‘ Dlstrlbuted
Event-Based
Systems

@ Springer

Distributed Event-Based Systems

Gero Miihl - Ludger Fiege
Peter Pietzuch

Distributed
Event-Based
Systems

With 158 Figures and 17 Tables

@ Springer

Authors

Gero Miihl Ludger Fiege

Fakultit IV Elekrotechnik und Informatik ~ Siemens AG

Technische Universitit Berlin CT SE2

Einsteinufer 17 Otto-Hahn-Ring 6

10587 Berlin, Germany 81730 Miinchen, Germany
g muehl@acm.org ludger.fiege@siemens.com

Peter Pietzuch

Div. of Engineering and Applied Sciences
Harvard University

33 Oxford Street

Cambridge, MA 02138, USA
prp@eecs.harvard.edu

Library of Congress Control Number: 2006927041
ACM Computing Classification (1998): C.2.4, C.3, D.2.11, D.2.12

ISBN-10 3-540-32651-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32651-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors using a Springer TgX macro package
Production: LE-TgX Jelonek, Schmidt & Véckler GbR, Leipzig
Cover design: KiinkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL-543210

For Regina.
— Gero

For Biggi,
Franzi, Flori, and Johanna.
— Ludger

For Bohdan Bankowski.
— Peter

Preface

The field of event-based systems is surprisingly broad. In many scientific com-
munities, technical talks, commercial products, and industrial projects people
think about asynchronous computations and messaging, scalability and main-
tainability, stepwise evolution and loose coupling. Most likely, these people
are discussing event-based systems, even if they use other terms.

When we began investigating event-based systems some years ago, we
were surprised to see that eventing was scattered among many disciplines
of computer science. There were no workshops or conferences dedicated to
this topic, for example, although many aspects of event-based systems cannot
be assessed from a database, network, or software engineering perspective
alone. In the same sense, commercially available products that could help
solving problems of event-based architectures are often bundled and marketed
in solutions of a specific domain.

In order to channel some of the attention, the Distributed Event-Based
Systems (DEBS) workshop series was created. It attracts people from dis-
tributed computing, database, and software engineering audiences, and it
demonstrates the wide variety of facets event-based systems have. After hav-
ing heard about and being engaged in interesting discussions about allegedly
“academic” and “real-world” problems, in investigating many findings, and
after creating many solutions in both academic and industrial environments,
we decided to write this book to present both the current state-of-the-art and
its base concepts.

The book takes a distributed system’s point of view. This is, of course,
partly due to our own background, but more importantly we believe a solid
understanding of distributed event-based systems is a good starting point for
building modern computing systems. It lets you integrate sophisticated filter
and data processing capabilities as well as new network topologies and routing
algorithms.

VIII Preface
Acknowlegements

We want to thank our colleagues, coauthors, and friends who discussed and
developed most of the ideas presented in this book with us. Without being
able to name all, we want to thank Jean M. Bacon, Alejandro P. Buchmann,
Frank Buschmann, Mariano Cilia, Felix C. Freiling, Rachid Gerraoui, Michael
A. Jaeger, Arno Jacobsen, Mira Mezini, Ken Moody, Joe Sventek, Andreas
Ulbrich, Andreas Zeidler, and many others we worked and talked with in
universities and companies, at conferences, and via email. The good thing
about writing a book is that you gain so many new insights into already
known topics.

We also want to thank Ralf Gerstner from Springer Verlag for his patience
and continuous support, and the reviewers and proofreaders who helped us
improve the book.

Last but not least, we are grateful to our families and friends for their
patience and understanding for yet another evening being occupied with this
“nonsense”. Thanks.

Berlin, Germany Gero Miihl
Munich, Germany Ludger Fiege
Cambridge, MA, USA Peter Pietzuch

May 2006

Contents

1 Introduction 1
1.1 Networked Computing 1
1.2 Middlewareo 2
1.3 Event-Based Systems i il 3
1.4 Application Scenarios 4

1.4.1 Information Dissemination.......................... 4
1.4.2 Network Monitoring 4
1.4.3 Enterprise Application Integration................... 5
1.4.4 Mobile Systems i 6
1.4.5 Ubiquitous systems, 6
1.5 Putting Event-Based Systems Into Context 7
1.6 From Centralized to Internet-Scale Event Systems 8
1.7 Structure of the Book 8

2 Basics ... 11

2.1 Terminologyoouiu i 11
2.1.1 Events and Notifications 11
2.1.2 Producers and Consumersc.o.ionon.. 12
2.1.3 Subscriptions and Filters 13
2.1.4 Event Notification Service 13

2.2 Models of Interaction i, 14
2.2.1 Request/Reply ... 15
2.2.2 Anonymous Request/Reply 15
2.2.3 Callbacko 16
224 Event-Based i 16
2.2.5 CompariSOILuuuvi et 17
2.2.6 Interaction vs. Implementation 17

2.3 Notification Filtering Mechanisms 19
2.3.1 Channels 19
2.3.2 Subject-Based Filtering, 19

2.3.3 Type-Based Filtering 19

Contents

2.3.4 Content-Based Filtering 20
2.4 A Model Distributed Notification Service 20
2.4.1 System Model i 20
2.4.2 Architecture 21
2.4.3 Distributed Notification Routing 22
2.5 Specification of Event Systems 23
2.5.1 Formal Background............ 24
2.5.2 A Simple Event System, 26
2.5.3 A Simple Event System With Ordering Requirements .. 30
2.5.4 Simple Event System With Advertisements 31
2.6 Further Reading......... i, 33
Content-Based Models and Matching 35
3.1 Content-Based Data and Filter Models 35
311 Tuples ..o 35
3.1.2 Structured Records 36
3.1.3 Semistructured Records 52
314 Objects .ot 56
3.2 Matching Algorithms 57
3.2.1 BruteForce........... 59
3.2.2 Counting Algorithm 59
3.2.3 Decision Treesiii .. 60
3.2.4 Binary Decision Diagrams 61
3.2.5 Efficient XML Matching........... 63
3.3 Further Reading........ i i 64
Distributed Notification Routing 67
4.1 System Model. 67
4.2 Routing Algorithm Framework 69
4.2.1 Atomic Steps of the Implementation 69
4.2.2 Notification Forwarding and Delivery 72
4.2.3 Avoidance of Duplicate and Spurious Notifications. 73
4.2.4 Routing Table Updates 73
4.3 Valid and Monotone Valid Routing Algorithms 74
4.3.1 Valid Routing Algorithms 74
4.3.2 Monotone Valid Routing Algorithms 76
4.4 Valid Framework Instantiations it
4.5 Content-Based Routing Algorithms 80
4.5.1 Flooding ...t 81
4.5.2 Simple Routing 82
4.5.3 Identity-Based Routing 85
4.5.4 Covering-Based Routing............. 91
4.5.5 Merging-Based Routing 98
4.5.6 DisCUSSIONottt e 104

4.6 Extensions of the Basic Routing Framework 107

Contents XI

4.6.1 Routing With Advertisements....................... 107
4.6.2 Hierarchical Routing Algorithms 112
4.6.3 Rendezvous-Based Routing 115
4.6.4 Topology Changesooviiiiiiinin... 117
4.6.5 Joining and Leaving Clients 119
4.6.6 Routing in Cyclic Topologies......... 120
4.6.7 Exploiting IP Multicast 122
4.6.8 Topology Maintenance 123
4.7 Further Reading....... i 125
Engineering of Event-Based Systems.................... ... 129
5.1 Engineering Requirements 129
5.1.1 Application Examples.............. 130
5.1.2 Requirements i 132
5.1.3 Existing Support i 136
5.2 Accessing Publish/Subscribe Functionality 137
5.2.1 Generic APIs 137
5.2.2 Domain-Specific APIs.......... 139
5.3 Using the APT 140
5.3.1 Patterns and Idioms 141
5.3.2 Emitting Notifications 143
5.4 Further Reading........ i i 147
SCOPING . .« oo 149
6.1 Controlling Cooperation 150
6.1.1 Implicit Coordination and Visibility 150
6.1.2 Explicit Control of Visibility 151
6.1.3 The Role of Administrators......................... 151
6.2 Event-Based Systems With Scopes......................... 152
6.2.1 Visibility and Scopes.o 152
6.2.2 Specification 153
6.2.3 Notification Dissemination.......................... 156
6.2.4 Duplicate Notifications, 158
6.2.5 Dynamic SCOPeS.ottt 159
6.2.6 Attributes and Abstract Scopes 161
6.2.7 A Correct Implementation.......................... 161
6.3 Event-Based Components 164
6.3.1 Component Interfaces..............., 164
6.3.2 Scope Interfaces.......... 164
6.3.3 Event-Based Components 167
6.3.4 Example 167
6.4 Notification Mappings. 169
6.4.1 Specification i 169
6.4.2 A Correct Implementation.......................... 173

6.4.3 Example 176

XII

Contents
6.5 Transmission Policies i i 176
6.5.1 Publishing Policy i .. 177
6.5.2 Delivery Policy......... i 179
6.5.3 Traverse Policy......... i 180
6.5.4 Influencing Notification Dissemination 181
6.6 Engineering With Scopes o i i, 182
6.6.1 Development Process 182
6.6.2 Scope Graph Handling 183
6.6.3 Scope Graph Language............, 187
6.7 Implementation Strategies for Scoping 196
6.7.1 Scope Architectures 197
6.7.2 Comparing Architectures 209
6.7.3 Implement Scopes as Event Brokers.................. 210
6.7.4 Integrate Scoping and Routing 213
6.8 Combining Different Implementations 225
6.8.1 Architectures and Scope Graphs..................... 226
6.8.2 Bridging Architectures L 227
6.8.3 Integration With Other Notification Services.......... 228
6.9 Further Reading.......... i i 228
Composite Events 231
7.1 Application Scenariosoiiiiiii i 231
7.2 Requirements 234
7.3 Composite Events 234
7.4 Composite Event Detection 236
7.4.1 Composite Event Detectors 236
7.4.2 Composite Event Language 238
7.5 Detection Architectures 242
7.5.1 Centralized Detection 243
7.5.2 Distributed Detection 244
7.6 Further Reading.......... i i 250
Advanced Topicso it 253
8.1 SeCUrity ..ot 253
8.1.1 Application Scenariosovureinininin.. 254
8.1.2 Requirements i 255
8.1.3 Access Control Techniques.......................... 256
8.1.4 Secure Publish/Subscribe Model 258
8.1.5 Further Reading 264
8.2 Fault Tolerance i 264
8.2.1 Fault Masking i 265
8.2.2 Self-Stabilizing Publish/Subscribe Systems 265
8.2.3 Self-Stabilizing Content-Based Routing............... 266

8.2.4 Generic Self-Stabilization Through Periodic Rebuild ... 273
8.2.5 Further Reading 276

Contents XIII

8.3 Congestion Control i 276
8.3.1 The Congestion Problem 277

8.3.2 Requirements i 277

8.3.3 Congestion Control Algorithms...................... 279

8.3.4 Further Reading i 285

8.4 Mobility 287
8.4.1 Mobility Issues in Publish/Subscribe Middleware 289

8.4.2 Physical Mobility........ i 290

8.4.3 Logical Mobility.......... i i 295

8.4.4 Further Reading it 302

9 Existing Notification Services................ 305
9.1 Standards 305
9.1.1 CorBA Event and Notification Service 305

9.1.2 Jind. ... 310

9.1.3 Java Message Service (JMS) 311

9.1.4 Data Distribution for Real-Time Systems (DDS) 313

9.1.5 WS Eventing and WS Notification................... 317

9.1.6 The High-Level Architecture (HLA) 317

9.2 Commercial Systems i 318
9.2.1 IBM WebSphere MQ 318

9.2.2 TIBCO Rendezvousc.ououiiiueennennenn.. 320

9.2.3 Oracle Streams Advanced Queuing 322

9.3 Research Prototypes i 324
9.3.1 Gryphon 324

9.3.2 SIENA.o 326

9.3.3 JEDI ... 329

9.34 REBECA i 331

9.3.5 Hermes ... 334

9.3.6 Cambridge Event Architecture (CEA)................ 337

9.3.7 Elvin ... 340

9.3.8 READY 340

9.3.9 Narada Brokering 340

10 Outlook ... 343
References...... 349
Index 379

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2

A news story dissemination system 5
The Active Office ubiquitous environment 6
The structure of the book 9
Event-based systemss: interaction versus implementation 12
Taxonomy of cooperation models 15
The router network of REBECA 21
A simple event system i 26
Identity of filters consisting of attribute filters................ 44
Fy; O F, although neither Fi! J F} nor F} J F§ (two examples) 45
Covering of filters consisting of attribute filters............... 46
Disjoint filters consisting of attribute filters 47
Overlapping filters consisting of attribute filters 47
Matching algorithm based on counting satisfied attribute filters 50
Covering algorithm that determines all covering filters 51
Covering algorithm that determines all covered filters 51
Merging algorithm based on counting identical attribute filters . 52
A simple notification. o 54
Implementation of a ClassFilterin Java 58
Implementation of a QuoteFilterin Java 58
Using a multilevel index structure for the counting algorithm .. 60
An exemplary decision tree i 60
An exemplary binary decision diagram 61
Evaluating a filter using a binary decision diagram 62
Evaluating an ordered binary decision diagram 62
XPath Queries and their corresponding finite state automaton . 63
Combined nondeterministic finite state automaton............ 64
Content-based routing framework, part I 70

Content-based routing framework, part IT 71

XVI List of Figures

4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11
4.12
4.13

4.14

4.15

4.16

4.17

4.18

4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36

5.1

Diagram explaining notification forwarding 73
Floodingo 81
Simple routing 83
Diagram explaining simple routing (new subscription)......... 84
Relation among « and (for simple routing 84
Identity-based routing i 87
Identity-based routing: Processing a new subscription from a
neighbor 87
Identity-based routing: Processing a new subscription from a

client 88
Relation among « and 3 for identity-based routing 88
Covering-based routing. i 90
Covering-based routing: Processing of a new subscription from
aclient. 93
Covering-based routing: Processing of a new subscription from
amneighbor. 94
Covering-based routing: Processing of an unsubscription from
aneighbor. 94
Covering-based routing: Processing of an unsubscription from
aclient. 95
Covering-based routing: Processing of an unsubscription from
aclient. 95
Covering-based routing: Processing of an unsubscription from

a neighbor, example 2. L 96
Relation among a and 3 for covering-based routing 97
Merging-based routing i i 99
Merging: deletion of covering filters 99
Merging: searching for a covering merger 100
Merging: handling of subscriptions.......................... 101
Merging: handling of unsubscriptions 103
Circular evolution of CBR algorithms 106
Routing using advertisements, part T........... 108
Routing using advertisements, part IT 109
prune for simple routing i 110
prune for identity-based routing........... 111
Hierarchical covering-based routing 112
Hybrid routing 113
Rendezvous-based routing L i i 116
Managing connects and disconnects............ 119
Simple routing in cyclic topologies: algorithm 121
Example of simple routing in cyclic topologies................ 122
Routing a message in a Pastry network................ 125

Data flow graphs of applications: bipartite single (a) and mult
source (b), and a general group (€)oi i, 130

5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

List of Figures XVII

An example stock trading application 133
Generic publish/subscribe interface 138
The structure of the observer pattern 141
Event and notification in a UML class diagram............... 144
A metamodel of scopes.......... 153
An exemplary scope graph.............. i 154
Outgoing and incoming notifications 157
Two ways of generating duplicates.................... 158
A possible implementation of a scoped event system 162
Different scope interfaces o i 165
The graph of the stock application.......................... 168
Interfaces of the components in the example application 168
Recursive definition of the relation (ny, X) ~ (ng,Y) 170
Transformation of mappings into components 174
Architecture of scoped event system with mappings........... 174
Three important transmission policies in scope graphs 177
Scope definition accuracyo i i 196
Design dimensions of scope architectures 197
Implicit implementation shifts visibility control into

application components L i 201
A comparison of scope architectures 203
Steps of scoped notification delivery 207
Types of architectures, their characteristics, and examples 208
Comparison of scope architectures 210
An exemplary scope graph........... ... 0., 214
Scopes as overlays within the broker topology 214
A flat routing table for broker By 215
Enhanced routing tables of By incorporating scopes........... 216
Scope lookup tables 217
Overall routing algorithm 220
The naive matching algorithm with mappings 221
Interscope forwarding 222
Duplicate scopes to separate QoS requirements............... 226
The Active Office with different sensors 232
A system for monitoring faults in a network 233
The components of the composite event detection service 236
The states in a composite event detection automaton 237
The transitions in a composite event detection automaton 237
A composite event detection automaton 238
The architecture for the composite event detection service 243
Tllustration of centralized composite event detection 243

Illustration of distributed composite event detection 244

XVIII List of Figures

7.10

7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

Two cooperating composite event detectors for distributed

detectiono e 245
The life cycle of a mobile composite event detector 245
The design space for distribution policies 247
An event type hierarchy for the Active City.................. 255
lustration of the secure publish/subscribe model 258
An event type hierarchy with attribute encryption............ 262
Subscription coverage with attribute encryption 263
Deriving the minimum leasing time 269
Notification bandwidth saved by doing filtering instead of

Hooding . ..ot 272
Choosing 7 such that “old” and “new” update messages do

not interleave 274
Derivation of the maximum stabilization time 276
Flow of DCQ and UCA messagesc..ouuvenninnenn... 280
Processing of DCQ and UCA messages at IBs................ 283
Consolidation of UCA messagesat IBs 283
Missing notifications in a flooding scenario................... 291
Moving client scenarios with one and multiple producers 293
Blackout period after subscribing with simple routing 297
Blackout period with flooding and client-side filtering 297
Defining the quality of service for logical mobility 298
Network setting for the example........ 299

Movement graph defining movement restrictions of a consumer . 299
Total number of messages generated for flooding and two

scenarios of the new algorithm 301
Internal structure of an object request broker (ORB) 305
Push mode vs. pull mode (typed event communication) 308
Typed event communication using an event channel 308
The structure of a structured event (from [287]) 309
Conceptual overview of data-centric publish/subscribe (DCPS) . 314
A Gryphon network with virtual event brokers 325
A hierarchical topology in SIENA ..., 327
An acyclic peer-to-peer topology in SIENA 327
A generic peer-to-peer topology in STENA 328
Hierarchical event routing in JEDI......... 329
Substituting one link with another link................... ... 330
An exemplary router network of REBECA 331
The filtering framework of REBECA 332
Layered networks in HERMES 335
Overview of the HERMES architecture 336
The publish-register—notify paradigm in the CEA 338

An ODL definition of event types in ODL-COBEA 339

List of Tables

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1

7.1

8.1
8.2

Some exemplary temporal formulas and their informal meaning 26

Interface operations of a simple event system 27
Changes of the state variables caused by interface operations... 27
Additional interface operations for advertisements 32
Changes of the state variables caused by the additional

interface operations for advertisements 32
Covering among notification types 40
Covering among (in)equality constraints on simple values. 40
Covering among comparison constraint on simple values 41
Covering among interval constraints on simple values 41
Covering among constraints on strings 41
Covering among set constraints on simple values 42
Covering among set constraints on multi values 42
Perfect merging rules for attribute filters 49
Portfolio of content-based routing algorithms 104
Example of five distribution policies 248
Values of ploc(z,t) for the example setting. 300

Values of filters in example setting............. 301

1

Introduction

1.1 Networked Computing

The speed at which business is conducted continues to increase. Customer ser-
vice is important, and mergers as well as joint ventures require flexibility and
adaptability of business infrastructures. With the reduction of coordination
and communication costs, organizational structures are changed more easily
and more frequently. So even after the end of the hype about a New Economy,
the trend toward more volatile business structures has neither ceased nor lost
its importance [247]. To foster processes and applications that cross traditional
modules of enterprise systems, SAP, the major enterprise resource planning
(ERP) company, has recently identified an “adaptive business” strategy to
be the key to competitive advantage [38]. Services and data are integrated
in ever new constellations so that application architectures are getting more
volatile. The transition to loosely integrated distributed systems requires I'T
infrastructures that facilitate both scalability and system evolution.
Consequently, the development of today’s computer systems is mainly in-
fluenced by the effects of networking. Increasing connectivity and the size of
networked systems give rise to a number of issues. A basic requirement is
the availability of scalable communication mechanisms, which are crucial for
building and maintaining these systems. The mechanisms not only have to
support large numbers of components, but also face complex application en-
vironments that are dynamic and subject to unexpected and recurrent change.
A second important aspect of today’s systems is the automation of data
processing. While systems were traditionally designed to respond to interac-
tive user requests, the aim today is to provide increasingly autonomous data
processing to improve functionality and utility. Instead of having human op-
erators mediate between applications, e.g., to replenish an inventory by man-
ually reordering goods, directly connected applications are able to initiate
replenishment automatically. In this example, low supplies initiate activity.
In general, for a computation to be automated, it must be provided with

2 1 Introduction

the data necessary to check for such conditions. Applications are driven by
information available in the system, they are data- or information-driven.

1.2 Middleware

The concept of a middleware was introduced to facilitate communication be-
tween entities in a heterogeneous distributed computing environment. Middle-
ware is an additional layer between operating systems of individual nodes and
a distributed application. It deals with communication issues and attempts
to provide a homogeneous view of the world to the application. As such, it is
widely used and has proved to be a successful abstraction that helps with the
design and implementation of complex distributed systems.

The variability of dynamic networked environments and the automation
of data exchange shifts the focus when dealing with the delivery of data and
services, moving from a stationary world to one that is in a state of flux.
Traditionally, middleware has viewed data and services as being stationary in a
collection of objects or databases, with inquiries directed at them in a request/
reply mode of interaction. This concept has led to client/server middleware
architectures that emphasize explicit delegation of functionality, where system
components access remote functionality to accomplish their own goal. Remote
procedure calls (RPC) and derivative techniques are classic examples [44, 269,
371]; even the incipient Web services mainly rely on sending requests with the
Simple Object Access Protocol (SOAP) [347]. These techniques deliberately
draw from a successful history of engineering experience, their principles are
well understood, and they have been an appropriate choice for many well-
defined problems.

In the context of dynamic networked systems, however, request/reply has
serious restrictions. The direct and often synchronous communication between
clients and servers enforces a tight coupling of the communicating parties
and impairs scalability [158]. Clients poll remote data sources, and they have
to trade resource usage for data accuracy, especially in chains of dependent
servers. Unnecessary requests due to short polling intervals waste resources,
whereas long intervals increase update latency. In addition, request/reply re-
stricts system evolution. The control flow is encoded in application compo-
nents, which makes it accessible to engineers but also mixes the actual con-
figuration of the system with the application logic of individual components.
Consequently, the capability to orchestrate the whole system is limited by the
means available to adapt application components at runtime. Finally, dele-
gating functionality inevitably implies a functional dependency on the called
service, and on its presence.

The need for asynchronous and decoupled operation led to various ex-
tensions of existing middleware. For instance, CORBA and Java 2 Enterprise
Edition (J2EE) were extended with asynchronous invocation methods and
notification services [279, 336, 338, 364], and similar features are available

1.3 Event-Based Systems 3

in Microsoft’s COM+ and in the language model of the new .Net plat-
form [235, 315], too. Database research, software engineering, and coordi-
nation theory corroborate the advantages of loosely coupled interaction as
well [80, 171, 295, 356].

1.3 Event-Based Systems

Instead of stepwise amending the conventional request/reply mode of inter-
action, event-based computing takes a contrasting approach and inherently
decouples system components. In an event-based mode of interaction com-
ponents communicate by generating and receiving event notifications, where
an event is any occurrence of a happening of interest, i.e., a state change in
some component. The affected component issues a notification describing the
observed event. An event notification service or publish/subscribe middleware
mediates between the components of an event-based system (EBS) and con-
veys notifications from producers (or publishers) to consumers (or subscribers)
that have registered their interest with a previously issued subscription.

The power of an event-based architectural style [68] is that neither the pub-
lished notifications nor the subscriptions are directed toward specific compo-
nents. The notification service decouples the components so that producers are
unaware of any consumers and consumers rely only on the information pub-
lished, but not on where or by whom it is published. Event-based components
are not designed to work with specific other components, which facilitates the
separation of communication from computation. The event-based style carries
the potential for easy integration of autonomous, heterogeneous components
into complex systems that are easy to evolve and scale [32, 355].

In view of the above arguments, the use of events is superior to request/
reply in many information-driven scenarios [157]. In fact, many improvements
of tightly coupled communication converge to an asynchronous approach. For
instance, caching data in network nodes [322], callback handling according to
the observer pattern [161], asynchronous remote invocations [338] introduce
some form of indirection, decoupling interaction from computation. The loose
coupling makes applications easier to adapt and integrate, and it allows a
specialized mediator, the notification service, to achieve scalability.

As a consequence, the potential of the event-based style has been rec-
ognized both in academia and in industry. The event-based architectural
style is becoming an essential part of large-scale distributed systems’ design,
and many applications and their underlying infrastructures have incorporated
event-based communication mechanisms. Information buses are the basis of
many systems [27, 289], and a number of event notification services were de-
veloped (e.g., [71, 92, 172, 353, 364, 381]) as well as integrated into modern
component platforms such as COrRBA Component Model (CCM) [278] and
Enterprise JavaBeans (EJB) [362].

4 1 Introduction

The aim of this book is to provide the reader with an overview of the rich
area of event-based systems. We cover a broad spectrum of topics, ranging
from a formal treatment of local and distributed event matching algorithms,
through a more practical discussion of software engineering issues raised by
the event-based style, to a presentation of state-of-the-art research topics in
event-based systems, such as composite event detection and security. Our hope
is that our presentation shows the power of event-based systems in modern
systems design and encourages both researchers and practitioners to exploit
the event-based style in next-generation large-scale distributed applications.

1.4 Application Scenarios

The range of application scenarios for event-based systems is broad. Often, ap-
plications use event-based communication to improve scalability or to achieve
adaptability. In order to understand the power of event-based system, we
consider application scenarios, in which the use of traditional request/reply
communication would be prohibitively expensive in terms of efficiency or us-
ability. Next, we describe several application scenarios to motivate the use of
an event-based style for systems design.

1.4.1 Information Dissemination

Information dissemination, in general, is the apparent application domain
of notification services, which includes news story dissemination, real-time
control systems, and stock market monitoring applications. The timely and
efficient dissemination of information to many consumers is a prerequisite in
these systems. In addition to simple unidirectional data distribution scenarios,
in which the focus is on the direct communication of few producers with many
subscribers, more sophisticated applications require the set-up of complex
information flows, in which an event-based style is used to drive advanced
processing workflows of real-time data.

In its most basic form, Internet-wide distributed systems involve the ex-
change of information among a large number of nodes. A system for news
story dissemination is depicted in Fig. 1.1. News reports that are generated
by local news agencies are distributed worldwide among many news corpora-
tions. News corporations desire to receive relevant information only, and news
agencies prefer to avoid the complexity of having knowledge about all news
corporations. The loose coupling of producers and consumers in an event-
based system for this application leads to a flexible and robust system design.

1.4.2 Network Monitoring

In general, any form of system monitoring is very compatible with an event-
based style. Information about the current status of the system’s components

1.4 Application Scenarios 5

A News Corporation
m Local News Agency

Fig. 1.1. A news story dissemination system

is logged with only a minimal influence on the control flow of the running
system as it is published as state changes. Network management has a strong
need for sophisticated monitoring capabilities of runtime statistics, alerts, and
configuration changes [216, 339]. Especially, distributed network intrusion de-
tection [162, 163] has gained widespread attention in recently with high-profile
distributed denial of service attacks and the compromise of personal data.

In particular, network monitoring applications often require a high-level
view of the system [330, 348]. A network failure or intrusion attempt may
lead to a multitude of low-level events being triggered. The challenge for
the network administrator is to track down the root cause of these events
as quickly as possible. Real-time processing of events to detect patterns in
the form of composite events are a powerful technique for this; they will be
described in Chap. 7.

1.4.3 Enterprise Application Integration

Many business environments are characterized by their variability and need to
facilitate change. Enterprise application integration (EAI) is about connecting
custom-built, third-party, or legacy systems to share data and join business
processes. However, the integrated applications are often independently de-
veloped, deployed, and maintained. To avoid tightly coupled dependencies
between any pair of these applications, the resulting system architecture usu-
ally relies on a mediator to achieve the loose coupling that is necessary to
achieve scalability and flexibility [191].

Information buses, messaging, and the source-driven distribution of data
is an inherent characteristic of EAI [215, 289]. A mediator approach decou-
ples interfaces, allows for independent evolution, and extracts communication
and coordination tasks into an extra component. The event-based paradigm

6 1 Introduction

Q
Office 1 Office 2 Office 3
Person
4
e Sensor
®
(P
Meeting Room 1 e Meeting Room 2

Fig. 1.2. The Active Office ubiquitous environment

directly addresses the EAI objectives and publish/subscribe middleware is
therefore an important candidate for implementing such a mediator [27, 215].

1.4.4 Mobile Systems

Mobile systems are distributed systems in which a subset of the nodes (e.g.,
the clients in a client/server system) or even all nodes of the system are mo-
bile leading to a more or less dynamic network topology. These systems are
obviously dynamic environments where central servers, synchronous commu-
nication, and static bindings are inappropriate and not available [60]. An in-
frastructure for mobile systems always has to cope with reconfigurations, thus
making the event-based style pertinent here, too [90, 142]. Similar arguments
hold for wireless sensor networks [9, 205, 254].

1.4.5 Ubiquitous systems

A different type of large-scale distributed system is a ubiquitous sensor-rich
environment concentrated on a small area, such as theActive Office building
shown in Fig. 1.2. In such a building, sensors that are installed in offices
provide information about current occupancy, environmental conditions, and
equipment health to interested devices, applications, and users. The Active
Office is aware of its inhabitants’ behavior and enables them to interact with
it in a natural way.

Since this ubiquitous environment is highly dynamic with components con-
stantly entering and leaving, the loose coupling of an event-based system
vastly simplifies system design. In addition, the large number of sensors po-
tentially produces a large amount of data. As a result, information consumers
prefer a high-level view of the primitive sensor data, making efficient data
aggregation a necessity.

1.5 Putting Event-Based Systems Into Context 7

1.5 Putting Event-Based Systems Into Context

In this section, we point out areas related to event-based systems. By doing so,
we want to put event-based systems into the context of better known areas in
computer science. This also shows how event-based techniques were indepen-
dently developed in different areas to address similar challenges introduced
by scale, system evolution, and real-time requirements.

The database community has quickly recognized the need for databases to
react to data changes. Active databases [304, 394], such as HIPAC [103] and
Postgres [352], follow an event-based style using database triggers [101] that
are expressed in the form of event—condition—action (ECA) rules. The action
of a trigger is executed when an event occurs, such as the modification of a
database table, and a predicate conditions holds. This enables the database
to react to user actions, tying computation to external events.

In software engineering the event-based mode of interaction is also
known as implicit invocation [115, 164]. It is defined as an architectural style
that determines how components of a software architecture communicate in
principle [165]. Events can be found in enterprise architectures [151, 191] as
well as in software patterns like the observer pattern [161]. In fact, Garlan
et al. [166] early identified the prominent importance of using events for the
construction of flexible software architectures. The book by Luckham [242]
thoroughly elaborates the important relation between enterprise applications
and complex event processing. Consequently, eventing is part of most modern
component and container frameworks. The concept is also employed in graph-
ical user interfaces (GUIs), where the model view controller paradigm [178§]
and observer patterns are applied. More recently, aspect-oriented program-
ming uses events to identify points in the execution of programs at which
aspect code is activated [82, 147].

Stream processing systems [63] such as Aurora [1], Borealis [23], Hi-
Fi [156], and TelegraphCQ [75] combine event-based, push-based data dissemi-
nation with transformation capabilities implemented by stream operators [14].
Data sources continuously produce events, which are transformed according to
existing continuous queries [17], thus delivering a result stream to consumers.
The event-based style ensures that producers are decoupled from consumers,
which is important in common application scenarios such as supply chain
management and financial market analysis.

Distributed monitoring and debugging [249] systems, for example
GEM [251]), are used to gather changes in the distributed state of a system.
Composite event detection [339] is then used to derive more abstract events
from the primitive ones. Monitoring can be either done online or offline. With
offline monitoring, primitive events are collected locally until, for example, an
error occurred. Then, the collected events are transferred to a central facility
that does the analysis, e.g., to find the source of the error. Contrarily, in the
case of online monitoring, primitive events are collected and composite events

8 1 Introduction

are detected in realtime. This approach is much more complicated but it is
also more powerful since it allows to build adaptive distributed systems.

In sensor networks, algorithms such as directed diffusion [204, 205] are
used that are very similar to content-based routing algorithms. In sensor net-
works event sources publish events that are then routed hop-wise through the
network to reach event sinks. While events are routed, they may be aggregated
on intermediate nodes if possible. This is done to reduce the network traffic.
In the case of direction diffusion, gradients are derived (e.g., hop-based on the
distance from the sink) by flooding the subscriptions into the network. Path
reinforcement is used to enforce single path delivery.

Until recently, workflow systems [176] were often built around central-
ized data stores, but distributed execution environments led to generaliza-
tions relying on ECA rules and events [177, 242]. Event notification services
are used as building blocks for distributed activity services [80, 190, 217].
However, such high-level application domains have requirements that typical
publish/subscribe middleware can hardly fulfill today [118], and which led to
the discussion about engineering issues in Chap. 5.

1.6 From Centralized to Internet-Scale Event Systems

The first generation of event-based systems were centralized systems with
integrated active functionality. Examples of these systems are active databases
and toolkits for graphical user interfaces. With the introduction of distributed
system middleware, such as CORBA, the idea of incorporating asynchronous
event-based communication into this middleware arose. This led to notification
services such as the CORBA Event Service. However, most implementations of
these services were still centralized and had only limited filtering capabilities.

The next step was to integrate more expressive filtering leading to, e.g., the
CoRrBA Notification Service. Still, most distributed systems were rather closed,
and event forwarding based on IP multicast was sufficient. Then, the need to
integrate several distributed systems to form a larger system arose. This raises
the need for security mechanisms, content-based forwarding, mechanisms to
cope with data heterogeneity, and scoping. The next step will be an Internet-
scale notification service that enables information to flow from one node in
the Internet to another. To achieve this, optimized content-based routing,
scoping with input and output interface, and refined security mechanisms
(e.g., to enable trust) are needed. This book discusses the techniques that lie
on the road from centralized to Internet-scale event systems and which are
needed to make this vision a reality.

1.7 Structure of the Book

The structure of the book is as follows (see Fig. 1.3):

1.7 Structure of the Book 9

(Chaptcr 2: Terminology Background
kBasics Specification

(Chapter 3: Chapter 4: Chapter 5:
Data and Filter Models Routing Engineering

Matching Algorithms

g

Chapter 9: Chapter 6:
("Chapter 7:] Advanced Topics Scoping

Composite Events Security

Fault Tolerance

- Congestion Control
Chapter 10: Mobility
ns

Existing Implementatio

Fig. 1.3. The structure of the book

Chap. 2: Basics. We introduce the basic terminology and from introduced
interaction models we derive our notion of event-based interaction. We
describe notification filtering mechanisms including channels, subjects,
types, and content-based filtering. A specification of event system is given
that forms the basis of our further investigations.

Chap. 3: Content-Based Models and Matching. We describe data and
filter models that allow notification to be described and filtered as well
as matching algorithms that match published data to registered subscrip-
tions. This chapter can be skipped if matching is considered as black box
functionality.

Chap. 4: Distributed Notification Routing. This chapter presents de-
tails about the distributed implementation of publish/subscribe systems.
The system model is described and framework for content-based routing
is introduced. Based on the framework we discuss a number of routing
algorithms and we present several extensions of the basic framework.

Chap. 5: Engineering of Event-Based Systems. We describe the engi-
neering issues related to event-based systems and how one can build event-
based applications.

Chap. 6: Scoping. This chapter introduces a scoping concept for event-
based systems. We discuss how to restrict the visibility of events by scopes,
event-components based on scopes with input and output interfaces, no-
tification mapping, and transmission policies.

Chap. 7: Composite Events. We detail composite event detection by dis-
cussing composite event detectors based on automata, a composite event
language, and detection architectures.

10 1 Introduction

Chap. 8: Advanced Topics. This chapter collects more advanced topics
(such as security, fault tolerance, congestion control, and mobility) to
which only an introduction is given because a full coverage is out of the
scope of this book.

Chap. 9: Existing Notification Services. Here, we discuss existing stan-
dards (e.g., JMS, CorBA Notification Service), commercial products (e.g.,
Oracle Streams Advanced Queuing, TIBCO Rendezvous), and research
prototypes (e.g., SIENA, JEDI, REBECA).

Chap. 10: Conclusions. This chapter summarizes the main insights of this
book and give an outlook to potential future research directions.

Basics

2.1 Terminology—Constituents of Event-Based Systems

An event-based system consists of the following constituents (see Fig. 2.1):
events and notifications as means of communications, producers and con-
sumers as interacting components, subscriptions signifying a consumer’s in-
terest in certain notifications, and the event notification service responsible
for conveying notifications between producers and consumers.

2.1.1 Events and Notifications

Any happening of interest that can be observed from within a computer is
considered an event. This may be a physical event such as the appearance of
a person detected by sensors, a timer event that indicates progression of real
time, or generally an arbitrary detectable state change in a computer system.
We consider only the third kind of events here, because event detection is out
of the scope of this book.

A notification is a datum that reifies an event, i.e., it contains data describ-
ing the event. A notification is created by the observer of the event and may
just indicate the plain occurrence, but often may carry additional information
describing the circumstances of the event. For instance, in the active badge
system of Bacon et al. [18] events are raised when persons wearing a badge
approach a sensor, and the published notification carries the detected ID of
the badge and the time of observation. In general, different notifications can
be created that describe the same underlying event, but from multiple view-
points. This may be done due to application or security reasons, or simply
because notifications are encoded in different data models. The most common
data models are name/value pairs [71], objects [18, 104, 127], and semistruc-
tured data [12, 264], e.g., XML.

On the lowest level considered here, notifications are conveyed via mes-
sages, which are data containers on the network level transmitting data be-

12 2 Basics

Event
Producer Event-Based

Interaction
ﬁ < > Consumer
@ Notification
Notification /| Pub/Sub Interface /

Communication Implementation

Notification Service | Notification Service

RPC, Multicast,
Gossip, Pub/Sub

Message

Fig. 2.1. Event-based systemss: interaction versus implementation

tween the endpoints of the underlying communication mechanism. The dis-
tinction between events, notifications, and messages is used to clearly sepa-
rate the underlying communication technique from the mode of interaction,
cf. Sect. 2.1.4.

2.1.2 Producers and Consumers

The software components of an event-based system act as producers and con-
sumers of notifications. Producers are components that publish notifications.
A producer’s implementation is “self-focused” in the sense that it observes
only its own state. The decision to publish a state change is made by the
component’s internal computation and is a core part of its function. What
changes are published and how this decision is configured/programmed into
the producer are issues of past and ongoing research in areas like debug-
ging [33] and monitoring [231], reflection [223], and aspect-oriented program-
ming (AOP) [82]. Published notifications are not addressed to any specific
(set of) receivers; they are rather forwarded to the event notification service
for further distribution. Producers are unaware of any other components and
they do not anticipate any reaction on the receiver side; this is detailed in
Sect. 2.2.

Consumers react to notifications delivered to them by the notification
service. They, too, are unaware of their specific communication peers. Not
knowing the actual producers of notifications, consumers issue subscriptions
to describe the kinds of notifications they are interested in; different classes of
subscriptions are depicted in the next section. If a component is both consumer
and producer, it reacts to both incoming notifications and observed internal
state changes, and the resulting computation may lead to newly published
notifications.

