used because intervals are essentially sets. The in-
vestigation of a subset of regular expressions seems to be promising, too. Most
paragraphs also present a table that gives an overview of covering implication
dealing with the discussed type of constraint. The meaning of a single row in
the Tables 3.1 through 3.7 is: Given A1 and A2 as specified in column 1 and
2, A1 � A2 iff the condition in column 3 is satisfied. In order to test whether
a filter covers another, covering must hold for all attributes, as will be shown
later.

General Constraints

Two general constraints are considered that can be imposed on all attributes
regardless of the type of their value: exists(n) tests whether an attribute
with name n is contained in a given notification, i.e., whether ∃Ai. ni = n.
The exists constraint covers all other constraints that can be imposed on an
attribute.

Constraints on the Type of Notifications

Most work on notification services has a notion of types or classes of noti-
fications. Usually, the type of a notification is specified by a textual string
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that can be tested for equality and prefix. If a dot notation is used, a type
hierarchy with single inheritance can be supported, allowing for the automatic
propagation of interest in subclasses [32]. Unfortunately, multiple inheritance
cannot be supported by a dotted naming scheme. In contrast to that, a direct
support of notification types has a number of advantages. Such an approach
can enable multiple inheritance and achieve a better programming language
integration [120]. Moreover, type inclusion tests can be evaluated more effi-
ciently than the corresponding string operation (i.e., whether the string starts
with a given prefix) [388].

Consequently, a separate constraint that evaluates to true if n is an in-
stance of type T and false otherwise, written n instanceof T , is defined. A
constraint n instanceof T1 covers a constraint n instanceof T2 iff T1 is either
the same type or a supertype of T2 (Table 3.1). It is assumed that the set of
attributes that can be contained in a notification of type T is a superset of
the union of all attribute names of all supertypes of T .

Table 3.1. Covering among notification types

A1 A2 A1 � A2 iff

n instanceof T1 n instanceof T2 T1 = T2 ∨ T1 supertype of T2

Equality and Inequality Constraints on Simple Values

The simplest constraints that can be imposed on a value are tests for equality
and inequality. Covering implications among these tests can always be reduced
to a simple comparison of their respective constants (Table 3.2).

Table 3.2. Covering among (in)equality constraints on simple values

A1 A2 A1 � A2 iff

x = c1 x = c2 c1 = c2

x �= c1
x = c2 c1 �= c2

x �= c2 c1 = c2

Comparison Constraints on Simple Values

Another common class of constraints are comparisons on values for which
the domain and the comparison operators define a totally ordered set (e.g.,
integers with the usual comparison operators). Again, covering among these
tests can be reduced to a simple comparison of their respective constants.
Table 3.3 depicts covering implications of inequality and greater than; for
brevity the other comparison operators are omitted.
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Table 3.3. Covering among comparison constraint on simple values

A1 A2 A1 � A2 iff

x < c2 c1 ≥ c2

x ≤ c2 c1 > c2

x �= c1 x = c2 c1 �= c2

x ≥ c2 c1 < c2

x > c2 c1 ≤ c2

x = c2 c1 < c2

x > c1 x > c2 c1 ≤ c2

x ≥ c2 c1 < c2

Interval Constraints on Simple Values

Interval constraints test whether a value x is within a given interval I or not,
i.e., x ∈ I and x /∈ I, respectively, where I is a closed interval [c1, c2] with
c1 ≤ c2. Here, computing coverage involves two comparisons (Table 3.4).

Table 3.4. Covering among interval constraints on simple values

A1 A2 A1 � A2 iff

x ∈ I1 x ∈ I2 I1 ⊇ I2

x /∈ I1 x /∈ I2 I1 ⊆ I2

Constraints on Strings

Constraints on strings can be used to realize subjects. In addition to the
comparison operators based on the lexical order, a prefix, a substring, and a
postfix operator are defined. s hasPrefix S and s hasPostfix S mean that s
has the prefix and the postfix S, respectively. s containsSubstring S1 means
that s contains the substring S1. Computing coverage among them requires a
single test (Table 3.5).

Table 3.5. Covering among constraints on strings

A1 A2 A1 � A2 iff

s hasPrefix S1 s hasPrefix S2 S2 hasPrefix S1

s hasPostfix S1 s hasPostfix S2 S2 hasPostfix S1

s hasSubstring S1 s hasSubstring S2 S2 hasSubstring S1
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Set Constraints on Simple Values

Set constraints on simple values test whether or not a value is a member
of a given set. For computing coverage among two of these constraints, a
single set inclusion test is sufficient (Table 3.6). Its complexity depends on
the characteristics of the underlying set. Set constraints can be combined
with comparison constraints if the domain of the value is a totally ordered
set.

Table 3.6. Covering among set constraints on simple values

A1 A2 A1 � A2 iff

x ∈ M1 x ∈ M2 M1 ⊇ M2

x /∈ M1 x /∈ M2 M1 ⊆ M2

Set Constraints on Multi Values

The idea of multi values is to allow a value to be a set of elements. This enables
set-oriented operators which are defined on a multi value X = {v1, . . . , vn}.
For example, the following common operators can be defined:

X subset M ⇔ X ⊆ M

X superset M ⇔ X ⊇ M

X contains a1 ⇔ a1 ∈ X

X notcontains a1 ⇔ a1 /∈ X

X disjunct M ⇔ X ∩ M = ∅
X overlaps M ⇔ X ∩ M �= ∅

To determine covering with respect to these constraints either the evaluation
of a set inclusion test or of a set membership test is needed (Table 3.7).

Table 3.7. Covering among set constraints on multi values

A1 A2 A1 � A2 iff

X subset M1 X subset M2 M1 superset M2

X contains a1 X superset M2 a1 ∈ M2

X superset M1 X superset M2 M1 subset M2

X notContains a1 X disjunct M2 a1 ∈ M2

X disjunct M1 X disjunct M2 M1 subset M2

X overlaps M1 X overlaps M2 M1 superset M2
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Support for Routing Optimizations

For routing algorithm such as identity-based, covering-based, or merging-
based routing (cf. Chap. 4) as well as for enabling the use of advertisement,
some routing optimization must be efficiently computable.

Identity of Conjunctive Filters

In the following it is shown how identity of conjunctive filters can be reduced
to the respective attribute filters. An identity test among filters is necessary
to implement identity-based routing.

