

Distributed Event-Based Systems

Gero Mühl · Ludger Fiege
Peter Pietzuch

Distributed
Event-Based
Systems

With 158 Figures and 17 Tables

123

Authors

Gero Mühl

Fakultät IV Elekrotechnik und Informatik
Technische Universität Berlin
Einsteinufer 17
10587 Berlin, Germany
g muehl@acm.org

Peter Pietzuch

Div. of Engineering and Applied Sciences
Harvard University
33 Oxford Street
Cambridge, MA 02138, USA
prp@eecs.harvard.edu

Ludger Fiege

Siemens AG
CT SE2
Otto-Hahn-Ring 6
81730 München, Germany
ludger.fiege@siemens.com

Library of Congress Control Number: 2006927041

ACM Computing Classification (1998): C.2.4, C.3, D.2.11, D.2.12

ISBN-10 3-540-32651-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32651-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors using a Springer TEX macro package
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

For Regina.
— Gero

For Biggi,
Franzi, Flori, and Johanna.

— Ludger

For Bohdan Bańkowski.
— Peter

Preface

The field of event-based systems is surprisingly broad. In many scientific com-
munities, technical talks, commercial products, and industrial projects people
think about asynchronous computations and messaging, scalability and main-
tainability, stepwise evolution and loose coupling. Most likely, these people
are discussing event-based systems, even if they use other terms.

When we began investigating event-based systems some years ago, we
were surprised to see that eventing was scattered among many disciplines
of computer science. There were no workshops or conferences dedicated to
this topic, for example, although many aspects of event-based systems cannot
be assessed from a database, network, or software engineering perspective
alone. In the same sense, commercially available products that could help
solving problems of event-based architectures are often bundled and marketed
in solutions of a specific domain.

In order to channel some of the attention, the Distributed Event-Based
Systems (DEBS) workshop series was created. It attracts people from dis-
tributed computing, database, and software engineering audiences, and it
demonstrates the wide variety of facets event-based systems have. After hav-
ing heard about and being engaged in interesting discussions about allegedly
“academic” and “real-world” problems, in investigating many findings, and
after creating many solutions in both academic and industrial environments,
we decided to write this book to present both the current state-of-the-art and
its base concepts.

The book takes a distributed system’s point of view. This is, of course,
partly due to our own background, but more importantly we believe a solid
understanding of distributed event-based systems is a good starting point for
building modern computing systems. It lets you integrate sophisticated filter
and data processing capabilities as well as new network topologies and routing
algorithms.

VIII Preface

Acknowlegements

We want to thank our colleagues, coauthors, and friends who discussed and
developed most of the ideas presented in this book with us. Without being
able to name all, we want to thank Jean M. Bacon, Alejandro P. Buchmann,
Frank Buschmann, Mariano Cilia, Felix C. Freiling, Rachid Gerraoui, Michael
A. Jaeger, Arno Jacobsen, Mira Mezini, Ken Moody, Joe Sventek, Andreas
Ulbrich, Andreas Zeidler, and many others we worked and talked with in
universities and companies, at conferences, and via email. The good thing
about writing a book is that you gain so many new insights into already
known topics.

We also want to thank Ralf Gerstner from Springer Verlag for his patience
and continuous support, and the reviewers and proofreaders who helped us
improve the book.

Last but not least, we are grateful to our families and friends for their
patience and understanding for yet another evening being occupied with this
“nonsense”. Thanks.

Berlin, Germany Gero Mühl
Munich, Germany Ludger Fiege
Cambridge, MA, USA Peter Pietzuch

May 2006

Contents

1 Introduction . 1
1.1 Networked Computing . 1
1.2 Middleware . 2
1.3 Event-Based Systems . 3
1.4 Application Scenarios . 4

1.4.1 Information Dissemination . 4
1.4.2 Network Monitoring . 4
1.4.3 Enterprise Application Integration 5
1.4.4 Mobile Systems . 6
1.4.5 Ubiquitous systems . 6

1.5 Putting Event-Based Systems Into Context 7
1.6 From Centralized to Internet-Scale Event Systems 8
1.7 Structure of the Book . 8

2 Basics . 11
2.1 Terminology . 11

2.1.1 Events and Notifications . 11
2.1.2 Producers and Consumers . 12
2.1.3 Subscriptions and Filters . 13
2.1.4 Event Notification Service . 13

2.2 Models of Interaction . 14
2.2.1 Request/Reply . 15
2.2.2 Anonymous Request/Reply . 15
2.2.3 Callback . 16
2.2.4 Event-Based . 16
2.2.5 Comparison . 17
2.2.6 Interaction vs. Implementation . 17

2.3 Notification Filtering Mechanisms . 19
2.3.1 Channels . 19
2.3.2 Subject-Based Filtering . 19
2.3.3 Type-Based Filtering . 19

X Contents

2.3.4 Content-Based Filtering . 20
2.4 A Model Distributed Notification Service 20

2.4.1 System Model . 20
2.4.2 Architecture . 21
2.4.3 Distributed Notification Routing . 22

2.5 Specification of Event Systems . 23
2.5.1 Formal Background . 24
2.5.2 A Simple Event System . 26
2.5.3 A Simple Event System With Ordering Requirements . . 30
2.5.4 Simple Event System With Advertisements 31

2.6 Further Reading . 33

3 Content-Based Models and Matching . 35
3.1 Content-Based Data and Filter Models . 35

3.1.1 Tuples . 35
3.1.2 Structured Records . 36
3.1.3 Semistructured Records . 52
3.1.4 Objects . 56

3.2 Matching Algorithms . 57
3.2.1 Brute Force . 59
3.2.2 Counting Algorithm . 59
3.2.3 Decision Trees . 60
3.2.4 Binary Decision Diagrams . 61
3.2.5 Efficient XML Matching . 63

3.3 Further Reading . 64

4 Distributed Notification Routing . 67
4.1 System Model . 67
4.2 Routing Algorithm Framework . 69

4.2.1 Atomic Steps of the Implementation 69
4.2.2 Notification Forwarding and Delivery 72
4.2.3 Avoidance of Duplicate and Spurious Notifications 73
4.2.4 Routing Table Updates . 73

4.3 Valid and Monotone Valid Routing Algorithms 74
4.3.1 Valid Routing Algorithms . 74
4.3.2 Monotone Valid Routing Algorithms 76

4.4 Valid Framework Instantiations . 77
4.5 Content-Based Routing Algorithms . 80

4.5.1 Flooding . 81
4.5.2 Simple Routing . 82
4.5.3 Identity-Based Routing . 85
4.5.4 Covering-Based Routing . 91
4.5.5 Merging-Based Routing . 98
4.5.6 Discussion . 104

4.6 Extensions of the Basic Routing Framework 107

Contents XI

4.6.1 Routing With Advertisements . 107
4.6.2 Hierarchical Routing Algorithms . 112
4.6.3 Rendezvous-Based Routing . 115
4.6.4 Topology Changes . 117
4.6.5 Joining and Leaving Clients . 119
4.6.6 Routing in Cyclic Topologies . 120
4.6.7 Exploiting IP Multicast . 122
4.6.8 Topology Maintenance . 123

4.7 Further Reading . 125

5 Engineering of Event-Based Systems . 129
5.1 Engineering Requirements . 129

5.1.1 Application Examples . 130
5.1.2 Requirements . 132
5.1.3 Existing Support . 136

5.2 Accessing Publish/Subscribe Functionality 137
5.2.1 Generic APIs . 137
5.2.2 Domain-Specific APIs . 139

5.3 Using the API . 140
5.3.1 Patterns and Idioms . 141
5.3.2 Emitting Notifications . 143

5.4 Further Reading . 147

6 Scoping . 149
6.1 Controlling Cooperation . 150

6.1.1 Implicit Coordination and Visibility 150
6.1.2 Explicit Control of Visibility . 151
6.1.3 The Role of Administrators . 151

6.2 Event-Based Systems With Scopes . 152
6.2.1 Visibility and Scopes . 152
6.2.2 Specification . 153
6.2.3 Notification Dissemination . 156
6.2.4 Duplicate Notifications . 158
6.2.5 Dynamic Scopes . 159
6.2.6 Attributes and Abstract Scopes . 161
6.2.7 A Correct Implementation . 161

6.3 Event-Based Components . 164
6.3.1 Component Interfaces . 164
6.3.2 Scope Interfaces . 164
6.3.3 Event-Based Components . 167
6.3.4 Example . 167

6.4 Notification Mappings . 169
6.4.1 Specification . 169
6.4.2 A Correct Implementation . 173
6.4.3 Example . 176

XII Contents

6.5 Transmission Policies . 176
6.5.1 Publishing Policy . 177
6.5.2 Delivery Policy . 179
6.5.3 Traverse Policy . 180
6.5.4 Influencing Notification Dissemination 181

6.6 Engineering With Scopes . 182
6.6.1 Development Process . 182
6.6.2 Scope Graph Handling . 183
6.6.3 Scope Graph Language . 187

6.7 Implementation Strategies for Scoping . 196
6.7.1 Scope Architectures . 197
6.7.2 Comparing Architectures . 209
6.7.3 Implement Scopes as Event Brokers 210
6.7.4 Integrate Scoping and Routing . 213

6.8 Combining Different Implementations . 225
6.8.1 Architectures and Scope Graphs . 226
6.8.2 Bridging Architectures . 227
6.8.3 Integration With Other Notification Services 228

6.9 Further Reading . 228

7 Composite Events . 231
7.1 Application Scenarios . 231
7.2 Requirements . 234
7.3 Composite Events . 234
7.4 Composite Event Detection . 236

7.4.1 Composite Event Detectors . 236
7.4.2 Composite Event Language . 238

7.5 Detection Architectures . 242
7.5.1 Centralized Detection . 243
7.5.2 Distributed Detection . 244

7.6 Further Reading . 250

8 Advanced Topics . 253
8.1 Security . 253

8.1.1 Application Scenarios . 254
8.1.2 Requirements . 255
8.1.3 Access Control Techniques . 256
8.1.4 Secure Publish/Subscribe Model . 258
8.1.5 Further Reading . 264

8.2 Fault Tolerance . 264
8.2.1 Fault Masking . 265
8.2.2 Self-Stabilizing Publish/Subscribe Systems 265
8.2.3 Self-Stabilizing Content-Based Routing 266
8.2.4 Generic Self-Stabilization Through Periodic Rebuild . . . 273
8.2.5 Further Reading . 276

Contents XIII

8.3 Congestion Control . 276
8.3.1 The Congestion Problem . 277
8.3.2 Requirements . 277
8.3.3 Congestion Control Algorithms . 279
8.3.4 Further Reading . 285

8.4 Mobility . 287
8.4.1 Mobility Issues in Publish/Subscribe Middleware 289
8.4.2 Physical Mobility . 290
8.4.3 Logical Mobility . 295
8.4.4 Further Reading . 302

9 Existing Notification Services . 305
9.1 Standards . 305

9.1.1 Corba Event and Notification Service 305
9.1.2 Jini . 310
9.1.3 Java Message Service (JMS) . 311
9.1.4 Data Distribution for Real-Time Systems (DDS) 313
9.1.5 WS Eventing and WS Notification 317
9.1.6 The High-Level Architecture (HLA) 317

9.2 Commercial Systems . 318
9.2.1 IBM WebSphere MQ . 318
9.2.2 TIBCO Rendezvous . 320
9.2.3 Oracle Streams Advanced Queuing 322

9.3 Research Prototypes . 324
9.3.1 Gryphon . 324
9.3.2 Siena . 326
9.3.3 JEDI . 329
9.3.4 Rebeca . 331
9.3.5 Hermes . 334
9.3.6 Cambridge Event Architecture (CEA) 337
9.3.7 Elvin . 340
9.3.8 READY . 340
9.3.9 Narada Brokering . 340

10 Outlook . 343

References . 349

Index . 379

List of Figures

1.1 A news story dissemination system . 5
1.2 The Active Office ubiquitous environment 6
1.3 The structure of the book . 9

2.1 Event-based systemss: interaction versus implementation 12
2.2 Taxonomy of cooperation models . 15
2.3 The router network of Rebeca . 21
2.4 A simple event system . 26

3.1 Identity of filters consisting of attribute filters 44
3.2 F1 � F2 although neither F 1

1 � F 1
2 nor F 1

1 � F 2
2 (two examples) 45

3.3 Covering of filters consisting of attribute filters 46
3.4 Disjoint filters consisting of attribute filters 47
3.5 Overlapping filters consisting of attribute filters 47
3.6 Matching algorithm based on counting satisfied attribute filters 50
3.7 Covering algorithm that determines all covering filters 51
3.8 Covering algorithm that determines all covered filters 51
3.9 Merging algorithm based on counting identical attribute filters . 52
3.10 A simple notification . 54
3.11 Implementation of a ClassFilter in Java 58
3.12 Implementation of a QuoteFilter in Java 58
3.13 Using a multilevel index structure for the counting algorithm . . 60
3.14 An exemplary decision tree . 60
3.15 An exemplary binary decision diagram . 61
3.16 Evaluating a filter using a binary decision diagram 62
3.17 Evaluating an ordered binary decision diagram 62
3.18 XPath Queries and their corresponding finite state automaton . 63
3.19 Combined nondeterministic finite state automaton 64

4.1 Content-based routing framework, part I . 70
4.2 Content-based routing framework, part II 71

XVI List of Figures

4.3 Diagram explaining notification forwarding 73
4.4 Flooding . 81
4.5 Simple routing . 83
4.6 Diagram explaining simple routing (new subscription) 84
4.7 Relation among α and β for simple routing 84
4.8 Identity-based routing . 87
4.9 Identity-based routing: Processing a new subscription from a

neighbor . 87
4.10 Identity-based routing: Processing a new subscription from a

client . 88
4.11 Relation among α and β for identity-based routing 88
4.12 Covering-based routing . 90
4.13 Covering-based routing: Processing of a new subscription from

a client. 93
4.14 Covering-based routing: Processing of a new subscription from

a neighbor . 94
4.15 Covering-based routing: Processing of an unsubscription from

a neighbor . 94
4.16 Covering-based routing: Processing of an unsubscription from

a client. 95
4.17 Covering-based routing: Processing of an unsubscription from

a client. 95
4.18 Covering-based routing: Processing of an unsubscription from

a neighbor, example 2 . 96
4.19 Relation among α and β for covering-based routing 97
4.20 Merging-based routing . 99
4.21 Merging: deletion of covering filters . 99
4.22 Merging: searching for a covering merger . 100
4.23 Merging: handling of subscriptions . 101
4.24 Merging: handling of unsubscriptions . 103
4.25 Circular evolution of CBR algorithms . 106
4.26 Routing using advertisements, part I . 108
4.27 Routing using advertisements, part II . 109
4.28 prune for simple routing . 110
4.29 prune for identity-based routing . 111
4.30 Hierarchical covering-based routing . 112
4.31 Hybrid routing . 113
4.32 Rendezvous-based routing . 116
4.33 Managing connects and disconnects . 119
4.34 Simple routing in cyclic topologies: algorithm 121
4.35 Example of simple routing in cyclic topologies 122
4.36 Routing a message in a Pastry network . 125

5.1 Data flow graphs of applications: bipartite single (a) and mult
source (b), and a general group (c) . 130

List of Figures XVII

5.2 An example stock trading application . 133
5.3 Generic publish/subscribe interface . 138
5.4 The structure of the observer pattern . 141
5.5 Event and notification in a UML class diagram 144

6.1 A metamodel of scopes . 153
6.2 An exemplary scope graph . 154
6.3 Outgoing and incoming notifications . 157
6.4 Two ways of generating duplicates . 158
6.5 A possible implementation of a scoped event system 162
6.6 Different scope interfaces . 165
6.7 The graph of the stock application . 168
6.8 Interfaces of the components in the example application 168
6.9 Recursive definition of the relation (n1, X) � (n2, Y) 170
6.10 Transformation of mappings into components 174
6.11 Architecture of scoped event system with mappings 174
6.12 Three important transmission policies in scope graphs 177
6.13 Scope definition accuracy . 196
6.14 Design dimensions of scope architectures . 197
6.15 Implicit implementation shifts visibility control into

application components . 201
6.16 A comparison of scope architectures . 203
6.17 Steps of scoped notification delivery . 207
6.18 Types of architectures, their characteristics, and examples 208
6.19 Comparison of scope architectures . 210
6.20 An exemplary scope graph . 214
6.21 Scopes as overlays within the broker topology 214
6.22 A flat routing table for broker B1 . 215
6.23 Enhanced routing tables of B1 incorporating scopes 216
6.24 Scope lookup tables . 217
6.25 Overall routing algorithm . 220
6.26 The näıve matching algorithm with mappings 221
6.27 Interscope forwarding . 222
6.28 Duplicate scopes to separate QoS requirements 226

7.1 The Active Office with different sensors . 232
7.2 A system for monitoring faults in a network 233
7.3 The components of the composite event detection service 236
7.4 The states in a composite event detection automaton 237
7.5 The transitions in a composite event detection automaton 237
7.6 A composite event detection automaton . 238
7.7 The architecture for the composite event detection service 243
7.8 Illustration of centralized composite event detection 243
7.9 Illustration of distributed composite event detection 244

XVIII List of Figures

7.10 Two cooperating composite event detectors for distributed
detection . 245

7.11 The life cycle of a mobile composite event detector 245
7.12 The design space for distribution policies . 247

8.1 An event type hierarchy for the Active City 255
8.2 Illustration of the secure publish/subscribe model 258
8.3 An event type hierarchy with attribute encryption 262
8.4 Subscription coverage with attribute encryption 263
8.5 Deriving the minimum leasing time . 269
8.6 Notification bandwidth saved by doing filtering instead of

flooding . 272
8.7 Choosing π such that “old” and “new” update messages do

not interleave . 274
8.8 Derivation of the maximum stabilization time 276
8.9 Flow of DCQ and UCA messages . 280
8.10 Processing of DCQ and UCA messages at IBs 283
8.11 Consolidation of UCA messages at IBs . 283
8.12 Missing notifications in a flooding scenario 291
8.13 Moving client scenarios with one and multiple producers 293
8.14 Blackout period after subscribing with simple routing 297
8.15 Blackout period with flooding and client-side filtering 297
8.16 Defining the quality of service for logical mobility 298
8.17 Network setting for the example . 299
8.18 Movement graph defining movement restrictions of a consumer . 299
8.19 Total number of messages generated for flooding and two

scenarios of the new algorithm . 301

9.1 Internal structure of an object request broker (ORB) 305
9.2 Push mode vs. pull mode (typed event communication) 308
9.3 Typed event communication using an event channel 308
9.4 The structure of a structured event (from [287]) 309
9.5 Conceptual overview of data-centric publish/subscribe (DCPS) . 314
9.6 A Gryphon network with virtual event brokers 325
9.7 A hierarchical topology in Siena . 327
9.8 An acyclic peer-to-peer topology in Siena 327
9.9 A generic peer-to-peer topology in Siena . 328
9.10 Hierarchical event routing in JEDI . 329
9.11 Substituting one link with another link . 330
9.12 An exemplary router network of Rebeca 331
9.13 The filtering framework of Rebeca . 332
9.14 Layered networks in Hermes . 335
9.15 Overview of the Hermes architecture . 336
9.16 The publish–register–notify paradigm in the CEA 338
9.17 An ODL definition of event types in ODL-COBEA 339

List of Tables

2.1 Some exemplary temporal formulas and their informal meaning 26
2.2 Interface operations of a simple event system 27
2.3 Changes of the state variables caused by interface operations . . . 27
2.4 Additional interface operations for advertisements 32
2.5 Changes of the state variables caused by the additional

interface operations for advertisements . 32

3.1 Covering among notification types . 40
3.2 Covering among (in)equality constraints on simple values 40
3.3 Covering among comparison constraint on simple values 41
3.4 Covering among interval constraints on simple values 41
3.5 Covering among constraints on strings . 41
3.6 Covering among set constraints on simple values 42
3.7 Covering among set constraints on multi values 42
3.8 Perfect merging rules for attribute filters . 49

4.1 Portfolio of content-based routing algorithms 104

7.1 Example of five distribution policies . 248

8.1 Values of ploc(x, t) for the example setting 300
8.2 Values of filters in example setting . 301

1

Introduction

1.1 Networked Computing

The speed at which business is conducted continues to increase. Customer ser-
vice is important, and mergers as well as joint ventures require flexibility and
adaptability of business infrastructures. With the reduction of coordination
and communication costs, organizational structures are changed more easily
and more frequently. So even after the end of the hype about a New Economy,
the trend toward more volatile business structures has neither ceased nor lost
its importance [247]. To foster processes and applications that cross traditional
modules of enterprise systems, SAP, the major enterprise resource planning
(ERP) company, has recently identified an “adaptive business” strategy to
be the key to competitive advantage [38]. Services and data are integrated
in ever new constellations so that application architectures are getting more
volatile. The transition to loosely integrated distributed systems requires IT
infrastructures that facilitate both scalability and system evolution.

Consequently, the development of today’s computer systems is mainly in-
fluenced by the effects of networking. Increasing connectivity and the size of
networked systems give rise to a number of issues. A basic requirement is
the availability of scalable communication mechanisms, which are crucial for
building and maintaining these systems. The mechanisms not only have to
support large numbers of components, but also face complex application en-
vironments that are dynamic and subject to unexpected and recurrent change.

A second important aspect of today’s systems is the automation of data
processing. While systems were traditionally designed to respond to interac-
tive user requests, the aim today is to provide increasingly autonomous data
processing to improve functionality and utility. Instead of having human op-
erators mediate between applications, e.g., to replenish an inventory by man-
ually reordering goods, directly connected applications are able to initiate
replenishment automatically. In this example, low supplies initiate activity.
In general, for a computation to be automated, it must be provided with

2 1 Introduction

the data necessary to check for such conditions. Applications are driven by
information available in the system, they are data- or information-driven.

1.2 Middleware

The concept of a middleware was introduced to facilitate communication be-
tween entities in a heterogeneous distributed computing environment. Middle-
ware is an additional layer between operating systems of individual nodes and
a distributed application. It deals with communication issues and attempts
to provide a homogeneous view of the world to the application. As such, it is
widely used and has proved to be a successful abstraction that helps with the
design and implementation of complex distributed systems.

The variability of dynamic networked environments and the automation
of data exchange shifts the focus when dealing with the delivery of data and
services, moving from a stationary world to one that is in a state of flux.
Traditionally, middleware has viewed data and services as being stationary in a
collection of objects or databases, with inquiries directed at them in a request/
reply mode of interaction. This concept has led to client/server middleware
architectures that emphasize explicit delegation of functionality, where system
components access remote functionality to accomplish their own goal. Remote
procedure calls (RPC) and derivative techniques are classic examples [44, 269,
371]; even the incipient Web services mainly rely on sending requests with the
Simple Object Access Protocol (SOAP) [347]. These techniques deliberately
draw from a successful history of engineering experience, their principles are
well understood, and they have been an appropriate choice for many well-
defined problems.

In the context of dynamic networked systems, however, request/reply has
serious restrictions. The direct and often synchronous communication between
clients and servers enforces a tight coupling of the communicating parties
and impairs scalability [158]. Clients poll remote data sources, and they have
to trade resource usage for data accuracy, especially in chains of dependent
servers. Unnecessary requests due to short polling intervals waste resources,
whereas long intervals increase update latency. In addition, request/reply re-
stricts system evolution. The control flow is encoded in application compo-
nents, which makes it accessible to engineers but also mixes the actual con-
figuration of the system with the application logic of individual components.
Consequently, the capability to orchestrate the whole system is limited by the
means available to adapt application components at runtime. Finally, dele-
gating functionality inevitably implies a functional dependency on the called
service, and on its presence.

The need for asynchronous and decoupled operation led to various ex-
tensions of existing middleware. For instance, Corba and Java 2 Enterprise
Edition (J2EE) were extended with asynchronous invocation methods and
notification services [279, 336, 338, 364], and similar features are available

1.3 Event-Based Systems 3

in Microsoft’s COM+ and in the language model of the new .Net plat-
form [235, 315], too. Database research, software engineering, and coordi-
nation theory corroborate the advantages of loosely coupled interaction as
well [80, 171, 295, 356].

1.3 Event-Based Systems

Instead of stepwise amending the conventional request/reply mode of inter-
action, event-based computing takes a contrasting approach and inherently
decouples system components. In an event-based mode of interaction com-
ponents communicate by generating and receiving event notifications, where
an event is any occurrence of a happening of interest, i.e., a state change in
some component. The affected component issues a notification describing the
observed event. An event notification service or publish/subscribe middleware
mediates between the components of an event-based system (EBS) and con-
veys notifications from producers (or publishers) to consumers (or subscribers)
that have registered their interest with a previously issued subscription.

The power of an event-based architectural style [68] is that neither the pub-
lished notifications nor the subscriptions are directed toward specific compo-
nents. The notification service decouples the components so that producers are
unaware of any consumers and consumers rely only on the information pub-
lished, but not on where or by whom it is published. Event-based components
are not designed to work with specific other components, which facilitates the
separation of communication from computation. The event-based style carries
the potential for easy integration of autonomous, heterogeneous components
into complex systems that are easy to evolve and scale [32, 355].

In view of the above arguments, the use of events is superior to request/
reply in many information-driven scenarios [157]. In fact, many improvements
of tightly coupled communication converge to an asynchronous approach. For
instance, caching data in network nodes [322], callback handling according to
the observer pattern [161], asynchronous remote invocations [338] introduce
some form of indirection, decoupling interaction from computation. The loose
coupling makes applications easier to adapt and integrate, and it allows a
specialized mediator, the notification service, to achieve scalability.

As a consequence, the potential of the event-based style has been rec-
ognized both in academia and in industry. The event-based architectural
style is becoming an essential part of large-scale distributed systems’ design,
and many applications and their underlying infrastructures have incorporated
event-based communication mechanisms. Information buses are the basis of
many systems [27, 289], and a number of event notification services were de-
veloped (e.g., [71, 92, 172, 353, 364, 381]) as well as integrated into modern
component platforms such as Corba Component Model (CCM) [278] and
Enterprise JavaBeans (EJB) [362].

4 1 Introduction

The aim of this book is to provide the reader with an overview of the rich
area of event-based systems. We cover a broad spectrum of topics, ranging
from a formal treatment of local and distributed event matching algorithms,
through a more practical discussion of software engineering issues raised by
the event-based style, to a presentation of state-of-the-art research topics in
event-based systems, such as composite event detection and security. Our hope
is that our presentation shows the power of event-based systems in modern
systems design and encourages both researchers and practitioners to exploit
the event-based style in next-generation large-scale distributed applications.

1.4 Application Scenarios

The range of application scenarios for event-based systems is broad. Often, ap-
plications use event-based communication to improve scalability or to achieve
adaptability. In order to understand the power of event-based system, we
consider application scenarios, in which the use of traditional request/reply
communication would be prohibitively expensive in terms of efficiency or us-
ability. Next, we describe several application scenarios to motivate the use of
an event-based style for systems design.