2.1 Terminology 13
2.1.3 Subscriptions and Filters

A subscription describes a set of notifications a consumer is interested in.
Consumers register their interest in receiving certain kinds of notifications by
submitting subscriptions to the notification service. The service evaluates the
subscriptions on behalf of the consumer and delivers those notifications that
match one of the consumer’s subscriptions. Subscriptions are filters, which are
basically Boolean-valued functions that test a single notification and return
either true or false. Indeed, filters are a common way to implement subscrip-
tions, although, in general, subscriptions may comprise more than only a filter
function. They can additionally include (meta)data to govern notification se-
lection beyond a per-notification level; for example, security credentials for
accessing certain classes of notifications [34] or timing information to get past
notifications [81]. Subscriptions can be seen as input interfaces of consumers,
describing the data they are prepared to process.

Advertisements are issued by producers to declare the notifications they
are willing to send. They also describe sets of notifications and may be of
the same form as subscriptions. From a network level point of view, adver-
tisements help to improve routing decisions, because the notification service
knows which notifications can be expected from where. From a software engi-
neering viewpoint, advertisements comprise a component’s output interface.

The expressiveness of subscriptions in terms of filtering capabilities de-
pends on the filter model and the data model employed. The combination of
a filter model and a data model is called a notification classification scheme.
In distributed notification services, essentially four filter models are distin-
guished: channels, subjects, types, and content-based, which are described in
Sect. 2.3. Tuples, sets of name/value pairs, and semistructured documents are
the most prominent data models for distributed notification services. They
are described in Chap. 3.

2.1.4 Event Notification Service

The event notification service, or notification service for short, is the mediator
in event-based systems that decouples producers from consumers. It alone is
responsible for conveying notifications, and it must deliver every published
notification to all consumers having registered matching subscriptions. It im-
plements a publish/subscribe interface, providing adv, pub, sub, unsub, and
notify operations; the last being an output operation called on a registered
consumer to deliver a notification. The notification service gets notifications
from producers via the pub operation, and they must match the advertise-
ments issued with the adv operation. The service tests notifications it got
from producers against subscriptions it got from consumers via the sub oper-
ation, and delivers the notifications to those consumers that have a matching
subscription with notify. In essence, it separates communication responsibil-
ity from components in the sense that the mediating service is responsible

14 2 Basics

for subscription evaluation on behalf of the consumers and for delivering no-
tifications on behalf of the producers. Note that we just described a basic
notification service; a more advanced service may exhibit more operations.

From the perspective of application components, the notification service
is a black box; its function does not depend on it being distributed. However,
its nonfunctional attributes, such as efficiency, scalability, and availability,
are influenced by the architecture and the communication techniques used to
distribute notifications.

In addition to the notification service, event-based systems often contain
further event handling capabilities, such as event and notification type repos-
itories, descriptions of available data and filter models, and other “metadata”
as well as programming language bindings beyond service invocations. To re-
flect the broader functionality the collection of notification service plus any
additional event handling is termed event system.

2.2 Models of Interaction

From a technical point of view, an event notification service just provides
publish/subscribe functionality, which may be used for transporting notifi-
cations, but also for sending requests to groups of servers. The essence of
event-based systems is not found in the Application Programming Interface
(API) or the techniques used for transmitting notifications. Event-based inter-
action is mainly a characteristic of the components, and not of the underlying
communication technique [54, 265].

In order to provide a fundamental and simple characterization, four in-
teraction models are distinguished by the way interdependencies between
components are established. The four models are differentiated by two at-
tributes (Fig. 2.2). The first attribute, initiator, describes whether consumer
or provider initiates the interaction, where the former depends on data or
functionality provided by the latter. The second attribute, addressing, distin-
guishes whether the addressee of the interaction is known or unknown, i.e.,
whether the peer component is directly or indirectly addressed.

The resulting four interaction models are independent of any underlying
implementation technique. Any interaction between a set of components can
be classified according to these models. Even though interaction may show
more nuances in practice, the models are complete in the sense that they
essentially cover all major paradigms.

Furthermore, the interaction models characterize the inner structure of
components, because the models determine how dependencies between the
components are established. From an engineering point of view, this helps to
identify constraints and requirements posed by a given component on its usage
scenarios and on the underlying infrastructure. Architectural mismatches are
disclosed early; they would otherwise have to be tackled by an integrating

2.2 Models of Interaction 15

Initiator
Consumer Provider

Addressee Direct Request/Reply Callback

Anonymous
Request/Reply

Indirect FEvent-Based

Fig. 2.2. Taxonomy of cooperation models

implementation, which impedes system evolution and scalability sooner or
later [167].

2.2.1 Request/Reply

The most widely used interaction model is request/reply. Any kind of remote
procedure call or client/server interaction belongs to this class. The initiator
is the consumer (i.e., client) that requests data and/or functionality from the
provider (i.e., server), and it expects data to be delivered back or relies on
a specific task to be done. The provider is directly addressed, its identity is
known, and the caller is able to incorporate information about the callee into
his own state and processing, resulting in a tight coupling of the cooperating
entities. Replies are (in most cases) mandatory in this model.

2.2.2 Anonymous Request/Reply

The anonymous request/reply model also uses request/reply as basic action,
but without specifying the provider that should process the request. Instead,
requests are delivered to an arbitrary, possibly dynamically determined set
of providers. The consumer does not know the identity of the recipient(s) a
priori, yet it expects at least one reply—one request may result in an unknown
number of replies.

This model is eligible when redundant providers are available or when
the appropriate provider may be different for each request. For instance, load
balancing selects a provider either arbitrarily or based on the content of the
request; cf. the IP Anycast mechanism [301] tries to route a packet to the
nearest member of a group of destinations without resolving the IP address
in advance. Similarly, component models and containers decouple component
instances and allow for runtime binding of references, cf. JavaBeans [359] and
the Dependency Injection Pattern [153, 252]. However, this often only means
providers are resolved just before the call, making the identity known to the
caller and potentially leading to tight coupling as in classic request/reply.

This cooperation model is besides the event-based model the second model
that is directly implemented by publish/subscribe services, which often con-
fuse these two models. Anonymity of providers adds more flexibility to the

16 2 Basics

request /reply model, but the dependency on externally provided data or func-
tionality persists.

2.2.3 Callback

In the callback model, which is employed in the well-known observer design
pattern [161], consumers register at a specific, known provider their interest to
be notified whenever some condition becomes true. The provider repeatedly
evaluates the condition and if necessary calls the registered component back.
The provider is responsible for administering its callback list of registered
consumers. If multiple callback providers are of interest, a consumer must
register separately for all of them. The identity of the components is known
and must be managed on both sides, leading to a tight coupling with no
coordination medium in between.

On the other hand, knowing the identities of consumers, callback process-
ing can be customized so that only subsets of consumers are notified in an
application-dependent way. However, it would be each component’s respon-
sibility to apply callback handlers that implement current application needs,
which is an issue of integration rather than of component implementation.
In any case, a sophisticated implementation of callback handlers leads to the
event-based approach, described next.

2.2.4 Event-Based

The event-based interaction model has characteristics inverse to the request/
reply model. The initiator of communication is the provider of data, that is,
the producer of notifications. Notifications are not addressed to any specific
set of recipients, as was described earlier. A consumer can receive notifications
from many providers, because subscriptions are, in general, neither directed
nor limited to a particular producer. If a notification matches a subscription,
it is delivered to the registered consumer. Providers are not aware of the
consumers. In contrast to the callback model, providers are relieved from the
task of interpreting and administering registrations, i.e., subscriptions.

The essential characteristic of this model is that producers do not know any
consumers. They send information about their own state only, precluding any
assumptions on consumer functionality. A component “knows” how to react to
incoming notifications and it publishes changes to its own state, but it must
not publish a notification with the intention of triggering other activity. A
component’s implementation is “self-focused” in that the knowledge encoded
in the program, and used by the programmer, is limited to the component’s
own task. This approach completely separates the internals of different parts
of an application.

Of course, the overall functionality of the system still depends on the
proper interaction of all the components, but this is no longer a matter of
individual components. It is rather the composition of components and their

2.2 Models of Interaction 17

interaction that determine the functionality. But event-based interaction with-
draws the control of interaction from the participating components, and the
necessary coordination has to be handled externally. So, in addition to the
role of specifying and implementing individual components, the orchestration
of an event-based system demands extra support. Currently, no such support
is available.

2.2.5 Comparison

The complexity of a decomposed system is characterized by the degree of de-
pendence between its components. Software reliability analysis formally cor-
roborates a result that is informally apparent: If a component relies on other
components to accomplish its own goal, its correctness is degraded by fail-
ures of others [2, 253]. Conversely, the correctness of individual components
is not affected if they process available data only, which is exactly the case
in event-based systems. The event-based style clearly separates computation
from communication and offers the potential of easily evolvable systems. On
the other hand, engineering complexity is considerably affected by the quality
of the abstractions and tools available for coordinating the components.

The dichotomy of request/reply and event-based interaction is marked
by the simplicity of the former and the flexibility of the latter. Request/
reply is easy to handle, implement, and understand, and consequently is well
established. It corresponds to the imperative nature of common programming
languages and component models. Some of its shortcomings are alleviated by a
long list of supplementary techniques such as caching, asynchronous request/
reply, container-controlled operation, dependency injection, etc., that are used
to enhance scalability and system evolution.

However, if interaction becomes less coupled, it gets more indirect. And
this raises the question whether the use of events would be a more appro-
priate solution. In fact, without being formally corroborated, it appears that
request /reply and event-based interaction form a duality in the sense that for
most problems there exist solutions based on either model. Classic request/
reply examples can be rebuilt using events. Event-based interaction typically
relies on a reversed software architecture, reversing activity and data flows,
but the same function can be implemented in both paradigms. The involved
tradeoff is between scalability and flexibility, on the one hand, and simplic-
ity on the other. System engineers have to decide whether they opt for a
simple implementation or for an extensible one. One goal of this book is to
make choosing the extensible solution less costly, and thus eligible for more
scenarios.

2.2.6 Interaction vs. Implementation

The mode of interaction influences the design of components and is difficult to
change. It is a prerequisite of good design to choose an interaction model that

18 2 Basics

matches the function a component has to accomplish. Otherwise, architectural
mismatches would inevitably impede system composition and evolution [167].
For this reason, this basic but principal distinction of interaction models helps
system designers to identify the core structure of components, and it avoids
mixing interaction and implementation issues [137].

Unfortunately, the mode of interaction is often confused with the choice
of implementation techniques currently available. In particular, event-based
interaction is often equated with using general publish/subscribe services.
While being obvious candidates for implementing notification dissemination,
they are not the only ones; other techniques may as well be employed, like
point-to-point messaging, IP multicast, Linda tuple space engines, or even
classical remote procedure calls. For instance, if a system engineer knows that
a set of event-based components interacts only within a small group, nothing
speaks against using RPC. In fact, if the communication happens to be sensi-
tive to eavesdropping, RPC even becomes the most appropriate choice. Note
that producers still publish notifications as before, only the underlying imple-
mentation is considered here. Conversely, a publish/subscribe service can also
be used to implement anonymous request/reply interaction.

Generally, there is no best implementation technique for a certain interac-
tion model. The technique must be chosen in view of the deployment environ-
ment, the demanded quality of service, and the overall need for flexibility and
scalability. Event-based interaction facilitates the distinction of interaction
and implementation due to its separation of computation from communica-
tion. And while traditional publish/subscribe services focus on unidirectional
delivery (Sect. 5.1), many different techniques can be exploited in building
event-based systems.

The preceding description of event-based interaction basically refines the
one given in literature, e.g., [68, 165, 295]. The discussion makes it now pos-
sible to unambiguously define the involved terminology. The system outline
given in Fig. 2.1 spans several levels of abstraction. On the lowest level, mes-
sages are sent and received. Arbitrary asynchronous messaging techniques can
be used, be it connectionless point-to-point network protocols, IP multicast
mechanisms, or publish/subscribe implementations.

On the next level, the publish/subscribe interface is implemented. It is used
to publish data that is delivered to subscribers. As part of its implementation,
messages containing the data are sent and received. From a technical point of
view, the publish/subscribe interface implements both anonymous request/
reply and event-based interaction.!

On the highest level, where event-based interaction finally takes place,
producers publish notifications that are delivered to consumers. Only this level
is of concern when assessing the characteristics of event-based interaction and
its effect on system engineering.

! Although all arguments made here explicitly target event-based systems, they are
equally applicable to any general publish/subscribe scenario.

2.3 Notification Filtering Mechanisms 19

2.3 Notification Filtering Mechanisms

2.3.1 Channels

Channels are the simplest form of identifying sets of notifications. In this
model, producers select a named channel into which a notification is pub-
lished. Consumers, on the other hand, select a channel and they will get all
notifications published therein. An example of this approach is the CORBA
Event Service [280]; the COrRBA Notification Service [287] also relies on chan-
nels but additionally offers filters on notification content.

2.3.2 Subject-Based Filtering

Subject-based filtering uses string matching for notification selection [289].
Publishers annotate each notification with a subject string that denotes a
rooted path in a tree of subjects. For example, a stock exchange applica-
tion publishes new quotations of FooBar Ltd. under the subject /Exchange/
Europe/London/Technology/FooBar, classifying it to be traded in London
and to belong to the technology sector of the stock market. Consumers
subscribe for /Exchange/Europe/London/Technology/* to get all technol-
ogy quotations. It is implementation-dependent whether /Exchange/Europe/
London/x* already includes notifications of subsubjects or not. In principle,
arbitrary pattern matching can be executed on subjects.

The simplicity of this approach has deficiencies that limits its applicabil-
ity. The requirement to use a single path in a tree to classify a notification
severely constrains the expressiveness of this model. The subject hierarchy is
a tree—multiple super-subjects are not allowed—and it classifies only from
a single point of view. Alternative classifications, e.g., /Exchange/Europe/
Technology/London, are only possible if different subtrees permute the order
of subjects. This leads to repeated publications and an exponential growth of
tree size if several alternative viewpoints shall be reflected.?

2.3.3 Type-Based Filtering

Type-based filtering uses path expressions and subtype inclusion tests to se-
lect otherwise opaque notifications [32, 127]. With multiple inheritance, the
subject tree is extended to type lattices that allow for different rooted paths
to the same node. Often, type-checking is complemented with content-based
filters to improve selectivity [311].

2 Similarly, from a software engineering point of view such hierarchies have been
criticized as restrictive and impeding integration and evolution [188].

20 2 Basics
2.3.4 Content-Based Filtering

Content-based filtering is the most general scheme of notification selection [69,
262]. Filters are evaluated on the whole content of notifications, where the data
model of the notifications and the applied predicates determine the expres-
siveness of the filters. Available solutions range from template matching [92],
simple comparisons [71], or extensible filter expressions [264] on name/value
pairs, to XPath expressions on XML [12] and arbitrary programs and mobile
code [117].

Concept-based Publish/Subscribe is orthogonal to the above approaches
and is proposed by Cilia et al. [83]. It employs semantic mappings between
data and filter models to transform subscriptions from one model to another.

2.4 A Model Distributed Notification Service

This section describes the system model and the basic characteristics of the
REBECA notification service [136]. It implements the publish/subscribe inter-
face described in Sect. 2.1 and conforms to the preceding definition of simple
event systems. Its basic architecture is a representative example of a dis-
tributed notification service, which is comparable to that of other services like
SIENA, JEDI, etc. REBECA is different from other services with regard to its
support for different routing algorithms and data and filter models [263, 267],
and the visibility control extensions presented in this book. REBECA serves
two roles: first, its system model is the basis for investigating visibility issues,
and second, the available implementation acts as testbed for publish /subscribe
functionality.

2.4.1 System Model

The model assumed in REBECA and this book is a process model in which
computational activity is represented by the concurrent execution of process-
es [230]. Processes interact by passing messages via links between them. A
link connects a pair of processes and forwards messages asynchronously so
that there is a delay between sending a message and receiving it. Links are
assumed to exhibit no failures and to obey first-in-first-out (FIFO) ordering
of messages. This means that no messages are lost or corrupted due to link
failures and that messages are received in the same order they were sent.
Although being impractical in general, it is a reasonable assumption in the
present context, because it simplifies the discussion. In Sect. 8.2 we discuss
fault tolerance issues. In fact, initial solutions for both problems exist else-
where and may be used later to extend the model, e.g., [86, 263].

More concretely, the considered distributed system consists of a set of
physical nodes interconnected by a communication network and each node

2.4 A Model Distributed Notification Service 21

runs one or more processes. Communication links are point-to-point connec-
tions in this network, and their failure model is easily matched by TCP/IP
connections, for instance. This is the basic model that is broadly applicable,
and which nevertheless is open for implementation-dependent options, like
using multicast, to improve communication performance (cf. Sect. 6.7.4).

2.4.2 Architecture

The system constituents are illustrated in Fig. 2.3 and both the applica-
tion components and thenotification service itself are implemented by the
aforementioned processes. Each component is executed by a separate process,
which is linked to a process of the notification service. The service is accessed
as a black box that is conceptually centralized, but its implementation is
distributed across several processes and nodes to split the load and exploit
locality in notification delivery.

X4’s Access Broker Inner Broker Local Broker

Fig. 2.3. The router network of REBECA

The notification service forms an overlay network in the underlying system.
An overlay network is a virtual network of processes that communicate by
means of a second underlying (physical) network, employing routing strategies
different from the underlying ones. Here, the overlay consists of event brokers
that run as processes on some of the physical nodes. The communication
topology of the overlay is described by a graph. Currently, only acyclic graphs
are supported. Edges are process links and as such are mapped to point-to-
point connections in the underlying network, namely, TCP/IP connections.
The acyclic graph used is comparable to the single spanning tree approach
of multicast algorithms [106]. Obviously, the single tree is a bottleneck of the
system, but, again, it is an adequate model in this context, and extensions
exploiting redundancy are available to tackle problems of scalability and single
points of failure [86, 311, 374].

22 2 Basics

Three types of brokers are distinguished: local, border, and inner brokers.
Local brokers are access points to the middleware. They are typically part of
the communication library loaded into application components; they are not
represented in the graph, but are only used for implementation issues. A local
broker is connected to one border broker. Border brokers form the boundary
of the distributed communication middleware and maintain connections to
local brokers, i.e., the components of the service. Inner brokers are connected
to other inner or border brokers and do not maintain any connections to
components.

Local brokers implement the publish/subscribe interface of the notifica-
tion service and initially put the first message containing a newly published
notification into the network. Border and inner brokers forward the messages
to neighbor brokers according to filter-based routing tables and respective
routing strategies. At the end the messages are sent to the local brokers of
the consumers and from there the notifications are delivered to the applica-
tion components. Routing notifications from producers to consumers through
a broker network is also called distributed notification routing.

2.4.3 Distributed Notification Routing

The function of distributed notification routing is rather simple: just match
all notifications with all subscriptions and deliver the notification to all clients
and neighbor brokers with a matching subscription. In a centralized imple-
mentation the problem is reduced to efficient matching algorithms [266, 404].
A centralized implementation, however, not only concentrates all computa-
tional efforts but also becomes a bottleneck of communication bandwidth.
Hence, REBECA distributes matching on multiple brokers.

Flooding is the simplest approach to implement routing: brokers forward
notifications to all neighboring brokers and only those brokers to which com-
ponents are connected test on matching subscriptions. Flooding guarantees
that notifications will reach their destination, but many unnecessary mes-
sages (e.g., notifications that do not have consumers) are exchanged among
brokers. The main advantage of flooding is its simplicity and that subscrip-
tions become effective instantly since every notification is processed by every
broker anyway.

Filter-based routing depends on routing tables (RT), which are maintained
by the brokers and consist of routing entries. A routing entry is a filter/des-
tination pair indicating to which local client or neighbor broker matching
notifications have to be delivered or forwarded, respectively. The entries are
updated by sending control messages corresponding to new or canceled sub-
scriptions through the broker network. New subscriptions add (F, D) entries
with D denoting the destination from which they were received, and unsub-
scriptions delete the respective entries. Every incoming notification is tested
against the routing table entries to determine the set of destinations with
matching filters, omitting the originating destination if it is a neighbor broker

2.5 Specification of Event Systems 23

to prevent loops. If the incoming notifications of each destination are routed
sequentially, end-to-end FIFO-producer ordering holds. In the case of a acyclic
broker network also causal ordering holds.

Different flavors of filter-based routing exist, which differ in their strategy
to update the routing tables. Simple routing assumes that each broker has
global knowledge about all active subscriptions. It minimizes the amount of
notification traffic, but the routing tables may grow excessively. Moreover, ev-
ery (un)subscription has to be processed by every broker, resulting in a high
filter forwarding overhead if subscriptions change frequently. In large-scale
systems more advanced routing algorithms must be applied to exploit com-
monalities among subscriptions in order to reduce routing table sizes [267].
REBECA includes three of them [263]. Identity-based routing avoids forwarding
of subscriptions that match identical sets of notifications. Covering-based rout-
ing [71] avoids forwarding of those subscriptions that only accept a subset of
notifications matched by a previously forwarded subscription. Note that this
implies that it might be necessary to forward some of the covered subscrip-
tions along with an unsubscription if a subscription is canceled. Merging-based
routing [266] can be implemented on top of covering and goes even further.
In this case, each broker can merge existing routing entries into a broader
subscription, i.e., the broker creates a new cover for the merged routing en-
tries that replaces the old ones. Only the resulting merged filter has to be
forwarded to neighbor brokers, where it covers and replaces existent base fil-
ters. Merging can be done either in a perfect or an imperfect way. Perfectly
merged filters only accept notifications that are accepted by at least one of
its base filters, whereas imperfectly merged filters accept notifications besides
their base filters. Imperfect routing table entries increase network traffic but
allow for lazy updates, hiding frequent reconfigurations in covered parts of
the network.

Advertisements are an additional mechanism to optimize subscription for-
warding. Subscriptions need only be forwarded into those subnets of the over-
lay network where a producer has issued an overlapping advertisement, i.e.,
where matching notifications can be produced at all. If a new advertisement
is issued, overlapping subscriptions are forwarded appropriately. Similarly, if
an advertisement is revoked, it is forwarded, and remote subscriptions that
can no longer be serviced are dropped. Advertisements can be combined with
all routing algorithms discussed above.

2.5 Specification of Event Systems

A considerable amount of work on event-based systems and notification ser-
vices exists, and many concrete systems have been designed and implemented.
Unfortunately, understanding and comparing these systems is very difficult be-
cause of different and informal semantics. Section 2.5.1 presents a formalism
that helps to specify the semantics of an event-based system unambiguously.

24 2 Basics

In Sect. 2.5.2 this formalism is used to specify a simple event system that
captures the requirements considered mandatory for the basic level of ser-
vice. This specification is extended in Sect. 2.5.3 and Sect. 2.5.4 to include
ordering requirements and advertisements. In later chapters of this book, the
basic specification is further extended. In Sect. 6.2.2 the basic specification is
extended to construct scoped event systems, and in Sect. 8.2.2 it is extended
to derive self-stabilizing publish/subscribe systems.

2.5.1 Formal Background

In the literature there exist well-developed methods to specify and validate
concurrent systems. The aim of the proposed formalisms is to precisely de-
scribe the behavior of a system as a “black box”, i.e., without referring to
its internal (implementation) issues. The aim of the formalisms is to pre-
cisely describe the intended behavior of an interactive system. Usually, the
formalisms model a system as state machine which moves from one state to
another by means of an action. Formally this corresponds to the definition of
a labeled transition system (LTS). The black box view entails defining the cor-
rect behavior of such a system at its interface. In the literature this is termed
observation semantics, and there are many different possibilities of defining
observation semantics for concurrent systems. Intuitively, system evolution
can be written as a sequence [53]:

l,o‘
l’-“

S0 S1 So...

, which denotes that starting from the initial state Sy the system reaches state
51 by executing action Gg. Similarly, the system reaches (for ¢ > 0) the state
S;+1 from state §; by executing action a;. Hence, it must be specified for each
action how it changes the current state of the system.

To be able to do reasoning about sequences of states using temporal logic,
we eliminate the actions from the trace by extending the states of the system
to include the next action to be executed. Thus, we define a state s; of the
system to the pair (3;,a;). This allows us to define traces to be sequences
of only states. When we talk about the system to execute an action in the
following, we thus mean that the part of the current state of the system that
corresponds to actions equals the respective action.

Note that trace semantics can not only be used to describe the behavior of a
single process but also be used to describe the behavior of concurrent systems
such as distributed systems. The global state space of a set of concurrent
processes is defined by the cross product of the state space of the individual
processes. The system’s evolution can then be viewed as a sequence of global
states that occur by fairly interleaving the individual process traces such that
every process can execute infinitely often.

One might argue that defining a trace as a total order is unrealistic in
a distributed system because it is not possible or desirable to enforce total

2.5 Specification of Event Systems 25

ordering of states. Indeed, it is possible to give specifications that are not (ef-
ficiently) implementable because of the inherent characteristics of distributed
system such as the lack of a global time. However, the specifications we give
are implementable because they impose ordering relations only on states that
intentionally should be causally related in any sensible implementation.

Definition 2.1 (Trace). A trace o is a sequence of states
0 = 50,51,52y....

Definition 2.2 (Subtrace). Let o = sg,81,... be a trace. Then, for i > 0
the subtrace oy; is the trace s, sit1,.. ..

Definition 2.3 (Specification). A specification X' is a set of traces. A sys-
tem satisfies a specification X if it only exhibits traces which are in X.

In order to implement a specification, the implementation of a system
usually has to execute internal actions in addition to the interface actions.
To model this, any finite number of internal actions in between two interface
actions is allowed. This is sometimes called weak equivalence [35] or stuttering
equivalence [2, 229]. Inference rules and other proof techniques can then be
used to formally derive the satisfaction relation.

In most cases, a specification is given as a set of predicates on traces. We
utilize temporal logic [317] to express such predicates. The formal language
is built from atomic predicates; the quantifiers V, 3; the logical operators
V, A, =, —; and the “temporal” operators O (“always”), & (“eventually”),
and O (“next”). The atomic predicate P is true for every trace whose first
state satisfies P. The formula —p is true for every trace whose first state does
not satisfy P. The other logical operators and quantifiers are defined in the
obvious analogous way. Manna and Pnueli [248] discuss the semantics of many
temporal operators. The semantics of the temporal operators that we need in
this book are defined as follows:

Definition 2.4 (Temporal Operators). Let ¥ be an arbitrary temporal
formula and o = sg, s1,... be an arbitrary trace.

o O is true for trace o iff there exists an i > 0 such that ¥ is true for the
trace oy;.

e OV us true for trace o iff for all i > 0, ¥ is true for the trace oy;.

o OV is true for trace o iff ¥ is true for the trace oy;.

Note that the temporal operators have higher precedence than the logical
operators. Intuitively, ¥ means that ¥ will hold eventually, i.e., there exists
a subtrace for which ¥ holds. For an atomic predicate P, &P means that P
holds for at least one place of the trace. O¥ means that ¥ always holds, i.e.,
for all subtraces. OP means that P holds for all places of the trace. Finally,
OW¥ means that ¥ holds for the subtrace starting at the second place of the
trace. OP means that P holds for the second place of the trace.

The meaning of nested temporal formulas is often not easy to see. Table 2.1
depicts some some exemplary temporal formulas and their informal meaning.

26 2 Basics

Table 2.1. Some exemplary temporal formulas and their informal meaning

ooP P is satisfied by infinitely many places

<ogP From some place on, P holds forever

O[P = OP)] Once P holds, it continues to hold forever

o[P = ©Q] Every P is followed by a Q

O[P = OO—P] P is true for at most one place

OP P is true for at least one place

O-P VvV O-Q No trace satisfies both OP and ¢Q

P = <0Q If initially P holds, then eventually @ holds forever

2.5.2 A Simple Event System
In the following, we give a specification of a simple event system. First, we
introduce the interface operations (i.e., actions) and the state of a simple

event system. Then, we present a specification of simple event systems using
the formalism introduced in the previous section.

Interface Operations and State

T Components
4
* R *) ,/ sub(F)
N \‘notlfy(nz, unsub(F)
Interaction ! pub(n)
'A‘_L| Interface
IS

Event Notification
Service

Fig. 2.4. A simple event system

A simple event system consists of a set of components (acting as producers
and consumers) and of an event notification service (Fig. 2.4). For the purpose
of specifying how a correct event system should behave, we view the event
notification service as a black box. The components and the event notification
service interact via an interface that offers several operations (Table 2.2). Note
that from the viewpoint of the event notification service sub, unsub, and pub
are input operations, while notify is the only output operation.

The operations take parameters from different domains: the set of all com-
ponents C, the set of all notifications N, and the set of all filters F. We make

2.5 Specification of Event Systems 27

Table 2.2. Interface operations of a simple event system

sub(X,F) Component X subscribes to filter F'
unsub(X, F) Component X unsubscribes to filter F'
pub(X,n) Component X publishes n
notify(X,n) Component X is notified about n

the following assumptions: First, notifications are unique, i.e., each notifica-
tion n € N can be published at most once. Second, every filter is associated
with a unique identifier in order to enable the event system to distinguish
subscriptions.

The state of the event system comprises three specification variables for
every component X € C:

1. a set Sx of active subscriptions (i.e., filters which X has subscribed to
and not unsubscribed to yet).

2. a set Px of published notifications (i.e., the subset of N containing all
notifications X has previously published).

3. amultiset Dx of delivered notifications (i.e., the subset of N containing all
notifications which have previously been delivered to X. #(Dx,n) gives
the number of occurrences of n in Dx.

Table 2.3. Changes of the state variables caused by interface operations

pub(X,n) Py = PxU{n}
sub(Y,F) Sy =Sy U{F}
unsub(Y,F) Sy = Sy \ {F}

notify(Y,n) Dy = Dy U{n}

The sets are initially empty, and they are updated faithfully according to the
operations that occur at the system’s interface. When X publishes a noti-
fication n, it is added to Px. Whenever X subscribes to F', F' is added to
Sx, and whenever X unsubscribes to F', F' is removed from Sx. Hence, mul-
tiple (un)subscriptions to the same filter are idempotent. For example, if a
component X subscribes to a filter F' multiple times and then unsubscribes
to this filter once, then F' is no longer in Sx afterwards. The state changes
caused by the interface operation are specified in Table 2.3. With a prime we
indicate the state of a variable after the execution of an interface operation
(e.g., S%). Beyond the changes above caused by the interface operations, the
specification variables are not changed.

We have now specified how the state of the system is changed by the in-
terface operations. Note that only the notify operation is raised by the event
notification service, while all other operations are raised by components. To
specify the correct behavior of the system, we must thus define in what situ-
ations the notification service must or must not execute the notify operations

28 2 Basics

in reaction to the other operations. We will specify the intended behavior of
the notification service by giving a set of temporal formulas.

Before we present the full specification in the next section, we give some
examples to better understand the semantics of temporal formulas in the
context of event systems. Note that free variables are — if nothing else is said
— assumed to be implicitly universally quantified.

Onotify(X, n)
specifies all traces in which component X is eventually notified about n.
O-unsub(X, F)
specifies all traces in which X never unsubscribes to F.
O [notify(X,n) = OO-notify(X,n)]

specifies all traces in which, if X is notified about n, X is never notified about
n again.
O [notify(X,n) = n € N(Sx)]

specifies all traces in which the fact that X is notified about n implies that X
currently has a subscription that matches n. It is important to keep in mind
that the temporal operators determine the place in the trace to which the
imposed conditions are applied. As a last example,

O[notify(Y,n) = n € UxeePx]

requires that the fact that Y is notified about n implies that there is a com-
ponent X for that n is in Px. This implies X has published n before.

Trace-Based Specification

In the following, a specification of simple event systems is presented that relies
on the trace-based semantics introduced above (cf. [140, 144]). It conforms to
the following informal requirements: A component receives

(a) only notifications it is currently subscribed to

(b) only notifications that have previously been published

(c) a notification at most once

(d) all future notifications matching one of its active subscriptions

While properties (a) to (c) are relatively easy to express, the exact meaning
of property (d) requires the most attention.

Definition 2.5 (Simple Event System). A simple event system is a system
that exhibits only traces satisfying the following requirements:

2.5 Specification of Event Systems 29

e (Safety)
O [notify(Y, n) = [n€ N(Sy)]
A [n € UXeGPX] (2.1)

A [OO=notify(Y, n)”

e (Liveness)

a [D(F € Sy) = [©O(pub(X,n) An € N(F) = <notify(Y, n))]]
(2.2)

The specification consists of a safety and a liveness condition [228]. A safety
condition demands that “something irremediably bad” will never happen,
while a liveness condition requires that “something good” will eventually hap-
pen.? It has been shown that all properties on traces can be expressed as the
intersection of safety and liveness conditions [10, 168, 169).

Here, the safety condition states that a notification should never be deliv-
ered to a consumer more than once, that a delivered notification must have
been published by a component in the past, and that a notification should
only be delivered to a component if it matches one of the component’s active
subscriptions at the time of delivery; entailing requirements (a) to (c) from
the beginning of this section.

The liveness condition is more difficult to understand. It describes precisely
under which conditions a notification must be delivered. The condition can
be rephrased as follows: When a component Y subscribes to a filter F' and
does not issue an unsubscription for this filter, then, from some time on,
every notification n that is published by some component X thereafter and
matches the filter will be delivered to the subscribing component. The liveness
condition can be regarded as a precise formulation of requirement (d). Note
that no delivery order (e.g., causal order) is imposed on notifications because
ordering is a highly implementation-dependent and application-specific issue,
and hence is left out of consideration when defining the semantics of simple
event systems. Specifying ordering requirements is discussed in Sect. 2.5.3.

Intuitively, the liveness requirement states that any finite processing delay
of a subscription is acceptable. By abstracting away from real time, a concise
and unambiguous characterization system behavior is obtained. For example,
if a component has subscribed to a filter F' and later unsubscribes to it,
the system does not have to notify the component about any notifications
that match F' and are published in the meantime; it may nevertheless do so.
Liveness requires delivery if the component continuously remains subscribed
to F. Because the system cannot tell the future, it must at some point start
to deliver notifications until the component unsubscribes to F'.

3 For a formal definition of safety and liveness refer to Broy and Olderog [53].

30 2 Basics

Furthermore, the definition of liveness does not directly relate subscribing
and publishing operations to each other, because they are causally indepen-
dent and no semantics is implied here. As an advantage future extensions can
build on this definition to introduce real-time requirements that prevent old
notifications from being delivered to new subscriptions, or caching strategies
that allow for a defined history of notifications to be delivered to newly issued
subscriptions.

A system that satisfies only the safety condition is trivial to implement.
Any system that never invokes a notify operation satisfies the imposed con-
ditions. Similarly, it is easy to implement a system which satisfies only the
liveness condition. Any system that delivers every published notification to
all components fulfills this condition. The challenge is to implement a system
that satisfies both requirements.

2.5.3 A Simple Event System With Ordering Requirements

A simple event system (cf. Def. 2.5) may deliver notifications in an arbitrary
order. For many applications, however, it is important that certain notifi-
cation ordering guarantees are given by the event system. In the following,
we introduce FIFO-producer ordering, causal ordering, and total ordering
as additional safety properties. These properties impose the desired ordering
independent of other safety properties (e.g., those of Def. 2.5). Total order-
ing will probably not be used in most event systems because enforcing a
total order seriously affects the scalability of a system. Note that causal or-
dering implies FIFO-producer ordering, but total ordering is orthogonal to
both FIFO-producer and causal ordering. Hence, for example, total order and
causal ordering can both be required to hold. All ordering properties are of
the form ©A = =B with appropriate temporal formulas inserted for A and
B. The equation means that if A occurs in a trace, then B should not oc-
cur. For FIFO-producer and total ordering, the given property must hold for
all ordered pairs of notifications (n1,n2), where ny # ms. This means that
for two concrete notifications a and b the given property must hold for (a,b)
and (b,a). For causal ordering, the given property must hold for all ordered
k-tuples (ni,...,ng), where V(1 > 4,j < k).i # j = n; # n; for all k > 2.

Definition 2.6. An event system respects FIFO-producer ordering iff it only
exhibits traces satisfying the following requirements:
e (Safety FIFO)

ni #ns A
& [pub(Cl, ny) A Opub(Ch, nQ)] (2.3)
= -0 [notz’fy(Cg, ng) A Onotify(Co, nl)]
Equation 2.3 states that the notifications that are published by a compo-

nent C7 should not be delivered to a component C5 in an order different from
the order in which they were published.

2.5 Specification of Event Systems 31
Definition 2.7. An event system respects causal ordering iff it only exhibits
traces satisfying the following requirements for every k > 2:
e (Safety Causal)
O[pub(Cl,nl) A
O [notify(Cz,n1) A< [pub(Ca, n2) A

) (2.4)
O[notify(Ck, ng—1) A Opub(Cy, nk)] ..]]]
= O [notify(Y,ni) A Onotify(Y,n1)].
Equation 2.4 states that if there is a sequence of components Cq, ..., Cj

such that each component C; publishes a notification n; that is notified to
component C;y1 if © < k then a component Y should not be notified about
nq after it was notified about ny.

Definition 2.8. An event system respects total ordering iff it only exhibits
traces satisfying the following requirements:

e (Safety Total)

ni 75 no A
O [notify(C1,ny) A Onotify(Cr,na)] (2.5)
= O [notify(Ca, na) A Onotify(Ca,nq)].

Equation 2.5 states that if a component C] is notified about n; and even-
tually notified about ns, then a component Cy should not be notified about
ny after it was notified about ns.

2.5.4 Simple Event System With Advertisements

Advertisements are filters issued by producers to indicate their intention to
publish certain kinds of notifications in the future. Some implementations of
event systems use advertisements to optimize content-based routing [65]. Ad-
vertisements can also be used to control the notifications a producer publishes,
for example, to enforce security policies [34]: if a notification is published by a
component that does not match any of its active (and authorized) advertise-
ments, it should be discarded and not delivered to any component. Moreover,
issued advertisements can be used by components to find out what notifica-
tions currently are potentially published in the system.

Advertisements are easily integrated into the formal model of event sys-
tems presented here: We introduce two more interface operations adv(F) and
unadv(F') (see Table 2.4) that are used by components to issue and revoke

32 2 Basics

Table 2.4. Additional interface operations for advertisements

adv(X,F) Component X advertises filter F’
unadv(X, F) Component X unadvertises filter F’

Table 2.5. Changes of the state variables caused by the additional interface oper-
ations for advertisements

adv(X, F) Y =Ax U{F}

unsub(X, F) Ax = Ax \ {F}

advertisements, respectively, and a further state variable Ax, which is the set
containing all active advertisements of a component X (i.e., all filters which
X has advertised and not yet unadvertised). The state changes caused by
the two new interface operations are specified in Table 2.5. Again, Ay is not
changed besides the given changes above.

In the context of content-based routing, advertisements are used to restrict
the forwarding of subscriptions into those subnets where matching notifica-
tions can be produced. This also means that in reaction to a new advertise-
ment, it might be necessary to forward some new subscriptions into a subnet.
Similar to new subscriptions, this change should intuitively take effect imme-
diately to ensure that a notification published right after a new advertisement
has been issued is delivered to all interested consumers. Again, this is not sen-
sible in a loosely coupled distributed system. Hence, we allow a finite delay of
advertisement processing, too.