Lemma 3.1. Given two filters F1 = A1
1∧ . . .∧A1

n and F2 = A2
1∧ . . .∧A2

m that
are conjunctions of attribute filters, the following holds: the fact that F1 and
F2 contain the same number of attribute filters and that ∀A1

i ∃A2
j . A1

i ≡ A2
j

implies that F1 and F2 are identical.

Proof. The proof is rather trivial. A notification that matches F1 satisfies all
attribute filters A1

i . For each of these A1
i there is an identical A2

j . Hence, A2
j

is matched, too. As F1 and F2 contain the same number of attribute filters,
this implies that all attribute filters of F2 are matched, too. Therefore, F2 is
also matched. As the same argumentation can be applied to notifications that
match F2, this implies that F1 and F2 match identical sets of notifications,
i.e., they are identical. ��

It is necessary to restrict filters to contain at most one attribute filter
for each attribute in order to strengthen Lemma 3.1 to an equivalence. As a
simple example, {x > 5 ∧ x < 5} is identical to {x �= 5}, although neither
{x > 5} ≡ {x �= 5} nor {x < 5} ≡ {x �= 5}.
Lemma 3.2. Given two filters F1 = A1

1 ∧ . . . ∧ A1
n and F2 = A2

1 ∧ . . . ∧ A2
m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: F1 ≡ F2 implies ∀A1

i ∃A2
j . A1

i ≡ A2
j .

Proof. The proof is by contradiction. We assume that

1. F1 ≡ F2

2. ∀A1
i ∃A2

j . A1
i ≡ A2

j does not hold

and prove that this cannot hold.
The second assumption implies that there is an A1

i for which no identical
A2

j exists. This means that either no attribute filter with the same name is
contained in F2 or that L(A1

i ) �= L(A2
j). In the first case, a notification can be

constructed that does not contain the respective attribute and which matches
F2 but does not match F1. Hence, F1 and F2 cannot be identical and the first
assumption is violated. In the second case, a notification can be constructed,
where the value of the respective attribute is in L(A1

i ) but not in L(A2
j) if

L(A1
i ) ⊃ L(A2

j). This notification matches F1 but not F2. The other way
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around, a notification can be constructed, where the value of the respective
attribute is in L(A2

j ) but not in L(Aj
2) if L(A1

i ) ⊂ L(A2
j). This notification

matches F2 but not F1. At least one of these two cases needs to occur because
L(A1

i ) �= L(A2
j ). Hence, F1 and F2 cannot be identical and the first assumption

is violated. The above cases cover all possible cases. ��
Lemma 3.3. Given two filters F1 = A1

1 ∧ . . . ∧ A1
n and F2 = A2

1 ∧ . . . ∧ A2
m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: F1 ≡ F2 implies that F1 and F2 contain
the same number of attribute filters.

Proof. By Lemma 3.2 and the fact the identity relation among filters is sym-
metrical. ��
Corollary 3.1. Two filters F1 = A1

1 ∧ . . . ∧ A1
n and F2 = A2

1 ∧ . . . ∧ A2
m that

are conjunctions of attribute filters with at most one attribute filter for each
attribute are identical iff they contain the same number of attribute filters and
∀A1

i ∃A2
j . A1

i ≡ A2
j .

Proof. By Lemmas 3.1, 3.2, and 3.3. ��
The above corollary essentially states that two filters are identical iff they

constrain the same attributes and iff the attribute filters of each constrained
attribute are pairwise identical (Fig. 3.1).

F1 = {x ≥ 2} ∧ {y > 5}
| | |
≡ ≡ ≡
| | |

F2 = {x ≥ 2} ∧ {y > 5}

Fig. 3.1. Identity of filters consisting of attribute filters

Covering of Conjunctive Filters

In the following it is shown how covering of conjunctive filters can be reduced
to the respective attribute filters. A covering test among filters is necessary
to implement covering-based routing.

Lemma 3.4. Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters, the following holds: ∀i∃j. A1
i � A2

j

implies F1 � F2.
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Fig. 3.2. F1 � F2 although neither F 1
1 � F 1

2 nor F 1
1 � F 2

2 (two examples)

Proof. Assume ∀i∃j.A1
i � A2

j . Prove F1 � F2. If an arbitrary notification n is
matched by F2 then n satisfies all Aj

2. This fact together with the assumption
implies that n also satisfies all Ai

1. Therefore, n is matched by F1, too. Hence,
F1 � F2. ��
If several attribute filters can be imposed on the same attribute then ∀i∃j.A1

i �
A2

j is not a necessary condition for F1 � F2 (Fig. 3.2). For example, {x ∈ [5, 8]}
covers {x ∈ [4, 7] ∧ x ∈ [6, 9]}, although {x ∈ [5, 8]} covers neither {x ∈ [4, 7]
nor {x ∈ [6, 9]}. If conjunctive filters are restricted to have at most one at-
tribute filter for each attribute, then Lemma 3.4 can be strengthened to an
equivalence:

Lemma 3.5. Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: F1 � F2 implies ∀i∃j. A1

i � A2
j .

Proof. Assume ¬(∀i∃j. A1
i � A2

j ). Prove ¬(F1 � F2). A notification n is
constructed that matches F2 but not F1 to prove that F1 does not cover F2.
The assumption implies that there is at least one A1

k that does not cover any
A2

j . If there exists an A2
l that constrains the same attribute as such an A1

k

then choose for this attribute a value that matches A2
l but not A1

k. Such a
value exists because LA(A1

k) �= ∅ and A1
k �� A2

l . Add name/value pairs for all
other attributes that are constrained in F2 such that they are matched by the
appropriate attribute filters of F2. The constructed notification matches F2

but not F1. Therefore, F1 does not cover F2. ��
Corollary 3.2. Given two filters F1 = A1

1 ∧ . . .∧A1
n and F2 = A2

1 ∧ . . .∧A2
m

that are conjunctions of attribute filters with at most one attribute filter per
attribute, the following holds: F1 � F2 is equivalent to ∀i∃j. A1

i � A2
j .