1.4.1 Information Dissemination

Information dissemination, in general, is the apparent application domain
of notification services, which includes news story dissemination, real-time
control systems, and stock market monitoring applications. The timely and
efficient dissemination of information to many consumers is a prerequisite in
these systems. In addition to simple unidirectional data distribution scenarios,
in which the focus is on the direct communication of few producers with many
subscribers, more sophisticated applications require the set-up of complex
information flows, in which an event-based style is used to drive advanced
processing workflows of real-time data.

In its most basic form, Internet-wide distributed systems involve the ex-
change of information among a large number of nodes. A system for news
story dissemination is depicted in Fig. 1.1. News reports that are generated
by local news agencies are distributed worldwide among many news corpora-
tions. News corporations desire to receive relevant information only, and news
agencies prefer to avoid the complexity of having knowledge about all news
corporations. The loose coupling of producers and consumers in an event-
based system for this application leads to a flexible and robust system design.

1.4.2 Network Monitoring

In general, any form of system monitoring is very compatible with an event-
based style. Information about the current status of the system’s components

1.4 Application Scenarios 5

News Corporation

Local News Agency

Fig. 1.1. A news story dissemination system

is logged with only a minimal influence on the control flow of the running
system as it is published as state changes. Network management has a strong
need for sophisticated monitoring capabilities of runtime statistics, alerts, and
configuration changes [216, 339]. Especially, distributed network intrusion de-
tection [162, 163] has gained widespread attention in recently with high-profile
distributed denial of service attacks and the compromise of personal data.

In particular, network monitoring applications often require a high-level
view of the system [330, 348]. A network failure or intrusion attempt may
lead to a multitude of low-level events being triggered. The challenge for
the network administrator is to track down the root cause of these events
as quickly as possible. Real-time processing of events to detect patterns in
the form of composite events are a powerful technique for this; they will be
described in Chap. 7.

1.4.3 Enterprise Application Integration

Many business environments are characterized by their variability and need to
facilitate change. Enterprise application integration (EAI) is about connecting
custom-built, third-party, or legacy systems to share data and join business
processes. However, the integrated applications are often independently de-
veloped, deployed, and maintained. To avoid tightly coupled dependencies
between any pair of these applications, the resulting system architecture usu-
ally relies on a mediator to achieve the loose coupling that is necessary to
achieve scalability and flexibility [191].

Information buses, messaging, and the source-driven distribution of data
is an inherent characteristic of EAI [215, 289]. A mediator approach decou-
ples interfaces, allows for independent evolution, and extracts communication
and coordination tasks into an extra component. The event-based paradigm

6 1 Introduction

Office 1 Office 2

Meeting Room 1 Meeting Room 2

Office 3

P

P

P

P

P

P

P

P

S S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S
S

Person

Sensor

Fig. 1.2. The Active Office ubiquitous environment

directly addresses the EAI objectives and publish/subscribe middleware is
therefore an important candidate for implementing such a mediator [27, 215].

1.4.4 Mobile Systems

Mobile systems are distributed systems in which a subset of the nodes (e.g.,
the clients in a client/server system) or even all nodes of the system are mo-
bile leading to a more or less dynamic network topology. These systems are
obviously dynamic environments where central servers, synchronous commu-
nication, and static bindings are inappropriate and not available [60]. An in-
frastructure for mobile systems always has to cope with reconfigurations, thus
making the event-based style pertinent here, too [90, 142]. Similar arguments
hold for wireless sensor networks [9, 205, 254].

1.4.5 Ubiquitous systems

A different type of large-scale distributed system is a ubiquitous sensor-rich
environment concentrated on a small area, such as theActive Office building
shown in Fig. 1.2. In such a building, sensors that are installed in offices
provide information about current occupancy, environmental conditions, and
equipment health to interested devices, applications, and users. The Active
Office is aware of its inhabitants’ behavior and enables them to interact with
it in a natural way.

Since this ubiquitous environment is highly dynamic with components con-
stantly entering and leaving, the loose coupling of an event-based system
vastly simplifies system design. In addition, the large number of sensors po-
tentially produces a large amount of data. As a result, information consumers
prefer a high-level view of the primitive sensor data, making efficient data
aggregation a necessity.

1.5 Putting Event-Based Systems Into Context 7

1.5 Putting Event-Based Systems Into Context

In this section, we point out areas related to event-based systems. By doing so,
we want to put event-based systems into the context of better known areas in
computer science. This also shows how event-based techniques were indepen-
dently developed in different areas to address similar challenges introduced
by scale, system evolution, and real-time requirements.

The database community has quickly recognized the need for databases to
react to data changes. Active databases [304, 394], such as HiPAC [103] and
Postgres [352], follow an event-based style using database triggers [101] that
are expressed in the form of event–condition–action (ECA) rules. The action
of a trigger is executed when an event occurs, such as the modification of a
database table, and a predicate conditions holds. This enables the database
to react to user actions, tying computation to external events.

In software engineering the event-based mode of interaction is also
known as implicit invocation [115, 164]. It is defined as an architectural style
that determines how components of a software architecture communicate in
principle [165]. Events can be found in enterprise architectures [151, 191] as
well as in software patterns like the observer pattern [161]. In fact, Garlan
et al. [166] early identified the prominent importance of using events for the
construction of flexible software architectures. The book by Luckham [242]
thoroughly elaborates the important relation between enterprise applications
and complex event processing. Consequently, eventing is part of most modern
component and container frameworks. The concept is also employed in graph-
ical user interfaces (GUIs), where the model view controller paradigm [178]
and observer patterns are applied. More recently, aspect-oriented program-
ming uses events to identify points in the execution of programs at which
aspect code is activated [82, 147].

Stream processing systems [63] such as Aurora [1], Borealis [23], Hi-
Fi [156], and TelegraphCQ [75] combine event-based, push-based data dissemi-
nation with transformation capabilities implemented by stream operators [14].
Data sources continuously produce events, which are transformed according to
existing continuous queries [17], thus delivering a result stream to consumers.
The event-based style ensures that producers are decoupled from consumers,
which is important in common application scenarios such as supply chain
management and financial market analysis.

Distributed monitoring and debugging [249] systems, for example
GEM [251]), are used to gather changes in the distributed state of a system.
Composite event detection [339] is then used to derive more abstract events
from the primitive ones. Monitoring can be either done online or offline. With
offline monitoring, primitive events are collected locally until, for example, an
error occurred. Then, the collected events are transferred to a central facility
that does the analysis, e.g., to find the source of the error. Contrarily, in the
case of online monitoring, primitive events are collected and composite events

8 1 Introduction

are detected in realtime. This approach is much more complicated but it is
also more powerful since it allows to build adaptive distributed systems.

In sensor networks, algorithms such as directed diffusion [204, 205] are
used that are very similar to content-based routing algorithms. In sensor net-
works event sources publish events that are then routed hop-wise through the
network to reach event sinks. While events are routed, they may be aggregated
on intermediate nodes if possible. This is done to reduce the network traffic.
In the case of direction diffusion, gradients are derived (e.g., hop-based on the
distance from the sink) by flooding the subscriptions into the network. Path
reinforcement is used to enforce single path delivery.

Until recently, workflow systems [176] were often built around central-
ized data stores, but distributed execution environments led to generaliza-
tions relying on ECA rules and events [177, 242]. Event notification services
are used as building blocks for distributed activity services [80, 190, 217].
However, such high-level application domains have requirements that typical
publish/subscribe middleware can hardly fulfill today [118], and which led to
the discussion about engineering issues in Chap. 5.

1.6 From Centralized to Internet-Scale Event Systems

The first generation of event-based systems were centralized systems with
integrated active functionality. Examples of these systems are active databases
and toolkits for graphical user interfaces. With the introduction of distributed
system middleware, such as Corba, the idea of incorporating asynchronous
event-based communication into this middleware arose. This led to notification
services such as the Corba Event Service. However, most implementations of
these services were still centralized and had only limited filtering capabilities.

The next step was to integrate more expressive filtering leading to, e.g., the
Corba Notification Service. Still, most distributed systems were rather closed,
and event forwarding based on IP multicast was sufficient. Then, the need to
integrate several distributed systems to form a larger system arose. This raises
the need for security mechanisms, content-based forwarding, mechanisms to
cope with data heterogeneity, and scoping. The next step will be an Internet-
scale notification service that enables information to flow from one node in
the Internet to another. To achieve this, optimized content-based routing,
scoping with input and output interface, and refined security mechanisms
(e.g., to enable trust) are needed. This book discusses the techniques that lie
on the road from centralized to Internet-scale event systems and which are
needed to make this vision a reality.

1.7 Structure of the Book

The structure of the book is as follows (see Fig. 1.3):

1.7 Structure of the Book 9

Security

Fault Tolerance
Congestion Control

Mobility
Existing Implementations

Chapter 10:

Composite Events

Chapter 7:

Matching Algorithms

Data and Filter Models

Chapter 3:

Basics

Chapter 2: Terminology Background

Specification

Scoping

Chapter 6:

Chapter 5:

Engineering

Chapter 4:

Routing

Chapter 9:

Advanced Topics

Fig. 1.3. The structure of the book

Chap. 2: Basics. We introduce the basic terminology and from introduced
interaction models we derive our notion of event-based interaction. We
describe notification filtering mechanisms including channels, subjects,
types, and content-based filtering. A specification of event system is given
that forms the basis of our further investigations.

Chap. 3: Content-Based Models and Matching. We describe data and
filter models that allow notification to be described and filtered as well
as matching algorithms that match published data to registered subscrip-
tions. This chapter can be skipped if matching is considered as black box
functionality.

Chap. 4: Distributed Notification Routing. This chapter presents de-
tails about the distributed implementation of publish/subscribe systems.
The system model is described and framework for content-based routing
is introduced. Based on the framework we discuss a number of routing
algorithms and we present several extensions of the basic framework.

Chap. 5: Engineering of Event-Based Systems. We describe the engi-
neering issues related to event-based systems and how one can build event-
based applications.

Chap. 6: Scoping. This chapter introduces a scoping concept for event-
based systems. We discuss how to restrict the visibility of events by scopes,
event-components based on scopes with input and output interfaces, no-
tification mapping, and transmission policies.

Chap. 7: Composite Events. We detail composite event detection by dis-
cussing composite event detectors based on automata, a composite event
language, and detection architectures.

10 1 Introduction

Chap. 8: Advanced Topics. This chapter collects more advanced topics
(such as security, fault tolerance, congestion control, and mobility) to
which only an introduction is given because a full coverage is out of the
scope of this book.

Chap. 9: Existing Notification Services. Here, we discuss existing stan-
dards (e.g., JMS, Corba Notification Service), commercial products (e.g.,
Oracle Streams Advanced Queuing, TIBCO Rendezvous), and research
prototypes (e.g., Siena, JEDI, Rebeca).

Chap. 10: Conclusions. This chapter summarizes the main insights of this
book and give an outlook to potential future research directions.

2

Basics

2.1 Terminology—Constituents of Event-Based Systems

An event-based system consists of the following constituents (see Fig. 2.1):
events and notifications as means of communications, producers and con-
sumers as interacting components, subscriptions signifying a consumer’s in-
terest in certain notifications, and the event notification service responsible
for conveying notifications between producers and consumers.

2.1.1 Events and Notifications

Any happening of interest that can be observed from within a computer is
considered an event. This may be a physical event such as the appearance of
a person detected by sensors, a timer event that indicates progression of real
time, or generally an arbitrary detectable state change in a computer system.
We consider only the third kind of events here, because event detection is out
of the scope of this book.

A notification is a datum that reifies an event, i.e., it contains data describ-
ing the event. A notification is created by the observer of the event and may
just indicate the plain occurrence, but often may carry additional information
describing the circumstances of the event. For instance, in the active badge
system of Bacon et al. [18] events are raised when persons wearing a badge
approach a sensor, and the published notification carries the detected ID of
the badge and the time of observation. In general, different notifications can
be created that describe the same underlying event, but from multiple view-
points. This may be done due to application or security reasons, or simply
because notifications are encoded in different data models. The most common
data models are name/value pairs [71], objects [18, 104, 127], and semistruc-
tured data [12, 264], e.g., XML.

On the lowest level considered here, notifications are conveyed via mes-
sages , which are data containers on the network level transmitting data be-

12 2 Basics

ServiceService

Event

Producer

Notification

Notification

Message

Pub/Sub Interface

Notification

Consumer

Notification

Gossip, Pub/Sub
RPC, Multicast,Communication Implementation

Event-Based
Interaction

Fig. 2.1. Event-based systemss: interaction versus implementation

tween the endpoints of the underlying communication mechanism. The dis-
tinction between events, notifications, and messages is used to clearly sepa-
rate the underlying communication technique from the mode of interaction,
cf. Sect. 2.1.4.

2.1.2 Producers and Consumers

The software components of an event-based system act as producers and con-
sumers of notifications. Producers are components that publish notifications.
A producer’s implementation is “self-focused” in the sense that it observes
only its own state. The decision to publish a state change is made by the
component’s internal computation and is a core part of its function. What
changes are published and how this decision is configured/programmed into
the producer are issues of past and ongoing research in areas like debug-
ging [33] and monitoring [231], reflection [223], and aspect-oriented program-
ming (AOP) [82]. Published notifications are not addressed to any specific
(set of) receivers; they are rather forwarded to the event notification service
for further distribution. Producers are unaware of any other components and
they do not anticipate any reaction on the receiver side; this is detailed in
Sect. 2.2.

Consumers react to notifications delivered to them by the notification
service. They, too, are unaware of their specific communication peers. Not
knowing the actual producers of notifications, consumers issue subscriptions
to describe the kinds of notifications they are interested in; different classes of
subscriptions are depicted in the next section. If a component is both consumer
and producer, it reacts to both incoming notifications and observed internal
state changes, and the resulting computation may lead to newly published
notifications.

2.1 Terminology 13

2.1.3 Subscriptions and Filters

A subscription describes a set of notifications a consumer is interested in.
Consumers register their interest in receiving certain kinds of notifications by
submitting subscriptions to the notification service. The service evaluates the
subscriptions on behalf of the consumer and delivers those notifications that
match one of the consumer’s subscriptions. Subscriptions are filters, which are
basically Boolean-valued functions that test a single notification and return
either true or false. Indeed, filters are a common way to implement subscrip-
tions, although, in general, subscriptions may comprise more than only a filter
function. They can additionally include (meta)data to govern notification se-
lection beyond a per-notification level; for example, security credentials for
accessing certain classes of notifications [34] or timing information to get past
notifications [81]. Subscriptions can be seen as input interfaces of consumers,
describing the data they are prepared to process.

Advertisements are issued by producers to declare the notifications they
are willing to send. They also describe sets of notifications and may be of
the same form as subscriptions. From a network level point of view, adver-
tisements help to improve routing decisions, because the notification service
knows which notifications can be expected from where. From a software engi-
neering viewpoint, advertisements comprise a component’s output interface.

The expressiveness of subscriptions in terms of filtering capabilities de-
pends on the filter model and the data model employed. The combination of
a filter model and a data model is called a notification classification scheme.
In distributed notification services, essentially four filter models are distin-
guished: channels, subjects, types, and content-based, which are described in
Sect. 2.3. Tuples, sets of name/value pairs, and semistructured documents are
the most prominent data models for distributed notification services. They
are described in Chap. 3.

2.1.4 Event Notification Service

The event notification service, or notification service for short, is the mediator
in event-based systems that decouples producers from consumers. It alone is
responsible for conveying notifications, and it must deliver every published
notification to all consumers having registered matching subscriptions. It im-
plements a publish/subscribe interface, providing adv , pub, sub, unsub, and
notify operations; the last being an output operation called on a registered
consumer to deliver a notification. The notification service gets notifications
from producers via the pub operation, and they must match the advertise-
ments issued with the adv operation. The service tests notifications it got
from producers against subscriptions it got from consumers via the sub oper-
ation, and delivers the notifications to those consumers that have a matching
subscription with notify . In essence, it separates communication responsibil-
ity from components in the sense that the mediating service is responsible

14 2 Basics

for subscription evaluation on behalf of the consumers and for delivering no-
tifications on behalf of the producers. Note that we just described a basic
notification service; a more advanced service may exhibit more operations.

From the perspective of application components, the notification service
is a black box; its function does not depend on it being distributed. However,
its nonfunctional attributes, such as efficiency, scalability, and availability,
are influenced by the architecture and the communication techniques used to
distribute notifications.

In addition to the notification service, event-based systems often contain
further event handling capabilities, such as event and notification type repos-
itories, descriptions of available data and filter models, and other “metadata”
as well as programming language bindings beyond service invocations. To re-
flect the broader functionality the collection of notification service plus any
additional event handling is termed event system.

2.2 Models of Interaction

From a technical point of view, an event notification service just provides
publish/subscribe functionality, which may be used for transporting notifi-
cations, but also for sending requests to groups of servers. The essence of
event-based systems is not found in the Application Programming Interface
(API) or the techniques used for transmitting notifications. Event-based inter-
action is mainly a characteristic of the components, and not of the underlying
communication technique [54, 265].

In order to provide a fundamental and simple characterization, four in-
teraction models are distinguished by the way interdependencies between
components are established. The four models are differentiated by two at-
tributes (Fig. 2.2). The first attribute, initiator, describes whether consumer
or provider initiates the interaction, where the former depends on data or
functionality provided by the latter. The second attribute, addressing, distin-
guishes whether the addressee of the interaction is known or unknown, i.e.,
whether the peer component is directly or indirectly addressed.

The resulting four interaction models are independent of any underlying
implementation technique. Any interaction between a set of components can
be classified according to these models. Even though interaction may show
more nuances in practice, the models are complete in the sense that they
essentially cover all major paradigms.

Furthermore, the interaction models characterize the inner structure of
components, because the models determine how dependencies between the
components are established. From an engineering point of view, this helps to
identify constraints and requirements posed by a given component on its usage
scenarios and on the underlying infrastructure. Architectural mismatches are
disclosed early; they would otherwise have to be tackled by an integrating

2.2 Models of Interaction 15

Initiator
Consumer Provider

Addressee Direct Request/Reply Callback

Indirect
Anonymous

Event-Based
Request/Reply

Fig. 2.2. Taxonomy of cooperation models

implementation, which impedes system evolution and scalability sooner or
later [167].

2.2.1 Request/Reply

The most widely used interaction model is request/reply. Any kind of remote
procedure call or client/server interaction belongs to this class. The initiator
is the consumer (i.e., client) that requests data and/or functionality from the
provider (i.e., server), and it expects data to be delivered back or relies on
a specific task to be done. The provider is directly addressed, its identity is
known, and the caller is able to incorporate information about the callee into
his own state and processing, resulting in a tight coupling of the cooperating
entities. Replies are (in most cases) mandatory in this model.

2.2.2 Anonymous Request/Reply

The anonymous request/reply model also uses request/reply as basic action,
but without specifying the provider that should process the request. Instead,
requests are delivered to an arbitrary, possibly dynamically determined set
of providers. The consumer does not know the identity of the recipient(s) a
priori, yet it expects at least one reply—one request may result in an unknown
number of replies.

This model is eligible when redundant providers are available or when
the appropriate provider may be different for each request. For instance, load
balancing selects a provider either arbitrarily or based on the content of the
request; cf. the IP Anycast mechanism [301] tries to route a packet to the
nearest member of a group of destinations without resolving the IP address
in advance. Similarly, component models and containers decouple component
instances and allow for runtime binding of references, cf. JavaBeans [359] and
the Dependency Injection Pattern [153, 252]. However, this often only means
providers are resolved just before the call, making the identity known to the
caller and potentially leading to tight coupling as in classic request/reply.

This cooperation model is besides the event-based model the second model
that is directly implemented by publish/subscribe services, which often con-
fuse these two models. Anonymity of providers adds more flexibility to the

16 2 Basics

request/reply model, but the dependency on externally provided data or func-
tionality persists.

2.2.3 Callback

In the callback model, which is employed in the well-known observer design
pattern [161], consumers register at a specific, known provider their interest to
be notified whenever some condition becomes true. The provider repeatedly
evaluates the condition and if necessary calls the registered component back.
The provider is responsible for administering its callback list of registered
consumers. If multiple callback providers are of interest, a consumer must
register separately for all of them. The identity of the components is known
and must be managed on both sides, leading to a tight coupling with no
coordination medium in between.

On the other hand, knowing the identities of consumers, callback process-
ing can be customized so that only subsets of consumers are notified in an
application-dependent way. However, it would be each component’s respon-
sibility to apply callback handlers that implement current application needs,
which is an issue of integration rather than of component implementation.
In any case, a sophisticated implementation of callback handlers leads to the
event-based approach, described next.

2.2.4 Event-Based

The event-based interaction model has characteristics inverse to the request/
reply model. The initiator of communication is the provider of data, that is,
the producer of notifications. Notifications are not addressed to any specific
set of recipients, as was described earlier. A consumer can receive notifications
from many providers, because subscriptions are, in general, neither directed
nor limited to a particular producer. If a notification matches a subscription,
it is delivered to the registered consumer. Providers are not aware of the
consumers. In contrast to the callback model, providers are relieved from the
task of interpreting and administering registrations, i.e., subscriptions.

The essential characteristic of this model is that producers do not know any
consumers. They send information about their own state only, precluding any
assumptions on consumer functionality. A component “knows” how to react to
incoming notifications and it publishes changes to its own state, but it must
not publish a notification with the intention of triggering other activity. A
component’s implementation is “self-focused” in that the knowledge encoded
in the program, and used by the programmer, is limited to the component’s
own task. This approach completely separates the internals of different parts
of an application.

Of course, the overall functionality of the system still depends on the
proper interaction of all the components, but this is no longer a matter of
individual components. It is rather the composition of components and their

2.2 Models of Interaction 17

interaction that determine the functionality. But event-based interaction with-
draws the control of interaction from the participating components, and the
necessary coordination has to be handled externally. So, in addition to the
role of specifying and implementing individual components, the orchestration
of an event-based system demands extra support. Currently, no such support
is available.

2.2.5 Comparison

The complexity of a decomposed system is characterized by the degree of de-
pendence between its components. Software reliability analysis formally cor-
roborates a result that is informally apparent: If a component relies on other
components to accomplish its own goal, its correctness is degraded by fail-
ures of others [2, 253]. Conversely, the correctness of individual components
is not affected if they process available data only, which is exactly the case
in event-based systems. The event-based style clearly separates computation
from communication and offers the potential of easily evolvable systems. On
the other hand, engineering complexity is considerably affected by the quality
of the abstractions and tools available for coordinating the components.

The dichotomy of request/reply and event-based interaction is marked
by the simplicity of the former and the flexibility of the latter. Request/
reply is easy to handle, implement, and understand, and consequently is well
established. It corresponds to the imperative nature of common programming
languages and component models. Some of its shortcomings are alleviated by a
long list of supplementary techniques such as caching, asynchronous request/
reply, container-controlled operation, dependency injection, etc., that are used
to enhance scalability and system evolution.

However, if interaction becomes less coupled, it gets more indirect. And
this raises the question whether the use of events would be a more appro-
priate solution. In fact, without being formally corroborated, it appears that
request/reply and event-based interaction form a duality in the sense that for
most problems there exist solutions based on either model. Classic request/
reply examples can be rebuilt using events. Event-based interaction typically
relies on a reversed software architecture, reversing activity and data flows,
but the same function can be implemented in both paradigms. The involved
tradeoff is between scalability and flexibility, on the one hand, and simplic-
ity on the other. System engineers have to decide whether they opt for a
simple implementation or for an extensible one. One goal of this book is to
make choosing the extensible solution less costly, and thus eligible for more
scenarios.

2.2.6 Interaction vs. Implementation

The mode of interaction influences the design of components and is difficult to
change. It is a prerequisite of good design to choose an interaction model that

18 2 Basics

matches the function a component has to accomplish. Otherwise, architectural
mismatches would inevitably impede system composition and evolution [167].
For this reason, this basic but principal distinction of interaction models helps
system designers to identify the core structure of components, and it avoids
mixing interaction and implementation issues [137].

Unfortunately, the mode of interaction is often confused with the choice
of implementation techniques currently available. In particular, event-based
interaction is often equated with using general publish/subscribe services.
While being obvious candidates for implementing notification dissemination,
they are not the only ones; other techniques may as well be employed, like
point-to-point messaging, IP multicast, Linda tuple space engines, or even
classical remote procedure calls. For instance, if a system engineer knows that
a set of event-based components interacts only within a small group, nothing
speaks against using RPC. In fact, if the communication happens to be sensi-
tive to eavesdropping, RPC even becomes the most appropriate choice. Note
that producers still publish notifications as before, only the underlying imple-
mentation is considered here. Conversely, a publish/subscribe service can also
be used to implement anonymous request/reply interaction.

Generally, there is no best implementation technique for a certain interac-
tion model. The technique must be chosen in view of the deployment environ-
ment, the demanded quality of service, and the overall need for flexibility and
scalability. Event-based interaction facilitates the distinction of interaction
and implementation due to its separation of computation from communica-
tion. And while traditional publish/subscribe services focus on unidirectional
delivery (Sect. 5.1), many different techniques can be exploited in building
event-based systems.

The preceding description of event-based interaction basically refines the
one given in literature, e.g., [68, 165, 295]. The discussion makes it now pos-
sible to unambiguously define the involved terminology. The system outline
given in Fig. 2.1 spans several levels of abstraction. On the lowest level, mes-
sages are sent and received. Arbitrary asynchronous messaging techniques can
be used, be it connectionless point-to-point network protocols, IP multicast
mechanisms, or publish/subscribe implementations.

On the next level, the publish/subscribe interface is implemented. It is used
to publish data that is delivered to subscribers. As part of its implementation,
messages containing the data are sent and received. From a technical point of
view, the publish/subscribe interface implements both anonymous request/
reply and event-based interaction.1

On the highest level, where event-based interaction finally takes place,
producers publish notifications that are delivered to consumers . Only this level
is of concern when assessing the characteristics of event-based interaction and
its effect on system engineering.

1 Although all arguments made here explicitly target event-based systems, they are
equally applicable to any general publish/subscribe scenario.

2.3 Notification Filtering Mechanisms 19

2.3 Notification Filtering Mechanisms

2.3.1 Channels

Channels are the simplest form of identifying sets of notifications. In this
model, producers select a named channel into which a notification is pub-
lished. Consumers, on the other hand, select a channel and they will get all
notifications published therein. An example of this approach is the Corba
Event Service [280]; the Corba Notification Service [287] also relies on chan-
nels but additionally offers filters on notification content.

2.3.2 Subject-Based Filtering

Subject-based filtering uses string matching for notification selection [289].
Publishers annotate each notification with a subject string that denotes a
rooted path in a tree of subjects. For example, a stock exchange applica-
tion publishes new quotations of FooBar Ltd. under the subject /Exchange/
Europe/London/Technology/FooBar, classifying it to be traded in London
and to belong to the technology sector of the stock market. Consumers
subscribe for /Exchange/Europe/London/Technology/∗ to get all technol-
ogy quotations. It is implementation-dependent whether /Exchange/Europe/
London/∗ already includes notifications of subsubjects or not. In principle,
arbitrary pattern matching can be executed on subjects.