Definition 2.9. A simple event system with advertisements is a system which
exhibits only traces satisfying the following requirements:

e (Safety)

0 [[nomfy(x n) = OO-notify(Y,n)] A
[notify(Y,n) = n € UxecePx NN(Sy)] A (2.6)
[pub(X,n) A n¢ N(Ax) = O-notify(Y, n)]]
o (Liveness)
D[[D(F €Sy) A O(G € Ax)]
= [¢o(pub(X,n) A n€ N(F)NN(G) (2.7)
N Onotify(Y,n))H

The safety condition has been strengthened such that if a notification is
published that does not match any of the active advertisements of the pub-
lishing component, the notification should not be delivered to any component.

2.6 Further Reading 33

The liveness condition has been weakened and can be rephrased as follows: If a
component Y is always subscribed to F' and a component X always advertises
G, then there exists a future time where a notification n published by X that
matches F' and G will lead to a delivery of n to Y. The specification without
advertisements can be seen as a special case of those with advertisements if
it is implicitly assumed that every component initially advertises and never
unadvertises a filter that matches any notification.

2.6 Further Reading

The field of event-based communication and computation can be approached
in different ways. There are standards, products, books, and articles from the
distributed systems perspective as well as from other related areas such as
active databases and tuple spaces.

The book by Luckham [242] gives a general introduction to event-based
computing, taking a viewpoint similar to ours. It concentrates on the detection
of event pattern as a fundamental way of implementing distributed applica-
tions. Our goal is a broader treatment of event-based systems, spanning over
multiple areas including algorithmic and practical engineering concerns.

Standardization efforts try to establish a common API as basis for no-
tification service implementations and use. The Object Management Group
(OMG) included standard services into the CORBA specification [283]. The
CoRrBA Notification Service offers channels, which publishers and subscribers
choose to dissemination and receive notifications [287]. Consumers may reg-
ister additional filters to reduce the amount of messages. The Notification
Services subsumes and obsoletes the CORBA Event Service [280].

The Java Message Service (JMS) is an API specification as part of the
Java 2 Enterprise Edition (J2EE) [364, 365]. JMS coined the term topic-based
subscription, which stands for message grouping according to abstract topics
plus content-based filtering on a set of header fields and properties. JMS is
becoming the dominant messaging API, and lots of commercial, academic, and
open source notification services are implementing this API. A more detailed
discussion of products and prototypes is given in Chap. 9.

The field of software architecture is concerned with the overall organization
of a software systems [165]. It corresponds to the coordination paradigm, since
both deal with the high-level interaction of system components. The architec-
tural point of view focuses more on the static, immutable characteristics of
these constellations. Architecture definition languages (ADLs)* are employed
to describe the high-level conceptual architecture consisting of components,
connectors, and specific configurations [256] of these. Typical, well-understood
arrangements of connectors and configurations are identified as architectural
styles [3], the patterns of software architecture, and events and implicit invo-
cation is one of them. The event-based architectural style comprises exactly

4 Also: architecture description languages

34 2 Basics

the concepts given in Sect. 2.1, featuring the independence of producer and
consumer components [68, 165]. In fact, Garlan et al. [166] identified early the
prominent importance of using events for the construction of flexible software
architectures.

As mentioned above, Garlan et al. [166] emphasize the importance of
events for flexible software systems, which is corroborated by [355] and others.
One of the first contributions is the Field environment [325], an early work on
tool integration that is built around a centralized server that distributes mes-
sages. Messages sent to the server are selectively rebroadcasted to receivers
that have registered patterns matching the message.

The InfoBus [84] is a small Java API that facilitates communication be-
tween several JavaBeans or cooperating applets on a Web page. Multiple
instances of InfoBus might be manually connected with bridges, providing a
limited means of structuring, but without any inherent interfaces or compo-
sition support. Matching of messages is done by names, i.e., string matching.
Besides being limited to one virtual machine, it is a tool for connecting com-
ponents, not for composing new ones.

3
Content-Based Models and Matching

3.1 Content-Based Data and Filter Models

This section discusses some important content-based data models in conjunc-
tion with corresponding filter models. Informally, a data model defines how
the content of notifications is structured, while a filter model defines how sub-
scriptions can be specified, i.e., how notifications can be selected by applying
filters that evaluate predicates over the content of notifications. The filter
model always depends on the underlying data model, and there can be more
than one filter model for a given data model. The data/filter model has to be
chosen carefully because it has a large impact on the expressiveness and the
scalability of a content-based notification service. In the following, we discuss
tuples, structured records, semistructured records, and objects.

3.1.1 Tuples

In tuple-oriented models a notification is a tuple, i.e., an ordered set of
attributes. All approaches using tuples deploy some sort of templates as
subscription mechanisms. Similarly, to a query-by-example mask, a tem-
plate specifies matching notifications by a partial tuple which can con-
tain wildcards. The attributes in the notification are matched to the at-
tributes in the template according to their position. For example, the notifi-
cation (StockQuote, “Foo Inc.”,45) is matched by the subscription template
(StockQuote, “Foo Inc.”,). “Matching by position” is inflexible because at-
tributes cannot be optional. Tuples in conjunction with templates were first
proposed by Gelernter in work onLinda Tuple spaces [174], which use typed
attributes. The original version of Linda, however, did not support a subscrip-
tion mechanism, but newer approaches based on Tuple spaces, e.g., JavaS-
paces [366], do. Also, some notification services are built upon tuples: JEDI
models a notification as a tuple of strings [91] in which the first string cor-
responds to the notification name, while the others are normal attributes.
JEDI supports the equality and the prefix operator for matching. Bates et

36 3 Content-Based Models and Matching

al. [32] define notifications as instances of classes. An instance consists of a
tuple of typed attributes derived from a class definition. Here, a template
either specifies the exact value of an attribute or it does not care about the
value. Concluding, tuples with templates provide a simple model that is not
flexible enough because attributes of notifications and templates are matched
to each other according to their position. This disadvantage is diminished by
record-oriented models which use “matching by attribute names.” However,
“matching by position” is more efficient.

3.1.2 Structured Records

In this section structured records are discussed in detail. In a record-oriented
model a notification consists of a named set of attributes. Record-oriented
models can be divided into two categories, which are structured records and
semistructured records, respectively. Roughly speaking, the models can be dis-
tinguished by the fact that in structured records attribute names are unique,
while in the semistructured models several attributes with the same name can
exist. In this section, structured records are discussed; semistructured records
are discussed in Sect. 3.1.3.

Many systems model notifications similarly to structured records consist-
ing of a set of name/value pairs called attributes. Examples are SIENA [65],
Gryphon [6, 26], REBECA [136], JMS [364], and the CORBA Notification Ser-
vice [279]. In this model filters address attributes by their unique names and
impose constraints on the values of the respective attributes. In most models
a constraint is assumed to evaluate to false if the addressed attribute is not
contained in the notification. Therefore, each constraint implicitly defines an
existential quantifier over the notification. Besides flat records in which values
are atomic types, hierarchical records in which attributes may be nested can
also be supported easily by using a dotted naming scheme (e.g., Position.x).

Some systems (e.g., SIENA) restrict constraints to depend on a single at-
tribute (e.g., {x = 1}). This class of constraints is called attribute filters. Other
systems, such as ELVIN, allow constraints to evaluate multiple attributes which
are combined by operators (e.g., {x+y = 5}). In general, multiple constraints
can be combined to form filters by Boolean operators (e.g., {y < 3 Az = 4}).
SIENA and REBECA restrict filters to be conjunctions of attribute filters. On
one hand, this restriction reduces the expressiveness of the filter model, but
on the other hand it enables routing optimizations like covering (cf. Chap. 4)
to be applied efficiently. The limitation is also not as serious as it seems first.
For example, a filter that is defined by an arbitrary Boolean expression can
always be converted to and treated as a collection of conjunctive filters.

Although records and tuples seem to be similar at a first glance, records
are clearly more powerful because they allow for optional attributes in the
notifications. They also avoid unnecessary “don’t care” constraints in the
templates, and enable the easy addition of new attributes without affecting
existing filters.

3.1 Content-Based Data and Filter Models 37
Data Model

A notification is a message that contains information about an event that
has occurred. Formally, a notification n is a nonempty set of attributes
{ai,...,a,}, where each a; is a name/value pair (n;,V;) with name n; and
value v;. It is assumed that names are unique, i.e., ¢ # j = n; # n;, and that
there exists a function that uniquely maps each n; to a type Tj that is the
type of the corresponding value v;.

In the following we distinguish between simple values that are a single
element of the domain of T}, i.e., v; € dom(T;), and multi values that are
a finite subset of the domain, i.e., v; C dom(Tj). An example of a simple
notification is {(type, StockQuote), (name, “Infineon”), (price,45.0)}.

Filter Model

A filter F is a stateless Boolean function that is applied to a notification,
i.e., F(n) — {true, false}. A notification matches F if F(n) evaluates to true.
Consequently, the set of matching notifications N(F') is defined as {n | F(n) =
true}. Two filters F} and Fy are identical, written Fy = F, iff N(Fy) = N(Fy).
Moreover, they are overlapping, denoted by Fy M Fy, iff N(F1) N N(Fy) # 0.
Otherwise they are disjoint, denoted by Fy [Fy.

A filter is usually given as a Boolean expression that consists of predicates
that are combined by Boolean operators (e.g., and, or, not). A filter consisting
of a single atomic predicate is a simple filter or constraint. Filters that are
derived from simple filters by combining them with Boolean operators are
compound filters. A compound filter that is a conjunction of simple filters
is called a conjunctive filter. In the model proposed filters are restricted to
be conjunctive filters. It is sufficient to consider conjunctive filters because a
compound filter can always be broken up into a set of conjunctive filters that
are interpreted disjunctively and can be handled independently.

An attribute filter is a simple filter that imposes a constraint on the value
of a single attribute (e.g., {name = “Foo Inc.”}). It is defined as a triple
A; = (ni,Op;, C;) , where n; is an attribute name, Op; is a test operator
and C; is a set of constants that may be empty. The name n; determines to
which attribute the constraint applies. If the notification does not contain an
attribute with name n; then A; evaluates to false. Therefore, each constraint
implicitly defines an existential quantifier over the notification. Otherwise, the
operator Op; is evaluated using the value of the addressed attribute and the
specified set of constants C;. It is assumed that the types of operands are
compatible with the used operator. The outcome of A; is defined as the result
of Op; that evaluates either to true or false. Furthermore, an attribute filter is
provided that simply checks whether a given attribute is contained in n. For
the sake of simplicity the more readable notation {price > 10} is used instead
of {(price,>,{10})}. In contrast to most other work (e.g.,)SIENA, constraints
that depend on more than one constant are considered in this chapter. This

38 3 Content-Based Models and Matching

enables more operators and enhances the expressiveness of the filtering model
and can be done without affecting scalability.

By La(A;) C dom(Ty) the set of all values is denoted that cause an
attribute filter to match an attribute, i.e., {v; | Op;(v;, C;) = true}. It is
assumed that L4(A;) # 0. An attribute filter A; covers an attribute fil-
ter Ag, written Ay J A, iff ny = na A La(A1) D La(As). For example,
{price > 10} covers {price € [20,30]}. A1 and As are identical, denoted by
Ay = Ag, iff ng = na A La(A1) = La(As). Ay and Ay are overlapping iff
ny =mny A La(A1) NLa(As) # 0, denoted by A; M As. Otherwise they are
disjoint, denoted by A; J1 Ag. For example, {price > 10} and {price < 20}
are overlapping, while {price < 10} and {price > 20} are disjoint.

In the described model a filter is defined as a conjunction of attribute fil-
ters, i.e., ' = A1 A...AA,. To enable efficient evaluation of routing optimiza-
tions like covering and merging, at most one attribute filter for each attribute
is allowed. A notification n matches a filter F' iff it satisfies all attribute fil-
ters of F'. Moreover, a filter with an empty set of attribute filters matches any
notification. An example for a conjunctive filter consisting of attribute filters
is {(type = StockQuote), (name = “Foo Inc.”), (price ¢ [30,40])}.

The limitation to at most one attribute filter for each attribute is not as
serious as it seems at first glance because the proposed model provides complex
data types as attribute values and an extensible set of constraints that can be
imposed. Moreover, it is often possible to merge several conjunctive constraints
imposed on a single attribute into a single constraint on the same attribute.
Especially suited for this kind of merging are constraints which are either
contradicting (if they are conjuncted) or can be replaced by a single constraint
of the same type. Such types of constraints and their corresponding attribute
filters are called conjunction-complete. For example, interval constraints and
constraints testing whether a point is in a given rectangle in a two-dimensional
plane are conjunction-complete. As an example, {z € [3,7] A z € [5,8]} can
be substituted by {z € [5,7]}. If a constraint type is not conjunction-complete
it is often possible to substitute a set of such constraints by a single constraint
of a more general type. For example, a set of ordering constraints defined on
a totally ordered set (e.g., integer numbers) are either contradictory or can
be replaced by a single interval constraint. As an example, {x >3 A z < 5}
can be merged to {z € [3,5]}.

Subscriptions and advertisements are simply filters that are issued by con-
sumers and producers of notifications, respectively. There is no difference in
their model, and hence, subscriptions and advertisements are the exact dual
of each other. This is in contrast to SIENA, where subscriptions and adver-
tisements are not exactly complementary, raising a number of problems.

Generic Constraints and Types

Earlier work dealing with content-based notification selection mechanisms of-
ten tightly integrated the constraints that can be put on values and the types

3.1 Content-Based Data and Filter Models 39

of values supported by the matching and the routing algorithms [6, 26]. An ex-
ception is SIENA, where matching and routing algorithms are separated from
constraints. However, SIENA only supports a fixed set of constraints on some
predefined primitive types.

We propose to use a collection of abstract attribute filter classes. Each of
these classes offers a generic implementation of the methods needed by the
matching and the routing algorithms (e.g., a covering and a matching test)
and imposes a certain type of constraint on an attribute that can be used with
values of all types that implement the operators needed. The appropriate im-
plementation of the operators is called by the constraint class at runtime using
polymorphism. This enables new constraints and types to be defined and to
be supported without requiring changes to the routing and or to the matching
algorithms. Note that although an object-oriented approach is suggested, it
is not mandatory to use it.

For example, a constraint class can realize comparison constraints on to-
tally ordered sets. This class can be used to impose comparison constraints
on all kinds of ordered values (e.g., integer numbers). Consider a type “per-
son” that consists of first and second name, the date of birth, and the place
of birth. This type is easily supported by providing implementations for the
comparison operators which are called by the constraint class to provide the
covering and matching methods using polymorphism.

In the following subsections, some generic attribute constraints are pre-
sented that cover a wide range of practically relevant constraints, but more
important, they illustrate the feasibility of the approach. Of course, this col-
lection is not exhaustive, but other constraints can be integrated easily. For
example, intervals could be used as values. In this case the same operators as
for set constraints can be used because intervals are essentially sets. The in-
vestigation of a subset of regular expressions seems to be promising, too. Most
paragraphs also present a table that gives an overview of covering implication
dealing with the discussed type of constraint. The meaning of a single row in
the Tables 3.1 through 3.7 is: Given A; and A as specified in column 1 and
2, Ay O As iff the condition in column 3 is satisfied. In order to test whether
a filter covers another, covering must hold for all attributes, as will be shown
later.

General Constraints

Two general constraints are considered that can be imposed on all attributes
regardless of the type of their value: exists(n) tests whether an attribute
with name n is contained in a given notification, i.e., whether 3A4;. n; = n.
The exists constraint covers all other constraints that can be imposed on an
attribute.

Constraints on the Type of Notifications

Most work on notification services has a notion of types or classes of noti-
fications. Usually, the type of a notification is specified by a textual string

40 3 Content-Based Models and Matching

that can be tested for equality and prefix. If a dot notation is used, a type
hierarchy with single inheritance can be supported, allowing for the automatic
propagation of interest in subclasses [32]. Unfortunately, multiple inheritance
cannot be supported by a dotted naming scheme. In contrast to that, a direct
support of notification types has a number of advantages. Such an approach
can enable multiple inheritance and achieve a better programming language
integration [120]. Moreover, type inclusion tests can be evaluated more effi-
ciently than the corresponding string operation (i.e., whether the string starts
with a given prefix) [388].

Consequently, a separate constraint that evaluates to true if n is an in-
stance of type T and false otherwise, written n instanceof T, is defined. A
constraint n instanceof 17 covers a constraint n instanceof Ts iff Ty is either
the same type or a supertype of T (Table 3.1). It is assumed that the set of
attributes that can be contained in a notification of type T is a superset of
the union of all attribute names of all supertypes of T'.

Table 3.1. Covering among notification types

Al A2 Al 2 AQ iﬁ
n instanceof Ti n instanceof To Ty =T V Ti supertype of Ta

Equality and Inequality Constraints on Simple Values

The simplest constraints that can be imposed on a value are tests for equality
and inequality. Covering implications among these tests can always be reduced
to a simple comparison of their respective constants (Table 3.2).

Table 3.2. Covering among (in)equality constraints on simple values

Aq Ay A; J Ay iff
r=2C T =C2 C1 = C2

T = C2 C1 C2
T #a 7

rT#ca c1=c

Comparison Constraints on Simple Values

Another common class of constraints are comparisons on values for which
the domain and the comparison operators define a totally ordered set (e.g.,
integers with the usual comparison operators). Again, covering among these
tests can be reduced to a simple comparison of their respective constants.
Table 3.3 depicts covering implications of inequality and greater than; for
brevity the other comparison operators are omitted.

3.1 Content-Based Data and Filter Models 41

Table 3.3. Covering among comparison constraint on simple values

Ay As Ay 3O A iff
r<c2 C12>cC2
r<cy 1 >cCo

T#cir=co 1%
r>c2 c1<c
r>ca c1 <c
r=cy c1<CcC2

r>crx>ce c1 <co
r>c2 c1<c

Interval Constraints on Simple Values

Interval constraints test whether a value x is within a given interval I or not,
ie., z € T and = ¢ I, respectively, where I is a closed interval [c;, c2] with
¢1 < ¢o. Here, computing coverage involves two comparisons (Table 3.4).

Table 3.4. Covering among interval constraints on simple values

Al A2 AlgAQiﬁ
celhxel, 112Dl
z¢hLxgle L Cl

Constraints on Strings

Constraints on strings can be used to realize subjects. In addition to the
comparison operators based on the lexical order, a prefix, a substring, and a
postfix operator are defined. s hasPrefix S and s hasPostfiz S mean that s
has the prefix and the postfix S, respectively. s containsSubstring S1 means
that s contains the substring S7. Computing coverage among them requires a
single test (Table 3.5).

Table 3.5. Covering among constraints on strings

A Ao A1 3O Ay iff
s hasPrefiz Si s hasPrefiz Sa So hasPrefix S1
s hasPostfix S1=~ s hasPostfic So Sa2 hasPostfix S1
s hasSubstring S1 s hasSubstring Sz S22 hasSubstring Si

42 3 Content-Based Models and Matching
Set Constraints on Simple Values

Set constraints on simple values test whether or not a value is a member
of a given set. For computing coverage among two of these constraints, a
single set inclusion test is sufficient (Table 3.6). Its complexity depends on
the characteristics of the underlying set. Set constraints can be combined
with comparison constraints if the domain of the value is a totally ordered
set.

Table 3.6. Covering among set constraints on simple values

Al AQ AlgAQiﬁ
rxe M xe My My D M,
33¢M11’¢M2 MlgMQ

Set Constraints on Multi Values

The idea of multi values is to allow a value to be a set of elements. This enables
set-oriented operators which are defined on a multi value X = {v1,...,v,}.
For example, the following common operators can be defined:

X subset M <& X C M

X superset M < X DO M

X contains a1 < a1 € X

X notcontains a1 < a1 ¢ X
X disjunct M < XNM =10
X overlaps M < XN M # ()

To determine covering with respect to these constraints either the evaluation
of a set inclusion test or of a set membership test is needed (Table 3.7).

Table 3.7. Covering among set constraints on multi values

Al AQ Al 2 A2 lﬁ
X subset My X subset Ms M; superset Ma
X contains a1 X superset Ms a1 € My
X superset My X superset Ms My subset Mo
X notContains a1 X disjunct Mo a1 € M,
X disjunct M1 X disjunct Ma M; subset Ms
X overlaps My X overlaps Mz My superset Mo

3.1 Content-Based Data and Filter Models 43
Support for Routing Optimizations

For routing algorithm such as identity-based, covering-based, or merging-
based routing (cf. Chap. 4) as well as for enabling the use of advertisement,
some routing optimization must be efficiently computable.

Identity of Conjunctive Filters

In the following it is shown how identity of conjunctive filters can be reduced
to the respective attribute filters. An identity test among filters is necessary
to implement identity-based routing.

Lemma 3.1. Given two filters F; = A1 A...NAL and Fy = A3A...NA2, that
are conjunctions of attribute filters, the following holds: the fact that Fy and
Fy contain the same number of attribute filters and that VA}HA?. Al = A?
implies that Fy and Fy are identical.

Proof. The proof is rather trivial. A notification that matches F} satisfies all
attribute filters A}. For each of these A} there is an identical A?. Hence, A?
is matched, too. As F; and F5 contain the same number of attribute filters,
this implies that all attribute filters of F5 are matched, too. Therefore, F3 is
also matched. As the same argumentation can be applied to notifications that
match Fy, this implies that F; and F> match identical sets of notifications,
i.e., they are identical. 0O

It is necessary to restrict filters to contain at most one attribute filter
for each attribute in order to strengthen Lemma 3.1 to an equivalence. As a
simple example, {z > 5 A z < 5} is identical to {x # 5}, although neither
{z >5} ={x #5} nor {x <5} ={x#5}.

Lemma 3.2. Given two filters Fy = A{ A ... AN AL and Fy = A? A ... AN A2,
that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: Fy = Fy implies VA} EIA?. Al = A?.

Proof. The proof is by contradiction. We assume that

1. Fl = F2
2. YA}3A3. A} = A% does not hold

and prove that this cannot hold.

The second assumption implies that there is an A} for which no identical
A? exists. This means that either no attribute filter with the same name is
contained in Fy or that L(A]) # L(A3). In the first case, a notification can be
constructed that does not contain the respective attribute and which matches
F5 but does not match F;. Hence, F; and Fy cannot be identical and the first
assumption is violated. In the second case, a notification can be constructed,
where the value of the respective attribute is in L(A}) but not in L(A?) if
LA o L(A?). This notification matches F; but not F,. The other way

44 3 Content-Based Models and Matching

around, a notification can be constructed, where the value of the respective
attribute is in L(A?) but not in L(A%) if L(A}) C L(A?). This notification
matches F5 but not F. At least one of these two cases needs to occur because
L(A}) # L(A?). Hence, F1 and F cannot be identical and the first assumption
is violated. The above cases cover all possible cases. 0O

Lemma 3.3. Given two filters F1 = A} A ... NAL and Fy = A3 A\ ... N A2
that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: Fy = Fs implies that Fy and Fs contain
the same number of attribute filters.

Proof. By Lemma 3.2 and the fact the identity relation among filters is sym-
metrical. O

Corollary 3.1. Two filters F} = AI A ... AN AL and Fy = A2 A... N A2 that
are conjunctions of attribute filters with at most one attribute filter for each

attribute are identical iff they contain the same number of attribute filters and
VA}HA?. Al = A?.

Proof. By Lemmas 3.1, 3.2, and 3.3. O

The above corollary essentially states that two filters are identical iff they
constrain the same attributes and iff the attribute filters of each constrained
attribute are pairwise identical (Fig. 3.1).

{fz =2} A{y>5}

x>
|
|

x>

- —m

{22} Ay > 5}

Fig. 3.1. Identity of filters consisting of attribute filters

Covering of Conjunctive Filters

In the following it is shown how covering of conjunctive filters can be reduced
to the respective attribute filters. A covering test among filters is necessary
to implement covering-based routing.

Lemma 3.4. Given two filters F; = A1 A ... AN AL and F» = A3 A ... N A2
that are conjunctions of attribute filters, the following holds: Vi3j. A} 3 A?
implies Fy 3 Fy.

3.1 Content-Based Data and Filter Models 45

1 1
F| = F, B £
P —F
1 — U2
F, - b—— F, = FyAF
~ F, = F'AF? 1
2 = Al |—|F1=F1

Fig. 3.2. [J F, although neither F' 3 F3 nor F{ J F5 (two examples)

Proof. Assume Vidj. Al J A?. Prove Fy J F5. If an arbitrary notification n is

matched by F5 then n satisfies all Aé. This fact together with the assumption
implies that n also satisfies all Aj. Therefore, n is matched by Fj, too. Hence,
FOF. O

If several attribute filters can be imposed on the same attribute then Vi3 j.Al1 |
A? is not a necessary condition for Fy J F» (Fig. 3.2). For example, {z € [5, 8]}
covers {z € [4,7] A z € [6,9]}, although {z € [5,8]} covers neither {x € [4, 7]
nor {x € [6,9]}. If conjunctive filters are restricted to have at most one at-
tribute filter for each attribute, then Lemma 3.4 can be strengthened to an
equivalence:

Lemma 3.5. Given two filters Fi = A} A ... ANAL and Fo = A2 N ... A\ A2,
that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: Fy 3 Fy implies Vi3j. A} 1 A?,

Proof. Assume —(Vidj. A} 3 A3). Prove =(Fy 3 Fy). A notification n is
constructed that matches F, but not Fj to prove that F; does not cover F5.
The assumption implies that there is at least one A} that does not cover any
A?. If there exists an A7 that constrains the same attribute as such an A}
then choose for this attribute a value that matches A7 but not A}. Such a
value exists because L4(A}) # 0 and A}, 2 A?. Add name/value pairs for all
other attributes that are constrained in F, such that they are matched by the
appropriate attribute filters of F5. The constructed notification matches Fy
but not Fi. Therefore, F; does not cover Fy. 0O

Corollary 3.2. Given two filters Fy = AAN...ANAL and Fo = A3 A ... N A2
that are conjunctions of attribute filters with at most one attribute filter per
attribute, the following holds: Fy 3 Fy is equivalent to Vidj. A} 3 A?.

Proof. By Lemmas 3.4 and 3.5. O

The above corollary essentially states that a filter F covers a filter Fy iff
for each attribute filter in Fj there is an attribute filter in F5 that is covered
by the former (Fig. 3.3).

46 3 Content-Based Models and Matching

4 N{y=7} AN{z € 3,5]}

Fig. 3.3. Covering of filters consisting of attribute filters

Overlapping of Conjunctive Filters

In the following it is shown how overlapping of conjunctive filters can be
reduced to the respective attribute filters. An overlapping test among filters
is necessary to use advertisements for routing optimizations.

Lemma 3.6. Given two filters Fy = A A...ANAL and Fy = AZA...ANA2 that
are conjunctions of attribute filters, A}, A%. (n} =n3 A La(A})NLa(A3) =

T T

@) implies that Fy and F» are disjoint.

Proof. Proof: Suppose that Fy and Fy contain attribute filters A} and A? such
that (nj =n? A La(A})NLa(A?)=0). This means that both filters require
the existence of an attribute with name n} and that the value of this attribute
must match La(Aj) in order to make a notification match Fy and L (A3) in
order to match Fp. As L4(A}) and are LA(A?) disjoint, this implies that a
given notification can be matched either by F} or by Fb. Hence, F; and F3
are disjoint. O

It is necessary to restrict filters to contain at most one attribute filter for
each attribute in order to strengthen Lemma 3.6 to an equivalence. As a simple
example, {z € {3,5} A z € {4,5}} is disjoint with {z € {3,5} A x € {3,4}}
although there are no disjoint attribute filters.

Lemma 3.7. Given two filters F1 = A} A ... NAL and Fy = A3 A\ ... N A2
that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the fact that Fy and Fy are disjoint implies that A}, A?. (nll =

1
n? A\ LA(A}) n LA(A?) = @)
Proof. Proof: The proof is by contradiction. Suppose that F; and Fb are
disjoint and that there are no A}, A? such that n} = n? A La(A}) ﬁLA(A?) =
(). We construct a notification that matches F; and F to imply a contradiction
in following way: For each attribute that is constrained in F; or F» add an
attribute whose value satisfies the attribute filters contained in Fj; and Fy
regarding this attribute. This value must exist because there are no A%,A?

such that n} =n3 A La(A})NLa(A3) = 0. Hence, the constructed notification
matches F} and Fs, and therefore Fy and F3 are not disjoint. O

3.1 Content-Based Data and Filter Models 47

Corollary 3.3. Two filters F; = AA AN ... ANAL and Fy = A2 A ... N A2 that
are conjunctions of attribute filters with at most one attribute filter for each
attribute are disjoint, i.e., not overlapping, iff HA},A?. (nll = n? A La(AHN
La(42) = 0).

Proof. By Lemmas 3.6 and 3.7. O

Fr=A{z>2} Ay > 5}
\ \ |
o0

FB={z<1} A{y<7}

Fig. 3.4. Disjoint filters consisting of attribute filters

Fr=A{z>2} Ay > 5}
\ |

M M 1

\ \ |
Fo={z<5} AN{y<T7}

Fig. 3.5. Overlapping filters consisting of attribute filters

The above corollary essentially states that two filters are disjoint iff for an
attribute that is constrained in both filters the corresponding attribute filters
are disjoint (Fig. 3.4). Hence, two filters are overlapping iff no such attribute
filters exist (Fig. 3.5).

Merging of Conjunctive Filters

Merging-based routing algorithms use abstract merging operations. In this
section merging of conjunctive filters is discussed. The aim of filter merging is
to determine a filter that is a merger of a set of filters. Merging of filters can
be used to drastically reduce the number of subscriptions and advertisements
that have to be stored by the brokers.

Perfect Merging

A set of conjunctive filters with at most one attribute filter for each attribute
can be perfectly merged into a single conjunctive filter if, for all except a

48 3 Content-Based Models and Matching

single attribute, their corresponding attribute filters are identical and if the
attribute filters of the distinguishing attribute can be merged into a single
attribute filter. For example, the two filters F; = {x = 5 Ay € {2,3}} and
F, ={zx=5Ay € {4,5}} can be merged to F = {z = 5Ay € {2,3,4,5}}.
Moreover, a set of attribute filters imposed on the same attribute with name
n can be merged to an exists(n) test if at least one of them is satisfied by
any value. Note that an existence test is equivalent to no constraint if the
attribute is mandatory for the corresponding type of notification.

An algorithm that determines the possibly empty set of filters which are
candidates to be merged with a given filter is depicted later. From the set
of merging candidates the set of attribute filters to be merged can easily be
extracted. This set is used as input of a merging algorithm which has a spe-
cialized implementation for each type of constraint. In the general case purely
algebraic merging techniques have exponential time complexity. Alternatively,
a predicate proximity graph can be used to implement a greedy algorithm
[218]. For many practical cases (e.g., set operators) efficient algorithms exist.
Only in rare cases is it necessary to use an exhaustive combinatorial or a
suboptimal greedy algorithm.

The characteristics of the constraints that are used to define attribute
filters are important for merging. Constraints which only exist in a normal
and a negated form can be directly merged by using some basic laws of Boolean
algebra. For example, the filters F} = (y = 3Az =5) and F} = (y = 3Ax #5)
can be merged to F' = (y = 3A3x). In general, constraints are not restricted to
be the negated form of each other, and hence better merging can be achieved
by taking the specific characteristics of the imposed constraints into account.

A class of constraints that is complete under disjunction allows a set of
constraints of this class to be merged into a single constraint of the same
class. Examples for disjunction-complete constraints are set inclusions (e.g.,
x € {2,3,7}) and set exclusions (e.g., x ¢ {2,3,7}) while comparison con-
straints (e.g., x < 4) are not disjunction-complete. If a constraint class is not
disjunction-complete it may still be possible to carry out merging if a specific
merging condition is met. For example, a set of interval tests (e.g., x € [2,4]
and z € [3,5]) can be merged into a single interval test (here, x € [2,5])
if the intervals form a connected set. Otherwise, merging may be possible if
a more general constraint is considered as merging result. For example, two
comparison constraints (e.g., z < 4 and & > 7) can be merged to an interval
test (here, x ¢ [4,7]).

Merging on the level of attribute filters is implemented by each generic at-
tribute filter class. Table 3.8 presents some perfect merging rules. The mean-
ing of a single row is that A; and As can be perfectly merged to the in-
dicated merger (column 4) if the given merging condition (column 3) holds.
The first two rules can also be applied to equality and inequality tests because
r=a < zre{a}andz#a &z ¢ {a}.

3.1 Content-Based Data and Filter Models 49

Table 3.8. Perfect merging rules for attribute filters

A Ao Condition A1 U Ay
r € M x € Mo - x € My UM,
My N M = 3
X ¢ M1 X ¢ M2 1N 2 @ v
MlﬁMQ?é@ $¢M1ﬁM2
X overlaps My X overlaps M2 - X overlaps My U Ma

My N My = ED¢
X disjunct My X disjunct Ma 1N My =0

My N Mo ?é DX disjunct My N Ma

T =a T # a1 a1 = as Jx
T > a2 ap > a2

T < ay dx
T > az a1 > a2
T > a2

< ap a; > as Jx
T > a2

Imperfect Merging

At a first glance, imperfect merging seems to be less promising, but in situa-
tions in which perfect merging is either too complex or not computable it is a
good compromise. Clearly, there exists a trade-off between filtering overhead
and network resource consumption. Imperfect merging may result in notifica-
tions being forwarded that do not match any of the original subscriptions, but
on the other hand, it reduces the number of subscriptions and advertisements
that must be dealt with.

In order to use imperfect merging, heuristics are necessary that define
in what situations and to what degree imperfect merging should be carried
out. For example, filters that differ in few attribute filters could be merged
imperfectly by imposing on each attribute a constraint that covers all original
constraints. In order to decide whether two given filters should be merged a
heuristic that allows the amount of introduced imperfection to be estimated is
needed. This could also be accomplished by explicitly replacing an attribute
filter with another that only tests for the existence of the given attribute
or by simply dropping the attribute filter. Statistical online evaluation of
filter selectivity would be also a good basis for merging decisions that enables
adaptive filtering strategies. Imperfect merging requires further investigation.

Algorithms

In this section algorithms are presented that are superior to the naive algo-
rithms (cf. Sect. 3.2.1). The presented algorithms use the generic approach
presented in the previous section: Each generic constraint class (e.g., con-
straints on ordered values) offers specialized indexing data structures to ef-
ficiently manage constraints on attributes. For example, hashing is used for
equality tests. In the following, algorithms for matching, covering, and for

50 3 Content-Based Models and Matching

detecting merging candidates are described that are all based on the pred-
icate counting algorithm (cf. Sect. 3.2.2). Algorithms for detecting identity
and overlapping among filters can be derived similarly.

Matching Algorithm

The naive algorithm separately matches a given notification against all filters
to determine the set of matched filters. This implies that the same attribute
filter may be evaluated many times. More advanced algorithms avoid this.
Some of these require a costly compilation step (e.g., [181]) that makes them
less suitable for publish/subscribe systems in which subscriptions change dy-
namically. In contrast to that, the algorithm presented here allows filters to be
added or removed at any time. The algorithm is based on the idea of predicate
counting [305, 404] and makes use of our generic approach. The algorithm is
depicted in Fig. 3.6. It determines all filters that match a given notification.

1 Matching Algorithm
Input: notification n, set of filters F
Output: the set M of all filters in F' that match n.

{
<For each filter in F a counter is initialized to zero.>
6 for <each A; contained in n> {
for <each filter S in F that has a constraint on A; that
is satisfied by the value of the corresponding
attribute of n> {
<Increment the counter of S>
11 }
}

M :=<all filters in F' whose counter is equal to their
number of attribute filters>

Fig. 3.6. Matching algorithm based on counting satisfied attribute filters

Covering Algorithm

Covering-based routing is built upon two tests: a first test that determines
all filters that cover a given filter, and a second one determines all filters
that are covered by a given filter. The naive implementation simply tests
each filter against all others sequentially. The algorithms presented here are
more efficient. They are derived from the matching algorithm presented above
(Figs. 3.7 and 3.8).

3.1 Content-Based Data and Filter Models 51

Covering Algorithm I
Input: filter Fi, set of filters F
Output: the set C' of all filters in F that cover Fj.
{
5 <For each filter in F a counter is initialized to zero.>
for <each A; contained in Fi> {
for <each filter S in F that has a constraint A; that
covers A;> {
<Increment the counter of S>
10 ¥
}
(C:=<all filters in F' whose counter is equal to their
number of attribute filters>

Fig. 3.7. Covering algorithm that determines all covering filters

1 Covering Algorithm II
Input: filter Fi, set of filters F
Output: the set C of all filters in F' that are covered by Fi.

{
<For each filter in F a counter is initialized to zero.>
6 for <each A; contained in Fi> {
for <each filter S in F that has a constraint A; that
is covered by A;> {
<Increment the counter of S>
}
11 }
(C':=<all filters in F' whose counter is equal to the
number of attribute filters of Fi>
}

Fig. 3.8. Covering algorithm that determines all covered filters

Merging Algorithm

We present an algorithm that determines all possible merging candidates.
These are those filters that are identical to a given filter in all but a single
attribute. The algorithm avoids testing all filters against all others. It counts
the number of identical attribute filters to find merging candidates (Fig. 3.9).

The further handling of the set of merging candidates depends on the
constraints involved. For all constraints discussed (e.g., set constraints on
simple values) there exists an efficient algorithm which outputs a single merged
filter and a set of filters not included in the merger. For other constraints, an
optimal algorithm requires exponential time complexity [87]. In this case the

52 3 Content-Based Models and Matching

use of greedy algorithms or heuristics (e.g., using a predicate proximity graph)
seems to be promising.

1 Merging Algorithm
Input: filter Fi, set of filters F
Output: set M of all merging candidates
{
<For each filter in F a counter is initialized to zero.>
6 for <each A; contained in Fi> {
for <each filter S in F that has a constraint A; that
is identical to A;> {
<Increment the counter of S>
}
11 }
M :=<all filters in F whose counter is one smaller than or
equal to their number of attribute filters>

Fig. 3.9. Merging algorithm based on counting identical attribute filters

3.1.3 Semistructured Records

In the previous section structured records have been discussed in detail. In this
section a model for semistructured records is presented. The structured and
the semistructured model are mainly distinguished by the following fact: In
the structured model attribute names are unique, and hence an attribute name
uniquely addresses a single attribute. On the contrary, in the semistructured
model sibling attributes can have the same name, and therefore names address
sets of attributes.

In the following, a model for semistructured records is presented in which
notifications are essentially XML [399] documents. The filtering mechanisms
are similar to but less powerful than XPath [398]. After the model has been
introduced, how routing optimizations can be achieved is discussed.

According to Bunemann [55] semistructured data can be characterized as
some kind of graphlike or treelike structure that is often called self-describing
because the schema of the data is contained in the data itself. At the moment,
the most prominent semistructured data model is XML [399]. Similarly, to
structured records, a semistructured record is a set of nested attributes, but
in contrast to structured records, in semistructured records sibling attributes
can have the same name. In consequence, a single attribute can no longer be
uniquely addressed by its name alone. Instead, names (e.g., car.price), which
are usually called paths in this context, select sets of attributes. Therefore,
filtering strategies assuming that a single attribute is addressed by a given

3.1 Content-Based Data and Filter Models 53

name cannot directly be used in this scenario. One way to approach this
problem is to use path expressions (e.g., XPath [398]), which select a set of
attributes and impose constraints on the selected attributes.

Clearly, the semistructured model is more powerful than structured re-
cords, but work in this area related to content-based routing is still in its early
stages. Lately, using XML and path expressions has gained increased atten-
tion. Nguyen et al. [271] and Chen et al. [77] described approaches for XML
continuous queries. Altinel and Franklin [12] presented an efficient method for
filtering XML documents using XPath expressions. All this work concentrates
on efficient local matching and does not deal with distributed content-based
routing. First ideas on how to support routing optimizations like covering and
merging for semistructured records was presented by Miihl and Fiege [264].
These ideas are discussed later in this section.