Proof. By Lemmas 3.4 and 3.5. ��
The above corollary essentially states that a filter F1 covers a filter F2 iff

for each attribute filter in F1 there is an attribute filter in F2 that is covered
by the former (Fig. 3.3).
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F1 = {x ≥ 2} ∧ {y > 5}
| | |
� � �
| | |

F2 = {x = 4} ∧ {y = 7} ∧ {z ∈ [3, 5]}

Fig. 3.3. Covering of filters consisting of attribute filters

Overlapping of Conjunctive Filters

In the following it is shown how overlapping of conjunctive filters can be
reduced to the respective attribute filters. An overlapping test among filters
is necessary to use advertisements for routing optimizations.

Lemma 3.6. Given two filters F1 = A1
1∧ . . .∧A1

n and F2 = A2
1∧ . . .∧A2

m that
are conjunctions of attribute filters, ∃A1

i , A
2
j .

(
n1

i = n2
j ∧ LA(A1

i )∩LA(A2
j ) =

∅) implies that F1 and F2 are disjoint.

Proof. Proof: Suppose that F1 and F2 contain attribute filters A1
i and A2

j such
that

(
n1

i = n2
j ∧ LA(A1

i )∩LA(A2
j ) = ∅). This means that both filters require

the existence of an attribute with name n1
i and that the value of this attribute

must match LA(A1
i ) in order to make a notification match F1 and LA(A2

j) in
order to match F2. As LA(A1

i ) and are LA(A2
j ) disjoint, this implies that a

given notification can be matched either by F1 or by F2. Hence, F1 and F2

are disjoint. ��
It is necessary to restrict filters to contain at most one attribute filter for

each attribute in order to strengthen Lemma 3.6 to an equivalence. As a simple
example, {x ∈ {3, 5} ∧ x ∈ {4, 5}} is disjoint with {x ∈ {3, 5} ∧ x ∈ {3, 4}}
although there are no disjoint attribute filters.

Lemma 3.7. Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the fact that F1 and F2 are disjoint implies that ∃A1

i , A
2
j .

(
n1

i =
n2

j ∧ LA(A1
i ) ∩ LA(A2

j ) = ∅).
Proof. Proof: The proof is by contradiction. Suppose that F1 and F2 are
disjoint and that there are no A1

i , A
2
j such that n1

i = n2
j ∧ LA(A1

i )∩LA(A2
j ) =

∅. We construct a notification that matches F1 and F2 to imply a contradiction
in following way: For each attribute that is constrained in F1 or F2 add an
attribute whose value satisfies the attribute filters contained in F1 and F2

regarding this attribute. This value must exist because there are no A1
i , A

2
j

such that n1
i = n2

j ∧ LA(A1
i )∩LA(A2

j) = ∅. Hence, the constructed notification
matches F1 and F2, and therefore F1 and F2 are not disjoint. ��
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Corollary 3.3. Two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m that
are conjunctions of attribute filters with at most one attribute filter for each
attribute are disjoint, i.e., not overlapping, iff ∃A1

i , A
2
j .

(
n1

i = n2
j ∧ LA(A1

i )∩
LA(A2

j) = ∅).
Proof. By Lemmas 3.6 and 3.7. ��

F1 = {x ≥ 2} ∧ {y > 5}
| | |
� � 
| | |

F2 = {x < 1} ∧ {y < 7}

Fig. 3.4. Disjoint filters consisting of attribute filters

F1 = {x ≥ 2} ∧ {y > 5}
| | |
  
| | |

F2 = {x < 5} ∧ {y < 7}

Fig. 3.5. Overlapping filters consisting of attribute filters

The above corollary essentially states that two filters are disjoint iff for an
attribute that is constrained in both filters the corresponding attribute filters
are disjoint (Fig. 3.4). Hence, two filters are overlapping iff no such attribute
filters exist (Fig. 3.5).

Merging of Conjunctive Filters

Merging-based routing algorithms use abstract merging operations. In this
section merging of conjunctive filters is discussed. The aim of filter merging is
to determine a filter that is a merger of a set of filters. Merging of filters can
be used to drastically reduce the number of subscriptions and advertisements
that have to be stored by the brokers.

Perfect Merging

A set of conjunctive filters with at most one attribute filter for each attribute
can be perfectly merged into a single conjunctive filter if, for all except a
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single attribute, their corresponding attribute filters are identical and if the
attribute filters of the distinguishing attribute can be merged into a single
attribute filter. For example, the two filters F1 = {x = 5 ∧ y ∈ {2, 3}} and
F2 = {x = 5 ∧ y ∈ {4, 5}} can be merged to F = {x = 5 ∧ y ∈ {2, 3, 4, 5}}.
Moreover, a set of attribute filters imposed on the same attribute with name
n can be merged to an exists(n) test if at least one of them is satisfied by
any value. Note that an existence test is equivalent to no constraint if the
attribute is mandatory for the corresponding type of notification.

An algorithm that determines the possibly empty set of filters which are
candidates to be merged with a given filter is depicted later. From the set
of merging candidates the set of attribute filters to be merged can easily be
extracted. This set is used as input of a merging algorithm which has a spe-
cialized implementation for each type of constraint. In the general case purely
algebraic merging techniques have exponential time complexity. Alternatively,
a predicate proximity graph can be used to implement a greedy algorithm
[218]. For many practical cases (e.g., set operators) efficient algorithms exist.
Only in rare cases is it necessary to use an exhaustive combinatorial or a
suboptimal greedy algorithm.

The characteristics of the constraints that are used to define attribute
filters are important for merging. Constraints which only exist in a normal
and a negated form can be directly merged by using some basic laws of Boolean
algebra. For example, the filters F1 = (y = 3∧x = 5) and F1 = (y = 3∧x �= 5)
can be merged to F = (y = 3∧∃x). In general, constraints are not restricted to
be the negated form of each other, and hence better merging can be achieved
by taking the specific characteristics of the imposed constraints into account.

A class of constraints that is complete under disjunction allows a set of
constraints of this class to be merged into a single constraint of the same
class. Examples for disjunction-complete constraints are set inclusions (e.g.,
x ∈ {2, 3, 7}) and set exclusions (e.g., x /∈ {2, 3, 7}) while comparison con-
straints (e.g., x < 4) are not disjunction-complete. If a constraint class is not
disjunction-complete it may still be possible to carry out merging if a specific
merging condition is met. For example, a set of interval tests (e.g., x ∈ [2, 4]
and x ∈ [3, 5]) can be merged into a single interval test (here, x ∈ [2, 5])
if the intervals form a connected set. Otherwise, merging may be possible if
a more general constraint is considered as merging result. For example, two
comparison constraints (e.g., x < 4 and x > 7) can be merged to an interval
test (here, x /∈ [4, 7]).