The simplicity of this approach has deficiencies that limits its applicabil-
ity. The requirement to use a single path in a tree to classify a notification
severely constrains the expressiveness of this model. The subject hierarchy is
a tree—multiple super-subjects are not allowed—and it classifies only from
a single point of view. Alternative classifications, e.g., /Exchange/Europe/
Technology/London, are only possible if different subtrees permute the order
of subjects. This leads to repeated publications and an exponential growth of
tree size if several alternative viewpoints shall be reflected.2

2.3.3 Type-Based Filtering

Type-based filtering uses path expressions and subtype inclusion tests to se-
lect otherwise opaque notifications [32, 127]. With multiple inheritance, the
subject tree is extended to type lattices that allow for different rooted paths
to the same node. Often, type-checking is complemented with content-based
filters to improve selectivity [311].

2 Similarly, from a software engineering point of view such hierarchies have been
criticized as restrictive and impeding integration and evolution [188].

20 2 Basics

2.3.4 Content-Based Filtering

Content-based filtering is the most general scheme of notification selection [69,
262]. Filters are evaluated on the whole content of notifications, where the data
model of the notifications and the applied predicates determine the expres-
siveness of the filters. Available solutions range from template matching [92],
simple comparisons [71], or extensible filter expressions [264] on name/value
pairs, to XPath expressions on XML [12] and arbitrary programs and mobile
code [117].

Concept-based Publish/Subscribe is orthogonal to the above approaches
and is proposed by Cilia et al. [83]. It employs semantic mappings between
data and filter models to transform subscriptions from one model to another.

2.4 A Model Distributed Notification Service

This section describes the system model and the basic characteristics of the
Rebeca notification service [136]. It implements the publish/subscribe inter-
face described in Sect. 2.1 and conforms to the preceding definition of simple
event systems. Its basic architecture is a representative example of a dis-
tributed notification service, which is comparable to that of other services like
Siena, JEDI, etc. Rebeca is different from other services with regard to its
support for different routing algorithms and data and filter models [263, 267],
and the visibility control extensions presented in this book. Rebeca serves
two roles: first, its system model is the basis for investigating visibility issues,
and second, the available implementation acts as testbed for publish/subscribe
functionality.

2.4.1 System Model

The model assumed in Rebeca and this book is a process model in which
computational activity is represented by the concurrent execution of process-
es [230]. Processes interact by passing messages via links between them. A
link connects a pair of processes and forwards messages asynchronously so
that there is a delay between sending a message and receiving it. Links are
assumed to exhibit no failures and to obey first-in-first-out (FIFO) ordering
of messages. This means that no messages are lost or corrupted due to link
failures and that messages are received in the same order they were sent.
Although being impractical in general, it is a reasonable assumption in the
present context, because it simplifies the discussion. In Sect. 8.2 we discuss
fault tolerance issues. In fact, initial solutions for both problems exist else-
where and may be used later to extend the model, e.g., [86, 263].

More concretely, the considered distributed system consists of a set of
physical nodes interconnected by a communication network and each node

2.4 A Model Distributed Notification Service 21

runs one or more processes. Communication links are point-to-point connec-
tions in this network, and their failure model is easily matched by TCP/IP
connections, for instance. This is the basic model that is broadly applicable,
and which nevertheless is open for implementation-dependent options, like
using multicast, to improve communication performance (cf. Sect. 6.7.4).

2.4.2 Architecture

The system constituents are illustrated in Fig. 2.3 and both the applica-
tion components and thenotification service itself are implemented by the
aforementioned processes. Each component is executed by a separate process,
which is linked to a process of the notification service. The service is accessed
as a black box that is conceptually centralized, but its implementation is
distributed across several processes and nodes to split the load and exploit
locality in notification delivery.

B2

B3 B4

B5

Border Broker

B1

Local Broker
X4’s Access Broker Inner Broker

Broker Network

Component

X4

X5

X3

X2

X1

X8 X7

X6

Fig. 2.3. The router network of Rebeca

The notification service forms an overlay network in the underlying system.
An overlay network is a virtual network of processes that communicate by
means of a second underlying (physical) network, employing routing strategies
different from the underlying ones. Here, the overlay consists of event brokers
that run as processes on some of the physical nodes. The communication
topology of the overlay is described by a graph. Currently, only acyclic graphs
are supported. Edges are process links and as such are mapped to point-to-
point connections in the underlying network, namely, TCP/IP connections.
The acyclic graph used is comparable to the single spanning tree approach
of multicast algorithms [106]. Obviously, the single tree is a bottleneck of the
system, but, again, it is an adequate model in this context, and extensions
exploiting redundancy are available to tackle problems of scalability and single
points of failure [86, 311, 374].

22 2 Basics

Three types of brokers are distinguished: local, border, and inner brokers.
Local brokers are access points to the middleware. They are typically part of
the communication library loaded into application components; they are not
represented in the graph, but are only used for implementation issues. A local
broker is connected to one border broker. Border brokers form the boundary
of the distributed communication middleware and maintain connections to
local brokers, i.e., the components of the service. Inner brokers are connected
to other inner or border brokers and do not maintain any connections to
components.

Local brokers implement the publish/subscribe interface of the notifica-
tion service and initially put the first message containing a newly published
notification into the network. Border and inner brokers forward the messages
to neighbor brokers according to filter-based routing tables and respective
routing strategies. At the end the messages are sent to the local brokers of
the consumers and from there the notifications are delivered to the applica-
tion components. Routing notifications from producers to consumers through
a broker network is also called distributed notification routing.

2.4.3 Distributed Notification Routing

The function of distributed notification routing is rather simple: just match
all notifications with all subscriptions and deliver the notification to all clients
and neighbor brokers with a matching subscription. In a centralized imple-
mentation the problem is reduced to efficient matching algorithms [266, 404].
A centralized implementation, however, not only concentrates all computa-
tional efforts but also becomes a bottleneck of communication bandwidth.
Hence, Rebeca distributes matching on multiple brokers.

Flooding is the simplest approach to implement routing: brokers forward
notifications to all neighboring brokers and only those brokers to which com-
ponents are connected test on matching subscriptions. Flooding guarantees
that notifications will reach their destination, but many unnecessary mes-
sages (e.g., notifications that do not have consumers) are exchanged among
brokers. The main advantage of flooding is its simplicity and that subscrip-
tions become effective instantly since every notification is processed by every
broker anyway.

Filter-based routing depends on routing tables (RT), which are maintained
by the brokers and consist of routing entries. A routing entry is a filter/des-
tination pair indicating to which local client or neighbor broker matching
notifications have to be delivered or forwarded, respectively. The entries are
updated by sending control messages corresponding to new or canceled sub-
scriptions through the broker network. New subscriptions add (F, D) entries
with D denoting the destination from which they were received, and unsub-
scriptions delete the respective entries. Every incoming notification is tested
against the routing table entries to determine the set of destinations with
matching filters, omitting the originating destination if it is a neighbor broker

2.5 Specification of Event Systems 23

to prevent loops. If the incoming notifications of each destination are routed
sequentially, end-to-end FIFO-producer ordering holds. In the case of a acyclic
broker network also causal ordering holds.

Different flavors of filter-based routing exist, which differ in their strategy
to update the routing tables. Simple routing assumes that each broker has
global knowledge about all active subscriptions. It minimizes the amount of
notification traffic, but the routing tables may grow excessively. Moreover, ev-
ery (un)subscription has to be processed by every broker, resulting in a high
filter forwarding overhead if subscriptions change frequently. In large-scale
systems more advanced routing algorithms must be applied to exploit com-
monalities among subscriptions in order to reduce routing table sizes [267].
Rebeca includes three of them [263]. Identity-based routing avoids forwarding
of subscriptions that match identical sets of notifications. Covering-based rout-
ing [71] avoids forwarding of those subscriptions that only accept a subset of
notifications matched by a previously forwarded subscription. Note that this
implies that it might be necessary to forward some of the covered subscrip-
tions along with an unsubscription if a subscription is canceled. Merging-based
routing [266] can be implemented on top of covering and goes even further.
In this case, each broker can merge existing routing entries into a broader
subscription, i.e., the broker creates a new cover for the merged routing en-
tries that replaces the old ones. Only the resulting merged filter has to be
forwarded to neighbor brokers, where it covers and replaces existent base fil-
ters. Merging can be done either in a perfect or an imperfect way. Perfectly
merged filters only accept notifications that are accepted by at least one of
its base filters, whereas imperfectly merged filters accept notifications besides
their base filters. Imperfect routing table entries increase network traffic but
allow for lazy updates, hiding frequent reconfigurations in covered parts of
the network.

Advertisements are an additional mechanism to optimize subscription for-
warding. Subscriptions need only be forwarded into those subnets of the over-
lay network where a producer has issued an overlapping advertisement, i.e.,
where matching notifications can be produced at all. If a new advertisement
is issued, overlapping subscriptions are forwarded appropriately. Similarly, if
an advertisement is revoked, it is forwarded, and remote subscriptions that
can no longer be serviced are dropped. Advertisements can be combined with
all routing algorithms discussed above.

2.5 Specification of Event Systems

A considerable amount of work on event-based systems and notification ser-
vices exists, and many concrete systems have been designed and implemented.
Unfortunately, understanding and comparing these systems is very difficult be-
cause of different and informal semantics. Section 2.5.1 presents a formalism
that helps to specify the semantics of an event-based system unambiguously.

24 2 Basics

In Sect. 2.5.2 this formalism is used to specify a simple event system that
captures the requirements considered mandatory for the basic level of ser-
vice. This specification is extended in Sect. 2.5.3 and Sect. 2.5.4 to include
ordering requirements and advertisements. In later chapters of this book, the
basic specification is further extended. In Sect. 6.2.2 the basic specification is
extended to construct scoped event systems, and in Sect. 8.2.2 it is extended
to derive self-stabilizing publish/subscribe systems.

2.5.1 Formal Background

In the literature there exist well-developed methods to specify and validate
concurrent systems. The aim of the proposed formalisms is to precisely de-
scribe the behavior of a system as a “black box”, i.e., without referring to
its internal (implementation) issues. The aim of the formalisms is to pre-
cisely describe the intended behavior of an interactive system. Usually, the
formalisms model a system as state machine which moves from one state to
another by means of an action. Formally this corresponds to the definition of
a labeled transition system (LTS). The black box view entails defining the cor-
rect behavior of such a system at its interface. In the literature this is termed
observation semantics, and there are many different possibilities of defining
observation semantics for concurrent systems. Intuitively, system evolution
can be written as a sequence [53]:

s̄0
ā0→ s̄1

ā1→ s̄2 . . .

, which denotes that starting from the initial state s̄0 the system reaches state
s̄1 by executing action ā0. Similarly, the system reaches (for i ≥ 0) the state
s̄i+1 from state s̄i by executing action āi. Hence, it must be specified for each
action how it changes the current state of the system.

To be able to do reasoning about sequences of states using temporal logic,
we eliminate the actions from the trace by extending the states of the system
to include the next action to be executed. Thus, we define a state si of the
system to the pair (s̄i, āi). This allows us to define traces to be sequences
of only states. When we talk about the system to execute an action in the
following, we thus mean that the part of the current state of the system that
corresponds to actions equals the respective action.

Note that trace semantics can not only be used to describe the behavior of a
single process but also be used to describe the behavior of concurrent systems
such as distributed systems. The global state space of a set of concurrent
processes is defined by the cross product of the state space of the individual
processes. The system’s evolution can then be viewed as a sequence of global
states that occur by fairly interleaving the individual process traces such that
every process can execute infinitely often.

One might argue that defining a trace as a total order is unrealistic in
a distributed system because it is not possible or desirable to enforce total

2.5 Specification of Event Systems 25

ordering of states. Indeed, it is possible to give specifications that are not (ef-
ficiently) implementable because of the inherent characteristics of distributed
system such as the lack of a global time. However, the specifications we give
are implementable because they impose ordering relations only on states that
intentionally should be causally related in any sensible implementation.

Definition 2.1 (Trace). A trace σ is a sequence of states

σ = s0, s1, s2,

Definition 2.2 (Subtrace). Let σ = s0, s1, . . . be a trace. Then, for i ≥ 0
the subtrace σ|i is the trace si, si+1,

Definition 2.3 (Specification). A specification Σ is a set of traces. A sys-
tem satisfies a specification Σ if it only exhibits traces which are in Σ.

In order to implement a specification, the implementation of a system
usually has to execute internal actions in addition to the interface actions.
To model this, any finite number of internal actions in between two interface
actions is allowed. This is sometimes called weak equivalence [35] or stuttering
equivalence [2, 229]. Inference rules and other proof techniques can then be
used to formally derive the satisfaction relation.

In most cases, a specification is given as a set of predicates on traces. We
utilize temporal logic [317] to express such predicates. The formal language
is built from atomic predicates; the quantifiers ∀, ∃; the logical operators
∨, ∧, ⇒, ¬; and the “temporal” operators � (“always”), � (“eventually”),
and � (“next”). The atomic predicate P is true for every trace whose first
state satisfies P . The formula ¬p is true for every trace whose first state does
not satisfy P . The other logical operators and quantifiers are defined in the
obvious analogous way. Manna and Pnueli [248] discuss the semantics of many
temporal operators. The semantics of the temporal operators that we need in
this book are defined as follows:

Definition 2.4 (Temporal Operators). Let Ψ be an arbitrary temporal
formula and σ = s0, s1, . . . be an arbitrary trace.

� �Ψ is true for trace σ iff there exists an i ≥ 0 such that Ψ is true for the
trace σ|i.

� �Ψ is true for trace σ iff for all i ≥ 0, Ψ is true for the trace σ|i.
� �Ψ is true for trace σ iff Ψ is true for the trace σ|1.

Note that the temporal operators have higher precedence than the logical
operators. Intuitively, �Ψ means that Ψ will hold eventually, i.e., there exists
a subtrace for which Ψ holds. For an atomic predicate P , �P means that P
holds for at least one place of the trace. �Ψ means that Ψ always holds, i.e.,
for all subtraces. �P means that P holds for all places of the trace. Finally,�Ψ means that Ψ holds for the subtrace starting at the second place of the
trace. �P means that P holds for the second place of the trace.

The meaning of nested temporal formulas is often not easy to see. Table 2.1
depicts some some exemplary temporal formulas and their informal meaning.

26 2 Basics

Table 2.1. Some exemplary temporal formulas and their informal meaning

��P P is satisfied by infinitely many places��P From some place on, P holds forever�[P ⇒ �P] Once P holds, it continues to hold forever�[P ⇒ �Q] Every P is followed by a Q�[P ⇒ ��¬P] P is true for at most one place�P P is true for at least one place�¬P ∨ �¬Q No trace satisfies both �P and �Q

P ⇒ ��Q If initially P holds, then eventually Q holds forever

2.5.2 A Simple Event System

In the following, we give a specification of a simple event system. First, we
introduce the interface operations (i.e., actions) and the state of a simple
event system. Then, we present a specification of simple event systems using
the formalism introduced in the previous section.

Interface Operations and State

. . .

Event Notification
Service

Interaction
notify(n)

Components

Interface

sub(F)

unsub(F)

pub(n)

Fig. 2.4. A simple event system

A simple event system consists of a set of components (acting as producers
and consumers) and of an event notification service (Fig. 2.4). For the purpose
of specifying how a correct event system should behave, we view the event
notification service as a black box. The components and the event notification
service interact via an interface that offers several operations (Table 2.2). Note
that from the viewpoint of the event notification service sub, unsub, and pub
are input operations, while notify is the only output operation.

The operations take parameters from different domains: the set of all com-
ponents C, the set of all notifications N, and the set of all filters F. We make

2.5 Specification of Event Systems 27

Table 2.2. Interface operations of a simple event system

sub(X, F) Component X subscribes to filter F

unsub(X, F) Component X unsubscribes to filter F

pub(X, n) Component X publishes n

notify(X, n) Component X is notified about n

the following assumptions: First, notifications are unique, i.e., each notifica-
tion n ∈ N can be published at most once. Second, every filter is associated
with a unique identifier in order to enable the event system to distinguish
subscriptions.

The state of the event system comprises three specification variables for
every component X ∈ C:

1. a set SX of active subscriptions (i.e., filters which X has subscribed to
and not unsubscribed to yet).

2. a set PX of published notifications (i.e., the subset of N containing all
notifications X has previously published).

3. a multiset DX of delivered notifications (i.e., the subset of N containing all
notifications which have previously been delivered to X . #(DX , n) gives
the number of occurrences of n in DX .

Table 2.3. Changes of the state variables caused by interface operations

pub(X, n) P ′
X = PX ∪ {n}

sub(Y,F) S′
Y = SY ∪ {F}

unsub(Y, F) S′
Y = SY \ {F}

notify(Y, n) D′
Y = DY ∪ {n}

The sets are initially empty, and they are updated faithfully according to the
operations that occur at the system’s interface. When X publishes a noti-
fication n, it is added to PX . Whenever X subscribes to F , F is added to
SX , and whenever X unsubscribes to F , F is removed from SX . Hence, mul-
tiple (un)subscriptions to the same filter are idempotent. For example, if a
component X subscribes to a filter F multiple times and then unsubscribes
to this filter once, then F is no longer in SX afterwards. The state changes
caused by the interface operation are specified in Table 2.3. With a prime we
indicate the state of a variable after the execution of an interface operation
(e.g., S′

Y). Beyond the changes above caused by the interface operations, the
specification variables are not changed.

We have now specified how the state of the system is changed by the in-
terface operations. Note that only the notify operation is raised by the event
notification service, while all other operations are raised by components. To
specify the correct behavior of the system, we must thus define in what situ-
ations the notification service must or must not execute the notify operations

28 2 Basics

in reaction to the other operations. We will specify the intended behavior of
the notification service by giving a set of temporal formulas.

Before we present the full specification in the next section, we give some
examples to better understand the semantics of temporal formulas in the
context of event systems. Note that free variables are — if nothing else is said
— assumed to be implicitly universally quantified.

�notify(X, n)

specifies all traces in which component X is eventually notified about n.

�¬unsub(X, F)

specifies all traces in which X never unsubscribes to F .

�[
notify(X, n) ⇒ ��¬notify(X, n)

]
specifies all traces in which, if X is notified about n, X is never notified about
n again. �[

notify(X, n) ⇒ n ∈ N(SX)
]

specifies all traces in which the fact that X is notified about n implies that X
currently has a subscription that matches n. It is important to keep in mind
that the temporal operators determine the place in the trace to which the
imposed conditions are applied. As a last example,

�[
notify(Y, n) ⇒ n ∈ ∪X∈CPX

]
requires that the fact that Y is notified about n implies that there is a com-
ponent X for that n is in PX . This implies X has published n before.

Trace-Based Specification

In the following, a specification of simple event systems is presented that relies
on the trace-based semantics introduced above (cf. [140, 144]). It conforms to
the following informal requirements: A component receives

(a) only notifications it is currently subscribed to
(b) only notifications that have previously been published
(c) a notification at most once
(d) all future notifications matching one of its active subscriptions

While properties (a) to (c) are relatively easy to express, the exact meaning
of property (d) requires the most attention.

Definition 2.5 (Simple Event System). A simple event system is a system
that exhibits only traces satisfying the following requirements:

2.5 Specification of Event Systems 29

� (Safety)

�[
notify(Y, n) ⇒ [

n ∈ N(SY)
]

∧ [
n ∈ ∪X∈CPX

]
∧ [��¬notify(Y, n)

]] (2.1)

� (Liveness)

�[�(F ∈ SY) ⇒ [��(
pub(X, n) ∧ n ∈ N(F) ⇒ �notify(Y, n)

)]]
(2.2)

The specification consists of a safety and a liveness condition [228]. A safety
condition demands that “something irremediably bad” will never happen,
while a liveness condition requires that “something good” will eventually hap-
pen.3 It has been shown that all properties on traces can be expressed as the
intersection of safety and liveness conditions [10, 168, 169].

Here, the safety condition states that a notification should never be deliv-
ered to a consumer more than once, that a delivered notification must have
been published by a component in the past, and that a notification should
only be delivered to a component if it matches one of the component’s active
subscriptions at the time of delivery; entailing requirements (a) to (c) from
the beginning of this section.

The liveness condition is more difficult to understand. It describes precisely
under which conditions a notification must be delivered. The condition can
be rephrased as follows: When a component Y subscribes to a filter F and
does not issue an unsubscription for this filter, then, from some time on,
every notification n that is published by some component X thereafter and
matches the filter will be delivered to the subscribing component. The liveness
condition can be regarded as a precise formulation of requirement (d). Note
that no delivery order (e.g., causal order) is imposed on notifications because
ordering is a highly implementation-dependent and application-specific issue,
and hence is left out of consideration when defining the semantics of simple
event systems. Specifying ordering requirements is discussed in Sect. 2.5.3.

Intuitively, the liveness requirement states that any finite processing delay
of a subscription is acceptable. By abstracting away from real time, a concise
and unambiguous characterization system behavior is obtained. For example,
if a component has subscribed to a filter F and later unsubscribes to it,
the system does not have to notify the component about any notifications
that match F and are published in the meantime; it may nevertheless do so.
Liveness requires delivery if the component continuously remains subscribed
to F . Because the system cannot tell the future, it must at some point start
to deliver notifications until the component unsubscribes to F .

3 For a formal definition of safety and liveness refer to Broy and Olderog [53].

30 2 Basics

Furthermore, the definition of liveness does not directly relate subscribing
and publishing operations to each other, because they are causally indepen-
dent and no semantics is implied here. As an advantage future extensions can
build on this definition to introduce real-time requirements that prevent old
notifications from being delivered to new subscriptions, or caching strategies
that allow for a defined history of notifications to be delivered to newly issued
subscriptions.

A system that satisfies only the safety condition is trivial to implement.
Any system that never invokes a notify operation satisfies the imposed con-
ditions. Similarly, it is easy to implement a system which satisfies only the
liveness condition. Any system that delivers every published notification to
all components fulfills this condition. The challenge is to implement a system
that satisfies both requirements.

2.5.3 A Simple Event System With Ordering Requirements

A simple event system (cf. Def. 2.5) may deliver notifications in an arbitrary
order. For many applications, however, it is important that certain notifi-
cation ordering guarantees are given by the event system. In the following,
we introduce FIFO-producer ordering, causal ordering, and total ordering
as additional safety properties. These properties impose the desired ordering
independent of other safety properties (e.g., those of Def. 2.5). Total order-
ing will probably not be used in most event systems because enforcing a
total order seriously affects the scalability of a system. Note that causal or-
dering implies FIFO-producer ordering, but total ordering is orthogonal to
both FIFO-producer and causal ordering. Hence, for example, total order and
causal ordering can both be required to hold. All ordering properties are of
the form �A ⇒ ¬�B with appropriate temporal formulas inserted for A and
B. The equation means that if A occurs in a trace, then B should not oc-
cur. For FIFO-producer and total ordering, the given property must hold for
all ordered pairs of notifications (n1, n2), where n1 �= n2. This means that
for two concrete notifications a and b the given property must hold for (a, b)
and (b, a). For causal ordering, the given property must hold for all ordered
k-tuples (n1, . . . , nk), where ∀(1 ≥ i, j ≤ k). i �= j ⇒ ni �= nj for all k ≥ 2.

Definition 2.6. An event system respects FIFO-producer ordering iff it only
exhibits traces satisfying the following requirements:

� (Safety FIFO)

n1 �= n2 ∧
�[

pub(C1, n1) ∧ �pub(C1, n2)
]

⇒ ¬�[
notify(C2, n2) ∧ �notify(C2, n1)

]
.

(2.3)

Equation 2.3 states that the notifications that are published by a compo-
nent C1 should not be delivered to a component C2 in an order different from
the order in which they were published.

2.5 Specification of Event Systems 31

Definition 2.7. An event system respects causal ordering iff it only exhibits
traces satisfying the following requirements for every k ≥ 2:

� (Safety Causal)

∀(1 ≥ i, j ≤ k). i �= j ⇒ ni �= nj ∧
�[

pub(C1, n1) ∧
�[

notify(C2, n1) ∧ �[
pub(C2, n2) ∧

. . .

�[
notify(Ck, nk−1) ∧ �pub(Ck, nk)

]
. . .

]]]
⇒ ¬�[

notify(Y, nk) ∧ �notify(Y, n1)
]
.

(2.4)

Equation 2.4 states that if there is a sequence of components C1, . . . , Ck

such that each component Ci publishes a notification ni that is notified to
component Ci+1 if i < k then a component Y should not be notified about
n1 after it was notified about nk.

Definition 2.8. An event system respects total ordering iff it only exhibits
traces satisfying the following requirements:

� (Safety Total)

n1 �= n2 ∧
�[

notify(C1, n1) ∧ �notify(C1, n2)
]

⇒ ¬�[
notify(C2, n2) ∧ �notify(C2, n1)

]
.

(2.5)

Equation 2.5 states that if a component C1 is notified about n1 and even-
tually notified about n2, then a component C2 should not be notified about
n1 after it was notified about n2.

2.5.4 Simple Event System With Advertisements

Advertisements are filters issued by producers to indicate their intention to
publish certain kinds of notifications in the future. Some implementations of
event systems use advertisements to optimize content-based routing [65]. Ad-
vertisements can also be used to control the notifications a producer publishes,
for example, to enforce security policies [34]: if a notification is published by a
component that does not match any of its active (and authorized) advertise-
ments, it should be discarded and not delivered to any component. Moreover,
issued advertisements can be used by components to find out what notifica-
tions currently are potentially published in the system.

Advertisements are easily integrated into the formal model of event sys-
tems presented here: We introduce two more interface operations adv (F) and
unadv(F) (see Table 2.4) that are used by components to issue and revoke

32 2 Basics

Table 2.4. Additional interface operations for advertisements

adv(X, F) Component X advertises filter F

unadv(X, F) Component X unadvertises filter F

Table 2.5. Changes of the state variables caused by the additional interface oper-
ations for advertisements

adv(X, F) A′
X = AX ∪ {F}

unsub(X, F) A′
X = AX \ {F}

advertisements, respectively, and a further state variable AX , which is the set
containing all active advertisements of a component X (i.e., all filters which
X has advertised and not yet unadvertised). The state changes caused by
the two new interface operations are specified in Table 2.5. Again, AX is not
changed besides the given changes above.

In the context of content-based routing, advertisements are used to restrict
the forwarding of subscriptions into those subnets where matching notifica-
tions can be produced. This also means that in reaction to a new advertise-
ment, it might be necessary to forward some new subscriptions into a subnet.
Similar to new subscriptions, this change should intuitively take effect imme-
diately to ensure that a notification published right after a new advertisement
has been issued is delivered to all interested consumers. Again, this is not sen-
sible in a loosely coupled distributed system. Hence, we allow a finite delay of
advertisement processing, too.