Data Model

In the semistructured data model a notification is a well-formed XML docu-
ment [399] and consists of a set of elements that are arranged in a hierarchy
with a single root element uniquely named “notification”. Each element con-
sists of a set of attributes whose names must be distinct and a set of subordi-
nate child elements, which are named but whose names must not necessarily
be distinct. An attribute A is a pair (n;, v;) with name n; and value v;. Names
of attributes must be unique with respect to elements. A simple notification
that describes an auction is shown in Fig 3.10. In this example, the element
auction has two subelements that are named item. Furthermore, the element
cpu contains an attribute clock whose value is 800. Note that XML documents
can contain free text between the opening and the closing tag of an element.
Here, this text is simply ignored.

Filter Model

In the semistructured filter model a filter is a conjunction of path filters.
Each of the path filters selects a subset of the elements in a notification by
an element selector and places constraints on the attributes of the selected
elements by an element filter, which consists of a set of attribute filters. In
the following, this model is described in full detail.

An element selector selects a subset of the elements of a notification and
is specified by an attribute path. It is distinguished between absolute and ab-
breviated paths. An absolute path is a slash-separated string that starts with
a single slash (e.g., /notification/auction). An abbreviated path is a slash-
separated string that starts with two slashes (e.g., //cpu). An absolute (ab-
breviated) path selects all elements whose path is equal to (ends with) the
given path. For example, //item selects both item elements of the notification
in Fig. 3.10.

54 3 Content-Based Models and Matching

1 <notification>
<auction
endtime="05/18/02 22:17:42"
minprice="50">
<seller
6 name="Smith"
id="1234"/>
<item>
<board
manufacturer="Elitegroup"
11 type="K7S5"
socket="Socket A"/>
</item>
<item>
<cpu
16 manufacturer="AMD"
type="Athlon"
socket="Socket A"
clock="800"/>
</item>
21 </auction>
</notification>

Fig. 3.10. A simple notification

An attribute filter is a pair A = (n,Q) consisting of a name n (e.g.,
manufacturer) and a constraint @ (e.g., = “AMD”). An element matches an
attribute filter if the element contains an attribute with name n whose value v
satisfies @, e.g. (manufacturer, “AMD”). This means that an attribute filter
evaluates to false if the element does not contain an attribute with name n.
Therefore, an attribute filter implicitly defines an existential quantifier over
an element.

An element filter C' is a conjunction of a nonempty set A of attribute filters
{41,...,A;}, ie., C =A; A;. Hence, an element matches an element filter iff
all attribute filters are satisfied. An example of an element filter based on the
syntax of XPath is [@manufacturer = “AMD” A @clock > 700]. Note that
in this notation attribute names are prefixed by an “@”.

A path filter P = (S,C) consists of an element selector S and an el-
ement filter C. A notification n matches a path filter P if at least one
element of n is selected by S that matches C. It is possible to extend
this model in such a way that an interval constraint can be imposed on
both the number of elements that match an element filter and the num-
ber of elements that must not match. These extensions are not discussed for
brevity. An example of a complete path filter based on an absolute path is:
/notification / auction/item /[cpu| @manufacturer = “AMD” A @clock > 700].

3.1 Content-Based Data and Filter Models 55

A filter F is a conjunction of path filters { Py, ..., P, }. Hence, a notification
matches a filter if all path filters are satisfied. The set of all notifications that
match a given filter F' is N(F).

Covering

This section discusses how covering among filters can be detected in the
semistructured model. Similar results can easily be obtained for identity and
overlapping, too. These are not discussed for brevity.

Let L4(A) be the set of all values that cause an attribute filter A to
match an attribute. An attribute filter A; = (n1,Q1) covers an attribute
filter A2 = (TLQ,QQ), denoted by A1 J AQ, iff ny =mng A LA(Al) D) LA(AQ)
For example, [@Qclock > 600] covers [Qclock > 700].

Let Lg(C) be the set of all elements that match an element filter C.
An element filter C; covers an element filter C5, denoted by C; I Cj,
iff Lg(Ch) is a superset of Lg(Cy). For example, [@clock > 600] covers
[@manufacturer = “AMD” A @clock > 700]. Furthermore, C; is disjoint
with Cs with respect to the constrained attributes if there exists no attribute
that is constrained in both element filters. For example, [@minprice < 100] is
disjoint with [@name = “Pu”] with respect to their constrained attributes.

Corollary 3.4. Given two element filters Cy1 and Cs, neither of which con-
tains two attribute filters with the same name, the following holds: Cy 3 Cy
is equivalent to VjJi. A} 3 A?.

Let Lg(S) be the set of all elements that are selected by an element selector
S. An element selector Sy covers an element selector Sz, denoted by S; I Ss,
iff Ls(Sl) 2 Ls(Sg). Sl is diSjOiTLt with SQ, iff Ls(Sl) n Ls(SQ) = @

In the model presented here, an absolute path covers another absolute
path iff both are identical. An absolute path only covers an abbreviated path
iff the former is /notification and the latter is //notification, as the root
element has a unique name. An abbreviated path covers another (abbreviated
or absolute) path iff the former is a suffix of the latter (without the leading //
or /). For example, //cpu covers //item/cpu because the former path selects
all elements named cpu, while the latter only selects those elements named
cpu which are a subelement of an element with name item.

Let Lp(P) be the set of all elements that match a path filter P. A path
filter P; = (S1,C1) covers another path filter P, = (Sa,C2), written Py 3 P,
ifft Lp(Py) D Lp(P,). For example, the path filter //cpu]@manufacturer =
“AMD”] covers //cpu|@manufacturer = “AMD” A @clock > 700]. Py is
disjoint with Py, iff either S; is disjoint with S or if C is disjoint with Cs
with respect to their constrained attributes.

Corollary 3.5. Given two path filters Py = (S1,C1) and Py = (S3,Cb), the
following holds: Py 3 Py is equivalent to S 3 .So A Cp; 3 Cs.

56 3 Content-Based Models and Matching

A filter Fy covers a filter Fy, denoted by Fy 1 Fy, iff N(Fy) D N(F5).

Corollary 3.6. Given two filters 1 = P A... AP} and Fy = PZ A... NP2
which are conjunctions of disjoint path filters the following holds: Fy 3 Fy is
equivalent to ¥i3j. P} 3 P?.

For example, the filter {//cpu|@type = “Athlon”]} covers
{//seller|@name = “Pu”] N //cpu[Q@type = “Athlon” A @clock > 600]}.

3.1.4 Objects

Using objects as notifications is widely used in GUIs (e.g., Java AWT [358])
and visual components (e.g, JavaBeans [359]). The Java Distributed Event
Specification [361], which is built upon Java RMI, also uses objects. The
difference between this approach and a notification service is that consumers
must directly register with the source of an event. Eugster and Guerraoui
[124] present how to use structural reflection for content-based filtering of
notifications. The object-oriented model is most flexible and powerful, but
routing optimizations like covering and merging are difficult to achieve if filters
can contain arbitrary code. Miihl and Fiege [264] have presented first ideas on
how to support routing optimizations like covering and merging for objects.
These ideas are discussed later in this section.

A purely object-oriented approach models notifications and filters as ob-
jects. A clear advantage of such a model is that it can easily be integrated with
object-oriented programming languages. In contrast to that, models that are
based on, e.g., name/value pairs, can only operate on serialized instances of
objects violating object encapsulation. Unfortunately, routing optimizations,
and in particular, covering and merging, are difficult to achieve if filters can
contain arbitrary code. In this section three scenarios for which covering and
merging can be supported are described.

Calling Methods on Attribute Objects

Regardless of whether the data models depend on structured or on semistruc-
tured records, it is possible to embed objects in notifications. In this case
public members can be accessed and public inspector methods can be invoked
on the embedded object after it has been instantiated. The returned member
or the return value of the inspector method can either be a Boolean value
that is directly interpreted as result of the attribute filter or a value that is
used in order to evaluate the actual constraint.

For example, suppose that an instance of a class StockQuote has been em-
bedded in a notification as an attribute with name quote. Then an attribute
filter that evaluates this attribute could be specified like this: {quote.id() =
“IBM”}. For example, this filter covers {quote.isRealTime() A quote.id() =
“IBM” A quote.Price() > 45.0}. Moreover, it could be merged with a fil-
ter {quote.id() = “MSFT”} to a filter {quote.id() € {“IBM”, “MSFT"}}.

3.2 Matching Algorithms 57

As stated in [121, 124], structural reflection (e.g., supported by Java) can
be used to invoke the specified methods. Unfortunately, the model does not
allow us to detect all covering relations among filters. For example, a filter
{ quote. Volume() > 10,000} covers a filter {quote.Price() > 100 A quote.
Quantity() > 100} because the volume is defined as the product price multi-
plied by the quantity.

Filtering on Notification Classes

Here, notifications are objects and consequently they are an instance of some
class. Hence, class filters can be used that evaluate the class of a notification:
A notification matches a filter if it is assignable to the specified class. It is
also possible to support covering and merging. A class filter covers another
class filter if an instance of the latter class can be assigned to an instance of
the former one. A set of class filters can be merged perfectly if they either
contain a class which covers all other classes or if they represent all direct
subclasses of their common superclass. Figure 3.11 shows the implementation
of a ClassFilter in Java. The integration with content-based filtering can
be achieved by supporting filters that are conjunctions of a class filter and
a specialized filter object whose match method is invoked if the class filter
returned true.

Specialized Filter Objects

Another possibility is to use specialized filter objects, an approach that can
also be combined with class filters. Such a filter implements a match method
that evaluates whether a notification matches this filter instance or not. More-
over, it can also implement methods for covering and merging. Figure 3.12
shows the implementation of a QuoteFilter in Java. Note that the filters
can also be built upon a more generic filter library, which offers, for example,
set-oriented filters.

3.2 Matching Algorithms

Matching is probably the most fundamental functionality in a publish/sub-
scribe system. A matching algorithm determines the filters, and thus the re-
cipients, that are matched by a given notification. In this chapter several
common approaches are discussed, including brute force, predicate counting,
decision trees, binary decision diagrams, and efficient XML matching.

One must carefully distinguish between notification matching and notifica-
tion forwarding. While matching aims at determining all filters that match a
given notification, notification forwarding aims at determining all destinations
for which a filter exists that matches a given notification. This means that for

58 3 Content-Based Models and Matching

class ClassFilter {
protected Class class;

public boolean covers(ClassFilter filter) {
return class.isAssigneableFrom(filter.class);

}

s public static ClassFilter merge(ClassFilterSet filters) {
Class superClass=filters.getCommonSuperClass();
if (superclass!=null) {
if (filters.contain(superClass))
return new ClassFilter (superClass);
13 if (filters.containAllSubclasses (superClass))
return new AllSubclassesFilter (superClass);
}

return null;

public boolean match(Notification n){
return class.isInstance(n);

}

Fig. 3.11. Implementation of a ClassFilter in Java

public class QuoteFilter {

3 public boolean covers(QuoteFilter qf){
return getSymbolSet () .isSuperSet (qf.getSymbolSet());
}

public static QuoteFilter merge(QuoteFilter[] qf){
8 return new QuoteFilter (QuoteFilter.
union0fSymbolSets (qf));

public boolean match(Event e) {
13 if (!'(e instanceof QuoteEvent))
return false;
return (gf.getSymbolSet ().contains(
((QuoteEvent)e) .getSymbol()));

Fig. 3.12. Implementation of a QuoteFilter in Java

3.2 Matching Algorithms 59

the latter it may not be necessary to determine all matching filters. However,
most algorithms do not exploit this difference. They determine all matching
filters and derive the set of destinations by “or-ing” the individual destination
of each filter. In the following, we concentrate on notification matching.

3.2.1 Brute Force

This is the simplest algorithm. It tests the given notification sequentially
against all filters. The main advantage of this algorithm is that it can be
used for all kind of filters; for example, it does not presume that filters are
conjunctive filters. Moreover, it does not require some kind of preprocessing
as other algorithms do. The main disadvantage of this naive algorithm is
its degraded performance. This is because the same predicate is evaluated
many times if it is part of many filters. Moreover, the dependencies among
predicates are not exploited. For example, the algorithm does not exploit that
if the predicate {x = 5} is matched, the predicate {z = j} for any j # 5
cannot be matched.

3.2.2 Counting Algorithm

Yan and Garcia-Molina have proposed to use the counting algorithm for docu-
ment matching [404]. This algorithm separates filter matching from predicate
matching. This way, the algorithm avoids evaluating predicates more than
once. In the following, we depict the algorithm for conjunctive filters consist-
ing of attribute filters.

For each filter there is a counter that is initialized to 0. Then, all match-
ing attribute filters are determined. For each matching attribute filter, the
counters of those filters are incremented which contain the attribute filter as
conjunctive term. After all matching attribute filters have been processed,
those filters whose counter equals the number of predicates this filter consists
of match the given notification.

The simplest strategy to find all matching predicates is to sequentially test
each attribute filter as to whether or not it is matched by the given notification.
A more advanced strategy is to use multilevel index structures that depend
on the type of constraint (e.g., a hash table can be used for equality tests).
The first level of the index (the attribute name index) is used to look up all
attribute filters constraining an attribute by its name. The second level (the
operator index) is used to look up all of those constraints that use a given
operator (e.g., equivalence or greater than). The third level (the value index),
finally, allow to find all of those attributes for the respective attribute and
operator that are satisfied. In this way all matching attribute filters can be
found without testing all attribute filters for satisfaction.

Figure 3.13 shows a simple example, where a notification is matched
against three filters F}, Fb, and F3. From these filters only F; is matched
by the notification.

60 3 Content-Based Models and Matching

Attribute Name Operator Value

or — [
MSFTY
TIBX N

U
(Stock, “DT”)
(Price, 15) U 121 AN
144 .
15 15 17
15
F, :={Stock = “DT")\ Price > 12}
18
F, := {Stock = “MSFT" A\ Price > 14} 16
F; := {Stock = “TIBX" /\ Price < 18} 10

Fig. 3.13. Using a multilevel index structure for the counting algorithm

Foo Inc.

AB Inc.

| Price > l | Volume >

15/ \12 16
Fu [[R]

Fig. 3.14. An exemplary decision tree

1,000,000

3.2.3 Decision Trees

Aguilera et al. [6] have proposed using decision trees for matching in publish/-
subscribe systems. A decision tree arranges tests, test results, and filters in
a tree; usually conjunctive filters consisting of attribute filters are assumed.
In the tree, nonleaf nodes are tests (e.g., price <), while leaf nodes repre-
sent filters. Finally, edges are test constants (e.g., 10). The decision tree is
usually traversed in depth-first order. The traversal follows an edge if the
notification matches the attribute filter that is formed by the test and the
test constants (e.g., price < 10). The filters that are reached, match the
given notification. Figure 3.14 shows an exemplary decision tree. The tree
contains the filters Fy = {Stock = “Foo Inc” A Price < 15}, Fy = {Stock =

3.2 Matching Algorithms 61

|| Stock = “F(_)o Inc.” ||

Fig. 3.15. An exemplary binary decision diagram

"Foo Inc.” N\ Price < 12}, F3 = {Stock = "AB Inc.” A\ Price > 16}, and
Fy = {Volume > 1,000, 000}.

3.2.4 Binary Decision Diagrams

Campailla et al. [58] suggested using binary decision diagrams (BDDs) for
matching in publish/subscribe systems. BDDs are not restricted to conjunc-
tive filters. They can be used to express arbitrary Boolean functions. In the
following, we describe the basics of BDDs and how they can be used in pub-
lish /subscribe systems.

BDDs are directed acyclic graphs. In a BDD, there are two terminal nodes
(i-e., nodes without outgoing edges) with the labels 1 and 0. These stand for
the predicates true and false, respectively. Each nonterminal node corresponds
to a predicate (e.g., price < 10) and has two outgoing edges, the low edge
and the high edge. A subset of the nodes is marked as output nodes; each
output node represents a filter. Figure 3.15 shows a simple BDD with a single
output node. The solid lines are the high edges while the dashed lines are
the low edges. The filter that corresponds to the output node is {Stock =
“Foo Inc.” A (price > 15V Volume > 1,000,000)}.

A filter is evaluated by traversing the BDD starting from the given output
node (Fig. 3.16). While traversing the BDD, the high edge is followed if the
predicate corresponding to the visited node is fulfilled by the given notifica-
tion; the low edge is followed otherwise. A notification matches a filter if finally
the node 1 is reached; if 0 is reached, the notification does not match. For ex-
ample, the notifications {{Stock, ”Foo Inc.”},{Price, 16}, { Volume, 10,000} }
and {{Stock, "Foo Inc.”},{Price, 14}, { Volume, 1,000,000} } match the BDD
shown in Fig. 3.15.

Evaluating all filters separately can be avoided by using ordered binary
decision diagrams (OBDDs). In a OBDD, the nodes are numbered such that
for every path, the numbers of the visited nodes are strictly monotonically
increasing. This means that the nodes 0 and 1 are numbered by n and n — 1,

62 3 Content-Based Models and Matching

v := <output node of filter>;
2 while <v is not a terminal node> do
if eval[v] then

v := high[v];
else
v := lowl[v];
7 endif
endwhile

matched := labell[v];

Fig. 3.16. Evaluating a filter using a binary decision diagram

1 for v := n downto 1 do
if <v is terminal node> then
value[v] := labell[v];

else
a := evallv];
6 value[v] := a and valuelhigh[v]] or
not a and value[low[v]];
endif
endfor

Fig. 3.17. Evaluating an ordered binary decision diagram

respectively. OBDDs are evaluated bottom-up by visiting the nodes in de-
creasing order starting by node n. If the visited node is a terminal node, a
value of 1 is assigned if node 1 is visited and 0, otherwise. If a nonterminal
node v is visited it is assigned the value p(v) A low(v) V —p(v) A high(v), where
p(v) is the result of the predicate corresponding to node v, and low(v) and
high(v) are the values assigned to the node to which the low and the high edge
originating at v are leading, respectively. A filter is matched, if to its output
node 1 is assigned; otherwise it is not matched. The algorithm is shown in
Fig. 3.17.

A reduced ordered binary decision diagram (ROBDD) is an OBDD from
which redundant nodes and isomorphic subgraphs are removed. It is known
from the research on Boolean function minimization that ROBDDs exhibit
exponential grow for some Boolean functions (e.g.,the chessboard function).
The predicate numbering has a large effect on the size of the ROBDD, too.
While some functions require exponential size only for a subset of the potential
predicate orderings, other functions require exponential size for all possible
variable orderings. Finding the optimal ordering is known to be NP-hard.
BDDs can easily be logically combined. For example, the BDD of a negated
function is the BDD of the function, where the nodes 0 and 1 are swapped.
BDDs can also “or-ed” and “and-ed” together.

3.2 Matching Algorithms 63

F, = /a/b: O 2 O ° @

F, = /allc: O 2 O : 6 ° @

b *
F, = Iblic: O @

Fig. 3.18. XPath Queries and their corresponding finite state automaton

O

3.2.5 Efficient XML Matching

As XML becomes more popular, using XML as a data model for publish/-
subscribe systems is also gaining increased attention. In the area of XML
processing, XPath [398] is often used to select parts of an XML document
that match a path expression. This approach can also be used to test whether
a document contains a matching part. A path expression searches for ele-
ments and attributes in an XML document that satisfy the given condition.
Because XPath allows for very complex queries, implementing efficient match-
ing for XPath filters is challenging. In the literature, XFilter and YFilter have
been proposed to facilitate XPath for matching XML documentsr. Both ap-
proaches are based on finite state machines (FSMs). Recent approaches [183]
are based on a constructing a deterministic finite autormaton (DFA) from the
given NFA. In the following, we give an overview of XFilter and its succes-
sor YFilter. Altinel and Franklin [12] have proposed XFilter, which was the
first FSM-based approach. XFilter translates each XPath query into a sep-
arate FSM (Fig. 3.18) and uses a novel indexing mechanism to allow all of
the FSMs to be executed simultaneously during the processing of a document.
When a document arrives, it is processed by an event-based XML parser (e.g.,
based on the SAX interface). The events raised (e.g., an element is opened or
an element is closed) during parsing are used to drive the FSMs through their
various transitions. A query is said to match a document if during parsing,
an accepting state for that query is reached. The approach of XFilter to use
one FSM per XPath query has the disadvantage that commonalities among
queries are not exploited.

64 3 Content-Based Models and Matching

{F} A {F,}
a
Y
O0—0O
£ - {F3}
) c
{F,}

—0

Fig. 3.19. Combined nondeterministic finite state automaton

YFilter, which can be seen as the successor of XFilter, was proposed by
Diao et al. [110, 111, 112]. YFilter combines all path expressions into a sin-
gle nondeterministic finite automaton (NFA) (Fig. 3.19), where the common
prefixes among path expressions are shared, i.e., represented only once. This
NFA-based approach can be extended to also process predicates attached to
path expressions. The authors have developed two alternatives to combining
the NFA execution and predicate evaluation. One approach evaluates predi-
cates as early as their addressed elements are matched, while the other delays
predicate evaluation until the corresponding path expression has been entirely
matched.

3.3 Further Reading

Approximate Matching

In this chapter we assumed the Boolean filter model [404]. Either the notifica-
tion exactly matches the filter or it does not match the filter. An alternative
to exact matching is approzrimate matching. Liu and Jacobsen presented A-
ToPSS [240], a publish/subscribe prototype with approximate matching. Yan
and Garcia-Molina [403] discussed index structure for information filtering
under the vector space model.

Matching Algorithms

Fabre et al. [132] and Pereira et al. [305] present matching algorithms which
exploit similarities among predicates. In a first step the satisfied predicates are
computed, and after that the number of predicates satisfied by a subscription
are counted using an association table. Two variants of this algorithm are de-
scribed that incorporate special treatment of equality tests and of constraints
having only inequality tests.

3.3 Further Reading 65

A predicate matching algorithm for database rule systems is presented by
Hanson et al. [187] that indexes the most selective predicate that is determined
by the query optimizer. They use a special indexing data structure called
interval binary search tree to support the efficient evaluation of interval tests.

Gough and Smith [181] present a matching algorithm that is based on
automata theory. They show how a set of conjunctions of predicates, each
dependent on exactly one attribute, can be transformed to a deterministic
finite state automaton. In the paper different types of test predicates are con-
sidered and complexity results are obtained. Their algorithm is very efficient,
but its worst-case space complexity is exponential. The proposed solution is
also not suited for dynamic environments as the automaton has to be newly
constructed from scratch if subscriptions change.

Pu et al. [241, 372] present indexing strategies for continual queries based
on trigger patterns. In particular, a strategy which uses an index on the most
selective predicate is described. More complex indexing strategies exploit sim-
ilarities among trigger patterns to reduce the processing costs. They restrict
optimizations to constraints which place a constraint on a single attribute
involving at most one constant.

Gryphon uses the content-based matching algorithm presented by Aguil-
era et al. [6]. This algorithm traverses a parallel search tree, where nonleaf
nodes correspond to simple tests and edges from nonleaf nodes represent re-
sults. Leafnodes are associated with matched subscriptions. Banavar et al. [26]
present a multicast routing algorithm that executes the matching algorithm
at each broker. The algorithm presented is limited to equality tests.

4

Distributed Notification Routing

In this chapter we describe how a simple event system can be implemented by
distributed notification routing relying an overlay network of brokers. To em-
phasize that we focus on the communication in this chapter, we use the term
publish /subscribe system instead of event system for the rest of this chapter.
We first introduce our system model and a routing framework in Sect. 4.1
and Sect. 4.2, respectively. Then, we introduce the notion of valid and mono-
tone valid routing algorithms that are sufficient for correct publish/subscribe
systems in Sect. 4.3. Section 4.4 defines valid framework instantiations that
implement monotone valid routing algorithms. A set of content-based routing
algorithms is presented as instances of the routing framework, and their valid-
ity is shown in Sect. 4.5. Then, in Sect. 4.6 extensions of the basic framework
are described informally. They deal with advertisements, hierarchical routing,
rendezvous-based routing, topology changes, joining and leaving clients, rout-
ing in cyclic topologies, exploiting IP multicast, and topology maintenance.

4.1 System Model

In our model, the publish/subscribe system consists of a set of cooperating
concurrent processes B, ..., B, called brokers,' that are arranged in a topol-
ogy. If nothing else is said, we restrict ourselves to acyclic connected topologies.
This restriction can be circumvented by running a spanning tree algorithm on
the original (potentially cyclic) topology. Of course, routing algorithms that
can deal more directly with cyclic topologies are desired (cf. Sect. 4.6.6). Since
we focus more on the implementation in this chapter, we call the components
(cf. Chap. 2) that connect to the event notification service clients. Each bro-
ker B manages a mutually exclusive set of local clientsLp that is a subset of
all clients C. Clients communicate with their broker using local synchronous
procedure calls. Concurrent updates to local data structures are synchronized

! In this chapter, we do not distinguish among border, inner, and local brokers.

68 4 Distributed Notification Routing

using a broker-specific monitor pp. Moreover, each broker is connected to a
set of neighbor brokers Ng. Brokers communicate with their respective neigh-
bors by asynchronous message passing. For this chapter, we refer with B; to
an arbitrary broker and by B; to an arbitrary neighbor of B;, i.e., B; € Np,.

Assumptions

The subsequent discussion is based on the following assumptions:

e C(lients are stationary, i.e., they cannot disconnect from one broker and
connect to another broker; client mobility is addressed in Sect 8.4.

e We first concentrate on a system without advertisements; their discussion
is postponed to Sect. 4.6.1.

The topology is static; topology changes are discussed in Sect. 4.6.4.

The set of clients is static; clients that join and leave the system are dis-
cussed in Sect. 4.6.5.

The system is not overloaded; congestion control is discussed in Sect. 8.3.
The system is fault-free; fault tolerance is discussed in Sect. 8.2.

e The communication channels are reliable and respect FIFO message or-
dering; no messages are duplicated, lost, corrupted, or erroneously sent,
and messages are received in the order in which they have been sent. These
assumptions are not severe restrictions because they can easily be achieved
by using transport layer functionality (e.g., TCP).

e The message delay is unbounded but finite. Since channels are reliable this
implies that if a message is sent, it is eventually received.

Fairness Property

To allow us to prove liveness properties, the entire system has to satisfy a
fairness property, namely that (a) no pending message (i.e., a message that
was received but which has not yet been processed) and (b) no thread waiting
to enter a monitor can be infinitely delayed by a process because of unfavorable
scheduling choices of that process. The fairness property allows us (together
with the reliable channel assumption and the finite message delay) to conclude
that if a message was sent, it is eventually processed. In the implementation,
the property is respected by using fair scheduling (e.g., round robin on all
incoming channels). Furthermore, if no deadlocks can occur, it allows us to
conclude that a thread waiting to enter a monitor will eventually enter this
monitor.

Message Batching

In many cases when we discuss algorithms in the following, message batching
could be used. In this case, the sending of a message is postponed until a
timeout occurs. If more than one message is “sent” to the same destination

4.2 Routing Algorithm Framework 69

before the timeout occurs, those message are combined into a single, larger
message. While this may reduce the network overhead, it may introduce an
additional delay to messages. We mainly refrain from using message batching
and piggybacking in the following because it would overly complicate the
discussion of the algorithms.

4.2 Routing Algorithm Framework

The pseudocode of the routing framework that runs on each broker is de-
picted in Figs. 4.1 and 4.2. The main program (lines 1-11) starts when the
broker is created. It initializes the routing table of the broker, a monitor,
and, for each local client, a delivery queue. Then, it enters an infinite loop
(lines 4-10) that dispatches messages arriving from neighbor brokers to the
handleMessage procedure. This is done in a fair way, e.g., by using round
robin. The handleMessage procedure (lines 37-46) further dispatches a mes-
sage based on its type. The framework uses two types of messages for its
internal implementation that are exchanged among neighboring brokers using
asynchronous message passing: (1) forward(n), which is used to disseminate
a notification n in the broker network and (2) admin(8,U), which is used to
propagate routing table updates by interpreting the sets of filters § and U
as subscriptions and unsubscriptions, respectively. The handleMessage proce-
dure dispatches forward messages to the handleNotification procedure (lines
18-24), which notifies local clients and sends forward messages to neighbor
broker. admin messages are dispatched to the administer procedure. The val-
ues returned by administer are used as input to the handleAdminMessage
procedure that sends admin messages to neighbor brokers. The code of the
administer procedure is not shown here because it is not part of the frame-
work. It is implemented by a framework instantiation to realize a concrete
routing algorithm. This allows a variety of routing algorithms (Sect. 4.5) to
be implemented.

Besides the code that processes messages received from neighbor brokers,
the framework comprises a set of interface procedures that correspond to the
interface operations introduced in Sect. 2.5.2. The procedures pub, sub, and
unsub (lines 47-62) are called by local clients to publish a notification and to
subscribe and unsubscribe to a filter, respectively. The notify procedure (lines
13-16) is called by the broker itself to notify a local client about a notification.
A notification is delivered to a client Y by appending the notification to the
delivery queue Qy of the client.

4.2.1 Atomic Steps of the Implementation

At the implementation level, we distinguish the following six atomic steps:
pub, sub, and unsub (corresponding to the interface operations called by local
clients), notify (corresponding to the interface operation called by the broker),

70 4 Distributed Notification Routing

1 program ContentBasedRoutingFramework()
begin
initialize T and pup, and Q¢ for allC € Lp;
loop
wait until a message is available;
6 sync(pB)
m «— return next fairly selected message;
handleMessage(m);
endsync
endloop
11 end

procedure notify(Client Y, Notification n)
begin
Qy « append(Qy,n);
16 end

procedure handleNotification(Dest D, Notification n)
begin
send “forward(n)” to all neighbors in Fr(n) \ {D};
21 forall local clients C € Fp(n) do
notify(C,n);
endforall
end

26 procedure handleAdminMessage(Dest D, Set Mg, Set My, Bool b)

begin
forall H € Np\ {D}
§—{F|(F,H)€Ms};
U {F|(F,H)eMu};
31 if §#0 vV U#() then
send “admin(8,U)” to H;
endif
endforall
end
36
procedure handleMessage(Message m)
begin
if m is “forward(n)” message from neighbor U then
handleNotification(U, n);
41 endif
if m is “admin(8,U)” message from neighbor U then
(Fs,Fv) < administer(U, S, U);
handleAdminMessage(U,F s, Fu,0);
endif

146 end

Fig. 4.1. Content-based routing framework, part I

4.2 Routing Algorithm Framework 71

sync(up) procedure pub(Client X, Notification n)
begin
handleNotification(X,n);

50 end

sync(up) procedure sub(Client Y, Filter F)
begin
(Fs,Fv) « administer(Y, {F},0);
55 handleAdminMessage(Y,Fs,Fu,0);

end

sync(up) procedure unsub(Client Y, Filter F)
begin
6o (Fs,Fu) < administer(Y,0,{F});
handleAdminMessage(Y,Fs,Fu,0);

end

Fig. 4.2. Content-based routing framework, part 11

and forward and admin (corresponding to the two types of messages that can
be sent and received by a broker).

The execution of pub, sub, and unsub steps starts when the calling thread
of the respective client enters the body of the respective procedure and ends
when the respective procedure returns. The execution of notify steps starts
when the calling thread enters the notify procedure and ends when the notify
procedure returns. Note that strictly speaking, notify steps are executed
within a surrounding atomic pub or forward step. However, it is sufficient
to model this by appending the notify steps directly to the corresponding
surrounding step in the resulting trace.

The execution of the forward and admin steps starts when the thread of
the broker enters the monitor (line 6) and ends when it leaves the monitor
(line 9). Which of these two steps is executed depends on what type of mes-
sage is received. We say that a forward (an admin) step is executed when
a forward (an admin) message is received. The forward(B;, B;,n) step takes
three parameters: B; is the broker at which the step is executed; Bj is the
broker from which the forward(n) message was received; n is the notification
that was received as part of the forward(n) message. The admin(B;, B;, S, U)
step takes four parameters: B; is the broker at which the step is executed; B;
is the broker from which the admin(8,U) message was received; 8§ and U are
the two sets of filters that were received as part of the admin message.

To ensure that the execution of a step is atomic, i.e., does not interleave
with the execution of other steps at the same broker, the interface procedures
that can be called by local clients (i.e., pub, sub, and unsub) and the code
that receives and handles a messages from a neighbor broker (lines 6-9) are
protected by a broker-specific monitor up. Since we use only a single monitor,

72 4 Distributed Notification Routing

no deadlocks can occur. There is no need to protect the notify procedure
because it is only called by threads that have already entered the monitor.

The trace for the whole system consists of the steps of all brokers and
clients. It arises from interleaving the traces of the individual brokers and
their clients.

4.2.2 Notification Forwarding and Delivery

In the following, we explain in more detail how routing tables are used in the
handleNotification procedure to forward notifications to neighbor brokers and
to deliver them to local clients. Each broker B manages a private routing table
T that comprises a set of routing entries. Each routing entry is a pair (F, D)
consisting of a filter F' and a destination D € NgULpg. The state of all routing
tables determines the current routing configuration of a publish/subscribe
system. Initially, each routing table is set to a predefined state that usually
depends on the applied routing algorithm. This defines the initial routing
configuration. The routing configuration of a single broker B consists of two
disjoint parts: the remote routing configuration that comprises all routing
entries whose destination is a neighbor and the local routing configuration
consisting of all routing entries whose destination is a local client.

The routing configuration induces the set of notifications that a broker
potentially forwards to a destination. In the following, we often need to refer
to the filters that comprise the routing configuration of a broker regarding a
single destination D and all but a single destination D:

TP < {F|3(F,D) T} (4.1)
T\P < {F|3(F,E) e TANE # D}

The destinations to which a broker B forwards or delivers a given notification
n is given by Fp(n):

Fp(n) ¥ {D|DeNgULg A neNTY)}. (4.3)

Now, we can describe how a broker forwards a notification to its neighbors
and how a broker delivers a notification to its local clients:

Calling pub(X,n) leads to a call of handleNotification(X,n) (line 49).
If a broker receives a forward(n) message from a neighbor U, it invokes
handleNotification(U,n) (line 40).

e If handleNotification(D,n) is called at a broker B, a forward(n) message
is sent to all of neighbors of B in Fp(n)\{D} (line 20) and all local clients
of B in Fp(n) are notified about n (lines 21-23).

For example, consider the situation depicted in Fig. 4.3. Here, B; delivers
a notification received from X; to its local client X5 due to the entry (Fy, X5)
and forwards n to its neighbor By due to the entry (F3, Ba).

4.2 Routing Algorithm Framework 73

n € N(Fy)
n € N(F3)
n ¢ N(F3)
n ¢ N(Fy)
()
Fp,(n) ={Xs, B2} (F2, X3)
(Fs,Bs) | .0
(Fz, Bs) Routing Table T,

Fig. 4.3. Diagram explaining notification forwarding

4.2.3 Avoidance of Duplicate and Spurious Notifications

Now, we prove that duplicated and spurious notifications are avoided by the
notification forwarding algorithm if the broker topology is acyclic. Duplication
avoidance in cyclic topologies is discussed in Sect. 4.6.6.

Lemma 4.1. If the topology is acyclic, notification forwarding satisfies
O [notify(Y, n) = [OO-motify(Y,n)] A [n € UXGGPX]] (4.4)

Proof. The algorithm never forwards a notification to a neighbor broker from
which it received this notification. This fact, the reliable channel assumption,
the fact that the topology is acyclic, and the fact that a notification cannot be
published twice ensures that no duplicates are delivered to a client. To prove
that no spurious notifications are delivered to a client, we argue backwards
from the delivery of a notification to its publication. For every, notify(n) a
corresponding pub(n) should exist. A broker only notifies a client if it either
received forward(n) message from a neighbor or if pub(n) was called by a
local client. In the former case, we have found the witness pub(n). In the
latter case, the same case distinction can be applied to the neighbor broker
from which the forward(n) message was received. As the topology is acyclic
and has a finite diameter, this recursion must abort after a finite number of
steps. Hence, a corresponding pub(n) exists in any case. This concludes the
proof. O

4.2.4 Routing Table Updates

In this section, we explain in more detail how the routing tables are up-
dated by calling administer and by propagating admin messages using

74 4 Distributed Notification Routing

handleAdminMessage. Routing tables are exclusively updated by (calling)
the administer procedure. The administer procedure is called at a bro-
ker B if an admin message from a neighbor is received (line 43) or, if sub
(line 54) or unsub (line 60) is called by a local client. If its execution was
triggered by an admin message, it is called with the broker S from which
this message was received and the two filter sets 8 and U that were em-
bedded in the message as parameters. If a local client Y calls sub(Y, F)
or unsub(Y, F), then administer(Y,{F},0) and administer(Y,(,{F}) are
called, respectively. administer can identify whether the call was triggered
by a neighbor or by a local client by checking whether S is in Ng or in Lg. As
result administer returns two sets which are both comprised of pairs of filters
and neighbors. These sets are used as input to the handleAdminMessage pro-
cedure. To each neighbor apart from S, which is represented in either of both
sets, exactly one admin(8 g, Uy) message is sent. While 8 contains all filters
F for which there is a pair (F, H) in the first returned set, Uy contains all
filters F' for which there is a pair (F, H) in the second returned set. Roughly
speaking, 8y and Sy are the subscriptions and unsubscriptions which are
forwarded to H, respectively.

4.3 Valid and Monotone Valid Routing Algorithms

A publish/subscribe system has to deal with new subscriptions and cancella-
tion of existing subscriptions. A routing algorithm adapts, starting from an
eligible initial routing configuration, the routing configuration to the changing
set of active subscriptions. Intuitively, a routing algorithm is valid if it adapts
the routing configuration such that the resulting system satisfies the safety
and the liveness property of Def. 2.5. But can we express validity as property
of the routing configuration?

4.3.1 Valid Routing Algorithms

A valid routing algorithm must lead together with the routing framework to a
publish /subscribe system that satisfies the safety and the liveness properties
of Def. 2.5. As duplicated and spurious notifications are already avoided by the
notification forwarding algorithm, it suffices to require that the local routing
configuration ensures that only matching notifications are delivered to imply
safety. For a client Y, let (Y") be the broker that manages Y. Hence, N (Telz/y))
should be a subset of N(Sy) for all clients.

To guarantee liveness we must show that when a client Y subscribes to
a filter F' and stays subscribed, then from some time (after the subscription
was issued) on, every notification that is published at any broker B (i.e., by a
local client of B) and that matches F' should be delivered to Y. To achieve this
such a notification must first be forwarded to the broker managing Y (i.e.,

4.3 Valid and Monotone Valid Routing Algorithms 75

0(Y)) and second be delivered to Y subsequently. The second requirement
is easily ensured by keeping N (Te‘zjy)) a superset of N(Sy). We achieve the
first requirement by requiring that for each notification n € N(F) a simple?
directed path exists connecting B with 6(Y") over which eventually always n is
forwarded. By requiring the property to hold for all n € N(F') independently,
the delivery of all notifications matching F' can be split among multiple de-
livery paths in cyclic topologies. Thus, let B;,, ..., B;; be a simple directed
path in the broker network. Then,

def |B'ik_1

’}/(Bil,. . BH) = ﬁlgkgj N(TB%) (45)

is the set of notifications that if a notification contained in this set is published
at B;, and stays in this set, it reaches B;, over this path. Let v(B;, B;) be
the set of all simple directed paths connecting originating broker B; to the
receiving broker B;.