Merging on the level of attribute filters is implemented by each generic at-
tribute filter class. Table 3.8 presents some perfect merging rules. The mean-
ing of a single row is that A1 and A2 can be perfectly merged to the in-
dicated merger (column 4) if the given merging condition (column 3) holds.
The first two rules can also be applied to equality and inequality tests because
x = a1 ⇔ x ∈ {a1} and x �= a1 ⇔ x /∈ {a1}.
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Table 3.8. Perfect merging rules for attribute filters

A1 A2 Condition A1 ∪ A2

x ∈ M1 x ∈ M2 - x ∈ M1 ∪ M2

x /∈ M1 x /∈ M2
M1 ∩ M2 = ∅ ∃x

M1 ∩ M2 �= ∅ x /∈ M1 ∩ M2

X overlaps M1 X overlaps M2 - X overlaps M1 ∪ M2

X disjunct M1 X disjunct M2
M1 ∩ M2 = ∅ ∃X

M1 ∩ M2 �= ∅ X disjunct M1 ∩ M2

x = a1 x �= a1 a1 = a2 ∃x

x < a1
x > a2 a1 > a2 ∃x
x ≥ a2 a1 ≥ a2

x ≤ a1
x > a2

a1 ≥ a2 ∃x
x ≥ a2

Imperfect Merging

At a first glance, imperfect merging seems to be less promising, but in situa-
tions in which perfect merging is either too complex or not computable it is a
good compromise. Clearly, there exists a trade-off between filtering overhead
and network resource consumption. Imperfect merging may result in notifica-
tions being forwarded that do not match any of the original subscriptions, but
on the other hand, it reduces the number of subscriptions and advertisements
that must be dealt with.

In order to use imperfect merging, heuristics are necessary that define
in what situations and to what degree imperfect merging should be carried
out. For example, filters that differ in few attribute filters could be merged
imperfectly by imposing on each attribute a constraint that covers all original
constraints. In order to decide whether two given filters should be merged a
heuristic that allows the amount of introduced imperfection to be estimated is
needed. This could also be accomplished by explicitly replacing an attribute
filter with another that only tests for the existence of the given attribute
or by simply dropping the attribute filter. Statistical online evaluation of
filter selectivity would be also a good basis for merging decisions that enables
adaptive filtering strategies. Imperfect merging requires further investigation.

Algorithms

In this section algorithms are presented that are superior to the näıve algo-
rithms (cf. Sect. 3.2.1). The presented algorithms use the generic approach
presented in the previous section: Each generic constraint class (e.g., con-
straints on ordered values) offers specialized indexing data structures to ef-
ficiently manage constraints on attributes. For example, hashing is used for
equality tests. In the following, algorithms for matching, covering, and for
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detecting merging candidates are described that are all based on the pred-
icate counting algorithm (cf. Sect. 3.2.2). Algorithms for detecting identity
and overlapping among filters can be derived similarly.

Matching Algorithm

The näıve algorithm separately matches a given notification against all filters
to determine the set of matched filters. This implies that the same attribute
filter may be evaluated many times. More advanced algorithms avoid this.
Some of these require a costly compilation step (e.g., [181]) that makes them
less suitable for publish/subscribe systems in which subscriptions change dy-
namically. In contrast to that, the algorithm presented here allows filters to be
added or removed at any time. The algorithm is based on the idea of predicate
counting [305, 404] and makes use of our generic approach. The algorithm is
depicted in Fig. 3.6. It determines all filters that match a given notification.

1 Matching Algorithm

Input: notification n, set of filters F
Output: the set M of all filters in F that match n.
{

<For each filter in F a counter is initialized to zero.>

6 for <each Ai contained in n> {

for <each filter S in F that has a constraint on Ai that

is satisfied by the value of the corresponding

attribute of n> {

<Increment the counter of S>
11 }

}

M:=<all filters in F whose counter is equal to their

number of attribute filters>

}

Fig. 3.6. Matching algorithm based on counting satisfied attribute filters

Covering Algorithm

Covering-based routing is built upon two tests: a first test that determines
all filters that cover a given filter, and a second one determines all filters
that are covered by a given filter. The näıve implementation simply tests
each filter against all others sequentially. The algorithms presented here are
more efficient. They are derived from the matching algorithm presented above
(Figs. 3.7 and 3.8).
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Covering Algorithm I

Input: filter F1, set of filters F
Output: the set C of all filters in F that cover F1.

{

5 <For each filter in F a counter is initialized to zero.>

for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

covers Ai> {

<Increment the counter of S>
10 }

}

C:=<all filters in F whose counter is equal to their

number of attribute filters>

}

Fig. 3.7. Covering algorithm that determines all covering filters

1 Covering Algorithm II

Input: filter F1, set of filters F
Output: the set C of all filters in F that are covered by F1.

{

<For each filter in F a counter is initialized to zero.>

6 for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

is covered by Ai> {

<Increment the counter of S>
}

11 }

C:=<all filters in F whose counter is equal to the

number of attribute filters of F1>

}

Fig. 3.8. Covering algorithm that determines all covered filters

Merging Algorithm

We present an algorithm that determines all possible merging candidates.
These are those filters that are identical to a given filter in all but a single
attribute. The algorithm avoids testing all filters against all others. It counts
the number of identical attribute filters to find merging candidates (Fig. 3.9).

The further handling of the set of merging candidates depends on the
constraints involved. For all constraints discussed (e.g., set constraints on
simple values) there exists an efficient algorithm which outputs a single merged
filter and a set of filters not included in the merger. For other constraints, an
optimal algorithm requires exponential time complexity [87]. In this case the
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use of greedy algorithms or heuristics (e.g., using a predicate proximity graph)
seems to be promising.

1 Merging Algorithm

Input: filter F1, set of filters F
Output: set M of all merging candidates

{

<For each filter in F a counter is initialized to zero.>

6 for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

is identical to Ai> {

<Increment the counter of S>
}

11 }

M:=<all filters in F whose counter is one smaller than or

equal to their number of attribute filters>

}

Fig. 3.9. Merging algorithm based on counting identical attribute filters

3.1.3 Semistructured Records

In the previous section structured records have been discussed in detail. In this
section a model for semistructured records is presented. The structured and
the semistructured model are mainly distinguished by the following fact: In
the structured model attribute names are unique, and hence an attribute name
uniquely addresses a single attribute. On the contrary, in the semistructured
model sibling attributes can have the same name, and therefore names address
sets of attributes.