Definition 2.9. A simple event system with advertisements is a system which
exhibits only traces satisfying the following requirements:

� (Safety)

�[[
notify(Y, n) ⇒ ��¬notify(Y, n)

] ∧[
notify(Y, n) ⇒ n ∈ ∪X∈CPX ∩ N(SY)

] ∧[
pub(X, n) ∧ n /∈ N(AX) ⇒ �¬notify(Y, n)

]] (2.6)

� (Liveness)

�[[�(F ∈ SY) ∧ �(G ∈ AX)
]

⇒ [��(
pub(X, n) ∧ n ∈ N(F) ∩ N(G)

⇒ �notify(Y, n)
)]] (2.7)

The safety condition has been strengthened such that if a notification is
published that does not match any of the active advertisements of the pub-
lishing component, the notification should not be delivered to any component.

2.6 Further Reading 33

The liveness condition has been weakened and can be rephrased as follows: If a
component Y is always subscribed to F and a component X always advertises
G, then there exists a future time where a notification n published by X that
matches F and G will lead to a delivery of n to Y . The specification without
advertisements can be seen as a special case of those with advertisements if
it is implicitly assumed that every component initially advertises and never
unadvertises a filter that matches any notification.

2.6 Further Reading

The field of event-based communication and computation can be approached
in different ways. There are standards, products, books, and articles from the
distributed systems perspective as well as from other related areas such as
active databases and tuple spaces.

The book by Luckham [242] gives a general introduction to event-based
computing, taking a viewpoint similar to ours. It concentrates on the detection
of event pattern as a fundamental way of implementing distributed applica-
tions. Our goal is a broader treatment of event-based systems, spanning over
multiple areas including algorithmic and practical engineering concerns.

Standardization efforts try to establish a common API as basis for no-
tification service implementations and use. The Object Management Group
(OMG) included standard services into the Corba specification [283]. The
Corba Notification Service offers channels, which publishers and subscribers
choose to dissemination and receive notifications [287]. Consumers may reg-
ister additional filters to reduce the amount of messages. The Notification
Services subsumes and obsoletes the Corba Event Service [280].

The Java Message Service (JMS) is an API specification as part of the
Java 2 Enterprise Edition (J2EE) [364, 365]. JMS coined the term topic-based
subscription, which stands for message grouping according to abstract topics
plus content-based filtering on a set of header fields and properties. JMS is
becoming the dominant messaging API, and lots of commercial, academic, and
open source notification services are implementing this API. A more detailed
discussion of products and prototypes is given in Chap. 9.

The field of software architecture is concerned with the overall organization
of a software systems [165]. It corresponds to the coordination paradigm, since
both deal with the high-level interaction of system components. The architec-
tural point of view focuses more on the static, immutable characteristics of
these constellations. Architecture definition languages (ADLs)4 are employed
to describe the high-level conceptual architecture consisting of components,
connectors, and specific configurations [256] of these. Typical, well-understood
arrangements of connectors and configurations are identified as architectural
styles [3], the patterns of software architecture, and events and implicit invo-
cation is one of them. The event-based architectural style comprises exactly
4 Also: architecture description languages

34 2 Basics

the concepts given in Sect. 2.1, featuring the independence of producer and
consumer components [68, 165]. In fact, Garlan et al. [166] identified early the
prominent importance of using events for the construction of flexible software
architectures.

As mentioned above, Garlan et al. [166] emphasize the importance of
events for flexible software systems, which is corroborated by [355] and others.
One of the first contributions is the Field environment [325], an early work on
tool integration that is built around a centralized server that distributes mes-
sages. Messages sent to the server are selectively rebroadcasted to receivers
that have registered patterns matching the message.

The InfoBus [84] is a small Java API that facilitates communication be-
tween several JavaBeans or cooperating applets on a Web page. Multiple
instances of InfoBus might be manually connected with bridges, providing a
limited means of structuring, but without any inherent interfaces or compo-
sition support. Matching of messages is done by names, i.e., string matching.
Besides being limited to one virtual machine, it is a tool for connecting com-
ponents, not for composing new ones.

3

Content-Based Models and Matching

3.1 Content-Based Data and Filter Models

This section discusses some important content-based data models in conjunc-
tion with corresponding filter models. Informally, a data model defines how
the content of notifications is structured, while a filter model defines how sub-
scriptions can be specified, i.e., how notifications can be selected by applying
filters that evaluate predicates over the content of notifications. The filter
model always depends on the underlying data model, and there can be more
than one filter model for a given data model. The data/filter model has to be
chosen carefully because it has a large impact on the expressiveness and the
scalability of a content-based notification service. In the following, we discuss
tuples, structured records, semistructured records, and objects.

3.1.1 Tuples

In tuple-oriented models a notification is a tuple, i.e., an ordered set of
attributes. All approaches using tuples deploy some sort of templates as
subscription mechanisms. Similarly, to a query-by-example mask, a tem-
plate specifies matching notifications by a partial tuple which can con-
tain wildcards. The attributes in the notification are matched to the at-
tributes in the template according to their position. For example, the notifi-
cation (StockQuote, “Foo Inc.”, 45) is matched by the subscription template
(StockQuote, “Foo Inc.”, ∗). “Matching by position” is inflexible because at-
tributes cannot be optional. Tuples in conjunction with templates were first
proposed by Gelernter in work onLinda Tuple spaces [174], which use typed
attributes. The original version of Linda, however, did not support a subscrip-
tion mechanism, but newer approaches based on Tuple spaces, e.g., JavaS-
paces [366], do. Also, some notification services are built upon tuples: JEDI
models a notification as a tuple of strings [91] in which the first string cor-
responds to the notification name, while the others are normal attributes.
JEDI supports the equality and the prefix operator for matching. Bates et

36 3 Content-Based Models and Matching

al. [32] define notifications as instances of classes. An instance consists of a
tuple of typed attributes derived from a class definition. Here, a template
either specifies the exact value of an attribute or it does not care about the
value. Concluding, tuples with templates provide a simple model that is not
flexible enough because attributes of notifications and templates are matched
to each other according to their position. This disadvantage is diminished by
record-oriented models which use “matching by attribute names.” However,
“matching by position” is more efficient.

3.1.2 Structured Records

In this section structured records are discussed in detail. In a record-oriented
model a notification consists of a named set of attributes. Record-oriented
models can be divided into two categories, which are structured records and
semistructured records, respectively. Roughly speaking, the models can be dis-
tinguished by the fact that in structured records attribute names are unique,
while in the semistructured models several attributes with the same name can
exist. In this section, structured records are discussed; semistructured records
are discussed in Sect. 3.1.3.

Many systems model notifications similarly to structured records consist-
ing of a set of name/value pairs called attributes. Examples are Siena [65],
Gryphon [6, 26], Rebeca [136], JMS [364], and the Corba Notification Ser-
vice [279]. In this model filters address attributes by their unique names and
impose constraints on the values of the respective attributes. In most models
a constraint is assumed to evaluate to false if the addressed attribute is not
contained in the notification. Therefore, each constraint implicitly defines an
existential quantifier over the notification. Besides flat records in which values
are atomic types, hierarchical records in which attributes may be nested can
also be supported easily by using a dotted naming scheme (e.g., Position .x).

Some systems (e.g., Siena) restrict constraints to depend on a single at-
tribute (e.g., {x = 1}). This class of constraints is called attribute filters. Other
systems, such as Elvin, allow constraints to evaluate multiple attributes which
are combined by operators (e.g., {x+y = 5}). In general, multiple constraints
can be combined to form filters by Boolean operators (e.g., {y < 3∧ x = 4}).
Siena and Rebeca restrict filters to be conjunctions of attribute filters. On
one hand, this restriction reduces the expressiveness of the filter model, but
on the other hand it enables routing optimizations like covering (cf. Chap. 4)
to be applied efficiently. The limitation is also not as serious as it seems first.
For example, a filter that is defined by an arbitrary Boolean expression can
always be converted to and treated as a collection of conjunctive filters.

Although records and tuples seem to be similar at a first glance, records
are clearly more powerful because they allow for optional attributes in the
notifications. They also avoid unnecessary “don’t care” constraints in the
templates, and enable the easy addition of new attributes without affecting
existing filters.

3.1 Content-Based Data and Filter Models 37

Data Model

A notification is a message that contains information about an event that
has occurred. Formally, a notification n is a nonempty set of attributes
{a1, . . . , an}, where each ai is a name/value pair (ni, Vi) with name ni and
value vi. It is assumed that names are unique, i.e., i �= j ⇒ ni �= nj , and that
there exists a function that uniquely maps each ni to a type Tj that is the
type of the corresponding value vi.

In the following we distinguish between simple values that are a single
element of the domain of Tj, i.e., vi ∈ dom(Tj), and multi values that are
a finite subset of the domain, i.e., vi ⊆ dom(Tj). An example of a simple
notification is {(type,StockQuote), (name, “Infineon”), (price , 45.0)}.

Filter Model

A filter F is a stateless Boolean function that is applied to a notification,
i.e., F (n) → {true, false}. A notification matches F if F (n) evaluates to true.
Consequently, the set of matching notifications N(F) is defined as {n | F (n) =
true}. Two filters F1 and F2 are identical, written F1 ≡ F2, iff N(F1) = N(F2).
Moreover, they are overlapping, denoted by F1 � F2, iff N(F1) ∩ N(F2) �= ∅.
Otherwise they are disjoint, denoted by F1 � � F2.

A filter is usually given as a Boolean expression that consists of predicates
that are combined by Boolean operators (e.g., and , or , not). A filter consisting
of a single atomic predicate is a simple filter or constraint. Filters that are
derived from simple filters by combining them with Boolean operators are
compound filters. A compound filter that is a conjunction of simple filters
is called a conjunctive filter. In the model proposed filters are restricted to
be conjunctive filters. It is sufficient to consider conjunctive filters because a
compound filter can always be broken up into a set of conjunctive filters that
are interpreted disjunctively and can be handled independently.

An attribute filter is a simple filter that imposes a constraint on the value
of a single attribute (e.g., {name = “Foo Inc.”}). It is defined as a triple
Ai = (ni, Opi, Ci) , where ni is an attribute name, Opi is a test operator
and Ci is a set of constants that may be empty. The name ni determines to
which attribute the constraint applies. If the notification does not contain an
attribute with name ni then Ai evaluates to false . Therefore, each constraint
implicitly defines an existential quantifier over the notification. Otherwise, the
operator Opi is evaluated using the value of the addressed attribute and the
specified set of constants Ci. It is assumed that the types of operands are
compatible with the used operator. The outcome of Ai is defined as the result
of Opi that evaluates either to true or false. Furthermore, an attribute filter is
provided that simply checks whether a given attribute is contained in n. For
the sake of simplicity the more readable notation {price > 10} is used instead
of {(price, >, {10})}. In contrast to most other work (e.g.,)Siena, constraints
that depend on more than one constant are considered in this chapter. This

38 3 Content-Based Models and Matching

enables more operators and enhances the expressiveness of the filtering model
and can be done without affecting scalability.

By LA(Ai) ⊆ dom(Tk) the set of all values is denoted that cause an
attribute filter to match an attribute, i.e., {vi | Opi(vi, Ci) = true}. It is
assumed that LA(Ai) �= ∅. An attribute filter A1 covers an attribute fil-
ter A2, written A1 � A2, iff n1 = n2 ∧ LA(A1) ⊇ LA(A2). For example,
{price > 10} covers {price ∈ [20, 30]}. A1 and A2 are identical, denoted by
A1 ≡ A2, iff n1 = n2 ∧ LA(A1) = LA(A2). A1 and A2 are overlapping iff
n1 = n2 ∧ LA(A1) ∩ LA(A2) �= ∅, denoted by A1 � A2. Otherwise they are
disjoint, denoted by A1 � � A2. For example, {price > 10} and {price < 20}
are overlapping, while {price < 10} and {price > 20} are disjoint.

In the described model a filter is defined as a conjunction of attribute fil-
ters, i.e., F = A1∧ . . .∧An. To enable efficient evaluation of routing optimiza-
tions like covering and merging, at most one attribute filter for each attribute
is allowed. A notification n matches a filter F iff it satisfies all attribute fil-
ters of F . Moreover, a filter with an empty set of attribute filters matches any
notification. An example for a conjunctive filter consisting of attribute filters
is {(type = StockQuote), (name = “Foo Inc.”), (price /∈ [30, 40])}.

The limitation to at most one attribute filter for each attribute is not as
serious as it seems at first glance because the proposed model provides complex
data types as attribute values and an extensible set of constraints that can be
imposed. Moreover, it is often possible to merge several conjunctive constraints
imposed on a single attribute into a single constraint on the same attribute.
Especially suited for this kind of merging are constraints which are either
contradicting (if they are conjuncted) or can be replaced by a single constraint
of the same type. Such types of constraints and their corresponding attribute
filters are called conjunction-complete. For example, interval constraints and
constraints testing whether a point is in a given rectangle in a two-dimensional
plane are conjunction-complete. As an example, {x ∈ [3, 7] ∧ x ∈ [5, 8]} can
be substituted by {x ∈ [5, 7]}. If a constraint type is not conjunction-complete
it is often possible to substitute a set of such constraints by a single constraint
of a more general type. For example, a set of ordering constraints defined on
a totally ordered set (e.g., integer numbers) are either contradictory or can
be replaced by a single interval constraint. As an example, {x ≥ 3 ∧ x ≤ 5}
can be merged to {x ∈ [3, 5]}.

Subscriptions and advertisements are simply filters that are issued by con-
sumers and producers of notifications, respectively. There is no difference in
their model, and hence, subscriptions and advertisements are the exact dual
of each other. This is in contrast to Siena, where subscriptions and adver-
tisements are not exactly complementary, raising a number of problems.

Generic Constraints and Types

Earlier work dealing with content-based notification selection mechanisms of-
ten tightly integrated the constraints that can be put on values and the types

3.1 Content-Based Data and Filter Models 39

of values supported by the matching and the routing algorithms [6, 26]. An ex-
ception is Siena, where matching and routing algorithms are separated from
constraints. However, Siena only supports a fixed set of constraints on some
predefined primitive types.

We propose to use a collection of abstract attribute filter classes. Each of
these classes offers a generic implementation of the methods needed by the
matching and the routing algorithms (e.g., a covering and a matching test)
and imposes a certain type of constraint on an attribute that can be used with
values of all types that implement the operators needed. The appropriate im-
plementation of the operators is called by the constraint class at runtime using
polymorphism. This enables new constraints and types to be defined and to
be supported without requiring changes to the routing and or to the matching
algorithms. Note that although an object-oriented approach is suggested, it
is not mandatory to use it.

For example, a constraint class can realize comparison constraints on to-
tally ordered sets. This class can be used to impose comparison constraints
on all kinds of ordered values (e.g., integer numbers). Consider a type “per-
son” that consists of first and second name, the date of birth, and the place
of birth. This type is easily supported by providing implementations for the
comparison operators which are called by the constraint class to provide the
covering and matching methods using polymorphism.

In the following subsections, some generic attribute constraints are pre-
sented that cover a wide range of practically relevant constraints, but more
important, they illustrate the feasibility of the approach. Of course, this col-
lection is not exhaustive, but other constraints can be integrated easily. For
example, intervals could be used as values. In this case the same operators as
for set constraints can be used because intervals are essentially sets. The in-
vestigation of a subset of regular expressions seems to be promising, too. Most
paragraphs also present a table that gives an overview of covering implication
dealing with the discussed type of constraint. The meaning of a single row in
the Tables 3.1 through 3.7 is: Given A1 and A2 as specified in column 1 and
2, A1 � A2 iff the condition in column 3 is satisfied. In order to test whether
a filter covers another, covering must hold for all attributes, as will be shown
later.

General Constraints

Two general constraints are considered that can be imposed on all attributes
regardless of the type of their value: exists(n) tests whether an attribute
with name n is contained in a given notification, i.e., whether ∃Ai. ni = n.
The exists constraint covers all other constraints that can be imposed on an
attribute.

Constraints on the Type of Notifications

Most work on notification services has a notion of types or classes of noti-
fications. Usually, the type of a notification is specified by a textual string

40 3 Content-Based Models and Matching

that can be tested for equality and prefix. If a dot notation is used, a type
hierarchy with single inheritance can be supported, allowing for the automatic
propagation of interest in subclasses [32]. Unfortunately, multiple inheritance
cannot be supported by a dotted naming scheme. In contrast to that, a direct
support of notification types has a number of advantages. Such an approach
can enable multiple inheritance and achieve a better programming language
integration [120]. Moreover, type inclusion tests can be evaluated more effi-
ciently than the corresponding string operation (i.e., whether the string starts
with a given prefix) [388].

Consequently, a separate constraint that evaluates to true if n is an in-
stance of type T and false otherwise, written n instanceof T , is defined. A
constraint n instanceof T1 covers a constraint n instanceof T2 iff T1 is either
the same type or a supertype of T2 (Table 3.1). It is assumed that the set of
attributes that can be contained in a notification of type T is a superset of
the union of all attribute names of all supertypes of T .

Table 3.1. Covering among notification types

A1 A2 A1 � A2 iff

n instanceof T1 n instanceof T2 T1 = T2 ∨ T1 supertype of T2

Equality and Inequality Constraints on Simple Values

The simplest constraints that can be imposed on a value are tests for equality
and inequality. Covering implications among these tests can always be reduced
to a simple comparison of their respective constants (Table 3.2).

Table 3.2. Covering among (in)equality constraints on simple values

A1 A2 A1 � A2 iff

x = c1 x = c2 c1 = c2

x �= c1
x = c2 c1 �= c2

x �= c2 c1 = c2

Comparison Constraints on Simple Values

Another common class of constraints are comparisons on values for which
the domain and the comparison operators define a totally ordered set (e.g.,
integers with the usual comparison operators). Again, covering among these
tests can be reduced to a simple comparison of their respective constants.
Table 3.3 depicts covering implications of inequality and greater than; for
brevity the other comparison operators are omitted.

3.1 Content-Based Data and Filter Models 41

Table 3.3. Covering among comparison constraint on simple values

A1 A2 A1 � A2 iff

x < c2 c1 ≥ c2

x ≤ c2 c1 > c2

x �= c1 x = c2 c1 �= c2

x ≥ c2 c1 < c2

x > c2 c1 ≤ c2

x = c2 c1 < c2

x > c1 x > c2 c1 ≤ c2

x ≥ c2 c1 < c2

Interval Constraints on Simple Values

Interval constraints test whether a value x is within a given interval I or not,
i.e., x ∈ I and x /∈ I, respectively, where I is a closed interval [c1, c2] with
c1 ≤ c2. Here, computing coverage involves two comparisons (Table 3.4).

Table 3.4. Covering among interval constraints on simple values

A1 A2 A1 � A2 iff

x ∈ I1 x ∈ I2 I1 ⊇ I2

x /∈ I1 x /∈ I2 I1 ⊆ I2

Constraints on Strings

Constraints on strings can be used to realize subjects. In addition to the
comparison operators based on the lexical order, a prefix, a substring, and a
postfix operator are defined. s hasPrefix S and s hasPostfix S mean that s
has the prefix and the postfix S, respectively. s containsSubstring S1 means
that s contains the substring S1. Computing coverage among them requires a
single test (Table 3.5).

Table 3.5. Covering among constraints on strings

A1 A2 A1 � A2 iff

s hasPrefix S1 s hasPrefix S2 S2 hasPrefix S1

s hasPostfix S1 s hasPostfix S2 S2 hasPostfix S1

s hasSubstring S1 s hasSubstring S2 S2 hasSubstring S1

42 3 Content-Based Models and Matching

Set Constraints on Simple Values

Set constraints on simple values test whether or not a value is a member
of a given set. For computing coverage among two of these constraints, a
single set inclusion test is sufficient (Table 3.6). Its complexity depends on
the characteristics of the underlying set. Set constraints can be combined
with comparison constraints if the domain of the value is a totally ordered
set.

Table 3.6. Covering among set constraints on simple values

A1 A2 A1 � A2 iff

x ∈ M1 x ∈ M2 M1 ⊇ M2

x /∈ M1 x /∈ M2 M1 ⊆ M2

Set Constraints on Multi Values

The idea of multi values is to allow a value to be a set of elements. This enables
set-oriented operators which are defined on a multi value X = {v1, . . . , vn}.
For example, the following common operators can be defined:

X subset M ⇔ X ⊆ M

X superset M ⇔ X ⊇ M

X contains a1 ⇔ a1 ∈ X

X notcontains a1 ⇔ a1 /∈ X

X disjunct M ⇔ X ∩ M = ∅
X overlaps M ⇔ X ∩ M �= ∅

To determine covering with respect to these constraints either the evaluation
of a set inclusion test or of a set membership test is needed (Table 3.7).

Table 3.7. Covering among set constraints on multi values

A1 A2 A1 � A2 iff

X subset M1 X subset M2 M1 superset M2

X contains a1 X superset M2 a1 ∈ M2

X superset M1 X superset M2 M1 subset M2

X notContains a1 X disjunct M2 a1 ∈ M2

X disjunct M1 X disjunct M2 M1 subset M2

X overlaps M1 X overlaps M2 M1 superset M2

3.1 Content-Based Data and Filter Models 43

Support for Routing Optimizations

For routing algorithm such as identity-based, covering-based, or merging-
based routing (cf. Chap. 4) as well as for enabling the use of advertisement,
some routing optimization must be efficiently computable.

Identity of Conjunctive Filters

In the following it is shown how identity of conjunctive filters can be reduced
to the respective attribute filters. An identity test among filters is necessary
to implement identity-based routing.

Lemma 3.1. Given two filters F1 = A1
1∧ . . .∧A1

n and F2 = A2
1∧ . . .∧A2

m that
are conjunctions of attribute filters, the following holds: the fact that F1 and
F2 contain the same number of attribute filters and that ∀A1

i ∃A2
j . A1

i ≡ A2
j

implies that F1 and F2 are identical.

Proof. The proof is rather trivial. A notification that matches F1 satisfies all
attribute filters A1

i . For each of these A1
i there is an identical A2

j . Hence, A2
j

is matched, too. As F1 and F2 contain the same number of attribute filters,
this implies that all attribute filters of F2 are matched, too. Therefore, F2 is
also matched. As the same argumentation can be applied to notifications that
match F2, this implies that F1 and F2 match identical sets of notifications,
i.e., they are identical. ��

It is necessary to restrict filters to contain at most one attribute filter
for each attribute in order to strengthen Lemma 3.1 to an equivalence. As a
simple example, {x > 5 ∧ x < 5} is identical to {x �= 5}, although neither
{x > 5} ≡ {x �= 5} nor {x < 5} ≡ {x �= 5}.
Lemma 3.2. Given two filters F1 = A1

1 ∧ . . . ∧ A1
n and F2 = A2

1 ∧ . . . ∧ A2
m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: F1 ≡ F2 implies ∀A1

i ∃A2
j . A1

i ≡ A2
j .

Proof. The proof is by contradiction. We assume that

1. F1 ≡ F2

2. ∀A1
i ∃A2

j . A1
i ≡ A2

j does not hold

and prove that this cannot hold.
The second assumption implies that there is an A1

i for which no identical
A2

j exists. This means that either no attribute filter with the same name is
contained in F2 or that L(A1

i) �= L(A2
j). In the first case, a notification can be

constructed that does not contain the respective attribute and which matches
F2 but does not match F1. Hence, F1 and F2 cannot be identical and the first
assumption is violated. In the second case, a notification can be constructed,
where the value of the respective attribute is in L(A1

i) but not in L(A2
j) if

L(A1
i) ⊃ L(A2

j). This notification matches F1 but not F2. The other way

44 3 Content-Based Models and Matching

around, a notification can be constructed, where the value of the respective
attribute is in L(A2

j) but not in L(Aj
2) if L(A1

i) ⊂ L(A2
j). This notification

matches F2 but not F1. At least one of these two cases needs to occur because
L(A1

i) �= L(A2
j). Hence, F1 and F2 cannot be identical and the first assumption

is violated. The above cases cover all possible cases. ��
Lemma 3.3. Given two filters F1 = A1

1 ∧ . . . ∧ A1
n and F2 = A2

1 ∧ . . . ∧ A2
m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: F1 ≡ F2 implies that F1 and F2 contain
the same number of attribute filters.

Proof. By Lemma 3.2 and the fact the identity relation among filters is sym-
metrical. ��
Corollary 3.1. Two filters F1 = A1

1 ∧ . . . ∧ A1
n and F2 = A2

1 ∧ . . . ∧ A2
m that

are conjunctions of attribute filters with at most one attribute filter for each
attribute are identical iff they contain the same number of attribute filters and
∀A1

i ∃A2
j . A1

i ≡ A2
j .

Proof. By Lemmas 3.1, 3.2, and 3.3. ��
The above corollary essentially states that two filters are identical iff they

constrain the same attributes and iff the attribute filters of each constrained
attribute are pairwise identical (Fig. 3.1).

F1 = {x ≥ 2} ∧ {y > 5}
| | |
≡ ≡ ≡
| | |

F2 = {x ≥ 2} ∧ {y > 5}

Fig. 3.1. Identity of filters consisting of attribute filters

Covering of Conjunctive Filters

In the following it is shown how covering of conjunctive filters can be reduced
to the respective attribute filters. A covering test among filters is necessary
to implement covering-based routing.

Lemma 3.4. Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters, the following holds: ∀i∃j. A1
i � A2

j

implies F1 � F2.

3.1 Content-Based Data and Filter Models 45

Fig. 3.2. F1 � F2 although neither F 1
1 � F 1

2 nor F 1
1 � F 2

2 (two examples)

Proof. Assume ∀i∃j.A1
i � A2

j . Prove F1 � F2. If an arbitrary notification n is
matched by F2 then n satisfies all Aj

2. This fact together with the assumption
implies that n also satisfies all Ai

1. Therefore, n is matched by F1, too. Hence,
F1 � F2. ��
If several attribute filters can be imposed on the same attribute then ∀i∃j.A1

i �
A2

j is not a necessary condition for F1 � F2 (Fig. 3.2). For example, {x ∈ [5, 8]}
covers {x ∈ [4, 7] ∧ x ∈ [6, 9]}, although {x ∈ [5, 8]} covers neither {x ∈ [4, 7]
nor {x ∈ [6, 9]}. If conjunctive filters are restricted to have at most one at-
tribute filter for each attribute, then Lemma 3.4 can be strengthened to an
equivalence:

Lemma 3.5. Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the following holds: F1 � F2 implies ∀i∃j. A1

i � A2
j .

Proof. Assume ¬(∀i∃j. A1
i � A2

j). Prove ¬(F1 � F2). A notification n is
constructed that matches F2 but not F1 to prove that F1 does not cover F2.
The assumption implies that there is at least one A1

k that does not cover any
A2

j . If there exists an A2
l that constrains the same attribute as such an A1

k

then choose for this attribute a value that matches A2
l but not A1

k. Such a
value exists because LA(A1

k) �= ∅ and A1
k �� A2

l . Add name/value pairs for all
other attributes that are constrained in F2 such that they are matched by the
appropriate attribute filters of F2. The constructed notification matches F2

but not F1. Therefore, F1 does not cover F2. ��
Corollary 3.2. Given two filters F1 = A1

1 ∧ . . .∧A1
n and F2 = A2

1 ∧ . . .∧A2
m

that are conjunctions of attribute filters with at most one attribute filter per
attribute, the following holds: F1 � F2 is equivalent to ∀i∃j. A1

i � A2
j .