Definition 4.1. A routing algorithm is valid if the following conditions hold:
e (Local Subset Validity)

O[N(Tjy,) € N(Sy)] (4.6)
e (Eventual Superset Validity)
O[O(F € Sy) = OON(Tyy,) 2 N(F)] (4.7)

O[O(F € Sy) AB#60(Y) A ne N(F)

=3P ev(0(Y),B). ©O[n € v(P)])

In the following, we prove that a valid routing algorithm is sufficient for a
correct publish/subscribe system.

Theorem 4.1. A valid routing algorithm is sufficient for a correct publish/
subscribe system.

Proof. We have to show that if local subset validity and eventual superset
validity hold, then safety and liveness according to Def. 2.5 are implied. As
duplicates and spurious notifications are avoided by the notification forward-
ing algorithm in acyclic topologies (Lemma 4.1), it remains to be shown that
only matching notifications are delivered to clients to imply safety. This fol-
lows directly from local subset validity. To prove liveness we assume that
O(F € Sy) and show that then OON(T,y.,) 2 N(F) and ¥n € N(F). 3P €
v(0(Y), B).<0[n € y(P)] implies ¢O[pub(X,n)An € N(F) = Onotify(Y, n)].
Assume that X publishes a notification n € N(F'). There are two cases: Case

2 A simple path is a path in which no vertex occurs twice.

76 4 Distributed Notification Routing

1: If (X)) = 0(Y") then n is delivered to Y because of Eq. (4.7) if it was pub-
lished after N(Telz/y)) D N(F') began to hold. Case 2: If 8(X) # 6(Y), then
there exists at least one path connecting #(X) to 6(Y) since the topology
is connected. According to Eq. (4.8) for one of these paths n € v(P) holds
eventually always. Hence, if n is published after n € v(P) began to hold, n
is forwarded to 6(Y") due to the definition of . Then, n is forwarded to Y
due to Eq. (4.7) if it was published after N(Telz/y)) D N(F') began to hold.

Hence, n will be delivered to Y if n was published after N (Telz/y)) D N(F)and
n € v(P) began to hold. Both cases together prove liveness. Thus, liveness
and safety hold and a correct publish/subscribe system is implied. O

Note that while we restricted the discussion to acyclic topologies here, valid
routing algorithms can also be used in cyclic topologies (without requiring a
single spanning tree). In this case, notification forwarding must be changed
such that duplicates are avoided (Sect. 4.6.6).

4.3.2 Monotone Valid Routing Algorithms

Theorem 4.1 reveals that valid routing algorithms are sufficient for a correct
publish /subscribe system. The properties of validity, however, have the follow-
ing disadvantages: Local subset validity does not require that the delivery of
notifications that are published by local clients connected to the same broker
as the subscribing client is guaranteed immediately after subscribing. This
would, however, be feasible in our setting. Furthermore, eventual superset
validity depends on individual subscriptions and is a property of the routing
configuration of the entire topology. A property that only depends on the rout-
ing configurations of neighboring brokers would be much simpler to handle.
This motivated us to look for stronger requirements which are nevertheless
satisfied by most routing algorithms of practical relevance. This process leads
to a stronger form of validity, called monotone valid routing;:

Definition 4.2. A routing algorithm is monotone valid if the following con-
ditions hold:

e (Local Validity)
%
o[N(Tyy)) = N(Sy)] (4.9)
e (Eventual Monotone Remote Validity)

o[ofn e N(TyP)] = onlne N(TR)] (4.10)

While monotone validity implies validity, the opposite is, in general, not
true. First, validity allows the local delivery to be guaranteed eventually, while
monotone validity requires immediate delivery. Second, validity only requires
that those notifications are sent over a link between two brokers that are

4.4 Valid Framework Instantiations s

necessary to serve the respective subscription. Further assumptions are not
made. Monotone validity, on the other hand, does not depend on individual
subscriptions. Instead, it requires that at least those notifications that are
sent over a link from B;;; to B; are sent over the link from B;ys to B;11.
Hence, the set of notifications forwarded is monotonically increasing for any
path in the broker network. This led to the naming of monotone validity.
Subsequently, we prove that monotone valid routing algorithms are a subclass
of valid routing algorithms.

Lemma 4.2. Fvery monotone valid routing algorithm is also valid.

Proof. Tt is easy to see that local validity implies local subset validity. To show
that also eventual superset validity is implied by monotone validity, assume
that OF € Sy for some client Y and consider an arbitrary notification n €
N(F). Let P = B;,,...,B;; with B;; =6(Y) and B;;, = 0(X) be an arbitrary
path that connects the broker (X) to the broker 8(Y). To prove that for all

n € N(F).o0On € «(P), we prove by an induction that ¢oOn € T‘ 1 for
all directed edges (B;,_,, Bi,) € P. Due to local validity n € N(TJBZ,I) holds.

Due to eventual monotone remote validity ¢0On € N (TlBil) is implied. This

proves the base case. Now, assume that ¢On € N (T‘B”*) holds (induction

assumption). This implies that GOn € N(Tg 77 ”‘“) due to eventual monotone
k42

remote validity. This proves the induction step. Since ¢On € T‘ =1 for all

directed edges (B;,_,,Bi,) € P, Vn € N(F). oOn € v(P) is 1mphed by the
definition of . Hence, eventual monotone remote validity holds in addition
to local subset validity. This concludes the proof. O

Corollary 4.1. A monotone valid routing algorithm implies a correct pub-
lish/subscribe system.

Proof. By Lemmas 4.1 and 4.2. O

The definition of monotone valid routing algorithms sets up the design
space for valid framework instantiations, which are presented in the next sec-
tion.

4.4 Valid Framework Instantiations

In this section, we derive general requirements for valid framework instan-
tiations revealing new insights into the characteristics content-based routing
algorithms have in common. All requirements are expressed as invariants of
the framework which refer only to a single step of the system. This allows the
correctness of concrete framework instantiations (Sect. 4.5) to be proved more

78 4 Distributed Notification Routing

easily. Two requirements are derived from those characterizing monotone valid
routing algorithms, while the other requirements are framework specific.

First, we require that administer returns after a finite time. This guar-
antees that a broker is not blocked infinitely by processing a message. From
the two requirements characterizing monotone valid routing algorithms, local
validity (which is called local invariant here) is directly used as an invariant
of the framework. Eventual monotone remote validity is mapped to an invari-
ant of the routing framework called remote invariant. This is done by looking
at the transformation that a sequence of admin messages received from a
neighbor B; causes on the routing table of a broker B;. This transformation
can be computed without considering messages that B; receives from other
destinations if we require that

1. an admin, sub, or unsub step regarding a destination D can only influence
the part of the routing table dealing with destination D (i.e., TJBD) and
leaves for all other destinations their respective part of the routing table
unchanged and that

2. (Tg,j)'D only depends on TJB,? and the processed message and not on the
rest of the routing table.

These requirements are called restricted change and restricted impact, respec-
tively. They are satisfied by all routing algorithms that we will discuss later
on. Now, we look in more detail on how the above-mentioned transformation
can be computed to derive the desired invariant.

A call of administer is triggered by the receipt of an admin message or
if sub or unsub is called by a local client. Each call of administer trans-
forms the routing table of the respective broker from its current state T' to
its subsequent state 7’. Now, assume that the routing table of B; contains
only routing entries regarding a destination D and that a given implemen-
tation of administer is called at B; triggered by a destination D. In this
case, we define § as the transformation of T" into T, i.e., the function such
that 5(T1|9?7m) = (ngj)‘D. Multiple admin messages can be in transit simul-
taneously on the communication channel between a broker B; and one of its
neighbors B;. To capture the change to the routing table of B; triggered by
this sequence of admin messages, let Xp, g, = (m1, ..., m,) be the sequence
of admin messages that B; sent to B; that have not yet been processed by
Bj, i.e.,that are still in transit. For sequences, we assume the existence of the
functions head, tail, and append:

head({my,ma, ..., my)) = my (4.11)
tail((my,ma, ..., mp)) = (ma, ..., my) (4.12)
append ((m1,ma, ..., mp) Mpi1) = (M1, ..., Mpi1) (4.13)

The admin messages in transit will eventually trigger a call of administer
at Bj, as we now explain. We define for a set of filters A:

4.4 Valid Framework Instantiations 79

AA)= A (4.14)
A(A, (M, ... mp)) = AG(A, my), (my, ..., mp)) (4.15)

Hence, A(Tg?i , XB,,B,;) contains all filters represented in the routing table
of broker Bj; regarding neighbor B; that one would obtain if T, contains
only routing entries regarding neighbor B; and the admin messages in Xp, B,
are sequentially processed by the administer procedure at Bj;. Note that
A(Tllfi ,XB,,B;) does not change if messages from Xp, p; are processed by Bj;
it only changes if a new message is appended. Now, assume that we require
that N (A(TJB?,JC B;,B;)) is always a superset of N (Tg?j). This means that
if oOon € N (Tl\g?j), then GOn € N (Tgfi). Hence, monotone remote validity
is implied. We have found the desired invariant. Now, we can define valid
framework instantiations:

Definition 4.3. An instance of the framework consisting of an implementa-
tion of administer and an initial routing configuration is valid if the following
conditions hold:

1. (Progress) If called, administer eventually returns.
2. (Restricted Change)

0 [admin(B;, B;,8,U) = VD # Bj. (Tj,)/P = T};] (4.16)
and
O[sub(Y, F) V unsub(Y, F) = VD #Y. (Té(y))lD = Telf)y)] (4.17)

3. (Restricted Impact)

0 [admin(B;, B;,8,U) = (T,)/%i = §(T))] (4.18)
and
D[sub(Y, F) V unsub(Y, F) = (T})" = 0(T)5))] (4.19)
4. (Local Invariant)
O[N(Thy)) = N(Sy)] (4.20)
5. (Remote Invariant)
O[N(ATL, Kp, 5,) 2 N(Tx)] (4.21)

The individual properties of valid framework instantiations have the fol-
lowing informal meaning:

1. This property simply guarantees that administer terminates.

80 4 Distributed Notification Routing

2. The restricted change property states that if the call of administer was
triggered by a certain destination, only the part of the routing table re-
garding this destination can be affected.

3. The restricted impact property states that a change to a part of the routing
table regarding a certain destination cannot be influenced by any part of
the routing table dealing with other destinations.

4. The local invariant states that exactly those notifications should be deliv-
ered to a local client in which it is interested.

5. The remote invariant states that after B; has processed all admin mes-
sages from B; that are currently in transit, B; will forward to B; at least
those notifications that B; currently forwards to its other neighbors and
local clients.

Next, we prove that a valid framework instantiation implies a monotone
valid routing algorithm.

Lemma 4.3. A valid framework instantiation implies a monotone valid rout-
ing algorithm.

Proof. Local validity follows directly from the local invariant. It remains to
be shown that also eventual monotone remote validity is implied. To prove

this property assume that ¢O[n € N (T;:Bj)]. Then, the superset relation in

the remote invariant implies that ¢0O[n € N (A(TJBfoK B;,B;)]. Termination,
progress, restricted change and impact, and the reliable channel assumption
then imply that ¢O[n € N (Tgfi)], giving the desired property. 0O

Theorem 4.2. A valid framework instantiation implies a correct publish/sub-
scribe system.

Proof. By Lemmas 4.1 and 4.3. O

4.5 Content-Based Routing Algorithms

In this section, a set of content-based routing algorithms is discussed. Each
algorithm is given as an instance of the content-based routing framework
presented in the previous section, i.e., as an instance of the administer pro-
cedure. The presentation follows a natural evolution in the development of
routing algorithms from basic approaches to more advanced algorithms. We
start with flooding. Then, we discuss in full detail simple routing, identity-
based routing, covering-based routing, and merging-based routing. Using our
framework theorems, the proof of correctness of these algorithms boils down
to proving that the administer procedure is a valid framework instantiation.

4.5 Content-Based Routing Algorithms 81

procedure administer(Dest S, Set S, Set U)
begin
Tp — T U{(F,S)| F € 8};
1+ Tp—T\{(F,S)|FeU};
return (0,0);
end

Fig. 4.4. Flooding

4.5.1 Flooding

With flooding, the routing table of each broker B is initialized to the set
{(Fr,U) | U € N} at system startup, where Fr(n) = true for all n € N.
Since N(Fr) = N, this routing configuration implies that a broker forwards
a notification received from a local client to all neighbors and a notification
received from a neighbor to all other neighbors. Because the topology is acyclic
and connected and since no messages are duplicated, flooding ensures that
every notification is processed exactly once by every broker. Flooding is the
only routing strategy that does not require the remote routing configuration
to be updated. Therefore, the algorithm returns ((},®) (Fig. 4.4, line 5) and
no admin messages are exchanged. After the initialization, each broker solely
adds and deletes routing entries regarding its local clients as they subscribe
and unsubscribe:

e If a client Y subscribes to a filter F, the corresponding broker adds (F,Y")
to its routing table (line 3).

e If a client Y unsubscribes to a filter F', the corresponding broker deletes
(F,Y) from its routing table (line 4).

Correctness Proof

For flooding, we use the following initial state:

def,

Initp =Tp = {(Fr,H) | H € Np} A K3, 5, = ()

(4.22)
ANSY=0ANPYy=0ADY=0

Lemma 4.4 (Progress). Fach call of the flooding instantiation of
administer returns.
Proof. Obvious. 0O

Lemma 4.5. Flooding satisfies the restricted change and the restricted impact
property.

82 4 Distributed Notification Routing

Proof. An application of § to Tp corresponds to a call of administer. In
the administer procedure, the only code lines that manipulate routing en-
tries are lines 3 and 4. These lines change only routing entries regarding the
triggering destination S. Hence, the restricted change property holds. The
above-mentioned lines do not take any routing entries regarding a destination
distinct from the triggering destination into account. Hence, the restricted
impact property holds, too. 0O

Lemma 4.6. nitp = D[Te‘(y) Sy]

Proof. The property is shown by an induction. Initially, (Te(y) Y — = SY holds
due to Initg, proving the base case. Now, assume that 7, = Sy holds and
assume that the system executes a step. Only the sub(Y, F) and unsub(Y, F)
steps change Te(Y) and Sy because of Lemma 4.5. In the sub(Y,F') case,

St = Sy U{F} and (Té(y))‘y = TG‘? U{F} (line 3) holds. In the unsub(Y, F')
case, S§, = Sy \{F'} and (Té(y))‘y 0(y) \ {F} holds (line 4). In both cases,

(Té(y))‘y = S} is implied. This proves the induction step and concludes the
proof. O

Lemma 4.7. Initp = D[Tgi = {Fr}]

Proof. Due to Initg, (ng)IBi = { Fr} holds initially. Due to Inity and because
flooding always returns empty sets (line 5), Xp, 5, = 0 always holds. This
implies that an admin(B;, B;, 8, U) step is never executed. Due to Lemma 4.5
this implies that TJB% never changes. Hence, Tgi = {Fr} always holds. O

Theorem 4.3. Flooding is a valid routing algorithm.

Proof. Lemma 4.4 and 4.5 imply the progress and the restricted change and
impact property, respectively. Lemma 4.6 implies the local invariant because

Tyty, = Sy implies N(Tj(y) =

ant because T‘ * = {Fr} implies that N(T‘B)2 N(T\B). Hence, flooding
is a valid framework instantiation which, by Theorem 4. 2, yields a correct
publish/subscribe system. 0O

N(Sy). Lemma 4.7 implies the remote invari-

4.5.2 Simple Routing

Simple routing uses filter forwarding to update the routing configuration in
reaction to subscribing and unsubscribing clients: new and canceled subscrip-
tions are flooded into the broker network such that they reach every broker.
This allows the brokers to update their routing tables accordingly. Initially, the
routing table Tz of each broker B is initialized to). Simple routing assumes
that each filter has a unique ID and that filters issued by different clients have
disjoint sets of IDs. The filter ID is used to identify a filter when adding it to
and deleting it from routing tables. The algorithm (Fig. 4.5) works as follows:

4.5 Content-Based Routing Algorithms 83

procedure administer(Dest S, Set S, Set U)

begin
Tp — T U{(F,S)| F € 8};

1+ Tp—T\{(F,S)|FeU};

Ms —{(F,H)|He Ng\{S} N Fe8};
My — {(F,H)|He Ng\{S} N FeU};
return (Mg, My);

end

Fig. 4.5. Simple routing

e The subscriptions in § are added to the routing table (line 3).
The unsubscriptions in U are removed from the routing table (line 4).
For each neighbor H except S, a tuple (F, H) is returned for each sub-
scription F' in 8 in the first returned set (line 5). Hence, each subscription
is forwarded to all neighbors except S.

e For each neighbor H except S, a tuple (F, H) is returned for each unsub-
scription F' in U in the second returned set (line 6). Hence, each unsub-
scription is forwarded to all neighbors except S.

This means that if sub(Y, F) and unsub(Y, F') are called, an admin({F'}, ()
and an admin((,{F}) message are sent to all neighbors, respectively. The
receipt of these messages causes the receiving broker to send the same message
to its other neighbors. Hence, only these two types of admin messages occur
with simple routing, and administer is either called with 8§ = {F'} and U =)
or with 8§ =) and U = {F}.

Example

Figure 4.6 shows an example using simple routing. X; subscribes to F'. Then,
By inserts (F, X1) into its routing table and sends messages admin({F}, D to
Bs and Bs. On receipt of this message, By and Bs insert (F, By) into their
routing table.

Correctness Proof

For better readability, we use the following abbreviations for all subsequent
correctness proofs:

a=Ty" (4.23)
B = A(TlB?iafKBi,Bj) (4.24)

For simple routing and all other subsequently discussed routing algorithms,
we use the following initial state:

84 4 Distributed Notification Routing

4.
b= —

Routing Table T'g,

e 4‘
(F7 Bl)<=_ -

Fig. 4.6. Diagram explaining simple routing (new subscription)

_____ ————
- ~

S ’ ~
/’ I:i A} 7 !:I \\
1 \ i \
1 \ 1 \
1 \ ! ﬁ \
1 \
1 ' \ \
1 ! 1 \
\ @ 1 \ 1
\ ! \ 1
\ [N)
AN 0——~_11)
~ o ’ ~o N
___________ 4 S. ’

Fig. 4.7. Relation among « and (for simple routing

Initg €T =0ANKp, 5, =N Sy =0 A Py=0 A Dy =0 (425)
The idea underlying the correctness proof is the following invariant: « is
always equal to 8 (Fig. 4.7). This invariant is proved in the next lemma:

Lemma 4.8. Simple routing satisfies the progress, restricted change, and the
restricted impact property as well as the local invariant.

Proof. Can be proved in the same way as in Lemmas 4.4, 4.5, and 4.6.

Lemma 4.9. Initg = O[5 = q]

Proof. This property is proved by an induction. Due to Initg, initially 3 = ()
and o = (), proving the base case. Now, assume that 3 = . We have to show
that 3’ = o' after the execution of an arbitrary step of the algorithm to prove
the induction.

4.5 Content-Based Routing Algorithms 85

As a result of the restricted change and impact properties, we have to con-
sider only four cases here: (1) sub(Y, F') for a local client of B;, (2) unsub(Y, F')
for a local client of B, (3) admin(B;, H,8,U) for a broker H € Np, \ {B;},
and (4) admin(Bj, B;, 8, U). The steps 1-3 potentially change a and 3, while
step 4 could only but actually does not affect 3.

Case (1) sub(Y,F): According to simple routing, o/ = a U {F} (line
3) and K, p. = append(Xp, ,, ({£'},0)) (line 5). The latter implies that
B = 6(8,{F},0)). According to the induction assumption, this equals
d(a, {F},0)). According to simple routing this equals o U {F}. Hence, 3
equals o/ giving the desired property.

Case (2) unsub(Y, F): This case is analogous to case (1) except that o/ =
a\{F} (line 4) and X, 5 = append(Xp, 5,, (0, {F})) (line 6).

Case (3) admin(B;, H,8,U): Here, we must distinguish two cases: (3.1)
H = B, and (3.2) H # B,.

Case (3.1) H = Bj: The restricted change property implies that o/ = .
Simple routing (lines 5+6) implies that X'z, 5 = Kp, 5, because no admin
message is passed back to the sender. Hence, the property holds.

Case (3.2) H # Bj: We must consider two cases: (3.2.1) S ={F} A U=10
and (3.2.2) 8 =0 A U= {F}. In the former case, the same proof as in case 1
can be applied. In the latter case, the same proof as in case 2 can be applied.
Hence, the desired property holds in both cases.

Case (4) admin(B;, B;, $,U): This implies that X, p = tail(Xp, 5,) and
that 3 = 0(8, head(Xp,,B,)). According to the definition of §, this implies
that B’ = (3. Hence, the desired property holds.

This finishes the case distinction and proves the induction step. O
Theorem 4.4. Simple routing is a valid routing algorithm.

Proof. The progress, the restricted change, and the restricted impact property,
as well as the local invariant hold due to Lemma 4.8. Since 8 = « implies that
N(A(Tg?’i,ﬂcBi,Bj)) 2 N(Tg?j), Lemma 4.9 implies the remote invariant.
Hence, simple routing is a valid framework instantiation. By Theorem 4.2
this yields a correct publish/subscribe system. O

4.5.3 Identity-Based Routing

We now begin to present routing algorithms that avoid global knowledge by
taking similarities among the subscriptions into account. These algorithms are
based on the following idea: The set of notifications that a broker B; forwards

86 4 Distributed Notification Routing

to a broker B;, i.e.7N(TJB]f_i), is the set of all notifications that are matched by
any routing entry (F, B;) in T,. In general, a subset of these routing entries

might be sufficient to determine N (Tgi). For example, there can be two
routing entries (F, B;) and (G, B;) with N(F') = N(G). Clearly, one of these
entries is sufficient as both have identical sets of matching notifications. This
fact is used by the identity-based routing algorithm to avoid redundant routing
entries and unnecessary forwarding of subscriptions and unsubscriptions. The
basic idea of identity-based routing is the following:

e A subscription (unsubscription) is only forwarded to a neighbor U if there
is no identical subscription in the routing table for a destination distinct
from U. This test is evaluated before (after) the subscription (unsubscrip-
tion) is added (removed) to (from) the routing table.

Formally, two filters F' and G are identical, denoted by F' = G, if N(F') =
N(G). We define the set CL(F, D) (the superscript I stands for “identity”) to
be the set of all routing entries in T of which the filter is identical to a given
filter F' and of which the destination equals a given destination D. Moreover,
we denote with DL (F) the set of all neighbors H for which there is no routing
entry (G, D) in Tg, where G is identical to F' and D is distinct from H:

CL(F, D)= {(G,D)]| (G,D) e Tpg N F=GaG}, (4.26)
DL(F) ¥ {HeNp |3GeT\'. F=G}. (4.27)

We now describe identity-based routing (Fig. 4.8). If a broker B receives
a subscription or unsubscription F' from a neighbor or a local client S, it does
the following:

1. B updates its routing table (lines 6-11):

e If S is a neighbor, B removes all routing entries whose filters are iden-
tical to F' and that refer to the destination S, i.e., C5(F,S) (line 8).

e If S is a local client, B removes solely (F,.S) (line 10).

2. B forwards F to all neighbors that are in DL(F) except S (lines 15/17
and 22).

3. If F is a subscription, B inserts a routing entry (F,S) into its routing
table (line 18).

Examples

In Fig. 4.9, broker B; receives a new subscription F' from a neighbor S. B
inserts (F,S) into its routing table and forwards F' to its neighbors By and
Bj because they are both in DL(F) \ {S}.

In Fig. 4.10, broker By receives a new subscription F' from a local client
S. Here, By also inserts (F,S) into its routing table but forwards F only to
its neighbor Bs, which is the only neighbor in DL (F)\ {S}. By is not in that
set due to the routing entry (F’, B3), where F' = F.

2

7

17

22

4.5 Content-Based Routing Algorithms

procedure administer(Dest S, Set S, Set U)
begin

Ms « 0;

My — 0;

forall F € SUU do
if S € Ny then
TB «— TB \ C}{;(F, S),
else
T — T \ {(F,S)};
endif

A~ {(F,H) | H € D5(F)\ {S}};
if €U then
My «— My UA;
else
Ms +— Ms UA;
TB «— TB U{(F7 S)},
endif
endforall

return (Mg, My);
end

Fig. 4.8. Identity-based routing

@

1. admin({F}, 0) 3. admin({F}, 0)
Oyt

2.- -D>(F7 S)

/ 3. admin({F},0)

DE(F)\{S} = {B2, Bs}

87

Fig. 4.9. Identity-based routing: Processing a new subscription from a neighbor

88 4 Distributed Notification Routing

3. admin({F}, 0)
=)

(F', B3) g
2. -0 (F,S)

If
S

I
Dp(F)\{S} = {Bs}
Fig. 4.10. Identity-based routing: Processing a new subscription from a client

Correctness Proof

= <

A o T AR ’ RS

;B N \

" D‘ """ ! ;--" l' \‘

: ‘\ I| p “

., o« Odeded ‘.

\ 1 \ !

: e N
\\\~ D'---,-’- \\\‘ /I

___________ - S o 4

Fig. 4.11. Relation among «a and [for identity-based routing

In the following, the correctness of identity-based routing is proved. The
idea underlying the correctness proof is the following invariant: For every
filter in « there is a filter in 3 that is identical to the former (Fig. 4.11). This
invariant is stated in the next lemma. The proof is a lengthy case distinction
in the spirit of and similar to the proof of Lemma 4.9.

Lemma 4.10. Initg = OVF € o. 3G € . G = F]

Proof. This property is proved by an induction. Due to Initg, initially o and
[are empty. Hence, the property is satisfied. This proves the base case. To
prove the induction step assume that the property holds for o and 8. We have

4.5 Content-Based Routing Algorithms 89

to show that the property also holds after an arbitrary step was executed, i.e.,
for o/ and (3. Again, we have to consider four cases here:

Case (1) sub(Y, F): According to identity-based routing, o = a U {F}
(line 18). Now, we must distinguish two cases (line 13): (1.1) B; € Df (F)
and (1.2) B; ¢ Dp (F).

Case (1.1) B; € D (F): This implies X', 5, = append(Xp, 5,, (F,0)).
Hence, 5" = 6(8, ({F},0)) = B U {F}. Therefore, the desired property holds.

Case (1.2) B; ¢ Df (F): This implies X’s,,8, = Xp,,B,- Hence, §' = f.
But this also implies that there is a filter G € a with G = F (lines 10+13).
According to the induction assumption this implies that there is also a filter
H € 3, where H = F. Hence, the desired property holds.

Case (2) unsub(Y, F): According to identity-based routing, o/ = « \ {F'}
(line 10). Now, we must distinguish two cases (line 13): (2.1) B; € Dg (F)
and (2.2) B; ¢ DIBi (F).

Case (2.1) B; € Dp (F): This implies X', = append(Kp,,p;, (0, F)).
Hence, 5/ = 6(8, (0,{F})) = 8\ {F}. The case assumption also implies that
there is no filter G € o with G = F. Hence, the desired property holds.

Case (2.2) B; ¢ Df (F): This implies X’s,,8, = Xp,,B,- Hence, §' = f.
Hence, the desired property holds.

Case (3) admin(B;, H,8,U): Here, we must distinguish two cases: (3.1)
H= Bj and (32) H 75 Bj.

Case (3.1) H = Bj: The restricted change property implies that o/ =
o Identity-based routing implies that fK’Bi,Bj = Xp,,B; because no admin
message is passed back to the sender. Hence, the property holds.

Case (3.2) H # Bj: We must consider two cases: (3.2.1) S ={F} A U=10
and (3.2.2) 8 =0 A U= {F}. In the former case, the same proof as in case 1
can be applied. In the latter case, the same proof as in case 2 can be applied.
Hence, the desired property holds in both cases.

Case (4) admin(B;, B;, $,U): This implies that X, . = tail(Xp, 5,) and
that 3 = 0(8, head(Xp,,B,)). According to the definition of §, this implies
that B’ = (3. Hence, the desired property holds.

This finishes the case distinction and proves the induction step. Hence, the
validity of the induction is implied concluding the proof. O

Theorem 4.5. Identity-based routing is a valid routing algorithm.

Proof. The progress, the restricted change, and the restricted impact prop-
erty, as well as the local invariant can be proved in the same way as in Lem-
mas 4.4, 4.5, and 4.6. Lemma 4.10 implies that the remote variant holds
because VF € a.3G € 3.G = F implies that N (AT}, K, 5,)) 2 N(Ty).
Hence, identity-based routing is a valid framework instantiation that (follow-
ing Theorem 4.2) yields a correct publish/subscribe system. 0O

90 4 Distributed Notification Routing

procedure administer(Dest S, Set §, Set U)

2 begin
Ms — 0;
My « 0;
P—0;

7 if U=0

// handle subscriptions
forall FF€ 8 do
if S € N then
TB — TB \C’é(.F7 S),
12 else
T — T \{(F,5)};
endif
Ms «— Ms U{(F,H) | He DY(F)\ {S}};
T «— Tp U {(F, S)},
17 endforall
else
// handle unsubscriptions
forall FFe€U do
if S € Np then
22 TBHTB\CE(FNS);
else
Tp — T \{(F,9)};
endif
My — My U{(F,H) | H € DY(F)\ {S}};
27 P — PU(CE(F)\ CE(F));
endforall

// handle uncovered subscriptions
Tp — T U{(F,S) | F € 8};
32 P—DPU{(F,S)|F € 8};
forall (F,U) € P do
k—|{H|(GH)e?P N G=F}|;
P—P\{(G,H)|(G,H)eP N G=F};

a7 A — DEY(F)\ {S};
if k=1 then
A—A \ {U};
endif
Ms —MsU{(F,H) | H e A};
42 endforall
endif
return (Mg, My);
end

Fig. 4.12. Covering-based routing

4.5 Content-Based Routing Algorithms 91
4.5.4 Covering-Based Routing

After discussing identity-based routing, an obvious idea is to exploit more
complex similarities among subscriptions. The next step is to take advantage
of covering among filters, a concept that was first mentioned in the area of
notification services by Carzaniga [65]. A filter covers another filter if the
former matches all notifications the latter matches. Therefore, a routing entry
(F,U) is obsolete if there exists a routing entry (G,U), where G covers F.
This fact is used by the covering-based routing algorithm to further reduce
redundant routing entries and unnecessary forwarding of subscriptions and
unsubscriptions. The basic idea of covering-based routing is the following:

e A subscription (unsubscription) is only forwarded to a neighbor U if there
is no covering subscription in the routing table for a destination distinct
from U. This test is evaluated before (after) the subscription (unsubscrip-
tion) is added (removed) to (from) the routing table.

e A broker receiving a subscription deletes all routing entries whose filters
are covered by the new subscription that refer to the same destination.
This is done to get rid of the obsolete routing entries.

e If an unsubscription is forwarded to a neighbor, the sending broker also
forwards a possibly empty subset of subscriptions in the same admin mes-
sage to ensure the delivery of all needed notifications.

Formally, a filter F' covers a filter G, denoted by F J G iff N(F) D N(G).
F is a proper cover of G, denoted by F 1 G, iff N(F) D N(G). We define
the set C5(F) (the L stands for “lower”) to comprise the set of all routing
entries in the routing table of a broker B that are covered by a given filter F'.
We also define C5(F, D) as the restriction of C5(F) to a given destination D.
Additionally, we denote with DY (F) (the U stands for “upper”) as the set of
all neighbors H for which no routing entry (G, D) in the routing table of B
exists, where G covers F and D is distinct from H. With DEU(F) (the PU
stands for “proper upper”) the set of all neighbors H for which no routing
entry (G, D) in the routing table of B exists, where G is a proper cover of F'
and D is distinct from H:

def

CE(F) = {(G,U)eTp | F G} (4.28)
CH(F,D) = {(G,D) € CH(F)} (4.29)

DY(F) ™ {H e Np |G e Ty G2 F} (4.30)
DEV(F) ¥ {H e Np | 3G e Ty .G 2 F} (4.31)
Covering-based routing either processes (1) a single subscription or (2) a

single unsubscription that comes along with a set of uncovered subscriptions
(Fig. 4.12). These cases are described in the following.

92 4 Distributed Notification Routing
Processing of a Subscription

If a broker B receives a new subscription F' from a neighbor or a local client
S, B first updates its routing table: If S is a neighbor, B removes all entries
whose filters are covered by F that refer to S, i.e., C5(F,S), to get rid of the
obsolete routing entries (line 11). If S is a local client, B removes solely (F, S)
(line 13). Next, B forwards F' to all neighbors which are in DY (F) except S
(line 15). Finally, B inserts (F,.S) into its routing table (line 16).

Processing of an Unsubscription

The fact that complicates covering-based routing is that to forward an unsub-
scription F' to some neighbors is not sufficient. Instead, to each neighbor to
which F' is forwarded, also a possibly empty subset of filters which are properly
covered by F has to be forwarded. These subscriptions are called uncovered
subscriptions. Without forwarding these subscriptions, it is not ensured that
the receiving broker forwards all notifications matching these subscriptions.
This is because the receiving broker has either not ever received these sub-
scriptions or they have been dropped when F' arrived. It is important that the
unsubscription and the corresponding uncovered subscriptions are forwarded
in a single message in order to guarantee that the change to the routing table
of the receiving broker is atomic. Otherwise, in the intermediate time between
the cancellation of the unsubscription and the time at which the uncovered
subscriptions become effective, notifications may be lost.

The basic processing of an unsubscription (lines 20-28) is similar to the
handling of a subscription. First, the routing table is updated (lines 21-25)
and the destinations to which the unsubscription is forwarded are determined
(line 26), as described above. Finally, all routing entries in C5(F)\ CL(F) are
added to a temporary storage P (line 27). These routing entries are potentially
newly uncovered subscriptions because their filter is properly covered by F.

Processing of Uncovered Subscriptions

First, all old uncovered subscriptions in 8§ received from S are added to the
routing table (line 31), and the routing entries representing these subscriptions
are added to P (line 32). Now, it is determined which subscriptions represented
in P have to be forwarded to which destinations (lines 33-42): For each entry
(F,U) € P, F is forwarded to neighbor H if H is in DPV(F)\ {S} (line 37).
However, F' is only forwarded to U if additionally there is a second routing
entry (G,I) in P, where G = F and I # U (lines 34+38-40). This is the case
if k # 1. To ensure that identical subscriptions are only forwarded once, all
entries whose filters are identical to F' are removed from P (line 35).

This approach ensures that (a) all subscriptions in the set of uncovered
subscriptions are covered by the handled unsubscription and that (b) in this
set there are no two subscriptions, where one covers the other. Hence, an

4.5 Content-Based Routing Algorithms 93

unsubscription that is received from a neighbor comes along with a possi-
bly empty set of uncovered subscriptions and may generate new uncovered
subscriptions. To every neighbor to which the handled unsubscription is for-
warded, a possibly empty subset of these two sets is forwarded that also
satisfies the requirements stated above.

Examples

In Fig. 4.13, Bj receives a new subscription F' from a local client S. Therefore,
B; adds (F,S) to its routing table. Moreover, B; forwards F only to its
neighbor B because Bj is the only neighbor in DY(F) \ {S}. Bz is not in
this set because of the routing entry (G, B3), where G J F.

—®

1. sub(F) 3. admin({F},0) O
1 Bs

(@, Bs) GaF
2.7 7 (F,S)

:

DE(F)\{S} = {Bs}

Fig. 4.13. Covering-based routing: Processing of a new subscription from a client

In the next example (Fig. 4.14), B receives a subscription F' from a neigh-
bor S. B; removes the entry (G, S) from its routing table because the entry
is in CL(F,). Moreover, B inserts (F,S) into its routing table. Finally, B;
forwards F to its neighbors By and Bs because they are both in DY (F)\ {S}.

In Fig. 4.15, broker Bj receives an unsubscription F' from a neighbor S.
Hence, By removes (F,S). Furthermore, By forwards the unsubscription to
its neighbors By and Bj as both are in DY(F) \ {S}.

In the next example (Fig. 4.16) Bj receives an unsubscription F from
a local client S. Hence, B; removes (F,S). In this case, By forwards the
unsubscription only to Bs because it is the only broker in DY(F) \ {S}. B2
is not in this set because of the routing entry (G, Bs), where G J F.

In Fig. 4.17, broker B; receives an unsubscription F' from a local client S.
Hence, it removes (F,S) from its routing table. In this example the unsub-
scription F' uncovers a subscription G. While the subscription F' is forwarded

94 4 Distributed Notification Routing

@

min({F}, 0)

[t

oy
/ 3. ad

1. admin({F}, 0) 3. admin({F},0)
O O e

2. \--l>
\
N

1|C

i
o
2

DE(F)\{S} = {Bz, Bs}
CE(F.S) ={(G,9)}

Fig. 4.14. Covering-based routing: Processing of a new subscription from a neighbor

@

mim(@, {F})

[t

oy
/ 3. ad

1. admin(, {F}) 3. admin(0, {F})
O

2.- 15

1|C

DE(F)\{S} = {Bz, Bs}

Fig. 4.15. Covering-based routing: Processing of an unsubscription from a neighbor

4.5 Content-Based Routing Algorithms 95

1. unsub(F)
 —

3. admin(@, {F})
—
)
GJF
(G, 33

F)N{S} = {Bs}

Fig. 4.16. Covering-based routing: Processing of an unsubscription from a client

O
{F}H)

J—
3. admin(0,

1. unsub(F)
D

),

3. admin({G}, {F})
Y g

(G, By) FOG

DR(F)\{S} = {Ba, B3}
DEYV(G)\{S} ={B2, B3}, k=1

Fig. 4.17. Covering-based routing: Processing of an unsubscription from a client

96 4 Distributed Notification Routing

to By and Bj, the uncovered subscription G is solely forwarded to Bs. G is
not forwarded to Bg, although it is in DEY(G) \ {S} because k = 1.

@

3. admin({G}, {F})

1. admin({G'}, {F}) 3. admin({G}, {F})

(O

(GaBQ) F :I G
2.5~ —D»:CE;’& G=q
L)

DE(F)\{S} = {B2, Bs}
DEY(G)\{S} = {B>, B3}, k =2

Fig. 4.18. Covering-based routing: Processing of an unsubscription from a neighbor,

example 2

In the last example (Fig. 4.18), broker B; receives an unsubscription F
that comes along with an uncovered subscription G’. Moreover, in the routing
table of B; there is an entry (G, S), where G = G'. Here, By removes (F,.S)
from and inserts (G’, S) into its routing table. The unsubscription F and the
uncovered subscription G are sent to By and Bs. G is forwarded to Bs and
Bj because they are both in DEU(G) \ {S} and additionally k& = 2 holds.

Correctness Proof

The idea underlying the correctness proof is the following invariant: For every
filter in « there is a filter in 3 that covers the former (Fig. 4.19). This invariant
is stated in the next lemma. The proof is a lengthy case distinction in the spirit
of and similar to the proof of Lemma 4.9.

Lemma 4.11. Initg = OVF € o. 3G € 8. G I F]

Proof. Proof: This property is proved by an induction. Due to Initg, initially
«a and [are empty. Hence, the property is satisfied. This proves the base

4.5 Content-Based Routing Algorithms 97

L [T _ _____________ l_ \\
K O AN ___,f_::::::::lj .
1 aeAmmmmmmTT 1 \
' Bg.\\ C i \
N =
! O 1w y \
. « A RREE T IN \ '_-_.D \
[v !
‘\ D‘""l \ 1
1 A}
3 Doy :
\\\ D‘- ,1 \‘\ II

Fig. 4.19. Relation among « and (3 for covering-based routing

case. To prove the induction step assume that the property holds for o and
B. We have to show that the property also holds after an arbitrary step was
executed, i.e., for o and 3’. Again, we have to consider four cases here:

Case (1) sub(Y, F): According to covering-based routing, o/ = o U {F}
(line 16). Now, we must distinguish two cases (line 15): (1.1) B; € D (F)
and (1.2) B; ¢ Dg (F).