In the following, a model for semistructured records is presented in which
notifications are essentially XML [399] documents. The filtering mechanisms
are similar to but less powerful than XPath [398]. After the model has been
introduced, how routing optimizations can be achieved is discussed.

According to Bunemann [55] semistructured data can be characterized as
some kind of graphlike or treelike structure that is often called self-describing
because the schema of the data is contained in the data itself. At the moment,
the most prominent semistructured data model is XML [399]. Similarly, to
structured records, a semistructured record is a set of nested attributes, but
in contrast to structured records, in semistructured records sibling attributes
can have the same name. In consequence, a single attribute can no longer be
uniquely addressed by its name alone. Instead, names (e.g., car.price), which
are usually called paths in this context, select sets of attributes. Therefore,
filtering strategies assuming that a single attribute is addressed by a given
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name cannot directly be used in this scenario. One way to approach this
problem is to use path expressions (e.g., XPath [398]), which select a set of
attributes and impose constraints on the selected attributes.

Clearly, the semistructured model is more powerful than structured re-
cords, but work in this area related to content-based routing is still in its early
stages. Lately, using XML and path expressions has gained increased atten-
tion. Nguyen et al. [271] and Chen et al. [77] described approaches for XML
continuous queries. Altinel and Franklin [12] presented an efficient method for
filtering XML documents using XPath expressions. All this work concentrates
on efficient local matching and does not deal with distributed content-based
routing. First ideas on how to support routing optimizations like covering and
merging for semistructured records was presented by Mühl and Fiege [264].
These ideas are discussed later in this section.

Data Model

In the semistructured data model a notification is a well-formed XML docu-
ment [399] and consists of a set of elements that are arranged in a hierarchy
with a single root element uniquely named “notification”. Each element con-
sists of a set of attributes whose names must be distinct and a set of subordi-
nate child elements, which are named but whose names must not necessarily
be distinct. An attribute A is a pair (ni, vi) with name ni and value vi. Names
of attributes must be unique with respect to elements. A simple notification
that describes an auction is shown in Fig 3.10. In this example, the element
auction has two subelements that are named item . Furthermore, the element
cpu contains an attribute clock whose value is 800. Note that XML documents
can contain free text between the opening and the closing tag of an element.
Here, this text is simply ignored.

Filter Model

In the semistructured filter model a filter is a conjunction of path filters.
Each of the path filters selects a subset of the elements in a notification by
an element selector and places constraints on the attributes of the selected
elements by an element filter, which consists of a set of attribute filters. In
the following, this model is described in full detail.

An element selector selects a subset of the elements of a notification and
is specified by an attribute path. It is distinguished between absolute and ab-
breviated paths. An absolute path is a slash-separated string that starts with
a single slash (e.g., /notification/auction). An abbreviated path is a slash-
separated string that starts with two slashes (e.g., //cpu). An absolute (ab-
breviated) path selects all elements whose path is equal to (ends with) the
given path. For example, //item selects both item elements of the notification
in Fig. 3.10.
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1 <notification>

<auction

endtime="05/18/02 22:17:42"

minprice="50">

<seller

6 name="Smith"

id="1234"/>

<item>

<board

manufacturer="Elitegroup"

11 type="K7S5"

socket="Socket A"/>

</item>

<item>

<cpu

16 manufacturer="AMD"

type="Athlon"

socket="Socket A"

clock="800"/>

</item>

21 </auction>

</notification>

Fig. 3.10. A simple notification

An attribute filter is a pair A = (n, Q) consisting of a name n (e.g.,
manufacturer) and a constraint Q (e.g., = “AMD”). An element matches an
attribute filter if the element contains an attribute with name n whose value v
satisfies Q, e.g. (manufacturer , “AMD”). This means that an attribute filter
evaluates to false if the element does not contain an attribute with name n.
Therefore, an attribute filter implicitly defines an existential quantifier over
an element.

An element filter C is a conjunction of a nonempty set A of attribute filters
{A1, . . . , Ai}, i.e., C =∧i Ai. Hence, an element matches an element filter iff
all attribute filters are satisfied. An example of an element filter based on the
syntax of XPath is [@manufacturer = “AMD” ∧ @clock ≥ 700]. Note that
in this notation attribute names are prefixed by an “@”.

A path filter P = (S, C) consists of an element selector S and an el-
ement filter C. A notification n matches a path filter P if at least one
element of n is selected by S that matches C. It is possible to extend
this model in such a way that an interval constraint can be imposed on
both the number of elements that match an element filter and the num-
ber of elements that must not match. These extensions are not discussed for
brevity. An example of a complete path filter based on an absolute path is:
/notification/auction/item/cpu [@manufacturer = “AMD” ∧ @clock ≥ 700].
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A filter F is a conjunction of path filters {P1, . . . , Pn}. Hence, a notification
matches a filter if all path filters are satisfied. The set of all notifications that
match a given filter F is N(F ).

Covering

This section discusses how covering among filters can be detected in the
semistructured model. Similar results can easily be obtained for identity and
overlapping, too. These are not discussed for brevity.

Let LA(A) be the set of all values that cause an attribute filter A to
match an attribute. An attribute filter A1 = (n1, Q1) covers an attribute
filter A2 = (n2, Q2), denoted by A1 � A2, iff n1 = n2 ∧ LA(A1) ⊇ LA(A2).
For example, [@clock ≥ 600] covers [@clock ≥ 700].

Let LE(C) be the set of all elements that match an element filter C.
An element filter C1 covers an element filter C2, denoted by C1 � C2,
iff LE(C1) is a superset of LE(C2). For example, [@clock ≥ 600] covers
[@manufacturer = “AMD” ∧ @clock ≥ 700]. Furthermore, C1 is disjoint
with C2 with respect to the constrained attributes if there exists no attribute
that is constrained in both element filters. For example, [@minprice < 100] is
disjoint with [@name = “Pu”] with respect to their constrained attributes.