Proof. By Lemmas 3.4 and 3.5. ��
The above corollary essentially states that a filter F1 covers a filter F2 iff

for each attribute filter in F1 there is an attribute filter in F2 that is covered
by the former (Fig. 3.3).

46 3 Content-Based Models and Matching

F1 = {x ≥ 2} ∧ {y > 5}
| | |
� � �
| | |

F2 = {x = 4} ∧ {y = 7} ∧ {z ∈ [3, 5]}

Fig. 3.3. Covering of filters consisting of attribute filters

Overlapping of Conjunctive Filters

In the following it is shown how overlapping of conjunctive filters can be
reduced to the respective attribute filters. An overlapping test among filters
is necessary to use advertisements for routing optimizations.

Lemma 3.6. Given two filters F1 = A1
1∧ . . .∧A1

n and F2 = A2
1∧ . . .∧A2

m that
are conjunctions of attribute filters, ∃A1

i , A
2
j .

(
n1

i = n2
j ∧ LA(A1

i)∩LA(A2
j) =

∅) implies that F1 and F2 are disjoint.

Proof. Proof: Suppose that F1 and F2 contain attribute filters A1
i and A2

j such
that

(
n1

i = n2
j ∧ LA(A1

i)∩LA(A2
j) = ∅). This means that both filters require

the existence of an attribute with name n1
i and that the value of this attribute

must match LA(A1
i) in order to make a notification match F1 and LA(A2

j) in
order to match F2. As LA(A1

i) and are LA(A2
j) disjoint, this implies that a

given notification can be matched either by F1 or by F2. Hence, F1 and F2

are disjoint. ��
It is necessary to restrict filters to contain at most one attribute filter for

each attribute in order to strengthen Lemma 3.6 to an equivalence. As a simple
example, {x ∈ {3, 5} ∧ x ∈ {4, 5}} is disjoint with {x ∈ {3, 5} ∧ x ∈ {3, 4}}
although there are no disjoint attribute filters.

Lemma 3.7. Given two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m

that are conjunctions of attribute filters with at most one attribute filter for
each attribute, the fact that F1 and F2 are disjoint implies that ∃A1

i , A
2
j .

(
n1

i =
n2

j ∧ LA(A1
i) ∩ LA(A2

j) = ∅).
Proof. Proof: The proof is by contradiction. Suppose that F1 and F2 are
disjoint and that there are no A1

i , A
2
j such that n1

i = n2
j ∧ LA(A1

i)∩LA(A2
j) =

∅. We construct a notification that matches F1 and F2 to imply a contradiction
in following way: For each attribute that is constrained in F1 or F2 add an
attribute whose value satisfies the attribute filters contained in F1 and F2

regarding this attribute. This value must exist because there are no A1
i , A

2
j

such that n1
i = n2

j ∧ LA(A1
i)∩LA(A2

j) = ∅. Hence, the constructed notification
matches F1 and F2, and therefore F1 and F2 are not disjoint. ��

3.1 Content-Based Data and Filter Models 47

Corollary 3.3. Two filters F1 = A1
1 ∧ . . . ∧ A1

n and F2 = A2
1 ∧ . . . ∧ A2

m that
are conjunctions of attribute filters with at most one attribute filter for each
attribute are disjoint, i.e., not overlapping, iff ∃A1

i , A
2
j .

(
n1

i = n2
j ∧ LA(A1

i)∩
LA(A2

j) = ∅).
Proof. By Lemmas 3.6 and 3.7. ��

F1 = {x ≥ 2} ∧ {y > 5}
| | |
� �
| | |

F2 = {x < 1} ∧ {y < 7}

Fig. 3.4. Disjoint filters consisting of attribute filters

F1 = {x ≥ 2} ∧ {y > 5}
| | |

| | |

F2 = {x < 5} ∧ {y < 7}

Fig. 3.5. Overlapping filters consisting of attribute filters

The above corollary essentially states that two filters are disjoint iff for an
attribute that is constrained in both filters the corresponding attribute filters
are disjoint (Fig. 3.4). Hence, two filters are overlapping iff no such attribute
filters exist (Fig. 3.5).

Merging of Conjunctive Filters

Merging-based routing algorithms use abstract merging operations. In this
section merging of conjunctive filters is discussed. The aim of filter merging is
to determine a filter that is a merger of a set of filters. Merging of filters can
be used to drastically reduce the number of subscriptions and advertisements
that have to be stored by the brokers.

Perfect Merging

A set of conjunctive filters with at most one attribute filter for each attribute
can be perfectly merged into a single conjunctive filter if, for all except a

48 3 Content-Based Models and Matching

single attribute, their corresponding attribute filters are identical and if the
attribute filters of the distinguishing attribute can be merged into a single
attribute filter. For example, the two filters F1 = {x = 5 ∧ y ∈ {2, 3}} and
F2 = {x = 5 ∧ y ∈ {4, 5}} can be merged to F = {x = 5 ∧ y ∈ {2, 3, 4, 5}}.
Moreover, a set of attribute filters imposed on the same attribute with name
n can be merged to an exists(n) test if at least one of them is satisfied by
any value. Note that an existence test is equivalent to no constraint if the
attribute is mandatory for the corresponding type of notification.

An algorithm that determines the possibly empty set of filters which are
candidates to be merged with a given filter is depicted later. From the set
of merging candidates the set of attribute filters to be merged can easily be
extracted. This set is used as input of a merging algorithm which has a spe-
cialized implementation for each type of constraint. In the general case purely
algebraic merging techniques have exponential time complexity. Alternatively,
a predicate proximity graph can be used to implement a greedy algorithm
[218]. For many practical cases (e.g., set operators) efficient algorithms exist.
Only in rare cases is it necessary to use an exhaustive combinatorial or a
suboptimal greedy algorithm.

The characteristics of the constraints that are used to define attribute
filters are important for merging. Constraints which only exist in a normal
and a negated form can be directly merged by using some basic laws of Boolean
algebra. For example, the filters F1 = (y = 3∧x = 5) and F1 = (y = 3∧x �= 5)
can be merged to F = (y = 3∧∃x). In general, constraints are not restricted to
be the negated form of each other, and hence better merging can be achieved
by taking the specific characteristics of the imposed constraints into account.

A class of constraints that is complete under disjunction allows a set of
constraints of this class to be merged into a single constraint of the same
class. Examples for disjunction-complete constraints are set inclusions (e.g.,
x ∈ {2, 3, 7}) and set exclusions (e.g., x /∈ {2, 3, 7}) while comparison con-
straints (e.g., x < 4) are not disjunction-complete. If a constraint class is not
disjunction-complete it may still be possible to carry out merging if a specific
merging condition is met. For example, a set of interval tests (e.g., x ∈ [2, 4]
and x ∈ [3, 5]) can be merged into a single interval test (here, x ∈ [2, 5])
if the intervals form a connected set. Otherwise, merging may be possible if
a more general constraint is considered as merging result. For example, two
comparison constraints (e.g., x < 4 and x > 7) can be merged to an interval
test (here, x /∈ [4, 7]).

Merging on the level of attribute filters is implemented by each generic at-
tribute filter class. Table 3.8 presents some perfect merging rules. The mean-
ing of a single row is that A1 and A2 can be perfectly merged to the in-
dicated merger (column 4) if the given merging condition (column 3) holds.
The first two rules can also be applied to equality and inequality tests because
x = a1 ⇔ x ∈ {a1} and x �= a1 ⇔ x /∈ {a1}.

3.1 Content-Based Data and Filter Models 49

Table 3.8. Perfect merging rules for attribute filters

A1 A2 Condition A1 ∪ A2

x ∈ M1 x ∈ M2 - x ∈ M1 ∪ M2

x /∈ M1 x /∈ M2
M1 ∩ M2 = ∅ ∃x

M1 ∩ M2 �= ∅ x /∈ M1 ∩ M2

X overlaps M1 X overlaps M2 - X overlaps M1 ∪ M2

X disjunct M1 X disjunct M2
M1 ∩ M2 = ∅ ∃X

M1 ∩ M2 �= ∅ X disjunct M1 ∩ M2

x = a1 x �= a1 a1 = a2 ∃x

x < a1
x > a2 a1 > a2 ∃x
x ≥ a2 a1 ≥ a2

x ≤ a1
x > a2

a1 ≥ a2 ∃x
x ≥ a2

Imperfect Merging

At a first glance, imperfect merging seems to be less promising, but in situa-
tions in which perfect merging is either too complex or not computable it is a
good compromise. Clearly, there exists a trade-off between filtering overhead
and network resource consumption. Imperfect merging may result in notifica-
tions being forwarded that do not match any of the original subscriptions, but
on the other hand, it reduces the number of subscriptions and advertisements
that must be dealt with.

In order to use imperfect merging, heuristics are necessary that define
in what situations and to what degree imperfect merging should be carried
out. For example, filters that differ in few attribute filters could be merged
imperfectly by imposing on each attribute a constraint that covers all original
constraints. In order to decide whether two given filters should be merged a
heuristic that allows the amount of introduced imperfection to be estimated is
needed. This could also be accomplished by explicitly replacing an attribute
filter with another that only tests for the existence of the given attribute
or by simply dropping the attribute filter. Statistical online evaluation of
filter selectivity would be also a good basis for merging decisions that enables
adaptive filtering strategies. Imperfect merging requires further investigation.

Algorithms

In this section algorithms are presented that are superior to the näıve algo-
rithms (cf. Sect. 3.2.1). The presented algorithms use the generic approach
presented in the previous section: Each generic constraint class (e.g., con-
straints on ordered values) offers specialized indexing data structures to ef-
ficiently manage constraints on attributes. For example, hashing is used for
equality tests. In the following, algorithms for matching, covering, and for

50 3 Content-Based Models and Matching

detecting merging candidates are described that are all based on the pred-
icate counting algorithm (cf. Sect. 3.2.2). Algorithms for detecting identity
and overlapping among filters can be derived similarly.

Matching Algorithm

The näıve algorithm separately matches a given notification against all filters
to determine the set of matched filters. This implies that the same attribute
filter may be evaluated many times. More advanced algorithms avoid this.
Some of these require a costly compilation step (e.g., [181]) that makes them
less suitable for publish/subscribe systems in which subscriptions change dy-
namically. In contrast to that, the algorithm presented here allows filters to be
added or removed at any time. The algorithm is based on the idea of predicate
counting [305, 404] and makes use of our generic approach. The algorithm is
depicted in Fig. 3.6. It determines all filters that match a given notification.

1 Matching Algorithm

Input: notification n, set of filters F
Output: the set M of all filters in F that match n.
{

<For each filter in F a counter is initialized to zero.>

6 for <each Ai contained in n> {

for <each filter S in F that has a constraint on Ai that

is satisfied by the value of the corresponding

attribute of n> {

<Increment the counter of S>
11 }

}

M:=<all filters in F whose counter is equal to their

number of attribute filters>

}

Fig. 3.6. Matching algorithm based on counting satisfied attribute filters

Covering Algorithm

Covering-based routing is built upon two tests: a first test that determines
all filters that cover a given filter, and a second one determines all filters
that are covered by a given filter. The näıve implementation simply tests
each filter against all others sequentially. The algorithms presented here are
more efficient. They are derived from the matching algorithm presented above
(Figs. 3.7 and 3.8).

3.1 Content-Based Data and Filter Models 51

Covering Algorithm I

Input: filter F1, set of filters F
Output: the set C of all filters in F that cover F1.

{

5 <For each filter in F a counter is initialized to zero.>

for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

covers Ai> {

<Increment the counter of S>
10 }

}

C:=<all filters in F whose counter is equal to their

number of attribute filters>

}

Fig. 3.7. Covering algorithm that determines all covering filters

1 Covering Algorithm II

Input: filter F1, set of filters F
Output: the set C of all filters in F that are covered by F1.

{

<For each filter in F a counter is initialized to zero.>

6 for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

is covered by Ai> {

<Increment the counter of S>
}

11 }

C:=<all filters in F whose counter is equal to the

number of attribute filters of F1>

}

Fig. 3.8. Covering algorithm that determines all covered filters

Merging Algorithm

We present an algorithm that determines all possible merging candidates.
These are those filters that are identical to a given filter in all but a single
attribute. The algorithm avoids testing all filters against all others. It counts
the number of identical attribute filters to find merging candidates (Fig. 3.9).

The further handling of the set of merging candidates depends on the
constraints involved. For all constraints discussed (e.g., set constraints on
simple values) there exists an efficient algorithm which outputs a single merged
filter and a set of filters not included in the merger. For other constraints, an
optimal algorithm requires exponential time complexity [87]. In this case the

52 3 Content-Based Models and Matching

use of greedy algorithms or heuristics (e.g., using a predicate proximity graph)
seems to be promising.

1 Merging Algorithm

Input: filter F1, set of filters F
Output: set M of all merging candidates

{

<For each filter in F a counter is initialized to zero.>

6 for <each Ai contained in F1> {

for <each filter S in F that has a constraint Aj that

is identical to Ai> {

<Increment the counter of S>
}

11 }

M:=<all filters in F whose counter is one smaller than or

equal to their number of attribute filters>

}

Fig. 3.9. Merging algorithm based on counting identical attribute filters

3.1.3 Semistructured Records

In the previous section structured records have been discussed in detail. In this
section a model for semistructured records is presented. The structured and
the semistructured model are mainly distinguished by the following fact: In
the structured model attribute names are unique, and hence an attribute name
uniquely addresses a single attribute. On the contrary, in the semistructured
model sibling attributes can have the same name, and therefore names address
sets of attributes.

In the following, a model for semistructured records is presented in which
notifications are essentially XML [399] documents. The filtering mechanisms
are similar to but less powerful than XPath [398]. After the model has been
introduced, how routing optimizations can be achieved is discussed.

According to Bunemann [55] semistructured data can be characterized as
some kind of graphlike or treelike structure that is often called self-describing
because the schema of the data is contained in the data itself. At the moment,
the most prominent semistructured data model is XML [399]. Similarly, to
structured records, a semistructured record is a set of nested attributes, but
in contrast to structured records, in semistructured records sibling attributes
can have the same name. In consequence, a single attribute can no longer be
uniquely addressed by its name alone. Instead, names (e.g., car.price), which
are usually called paths in this context, select sets of attributes. Therefore,
filtering strategies assuming that a single attribute is addressed by a given

3.1 Content-Based Data and Filter Models 53

name cannot directly be used in this scenario. One way to approach this
problem is to use path expressions (e.g., XPath [398]), which select a set of
attributes and impose constraints on the selected attributes.

Clearly, the semistructured model is more powerful than structured re-
cords, but work in this area related to content-based routing is still in its early
stages. Lately, using XML and path expressions has gained increased atten-
tion. Nguyen et al. [271] and Chen et al. [77] described approaches for XML
continuous queries. Altinel and Franklin [12] presented an efficient method for
filtering XML documents using XPath expressions. All this work concentrates
on efficient local matching and does not deal with distributed content-based
routing. First ideas on how to support routing optimizations like covering and
merging for semistructured records was presented by Mühl and Fiege [264].
These ideas are discussed later in this section.

Data Model

In the semistructured data model a notification is a well-formed XML docu-
ment [399] and consists of a set of elements that are arranged in a hierarchy
with a single root element uniquely named “notification”. Each element con-
sists of a set of attributes whose names must be distinct and a set of subordi-
nate child elements, which are named but whose names must not necessarily
be distinct. An attribute A is a pair (ni, vi) with name ni and value vi. Names
of attributes must be unique with respect to elements. A simple notification
that describes an auction is shown in Fig 3.10. In this example, the element
auction has two subelements that are named item . Furthermore, the element
cpu contains an attribute clock whose value is 800. Note that XML documents
can contain free text between the opening and the closing tag of an element.
Here, this text is simply ignored.

Filter Model

In the semistructured filter model a filter is a conjunction of path filters.
Each of the path filters selects a subset of the elements in a notification by
an element selector and places constraints on the attributes of the selected
elements by an element filter, which consists of a set of attribute filters. In
the following, this model is described in full detail.

An element selector selects a subset of the elements of a notification and
is specified by an attribute path. It is distinguished between absolute and ab-
breviated paths. An absolute path is a slash-separated string that starts with
a single slash (e.g., /notification/auction). An abbreviated path is a slash-
separated string that starts with two slashes (e.g., //cpu). An absolute (ab-
breviated) path selects all elements whose path is equal to (ends with) the
given path. For example, //item selects both item elements of the notification
in Fig. 3.10.

54 3 Content-Based Models and Matching

1 <notification>

<auction

endtime="05/18/02 22:17:42"

minprice="50">

<seller

6 name="Smith"

id="1234"/>

<item>

<board

manufacturer="Elitegroup"

11 type="K7S5"

socket="Socket A"/>

</item>

<item>

<cpu

16 manufacturer="AMD"

type="Athlon"

socket="Socket A"

clock="800"/>

</item>

21 </auction>

</notification>

Fig. 3.10. A simple notification

An attribute filter is a pair A = (n, Q) consisting of a name n (e.g.,
manufacturer) and a constraint Q (e.g., = “AMD”). An element matches an
attribute filter if the element contains an attribute with name n whose value v
satisfies Q, e.g. (manufacturer , “AMD”). This means that an attribute filter
evaluates to false if the element does not contain an attribute with name n.
Therefore, an attribute filter implicitly defines an existential quantifier over
an element.

An element filter C is a conjunction of a nonempty set A of attribute filters
{A1, . . . , Ai}, i.e., C =∧i Ai. Hence, an element matches an element filter iff
all attribute filters are satisfied. An example of an element filter based on the
syntax of XPath is [@manufacturer = “AMD” ∧ @clock ≥ 700]. Note that
in this notation attribute names are prefixed by an “@”.

A path filter P = (S, C) consists of an element selector S and an el-
ement filter C. A notification n matches a path filter P if at least one
element of n is selected by S that matches C. It is possible to extend
this model in such a way that an interval constraint can be imposed on
both the number of elements that match an element filter and the num-
ber of elements that must not match. These extensions are not discussed for
brevity. An example of a complete path filter based on an absolute path is:
/notification/auction/item/cpu [@manufacturer = “AMD” ∧ @clock ≥ 700].

3.1 Content-Based Data and Filter Models 55

A filter F is a conjunction of path filters {P1, . . . , Pn}. Hence, a notification
matches a filter if all path filters are satisfied. The set of all notifications that
match a given filter F is N(F).

Covering

This section discusses how covering among filters can be detected in the
semistructured model. Similar results can easily be obtained for identity and
overlapping, too. These are not discussed for brevity.

Let LA(A) be the set of all values that cause an attribute filter A to
match an attribute. An attribute filter A1 = (n1, Q1) covers an attribute
filter A2 = (n2, Q2), denoted by A1 � A2, iff n1 = n2 ∧ LA(A1) ⊇ LA(A2).
For example, [@clock ≥ 600] covers [@clock ≥ 700].

Let LE(C) be the set of all elements that match an element filter C.
An element filter C1 covers an element filter C2, denoted by C1 � C2,
iff LE(C1) is a superset of LE(C2). For example, [@clock ≥ 600] covers
[@manufacturer = “AMD” ∧ @clock ≥ 700]. Furthermore, C1 is disjoint
with C2 with respect to the constrained attributes if there exists no attribute
that is constrained in both element filters. For example, [@minprice < 100] is
disjoint with [@name = “Pu”] with respect to their constrained attributes.

Corollary 3.4. Given two element filters C1 and C2, neither of which con-
tains two attribute filters with the same name, the following holds: C1 � C2

is equivalent to ∀j∃i. A1
i � A2

j .

Let LS(S) be the set of all elements that are selected by an element selector
S. An element selector S1 covers an element selector S2, denoted by S1 � S2,
iff LS(S1) ⊇ LS(S2). S1 is disjoint with S2, iff LS(S1) ∩ LS(S2) = ∅.

In the model presented here, an absolute path covers another absolute
path iff both are identical. An absolute path only covers an abbreviated path
iff the former is /notification and the latter is //notification, as the root
element has a unique name. An abbreviated path covers another (abbreviated
or absolute) path iff the former is a suffix of the latter (without the leading //
or /). For example, //cpu covers //item/cpu because the former path selects
all elements named cpu , while the latter only selects those elements named
cpu which are a subelement of an element with name item.

Let LP (P) be the set of all elements that match a path filter P . A path
filter P1 = (S1, C1) covers another path filter P2 = (S2, C2), written P1 � P2,
iff LP (P1) ⊇ LP (P2). For example, the path filter //cpu[@manufacturer =
“AMD”] covers //cpu[@manufacturer = “AMD” ∧ @clock ≥ 700]. P1 is
disjoint with P2, iff either S1 is disjoint with S2 or if C1 is disjoint with C2

with respect to their constrained attributes.

Corollary 3.5. Given two path filters P1 = (S1, C1) and P2 = (S2, C2), the
following holds: P1 � P2 is equivalent to S1 � S2 ∧ C1 � C2.

56 3 Content-Based Models and Matching

A filter F1 covers a filter F2, denoted by F1 � F2, iff N(F1) ⊇ N(F2).

Corollary 3.6. Given two filters F1 = P 1
1 ∧ . . . ∧ P 1

n and F2 = P 2
1 ∧ . . . ∧ P 2

m

which are conjunctions of disjoint path filters the following holds: F1 � F2 is
equivalent to ∀i∃j. P 1

i � P 2
j .

For example, the filter {//cpu[@type = “Athlon”]} covers
{//seller [@name = “Pu”] ∧ //cpu[@type = “Athlon” ∧ @clock ≥ 600]}.

3.1.4 Objects

Using objects as notifications is widely used in GUIs (e.g., Java AWT [358])
and visual components (e.g, JavaBeans [359]). The Java Distributed Event
Specification [361], which is built upon Java RMI, also uses objects. The
difference between this approach and a notification service is that consumers
must directly register with the source of an event. Eugster and Guerraoui
[124] present how to use structural reflection for content-based filtering of
notifications. The object-oriented model is most flexible and powerful, but
routing optimizations like covering and merging are difficult to achieve if filters
can contain arbitrary code. Mühl and Fiege [264] have presented first ideas on
how to support routing optimizations like covering and merging for objects.
These ideas are discussed later in this section.

A purely object-oriented approach models notifications and filters as ob-
jects. A clear advantage of such a model is that it can easily be integrated with
object-oriented programming languages. In contrast to that, models that are
based on, e.g., name/value pairs, can only operate on serialized instances of
objects violating object encapsulation. Unfortunately, routing optimizations,
and in particular, covering and merging, are difficult to achieve if filters can
contain arbitrary code. In this section three scenarios for which covering and
merging can be supported are described.

Calling Methods on Attribute Objects

Regardless of whether the data models depend on structured or on semistruc-
tured records, it is possible to embed objects in notifications. In this case
public members can be accessed and public inspector methods can be invoked
on the embedded object after it has been instantiated. The returned member
or the return value of the inspector method can either be a Boolean value
that is directly interpreted as result of the attribute filter or a value that is
used in order to evaluate the actual constraint.

For example, suppose that an instance of a class StockQuote has been em-
bedded in a notification as an attribute with name quote. Then an attribute
filter that evaluates this attribute could be specified like this: {quote.id() =
“IBM”}. For example, this filter covers {quote.isRealTime() ∧ quote.id() =
“IBM” ∧ quote.Price() > 45.0}. Moreover, it could be merged with a fil-
ter {quote.id() = “MSFT”} to a filter {quote.id() ∈ {“IBM”, “MSFT”}}.

3.2 Matching Algorithms 57

As stated in [121, 124], structural reflection (e.g., supported by Java) can
be used to invoke the specified methods. Unfortunately, the model does not
allow us to detect all covering relations among filters. For example, a filter
{quote.Volume() > 10, 000} covers a filter {quote.Price() > 100 ∧ quote.
Quantity() > 100} because the volume is defined as the product price multi-
plied by the quantity.

Filtering on Notification Classes

Here, notifications are objects and consequently they are an instance of some
class. Hence, class filters can be used that evaluate the class of a notification:
A notification matches a filter if it is assignable to the specified class. It is
also possible to support covering and merging. A class filter covers another
class filter if an instance of the latter class can be assigned to an instance of
the former one. A set of class filters can be merged perfectly if they either
contain a class which covers all other classes or if they represent all direct
subclasses of their common superclass. Figure 3.11 shows the implementation
of a ClassFilter in Java. The integration with content-based filtering can
be achieved by supporting filters that are conjunctions of a class filter and
a specialized filter object whose match method is invoked if the class filter
returned true.

Specialized Filter Objects

Another possibility is to use specialized filter objects, an approach that can
also be combined with class filters. Such a filter implements a match method
that evaluates whether a notification matches this filter instance or not. More-
over, it can also implement methods for covering and merging. Figure 3.12
shows the implementation of a QuoteFilter in Java. Note that the filters
can also be built upon a more generic filter library, which offers, for example,
set-oriented filters.

3.2 Matching Algorithms

Matching is probably the most fundamental functionality in a publish/sub-
scribe system. A matching algorithm determines the filters, and thus the re-
cipients, that are matched by a given notification. In this chapter several
common approaches are discussed, including brute force, predicate counting,
decision trees, binary decision diagrams, and efficient XML matching.

One must carefully distinguish between notification matching and notifica-
tion forwarding. While matching aims at determining all filters that match a
given notification, notification forwarding aims at determining all destinations
for which a filter exists that matches a given notification. This means that for

58 3 Content-Based Models and Matching

class ClassFilter {

protected Class class;

3

public boolean covers(ClassFilter filter) {

return class.isAssigneableFrom(filter.class);

}

8 public static ClassFilter merge(ClassFilterSet filters) {

Class superClass=filters.getCommonSuperClass();

if (superclass!=null) {

if (filters.contain(superClass))

return new ClassFilter(superClass);

13 if (filters.containAllSubclasses(superClass))

return new AllSubclassesFilter(superClass);

}

return null;

}

18

public boolean match(Notification n){

return class.isInstance(n);

}

}

Fig. 3.11. Implementation of a ClassFilter in Java

public class QuoteFilter {

3 public boolean covers(QuoteFilter qf){

return getSymbolSet().isSuperSet(qf.getSymbolSet());

}

public static QuoteFilter merge(QuoteFilter[] qf){

8 return new QuoteFilter(QuoteFilter.

unionOfSymbolSets(qf));

}

public boolean match(Event e) {

13 if (!(e instanceof QuoteEvent))

return false;

return (qf.getSymbolSet().contains(

((QuoteEvent)e).getSymbol()));

}

18 }

Fig. 3.12. Implementation of a QuoteFilter in Java

3.2 Matching Algorithms 59

the latter it may not be necessary to determine all matching filters. However,
most algorithms do not exploit this difference. They determine all matching
filters and derive the set of destinations by “or-ing” the individual destination
of each filter. In the following, we concentrate on notification matching.