Case (1.1) B; € DY (F): This implies X,,5, = append(X g, 5,, {F'},0)).
Hence, 8" = 6(83, ({F'},0)) = BU{F}. Therefore, the desired property holds.

Case (1.2) B; ¢ D% (F): This implies that X’p,.5, = Xp,,p,. Hence,
@ = (. But this also implies that there is a filter G € « with G O F.
According to the induction assumption this implies that there is also a filter
H € 3, where H J F. Hence, the desired property holds.

Case (2) unsub(Y, F): According to covering-based routing, o/ = a \ {F'}
(line 24). Now, we must distinguish two cases (line 26): (2.1) B; € DY (F)
and (2.2) B; ¢ DY (F).

Case (2.1) B; € DY (F):

Here, X, 5, = append(Xp, 5, ({F1,..., Fn},{F})), where VF;,. F 13 F;.
Hence, 8 = 0(8,(({F1,...,Fn}, F),{F})) = B\ {F}U{F,...,F,}. The
case assumption also implies that there is no filter in o which is identical to
F. But there may be filters in o/ for which F' was the only properly cover-
ing filter. These filters are included in those routing entries that are stored
in P (line 27). Line 31 does not change P because 8§ = (). A filter G repre-
sented in P (as P is at line 33) is forwarded to B; if B; € DEY(F) and if
G originates from a destination different from B;. This implies that there is
no filter in o/ that covers G and that F' was the only filter in « that covers
G. The filters satisfying the same conditions as G are exactly those filters
{F1,..., F,} introduced above. Note that identical filters are only forwarded
once to a destination due to line 35. Hence, the desired property holds.

Case (2.2) B; ¢ DY (F): This implies that X’s,,8, = Xp,,B,- Hence,
B = (. So the desired property holds.

Case (3) admin(B;, H,8,U): Here, we must distinguish two cases: (3.1)
H= Bj and (32) H 75 Bj.

98 4 Distributed Notification Routing

Case (3.1) H = Bj: The restricted change property implies that o/ =
. Covering-based routing implies that X'z, 5 = Kp, B, because no admin
message is passed back to the sender. Hence, the property holds.

Case (3.2) H # Bj: We must consider two cases: (3.2.1) S ={F} A U=10
and (3.2.2) S ={F,...,F,} AN U={F}, where VF;. F O F;.

Case (3.2.1) 8 = {F} A U = 0: In this case, the same proof as in case 1
can be applied.

Case (3.2.2) 8 = {F1,..., F,} N U={F}, where VF;. F O F;: The proof
here is similar to those of case 2 except that o/ = a\{F}U{F1,..., F,} (lines
16 + 22).

Case (4) admin(B;, B;, §,U): This implies that X'y, g = tail(Xp, p,) and
that 3" = 6(83, head(Xp, B,)). According to the definition of J, this implies
that 3’ = 3. So the desired property holds.

This finishes the case distinction and proves the induction step. Hence, the
validity of the induction is implied, concluding the proof. O

Theorem 4.6. Covering-based routing is a valid routing algorithm.

Proof. The progress, the restricted change, and the restricted impact prop-
erty, as well as the local invariant can be proved in the same way as in Lem-
mas 4.4, 4.5, and 4.6. Lemma 4.11 implies that the remote variant holds
because VF' € o.3G € §.G 3J F implies that N(A(Tgfi,fKB“Bj)) 2 N(Tf\fj).
Hence, covering-based routing is a valid framework instantiation and, by The-
orem 4.2, yields a correct publish/subscribe system. O

4.5.5 Merging-Based Routing

Merging-based routing is a whole class of routing algorithms rather than a
single routing algorithm. It is based on creating new, broader filters, called
mergers, from existing filters. These mergers are then forwarded instead of the
original filters. In the following, a concrete merging-based routing algorithm
is presented. It is implemented on top of covering-based routing and allows
every broker solely to merge routing entries that refer to the same destination.
This keeps the algorithm simple enough to be applied in a dynamic publish/
subscribe system. The algorithm presented by Handurukande et al. [186] can
also be seen as a variant of merging-based routing.

Formally, a filter F is a merger (or covers) a set of filters F = {Fy, ..., Fy,},
ifft N(F) D N(F). F is a perfect merger if the equality holds and an imperfect
merger, otherwise. In order to enable filter merging as sketched above, a bro-
ker can replace a set of routing entries {(F1, D), ..., (F,, D)} with the same
destination D by a single merged entry (F, D) if F' is a merger of {Fy, ..., F, }.
The merged routing entries are removed from the routing table, and (F, D) is
added to the routing table instead. If F' is a perfect merger this does not affect
the set of notifications that B is forwarding to D, i.e., N (TJBD). Otherwise,

4.5 Content-Based Routing Algorithms 99

N (TJBD) might increase. This might violate the safety condition if D is a local
client. If D is a neighbor broker, imperfect merging can be applied trading
routing tables sizes against network bandwidth. We assume perfect merging
for the sake of simplicity in the following. Imperfect merging algorithms, es-
pecially those that are adaptive, are subject to future research.

procedure administer(Dest S, Set S, Set U)
begin
if U =0 then
8 «— handlesubs(S, 8);
5 else
(8,U) «— handleunsubs(S,S,U);
endif

§ « prune_, (8);
10 U« prune_ (U);

return administerq.(S5,8,U);
end

Fig. 4.20. Merging-based routing

Now an exemplary routing algorithm based on merging (Fig. 4.20) is de-
scribed in full detail. The algorithm stores what filters a merger is constituted
of in case the merger has to be canceled. The set of filters that constitute a
merger M is given by ¢(M). Note that whether or not a filter is a merger
can only be detected at the broker that generated the merger. The set of all
mergers of a broker regarding a destination D is denoted by MlBD.

procedure prune, (Set A)
2 begin
forall FF€ A do
A—A\{GEA|G#FANFJG};
endforall
return A;
7 end

Fig. 4.21. Merging: deletion of covering filters

The merging-based algorithm works on top of covering-based routing
(cf. line 12). Therefore, the calls of administer triggered by the former al-
gorithms have to be compatible with the latter one. Our algorithm either
sends a single subscription or a set of unsubscriptions accompanied by a set

100 4 Distributed Notification Routing

of covered subscriptions. The algorithms determines which message type is
processed by checking whether U =) (line 3). Depending on the result, either
the procedure handlesubs (line 4) or the procedure handleunsubs (line 6) is
called. These procedures are described in the next two subsections. After, the
called procedure returned, the updated sets 8§ and U are pruned (lines 9-10)
by calling the procedure prune,, (Fig. 4.21). This procedure removes from
both sets those filters which are covered by another filter of the respective
set. Finally, the pruned sets § and U are used as input to the covering-based
routing algorithm (line 12).

procedure getcoveringmerger(Filter F, Dest D)
begin
3 forall M € ML;D do
if M O F then
return M ;
endif
endforall
8 return @;
end

Fig. 4.22. Merging: searching for a covering merger

Processing of a Subscription

Every time, a new subscription is received, the following (Fig. 4.23) is done
by the handlesubs procedure:

e If S € Np, those filters and mergers regarding this neighbor that are
covered by the new subscription are removed from the routing table (lines
3-7).

e After that, it is checked whether the new subscription is covered by any
existing merger regarding the same destination. This is done by calling
the getcoveringmerger (Fig. 4.22). If a covering merger is found, the new
subscription is added to one of these mergers and is removed from 8 (lines
10-14).

e If the new subscription is not covered by any existing merger, it is checked
whether an existing merger regarding the same destination can be ex-
tended to include the new subscription. If this succeeds, the merger is
updated and added to 8, and the new subscription is removed from §
(lines 15-18).

e If the new subscription could also not be used to extend an existing merger,
it is tried to generate a new merger from the new subscription and existing
filters (which are not mergers) regarding the same destination. If a new

4.5 Content-Based Routing Algorithms 101

1 procedure handlesubs(Dest S, Set §)
begin
if S € Np then
forall FF€ 8§ do
TB — TB \ Cé(F, S),
6 endforall
endif

forall F €8 do
M — getcoveringmerger(F,S);
11 if M #(then
(M) —c(M)U{F};
8 — S\ {F};
else
M — tryadd(F, S);
16 if M #) then
8§ — 8\ {F}U{M};
else
M — trynew(F, S);
if M # (0 then
21 8<—8\{F}U{M};
T — T\ {(G,S) | G € ¢(M)};
endif
endif
if M #(then
26 forall G € {H | (H,S) € CE(M,S)} do
if G eM)] then
(M) — c(M)Uc(G);
else
(M) — c(M)U{G};
31 endif
TB — TB \ (G7S),
endforall
if S € Ny then
forall G € ¢(M) do
36 c(M) —c(M)\{H € c(M) |G H};
endforall
endif
endif
endif

41 endforall

return §;
end

Fig. 4.23. Merging: handling of subscriptions

102

4 Distributed Notification Routing

merger can be generated, the other constituting filters are removed from
the routing table. Furthermore, the new subscription is removed from 8
and the new merger is added instead (lines 19-23).

If an extended or a new merger was generated, it is checked whether any
filters (or other mergers) regarding the same destination are covered by
this merger. The covered filters (mergers) are removed from the routing
table and (their constituting filters) are added to the new merger (lines
26-32). If S € Np, from a new or extended merger those constituting
filters are removed that are covered by another constituting filter (lines
34-38).

The updated set § is returned to the administer procedure (line 43).

The code for the procedures tryadd and trynew is not given here because

they largely depend on the details of the underlying filter model.

Processing of a Set of Unsubscriptions Accompanied with a Set of
Covered Subscriptions

Every time a set of unsubscriptions accompanied with a set of covered sub-
scriptions is received, the following (Fig. 4.24) is done by the handleunsubs
procedure:

If S € Np, those filters and mergers regarding the same destination that
are covered by one of the subscriptions or unsubscriptions are removed
from the routing table (lines 3-7).

Now the set of constituting filters of those mergers which are affected by

one of the unsubscriptions is updated (lines 11-18).

— If S € Np, those filters are removed from the set of constituting filters
of a merger that are covered by an unsubscription but not covered by
any subscription (line 12).

- If S ¢ Np, only the unsubscriptions are removed from an affected
merger (line 15).

If a merger from which some constituting filters were removed is afterwards

no longer a perfect merger of its remaining constituting filter, the merger

is removed from the routing table and added to the set of unsubscrip-
tions. This is determined by the disintegrated procedure. Its remaining

constituting filters are added to a set B (lines 19-23).

After all mergers have been processed, all filters in B are added to the set

of subscriptions (line 26).

The updated sets 8 and U are returned to the administer procedure (line

30).

The code for the procedure disintegrated is not given here because it largely

depends on the details of the underlying filter model.

4.5 Content-Based Routing Algorithms 103

1 procedure handleunsubs(Dest S, Set 8, Set U)
begin
if S € Np then
forall F€SUU do
TB — TB \ Cé(F, S),

6 endforall

endif

B «—0;

forall M € M‘BS do
11 if S € Np then

A—{FeeM)|3GeU.GIF
APH € 8. H I F};
else
A — C(M) NnUu;
16 endif
if A# (] then
(M) —c(M)\ A;
if disintegrated(M) then
TB — TB \ {M, S},
21 B — BU{G|GE€c(M)};
U—UU{M};
endif
endif
endforall
26 8§ +— 8UB;

return (8,U);
end

Fig. 4.24. Merging: handling of unsubscriptions

Correctness

Since the correctness of the merging-based algorithm is based largely on
the correctness of the covering-based routing scheme, we only give the main
ideas for the correctness of merging-based routing here. Our algorithm solely
merges routing entries regarding the destination S that triggered the call of
administer at B. The main arguments for the correctness of our algorithm
are the following:

e The routing entry of a new, updated, or covering merger causes B to
forward exactly those notifications to S that match any of its constituting
filters (including F).

e Forwarding a new or updated merger M (that covers F') instead of F
ensures that the neighbors forward all notifications that match F' or any
other filter in ¢(M) to B.

104 4 Distributed Notification Routing

e If F is added to a covering merger M, neither F' nor M need to be for-
warded because M was already forwarded, ensuring that all neighbors of
B except S forward to B all notifications that match F.

e If some mergers are canceled, those of their remaining constituting filters
that are not covered by another filter of this set are inserted into the
routing table and forwarded as subscriptions. This ensures that all notifi-
cations matching any of those filters are (a) forwarded by B to S and (b)
forwarded to B by any neighbor of B except S.

4.5.6 Discussion

Overview and Use Cases of Algorithms

We now briefly recall the individual routing algorithms and describe their
advantages and disadvantages. This helps engineers to choose a particular
algorithm for different practical scenarios. One helpful indication are metrics
for the efficiency of routing algorithms. Two main metrics have emerged in the
past: the routing table sizes and the filter forwarding overhead [267]. The filter
forwarding overhead is the number of admin messages needed for changing
the routing tables in accordance with the used routing algorithm if a new
subscription is issued or an existing subscription is revoked. A summary of
the discussions is shown in Table 4.1.

Table 4.1. Portfolio of content-based routing algorithms

name

flooding

simple

identity-based

covering-based

perfect merging

use case

Easy to implement, subscriptions become effective immedi-
ately, but has worst-case notification forwarding overhead
Significantly reduces notification forwarding overhead if sub-
scriptions and clients are sparsely distributed. Routing table
sizes grow linearly with the number of subscriptions. Every
routing table is affected by a new or canceled subscription
Reduces routing table sizes and filter forwarding overhead if
set of subscriptions contains a lot of identical entries; may de-
generate to simple routing otherwise. Identity test must be
efficiently computable

Efficient for intervallike subscriptions. May degenerate to
identity-based routing if subscriptions do not cover each other.
Covering test must be efficiently computable

Reduce routing table sizes if subscriptions can often be merged
perfectly; may degenerate to covering-based routing if not. May
increase the filter forwarding overhead

imperfect merging Allows users to trade accuracy against efficiency. Degenerates

to flooding if too much imperfection is tolerated

4.5 Content-Based Routing Algorithms 105

With flooding, the routing tables have only local entries and no admin
messages must be handled, so in terms of the efficiency metrics it can be
regarded as a lower bound to the other algorithms. Flooding is, however,
a degenerated case of the other algorithms and can be used to determine
the worst-case notification forwarding complexity (all other algorithms try
to decrease the overall number of forwarded notifications). This is the main
disadvantage of flooding. Flooding is advantageous because of its simplicity
which makes it is easy to implement correctly. Moreover, new subscriptions
become effective immediately.

Because simple routing enforces that every broker has knowledge about
all active subscriptions, the size of each routing table grows linearly with the
number of active subscriptions. Moreover, all routing tables are affected if a
subscription is issued or revoked. In our framework this means that the number
of admin messages necessary to carry out such a change is independent of the
number of active subscriptions and equals the number of links in the broker
topology. Simple routing is preferable to flooding if the set of subscribing
clients is very sparse and if subscriptions do not change very often.

Identity-based routing degenerates to simple routing if distinct filters are
never identical. Hence in this worst-cast, routing table sizes and the filter for-
warding overhead of identity-based routing are the same as for simple routing.
However, our experimental findings [267] suggest that both numbers can be
much smaller in practice. For example, if the number of different filters is
bounded, the remote part of the routing tables grows only sublinearly in the
number of active subscriptions and converges to a limit for large numbers
of active subscriptions. This is because identity-based routing maintains the
following invariant, which can be proved by a simple induction: In a routing
table, there are never two distinct entries (F, H) and (G, H) for a neighbor H
for which F' = G. This limits the size of the remote part of the routing table
regarding a certain neighbor to at most the number of different filters.

Compared to simple routing, which forwards filters unselectively to all
neighbors, identity-based routing forwards a filter selectively only to those
neighbors that are in DL (F). This accounts for the observation that the filter
forwarding overhead is lower than for simple routing. Because the probability
that for a filter there is an identical filter increases with the number of active
subscriptions, the forwarding overhead monotonically decreases. However, to
use identity-based routing, a method to efficiently compute the identity rela-
tion is necessary. If such a method is not available, we must revert to simple
routing (this observation also holds for the more refined algorithms that fol-
low). A use-case for identity-based routing is a stock exchange quote service,
where only individual stocks can be subscribed to.

Covering-based routing degenerates to identity-based routing if no fil-
ter properly covers another filter. In this case, C5(F,S) = CL(F,S) and
DY(F) = DL(F). Hence, C5(F)\ CL(F) = 0, implying that P = 0, re-
sulting in identity-based routing. However, if filters properly cover each other,
covering-based routing does better than identity-based routing. Both the rout-

106 4 Distributed Notification Routing

ing table sizes and the filter forwarding overhead are reduced [267]. The reason
for this is that covering-based routing also maintains an invariant: In a routing
table there are no two distinct entries (F, H) and (G, H) for a neighbor H,
where F' J G. This invariant can also be proved by a simple induction. Com-
pared to identity-based routing this stronger invariant leads to a better be-
havior. Covering-based routing is advantageous over simple or identity-based
routing in case of intervals, for example, if stocks can be subscribed to for
special intervals (e.g., show me stock x if its value is between y and z).
Merging-based routing degenerates to covering-based routing if filters are
never merged. If filters are merged, the routing table size can be reduced sub-
stantially. The reduction ratio, however, depends on the degree of imperfection
that is tolerated (if any) and the filter predicates that are issued [262]. Our
experimental findings suggest that a reduction in the routing table sizes can
be achieved but that the filter forwarding overhead might increase in turn.

The Design Evolution of Content-Based Routing

As mentioned above, identity-based routing can be regarded as a special case
of covering-based routing: whenever an identity-based routing algorithm pro-
cesses a new filter that is identical to an existing filter, a covering-based rout-
ing algorithm would also process that new filter with the same effect on the
routing table. From an implementation perspective, on the one hand, covering-
based routing can be regarded as an “add-on” to identity-based routing (it
handles all the cases of identity-based routing, but also more). On the other
hand, identity-based routing can be achieved by “restricting” the power of
covering-based routing. Interestingly, we can extend this relation to all other
presented routing schemes, which results in a circular evolution hierarchy that
we now explain (Fig. 4.25).

covering-based

N

identity-based perfect merging
simple imperfect merging
flooding

Fig. 4.25. Circular evolution of CBR algorithms

Simple-routing results from restricting the power of identity-based routing,
i.e., by removing its potential to process identical filters. Therefore, simple

4.6 Extensions of the Basic Routing Framework 107

routing can be regarded as a special case of identity-based routing. Similarly,
covering-based routing results from a perfect merging algorithm by restricting
the types of filters which are merged: if only those filters are merged that
cover an existing filter we have covering-based routing. Obviously, imperfect
merging algorithms can be similarly regarded as a generalization of perfect
merging.

Interestingly, flooding can be regarded as both the starting and the ending
point of this design evolution (Fig. 4.25). Historically, it is the starting point
since the first schemes were based on flooding and more refined algorithms
were developed to prevent the deficiencies of this scheme. More formally, flood-
ing seems to be incomparable to, e.g., simple routing, because flooding does
not have remote routing table entries. However, flooding can be regarded as a
generalization of imperfect merging: consider an imperfect merging algorithm
in which there exists a special initial action that spontaneously adds the filter
that matches the set of all notifications to the routing table (i.e., performs an
imperfect merge) and never removes any filters. Clearly, this results in flood-
ing. In this sense flooding can be regarded as a generalization of imperfect
merging.

4.6 Extensions of the Basic Routing Framework

We present — on a less formal level — three important extensions of the basic
routing framework. It is shown how advertisements can be integrated into the
framework, how hierarchical versions of the routing algorithms versions can
be obtained, and how changes to the topology can be dealt with. The use
of advertisements can enhance the efficiency of the systems by limiting the
propagation of subscriptions into those subnets, where matching notifications
are potentially produced. Hierarchical routing algorithms reduce the filter
forwarding overhead and the routing table sizes but require the root broker to
handle every notification. This can be superior in some environments. Coping
with topology changes is important dealing with a changing system.

4.6.1 Routing With Advertisements

With the subscription-based routing algorithms presented in Sect. 4.5, sub-
scriptions are forwarded regardless of whether or not matching notification
are potentially produced in the respective subnet. Advertisements allow the
propagation of subscriptions to be limited to those subnets, where matching
notifications are potentially produced. The only assumption for the use of
advertisements is that it can be detected whether or not a subscription and
an advertisement overlap, i.e., whether there is a notification matching both
filters. Formally, two filters Fy and Fy overlap iff N(Fy) NN (Fy) # (). We also
say that a subscription can be served by an advertisement if both overlap.

108

4 Distributed Notification Routing

1

21

26

31

36

sync(up) procedure pub (Client X, Notification n)
begin
if 3(F,X) € TH.n € N(F) then
handleNotification(X,n);
endif
end

sync(up) procedure adv(Client X, Filter F)
begin
(Fs,%v) < administera (X, {F},0);
handleAdminMessage(X,Fs,Fu,1);
end

sync(up) procedure unadv(Client X, Filter F')
begin
(Fs,Fu) « administera(X,0,{F});
handleAdminMessage(X,Fs,Fu,1);
end

procedure handleMessage(Message m)
begin
switch
case m is “forward(n)” message from neighbor U :
handleNotification(U,n);
break
case m is “adming(8,U)” message from neighbor U :
(Fs,Fv) < administer(U,S,U);
handleAdminMessage(U,F s, Fu,0);
break
case m is “admina(8,U)” message from neighbor U :
A « prune(P5(8,U));
forall FFe A do
send “admins({F},0)” to U;
endforall
(Fs,Fv) < administer(S,S,U);
handleAdminMessage(S,Fs,Fu, 1) ;
TS — T3 \ Os;
break
endswitch
end

Fig. 4.26. Routing using advertisements, part I

4.6 Extensions of the Basic Routing Framework 109

procedure handleAdminMessage(Dest D, Set Mg, Set My, Bool b)
begin
forall H € Ng \ {D}
45 A—{F|(F,H) € Mgs};
B—{F|(F,H)eMy};
if A#0 V B #0 then
if b=0 then
A — QB(A, H),
50 B—Qp(B,H);
if A0 V B#(then
send “admings(A,B)” to H;
endif
else
55 send “admina(A,B)” to H;
endif
endif
endforall
end

Fig. 4.27. Routing using advertisements, part 11

If advertisements are used, each broker manages two routing tables, the
known subscription routing table T (formerly Tx) and an additional adver-
tisement routing table T#. While the former is used (as described before)
to route notifications from producers to interested consumers, the latter is
used to route subscriptions and unsubscriptions from interested consumers to
producers. Both routing tables have to be updated as clients issue or revoke
subscriptions and advertisements, respectively. This now takes places on two
cooperating levels. The first level is responsible for updating the subscrip-
tion table, while the second level keeps the advertisement table up to date.
For each of both levels one of the routing algorithms presented in Sect. 4.5
(except flooding) can be chosen. For example, simple routing can be used to
update the subscription table, while at the same time covering-based routing
is applied to the advertisement table. The basic idea of advertisements is that:

e A (un)subscription is only forwarded to a neighbor if it overlaps with an
advertisement from this neighbor.

e If a new advertisement is received from a neighbor H, subscriptions from
other neighbors that previously could not be served by any advertisement
from H but that now can be served are forwarded to H.

e If an advertisement is canceled by neighbor H, those subscriptions that
can no longer be served by any other but the originating neighbor are
removed from the routing table.

A disadvantage of advertisements is that notifications which only match
an advertisement that has been recently issued by a producer may not be

110 4 Distributed Notification Routing

delivered to all interested consumers. This is because the propagation of the
respective advertisement triggers the forwarding of newly overlapping sub-
scriptions. In the meantime, before this process has terminated, notifications
may be dropped or may not be forwarded to all neighbors which have con-
sumers with matching subscriptions in their subnet. This was also the main
reason to apply a weakened liveness condition (Sect. 2.5.4) if advertisements
are used. Indeed, with the proposed solution, delivery is only guaranteed after
the new advertisement has been propagated and the subscriptions that are
forwarded in turn have also been propagated. Both processes are guaranteed
to terminate after a finite time. Hence, the proposed solution satisfies Def. 2.9,
which defined simple event system with advertisements.

Integration into the Framework

Advertisements can easily be integrated into our framework. Two categories
of admin messages are used to distinguish among admin messages related to
subscriptions and those related to advertisements: adming and admin 4. The
existence of two instances of administer is now assumed: administerg and
administer4. The former defines the applied subscription routing algorithm.
It is called if a sub, an unsub, or an adming message is received; it only works
on the subscription table. The latter defines the used advertisement routing
algorithm. It is called if adv or unadv is called by a local client, or if an admin 4
message is received from a neighbor; it only works on the advertisement table.

In Figs. 4.26 and 4.27, the advertisement-enabled instantiation of those
parts of the framework are shown which replace the ones shown in Figs. 4.1
and 4.2. Most of the code has already been discussed. The more interesting
parts are (a) the forwarding of newly servable subscriptions (lines 31-34), (b)
the dropping of unservable subscriptions (line 37), and (c¢) the postprocessing
of subscriptions before the respective adming messages are sent out (lines
49-50). These are described in the following.

procedure prune(Set A)
2 begin
return A;
end

Fig. 4.28. prune for simple routing

Forwarding of Newly Servable Subscriptions

An admin 4 message containing new advertisements might make some sub-
scriptions newly servable. If the admin 4 message is received from a neighbor

4.6 Extensions of the Basic Routing Framework 111

1 procedure prune,,(Set A)
begin
forall Fe A do
A—A\{GEA|G#FANF=G};
endforall
6 return A;
end

Fig. 4.29. prune for identity-based routing

H, this concerns all subscriptions of other neighbors which previously were
not served by any advertisement from H but which are served by one of the
new advertisement in 8. We denote this set of newly serviceable subscriptions
with Ppg:

Pp(8,H)={F|(F,1)c TS NH# I
ANG,H) e TH. N(F)NN(G) # 0 (4.32)
N3G € 8. N(F)NN(G) # 0}.

The subscriptions in Pp are pruned by calling the prune procedure that is
tuned to the used subscription routing algorithm. For simple routing, it simply
returns the unchanged set (Fig. 4.28). For identity-based routing (Fig. 4.29),
it removes for each filter all identical filters. For covering and merging-based
routing (Fig. 4.21), it removes all filters that are covered by any other filter.

Dropping of Unservable Subscriptions

After an admin 4 message was processed, all routing entries corresponding
to subscriptions of neighbor brokers which cannot be served anymore are
removed from the routing table. Subscriptions of local clients are not dropped.
A subscription routing entry (F,H) € Tj5 cannot be served if there is no
(G,I) € Th such that H # I and N(F) N N(G) # (. The set of all such
routing entries regarding neighbors of B is given by:

Op={(F,H)eTj|HeNgA

WG, I)eTH . H#AIANNF)NN(G) #0}. (4.33)

Postprocessing of Subscriptions

With advertisements, a (un)subscription is only forwarded to a neighbor if
it overlaps with an advertisement from this neighbor. This is achieved by
removing from the set of subscriptions and the set of unsubscriptions being
forwarded to a neighbor H those filters that do not overlap with an advertise-
ment of H. This is done by evaluating:

112 4 Distributed Notification Routing
QA H)={(F,H)|FecA N3G, H)€Th.

Hc NgAN(F)NN(G) #0}. (4.34)

4.6.2 Hierarchical Routing Algorithms

Xo X3
\| K

2. sub(G) 3. pub(n)

. sub(F)

Fig. 4.30. Hierarchical covering-based routing

The routing algorithms discussed so far are called peer-to-peer routing
algorithms because no brokers are distinguished and filters are exchanged
between neighbors in both directions. With hierarchical routing, one broker
is distinguished as root of the broker topology and every notification that is
published is always forwarded stepwise to this root node. Hence, it is sufficient
to forward subscriptions and unsubscriptions only in the direction pointing to
the root broker (Fig. 4.30). Carzaniga has presented a hierarchical version of
covering-based routing [65] which is also used by JEDI [92]. With hierarchical
routing, every broker has to process every notification that is published in its
respective subtree, but its routing table only contains filters originated in its
subtree, too. Compared to peer-to-peer routing, hierarchical routing reduces
the sizes of the routing tables substantially. For a topology being a balanced
tree® with n brokers, a subscription is only present in about O(log n) instead of
n routing tables in the worst-case, i.e., in a system with no other subscriptions.
When the number of subscriptions increases, the advantage of hierarchical
routing over peer-to-peer routing decreases. However, in a saturated system
with many subscriptions, hierarchical routing only saves 50% of the routing

3 Note that in this scenario the number of brokers grows exponentially in the num-
ber of hierarchy levels.

4.6 Extensions of the Basic Routing Framework 113

table sizes. For an individual broker, the reduction of its routing table size
corresponds to its level in the broker hierarchy. Its routing table only contains
filters that originated in its subtree. Hence, smaller routing tables are traded
for higher notification loads. For the root node, the size of its routing tables is
therefore not reduced, although it has to handle all notifications published in
the system. Hence, this node might possibly be overloaded. A possible solution
to this could be to replicate the root node and some of its child nodes exposed
to a higher load.

(F’ BZ) (F7 BQ)

.
’

n € N(F)

\
\ Hierarchical Routing

Fig. 4.31. Hybrid routing

Another potential solution is hybrid routing [65], which combines hierar-
chical and peer-to-peer routing. In this case, for certain subtrees hierarchical
routing is used as described above, while in the other parts of the topology
peer-to-peer routing is used (Fig. 4.31). In the part of the topology, where
peer-to-peer routing is used, advertisements can be used as described previ-
ously. In a subtree, where hierarchical routing is used, advertisements are only
propagated to the parent node, and the advertisement routing table is ignored
for subscription routing by every broker except the root node of this subtree.
The root node uses the advertisement table for deciding which subscriptions it
forwards to its peer nodes to which it is connected. Directly combining hierar-
chical routing with advertisements is not sensible because hierarchical routing
is essentially the same as if peer-to-peer routing is used and the respective root
node issues an advertisement that overlaps with all subscriptions.

114 4 Distributed Notification Routing

Changes for Hierarchical Routing

Now let us look at how we can obtain the hierarchical variants of the routing
algorithms presented in the previous sections. We have only to slightly modify
notification forwarding such that a notification is always forwarded to the
parent broker and the individual routing algorithms such that a filter is only

propagated to the parent broker.

Let R be the root broker. For a broker B, let P(B) be the parent broker

of B if B # R and B, otherwise.

e Framework algorithm (Figs. 4.1 and 4.2):
— Line 20 is replaced by:

send “forward(n)” to all neighbors in Fg(n) U{P(B)}\ {D};

e Simple routing (Fig. 4.5):
— Lines 5 and 6 are replaced by:

if B # R then
Ms — {(F,P(B)) | F € 8};
My — {(F,P(B)) | F € U};
14 else
Ms — 0;
My «— 0;

endif

e Identity-based routing (Fig. 4.8):
— Line 13 is replaced by:

if B # R then
if P(B) € D5(F) then
s A= {(FP(B));
else
A —0;
endif
endif

e Covering-based routing (Fig. 4.12):
— Line 15 is replaced by:

if B # R then
if P(B) € DE(F) then
3 Ms «— Ms U{(F,P(B))};
endif
endif

— Line 26 is replaced by:

if B # R then
if P(B) € D%(F) then
My — My U{(F,P(B))};
endif
5 endif

4.6 Extensions of the Basic Routing Framework 115

— Lines 31-43 are replaced by:

if B # R then
P— PU{(F,S)| Fe8};
endif
Tp — T U{(F,S) | F € 8};
5 endif
if B # R then
forall (F,U) € P do
P—P\{(GH)|(GH €EP N G=F};
if P(B) € DEY(F) then
10 Ms — Mg U{(F, P(B))};
endif
endforall
endif

e For merging-based routing, no changes are necessary.

4.6.3 Rendezvous-Based Routing

A complementary class of routing algorithms that can be combined with the
previous approaches follows a rendezvous-based routing strategy. Rendezvous-
based routing schemes derive from the observation that any content-based
routing algorithm has to set up routing paths from publishers to subscribers.
In the previous routing framework, this was achieved by propagating state
about subscriptions to all nodes in the system (subject to covering among
subscriptions). An alternative approach is to designate explicit nodes in the
network that act as “meeting points” for notifications and matching subscrip-
tions.

In rendezvous-based routing, a rendezvous node ensures that all interested
brokers agree on the same dissemination tree for events. This means that
a notification message that is sent to the rendezvous node is guaranteed to
encounter all relevant subscription states in the network. In the worst-case,
a notification will only a find matching subscription state once it reaches the
rendezvous node. When constructing a dissemination tree, subscriptions and
notifications are routed to the rendezvous node using the overlay network.
The rendezvous node must exist at a globally known location in the network.

Any broker in the system must have a way to send a message to the broker
acting as the rendezvous node for a given event type. A scalable implementa-
tion of such a scheme can be based on the routing substrate that is provided
by a distributed hash table (DHT) [316]. For example, the rendezvous node can
be chosen by using a unique event type name as a key for a lookup in a DHT.
The broker in the DHT responsible for this key then becomes the rendezvous
node. Due to the properties of the DHT, the chosen event broker will be glob-
ally agreed upon by all brokers so that every broker can use the peer-to-peer
routing substrate to send messages to this rendezvous node. We will describe

116 4 Distributed Notification Routing

this technique for building a content-based publish/subscribe system on top
of a peer-to-peer routing substrate in more detail in Sect. 4.6.8.

The idea of rendezvous nodes was introduced [24] in the context of core-
based trees for building multicast trees. However, core-based trees require all
messages to be routed via the rendezvous node, potentially creating a bottle-
neck at the node. In contrast, rendezvous-based routing can take advantage
of subscription state to reduce the load on the rendezvous node. Notifica-
tions can be delivered directly to subscribers when matching subscriptions
are encountered on the routing path to the rendezvous node.

A publish/subscribe system usually maintains multiple rendezvous nodes,
for example, one per event type or class of events. This enables the set-up of
multiple dissemination trees to balance the routing effort. Any broker in the
system can assume the role of a rendezvous node for one or more event types.
A rendezvous node is automatically created when a new event type is added.
Once a broker has become a rendezvous node, it is responsible for managing
that particular event type.

A rendezvous node can also be used to store metadata about a class of
events and manage the authoritative version of the event type schema used for
type-checking. Note that rendezvous nodes do not contain any state about the
event dissemination trees itself, which makes them simple to replace in case of
failure. When a rendezvous node fails, a new rendezvous node can take over
if the peer-to-peer routing substrate is capable of adaptation. To prevent the
event type metadata from being lost, they can be replicated across multiple
nodes. There exist several strategies for managing redundant rendezvous nodes
to achieve fault tolerance with rendezvous-based routing [310].

Fig. 4.32. Rendezvous-based routing

Figure 4.32 shows an example of an overlay network of brokers B; 5 with
one rendezvous node R. It illustrates how subscription (s 2) and notifica-
tion messages (n1) are routed toward the rendezvous node R and how the
subscription messages s12 establish routing state at brokers along the path.
At first, a subscription message is routed toward the rendezvous node. The
subscription is stored at every broker along the path (Bi3s and R). After
the subscription message has reached the rendezvous node, it is discarded.

4.6 Extensions of the Basic Routing Framework 117

Notification messages are also routed to the rendezvous node. Whenever they
encounter a broker with matching subscriptions, they follow the reverse path
of the subscription. Note that no state is created at brokers that process noti-
fication messages, and messages are never forwarded to a broker that was the
previous hop on the path.

In this rendezvous-based routing scheme, a notification must reach the
rendezvous node but may be discarded there because it has already encoun-
tered all matching subscriptions on its path to the rendezvous node. This
has the drawback that the rendezvous node may become a bottleneck in the
system when a large number of notifications are flowing through it. To ad-
dress this issue, advertisements (as introduced in Sect. 4.6.1) can be used
to establish more complete routing states in the system. This then enables
notifications to follow the reverse path of subscriptions without necessarily
traversing the rendezvous node [311].

Rendezvous-based routing usually has a lower message forwarding over-
head than the other schemes because only brokers that are part of an event
dissemination tree need to maintain routing state [312]. In other words, an
inner broker that is not on the routing path from publishers and subscribers
to their rendezvous node does not need to store any state and can be oblivious
to the ongoing routing of notifications. This property is especially beneficial
in large-scale networks, in which much of the event dissemination is geograph-
ically localized and the creation of globally consistent state at all brokers is
an expensive operation. The price to be paid for this reduction in state is the
complexity of managing one (or more) rendezvous nodes and the global dis-
semination of their identities. Often, this is achieved by a peer-to-peer routing
substrate.

Even though rendezvous-based routing is not based on the flooding of sub-
scriptions or notifications, it can be extended in a similar fashion, as shown in
Fig. 4.25. Simple rendezvous-based routing can be combined with techniques
from identity-, covering-, and merging-based routing to exploit commonality
among subscriptions and reduce the amount of subscription states in the net-
work. In contrast to the flooding-based schemes, rendezvous-based routing
only installs filtering state along the routing paths from publishers and sub-
scribers to rendezvous nodes. This means that even with imperfect merging, a
rendezvous-based routing scheme will never have the high message forwarding
overhead of flooding.

4.6.4 Topology Changes

So far we have assumed a static broker topology. The topology changes if a
new broker connects to or a connected broker disconnects from the broker net-
work. Note that we do not deal with transient disconnections due to system
faults here but with desired connects and disconnects. In the following, we do
not elaborate how connect and disconnect decisions are made. Instead, we as-
sume that the system administrator makes these decisions. The administrator

118 4 Distributed Notification Routing

must take care to avoid cycles in the topology and undesired partitioning. For
brevity, we focus our discussion on peer-to-peer routing. Topology changes
in hierarchical routing can be handled similarly. We do not discuss how to
enforce ordering requirements which is an additional challenge if the topology
changes dynamically [303].

When a connection is established between two brokers, they exchange
their active subscriptions to establish the desired delivery paths. Note that,
similar to the case of advertisements, notification delivery can only be guar-
anteed eventually after a connection has been established. When an existing
connection among two brokers is removed, both brokers cancel the subscrip-
tions of the other broker at their remaining neighbors and delete the affected
subscriptions from their routing tables.

In Fig. 4.33 the code of the procedures needed for connection manage-
ment is shown. It assumes that the used routing algorithm is able to pro-
cess individual (un)subscriptions from neighbor brokers (lines 11+25). A new
connection is established by calling the connect procedure at a broker. This
sends a connect message to the desired neighbor broker and then also for-
wards the active subscriptions by calling the forwardFilters procedure. The
set of subscriptions forwarded is reduced by applying the prune procedure
corresponding to the used routing algorithm. An existing connection is can-
celed by calling the disconnect procedure at a broker. This procedure sends
a disconnect message to the desired neighbor broker and then calls the drop-
Filters procedure. This cancels all subscriptions of the neighbor broker as if
an unsubscription was received. The forwardFilters and the dropFilters pro-
cedures also have to be executed by the neighbor broker when it receives a
connect and disconnect message, respectively. Therefore, the following code is
inserted into the framework (Fig. 4.1) after line 38:

1 case m is “connect” message from neighbor U :
if U ¢ Np then
Np «— Np U {U},
forwardFilters(U);
endif
6 break

case m is “disconnect” message from neighbor U :
if U € N then
Np — N \{U};
11 dropFilters(S);
endif
break

Note that if advertisements are used, they are processed similarly, as de-
scribed above. In this case, advertisements instead of subscriptions are ex-
changed among the brokers when a new connection is established. This subse-
quently leads to the exchange of servable subscriptions. When a connection is
canceled, both affected brokers cancel their respective advertisements at their

22

32

4.6 Extensions of the Basic Routing Framework

procedure connect(Broker I)

begin
send “connect” to I;
forwardFilters(I);
end

procedure forwardFilters(Broker I)
begin
A —prune({F' | (F,D) € Ts AD #1});
forall FF€ A do
send “admin({F},0)” to I;
endforall
end

procedure disconnect(Broker I)

begin
send “disconnect” to I;
dropFilters(1);

end

procedure dropFilters(Broker I)
begin
A—{F|(FI)€Tr};
forall FF€ A do
(Ms,My) <« administer (0, {F});
forall H € Np\ {I}
§—{F|(F,H) € Ms};
U—{F|(F,H)eMu};
if 840 Vv U#(D then
send “admin(S,U)” to H;
endif
endforall
endforall
end

Fig. 4.33. Managing connects and disconnects

119

remaining neighbors and delete the affected advertisements from their routing
tables. This subsequently leads to the deletion of unservable subscriptions.