Corollary 3.4. Given two element filters C1 and C2, neither of which con-
tains two attribute filters with the same name, the following holds: C1 � C2

is equivalent to ∀j∃i. A1
i � A2

j .

Let LS(S) be the set of all elements that are selected by an element selector
S. An element selector S1 covers an element selector S2, denoted by S1 � S2,
iff LS(S1) ⊇ LS(S2). S1 is disjoint with S2, iff LS(S1) ∩ LS(S2) = ∅.

In the model presented here, an absolute path covers another absolute
path iff both are identical. An absolute path only covers an abbreviated path
iff the former is /notification and the latter is //notification, as the root
element has a unique name. An abbreviated path covers another (abbreviated
or absolute) path iff the former is a suffix of the latter (without the leading //
or /). For example, //cpu covers //item/cpu because the former path selects
all elements named cpu , while the latter only selects those elements named
cpu which are a subelement of an element with name item.

Let LP (P ) be the set of all elements that match a path filter P . A path
filter P1 = (S1, C1) covers another path filter P2 = (S2, C2), written P1 � P2,
iff LP (P1) ⊇ LP (P2). For example, the path filter //cpu[@manufacturer =
“AMD”] covers //cpu[@manufacturer = “AMD” ∧ @clock ≥ 700]. P1 is
disjoint with P2, iff either S1 is disjoint with S2 or if C1 is disjoint with C2

with respect to their constrained attributes.

Corollary 3.5. Given two path filters P1 = (S1, C1) and P2 = (S2, C2), the
following holds: P1 � P2 is equivalent to S1 � S2 ∧ C1 � C2.
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A filter F1 covers a filter F2, denoted by F1 � F2, iff N(F1) ⊇ N(F2).

Corollary 3.6. Given two filters F1 = P 1
1 ∧ . . . ∧ P 1

n and F2 = P 2
1 ∧ . . . ∧ P 2

m

which are conjunctions of disjoint path filters the following holds: F1 � F2 is
equivalent to ∀i∃j. P 1

i � P 2
j .

For example, the filter {//cpu[@type = “Athlon”]} covers
{//seller [@name = “Pu”] ∧ //cpu[@type = “Athlon” ∧ @clock ≥ 600]}.

3.1.4 Objects

Using objects as notifications is widely used in GUIs (e.g., Java AWT [358])
and visual components (e.g, JavaBeans [359]). The Java Distributed Event
Specification [361], which is built upon Java RMI, also uses objects. The
difference between this approach and a notification service is that consumers
must directly register with the source of an event. Eugster and Guerraoui
[124] present how to use structural reflection for content-based filtering of
notifications. The object-oriented model is most flexible and powerful, but
routing optimizations like covering and merging are difficult to achieve if filters
can contain arbitrary code. Mühl and Fiege [264] have presented first ideas on
how to support routing optimizations like covering and merging for objects.
These ideas are discussed later in this section.

A purely object-oriented approach models notifications and filters as ob-
jects. A clear advantage of such a model is that it can easily be integrated with
object-oriented programming languages. In contrast to that, models that are
based on, e.g., name/value pairs, can only operate on serialized instances of
objects violating object encapsulation. Unfortunately, routing optimizations,
and in particular, covering and merging, are difficult to achieve if filters can
contain arbitrary code. In this section three scenarios for which covering and
merging can be supported are described.

Calling Methods on Attribute Objects

Regardless of whether the data models depend on structured or on semistruc-
tured records, it is possible to embed objects in notifications. In this case
public members can be accessed and public inspector methods can be invoked
on the embedded object after it has been instantiated. The returned member
or the return value of the inspector method can either be a Boolean value
that is directly interpreted as result of the attribute filter or a value that is
used in order to evaluate the actual constraint.

For example, suppose that an instance of a class StockQuote has been em-
bedded in a notification as an attribute with name quote. Then an attribute
filter that evaluates this attribute could be specified like this: {quote.id() =
“IBM”}. For example, this filter covers {quote.isRealTime() ∧ quote.id() =
“IBM” ∧ quote.Price() > 45.0}. Moreover, it could be merged with a fil-
ter {quote.id() = “MSFT”} to a filter {quote.id() ∈ {“IBM”, “MSFT”}}.
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As stated in [121, 124], structural reflection (e.g., supported by Java) can
be used to invoke the specified methods. Unfortunately, the model does not
allow us to detect all covering relations among filters. For example, a filter
{quote.Volume() > 10, 000} covers a filter {quote.Price() > 100 ∧ quote.
Quantity() > 100} because the volume is defined as the product price multi-
plied by the quantity.

Filtering on Notification Classes

Here, notifications are objects and consequently they are an instance of some
class. Hence, class filters can be used that evaluate the class of a notification:
A notification matches a filter if it is assignable to the specified class. It is
also possible to support covering and merging. A class filter covers another
class filter if an instance of the latter class can be assigned to an instance of
the former one. A set of class filters can be merged perfectly if they either
contain a class which covers all other classes or if they represent all direct
subclasses of their common superclass. Figure 3.11 shows the implementation
of a ClassFilter in Java. The integration with content-based filtering can
be achieved by supporting filters that are conjunctions of a class filter and
a specialized filter object whose match method is invoked if the class filter
returned true.

Specialized Filter Objects

Another possibility is to use specialized filter objects, an approach that can
also be combined with class filters. Such a filter implements a match method
that evaluates whether a notification matches this filter instance or not. More-
over, it can also implement methods for covering and merging. Figure 3.12
shows the implementation of a QuoteFilter in Java. Note that the filters
can also be built upon a more generic filter library, which offers, for example,
set-oriented filters.

3.2 Matching Algorithms

Matching is probably the most fundamental functionality in a publish/sub-
scribe system. A matching algorithm determines the filters, and thus the re-
cipients, that are matched by a given notification. In this chapter several
common approaches are discussed, including brute force, predicate counting,
decision trees, binary decision diagrams, and efficient XML matching.