3.2.1 Brute Force

This is the simplest algorithm. It tests the given notification sequentially
against all filters. The main advantage of this algorithm is that it can be
used for all kind of filters; for example, it does not presume that filters are
conjunctive filters. Moreover, it does not require some kind of preprocessing
as other algorithms do. The main disadvantage of this näıve algorithm is
its degraded performance. This is because the same predicate is evaluated
many times if it is part of many filters. Moreover, the dependencies among
predicates are not exploited. For example, the algorithm does not exploit that
if the predicate {x = 5} is matched, the predicate {x = j} for any j �= 5
cannot be matched.

3.2.2 Counting Algorithm

Yan and Garcia-Molina have proposed to use the counting algorithm for docu-
ment matching [404]. This algorithm separates filter matching from predicate
matching. This way, the algorithm avoids evaluating predicates more than
once. In the following, we depict the algorithm for conjunctive filters consist-
ing of attribute filters.

For each filter there is a counter that is initialized to 0. Then, all match-
ing attribute filters are determined. For each matching attribute filter, the
counters of those filters are incremented which contain the attribute filter as
conjunctive term. After all matching attribute filters have been processed,
those filters whose counter equals the number of predicates this filter consists
of match the given notification.

The simplest strategy to find all matching predicates is to sequentially test
each attribute filter as to whether or not it is matched by the given notification.
A more advanced strategy is to use multilevel index structures that depend
on the type of constraint (e.g., a hash table can be used for equality tests).
The first level of the index (the attribute name index) is used to look up all
attribute filters constraining an attribute by its name. The second level (the
operator index) is used to look up all of those constraints that use a given
operator (e.g., equivalence or greater than). The third level (the value index),
finally, allow to find all of those attributes for the respective attribute and
operator that are satisfied. In this way all matching attribute filters can be
found without testing all attribute filters for satisfaction.

Figure 3.13 shows a simple example, where a notification is matched
against three filters F1, F2, and F3. From these filters only F1 is matched
by the notification.

60 3 Content-Based Models and Matching

Fig. 3.13. Using a multilevel index structure for the counting algorithm

Stock =

Price < Price > Volume >

AB Inc.
*Foo Inc.

F1 F2 F3 F4

15 12 16 1,000,000

Stock =

Price < Price > Volume >

AB Inc.
*Foo Inc.

F1 F2 F3 F4

15 12 16 1,000,000

Fig. 3.14. An exemplary decision tree

3.2.3 Decision Trees

Aguilera et al. [6] have proposed using decision trees for matching in publish/-
subscribe systems. A decision tree arranges tests, test results, and filters in
a tree; usually conjunctive filters consisting of attribute filters are assumed.
In the tree, nonleaf nodes are tests (e.g., price <), while leaf nodes repre-
sent filters. Finally, edges are test constants (e.g., 10). The decision tree is
usually traversed in depth-first order. The traversal follows an edge if the
notification matches the attribute filter that is formed by the test and the
test constants (e.g., price < 10). The filters that are reached, match the
given notification. Figure 3.14 shows an exemplary decision tree. The tree
contains the filters F1 = {Stock = “Foo Inc” ∧ Price < 15}, F2 = {Stock =

3.2 Matching Algorithms 61

Stock = “Foo Inc.”

Price > 15

0 1

Volume > 1,000,000

Stock = “Foo Inc.”

Price > 15

0 1

Volume > 1,000,000

Fig. 3.15. An exemplary binary decision diagram

”Foo Inc.” ∧ Price < 12}, F3 = {Stock = ”AB Inc.” ∧ Price > 16}, and
F4 = {Volume > 1, 000, 000}.

3.2.4 Binary Decision Diagrams

Campailla et al. [58] suggested using binary decision diagrams (BDDs) for
matching in publish/subscribe systems. BDDs are not restricted to conjunc-
tive filters. They can be used to express arbitrary Boolean functions. In the
following, we describe the basics of BDDs and how they can be used in pub-
lish/subscribe systems.

BDDs are directed acyclic graphs. In a BDD, there are two terminal nodes
(i.e., nodes without outgoing edges) with the labels 1 and 0. These stand for
the predicates true and false , respectively. Each nonterminal node corresponds
to a predicate (e.g., price < 10) and has two outgoing edges, the low edge
and the high edge. A subset of the nodes is marked as output nodes ; each
output node represents a filter. Figure 3.15 shows a simple BDD with a single
output node. The solid lines are the high edges while the dashed lines are
the low edges. The filter that corresponds to the output node is {Stock =
“Foo Inc.” ∧ (price > 15 ∨Volume > 1, 000, 000)}.

A filter is evaluated by traversing the BDD starting from the given output
node (Fig. 3.16). While traversing the BDD, the high edge is followed if the
predicate corresponding to the visited node is fulfilled by the given notifica-
tion; the low edge is followed otherwise. A notification matches a filter if finally
the node 1 is reached; if 0 is reached, the notification does not match. For ex-
ample, the notifications {{Stock , ”Foo Inc.”}, {Price, 16}, {Volume, 10, 000}}
and {{Stock , ”Foo Inc.”}, {Price, 14}, {Volume, 1, 000, 000}} match the BDD
shown in Fig. 3.15.

Evaluating all filters separately can be avoided by using ordered binary
decision diagrams (OBDDs). In a OBDD, the nodes are numbered such that
for every path, the numbers of the visited nodes are strictly monotonically
increasing. This means that the nodes 0 and 1 are numbered by n and n− 1,

62 3 Content-Based Models and Matching

v := <output node of filter>;

2 while <v is not a terminal node> do

if eval[v] then

v := high[v];

else

v := low[v];

7 endif

endwhile

matched := label[v];

Fig. 3.16. Evaluating a filter using a binary decision diagram

1 for v := n downto 1 do

if <v is terminal node> then

value[v] := label[v];

else

a := eval[v];

6 value[v] := a and value[high[v]] or

not a and value[low[v]];

endif

endfor

Fig. 3.17. Evaluating an ordered binary decision diagram

respectively. OBDDs are evaluated bottom-up by visiting the nodes in de-
creasing order starting by node n. If the visited node is a terminal node, a
value of 1 is assigned if node 1 is visited and 0, otherwise. If a nonterminal
node v is visited it is assigned the value p(v)∧ low (v)∨¬p(v)∧high(v), where
p(v) is the result of the predicate corresponding to node v, and low (v) and
high(v) are the values assigned to the node to which the low and the high edge
originating at v are leading, respectively. A filter is matched, if to its output
node 1 is assigned; otherwise it is not matched. The algorithm is shown in
Fig. 3.17.

A reduced ordered binary decision diagram (ROBDD) is an OBDD from
which redundant nodes and isomorphic subgraphs are removed. It is known
from the research on Boolean function minimization that ROBDDs exhibit
exponential grow for some Boolean functions (e.g.,the chessboard function).
The predicate numbering has a large effect on the size of the ROBDD, too.
While some functions require exponential size only for a subset of the potential
predicate orderings, other functions require exponential size for all possible
variable orderings. Finding the optimal ordering is known to be NP-hard.
BDDs can easily be logically combined. For example, the BDD of a negated
function is the BDD of the function, where the nodes 0 and 1 are swapped.
BDDs can also “or-ed” and “and-ed” together.

3.2 Matching Algorithms 63

Fig. 3.18. XPath Queries and their corresponding finite state automaton

3.2.5 Efficient XML Matching

As XML becomes more popular, using XML as a data model for publish/-
subscribe systems is also gaining increased attention. In the area of XML
processing, XPath [398] is often used to select parts of an XML document
that match a path expression. This approach can also be used to test whether
a document contains a matching part. A path expression searches for ele-
ments and attributes in an XML document that satisfy the given condition.
Because XPath allows for very complex queries, implementing efficient match-
ing for XPath filters is challenging. In the literature, XFilter and YFilter have
been proposed to facilitate XPath for matching XML documentsr. Both ap-
proaches are based on finite state machines (FSMs). Recent approaches [183]
are based on a constructing a deterministic finite automaton (DFA) from the
given NFA. In the following, we give an overview of XFilter and its succes-
sor YFilter. Altinel and Franklin [12] have proposed XFilter, which was the
first FSM-based approach. XFilter translates each XPath query into a sep-
arate FSM (Fig. 3.18) and uses a novel indexing mechanism to allow all of
the FSMs to be executed simultaneously during the processing of a document.
When a document arrives, it is processed by an event-based XML parser (e.g.,
based on the SAX interface). The events raised (e.g., an element is opened or
an element is closed) during parsing are used to drive the FSMs through their
various transitions. A query is said to match a document if during parsing,
an accepting state for that query is reached. The approach of XFilter to use
one FSM per XPath query has the disadvantage that commonalities among
queries are not exploited.

64 3 Content-Based Models and Matching

Fig. 3.19. Combined nondeterministic finite state automaton

YFilter, which can be seen as the successor of XFilter, was proposed by
Diao et al. [110, 111, 112]. YFilter combines all path expressions into a sin-
gle nondeterministic finite automaton (NFA) (Fig. 3.19), where the common
prefixes among path expressions are shared, i.e., represented only once. This
NFA-based approach can be extended to also process predicates attached to
path expressions. The authors have developed two alternatives to combining
the NFA execution and predicate evaluation. One approach evaluates predi-
cates as early as their addressed elements are matched, while the other delays
predicate evaluation until the corresponding path expression has been entirely
matched.

3.3 Further Reading

Approximate Matching

In this chapter we assumed the Boolean filter model [404]. Either the notifica-
tion exactly matches the filter or it does not match the filter. An alternative
to exact matching is approximate matching. Liu and Jacobsen presented A-
ToPSS [240], a publish/subscribe prototype with approximate matching. Yan
and Garcia-Molina [403] discussed index structure for information filtering
under the vector space model.

Matching Algorithms

Fabre et al. [132] and Pereira et al. [305] present matching algorithms which
exploit similarities among predicates. In a first step the satisfied predicates are
computed, and after that the number of predicates satisfied by a subscription
are counted using an association table. Two variants of this algorithm are de-
scribed that incorporate special treatment of equality tests and of constraints
having only inequality tests.

3.3 Further Reading 65

A predicate matching algorithm for database rule systems is presented by
Hanson et al. [187] that indexes the most selective predicate that is determined
by the query optimizer. They use a special indexing data structure called
interval binary search tree to support the efficient evaluation of interval tests.

Gough and Smith [181] present a matching algorithm that is based on
automata theory. They show how a set of conjunctions of predicates, each
dependent on exactly one attribute, can be transformed to a deterministic
finite state automaton. In the paper different types of test predicates are con-
sidered and complexity results are obtained. Their algorithm is very efficient,
but its worst-case space complexity is exponential. The proposed solution is
also not suited for dynamic environments as the automaton has to be newly
constructed from scratch if subscriptions change.

Pu et al. [241, 372] present indexing strategies for continual queries based
on trigger patterns. In particular, a strategy which uses an index on the most
selective predicate is described. More complex indexing strategies exploit sim-
ilarities among trigger patterns to reduce the processing costs. They restrict
optimizations to constraints which place a constraint on a single attribute
involving at most one constant.

Gryphon uses the content-based matching algorithm presented by Aguil-
era et al. [6]. This algorithm traverses a parallel search tree, where nonleaf
nodes correspond to simple tests and edges from nonleaf nodes represent re-
sults. Leafnodes are associated with matched subscriptions. Banavar et al. [26]
present a multicast routing algorithm that executes the matching algorithm
at each broker. The algorithm presented is limited to equality tests.

4

Distributed Notification Routing

In this chapter we describe how a simple event system can be implemented by
distributed notification routing relying an overlay network of brokers. To em-
phasize that we focus on the communication in this chapter, we use the term
publish/subscribe system instead of event system for the rest of this chapter.
We first introduce our system model and a routing framework in Sect. 4.1
and Sect. 4.2, respectively. Then, we introduce the notion of valid and mono-
tone valid routing algorithms that are sufficient for correct publish/subscribe
systems in Sect. 4.3. Section 4.4 defines valid framework instantiations that
implement monotone valid routing algorithms. A set of content-based routing
algorithms is presented as instances of the routing framework, and their valid-
ity is shown in Sect. 4.5. Then, in Sect. 4.6 extensions of the basic framework
are described informally. They deal with advertisements, hierarchical routing,
rendezvous-based routing, topology changes, joining and leaving clients, rout-
ing in cyclic topologies, exploiting IP multicast, and topology maintenance.

4.1 System Model

In our model, the publish/subscribe system consists of a set of cooperating
concurrent processes B1, . . . , Bn, called brokers ,1 that are arranged in a topol-
ogy. If nothing else is said, we restrict ourselves to acyclic connected topologies.
This restriction can be circumvented by running a spanning tree algorithm on
the original (potentially cyclic) topology. Of course, routing algorithms that
can deal more directly with cyclic topologies are desired (cf. Sect. 4.6.6). Since
we focus more on the implementation in this chapter, we call the components
(cf. Chap. 2) that connect to the event notification service clients . Each bro-
ker B manages a mutually exclusive set of local clientsLB that is a subset of
all clients C. Clients communicate with their broker using local synchronous
procedure calls. Concurrent updates to local data structures are synchronized

1 In this chapter, we do not distinguish among border, inner, and local brokers.

68 4 Distributed Notification Routing

using a broker-specific monitor µB. Moreover, each broker is connected to a
set of neighbor brokers NB. Brokers communicate with their respective neigh-
bors by asynchronous message passing. For this chapter, we refer with Bi to
an arbitrary broker and by Bj to an arbitrary neighbor of Bi, i.e., Bj ∈ NBi .

Assumptions

The subsequent discussion is based on the following assumptions:

� Clients are stationary, i.e., they cannot disconnect from one broker and
connect to another broker; client mobility is addressed in Sect 8.4.

� We first concentrate on a system without advertisements; their discussion
is postponed to Sect. 4.6.1.

� The topology is static; topology changes are discussed in Sect. 4.6.4.
� The set of clients is static; clients that join and leave the system are dis-

cussed in Sect. 4.6.5.
� The system is not overloaded; congestion control is discussed in Sect. 8.3.
� The system is fault-free; fault tolerance is discussed in Sect. 8.2.
� The communication channels are reliable and respect FIFO message or-

dering; no messages are duplicated, lost, corrupted, or erroneously sent,
and messages are received in the order in which they have been sent. These
assumptions are not severe restrictions because they can easily be achieved
by using transport layer functionality (e.g., TCP).

� The message delay is unbounded but finite. Since channels are reliable this
implies that if a message is sent, it is eventually received.

Fairness Property

To allow us to prove liveness properties, the entire system has to satisfy a
fairness property, namely that (a) no pending message (i.e., a message that
was received but which has not yet been processed) and (b) no thread waiting
to enter a monitor can be infinitely delayed by a process because of unfavorable
scheduling choices of that process. The fairness property allows us (together
with the reliable channel assumption and the finite message delay) to conclude
that if a message was sent, it is eventually processed. In the implementation,
the property is respected by using fair scheduling (e.g., round robin on all
incoming channels). Furthermore, if no deadlocks can occur, it allows us to
conclude that a thread waiting to enter a monitor will eventually enter this
monitor.

Message Batching

In many cases when we discuss algorithms in the following, message batching
could be used. In this case, the sending of a message is postponed until a
timeout occurs. If more than one message is “sent” to the same destination

4.2 Routing Algorithm Framework 69

before the timeout occurs, those message are combined into a single, larger
message. While this may reduce the network overhead, it may introduce an
additional delay to messages. We mainly refrain from using message batching
and piggybacking in the following because it would overly complicate the
discussion of the algorithms.

4.2 Routing Algorithm Framework

The pseudocode of the routing framework that runs on each broker is de-
picted in Figs. 4.1 and 4.2. The main program (lines 1–11) starts when the
broker is created. It initializes the routing table of the broker, a monitor,
and, for each local client, a delivery queue. Then, it enters an infinite loop
(lines 4–10) that dispatches messages arriving from neighbor brokers to the
handleMessage procedure. This is done in a fair way, e.g., by using round
robin. The handleMessage procedure (lines 37–46) further dispatches a mes-
sage based on its type. The framework uses two types of messages for its
internal implementation that are exchanged among neighboring brokers using
asynchronous message passing: (1) forward (n), which is used to disseminate
a notification n in the broker network and (2) admin(S, U), which is used to
propagate routing table updates by interpreting the sets of filters S and U

as subscriptions and unsubscriptions, respectively. The handleMessage proce-
dure dispatches forward messages to the handleNotification procedure (lines
18–24), which notifies local clients and sends forward messages to neighbor
broker. admin messages are dispatched to the administer procedure. The val-
ues returned by administer are used as input to the handleAdminMessage
procedure that sends admin messages to neighbor brokers. The code of the
administer procedure is not shown here because it is not part of the frame-
work. It is implemented by a framework instantiation to realize a concrete
routing algorithm. This allows a variety of routing algorithms (Sect. 4.5) to
be implemented.

Besides the code that processes messages received from neighbor brokers,
the framework comprises a set of interface procedures that correspond to the
interface operations introduced in Sect. 2.5.2. The procedures pub, sub, and
unsub (lines 47–62) are called by local clients to publish a notification and to
subscribe and unsubscribe to a filter, respectively. The notify procedure (lines
13–16) is called by the broker itself to notify a local client about a notification.
A notification is delivered to a client Y by appending the notification to the
delivery queue QY of the client.

4.2.1 Atomic Steps of the Implementation

At the implementation level, we distinguish the following six atomic steps :
pub, sub, and unsub (corresponding to the interface operations called by local
clients), notify (corresponding to the interface operation called by the broker),

70 4 Distributed Notification Routing

1 program ContentBasedRoutingFramework()
begin

initialize TB and µB, and QC for all C ∈ LB;

loop

wait until a message is available;
6 sync(µB)

m ← return next fairly selected message;
handleMessage(m);

endsync

endloop

11 end

procedure notify(Client Y,Notification n)
begin

QY ← append(QY , n);
16 end

procedure handleNotification(Dest D, Notification n)
begin

send “forward(n)” to all neighbors in FB(n) \ {D};
21 forall local clients C ∈ FB(n) do

notify(C, n);
endforall

end

26 procedure handleAdminMessage(Dest D, Set MS ,Set MU ,Bool b)
begin

forall H ∈ NB \ {D}
S ← {F | (F, H) ∈ MS};
U ← {F | (F, H) ∈ MU};

31 if S �= ∅ ∨ U �= ∅ then

send “admin(S, U)” to H;

endif

endforall

end

36

procedure handleMessage(Message m)
begin

if m is “forward(n)” message from neighbor U then

handleNotification(U, n);
41 endif

if m is “admin(S, U)” message from neighbor U then

(FS, FU) ← administer(U, S, U);
handleAdminMessage(U, FS, FU , 0);

endif

46 end

Fig. 4.1. Content-based routing framework, part I

4.2 Routing Algorithm Framework 71

sync(µB) procedure pub(Client X, Notification n)
begin

handleNotification(X, n);
50 end

sync(µB) procedure sub(Client Y,Filter F)
begin

(FS, FU) ← administer(Y, {F}, ∅);
55 handleAdminMessage(Y, FS, FU , 0);

end

sync(µB) procedure unsub(Client Y,Filter F)
begin

60 (FS, FU) ← administer(Y, ∅, {F});
handleAdminMessage(Y, FS, FU , 0);

end

Fig. 4.2. Content-based routing framework, part II

and forward and admin (corresponding to the two types of messages that can
be sent and received by a broker).

The execution of pub, sub, and unsub steps starts when the calling thread
of the respective client enters the body of the respective procedure and ends
when the respective procedure returns. The execution of notify steps starts
when the calling thread enters the notify procedure and ends when the notify
procedure returns. Note that strictly speaking, notify steps are executed
within a surrounding atomic pub or forward step. However, it is sufficient
to model this by appending the notify steps directly to the corresponding
surrounding step in the resulting trace.

The execution of the forward and admin steps starts when the thread of
the broker enters the monitor (line 6) and ends when it leaves the monitor
(line 9). Which of these two steps is executed depends on what type of mes-
sage is received. We say that a forward (an admin) step is executed when
a forward (an admin) message is received. The forward (Bi, Bj , n) step takes
three parameters: Bi is the broker at which the step is executed; Bj is the
broker from which the forward (n) message was received; n is the notification
that was received as part of the forward (n) message. The admin(Bi, Bj , S, U)
step takes four parameters: Bi is the broker at which the step is executed; Bj

is the broker from which the admin(S, U) message was received; S and U are
the two sets of filters that were received as part of the admin message.

To ensure that the execution of a step is atomic, i.e., does not interleave
with the execution of other steps at the same broker, the interface procedures
that can be called by local clients (i.e., pub, sub, and unsub) and the code
that receives and handles a messages from a neighbor broker (lines 6–9) are
protected by a broker-specific monitor µB. Since we use only a single monitor,

72 4 Distributed Notification Routing

no deadlocks can occur. There is no need to protect the notify procedure
because it is only called by threads that have already entered the monitor.

The trace for the whole system consists of the steps of all brokers and
clients. It arises from interleaving the traces of the individual brokers and
their clients.

4.2.2 Notification Forwarding and Delivery

In the following, we explain in more detail how routing tables are used in the
handleNotification procedure to forward notifications to neighbor brokers and
to deliver them to local clients. Each broker B manages a private routing table
TB that comprises a set of routing entries. Each routing entry is a pair (F, D)
consisting of a filter F and a destination D ∈ NB∪LB. The state of all routing
tables determines the current routing configuration of a publish/subscribe
system. Initially, each routing table is set to a predefined state that usually
depends on the applied routing algorithm. This defines the initial routing
configuration. The routing configuration of a single broker B consists of two
disjoint parts: the remote routing configuration that comprises all routing
entries whose destination is a neighbor and the local routing configuration
consisting of all routing entries whose destination is a local client.

The routing configuration induces the set of notifications that a broker
potentially forwards to a destination. In the following, we often need to refer
to the filters that comprise the routing configuration of a broker regarding a
single destination D and all but a single destination D:

T |D def= {F | ∃(F, D) ∈ T } (4.1)

T \D def= {F | ∃(F, E) ∈ T ∧ E �= D} (4.2)

The destinations to which a broker B forwards or delivers a given notification
n is given by FB(n):

FB(n) def=
{
D | D ∈ NB ∪ LB ∧ n ∈ N(T |D

B)
}
. (4.3)

Now, we can describe how a broker forwards a notification to its neighbors
and how a broker delivers a notification to its local clients:

� Calling pub(X, n) leads to a call of handleNotification(X, n) (line 49).
� If a broker receives a forward (n) message from a neighbor U , it invokes

handleNotification(U, n) (line 40).
� If handleNotification(D, n) is called at a broker B, a forward (n) message

is sent to all of neighbors of B in FB(n)\{D} (line 20) and all local clients
of B in FB(n) are notified about n (lines 21–23).

For example, consider the situation depicted in Fig. 4.3. Here, B1 delivers
a notification received from X1 to its local client X2 due to the entry (F1, X2)
and forwards n to its neighbor B2 due to the entry (F3, B2).

4.2 Routing Algorithm Framework 73

Routing Table TB1

1. pub(n)

X2

X1

X3

(F3, B2)
(F4, B3)

(F1, X2)
(F2, X3)

2.
for

ward
(n)

2.
notify(n)

B3

B2

B1

n ∈ N(F1)
n ∈ N(F3)

n /∈ N(F2)
n /∈ N(F4)

FB1(n) = {X2, B2}

Fig. 4.3. Diagram explaining notification forwarding

4.2.3 Avoidance of Duplicate and Spurious Notifications

Now, we prove that duplicated and spurious notifications are avoided by the
notification forwarding algorithm if the broker topology is acyclic. Duplication
avoidance in cyclic topologies is discussed in Sect. 4.6.6.

Lemma 4.1. If the topology is acyclic, notification forwarding satisfies

�[
notify(Y, n) ⇒ [��¬notify(Y, n)

] ∧ [
n ∈ ∪X∈CPX

]]
(4.4)

Proof. The algorithm never forwards a notification to a neighbor broker from
which it received this notification. This fact, the reliable channel assumption,
the fact that the topology is acyclic, and the fact that a notification cannot be
published twice ensures that no duplicates are delivered to a client. To prove
that no spurious notifications are delivered to a client, we argue backwards
from the delivery of a notification to its publication. For every, notify(n) a
corresponding pub(n) should exist. A broker only notifies a client if it either
received forward (n) message from a neighbor or if pub(n) was called by a
local client. In the former case, we have found the witness pub(n). In the
latter case, the same case distinction can be applied to the neighbor broker
from which the forward (n) message was received. As the topology is acyclic
and has a finite diameter, this recursion must abort after a finite number of
steps. Hence, a corresponding pub(n) exists in any case. This concludes the
proof. ��

4.2.4 Routing Table Updates

In this section, we explain in more detail how the routing tables are up-
dated by calling administer and by propagating admin messages using

74 4 Distributed Notification Routing

handleAdminMessage . Routing tables are exclusively updated by (calling)
the administer procedure. The administer procedure is called at a bro-
ker B if an admin message from a neighbor is received (line 43) or, if sub
(line 54) or unsub (line 60) is called by a local client. If its execution was
triggered by an admin message, it is called with the broker S from which
this message was received and the two filter sets S and U that were em-
bedded in the message as parameters. If a local client Y calls sub(Y, F)
or unsub(Y, F), then administer(Y, {F}, ∅) and administer(Y, ∅, {F}) are
called, respectively. administer can identify whether the call was triggered
by a neighbor or by a local client by checking whether S is in NB or in LB. As
result administer returns two sets which are both comprised of pairs of filters
and neighbors. These sets are used as input to the handleAdminMessage pro-
cedure. To each neighbor apart from S, which is represented in either of both
sets, exactly one admin(SH , UH) message is sent. While SH contains all filters
F for which there is a pair (F, H) in the first returned set, UH contains all
filters F for which there is a pair (F, H) in the second returned set. Roughly
speaking, SH and SU are the subscriptions and unsubscriptions which are
forwarded to H , respectively.

4.3 Valid and Monotone Valid Routing Algorithms

A publish/subscribe system has to deal with new subscriptions and cancella-
tion of existing subscriptions. A routing algorithm adapts, starting from an
eligible initial routing configuration, the routing configuration to the changing
set of active subscriptions. Intuitively, a routing algorithm is valid if it adapts
the routing configuration such that the resulting system satisfies the safety
and the liveness property of Def. 2.5. But can we express validity as property
of the routing configuration?

4.3.1 Valid Routing Algorithms

A valid routing algorithm must lead together with the routing framework to a
publish/subscribe system that satisfies the safety and the liveness properties
of Def. 2.5. As duplicated and spurious notifications are already avoided by the
notification forwarding algorithm, it suffices to require that the local routing
configuration ensures that only matching notifications are delivered to imply
safety. For a client Y , let θ(Y) be the broker that manages Y . Hence, N(T |Y

θ(Y))
should be a subset of N(SY) for all clients.