4.6.5 Joining and Leaving Clients

In a dynamic system, clients can join and leave the system. To support joining
and leaving clients, we change the routing framework in the following way:

e FEach broker B manages a set Cp containing B’s current set of local clients.
Initially, Cp is the empty set.

120 4 Distributed Notification Routing

e If a client X calls one of the interface operations (e.g., pub, sub, unsub)
and X is not in Cp, then X is added to Cp and X'’s delivery queue is
initialized.

e If a client wants to leave the system, it calls the new leave interface oper-
ation. This operation removes X from Cp and cancels all active subscrip-
tions (and advertisements, if advertisements are used). Furthermore, X'’s
delivery queue is freed.

4.6.6 Routing in Cyclic Topologies

Up to now, we have restricted the discussion to acyclic topologies. However,
the definition of valid routing algorithms also makes sense in cyclic topologies
(cf. Sect. 4.3.1). In this case, duplicates may be delivered to brokers if we
would apply notification forwarding without changes. To ensure safety, it must
be guaranteed that these duplicates do not reach a client. Next, we describe
how duplicates can be eliminated by using notification ID histories. Then,
we discuss routing algorithms for cyclic topologies. We do not discuss how
to enforce ordering requirements which is an additional challenge in cyclic
topologies.

Avoidance of Duplicates

Duplicates can be avoided in the following way: To detect duplicates each
broker stores the ID of every notification it processes. If a broker receives a
notification more than once, the broker ignores this notification.

Storing notification IDs for the whole lifetime of the system would sooner
or later consume all the memory of a broker. In order to avoid the case that
a broker has to store notification IDs forever, a broker must be able to detect
that a duplicate corresponding to a stored ID can no longer reach this broker.
In this case, the broker can delete this ID from its history. To make notification
ID history cleanup possible, notifications carry a timestamp that is filled in
at the time the notification is published by the broker hosting the publishing
client. We assume that the clocks of the brokers are approximately synchro-
nized and that notifications that are consecutively published at a broker get
distinct and increasing timestamps.

Each broker stores for each neighbor and itself the maximum timestamp it
has received from this neighbor in timestamp message and which corresponds
to the last notification published by a local client, respectively. Initially, the
maximum timestamp vector is initialized with sufficiently small timestamps.
Each broker computes from the maximum timestamp vector a minimum maxi-
mum timestamp for each of its neighbors by taking the minimum of all but this
neighbor’s maximum timestamps. If a broker receives a timestamp message,
it updates the respective neighbor’s vector component. Similarly, it updates
its own component in the vector if a local client publishes a notification. If

4.6 Extensions of the Basic Routing Framework 121

for a too long a period of time no local client has produced a notification,
the broker also updates its own component. If the minimum maximum times-
tamp of some neighbors has increased due to an update, the respective new
minimum maximum is sent to these neighbors. This way, every broker has a
current minimum maximum timestamp of all components of its vector that
monotonically increases. For a broker, it is safe to discard those notification
IDs whose timestamp is smaller than its current minimum maximum times-
tamp. Of course, timestamp messages can be piggybacked to forward and
admin messages. Message batching can be applied, too.

Routing Algorithms

Similar to acyclic topologies, the simplest routing algorithm for cyclic topolo-
gies is flooding. Flooding (Fig 4.4) can be reused for cyclic topologies without
changes. Applying flooding has the advantage of a maximum of fault toler-

ance. As long as the topology is connected, every notification will reach every
broker.

procedure administer(Dest S, Set S, Set U)
2 begin
8§ —8\{F|3(F,D)eTs AND#S};

Tp — T U{(F,S)| F € 8};
T — T \{(G,S) | G € U};

7 Ms<—{(F,H)|He Ng\{S} AN FeS8};
My —{(F,H) | He Ng\{S} N FelU};
return (Mg, Mv);

end

Fig. 4.34. Simple routing in cyclic topologies: algorithm

Figure 4.34 shows simple routing adapted to cyclic topologies. There are
only slight changes necessary to use simple routing in acyclic topologies
(Fig. 4.5). In line 3, those filters are removed from 8 for which a routing entry
from another destination already exists. The rest of the code is not changed.
This algorithm actually creates a separate spanning tree for every subscrip-
tion (Fig. 4.35). The advantage of this approach is that the load caused by
notification is more balanced among the network connections than if a single
spanning tree was used. This is especially true if a network has many more
links than nodes. Note that simple routing in cyclic topologies has much in
common with directed diffusion [204]. Simple routing can be used for adver-
tisements and subscriptions. In this case, for each advertisement a separate
spanning tree is built and this spanning tree is used to propagate the sub-

122

4 Distributed Notification Routing

sub(Xa, F) sub(Xs3, G)

NS

X

Fig. 4.35. Example of simple routing in cyclic topologies

scriptions to the consumers. How advanced routing algorithms can be used in
cyclic topologies without relying on spanning trees is still an open issue.

4.6.7 Exploiting IP Multicast

Opyrchal et al. [291] described how IP multicast can be used in a publish/sub-
scribe system and in which cases it reduces the consumed network bandwidth.
They compare flooding to four multicast-enabled routing algorithms:

ideal multicast assumes that for each set of brokers (having clients with
a matching subscription) a (perfect) multicast group exists. In this case,
a notification can be forwarded to all these brokers with a single send
operation. This strategy is only realistic for a small number of brokers
because for N brokers 2V groups are needed.

clustered group multicast (CGM) divides the set of all brokers into several
mutually exclusive subsets called clusters. Then, for each cluster ideal mul-
ticast is used. For C equally large clusters, this strategy needs C sends,
decreasing the efficiency of the multicast. The number of groups necessary
is reduced by a factor of 2€/C, i.e., ¢ - 2V/€ groups are needed.
Threshold Clustered Group Multicast (TCGM) sends a notification to all
members of all clusters if the number of receiving brokers exceeds a thresh-
old T'. This approach reduces the number of groups to

c- ;T (N / C) , (4.35)

but further reduces the efficiency of the multicast because now brokers
may receive notifications for which they do not have a local client with a
matching subscription.

4.6 Extensions of the Basic Routing Framework 123

e neighbor matching multicast forwards a notification in multiple steps from
the broker to which the publishing client is connected to the brokers which
have clients with a matching subscription. In each step, the sending broker
determines those neighbor brokers to which it should forward this notifi-
cation. This strategy has the disadvantage that those links that connect
brokers with (multicast routers) are traversed several times.

From the investigated multicast routing algorithms, the neighbor match-
ing algorithm can be directly integrated into our routing framework. Instead
of sending a notification to individual neighbors, now a corresponding multi-
cast group is used that contains all neighbors to which the notification should
be forwarded. If it is not possible to reserve a multicast group for each sub-
set of neighbors, threshold clustering can be used. The authors state that
neighbor matching is superior to flooding under conditions of high selectivity
and high locality of subscriptions. It can be expected that their results are
too pessimistic because their work depends on simple routing, i.e., the rout-
ing algorithm does not exploit covering and merging. They also assume that
event brokers are not placed nearby to the multicast routers and therefore the
use of multicast may even introduce a bandwidth penalty. They also did not
investigate the use of advertisements.

The other two multicast-enabled routing algorithms (i.e., CGM, TCGM)
assume that each broker has global knowledge about all active subscriptions
because notifications are forwarded in only one step from the producer’s broker
to the consumers’ brokers. These algorithms can easily be integrated with
simple routing to fit into our routing framework.

4.6.8 Topology Maintenance

From the previous discussion it becomes clear that the maintenance of an
overlay topology in the light of network and node failures and nodes joining
and leaving the system (also known as churn) can be complex. Therefore,
a publish/subscribe system benefits from a routing abstraction that handles
the maintenance of the overlay network of broker transparently to the higher
content-based routing layers. Recently, DHTs [316, 323, 331, 351] were intro-
duced as scalable data structures for building large distributed applications.
The multihop routing abstraction implemented by a DHT integrates natu-
rally with the need for globally unique rendezvous nodes in rendezvous-based
routing approaches (Sect. 4.6.3). In this section, we briefly introduce DHT's
and explain how they can be used to implement rendezvous-based event dis-
semination.

Distributed Hash Tables (DHTSs)

A DHT maps a key to a value that is stored at a particular node in the
network. Rather than having global knowledge, nodes only need to know about

124 4 Distributed Notification Routing

a small subset of all existing nodes when performing key lookups. Lookup
requests are routed via the overlay network to the destination node that is
responsible for the key, even when nodes are constantly joining and leaving
the DHT. The load of storing data in the hash table is therefore spread across
all nodes in the system. The routing algorithm for the DHT builds a small-
world network [391], which has a small diameter but is highly clustered, so
that every node can be reached in a logarithmic number of hops.

Pastry [331], developed at Microsoft Research Cambridge, is an example of
a DHT with locality properties that forms a self-organizing, resilient overlay
network, which can potentially scale to millions of nodes. Its main operation is
a route(message, key) function that reliably routes a message to the Pastry
node that is responsible for storing the key. Messages take O(log N) hops on
average, where N is the number of nodes in the Pastry network. The overlay
network of nodes is organized so that routes with a lower proximity metric,
such as latency or bandwidth, are preferred.

The routing algorithm of Pastry relies on the fact that each Pastry node
has a unique node identifier, called a nodelID. NodelDs populate a 128-bit
namespace that is uniformly distributed; they are grouped into digits with
base 2° for a given value of b. DHT keys can be transformed into nodeIDs by
using a hash function. The functionality of a DHT is implemented by routing
a message to a live node with a nodeID that is numerically closest to the
hashed key. The routing of messages relies on two data structures, a routing
table and a leaf set, maintained by each node.

Routing Table. The routing table has logy, N rows with 2°—1 columns. The
rows contain entries for nodes whose nodelD matches the local node’s
nodelD in the first d digits but then differs afterwards. Among several
candidate nodelDs for an entry in the routing table, the one with the
minimum proximity metric is chosen. Secondary entries are kept as backup
in case the primary node fails.

Leaf Set. The leaf set has [nodeIDs as entries, which are the /2 closest,
numerically larger and smaller nodelDs with respect to the local nodelD.
This invariant must be maintained at all times, and routing will fail if
more than [/2 nodes with consecutive nodelDs fail. The leaf set can be
used for data replication.

Routing in Pastry is a generalization of prefix routing: A message is for-
warded to a node that shares a longer prefix with the destination nodelD
than the current node. If such a node does not exist in the routing table, the
message is sent to a node with a nodelD that is numerically closer to the
destination. If the destination nodelD falls within the range of the leaf set,
the message is sent directly to the numerically closest nodeID. The process
of routing a message from node 123 to the key 333 with b = 2 is illustrated
in Fig. 4.36. The message is first forwarded to node 311, which is obtained
from the routing table at node 123. Each hop moves the message closer to the
destination node.

4.7 Further Reading 125

Fig. 4.36. Routing a message in a Pastry network

Rendezvous Nodes in a DHT

Rendezvous-based routing relies on globally known rendezvous nodes that
ensure that publishers and subscribers agree on the same dissemination tree.
If the overlay network of brokers forms a DHT, then its routing properties
can be exploited to create rendezvous nodes, as follows: DHT routing has the
property that a lookup of a nonexisting key will deterministically return the
numerically closest existing key in the system. To create a unique rendezvous
node for a given event type (or class of events), the event type name is used
as the lookup key in the DHT. The broker that is responsible for this key is
then designated as the rendezvous node for the event type. The load balancing
properties of a DHT encourage a uniform distribution of rendezvous nodes in
the system. Advertisement and subscription messages are routed using the
DHT and create filtering state along the path as explained in Sect. 4.6.3.
Notification messages then follow the reverse path and are filtered according
to subscriptions.

4.7 Further Reading

Epidemic Multicast

The idea of epidemic multicast algorithms was introduced by Demers et
al. [108] in 1987. The basic idea is very simple: The source of a notification
sends it to some randomly chosen brokers. A broker that receives a notifica-
tion for the first time also sends it to a number of randomly chosen brokers.
This way, all brokers receive the notification with a certain probability. The
algorithm can be tuned to make the probability that a broker misses a noti-
fication as low as desired. Many recent approaches use some sort of epidemic
algorithm to distribute information [41, 86, 122, 123, 125, 128].

126 4 Distributed Notification Routing
Evaluation of Routing Algorithms

Carzaniga, Rosenblum, and Wolf [65, 71] presented performance results which
are based upon a simulation framework. Their work investigated two variants
of covering-based routing, a peer-based and a hierarchical version. The simu-
lated algorithms are also incorporated into their publish/subscribe prototype
called Siena. Other routing algorithms are not considered.

The simulations investigated the total cost induced by the notification
service, the cost induced on individual brokers (and its variance), the aver-
age cost per subscription (and its worst-case), and the per-notification cost.
Unfortunately, it is not easy to interpret their results because the setup of
the main parameters influencing the results are not described. This includes
the metric underlying their cost analysis, the structure of the notifications,
subscriptions, and advertisements, and the rates of subscribing/unsubscribing
and advertising/unadvertising.

The current implementation of JEDI exploits a hierarchy of event brokers
in conjunction with the hierarchical version of covering-based routing [65].
The algorithm implies that a notification is always propagated to the root
broker regardless of the interests of the consumers. Moreover, an improved
version is suggested that extends the hierarchical algorithm by using adver-
tisements, and simulations have been carried out to compare the original with
the improved version [51, 52]. Bricconi, Di Nitto, and Tracanella [52] also pre-
sented the analytical model that underlies their simulations and which allows
the average number of notifications that is processed by an event broker to
be estimated.

Performance results related to the prototype of the Gryphon notification
service are presented by Banavar et al. [26] and Opyrchal et al. [291]. The
routing algorithm exploited by Gryphon is similar to simple routing without
advertisements. Their work concentrates on the use of multicast and efficient
matching of events to subscriptions [6]. The matching algorithm clearly out-
performs the simple sequential algorithm, but it depends on and supports only
a few types of attribute filters, limiting its usability. Moreover, updating the
matching data structure if clients subscribe and unsubscribe is costly.

The load caused at the individual brokers was investigated in the first arti-
cle mentioned above [26]. The results presented show that flooding overloads
at the same publishing rate regardless of the percentage of matches or the
number of active subscriptions. Filtering-based routing, on the other hand,
can handle much higher publication rates if subscriptions are highly selec-
tive or highly local, which can be expected in large-scale publish/subscribe
systems.

The second article [291] concentrates on bandwidth utilization. It com-
pares flooding to four multicast-enabled routing algorithms and ideal mul-
ticast, which assumes that for each event a perfect multicast group exists.
The authors state that filtering-based routing is superior to flooding under
conditions of high selectivity and high locality of subscriptions. This opinion

4.7 Further Reading 127

supports the findings of this work. Nevertheless, it can be expected that their
results are still too pessimistic because their work depends on simple routing,
i.e., the routing algorithm does not exploit covering and merging. They also
assume that event brokers are not placed nearby to the multicast routers and
therefore the use of multicast may even introduce a bandwidth penalty. More-
over, they did not investigate the use of advertisements. Miihl et al. [263, 267]
have investigated a set of routing algorithms and their effect on the routing
table sizes and the filter forwarding overhead.

5

Engineering of Event-Based Systems

In the previous chapters we have learned what the infrastructure of a dis-
tributed notification service looks like. This chapter starts to look at the en-
gineering issues in event-based systems.

The first part of the chapter presents main engineering problems, which
are partly derived from experience in request/reply-based systems. Looking
at example scenarios we see that current functionality is well suited for simply
structured systems, but essential software engineering paradigms are hardly
supported, which makes the engineering of complex systems very hard. Chap-
ter 6 will detail these higher-level engineering issues.

In Sect. 5.2 we describe different forms of application programming in-
terfaces (APIs) and Sect. 5.3 concentrates on how applications use the APL
Besides directly accessing an API, code instrumentation and aspect-oriented
programming are candidates for adding publishing functionality to existing
application code. Some programming languages even provide intrinsic event
handling mechanisms, like C# or some extensions of the Java language. Fur-
thermore, we discuss what data items contribute to an event and does every
change lead to a publication?

5.1 Engineering Requirements

This section analyzes engineering issues and points out shortcomings of many
current services that make them difficult to maintain, let alone control, and
that impede their use in complex application scenarios. The deficiencies are
illustrated with the help of example scenarios, and a set of engineering re-
quirements are inferred that should be addressed by event systems. Two main
problems are identified. The first is that event-based systems basically do not
imply other requirements for designing and engineering than those already
known from engineering request /reply systems. The second observation is that
while supporting abstractions are available for the latter, they are missing for
event-based systems.

130 5 Engineering of Event-Based Systems

(a) (b) (c)

Fig. 5.1. Data flow graphs of applications: bipartite single (a) and mult source (b),
and a general group (c)

5.1.1 Application Examples

A taxonomy of application scenarios is created according to the complexity of
interaction between application components. A data flow graph describes who
is sending notifications to whom: one-to-many, many-to-many, and repeated,
“stateful” communication.

Information Dissemination

The simplest and most obvious application scenario of event-based commu-
nication is information dissemination and push services. It is typically char-
acterized by a single, well-defined information source publishing notifications
toward consumers (one-to-many communication). Applications are oblivious
to the actual set of receivers and typically require high scalability. The call
graph is bipartite, cf. Fig. 5.1a, which means it consists of two distinct sets of
components and messages are sent only between, not within the sets. Example
applications are:

e monitoring of stock prices, sensor data, real-time control systems, process
execution, ete. [177, 224, 255]

e push services in electronic commerce, news feeds like weather forecasts and
sports [73, 109]

e content delivery networks [8, 333]

This is the classic application domain of event-based systems, and also
of network-level multicast [321]. However, even in this simple scenario issues
arise that are not covered by typical event services. The weather information
may contain temperatures in Fahrenheit, whereas consumers expect degrees
centigrade. Stock quotations may be published using an established financial
markup language like FIXML [273] to facilitate interoperability with exter-
nal system, whereas internal communication stick to more efficient binary
representations. The heterogeneity of data models and the limited support
thereof often demands manual adaptations before connecting components to
information buses.

Furthermore, security in event-based systems is a critical open issue. Who
is allowed to view sensor data that monitors a person’s presence or health?

5.1 Engineering Requirements 131

Access to real-time stock quotations may be restricted, requiring subscriptions
with additional fees.

Groups of Producers

In Fig. 5.1b a slightly more complex scenario is depicted that includes multiple
producers publishing similar notifications. This raises new problems if it is
necessary to distinguish the sources, especially when systems evolve from the
type shown in Fig. 5.1a to that shown in Fig. 5.1b. Consider

e multiple stock markets or auction platforms publishing similar informa-
tion [47, 138]

e multiple application-specific beacons or sensors that are deployed some-
where in the infrastructure [18]

When a system implementing one stock market is connected to another
market, measures must be taken to prevent unintended effects on existing
consumers. It must be possible to restrict communication to one market so
that components do not react incorrectly to external events. The necessary
distinction of markets is often achieved by simply having producers annotate
notifications with a name or an ID (of the market, for example). Here, pro-
ducers encode the context of an event in the notifications, e.g., the market
from which it originated. Consumers operate in a specific context if they test
for this information in their subscriptions.

This is a straightforward approach, of course, but it draws context knowl-
edge into application components that pertains to the interaction and not to
the component’s implementation. Moreover, this context specification not only
counteracts the characteristics of event-based systems, but it is unnecessary
within the respective context. Consider the second example where presence
awareness sensors inform about people/objects moving within a building. The
notifications include an ID of the object tracked and a room number. If events
from multiple buildings are integrated in a facility management application,
an identifier of the “source building” must be included in the notifications.
This approach would increase the coupling as it influences the internal con-
figuration of components when applications are integrated.

Therefore, application components should not be forced to deal with their
execution context. They would have to consider all possible contexts, which
inhibits runtime evolution and is neither desirable nor needed.

Complex Interaction

The third class considered comprises complex applications that have arbitrary
call graphs and include bidirectional communication (Fig. 5.1¢). Examples are:

e chat groups, multiplayer games, or computer-supported cooperative work
(CSCW) tend to cluster interacting groups of components [117, 159].

132 5 Engineering of Event-Based Systems

o virtual marketplaces exhibit complex interactions where sequences of pub-
lished notifications are interrelated, e.g., auctions [47, 138].

e wireless sensor networks [9, 205] convey data from sources to sinks and
process and filter data within the network.

Apart from the last example, such scenarios are seldom considered in the
context of event-based systems. They are typically based on request/reply,
although their interaction is often event-based in essence: the initiator is the
producer of data and destinations are chosen indirectly, e.g., based on roles
or interests. Producers may get some information back from their consumers,
but not necessarily by replies. Such feedback is due to events triggering other
events and notifications following loops in the data flow graph. This should not
preclude such applications from exploiting the flexibility of the event-based
architectural style.

The requirements posed in these scenarios, however, exceed pure scalability
considerations. The examples show that the principle of locality is important
in event-based systems, too. Clusters of interacting participants can be identi-
fied as part of larger applications; the data flow graphs are more dense within
these clusters than toward the outside. And within such groups often more
stringent requirements are placed on communication quality. For instance, a
chat application exchanging user input via notifications will certainly gain
from ordering guarantees for notification delivery, e.g., atomic broadcast pro-
viding each participant with the same perceived order of inputs. In general, in-
tracluster communication may require dedicated services, whereas interaction
with the remaining system gets by with the basic functionality of notification
dissemination.

Virtual marketplaces illustrate the need to group notifications. Producers
and consumers do not know each other but must establish a conversation®
by relating notifications that belong to the same auction. Again, a simple
workaround is directly found by inserting identifiers in notifications, and the
same counterarguments as above still apply. Identifiers may be viable in this
simple case, but in more general terms the context of notifications must be
distinguished to relate bids to auctions, reactions to actions, and events to
transactions.

5.1.2 Requirements

The above discussion exemplifies the problems raised by the loose coupling
of the event-based style: effects and side effects, design, implementation, and
engineering, management, and security issues. From these problem domains
four requirements for the engineering of event-based systems are inferred:
bundling of components, support for heterogeneity, flexible customization,
and support for activities.

1 Repeated, possibly bidirectional communication.

5.1 Engineering Requirements 133

Illustrative Example

A stock trading application will be used as an illustrative example. It shall
not, of course, describe a perfect architecture for stock trading. The exam-
ple illustrates most of the aforementioned problems and helps underline the
requirements of engineering event-based systems.

The following components of a stock market can be identified (Fig. 5.2):

Trading

gMatching Floor

an

@O

Customers Market

Fig. 5.2. An example stock trading application

Customers monitor quotations and issue orders to buy or sell shares.
A central matching engine implements the matching algorithm and gener-
ates quotations.

e A database logs the generated data to ensure consistency and persistence,
and to audit the operation.

Nearly all parts of a stock trading application are inherently event based.
The dissemination of stock quotations from the central trading floor (or its
computerized equivalent) to the market participants is an accepted and plausi-
ble example of applying event notification services. The database and match-
ing engine are composed into the virtual trading floor, a component which
consumes orders and publishes notifications carrying share prices of success-
fully executed trades.

Bundling of Related Components

Locality, encapsulation, and the composition of existing components into
higher-level units are well-known concepts for mastering complexity and for
supporting evolution [300]. These concepts are used in request/reply systems,
but they are equally important here. The grouping of components that share
some commonality or achieve a common goal is a prerequisite for reasoning
about effects and side effects, and it is the basis for addressing both engineer-
ing and management issues.

Bundling is both a syntactic and a semantic abstraction. From the syntac-
tic point of view such a bundle limits the distribution of notifications produced

134 5 Engineering of Event-Based Systems

within; it identifies notification delivery localities. The bundling mechanism
should be orthogonal to any subscription mechanism so that grouping is in-
dependent from component implementation and it should not influence the
subscriptions issued by them. This is important to draw locality not only
based on the described interests of consumers but also on other criteria, such
as organizational and geographical constraints of a company or some other
application-specific semantics.

From the semantic point of view, bundles of components must be com-
ponents themselves with their own semantics. The bundles should not only
limit distribution, but should also publish notifications themselves as the re-
sult of notifications produced within the bundle, indicating important state
changes of the bundle as a whole. Similarly, they should consume notifications
from the outside by further propagating them to their internal participants.
This opens the possibility to recursively create higher-level components and
to hierarchically structure an event-based system.

Consider the running example. The virtual trading floor in the stock trad-
ing application is the first candidate of a component bundle. One can imagine a
“verbose” matching engine producing detailed notifications about the progress
of the matching algorithm, of which the majority is only relevant for logging
purposes (e.g., for auditing system operations) and only a few are relevant
for customers. Hence, it makes sense to constrain the visibility of most of the
notifications to the database component and to allow only a few of them to
pass the boundary of the trading floor bundle.

The next reasonable structuring step would be to bundle the trading
floor and a set of customers (i.e., the participants in the market described
in Fig. 5.2) into a higher-level syntactic and semantic market component. In
this way multiple trading floors could be supported without having customers
receive duplicate and inconsistent notifications. Such duplication cannot be
avoided in a flat design space, where all components in the system are visible
to each other. The absence of market bundles would require users to encode
knowledge about the market structure into the subscriptions of individual
components, which impedes reuse and system evolution (cf. Sect. 2.1.3).

Supporting Sessions and Activities

The engineering of complex systems benefits not only from bundling related
components according to application structure but also from grouping notifi-
cations into sessions. Be it because notifications originate from the same source
or because they belong to a set of cooperating components, sometimes it is
necessary to distinguish sessions of dependent interactions to identify conver-
sational state. This is especially important in event-based systems, where the
identity of peers is unknown. That is, without any additional information con-
secutive notifications cannot be related to each other. The publish/subscribe
paradigm does not offer any intrinsic means to identify conversational state
other than introducing IDs manually.

5.1 Engineering Requirements 135

An example for sessions is a stockbroker who listens to a specific share
traded on two stock markets. Obviously, notifications distributed in one mar-
ket must, generally, be invisible in the other. However, the stockbroker should
be able to observe and distinguish both. In general terms, individual com-
ponents should identify and participate in multiple sessions, delimiting them
from each other to support session state. However, taking up the discussion
about IDs in Sect. 5.1.1, it is generally undesired to have components do
session handling on their own. From an engineering point of view, it compli-
cates their implementation.? More importantly, it reduces the loose coupling
of publish/subscribe by explicitly tangling notifications and interaction con-
trol. Using IDs is an ad hoc approach to distinguish groups of producers, but
it hides the fact that the underlying problem of session handling is not yet
addressed directly.

Furthermore, activities comprising bundles of notifications can be modeled
as well-defined structures as described for bundles of application components
above. Activities structure the interaction in the system and in themselves are
components with well-defined semantics. Drawing on localities of distribution,
they can determine when “internal” notifications are to be made visible to the
outside. This will help to prevent side effects, to build structured, hierarchical
sessions, and to customize and orchestrate them. Activities thus correspond
to a simplified version of the notion of transactions known from the world of
request /reply-based systems [102, 182].

Mastering Heterogeneity

A single uniform event notification service with uniform syntax and semantics
is hardly able to cope with the diverging requirements of large distributed sys-
tems, which typically operate in heterogenous environments [80]. As pointed
out in the examples of Sect. 5.1.1, an event service that, e.g., relies on a global
naming scheme is not scalable and complicates system integration. Further-
more, syntax and semantics of notifications are likely to vary and there are
inevitably different data models in use, which can be induced by hardware-
dependent issues (like bounded message size) or by middleware or application-
layer differences. While heterogeneity is a well-known problem in other areas
of computer science, it only recently started gaining attention in the context
of notification services [80, 146, 185].

From the observations above an apparent conclusion is that bundling of
related components should not only encapsulate functionality but also delimit
common syntax and semantics. This requires mechanisms to support adapting
data that cross boundaries of component bundles by mapping content and rep-
resentation. To motivate the requirement consider again the running example.
For efficiency reasons it is reasonable to distinguish between low-volume exter-
nal representations in XML versus more optimized internal representations.

2 Enterprise JavaBeans introduce session beans as a remedy to this problem in the
request/reply approach.

136 5 Engineering of Event-Based Systems

The matching and database components may use a binary representation,
while stock quotations are published using an established financial markup
language like FIXML [273] to facilitate interoperability. Hence, transforma-
tion between the external XML representation and the internal binary repre-
sentation would be needed for notifications crossing the border of a trading
floor composite.

Flexible Configuration and Customization

Similar to the heterogeneity discussion, a static definition of notification trans-
mission semantics is not adequate either. The service must be adaptable, and
it must be configured to meet applications needs. As pointed out in Sect. 5.1.1,
subsets of closely interacting participants often rely on communication guar-
antees that differ from those of basic notification dissemination. This includes
ordering or real-time guarantees that refine the specification of the simple
event-based system given in Sect. 2.5. But application-specific needs may
also demand deviation from this basic specification. For example, instead of
the default “broadcast” of notifications to all eligible consumers with match-
ing subscriptions, only a specific subset of them may be selected due to an
application-specific policy. An 1-of-n policy realizes load balancing within a
bundle of components, and outside of the components themselves.

In the stock trading application, the matching engine might be replicated
to distribute processing load over multiple instances using a delivery policy
that routes orders to instances dedicated to the respective share. Furthermore,
if the structure of the bundles is not static, security policies must control who is
allowed to join. The trading floor component could be compromised if everyone
is allowed to join and issue notifications influencing the matching engine. On
a lower level of adaptation the implementation of the trading floor will use
broadcast mechanisms of a local area network, whereas the dissemination of
price information on the Internet has to use other techniques.

In general, the ability to adapt and program bundles of components tack-
les the design, implementation, and engineering problems stated above. The
whole event service is subject to customization with respect to these bun-
dles: API, syntax, and semantics of subscriptions and notifications, security
policies, and implementation techniques of notification dissemination must be
tailored to fit the needs of evolving complex systems.

5.1.3 Existing Support

The bundling of components is the basic requirement presented in the previous
paragraphs, and it complies with the fact that information hiding and abstrac-
tion have long been identified as a fundamental principle in software engineer-
ing [300]. In request/reply-based distributed systems, like the CORBA plat-
form [283], solutions exist for all of the outlined requirements. Object-oriented

5.2 Accessing Publish/Subscribe Functionality 137

programming and decomposition, heterogeneity by standardized interconnec-
tion protocols (e.g., CORBA-IIOP, SOAP [400] based on XML), bundling of
activities with the help of transactions [37, 281], and security services, e.g.,
Kerberos [270], provide the appropriate support.

However, comparable hierarchical structuring mechanisms are missing in
event-based systems. The missing knowledge about communicating peers leads
to the desired separation of communication from computations. But control of
component interaction is drawn out of the application components themselves,
and any adequate support for the mentioned requirements must respect and
facilitate the external control of interaction. Unfortunately, existing services
recognize and address these issues only partially.

A first approach to achieving these goals would be to build on existing
features of notification services. For example, one could make use of content-
based filtering mechanisms [71, 262] to decompose and delimit sets of com-
ponents and notifications from each other. Subscriptions can be adapted to
encode additional constraints on the decomposed structure. This approach of
modifying application components counteracts the stated separation. Knowl-
edge about the application structure is put into the components, contradict-
ing the idea of components being loosely coupled and self-focused. Further-
more, the structure is not explicitly enforced by the system so that compo-
nents can deliberately modify their subscriptions to evade security measures.
Subject-based addressing is too limited to implement any sensible structur-
ing in addition to existing subscriptions, because different points of view are
not supported. Event channels like in the CORBA Notification Service sup-
port structuring in addition to notification selection to some extent. However,
individual components still have to select channels manually.

The above points showed shortcomings of the plain API, which makes pub-
lish /subscribe communication difficult to maintain, let alone control, and that
impedes its use in complex application scenarios. The deficiencies are analyzed
with the help of example scenarios, and a set of engineering requirements are
inferred that should be supported by event systems. The next chapter intro-
duces a scoping concept that addresses the underlying problem of controlling
notification visibility and serves as a tool of both application design and event
system implementation.

5.2 Accessing Publish/Subscribe Functionality

5.2.1 Generic APIs

In Sect. 2.1 we described the constituents of a publish/subscribe system and
sketched its minimum functionality. Figure 5.3 depicts the interface operations
a generic implementation should provide. A number of standards are available
that define publish/subscribe APIs. Most notably, there are the Java Message
Service (JMS) [364] and the CORBA Notification Service [287], which we will

138 5 Engineering of Event-Based Systems

detail later in Chap. 9. They both include this core set of functions, but differ
in the filter models they support and other higher level functionality. The
characteristic differences of publish/subscribe services can be summarized in
the following points:

e publish and subscribe are mandatory API operations. All implementa-
tions must provide these operations.

e Advertisements are optional because they are not necessary for the main
functionality. Hence, advertise and unadvertise are optional.

e Data and filter models are an important factor distinguishing notification
services. In most cases they are predetermined and only one model is
available.

¢ Notification services differ in the quality of service (QoS) they offer. Under
a similar API, reliability, performance, and dissemination semantics vary
largely.

e Black box or open implementation decide about adaptability. The layout
of the underlying infrastructure may be completely hidden from the ap-
plication, or it may be open for adaptation to better cope with aspects of
heterogeneity and customization.

The availability of publish and subscribe API calls is an obvious neces-
sity. Only their signature varies because of differences in QoS as well as in
data and filter models as described below. If the unsubscribe operation is
not provided, the subscription will usually be valid only for a limited time.
Advertisements are not mandatory for publish/subscribe communication, and
many systems do not offer them. However, advertisements help to improve re-
source usage (e.g., by enabling routing optimization [267]) and offer means
for implementing other higher level features like security [34]. They also allow
clients to determine the potential notifications that might be published by
producers.

The data and filter models offered by a notification service are critical for
its usefulness regarding a given application. Nearly all major standards and
nonstandard implementations differ in this respect. However, from an API
point of view these models can be transformed into each other with the help
of additional wrappers. Of course, this affects performance, but such wrapping
is often necessary anyway. Complex applications hardly fit into only one data
and filter model.

publish(n) publishes a notification n
subscribe(F) subscribes to a filter F’
unsubscribe (F) revokes a subscription
advertise(F) all publications will conform to filter F’
unadvertise(F) revokes an advertisement

Fig. 5.3. Generic publish/subscribe interface

5.2 Accessing Publish/Subscribe Functionality 139

The more important distinguishing factor is the level of QoS offered by the
publish/subscribe API. The definition of communication semantics in Sect. 2.5
is only an outline that any concrete implementation will refine in one way or
another.? If the API offers more than one default behavior, it should not be
the publish and subscribe methods that take the QoS parameters. First, it
is unlikely that each publication is issued with different QoS parameters. And
second, in event-based systems producers do not know how important their
notifications are for the consumers, and thus they should not determine the
QoS. For example, if the notification service uses channels, we can determine
the QoS characteristics at channel creation time. And we can provide the
channels to the producers from the outside, which is also current software
engineering best practice and is known as dependency injection [153].

Open implementations [209, 220] are a more generic alternative to QoS-rich
APIs. An open implementation enables system engineers to not only wrap ex-
isting functionality but also to extend the service from within. This approach
is also known as reflective middleware [96, 223]. Interceptors, hooks, aspects,
dependency injection, etc., are the vehicles to insert code into the implemen-
tation of an existing notification service. These techniques change the internal
behavior and help to adapt the middleware below the API. Currently, only
some research prototypes of notification services use an open implementation.
On a lower layer, active networks also exploit this idea to construct network
infrastructures that are open for customization even after deployment [373].

5.2.2 Domain-Specific APIs

When focusing only on one specific application domain, it is often convenient
to offer publish/subscribe functionality through domain-specific communica-
tion APIs. We can distinguish two different approaches: the APIs either act
as wrappers, using other terms for generic communication facilities, or they
really provide an implementation tailored to domain characteristics. The first
alternative is often used for implementing typed on top of untyped eventing.

If different terminology is used to offer an otherwise generic publish/
subscribe service, the classic wrapper or adaptor pattern is used [57, 161].
Internet NewsNet, newsgroups, and bulletin boards are examples.* News is
posted without destination and is classified in newsgroups, and readers must
select the posts in which they are interested. Technically similar approaches
are Linda Tuple Spaces with their in and out commands [7, 64].

Other examples include building technology and control systems in gen-
eral. In nearly all of these systems, state changes are signaled: elevators move,
lights are turned on, temperature is monitored. Signaling is usually done using
APIs and messages that correspond to the domain entities, but those appli-
cations are essentially event-based. In order to easily set up and configure a

3 Note that performance metrics are not considered as part of this API discussion.
4 In fact, they also add some persistence mechanisms that we will not consider here.

140 5 Engineering of Event-Based Systems

specific configuration of the control system, system engineers exploit the indi-
rection of publish/subscribe. In business applications, databases often act as
central information hubs. Newly entered tuples trigger other operations, and
so the database can be seen as the notification service conveying data and
invoking reactions in consumers, see [172, 385].

Since events are used in many areas of computer science, APIs were created
with different terminology but the same notion of communication. Implicit
invocation is an early example that views publish/subscribe from a software
engineering perspective [164].

The other approach to domain-specific APIs is to utilize specialized im-
plementations that are not generic anymore but are instead tailored to the
specific domain. Signaling in telecom networks is like publish/subscribe, but
typically relies on specific assumptions about the hierarchical structure of the
network. Alarms in network management and SNMP traps similarly employ
an event-based style, yet alarm processing often is handled along a chain of
management stations. Each station may escalate event handling by forward-
ing the notification to the next station.® A pragmatic implementation can
exploit this domain knowledge to send alarm notifications just to the next
management station.

Domain specific APIs and implementations are good for optimizing the
specific application. Nevertheless, system engineers should not forget that, in
principle, they still follow an event-based style. Publishing an alarm notifi-
cation is inherently event-based; even if we know that it is delivered to only
one consumer, the producer should not rely on this structural information.
As pointed out in Chaps. 1 and 2, the benefits of loose coupling can only be
fully exploited if the event-based architectural style is clearly identified in the
participating components; mixing styles complicates changes. And one way to
clearly identify the style is to use the plain publish/subscribe API somewhere
in the application stack.

5.3 Using the API

Whatever the API looks like and whatever QoS it offers, the application pro-
grammer has to decide how to use the API. We look at patterns for using a
publish/subscribe API and instrumentation techniques that “automatically”
invoke the API, and we raise the questions whether all changes shall be pub-
lished and how long notifications are in the system. These issues go deep into
the software engineering aspects of event-driven systems, and we can only
touch upon them in this book.