One must carefully distinguish between notification matching and notifica-
tion forwarding. While matching aims at determining all filters that match a
given notification, notification forwarding aims at determining all destinations
for which a filter exists that matches a given notification. This means that for
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class ClassFilter {

protected Class class;

3

public boolean covers(ClassFilter filter) {

return class.isAssigneableFrom(filter.class);

}

8 public static ClassFilter merge(ClassFilterSet filters) {

Class superClass=filters.getCommonSuperClass();

if (superclass!=null) {

if (filters.contain(superClass))

return new ClassFilter(superClass);

13 if (filters.containAllSubclasses(superClass))

return new AllSubclassesFilter(superClass);

}

return null;

}

18

public boolean match(Notification n){

return class.isInstance(n);

}

}

Fig. 3.11. Implementation of a ClassFilter in Java

public class QuoteFilter {

3 public boolean covers(QuoteFilter qf){

return getSymbolSet().isSuperSet(qf.getSymbolSet());

}

public static QuoteFilter merge(QuoteFilter[] qf){

8 return new QuoteFilter(QuoteFilter.

unionOfSymbolSets(qf));

}

public boolean match(Event e) {

13 if (!(e instanceof QuoteEvent))

return false;

return (qf.getSymbolSet().contains(

((QuoteEvent)e).getSymbol()));

}

18 }

Fig. 3.12. Implementation of a QuoteFilter in Java
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the latter it may not be necessary to determine all matching filters. However,
most algorithms do not exploit this difference. They determine all matching
filters and derive the set of destinations by “or-ing” the individual destination
of each filter. In the following, we concentrate on notification matching.

3.2.1 Brute Force

This is the simplest algorithm. It tests the given notification sequentially
against all filters. The main advantage of this algorithm is that it can be
used for all kind of filters; for example, it does not presume that filters are
conjunctive filters. Moreover, it does not require some kind of preprocessing
as other algorithms do. The main disadvantage of this näıve algorithm is
its degraded performance. This is because the same predicate is evaluated
many times if it is part of many filters. Moreover, the dependencies among
predicates are not exploited. For example, the algorithm does not exploit that
if the predicate {x = 5} is matched, the predicate {x = j} for any j �= 5
cannot be matched.

3.2.2 Counting Algorithm

Yan and Garcia-Molina have proposed to use the counting algorithm for docu-
ment matching [404]. This algorithm separates filter matching from predicate
matching. This way, the algorithm avoids evaluating predicates more than
once. In the following, we depict the algorithm for conjunctive filters consist-
ing of attribute filters.

For each filter there is a counter that is initialized to 0. Then, all match-
ing attribute filters are determined. For each matching attribute filter, the
counters of those filters are incremented which contain the attribute filter as
conjunctive term. After all matching attribute filters have been processed,
those filters whose counter equals the number of predicates this filter consists
of match the given notification.

The simplest strategy to find all matching predicates is to sequentially test
each attribute filter as to whether or not it is matched by the given notification.
A more advanced strategy is to use multilevel index structures that depend
on the type of constraint (e.g., a hash table can be used for equality tests).
The first level of the index (the attribute name index) is used to look up all
attribute filters constraining an attribute by its name. The second level (the
operator index) is used to look up all of those constraints that use a given
operator (e.g., equivalence or greater than). The third level (the value index),
finally, allow to find all of those attributes for the respective attribute and
operator that are satisfied. In this way all matching attribute filters can be
found without testing all attribute filters for satisfaction.

Figure 3.13 shows a simple example, where a notification is matched
against three filters F1, F2, and F3. From these filters only F1 is matched
by the notification.
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Fig. 3.13. Using a multilevel index structure for the counting algorithm

Stock = 

Price < Price > Volume >

AB Inc.
*Foo Inc.

F1 F2 F3 F4

15 12 16 1,000,000

Stock = 

Price < Price > Volume >

AB Inc.
*Foo Inc.

F1 F2 F3 F4

15 12 16 1,000,000

Fig. 3.14. An exemplary decision tree

3.2.3 Decision Trees

Aguilera et al. [6] have proposed using decision trees for matching in publish/-
subscribe systems. A decision tree arranges tests, test results, and filters in
a tree; usually conjunctive filters consisting of attribute filters are assumed.
In the tree, nonleaf nodes are tests (e.g., price <), while leaf nodes repre-
sent filters. Finally, edges are test constants (e.g., 10). The decision tree is
usually traversed in depth-first order. The traversal follows an edge if the
notification matches the attribute filter that is formed by the test and the
test constants (e.g., price < 10). The filters that are reached, match the
given notification. Figure 3.14 shows an exemplary decision tree. The tree
contains the filters F1 = {Stock = “Foo Inc” ∧ Price < 15}, F2 = {Stock =
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Stock = “Foo Inc.”

Price > 15

0 1

Volume > 1,000,000

Stock = “Foo Inc.”

Price > 15

0 1

Volume > 1,000,000

Fig. 3.15. An exemplary binary decision diagram

”Foo Inc.” ∧ Price < 12}, F3 = {Stock = ”AB Inc.” ∧ Price > 16}, and
F4 = {Volume > 1, 000, 000}.

3.2.4 Binary Decision Diagrams

Campailla et al. [58] suggested using binary decision diagrams (BDDs) for
matching in publish/subscribe systems. BDDs are not restricted to conjunc-
tive filters. They can be used to express arbitrary Boolean functions. In the
following, we describe the basics of BDDs and how they can be used in pub-
lish/subscribe systems.

BDDs are directed acyclic graphs. In a BDD, there are two terminal nodes
(i.e., nodes without outgoing edges) with the labels 1 and 0. These stand for
the predicates true and false , respectively. Each nonterminal node corresponds
to a predicate (e.g., price < 10) and has two outgoing edges, the low edge
and the high edge. A subset of the nodes is marked as output nodes ; each
output node represents a filter. Figure 3.15 shows a simple BDD with a single
output node. The solid lines are the high edges while the dashed lines are
the low edges. The filter that corresponds to the output node is {Stock =
“Foo Inc.” ∧ (price > 15 ∨Volume > 1, 000, 000)}.

A filter is evaluated by traversing the BDD starting from the given output
node (Fig. 3.16). While traversing the BDD, the high edge is followed if the
predicate corresponding to the visited node is fulfilled by the given notifica-
tion; the low edge is followed otherwise. A notification matches a filter if finally
the node 1 is reached; if 0 is reached, the notification does not match. For ex-
ample, the notifications {{Stock , ”Foo Inc.”}, {Price, 16}, {Volume, 10, 000}}
and {{Stock , ”Foo Inc.”}, {Price, 14}, {Volume, 1, 000, 000}} match the BDD
shown in Fig. 3.15.