To guarantee liveness we must show that when a client Y subscribes to
a filter F and stays subscribed, then from some time (after the subscription
was issued) on, every notification that is published at any broker B (i.e., by a
local client of B) and that matches F should be delivered to Y . To achieve this
such a notification must first be forwarded to the broker managing Y (i.e.,

4.3 Valid and Monotone Valid Routing Algorithms 75

θ(Y)) and second be delivered to Y subsequently. The second requirement
is easily ensured by keeping N(T |Y

θ(Y)) a superset of N(SY). We achieve the
first requirement by requiring that for each notification n ∈ N(F) a simple2

directed path exists connecting B with θ(Y) over which eventually always n is
forwarded. By requiring the property to hold for all n ∈ N(F) independently,
the delivery of all notifications matching F can be split among multiple de-
livery paths in cyclic topologies. Thus, let Bi1 , . . . , Bij be a simple directed
path in the broker network. Then,

γ(Bi1 , . . . , Bij)
def= ∩1≤k≤j N(T

|Bik−1
Bik

) (4.5)

is the set of notifications that if a notification contained in this set is published
at Bij and stays in this set, it reaches Bi1 over this path. Let ν(Bi, Bj) be
the set of all simple directed paths connecting originating broker Bj to the
receiving broker Bi.

Definition 4.1. A routing algorithm is valid if the following conditions hold:

� (Local Subset Validity)

�[
N(T |Y

θ(Y)) ⊆ N(SY)
]

(4.6)

� (Eventual Superset Validity)

�[�(F ∈ SY) ⇒ ��N(T |Y
θ(Y)) ⊇ N(F)

]
(4.7)

�[�(F ∈ SY) ∧ B �= θ(Y) ∧ n ∈ N(F)

⇒ ∃P ∈ ν(θ(Y), B). ��[n ∈ γ(P)
] (4.8)

In the following, we prove that a valid routing algorithm is sufficient for a
correct publish/subscribe system.

Theorem 4.1. A valid routing algorithm is sufficient for a correct publish/
subscribe system.

Proof. We have to show that if local subset validity and eventual superset
validity hold, then safety and liveness according to Def. 2.5 are implied. As
duplicates and spurious notifications are avoided by the notification forward-
ing algorithm in acyclic topologies (Lemma 4.1), it remains to be shown that
only matching notifications are delivered to clients to imply safety. This fol-
lows directly from local subset validity. To prove liveness we assume that
�(F ∈ SY) and show that then ��N(T |Y

θ(Y)) ⊇ N(F) and ∀n ∈ N(F). ∃P ∈
ν(θ(Y), B).��[n ∈ γ(P)] implies ��[pub(X, n)∧n ∈ N(F) ⇒ �notify(Y, n)].
Assume that X publishes a notification n ∈ N(F). There are two cases: Case

2 A simple path is a path in which no vertex occurs twice.

76 4 Distributed Notification Routing

1: If θ(X) = θ(Y) then n is delivered to Y because of Eq. (4.7) if it was pub-
lished after N(T |Y

θ(Y)) ⊇ N(F) began to hold. Case 2: If θ(X) �= θ(Y), then
there exists at least one path connecting θ(X) to θ(Y) since the topology
is connected. According to Eq. (4.8) for one of these paths n ∈ γ(P) holds
eventually always. Hence, if n is published after n ∈ γ(P) began to hold, n
is forwarded to θ(Y) due to the definition of γ. Then, n is forwarded to Y

due to Eq. (4.7) if it was published after N(T |Y
θ(Y)) ⊇ N(F) began to hold.

Hence, n will be delivered to Y if n was published after N(T |Y
θ(Y)) ⊇ N(F) and

n ∈ γ(P) began to hold. Both cases together prove liveness. Thus, liveness
and safety hold and a correct publish/subscribe system is implied. ��

Note that while we restricted the discussion to acyclic topologies here, valid
routing algorithms can also be used in cyclic topologies (without requiring a
single spanning tree). In this case, notification forwarding must be changed
such that duplicates are avoided (Sect. 4.6.6).

4.3.2 Monotone Valid Routing Algorithms

Theorem 4.1 reveals that valid routing algorithms are sufficient for a correct
publish/subscribe system. The properties of validity, however, have the follow-
ing disadvantages: Local subset validity does not require that the delivery of
notifications that are published by local clients connected to the same broker
as the subscribing client is guaranteed immediately after subscribing. This
would, however, be feasible in our setting. Furthermore, eventual superset
validity depends on individual subscriptions and is a property of the routing
configuration of the entire topology. A property that only depends on the rout-
ing configurations of neighboring brokers would be much simpler to handle.
This motivated us to look for stronger requirements which are nevertheless
satisfied by most routing algorithms of practical relevance. This process leads
to a stronger form of validity, called monotone valid routing:

Definition 4.2. A routing algorithm is monotone valid if the following con-
ditions hold:

� (Local Validity)
�[

N(T |Y
θ(Y)) = N(SY)

]
(4.9)

� (Eventual Monotone Remote Validity)

�[�[n ∈ N(T \Bj

Bi
)] ⇒ ��[n ∈ N(T |Bi

Bj
)]
]

(4.10)

While monotone validity implies validity, the opposite is, in general, not
true. First, validity allows the local delivery to be guaranteed eventually, while
monotone validity requires immediate delivery. Second, validity only requires
that those notifications are sent over a link between two brokers that are

4.4 Valid Framework Instantiations 77

necessary to serve the respective subscription. Further assumptions are not
made. Monotone validity, on the other hand, does not depend on individual
subscriptions. Instead, it requires that at least those notifications that are
sent over a link from Bi+1 to Bi are sent over the link from Bi+2 to Bi+1.
Hence, the set of notifications forwarded is monotonically increasing for any
path in the broker network. This led to the naming of monotone validity.
Subsequently, we prove that monotone valid routing algorithms are a subclass
of valid routing algorithms.

Lemma 4.2. Every monotone valid routing algorithm is also valid.

Proof. It is easy to see that local validity implies local subset validity. To show
that also eventual superset validity is implied by monotone validity, assume
that �F ∈ SY for some client Y and consider an arbitrary notification n ∈
N(F). Let P = Bi1 , . . . , Bij with Bi1 = θ(Y) and Bij = θ(X) be an arbitrary
path that connects the broker θ(X) to the broker θ(Y). To prove that for all

n ∈ N(F). ��n ∈ γ(P), we prove by an induction that ��n ∈ T
|Bik−1
Bik

for

all directed edges (Bik−1 , Bik
) ∈ P . Due to local validity n ∈ N(T |Y

Bi1
) holds.

Due to eventual monotone remote validity ��n ∈ N(T |Bi1
Bi2

) is implied. This

proves the base case. Now, assume that ��n ∈ N(T
|Bik

Bik+1
) holds (induction

assumption). This implies that ��n ∈ N(T
|Bik+1
Bik+2

) due to eventual monotone

remote validity. This proves the induction step. Since ��n ∈ T
|Bik−1
Bik

for all
directed edges (Bik−1 , Bik

) ∈ P , ∀n ∈ N(F). ��n ∈ γ(P) is implied by the
definition of γ. Hence, eventual monotone remote validity holds in addition
to local subset validity. This concludes the proof. ��
Corollary 4.1. A monotone valid routing algorithm implies a correct pub-
lish/subscribe system.

Proof. By Lemmas 4.1 and 4.2. ��
The definition of monotone valid routing algorithms sets up the design

space for valid framework instantiations, which are presented in the next sec-
tion.

4.4 Valid Framework Instantiations

In this section, we derive general requirements for valid framework instan-
tiations revealing new insights into the characteristics content-based routing
algorithms have in common. All requirements are expressed as invariants of
the framework which refer only to a single step of the system. This allows the
correctness of concrete framework instantiations (Sect. 4.5) to be proved more

78 4 Distributed Notification Routing

easily. Two requirements are derived from those characterizing monotone valid
routing algorithms, while the other requirements are framework specific.

First, we require that administer returns after a finite time. This guar-
antees that a broker is not blocked infinitely by processing a message. From
the two requirements characterizing monotone valid routing algorithms, local
validity (which is called local invariant here) is directly used as an invariant
of the framework. Eventual monotone remote validity is mapped to an invari-
ant of the routing framework called remote invariant. This is done by looking
at the transformation that a sequence of admin messages received from a
neighbor Bi causes on the routing table of a broker Bj . This transformation
can be computed without considering messages that Bj receives from other
destinations if we require that

1. an admin , sub, or unsub step regarding a destination D can only influence
the part of the routing table dealing with destination D (i.e., T

|D
B) and

leaves for all other destinations their respective part of the routing table
unchanged and that

2. (T ′
Bj

)|D only depends on T
|D
Bj

and the processed message and not on the
rest of the routing table.

These requirements are called restricted change and restricted impact, respec-
tively. They are satisfied by all routing algorithms that we will discuss later
on. Now, we look in more detail on how the above-mentioned transformation
can be computed to derive the desired invariant.

A call of administer is triggered by the receipt of an admin message or
if sub or unsub is called by a local client. Each call of administer trans-
forms the routing table of the respective broker from its current state T to
its subsequent state T ′. Now, assume that the routing table of Bj contains
only routing entries regarding a destination D and that a given implemen-
tation of administer is called at Bj triggered by a destination D. In this
case, we define δ as the transformation of T into T ′, i.e., the function such
that δ(T |D

Bj
, m) = (T ′

Bj
)|D. Multiple admin messages can be in transit simul-

taneously on the communication channel between a broker Bi and one of its
neighbors Bj . To capture the change to the routing table of Bj triggered by
this sequence of admin messages, let KBi,Bj = 〈m1, . . . , mn〉 be the sequence
of admin messages that Bi sent to Bj that have not yet been processed by
Bj , i.e.,that are still in transit. For sequences, we assume the existence of the
functions head , tail , and append :

head(〈m1, m2, . . . , mn〉) def= m1 (4.11)

tail(〈m1, m2, . . . , mn〉) def= 〈m2, . . . , mn〉 (4.12)

append(〈m1, m2, . . . , mn〉, mn+1)
def= 〈m1, . . . , mn+1〉 (4.13)

The admin messages in transit will eventually trigger a call of administer
at Bj, as we now explain. We define for a set of filters A:

4.4 Valid Framework Instantiations 79

∆(A, 〈〉) def= A (4.14)

∆(A, 〈m1, . . . , mn〉) def= ∆(δ(A, m1), 〈m2, . . . , mn〉) (4.15)

Hence, ∆(T |Bi

Bj
, KBi,Bj) contains all filters represented in the routing table

of broker Bj regarding neighbor Bi that one would obtain if TBj contains
only routing entries regarding neighbor Bi and the admin messages in KBi,Bj

are sequentially processed by the administer procedure at Bj . Note that
∆(T |Bi

Bj
, KBi,Bj) does not change if messages from KBi,Bj are processed by Bj ;

it only changes if a new message is appended. Now, assume that we require
that N(∆(T |Bi

Bj
, KBi,Bj)) is always a superset of N(T \Bj

Bi
). This means that

if ��n ∈ N(T \Bj

Bi
), then ��n ∈ N(T |Bi

Bj
). Hence, monotone remote validity

is implied. We have found the desired invariant. Now, we can define valid
framework instantiations:

Definition 4.3. An instance of the framework consisting of an implementa-
tion of administer and an initial routing configuration is valid if the following
conditions hold:

1. (Progress) If called, administer eventually returns.
2. (Restricted Change)

�[
admin(Bi, Bj , S, U) ⇒ ∀D �= Bj . (T ′

Bi
)|D = T

|D
Bi

]
(4.16)

and

�[
sub(Y, F) ∨ unsub(Y, F) ⇒ ∀D �= Y. (T ′

θ(Y))
|D = T

|D
θ(Y)

]
(4.17)

3. (Restricted Impact)

�[
admin(Bi, Bj, S, U) ⇒ (T ′

Bi
)|Bj = δ(T |Bj

Bi
)
]

(4.18)

and

�[
sub(Y, F) ∨ unsub(Y, F) ⇒ (T ′

θ(Y))
|Y = δ(T |Y

θ(Y))
]

(4.19)

4. (Local Invariant)
�[

N(T |Y
θ(Y)) = N(SY)

]
(4.20)

5. (Remote Invariant)

�[
N(∆(T |Bi

Bj
, KBi,Bj)) ⊇ N(T \Bj

Bi
)
]

(4.21)

The individual properties of valid framework instantiations have the fol-
lowing informal meaning:

1. This property simply guarantees that administer terminates.

80 4 Distributed Notification Routing

2. The restricted change property states that if the call of administer was
triggered by a certain destination, only the part of the routing table re-
garding this destination can be affected.

3. The restricted impact property states that a change to a part of the routing
table regarding a certain destination cannot be influenced by any part of
the routing table dealing with other destinations.

4. The local invariant states that exactly those notifications should be deliv-
ered to a local client in which it is interested.

5. The remote invariant states that after Bj has processed all admin mes-
sages from Bi that are currently in transit, Bj will forward to Bi at least
those notifications that Bi currently forwards to its other neighbors and
local clients.

Next, we prove that a valid framework instantiation implies a monotone
valid routing algorithm.

Lemma 4.3. A valid framework instantiation implies a monotone valid rout-
ing algorithm.

Proof. Local validity follows directly from the local invariant. It remains to
be shown that also eventual monotone remote validity is implied. To prove
this property assume that ��[n ∈ N(T \Bj

Bi
)]. Then, the superset relation in

the remote invariant implies that ��[n ∈ N(∆(T |Bi

Bj
, KBi,Bj)]. Termination,

progress, restricted change and impact, and the reliable channel assumption
then imply that ��[n ∈ N(T |Bi

Bj
)], giving the desired property. ��

Theorem 4.2. A valid framework instantiation implies a correct publish/sub-
scribe system.

Proof. By Lemmas 4.1 and 4.3. ��

4.5 Content-Based Routing Algorithms

In this section, a set of content-based routing algorithms is discussed. Each
algorithm is given as an instance of the content-based routing framework
presented in the previous section, i.e., as an instance of the administer pro-
cedure. The presentation follows a natural evolution in the development of
routing algorithms from basic approaches to more advanced algorithms. We
start with flooding. Then, we discuss in full detail simple routing, identity-
based routing, covering-based routing, and merging-based routing. Using our
framework theorems, the proof of correctness of these algorithms boils down
to proving that the administer procedure is a valid framework instantiation.

4.5 Content-Based Routing Algorithms 81

procedure administer(Dest S, Set S, Set U)
begin

TB ← TB ∪ {(F, S) | F ∈ S};
4 TB ← TB \ {(F, S) | F ∈ U};

return (∅, ∅);
end

Fig. 4.4. Flooding

4.5.1 Flooding

With flooding, the routing table of each broker B is initialized to the set
{(FT , U) | U ∈ NB} at system startup, where FT (n) = true for all n ∈ N.
Since N(FT) = N, this routing configuration implies that a broker forwards
a notification received from a local client to all neighbors and a notification
received from a neighbor to all other neighbors. Because the topology is acyclic
and connected and since no messages are duplicated, flooding ensures that
every notification is processed exactly once by every broker. Flooding is the
only routing strategy that does not require the remote routing configuration
to be updated. Therefore, the algorithm returns (∅, ∅) (Fig. 4.4, line 5) and
no admin messages are exchanged. After the initialization, each broker solely
adds and deletes routing entries regarding its local clients as they subscribe
and unsubscribe:

� If a client Y subscribes to a filter F , the corresponding broker adds (F, Y)
to its routing table (line 3).

� If a client Y unsubscribes to a filter F , the corresponding broker deletes
(F, Y) from its routing table (line 4).

Correctness Proof

For flooding, we use the following initial state:

InitF
def=T 0

B = {(FT , H) | H ∈ NB} ∧ K0
Bi,Bj

= 〈〉
∧ S0

Y = ∅ ∧ P 0
X = ∅ ∧ D0

Y = ∅
(4.22)

Lemma 4.4 (Progress). Each call of the flooding instantiation of
administer returns.

Proof. Obvious. ��
Lemma 4.5. Flooding satisfies the restricted change and the restricted impact
property.

82 4 Distributed Notification Routing

Proof. An application of δ to TB corresponds to a call of administer. In
the administer procedure, the only code lines that manipulate routing en-
tries are lines 3 and 4. These lines change only routing entries regarding the
triggering destination S. Hence, the restricted change property holds. The
above-mentioned lines do not take any routing entries regarding a destination
distinct from the triggering destination into account. Hence, the restricted
impact property holds, too. ��
Lemma 4.6. InitF ⇒ �[T |Y

θ(Y) = SY]

Proof. The property is shown by an induction. Initially, (T 0
θ(Y))

|Y = S0
Y holds

due to InitF , proving the base case. Now, assume that T
|Y
θ(Y) = SY holds and

assume that the system executes a step. Only the sub(Y, F) and unsub(Y, F)
steps change T

|Y
θ(Y) and SY because of Lemma 4.5. In the sub(Y, F) case,

S′
Y = SY ∪{F} and (T ′

θ(Y))
|Y = T

|Y
θ(Y)∪{F} (line 3) holds. In the unsub(Y, F)

case, S′
Y = SY \{F} and (T ′

θ(Y))
|Y = T

|Y
θ(Y) \{F} holds (line 4). In both cases,

(T ′
θ(Y))

|Y = S′
Y is implied. This proves the induction step and concludes the

proof. ��
Lemma 4.7. InitF ⇒ �[T |Bi

Bj
= {FT }]

Proof. Due to InitF , (T 0
Bj

)|Bi = {FT } holds initially. Due to InitF and because
flooding always returns empty sets (line 5), KBi,Bj = ∅ always holds. This
implies that an admin(Bj , Bi, S, U) step is never executed. Due to Lemma 4.5
this implies that T

|Bi

Bj
never changes. Hence, T

|Bi

Bj
= {FT } always holds. ��

Theorem 4.3. Flooding is a valid routing algorithm.

Proof. Lemma 4.4 and 4.5 imply the progress and the restricted change and
impact property, respectively. Lemma 4.6 implies the local invariant because
T

|Y
θ(Y) = SY implies N(T |Y

θ(Y)) = N(SY). Lemma 4.7 implies the remote invari-

ant because T
|Bi

Bj
= {FT } implies that N(T |Bi

Bj
) ⊇ N(T \Bj

Bi
). Hence, flooding

is a valid framework instantiation which, by Theorem 4.2, yields a correct
publish/subscribe system. ��

4.5.2 Simple Routing

Simple routing uses filter forwarding to update the routing configuration in
reaction to subscribing and unsubscribing clients: new and canceled subscrip-
tions are flooded into the broker network such that they reach every broker.
This allows the brokers to update their routing tables accordingly. Initially, the
routing table TB of each broker B is initialized to ∅. Simple routing assumes
that each filter has a unique ID and that filters issued by different clients have
disjoint sets of IDs. The filter ID is used to identify a filter when adding it to
and deleting it from routing tables. The algorithm (Fig. 4.5) works as follows:

4.5 Content-Based Routing Algorithms 83

procedure administer(Dest S, Set S, Set U)
begin

TB ← TB ∪ {(F, S) | F ∈ S};
4 TB ← TB \ {(F, S) | F ∈ U};

MS ← {(F, H) | H ∈ NB \ {S} ∧ F ∈ S};
MU ← {(F, H) | H ∈ NB \ {S} ∧ F ∈ U};
return (MS , MU);

end

Fig. 4.5. Simple routing

� The subscriptions in S are added to the routing table (line 3).
� The unsubscriptions in U are removed from the routing table (line 4).
� For each neighbor H except S, a tuple (F, H) is returned for each sub-

scription F in S in the first returned set (line 5). Hence, each subscription
is forwarded to all neighbors except S.

� For each neighbor H except S, a tuple (F, H) is returned for each unsub-
scription F in U in the second returned set (line 6). Hence, each unsub-
scription is forwarded to all neighbors except S.

This means that if sub(Y, F) and unsub(Y, F) are called, an admin({F}, ∅)
and an admin(∅, {F}) message are sent to all neighbors, respectively. The
receipt of these messages causes the receiving broker to send the same message
to its other neighbors. Hence, only these two types of admin messages occur
with simple routing, and administer is either called with S = {F} and U = ∅
or with S = ∅ and U = {F}.

Example

Figure 4.6 shows an example using simple routing. X1 subscribes to F . Then,
B1 inserts (F, X1) into its routing table and sends messages admin({F}, ∅ to
B2 and B3. On receipt of this message, B2 and B3 insert (F, B1) into their
routing table.

Correctness Proof

For better readability, we use the following abbreviations for all subsequent
correctness proofs:

α = T
\Bj

Bi
(4.23)

β = ∆(T |Bi

Bj
, KBi,Bj) (4.24)

For simple routing and all other subsequently discussed routing algorithms,
we use the following initial state:

84 4 Distributed Notification Routing

Routing Table TB1

2. . . .
(F, X1)

B1X1

4.. . .
(F, B1)

4.. . .
(F, B1)

B2

B3

3.
ad

min(
{F},

∅)

1. sub(F)
3. admin({F}, ∅)

Fig. 4.6. Diagram explaining simple routing (new subscription)

=

α

β

Fig. 4.7. Relation among α and β for simple routing

InitE
def= T 0

B = ∅ ∧ K0
Bi,Bj

= 〈〉 ∧ S0
Y = ∅ ∧ P 0

X = ∅ ∧ D0
Y = ∅ (4.25)

The idea underlying the correctness proof is the following invariant: α is
always equal to β (Fig. 4.7). This invariant is proved in the next lemma:

Lemma 4.8. Simple routing satisfies the progress, restricted change, and the
restricted impact property as well as the local invariant.

Proof. Can be proved in the same way as in Lemmas 4.4, 4.5, and 4.6.

Lemma 4.9. InitE ⇒ �[β = α]

Proof. This property is proved by an induction. Due to InitE , initially β = ∅
and α = ∅, proving the base case. Now, assume that β = α. We have to show
that β′ = α′ after the execution of an arbitrary step of the algorithm to prove
the induction.

4.5 Content-Based Routing Algorithms 85

As a result of the restricted change and impact properties, we have to con-
sider only four cases here: (1) sub(Y, F) for a local client of Bi, (2) unsub(Y, F)
for a local client of Bi, (3) admin(Bi, H, S, U) for a broker H ∈ NBi \ {Bj},
and (4) admin(Bj , Bi, S, U). The steps 1–3 potentially change α and β, while
step 4 could only but actually does not affect β.

Case (1) sub(Y, F): According to simple routing, α′ = α ∪ {F} (line
3) and K′

Bi,Bj
= append(KBi,Bj , ({F}, ∅)) (line 5). The latter implies that

β′ = δ(β, ({F}, ∅)). According to the induction assumption, this equals
δ(α, ({F}, ∅)). According to simple routing this equals α ∪ {F}. Hence, β′

equals α′ giving the desired property.

Case (2) unsub(Y, F): This case is analogous to case (1) except that α′ =
α \ {F} (line 4) and K′

Bi,Bj
= append(KBi,Bj , (∅, {F})) (line 6).

Case (3) admin(Bi, H, S, U): Here, we must distinguish two cases: (3.1)
H = Bj and (3.2) H �= Bj .

Case (3.1) H = Bj : The restricted change property implies that α′ = α.
Simple routing (lines 5+6) implies that K′

Bi,Bj
= KBi,Bj because no admin

message is passed back to the sender. Hence, the property holds.
Case (3.2) H �= Bj : We must consider two cases: (3.2.1) S = {F} ∧ U = ∅

and (3.2.2) S = ∅ ∧ U = {F}. In the former case, the same proof as in case 1
can be applied. In the latter case, the same proof as in case 2 can be applied.
Hence, the desired property holds in both cases.

Case (4) admin(Bj , Bi, S, U): This implies that K′
Bi,Bj

= tail(KBi,Bj) and
that β′ = δ(β, head(KBi,Bj)). According to the definition of δ, this implies
that β′ = β. Hence, the desired property holds.

This finishes the case distinction and proves the induction step. ��
Theorem 4.4. Simple routing is a valid routing algorithm.

Proof. The progress, the restricted change, and the restricted impact property,
as well as the local invariant hold due to Lemma 4.8. Since β = α implies that
N(∆(T |Bi

Bj
, KBi,Bj)) ⊇ N(T \Bj

Bi
), Lemma 4.9 implies the remote invariant.

Hence, simple routing is a valid framework instantiation. By Theorem 4.2
this yields a correct publish/subscribe system. ��

4.5.3 Identity-Based Routing

We now begin to present routing algorithms that avoid global knowledge by
taking similarities among the subscriptions into account. These algorithms are
based on the following idea: The set of notifications that a broker Bj forwards

86 4 Distributed Notification Routing

to a broker Bi, i.e.,N(T |Bi

Bj
), is the set of all notifications that are matched by

any routing entry (F, Bi) in TBj . In general, a subset of these routing entries
might be sufficient to determine N(T |Bi

Bj
). For example, there can be two

routing entries (F, Bi) and (G, Bi) with N(F) = N(G). Clearly, one of these
entries is sufficient as both have identical sets of matching notifications. This
fact is used by the identity-based routing algorithm to avoid redundant routing
entries and unnecessary forwarding of subscriptions and unsubscriptions. The
basic idea of identity-based routing is the following:

� A subscription (unsubscription) is only forwarded to a neighbor U if there
is no identical subscription in the routing table for a destination distinct
from U . This test is evaluated before (after) the subscription (unsubscrip-
tion) is added (removed) to (from) the routing table.

Formally, two filters F and G are identical, denoted by F ≡ G, if N(F) =
N(G). We define the set CI

B(F, D) (the superscript I stands for “identity”) to
be the set of all routing entries in TB of which the filter is identical to a given
filter F and of which the destination equals a given destination D. Moreover,
we denote with DI

B(F) the set of all neighbors H for which there is no routing
entry (G, D) in TB, where G is identical to F and D is distinct from H :

CI
B(F, D) def= {(G, D) | (G, D) ∈ TB ∧ F ≡ G}, (4.26)

DI
B(F) def= {H ∈ NB | �G ∈ T

\H
B . F ≡ G}. (4.27)

We now describe identity-based routing (Fig. 4.8). If a broker B receives
a subscription or unsubscription F from a neighbor or a local client S, it does
the following:

1. B updates its routing table (lines 6–11):
� If S is a neighbor, B removes all routing entries whose filters are iden-

tical to F and that refer to the destination S, i.e., CI
B(F, S) (line 8).

� If S is a local client, B removes solely (F, S) (line 10).
2. B forwards F to all neighbors that are in DI

B(F) except S (lines 15/17
and 22).