5 We deliberately disregard the annotations commonly added in each step.

5.3 Using the API 141

interface interface
Subject Observer
attach(Observer) x| update()
F——————
detach(Observer)
notify()

72 A

ConcreteSubject ConcreteObserver
subject

Fig. 5.4. The structure of the observer pattern

5.3.1 Patterns and Idioms

Best practices in designing software are compiled in software patterns. The
observer pattern [161] or publish/subscribe pattern [57] are two examples that
summarize the idea of having a producer that sends notifications to registered
consumers (Fig. 5.4). Observers are consumers and they register their interest
in receiving notifications at specific subjects, which are the producers of data.
Each subject maintains its own list of registered observers. Whenever the
subject changes, it calls the observers stored in its list.

In both patterns, however, the producer itself stores the list of consumers,
and the consumers have to register at individual producers. The patterns
correspond to the callback interaction model described in Sect. 2.2. The char-
acteristic decoupling of event-based communication is very restricted in this
way. Nevertheless, this pattern is used extensively in contemporary systems,
ranging from graphical user interfaces to the listener and delegate concepts in
Java and C# (see below).

The Event Channel variant offers complete decoupling [57]. It essentially
employs the idea of the mediator and broker patterns to decouple produc-
ers and consumers, and it corresponds to the channel filtering described in
Sect. 2.1. The Event Notification pattern [327] extends the observer pattern.
Producers and consumers define different types of events they are going to pro-
duce and consume as part of their interface—but it also contains the direct
reference from consumer to producer.

On the subscriber side, the Reactor pattern [337] dispatches incoming no-
tifications to one or more handlers. One reactor thread waits on operating
system handles for indications of incoming notifications and calls appropri-
ate handlers to fetch and further process the data. The single-threaded dis-
patching limits concurrency, but other patterns (e.g., Leader/Followers [337])
mitigate this problem, leading up to the implementation of scalable Internet
services, which is detailed elsewhere [389, 392]. The Proactor pattern [337]

142 5 Engineering of Event-Based Systems

describes how to handle replies of asynchronous requests, but does not focus
on event-based systems.

The term implicit invocation [164] describes loose coupling in the context
of classic procedure calls. Unlike the above patterns, the invoked procedures
(i.e., the consumers) do not determine the calling procedures (i.e., the pro-
ducers) a priori. The invocation of a procedure is divided into three parts:
(i) a call on the caller’s side is bound at runtime to a set of procedures, in-
troducing a one-to-many indirection; (ii) the bound procedures are invoked
concurrently; and (iii) multiple replies are handled.

An alternative approach is to offer publish/subscribe functionality through
data structures, for which distributed asynchronous collections are one ex-
ample [126]. A publish/subscribe API is not explicitly visible, but it is ex-
ploited to realize a distributed shared memory with a generic collection API.
Distributed hash tables (DHT) follow essentially the same idea, but typi-
cally have a completely different implementation [316, 351]. They store data
in a distributed data structure and we can disseminate content in this way,
cf. [85, 374].

Next, we will take a look at how current programming languages incorpo-
rate asynchronous communication and invocation. A patternlike implemen-
tation specific to a programming language is called indexidiomidiom [57]. In
Java, listeners implement the observer pattern. The Swing GUI library uses
listeners, and the java.nio networking code offers selectors as needed in the
Reactor pattern. Both may serve as basis for a subscriber implementation.
However, standard Java does not provide any dedicated support for notifica-
tion delivery and handler methods. Eugster et al. [127] and Damm et al. [99]
added publish and subscribe keywords to the Java language and generated
standard Java code with a precompiler.

In C++, function pointers are a low-level primitive, e.g., for referring to
handler functions. The Qt library also relies on a precompiler to extend the
language with signals and slots [383]. These indicate notification sources and
destinations, respectively. Slots are explicitly connected to signal sources, fol-
lowing the observer pattern. The Boost library uses templates to build signals
and slots without a precompiler [4].

C+# introduces the delegates concept for event handling [395]. Delegates
are a type-safe way to treat methods as objects, which can be passed and
stored like any other object. The following snippet defines a delegate and
calls Method1 by invoking d1:

public delegate String SomeDelegate (int x, float y);
SomeDelegate dl = new SomeDelegate (Methodl);
String result = d1(42, 3.14);

Additionally, delegates support list operations of C#. We concatenate two
delegates like this:

SomeDelegate d2 = new SomeDelegate (Method2);
SomeDelegate d3 = d1 + d2;

5.3 Using the API 143

result = d3(42, 3.14);

which calls Methodl and then Method?2, returning the result of the latter invo-
cation. The event keyword defines an instance variable that stores delegates
and can only be invoked from within the defining class.

Functional constructs like Lambda expressions or closures [152], which are
available in programming languages like Smalltalk, Python, Ruby, or Perl,
can be exploited to achieve similar solutions [272].

5.3.2 Emitting Notifications

From the preceding discussion we know various mechanisms for accessing the
publish/subscribe API. The important questions from an engineering point of
view are now:

What are the appropriate data sources for detecting events?
What additional information is put into a notification?

Publish all changes of the identified data sources or only a subset?
Publish notifications immediately or defer publication?

Publish if there are no consumers?

Event Sources and Notification Content

In short, appropriate data sources for events are application specific and there
is no generic rule for selecting them. Event “detection” includes the case where
the producer modifies data and then publishes a change notification.

In most cases, however, events come from central parts of the software ar-
chitecture. That is, application engineers can identify relevant events within
the domain model and other high-level diagrams of the application. For ex-
ample, it should be easy to identify classes as possible event sources in UML
class diagrams [288].

There is currently no established way for identifying events and notifica-
tions in UML diagrams, but stereotypes and tagged values can be used infor-
mally to annotate classes as event sources. A stereotype is usually defined as
part of a UML profile, which extends standard UML, and it can be added to
classes, associations, and attributes. An <event-sources stereotype added to a
thermometer class identifies a source of temperature events (Fig. 5.5). And a
<notification> stereotype put on an association to a TempNotification class
defines the corresponding notification.

Code Instrumentation

Fortunately, old ideas from code instrumentation for system monitoring (e.g.,
[231]) and new ideas from aspect-oriented programming (AOP, [119]) can be
combined to generate code for publishing notifications. AOP separates code

144 5 Engineering of Event-Based Systems

Notification

I

TempNotification

t : Time

event-source
Thermometer

notification .
getTemp() : float temp : float

setTemp(float) publish

Fig. 5.5. Event and notification in a UML class diagram

that deals with different aspects of a program without destroying an underly-
ing object-oriented design. Common examples are business functionality ver-
sus logging or persistence—or eventing. At deployment the separated code is
woven together to accomplish the combined functions.

Once event sources and notifications are identified as shown above, we are
able to publish a TempNotification whenever the temperature changes on a
thermometer, for example, with the following AspectJ advice [226]:

public aspect TempNotificationAspect {
after(Temp t) : call (Thermometer.setTemp(float))
&& args(t) {
psService.publish (new TempNotification(t));
}
}

Of course, if publishing must be announce with advertisements, aspects can
be used for instrumenting constructors accordingly. With dynamic AOP, we
would be able to do such modifications even at runtime [45].

Change Encoding

The application developer has to decide how the observed changes are specified
in notifications. A notification can carry

a copy of the data item, e.g., a Thermometer object
the delta of the change, i.e., the difference to the previous publication
a copy of both the old and the new value

The first approach simply publishes the new data and consumers have to
store and compare old values if they are interested in the difference. Filters
cannot test relative changes as they are usually stateless. Sending only the dif-
ferences in the second approach minimizes message size, but makes it harder
for consumers to maintain the absolute value. They must reliably receive and
process the complete stream of notification to not run out of synch. And they

5.3 Using the API 145

must initialize themselves through another path to the data. The last alter-
native certainly contains all possible information, but increases the message
size considerably. In object-oriented settings, the developer additionally has
to choose whether to send the complete object or just the parts that changed.
In this case, we might end up with a combination of the first two points.

Adding context information to notifications

A notification should contain as much additional information as necessary to
enable consumers to correctly interpret the context of the event. Therefore
notifications typically contain more data than only the changed value. This
could be:

time of event occurrence

source identifier

sequence number

geographical context, e.g., room location of a thermometer data source
organizational context, e.g., security domain of detected intrusion

Unfortunately, the downside of loose coupling is that producers do not
know what additional information their possible consumers need. So far, we
cannot solve this conflict and notifications have to carry all information that
might be necessary—but we will discuss one solution in the next chapter.

Omit Some Changes

So far, a properly set up consumer gets every notification that matches its
subscription. This may lead to situations in which too many notifications are
delivered. We discuss stateful filters and rate control as countermeasure.

Consumers do not always need every single update. Consider, for instance,
a producer publishing temperature notifications with a precision of 0.1°C'
while consumers are only interested in changes of 1°C. Or the consumers are
interested in changes of a certain percentage only. Otherwise, one oscillating
event source might continuously send notifications triggering other parts of
an event-based application unnecessarily. Generally, if producers work with
higher data precision than their consumers, this not only wastes network and
processing resources, but may lead to instable systems.

This example already indicates that stateful filters are necessary to smooth
the data stream. Filters without state evaluate each notification independently
and they are inadequate for the mentioned examples. If a filter keeps the
last n values, it is able to compute average and deviation. Shah et al. [342]
uses coherency constraints to limit the maximal difference between observed
and actual values. The stateful filters are either deployed within the publish/
subscribe service and help reduce the network load, or they reside on the
clients. Discarding messages on the client side (client-side filtering) makes
sense in cases where filtering capacity of the publish/subscribe middleware is
the limiting factor.

146 5 Engineering of Event-Based Systems

The other obvious problem of too many notifications is that consumers get
overloaded and are unable to process all incoming notifications. If available,
we can use flow control in the underlying communication layer to throttle in-
coming load. For example, if consumers are connected to the broker network
via TCP connections, delivery is delayed as long as the client TCP buffers are
full. This handles short load peaks, but when the in-network queues get filled
messages must be discarded. Several approaches exist to do this intelligently.
As usual, filters and consumers can be prioritized to keep important messages.
In this way, all notifications, e.g., of type CriticalAlert, and all tempera-
ture notifications with values above a certain threshold are not discarded. We
get a completely different approach if notifications can be summarized, e.g.,
to deliver only the average of a sequence of temperature notifications.® The
specification in Chap. 2 currently forbids this behavior, because of the perfor-
mance impact on brokers and since interference with different subscriptions
is hard to predict. Yet, it might be a helpful extension for some application
scenarios.

In cases where the size of the message is the main load problem, notifica-
tion summaries are used to forward only a small portion of the data to the
consumer. The remaining part is stored in the network (e.g., in a database)
and the notification carries an identifier or uniform resource locator (URL) to
access this data instead.

Deferring Publication

It is not always appropriate to publish notifications directly when observing
the event. Consider a component that changes multiple data items, publishes
each of the changes, and then detects a failure that invalidates the compu-
tations. If the modifications include the addition of an item to a list, for
instance, it should not be on the list after the failure. In short, we need a
transaction [182] to make several publish calls succeed or fail in combina-
tion.

The Java Message Service (JMS) defines local transactions that support
exactly this behavior. The producer associates itself with a transaction and all
subsequently published notifications are held back until the producer confirms
the publication in a second step, i.e., commits the transaction. The transaction
is local because it cannot incorporate resources from other nodes. The data
distribution service (DDS) has such a function, too, cf. Sect. 9.1.4.

This simple support for deferring notifications is a building block for other,
more sophisticated services. If the local event broker commits the transaction
after successfully transmitting the messages to the border broker of the net-
work, the producer reliably handed over the data to the publish/subscribe
service. Such acknowledged handshakes are important for building reliable
distributed systems [239].

6 In signal processing such transformations are called downsampling.

5.4 Further Reading 147
Publication on Demand

Event-based systems often run at maximum load. Components operate on
all incoming data and produce new notifications without caring whether any
consumers are willing to accept them. Furthermore, complex components pos-
sibly create many different kinds of notifications on different levels of detail.
And we rarely need all state changes on any level of detail. This is situation
dependent and changes during the execution of the system. Consequently,
producers probably send many notifications for which no consumers exist.

The Elvin system has introduced quenching to reduce the unnecessary
load [341]. If the last consumer unsubscribes, the producer’s notifications
are discarded. It continues processing its own incoming notifications, but a
publish call has no effect. The producer may even be notified about the last
consumer leaving so that it can inactivate itself. If it unsubscribes in turn,
complete sequences of producers/consumers stop.

Once a new subscription enters the system, the inactive producers are
reactivated (recursively) to continue normal operation. This is essentially an
open field of future work.

5.4 Further Reading

The discussion of engineering requirements can only be preliminary, showing
an initial approach to understanding the problems inherent to the design of
loosely coupled systems. In general, the engineering of event-based systems
is possibly the field that can do most for the broad adoption of event-based
systems, but which is, at the same time, the one understood least. Essentially,
we hardly know the event-based analogs of object-oriented design [378§], trans-
actions [237], and security [290], to name just a few well-known concepts from
the “classic” world of computing.

The discussion of publish/subscribe APIs can be supplemented with a
review of existing standards, like CORBA Notification Service, JMS, DDS,
etc., which are detailed in Sect. 9.1. Chapter 9 also includes reviews of selected
notifications services. Alternatives to the plain publish/subscribe API can be
found in the area of domain-specific languages (DSLs, [129, 379]). They are
an interesting starting point for elaborating new APIs.

Best practices for using publish/subscribe can be found in the pattern
community, e.g., [56, 57, 161, 337] and the respective conferences and journals,
e.g., EuroPLoP, OOPSLA, etc.

Central engineering questions were touched when we discussed selecting
appropriate data sources, notification content, and when to publish the data.
These are issues of data and control flow modeling, i.e., software design. There
is little experience on methodologies for designing events or to what extent
object-oriented methods are suited in the context of event-based systems. A
good starting point to follow up on this topic is the book of Luckham [242],

148 5 Engineering of Event-Based Systems

which focuses on complex event processing. Another good complement are
more formal treatments like [396].

We shortly presented the idea of quenching producers when no consumers
are active. This idea can be generalized to sequences or networks of producers/
consumers that are turned on and off. They have their own requirements on
shutdown timeouts and restart times.

Furthermore, if we do not restrict ourselves to a predefined filter model,
we can generalize filters as remotely executed code. Eager handlers [411] ship
event handling code toward the sources to reduce network usage and respon-
siveness. The idea of exploiting mobile code in distributed “incident” handling
was also considered in tuple spaces [61, 160], agent systems [62, 175, 393], and
active networks [373].

Scoping

So far, the presented simple event systems merely provide the functionality
to distribute notifications, but still fails to offer any support for coping with
the complexities of designing and engineering distributed systems. The main
deficiency is the missing control of the interaction in the system, which is only
given implicitly. The resulting problems were recognized in different contexts,
and the means to address the missing control are centered around encapsula-
tion and information hiding, principal engineering techniques that are relevant
here, too.

This chapter investigates visibility as central abstraction to cope with engi-
neering complexity and introduces a scoping concept for event-based systems.
As an design and engineering tool, scopes offer a module construct to struc-
ture applications and compose new functionality. Second, scopes reify aspects
of event communication and thus make them adaptable within the composed
modules, e.g., access to underlying communication technologies, delivery to
module members, forwarding of events out of the module scope, transforming
heterogeneous data sources, etc.

The first section analyzes the notion of visibility in event-based systems
and relates it to the requirements defined in Sect. 5.1. The scoping concept
is defined in Sect. 6.2, including a formal specification of scoped event-based
systems that refines the specification of simple systems given in the previous
chapter. Scopes reintroduce control on communication, which was drawn out
of the components in event-based interaction, without impairing the benefits
of loose coupling. The concept is extended in Sects. 6.3 and 6.4 to include
interfaces and mappings; the former further refine visibility control, the lat-
ter generalize interfaces to transform notifications at scope boundaries, coping
with heterogeneous data models. While communication within scopes is by de-
fault like in traditional publish/subscribe systems, the transmission policies
presented in Sect. 6.5 adapt the semantics of notification dissemination within
scopes. In Sect. 6.6 we sketch a development process for scopes and present
a declarative scope language for defining and manipulating scope graphs. Fi-
nally, we investigate implementation strategies for scopes in Sect. 6.7 and dis-

150 6 Scoping

cuss combining these They open the publish/subscribe service implementation
and allow for the integration of a wide variety of communication techniques.

6.1 Controlling Cooperation

The visibility of transmitted data is of little concern in request/reply systems
where destinations are explicitly addressed. In event-based systems, however,
the visibility of notifications complements subscription techniques, for it deter-
mines which subscriptions have to be evaluated at all. Surprisingly, visibility
was rarely considered so far.

6.1.1 Implicit Coordination and Visibility

The problems of current event-based systems, which are described in the pre-
vious chapter, stem from the loss of control of interaction. This control has
been relinquished deliberately in favor of the loose coupling. It is withdrawn
from the components, replacing explicit addressing with the matching of noti-
fications to subscriptions. The explicit control of interaction given in request/
reply approaches is replaced by the implicit interaction in event-based sys-
tems.

The implicit interaction is characterized by an indirection of communi-
cation. Producers make notifications available and consumers select with the
help of subscriptions. This indirection gives room for a concept complementary
to the notification selection done by consumers. The wvisibility of a notification
limits the set of consumers that may pick this notification. If a notification is
not visible to a consumer, its subscriptions need not be tested at all. Notifica-
tions and subscriptions are unaltered, and matching takes place as before but
under the constraints of visibility limitations. Clearly, visibility influences the
interaction of components; it can even be seen as a means to govern implicit
coordination.

The implicit coordination® of the components offers the desired loose cou-
pling but makes the overall functionality an implicit result of all the partici-
pating components. However, extracting control from application components
must not necessarily mean to have it nowhere. In fact, the requirements posed
in Sect. 5.1 demand some form of control on event-based communication. Vis-
ibility may offer such a control of notification dissemination.

The implications are twofold. First, visibility is an important factor of
implicit coordination, and second, it promises to be an important abstraction
in event-based systems. While subscriptions are related to the function of
individual consumers, visibility governs the interaction in the system. Hence,
the visibility of notifications is essential for the overall function of an event-
based system.

! Explicit and implicit coordination are also termed objective and subjective coor-
dination in coordination theory [326].

6.1 Controlling Cooperation 151
6.1.2 Explicit Control of Visibility

The key to exploiting visibility is to regard it as a first-class citizen. While
existing work has addressed some facets of visibility, it was never taken as a
fundamental concept in event-based systems. Nevertheless, it will prove to be
the basis for both controlling and extending dissemination functionality.

Explicit visibility control constrains the areas where loose coupling and
implicit coordination are applied. It makes bundles of implicitly interacting
components explicit, and these bundles reify the structure of applications.
They serve as a tool for designing and programming event-based systems,
because once the interaction is localized at well-defined points, additional
mechanisms can be applied to control the interaction within and between
definite parts of the system.?

But how is visibility actually represented in an event-based system? Where
is it exposed? Any form of reintegrating control into the components counter-
acts the event-based paradigm. Whenever notifications are annotated to reach
a specific set of consumers, external dependencies are encoded in application
components, which defeats the benefits of the event paradigm. Visibility of
notifications is not a matter of producers because it concerns interaction and
communication, but not the computation within the component. Thus, the
necessary control must be exerted outside of the components themselves.

6.1.3 The Role of Administrators

When designing and engineering event-based systems, only the roles of pro-
ducers and of consumers were considered so far. They represent the tasks
of designing and programming individual application components. The self-
focus of event-based components is mirrored in these roles. They concentrate
on internal computation alone and disregard interaction. Due to the implicit
coordination, responsibility for the overall functionality is not assigned to any
specific role. It is delegated to producers and consumers, but with no adequate
support. The preceding discussion corroborates that an additional role in the
system to handle visibility is needed.

The obvious implication is to introduce the role of an administrator which
is responsible for orchestrating components in an event-based system. An
administrator may be human, but it can also be comprised of programs and
rules that maintain some system properties (cf. autonomic computing).

The main objective of this role is to support component assembling and
the management of their interrelationships. This role is employed to associate
visibility control with a distinguished role different from producers and con-
sumers. It is similar to those identified in component-based development or in
reference architectures of open systems [206]. In terms of coordination theory,
administrators are a means of objective coordination providing an exogenous

2 Technically, this is the essence of the scope concept presented in the following.

152 6 Scoping

extension of event-based interaction [36], which separates the shaping of in-
teraction from, and generally makes it invisible to, the computation in the
base entities.

Effective means to control visibility in event-based systems are necessary
to support the administrator’s role, and with respect to the requirements given
in Sect. 5.1, such a control is a prerequisite to solving the underlying problems
of current event systems. The demanded bundling of related components is
directly addressed by the visibility of notifications. Heterogeneity issues can
only be solved if communication is intercepted and converted, which requires
a limited visibility in the first place. The same holds for the customization and
configuration of the event service itself. With limited visibility the interaction
within certain system parts may receive a dedicated service tailored to its
needs, whereas interaction with the outside is handled differently, like the
case of heterogeneous data models.

Unfortunately, current work disregards this important role and does not
provide any appropriate support. The scoping concept presented in the next
section, however, describes visibility in event-based systems and offers the
explicit control needed by administrators.

6.2 Event-Based Systems With Scopes

This section formally introduces the notion of scoping in event-based sys-
tems.? It extends the specification of the simple event system presented in
Sect. 2.5.2 and is the basis for further extensions and reasoning about scoping
functionality.

6.2.1 Visibility and Scopes

The notion of scoping in event-based systems is introduced to realize the
visibility of notifications. A scope bundles a set of producers and consumers
and limits the visibility of notifications to the enclosed components. The event-
based style of matching notifications and subscriptions is still used within the
scope, whereas the interaction of this bundle with the outside is no longer
implicit; it is prohibited at first. The notion of scopes serves two purposes.
The term is used to describe the visibility of notifications and to name the
entity that defines visibility.*

Scopes have interfaces to regulate the exchange of notification with the re-
maining system. Scopes forward external notifications to their members and
republish internal ones to the outside if they match the output and input
interfaces of the scope. In addition, scopes can recursively be members of

3 see also [135, 146].
4 In fact, in most cases we refer to the entity, which implies the scope of notifications
in the former meaning.

6.2 Event-Based Systems With Scopes 153

higher level scopes and in this way offer a powerful structuring mechanism.
Scopes thus act as components in an event-based system. They publish and
consume notifications and can be deemed equivalent to the simple base com-
ponents considered so far. So, the system consists of simple components and
of complex components that bundle other simple or complex components.

Component l<t—— Component
Interface

Transmission
Policy

Scope

SimpleComponent | = Security

Policy

SessionScope
=t Mappings

Fig. 6.1. A metamodel of scopes

The concept of scopes as illustrated in Fig. 6.1 includes further features
that will be described in the course of this chapter. Transmission policies can
be applied between scopes and within a scope to adapt notification forwarding,
allowing for tailoring notification delivery semantics to application needs in a
restricted part of the system. Furthermore, event mappings at scope bound-
aries generalize scope interfaces and are capable of transforming between dif-
ferent data models of notifications. Security policies are a straightforward way
to control the access to the scoping structure.

6.2.2 Specification

The notion of components is extended to distinguish simple and complex com-
ponents. The set of all simple components € includes any possible software
entity that accesses the notification service API. The set of all complex com-
ponents 8 describes all possible scopes. The set of all components X is defined
to be the union of the disjoint sets of simple components € and complex
components 8§, KX = CUS8.

A scope bundles a set of components, and a component can be a member of
multiple scopes. To denote the relationship between components and scopes,
a graph of scopes is defined.

Definition 6.1 (scope graph). Let X = CUS8 be the set of all simple and
complex components. A scope graph is an acyclic directed graph G = (C,E).
The graph consist of a set of components C C K as nodes and a relation
E C X x X as edges between the nodes so that (C1,Cy) € E= Cy € 8.

154 6 Scoping

=== Scope

-------- Simple component

Fig. 6.2. An exemplary scope graph

A scope graph denotes the scope-component relationship. An edge (C,.S)
from node C to node S indicates that C is a component of scope S.> The stated
property (Cy,C2) € E = Cy € § ensures that a simple component cannot be
a superscope of any node in G. C'is a subscope if C' € 8. Conversely, the scope
of a component C' is any S such that (C,S) € E. S is also called superscope
of C' to emphasize the relationship between S and C, e.g., in cases where C' is
a scope itself. In Fig. 6.2, X is a component of S, Y is a component of both
S and T, and T is a component/subscope of R and superscope of Y and Z.

The edges of the scope graph describe a partial order < on C, where
Cy < Cy iff (C1,C9) € E vV C7 = Cy. Avoiding the reflexivity of <, the scope-
component relation is described by <1, where C1 <1 Cy < (C1,C2) € E. The
transitive closure of < is denoted by <;> and B>are defined accordingly. In the
example of Fig. 6.2, Y < T and Y R hold. According to the partial order,
the simple components are the minimal elements and those scopes having no
superscopes are the maximal elements of C. Additionally, the following terms
are borrowed from graph theory. T is a parent of Y, and Y is a child of T. Y
is a sibling of Z, and vice versa, i.e., they have the same parent.

Based on these definitions, visibility can be defined formally. In the first
instance, the visibility of components is defined, which implies a visibility of
notifications.® Informally, component X is visible to Y iff X and ¥ “share” a
common superscope.

Definition 6.2 (visibility of components). The visibility of components
is a reflexive, symmetric relation v over X, also written as v(X,Y), and is
recursively defined as:

5 Edges could have been defined in the inverse direction to emphasize that compo-
nents do not need to know their scopes and how they are aggregated. However,
the presented notation follows the one originally published in Fiege et al. [140].

6 The more general visibility of individual notifications is discussed in Sect. 6.3.1.

6.2 Event-Based Systems With Scopes 155

v(X,)Y)e X =Y
VoY, X)
Vo(X'Y) with X't> X
32 XAZANYQZ

In the graph of Fig. 6.2, for example, v(X,Y) and v(Y,U) hold, but not
v(X, Z).

Using this visibility, the specification of simple event-based systems given
in Def. 2.5 of Sect. 2.5 can be refined. For presentation purposes, the spec-
ification is at first restricted to static scopes, i.e., the scope hierarchy and
membership cannot change once the first notification has been published.
This restriction is relaxed later.

Definition 6.3 (scoped event system). A scoped event system ES® is a
system that exhibits only traces satisfying the following requirements:

o (Safety)
a [notify(Y, n) = [OO-notify(Y,n)]
A[3X.n € Px A v(X,Y)]
A[BF € Sy.ne N(F)]|

e (Liveness)
a [sub(Y, F)=
(<> [DU(X,Y) = D(pub(X7 n)An € N(F) = Snotify(Y, n))])
v (Ounsub(Y, F))]

Definition 6.3 differs only slightly from Def. 2.5 in Sect. 2.5. The safety
requirement contains an additional conjunct v(X,Y’). This means that in ad-
dition to the previous conditions, the producer and the subscriber must also
be visible to each other when a notification is delivered. The liveness require-
ment has an additional precondition Ov(X,Y") that can be understood in the
following way: If component Y subscribes to F', then there is a future point in
the trace such that if X remains visible to Y every publishing of a matching
notification will lead to its delivery at Y. The always operator requires the
scope graph to be static.

Note that Def. 6.3 is a generalization of Def. 2.5. A simple event system can
be viewed as a system in which all components belong to the same “global”
scope. This implies a “global visibility,” i.e., v(X,Y") holds for all pairs of com-
ponents (X,Y) and can be replaced by the logical value true in the formulas
of Def. 6.3, resulting in Def. 2.5.

156 6 Scoping
6.2.3 Notification Dissemination

According to the previous definition, a published notification is delivered to
all visible consumers that have a matching subscription. In order to clarify the
impact of the scoping structure and the dissemination of notifications through
the scope graph, the visibility of notifications is analyzed in the following.

The visibility of a notification n to a component C' determines C’s ability
to deliver this notification at all, and is denoted by ~> C'. Visibility is a test
that precedes any subscription matching. Subscriptions decide in a second
step whether to deliver a visible notification or not. The visibility of notifica-
tions in the scope graph is directly related to the visibility of components, of
course. The visibility of a notification n, which is published by X, to a specific
component Y is denoted by X ~& Y, where

pub(X,n) Av(X,Y) = X LY.

A published notification is made visible in the scopes the producer belongs
to. Y A3 S in Fig. 6.3a, or simply ~> S to denote the visibility alone if
the specific producer is not important. This rule is applied recursively to
make notifications visible in all further superscopes; ¥ ~> T and Y ~& T".
On the other hand, if a notification is visible within a scope S, ~> S, it is
visible to all its children. Recursively applying this rule yields in Fig. 6.3b
X4 T=X318= X Y. Note that edge direction indicates scope
membership but notifications can travel in both directions. In summary,
notification dissemination is governed by two rules, a publishing policy PP
and a delivery policy DP:

PP: XU SAX<S<aT=XAT (6.1)
DP : STASAT = 5 8 (6.2)

Consider Fig. 6.3. A notification n; published by Y is forwarded to S and
to all children of S, and from S to T and T” and to all of their children, i.e., to
all siblings of S. ny is an internal notification of S, T, and T’, which means it
is visible to their children. X A3 § is at first an external notification to S and
is made internal by the delivery policy of Eq. (6.2). A notification forwarded
in the direction of an edge, e.g., (S,T) € E, is an outgoing notification with
respect to S; it leaves the scope of S. Conversely, a notification that travels
against an edge is an incoming notification, e.g., from T to X in Fig. 6.3a or
from T to S in Fig. 6.3b; in the latter case ny is external to S.

The semantics of notification dissemination is that incoming notifications
are forwarded to all children of a scope, and outgoing notifications are for-
warded to superscopes and to all siblings. Note that incoming notifications
are not forwarded to superscopes; nsy is not visible to 7" in Fig. 6.3 as X is
not visible to 7”. This default transmission of notification dissemination is
the consistent extension of the semantics of simple event systems. The intu-
itive meaning of scope membership corresponds to this definition. That is, (i)

6.2 Event-Based Systems With Scopes 157

(a) outgoing (b) incoming

Fig. 6.3. Outgoing and incoming notifications

siblings are eligible consumers as they are in the same scope, (ii) being a sub-
scope also denotes a part-of relationship, which makes it obvious that internal
notifications are also forwarded to superscopes, and (iii) external notifications
are made visible to members of complex components.

Visibility is a set inclusion test so far, which disregards the way a notifica-
tion becomes visible. In practice, however, the paths of dissemination in the
scope graph are of great importance for any analysis of system behavior.

Definition 6.4. A delivery path p between two components X and Y is a
sequence of components p = (C;) = (X,Cs,...,Cn_1,Y) for which holds:

1. p is an undirected path in the graph of scopes.
2. p obeys the visibility v in that v(C;, C;) holds for all1 <i < j <n.

Delivery paths are not directed, which means that either (C;,C;y1) € E or
(Cit1,C;) € E. The dissemination in the scope graph is described by the
following

Lemma 6.1. Every delivery path p = (Cy,...,Cy) can be subdivided into two,
possibly empty, parts: an upward path (Ci,...,C;) where (Cy,Cit1)icj € E,
i.e., C;<1Ciy1, and a downward path (Cj,...,Cy) where (Cit1,Ci)i>j € E.

Proof. Show that p turns at most once. A delivery path p = (C1,...,Cy)
connects two components C; and C, that are visible, v(Cy, Cy,). If C1<C,,,
the downward path is empty and C,, is reached by forwarding notifications
to superscopes according to Eq. (6.1). If Ci5> C,,, the upward path is empty
and C,, is reached by propagating visible notifications to children according
to Eq. (6.2). Otherwise, the path turns at least once and two cases can be
distinguished: p starts with an upward or a downward edge.

Assume p starts with a downward edge, Cy > Cy. Select d such that 1 <
d < nand C;>> Ci4q for all ¢ < d. If d # n, the downward path is (Cy,...,Cq)
and Cy<1 Cyy1. However, Eq. (6.1) allows this upward delivery only if the
notifications originated in Cy. This is not the case and by contradiction the
downward path ends at Cy = C),.

158 6 Scoping

Assume p starts with an upward edge, C7 <0 Cs. In the same way p starts
with an upward path of length u < n such that C;<1C; 4 for all i < u. If u # n,
Cy> Cyq1. However, the path p’ = (C,, ..., C},) starts with a downward edge
and from the preceding arguments follow that p’ consists only of downward
edges.

If p starts downwards, C15> C,,. If p starts upwards, either C;<1C, or the
path turns once downwards at a Cj, proving the lemma. O

6.2.4 Duplicate Notifications

Between any two nodes of the directed acyclic scope graph there may ex-
ist zero, one, or more different delivery paths—the scope graph is not a tree
(Fig. 6.4). This may lead to duplicate notifications in certain implementations.
The specification of scoped event systems does not consider delivery paths but
demands notifications to be delivered at most once. So, concrete systems may
violate the specification. However, there are two reasons for not eliminating
duplicates in the scope model itself. First, duplicates generation and handling
is highly implementation dependent. And second, in some applications deliv-
ery along different paths leads to different semantics of notifications so that
they are not really duplicates.

Fig. 6.4. Two ways of generating duplicates

The utilized implementation of scoping determines whether the conceptual
replication really results in duplicate deliveries. A broad range of possible im-
plementations of scoping exist,” and in some of them different delivery paths
have no effect. For example, an explicit, externally available scope graph data
structure can be used in a centralized implementation to infer all destinations
before delivery is commenced. Furthermore, available countermeasures for du-
plicate detection are also highly dependent on the underlying implementation
technique.

From an application point of view, there are several reasons for not elimi-
nating duplicates in the scoped event system itself. First of all, in some appli-
cations notification processing is idempotent so that duplicate delivery does

7 Please refer to Sect. 6.7.1 for an overview.

6.2 Event-Based Systems With Scopes 159

not influence the function of an application. On the other hand, if duplicates
are not wanted, it is often easier to handle the elimination in the application
layer, or at least as an additional layer on top of simple notification dissem-
ination. In fact, the scope boundaries themselves offer a platform to install
such logic.

The most interesting point, however, is that on application level different
delivery paths may connote different notification semantics. Consider the left
example of Fig. 6.4, where two different delivery paths connect Cy and Cs, and
assume that C; ~> Cy results in two notifications n’ and n” being forwarded
by T and U, respectively. Are the two notifications really equal? Are these
notifications really duplicates if they originate, at least from the consumer’s
point of view, from different components 1" and U? Within S, these two noti-
fications were published from different producers in the first place. The base
event notified with n’ may have a different meaning in the context of T than
the event notified with n” in U. Scope interfaces and mappings presented in
the next section will enable administrators to control notification forwarding
in a finer way.

In summary, there is no generic solution to handle duplicate notifications
in a scoped event-based system. The many available choices of possible imple-
mentation techniques offer all sorts of corresponding duplicate handling ca-
pabilities, which are too divergent to be included in the general scope model.
Note that duplicate notifications are forbidden in the specification of simple
event systems but are possible in scoped systems. Different delivery paths
conceptually deliver different notifications, even if triggered by the same base
event.

6.2.5 Dynamic Scopes

The above definition assumed a static scope hierarchy to provide a basic def-
inition that can be adapted and refined based on further requirements. In
the case of dynamic scopes, four additional operations have to be offered:
cscope(S) and dscope(S) to create and destroy a scope S, jscope(X,S) and
Iscope(X, S) to join X to scope S or leave it, respectively. These operations are
typically available to the administrator role only, for individual components
do not necessarily need to know about their scope membership.

A system with static scopes can then be simulated by having the admin-
istrator set up the scope hierarchy with the appropriate operations before
clients start. However, dynamic scopes are not directly covered by the above
specification. A changing scope graph may conflict with the safety condition,
which is ambiguous in dynamic asynchronous system models. A notification
n is only allowed to be delivered to Y if the producer X is visible to Y. But
because delivery cannot be instantaneous, X may leave the scope in which
n was published before it is delivered, and so v(X,Y) may hold at time of
publication but not on delivery, rendering the specification ambiguous. The
specification does not cover systems that allow traces of the form

160 6 Scoping
o4 = pub(X,n),...,lscope(X,S),..., notify(Y,n),

where scope graph reconfigurations and notification publication and delivery
are mixed.

Several approaches to this problem exist. First of all, the assumed system
model may require delivery to be instantaneous so that notification dissem-
ination and scope reconfiguration cannot interleave. Any form of centralized
implementation is able to achieve this guarantee. A second approach is to
allow producers to leave a scope only if all their published notifications have
been delivered, preventing the interleaving in o4 so that the resulting traces
are equivalent to the static case with respect to the safety condition. In effect,
this results in a type of synchronization similar to that of a global transaction:
scope joins and scope leaves must be reliably acknowledged by all other brokers
before the action is performed. Obviously, this type of dynamic scope seman-
tics is unfavorable since it incurs a high synchronization overhead. However,
scope reconfigurations may be so infrequent in practice that this is tolerable
for medium-size systems. At least these semantics have the advantage that
the safety part of Def. 6.3 can be used in the simple unmodified form. Inter-
estingly, this restriction resembles an object-oriented programming approach
where new subclasses and new methods are readily added, but modifying the
inheritance hierarchy is complicated.

A different approach would be to not hide scope graph changes but to
explicitly consider them in the specification. For the safety condition the vis-
ibility restriction v(X,Y’) would have to reflect time delays in notification
delivery. On the other hand, the liveness part of Def. 6.3 does not consider
dynamic scopes at all. By including Ov(X,Y’) in its precondition, only static
graphs can fulfill liveness in the current definition. This specification is inten-
tionally restricted because it is intended to specify only basic functionality. It
currently covers a broad range of system models, and it can be refined (safety)
and extended (liveness) to incorporate dynamic scopes in more specific system
models. So, currently the following trace complies to the specification:

o5 = sub(Y, F), jscope(X, s), jscope(Y, s), pub(X,n1), Iscope(Y, s), ...,
jscope (Y, s), pub(X,n;), lscope(Y, s), ...

In o5 components X and Y start off in the same scope and X publishes
an “infinite” sequence of notifications n;. However, since Y leaves the scope
again after every publish operation, there is no point in time from which on
X and Y remain in the same scope. Therefore, delivery is not required and o3
satisfies the liveness requirement. Of course, without knowing future traces a
notification service has to try to deliver any pending notifications.

So, dynamic changes of a scope graph can be supported if changes and
publications are serialized, or the safety condition has to be relaxed to cover
only durations in which the visibility of producer and consumer remain un-
changed.

6.2 Event-Based Systems With Scopes 161
6.2.6 Attributes and Abstract Scopes

The layout of a scope graph carries information on system structure. Anno-
tations of scopes allow the administrator to associate further information on
system operation, which will be done in the next subsections. Or annotations
are simply used to add application-specific data into the structure. Techni-
cally, the notion of scope attributes is introduced. Attributes associate data
to a specific scope according to a simple name/value pair model.

For example, a scope S is named and stores its time of creation in two
attributes:

S.name = “ItsMe” S.creation = “2004-12-20 12:22”

How attributes are set and used is described in Sect. 6.6.

Attributes may carry information about system configuration and man-
agement. Section 6.7.1 introduces alternative implementation approaches, and
attributes can store such annotations that refine the model expressed in the
scope graph. However, these kinds of information are typically valid for more
than one component of the graph. An obvious way to assign this information
to a group of components is to use a scope, which bundles the components
in question, just as a container carrying configuration data. This scope would
be a special type of scope, termed abstract scope.

Abstract scopes group components, but there is no communication within.
They are created for descriptive purposes and not to control communication
of their members. They are used for system management (cf. Sect. 6.6).

6.2.7 A Correct Implementation

The following presents a possible implementation of Def. 6.3 a