Evaluating all filters separately can be avoided by using ordered binary
decision diagrams (OBDDs). In a OBDD, the nodes are numbered such that
for every path, the numbers of the visited nodes are strictly monotonically
increasing. This means that the nodes 0 and 1 are numbered by n and n− 1,
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v := <output node of filter>;

2 while <v is not a terminal node> do

if eval[v] then

v := high[v];

else

v := low[v];

7 endif

endwhile

matched := label[v];

Fig. 3.16. Evaluating a filter using a binary decision diagram

1 for v := n downto 1 do

if <v is terminal node> then

value[v] := label[v];

else

a := eval[v];

6 value[v] := a and value[high[v]] or

not a and value[low[v]];

endif

endfor

Fig. 3.17. Evaluating an ordered binary decision diagram

respectively. OBDDs are evaluated bottom-up by visiting the nodes in de-
creasing order starting by node n. If the visited node is a terminal node, a
value of 1 is assigned if node 1 is visited and 0, otherwise. If a nonterminal
node v is visited it is assigned the value p(v)∧ low (v)∨¬p(v)∧high(v), where
p(v) is the result of the predicate corresponding to node v, and low (v) and
high(v) are the values assigned to the node to which the low and the high edge
originating at v are leading, respectively. A filter is matched, if to its output
node 1 is assigned; otherwise it is not matched. The algorithm is shown in
Fig. 3.17.

A reduced ordered binary decision diagram (ROBDD) is an OBDD from
which redundant nodes and isomorphic subgraphs are removed. It is known
from the research on Boolean function minimization that ROBDDs exhibit
exponential grow for some Boolean functions (e.g.,the chessboard function).
The predicate numbering has a large effect on the size of the ROBDD, too.
While some functions require exponential size only for a subset of the potential
predicate orderings, other functions require exponential size for all possible
variable orderings. Finding the optimal ordering is known to be NP-hard.
BDDs can easily be logically combined. For example, the BDD of a negated
function is the BDD of the function, where the nodes 0 and 1 are swapped.
BDDs can also “or-ed” and “and-ed” together.
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Fig. 3.18. XPath Queries and their corresponding finite state automaton

3.2.5 Efficient XML Matching

As XML becomes more popular, using XML as a data model for publish/-
subscribe systems is also gaining increased attention. In the area of XML
processing, XPath [398] is often used to select parts of an XML document
that match a path expression. This approach can also be used to test whether
a document contains a matching part. A path expression searches for ele-
ments and attributes in an XML document that satisfy the given condition.
Because XPath allows for very complex queries, implementing efficient match-
ing for XPath filters is challenging. In the literature, XFilter and YFilter have
been proposed to facilitate XPath for matching XML documentsr. Both ap-
proaches are based on finite state machines (FSMs). Recent approaches [183]
are based on a constructing a deterministic finite automaton (DFA) from the
given NFA. In the following, we give an overview of XFilter and its succes-
sor YFilter. Altinel and Franklin [12] have proposed XFilter, which was the
first FSM-based approach. XFilter translates each XPath query into a sep-
arate FSM (Fig. 3.18) and uses a novel indexing mechanism to allow all of
the FSMs to be executed simultaneously during the processing of a document.
When a document arrives, it is processed by an event-based XML parser (e.g.,
based on the SAX interface). The events raised (e.g., an element is opened or
an element is closed) during parsing are used to drive the FSMs through their
various transitions. A query is said to match a document if during parsing,
an accepting state for that query is reached. The approach of XFilter to use
one FSM per XPath query has the disadvantage that commonalities among
queries are not exploited.
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Fig. 3.19. Combined nondeterministic finite state automaton

YFilter, which can be seen as the successor of XFilter, was proposed by
Diao et al. [110, 111, 112]. YFilter combines all path expressions into a sin-
gle nondeterministic finite automaton (NFA) (Fig. 3.19), where the common
prefixes among path expressions are shared, i.e., represented only once. This
NFA-based approach can be extended to also process predicates attached to
path expressions. The authors have developed two alternatives to combining
the NFA execution and predicate evaluation. One approach evaluates predi-
cates as early as their addressed elements are matched, while the other delays
predicate evaluation until the corresponding path expression has been entirely
matched.

3.3 Further Reading

Approximate Matching

In this chapter we assumed the Boolean filter model [404]. Either the notifica-
tion exactly matches the filter or it does not match the filter. An alternative
to exact matching is approximate matching. Liu and Jacobsen presented A-
ToPSS [240], a publish/subscribe prototype with approximate matching. Yan
and Garcia-Molina [403] discussed index structure for information filtering
under the vector space model.

Matching Algorithms

Fabre et al. [132] and Pereira et al. [305] present matching algorithms which
exploit similarities among predicates. In a first step the satisfied predicates are
computed, and after that the number of predicates satisfied by a subscription
are counted using an association table. Two variants of this algorithm are de-
scribed that incorporate special treatment of equality tests and of constraints
having only inequality tests.
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A predicate matching algorithm for database rule systems is presented by
Hanson et al. [187] that indexes the most selective predicate that is determined
by the query optimizer. They use a special indexing data structure called
interval binary search tree to support the efficient evaluation of interval tests.

Gough and Smith [181] present a matching algorithm that is based on
automata theory. They show how a set of conjunctions of predicates, each
dependent on exactly one attribute, can be transformed to a deterministic
finite state automaton. In the paper different types of test predicates are con-
sidered and complexity results are obtained. Their algorithm is very efficient,
but its worst-case space complexity is exponential. The proposed solution is
also not suited for dynamic environments as the automaton has to be newly
constructed from scratch if subscriptions change.

Pu et al. [241, 372] present indexing strategies for continual queries based
on trigger patterns. In particular, a strategy which uses an index on the most
selective predicate is described. More complex indexing strategies exploit sim-
ilarities among trigger patterns to reduce the processing costs. They restrict
optimizations to constraints which place a constraint on a single attribute
involving at most one constant.

Gryphon uses the content-based matching algorithm presented by Aguil-
era et al. [6]. This algorithm traverses a parallel search tree, where nonleaf
nodes correspond to simple tests and edges from nonleaf nodes represent re-
sults. Leafnodes are associated with matched subscriptions. Banavar et al. [26]
present a multicast routing algorithm that executes the matching algorithm
at each broker. The algorithm presented is limited to equality tests.