3. If F is a subscription, B inserts a routing entry (F, S) into its routing
table (line 18).

Examples

In Fig. 4.9, broker B1 receives a new subscription F from a neighbor S. B1

inserts (F, S) into its routing table and forwards F to its neighbors B2 and
B3 because they are both in DI

B(F) \ {S}.
In Fig. 4.10, broker B1 receives a new subscription F from a local client

S. Here, B1 also inserts (F, S) into its routing table but forwards F only to
its neighbor B3, which is the only neighbor in DI

B(F) \ {S}. B2 is not in that
set due to the routing entry (F ′, B3), where F ′ ≡ F .

4.5 Content-Based Routing Algorithms 87

procedure administer(Dest S, Set S, Set U)
2 begin

MS ← ∅;
MU ← ∅;

forall F ∈ S ∪ U do

7 if S ∈ NB then

TB ← TB \ CI
B(F, S);

else

TB ← TB \ {(F, S)};
endif

12

A ← {(F, H) | H ∈ DI
B(F) \ {S}};

if F ∈ U then

MU ← MU ∪ A;

else

17 MS ← MS ∪ A;

TB ← TB ∪ {(F, S)};
endif

endforall

22 return (MS , MU);
end

Fig. 4.8. Identity-based routing

DI
B(F) \ {S} = {B2, B3}

B1

3. admin({F}, ∅)
B3

(F, S)

S

1. admin({F}, ∅)

B2

2.

3
.

a
d
m

in
({

F
},
∅)

Fig. 4.9. Identity-based routing: Processing a new subscription from a neighbor

88 4 Distributed Notification Routing

F ′ ≡ F

DI
B(F) \ {S} = {B3}

B1

B2

3. admin({F}, ∅)
B3

(F, S)
(F ′, B3)

2.

1. sub(F)

S

Fig. 4.10. Identity-based routing: Processing a new subscription from a client

Correctness Proof

α

≡

β

Fig. 4.11. Relation among α and β for identity-based routing

In the following, the correctness of identity-based routing is proved. The
idea underlying the correctness proof is the following invariant: For every
filter in α there is a filter in β that is identical to the former (Fig. 4.11). This
invariant is stated in the next lemma. The proof is a lengthy case distinction
in the spirit of and similar to the proof of Lemma 4.9.

Lemma 4.10. InitE ⇒ �[∀F ∈ α. ∃G ∈ β. G ≡ F]

Proof. This property is proved by an induction. Due to InitE, initially α and
β are empty. Hence, the property is satisfied. This proves the base case. To
prove the induction step assume that the property holds for α and β. We have

4.5 Content-Based Routing Algorithms 89

to show that the property also holds after an arbitrary step was executed, i.e.,
for α′ and β′. Again, we have to consider four cases here:

Case (1) sub(Y, F): According to identity-based routing, α′ = α ∪ {F}
(line 18). Now, we must distinguish two cases (line 13): (1.1) Bj ∈ DI

Bi
(F)

and (1.2) Bj /∈ DI
Bi

(F).
Case (1.1) Bj ∈ DI

Bi
(F): This implies K′

Bi,Bj
= append(KBi,Bj , (F, ∅)).

Hence, β′ = δ(β, ({F}, ∅)) = β ∪ {F}. Therefore, the desired property holds.
Case (1.2) Bj /∈ DI

Bi
(F): This implies K′

Bi,Bj
= KBi,Bj . Hence, β′ = β.

But this also implies that there is a filter G ∈ α with G ≡ F (lines 10+13).
According to the induction assumption this implies that there is also a filter
H ∈ β, where H ≡ F . Hence, the desired property holds.

Case (2) unsub(Y, F): According to identity-based routing, α′ = α \ {F}
(line 10). Now, we must distinguish two cases (line 13): (2.1) Bj ∈ DI

Bi
(F)

and (2.2) Bj /∈ DI
Bi

(F).
Case (2.1) Bj ∈ DI

Bi
(F): This implies K′

Bi,Bj
= append(KBi,Bj , (∅, F)).

Hence, β′ = δ(β, (∅, {F})) = β \ {F}. The case assumption also implies that
there is no filter G ∈ α′ with G ≡ F . Hence, the desired property holds.

Case (2.2) Bj /∈ DI
Bi

(F): This implies K′
Bi,Bj

= KBi,Bj . Hence, β′ = β.
Hence, the desired property holds.

Case (3) admin(Bi, H, S, U): Here, we must distinguish two cases: (3.1)
H = Bj and (3.2) H �= Bj .

Case (3.1) H = Bj : The restricted change property implies that α′ =
α. Identity-based routing implies that K′

Bi,Bj
= KBi,Bj because no admin

message is passed back to the sender. Hence, the property holds.
Case (3.2) H �= Bj : We must consider two cases: (3.2.1) S = {F} ∧ U = ∅

and (3.2.2) S = ∅ ∧ U = {F}. In the former case, the same proof as in case 1
can be applied. In the latter case, the same proof as in case 2 can be applied.
Hence, the desired property holds in both cases.

Case (4) admin(Bj , Bi, S, U): This implies that K′
Bi,Bj

= tail(KBi,Bj) and
that β′ = δ(β, head(KBi,Bj)). According to the definition of δ, this implies
that β′ = β. Hence, the desired property holds.

This finishes the case distinction and proves the induction step. Hence, the
validity of the induction is implied concluding the proof. ��
Theorem 4.5. Identity-based routing is a valid routing algorithm.

Proof. The progress, the restricted change, and the restricted impact prop-
erty, as well as the local invariant can be proved in the same way as in Lem-
mas 4.4, 4.5, and 4.6. Lemma 4.10 implies that the remote variant holds
because ∀F ∈ α.∃G ∈ β.G ≡ F implies that N(∆(T |Bi

Bj
, KBi,Bj)) ⊇ N(T \Bj

Bi
).

Hence, identity-based routing is a valid framework instantiation that (follow-
ing Theorem 4.2) yields a correct publish/subscribe system. ��

90 4 Distributed Notification Routing

procedure administer(Dest S, Set S, Set U)
2 begin

MS ← ∅;
MU ← ∅;
P ← ∅;

7 if U = ∅
// handle subscriptions
forall F ∈ S do

if S ∈ NB then

TB ← TB \ CL
B(F, S);

12 else

TB ← TB \ {(F, S)};
endif

MS ← MS ∪ {(F, H) | H ∈ DU
B(F) \ {S}};

TB ← TB ∪ {(F, S)};
17 endforall

else

// handle unsubscriptions
forall F ∈ U do

if S ∈ NB then

22 TB ← TB \ CL
B(F, S);

else

TB ← TB \ {(F, S)};
endif

MU ← MU ∪ {(F, H) | H ∈ DU
B(F) \ {S}};

27 P ← P ∪ (CL
B(F) \ CI

B(F));
endforall

// handle uncovered subscriptions
TB ← TB ∪ {(F, S) | F ∈ S};

32 P ← P ∪ {(F, S) | F ∈ S};
forall (F, U) ∈ P do

k ← |{H | (G, H) ∈ P ∧ G ≡ F}|;
P ← P \ {(G, H) | (G, H) ∈ P ∧ G ≡ F};

37 A ← DPU
B (F) \ {S};

if k = 1 then

A ← A \ {U};
endif

MS ← MS ∪ {(F, H) | H ∈ A};
42 endforall

endif

return (MS , MU);
end

Fig. 4.12. Covering-based routing

4.5 Content-Based Routing Algorithms 91

4.5.4 Covering-Based Routing

After discussing identity-based routing, an obvious idea is to exploit more
complex similarities among subscriptions. The next step is to take advantage
of covering among filters, a concept that was first mentioned in the area of
notification services by Carzaniga [65]. A filter covers another filter if the
former matches all notifications the latter matches. Therefore, a routing entry
(F, U) is obsolete if there exists a routing entry (G, U), where G covers F .
This fact is used by the covering-based routing algorithm to further reduce
redundant routing entries and unnecessary forwarding of subscriptions and
unsubscriptions. The basic idea of covering-based routing is the following:

� A subscription (unsubscription) is only forwarded to a neighbor U if there
is no covering subscription in the routing table for a destination distinct
from U . This test is evaluated before (after) the subscription (unsubscrip-
tion) is added (removed) to (from) the routing table.

� A broker receiving a subscription deletes all routing entries whose filters
are covered by the new subscription that refer to the same destination.
This is done to get rid of the obsolete routing entries.

� If an unsubscription is forwarded to a neighbor, the sending broker also
forwards a possibly empty subset of subscriptions in the same admin mes-
sage to ensure the delivery of all needed notifications.

Formally, a filter F covers a filter G, denoted by F � G iff N(F) ⊇ N(G).
F is a proper cover of G, denoted by F � G, iff N(F) ⊃ N(G). We define
the set CL

B(F) (the L stands for “lower”) to comprise the set of all routing
entries in the routing table of a broker B that are covered by a given filter F .
We also define CL

B(F, D) as the restriction of CL
B(F) to a given destination D.

Additionally, we denote with DU
B(F) (the U stands for “upper”) as the set of

all neighbors H for which no routing entry (G, D) in the routing table of B
exists, where G covers F and D is distinct from H . With DPU

B (F) (the PU
stands for “proper upper”) the set of all neighbors H for which no routing
entry (G, D) in the routing table of B exists, where G is a proper cover of F
and D is distinct from H :

CL
B(F) def= {(G, U) ∈ TB | F � G} (4.28)

CL
B(F, D) def= {(G, D) ∈ CL

B(F)} (4.29)

DU
B(F) def= {H ∈ NB | �G ∈ T

\H
B . G � F} (4.30)

DPU
B (F) def= {H ∈ NB | �G ∈ T

\H
B . G � F} (4.31)

Covering-based routing either processes (1) a single subscription or (2) a
single unsubscription that comes along with a set of uncovered subscriptions
(Fig. 4.12). These cases are described in the following.

92 4 Distributed Notification Routing

Processing of a Subscription

If a broker B receives a new subscription F from a neighbor or a local client
S, B first updates its routing table: If S is a neighbor, B removes all entries
whose filters are covered by F that refer to S, i.e., CL

B(F, S), to get rid of the
obsolete routing entries (line 11). If S is a local client, B removes solely (F, S)
(line 13). Next, B forwards F to all neighbors which are in DU

B(F) except S
(line 15). Finally, B inserts (F, S) into its routing table (line 16).

Processing of an Unsubscription

The fact that complicates covering-based routing is that to forward an unsub-
scription F to some neighbors is not sufficient. Instead, to each neighbor to
which F is forwarded, also a possibly empty subset of filters which are properly
covered by F has to be forwarded. These subscriptions are called uncovered
subscriptions. Without forwarding these subscriptions, it is not ensured that
the receiving broker forwards all notifications matching these subscriptions.
This is because the receiving broker has either not ever received these sub-
scriptions or they have been dropped when F arrived. It is important that the
unsubscription and the corresponding uncovered subscriptions are forwarded
in a single message in order to guarantee that the change to the routing table
of the receiving broker is atomic. Otherwise, in the intermediate time between
the cancellation of the unsubscription and the time at which the uncovered
subscriptions become effective, notifications may be lost.

The basic processing of an unsubscription (lines 20–28) is similar to the
handling of a subscription. First, the routing table is updated (lines 21–25)
and the destinations to which the unsubscription is forwarded are determined
(line 26), as described above. Finally, all routing entries in CL

B(F)\CI
B(F) are

added to a temporary storage P (line 27). These routing entries are potentially
newly uncovered subscriptions because their filter is properly covered by F .

Processing of Uncovered Subscriptions

First, all old uncovered subscriptions in S received from S are added to the
routing table (line 31), and the routing entries representing these subscriptions
are added to P (line 32). Now, it is determined which subscriptions represented
in P have to be forwarded to which destinations (lines 33–42): For each entry
(F, U) ∈ P, F is forwarded to neighbor H if H is in DPU (F) \ {S} (line 37).
However, F is only forwarded to U if additionally there is a second routing
entry (G, I) in P, where G ≡ F and I �= U (lines 34+38–40). This is the case
if k �= 1. To ensure that identical subscriptions are only forwarded once, all
entries whose filters are identical to F are removed from P (line 35).

This approach ensures that (a) all subscriptions in the set of uncovered
subscriptions are covered by the handled unsubscription and that (b) in this
set there are no two subscriptions, where one covers the other. Hence, an

4.5 Content-Based Routing Algorithms 93

unsubscription that is received from a neighbor comes along with a possi-
bly empty set of uncovered subscriptions and may generate new uncovered
subscriptions. To every neighbor to which the handled unsubscription is for-
warded, a possibly empty subset of these two sets is forwarded that also
satisfies the requirements stated above.

Examples

In Fig. 4.13, B1 receives a new subscription F from a local client S. Therefore,
B1 adds (F, S) to its routing table. Moreover, B1 forwards F only to its
neighbor B3 because B3 is the only neighbor in DU

B(F) \ {S}. B2 is not in
this set because of the routing entry (G, B3), where G � F .

G � F

DU
B(F) \ {S} = {B3}

(G, B3)

B1 B3

(F, S)2.

3. admin({F}, ∅)1. sub(F)

B2

S

Fig. 4.13. Covering-based routing: Processing of a new subscription from a client

In the next example (Fig. 4.14), B1 receives a subscription F from a neigh-
bor S. B1 removes the entry (G, S) from its routing table because the entry
is in CL

B(F, S). Moreover, B1 inserts (F, S) into its routing table. Finally, B1

forwards F to its neighbors B2 and B3 because they are both in DU
B(F)\{S}.

In Fig. 4.15, broker B1 receives an unsubscription F from a neighbor S.
Hence, B1 removes (F, S). Furthermore, B1 forwards the unsubscription to
its neighbors B2 and B3 as both are in DU

B(F) \ {S}.
In the next example (Fig. 4.16) B1 receives an unsubscription F from

a local client S. Hence, B1 removes (F, S). In this case, B1 forwards the
unsubscription only to B3 because it is the only broker in DU

B(F) \ {S}. B2

is not in this set because of the routing entry (G, B3), where G � F .
In Fig. 4.17, broker B1 receives an unsubscription F from a local client S.

Hence, it removes (F, S) from its routing table. In this example the unsub-
scription F uncovers a subscription G. While the subscription F is forwarded

94 4 Distributed Notification Routing

F � G

3. admin({F}, ∅)

(F, S)

S

2.

1. admin({F}, ∅)

B2

(G, S)

DU
B(F) \ {S} = {B2, B3}
CL

B(F, S) = {(G, S)}

B1 B3

3
.

a
d
m

in
({

F
},
∅)

Fig. 4.14. Covering-based routing: Processing of a new subscription from a neighbor

DU
B(F) \ {S} = {B2, B3}

1. admin(∅, {F})
S

2. (F, S)

B2

B1 B3

3. admin(∅, {F})3
.

a
d
m

im
(∅

,{
F
})

Fig. 4.15. Covering-based routing: Processing of an unsubscription from a neighbor

4.5 Content-Based Routing Algorithms 95

G � F

DU
B(F) \ {S} = {B3}

S B1 B3

3. admin(∅, {F})

(G, B3)

2.

1. unsub(F)

(F, S)

B2

Fig. 4.16. Covering-based routing: Processing of an unsubscription from a client

S

1. unsub(F)

F � G

(F, S)
(G, B2)

2.

DU
B(F) \ {S} = {B2, B3}

DRU
B (G) \ {S} = {B2, B3}, k = 1

B1

B2

B3

3. admin({G}, {F})

3
.

a
d
m

in
(∅

,{
F
})

Fig. 4.17. Covering-based routing: Processing of an unsubscription from a client

96 4 Distributed Notification Routing

to B2 and B3, the uncovered subscription G is solely forwarded to B3. G is
not forwarded to B2, although it is in DRU

B (G) \ {S} because k = 1.

F � G

(F, S)
(G, B2)

(G′, S)

B1

G ≡ G′2.

DU
B(F) \ {S} = {B2, B3}

DRU
B (G) \ {S} = {B2, B3}, k = 2

B2

S B3

3. admin({G}, {F})1. admin({G′}, {F}) 3
.

a
d
m

in
({

G
},
{F

})

Fig. 4.18. Covering-based routing: Processing of an unsubscription from a neighbor,
example 2

In the last example (Fig. 4.18), broker B1 receives an unsubscription F
that comes along with an uncovered subscription G′. Moreover, in the routing
table of B1 there is an entry (G, S), where G ≡ G′. Here, B1 removes (F, S)
from and inserts (G′, S) into its routing table. The unsubscription F and the
uncovered subscription G are sent to B2 and B3. G is forwarded to B2 and
B3 because they are both in DRU

B (G) \ {S} and additionally k = 2 holds.

Correctness Proof

The idea underlying the correctness proof is the following invariant: For every
filter in α there is a filter in β that covers the former (Fig. 4.19). This invariant
is stated in the next lemma. The proof is a lengthy case distinction in the spirit
of and similar to the proof of Lemma 4.9.

Lemma 4.11. InitE ⇒ �[∀F ∈ α. ∃G ∈ β. G � F]

Proof. Proof: This property is proved by an induction. Due to InitE, initially
α and β are empty. Hence, the property is satisfied. This proves the base

4.5 Content-Based Routing Algorithms 97

≡

α
β

�

Fig. 4.19. Relation among α and β for covering-based routing

case. To prove the induction step assume that the property holds for α and
β. We have to show that the property also holds after an arbitrary step was
executed, i.e., for α′ and β′. Again, we have to consider four cases here:

Case (1) sub(Y, F): According to covering-based routing, α′ = α ∪ {F}
(line 16). Now, we must distinguish two cases (line 15): (1.1) Bj ∈ DU

Bi
(F)

and (1.2) Bj /∈ DU
Bi

(F).
Case (1.1) Bj ∈ DU

Bi
(F): This implies K′

Bi,Bj
= append(KBi,Bj , ({F}, ∅)).

Hence, β′ = δ(β, ({F}, ∅)) = β ∪ {F}. Therefore, the desired property holds.
Case (1.2) Bj /∈ DU

Bi
(F): This implies that K′

Bi,Bj
= KBi,Bj . Hence,

β′ = β. But this also implies that there is a filter G ∈ α with G � F .
According to the induction assumption this implies that there is also a filter
H ∈ β, where H � F . Hence, the desired property holds.

Case (2) unsub(Y, F): According to covering-based routing, α′ = α \ {F}
(line 24). Now, we must distinguish two cases (line 26): (2.1) Bj ∈ DU

Bi
(F)

and (2.2) Bj /∈ DU
Bi

(F).
Case (2.1) Bj ∈ DU

Bi
(F):

Here, K′
Bi,Bj

= append(KBi,Bj , ({F1, . . . , Fn}, {F})), where ∀Fi. F � Fi.
Hence, β′ = δ(β, (({F1, . . . , Fn}, F), {F})) = β \ {F} ∪ {F1, . . . , Fn}. The
case assumption also implies that there is no filter in α′ which is identical to
F . But there may be filters in α′ for which F was the only properly cover-
ing filter. These filters are included in those routing entries that are stored
in P (line 27). Line 31 does not change P because S = ∅. A filter G repre-
sented in P (as P is at line 33) is forwarded to Bj if Bj ∈ DPU

Bi
(F) and if

G originates from a destination different from Bj . This implies that there is
no filter in α′ that covers G and that F was the only filter in α that covers
G. The filters satisfying the same conditions as G are exactly those filters
{F1, . . . , Fn} introduced above. Note that identical filters are only forwarded
once to a destination due to line 35. Hence, the desired property holds.

Case (2.2) Bj /∈ DU
Bi

(F): This implies that K′
Bi,Bj

= KBi,Bj . Hence,
β′ = β. So the desired property holds.

Case (3) admin(Bi, H, S, U): Here, we must distinguish two cases: (3.1)
H = Bj and (3.2) H �= Bj .

98 4 Distributed Notification Routing

Case (3.1) H = Bj : The restricted change property implies that α′ =
α. Covering-based routing implies that K′

Bi,Bj
= KBi,Bj because no admin

message is passed back to the sender. Hence, the property holds.
Case (3.2) H �= Bj : We must consider two cases: (3.2.1) S = {F} ∧ U = ∅

and (3.2.2) S = {F1, . . . , Fn} ∧ U = {F}, where ∀Fi. F � Fi.
Case (3.2.1) S = {F} ∧ U = ∅: In this case, the same proof as in case 1

can be applied.
Case (3.2.2) S = {F1, . . . , Fn} ∧ U = {F}, where ∀Fi. F � Fi: The proof

here is similar to those of case 2 except that α′ = α\{F}∪{F1, . . . , Fn} (lines
16 + 22).

Case (4) admin(Bj , Bi, S, U): This implies that K′
Bi,Bj

= tail(KBi,Bj) and
that β′ = δ(β, head(KBi,Bj)). According to the definition of δ, this implies
that β′ = β. So the desired property holds.

This finishes the case distinction and proves the induction step. Hence, the
validity of the induction is implied, concluding the proof. ��
Theorem 4.6. Covering-based routing is a valid routing algorithm.

Proof. The progress, the restricted change, and the restricted impact prop-
erty, as well as the local invariant can be proved in the same way as in Lem-
mas 4.4, 4.5, and 4.6. Lemma 4.11 implies that the remote variant holds
because ∀F ∈ α.∃G ∈ β.G � F implies that N(∆(T |Bi

Bj
, KBi,Bj)) ⊇ N(T \Bj

Bi
).

Hence, covering-based routing is a valid framework instantiation and, by The-
orem 4.2, yields a correct publish/subscribe system. ��

4.5.5 Merging-Based Routing

Merging-based routing is a whole class of routing algorithms rather than a
single routing algorithm. It is based on creating new, broader filters, called
mergers, from existing filters. These mergers are then forwarded instead of the
original filters. In the following, a concrete merging-based routing algorithm
is presented. It is implemented on top of covering-based routing and allows
every broker solely to merge routing entries that refer to the same destination.
This keeps the algorithm simple enough to be applied in a dynamic publish/
subscribe system. The algorithm presented by Handurukande et al. [186] can
also be seen as a variant of merging-based routing.

Formally, a filter F is a merger (or covers) a set of filters F = {F1, . . . , Fn},
iff N(F) ⊇ N(F). F is a perfect merger if the equality holds and an imperfect
merger, otherwise. In order to enable filter merging as sketched above, a bro-
ker can replace a set of routing entries {(F1, D), . . . , (Fn, D)} with the same
destination D by a single merged entry (F, D) if F is a merger of {F1, . . . , Fn}.
The merged routing entries are removed from the routing table, and (F, D) is
added to the routing table instead. If F is a perfect merger this does not affect
the set of notifications that B is forwarding to D, i.e., N(T |D

B). Otherwise,

4.5 Content-Based Routing Algorithms 99

N(T |D
B) might increase. This might violate the safety condition if D is a local

client. If D is a neighbor broker, imperfect merging can be applied trading
routing tables sizes against network bandwidth. We assume perfect merging
for the sake of simplicity in the following. Imperfect merging algorithms, es-
pecially those that are adaptive, are subject to future research.

procedure administer(Dest S, Set S, Set U)
begin

if U = ∅ then

S ← handlesubs(S, S);
5 else

(S, U) ← handleunsubs(S, S, U);
endif

S ← pruneco(S);
10 U ← pruneco(U);

return administerco(S, S, U);
end

Fig. 4.20. Merging-based routing

Now an exemplary routing algorithm based on merging (Fig. 4.20) is de-
scribed in full detail. The algorithm stores what filters a merger is constituted
of in case the merger has to be canceled. The set of filters that constitute a
merger M is given by c(M). Note that whether or not a filter is a merger
can only be detected at the broker that generated the merger. The set of all
mergers of a broker regarding a destination D is denoted by M

|D
B .

procedure pruneco(Set A)
2 begin

forall F ∈ A do

A ← A \ {G ∈ A | G �= F ∧ F � G};
endforall

return A;

7 end

Fig. 4.21. Merging: deletion of covering filters

The merging-based algorithm works on top of covering-based routing
(cf. line 12). Therefore, the calls of administer triggered by the former al-
gorithms have to be compatible with the latter one. Our algorithm either
sends a single subscription or a set of unsubscriptions accompanied by a set

100 4 Distributed Notification Routing

of covered subscriptions. The algorithms determines which message type is
processed by checking whether U = ∅ (line 3). Depending on the result, either
the procedure handlesubs (line 4) or the procedure handleunsubs (line 6) is
called. These procedures are described in the next two subsections. After, the
called procedure returned, the updated sets S and U are pruned (lines 9–10)
by calling the procedure pruneco (Fig. 4.21). This procedure removes from
both sets those filters which are covered by another filter of the respective
set. Finally, the pruned sets S and U are used as input to the covering-based
routing algorithm (line 12).

procedure getcoveringmerger(Filter F, Dest D)
begin

3 forall M ∈ M
|D
B do

if M � F then

return M;

endif

endforall

8 return ∅;
end

Fig. 4.22. Merging: searching for a covering merger

Processing of a Subscription

Every time, a new subscription is received, the following (Fig. 4.23) is done
by the handlesubs procedure:

� If S ∈ NB, those filters and mergers regarding this neighbor that are
covered by the new subscription are removed from the routing table (lines
3–7).

� After that, it is checked whether the new subscription is covered by any
existing merger regarding the same destination. This is done by calling
the getcoveringmerger (Fig. 4.22). If a covering merger is found, the new
subscription is added to one of these mergers and is removed from S (lines
10–14).

� If the new subscription is not covered by any existing merger, it is checked
whether an existing merger regarding the same destination can be ex-
tended to include the new subscription. If this succeeds, the merger is
updated and added to S, and the new subscription is removed from S

(lines 15–18).
� If the new subscription could also not be used to extend an existing merger,

it is tried to generate a new merger from the new subscription and existing
filters (which are not mergers) regarding the same destination. If a new

4.5 Content-Based Routing Algorithms 101

1 procedure handlesubs(Dest S, Set S)
begin

if S ∈ NB then

forall F ∈ S do

TB ← TB \ CL
B(F, S);

6 endforall

endif

forall F ∈ S do

M ← getcoveringmerger(F, S);
11 if M �= ∅ then

c(M) ← c(M) ∪ {F};
S ← S \ {F};

else

M ← tryadd(F, S);
16 if M �= ∅ then

S ← S \ {F} ∪ {M};
else

M ← trynew(F, S);
if M �= ∅ then

21 S ← S \ {F} ∪ {M};
TB ← TB \ {(G, S) | G ∈ c(M)};

endif

endif

if M �= ∅ then

26 forall G ∈ {H | (H,S) ∈ CL
B(M, S)} do

if G ∈ M
|S
B then

c(M) ← c(M) ∪ c(G);
else

c(M) ← c(M) ∪ {G};
31 endif

TB ← TB \ (G, S);
endforall

if S ∈ NB then

forall G ∈ c(M) do

36 c(M) ← c(M) \ {H ∈ c(M) | G � H};
endforall

endif

endif

endif

41 endforall

return S;

end

Fig. 4.23. Merging: handling of subscriptions

102 4 Distributed Notification Routing

merger can be generated, the other constituting filters are removed from
the routing table. Furthermore, the new subscription is removed from S

and the new merger is added instead (lines 19–23).
� If an extended or a new merger was generated, it is checked whether any

filters (or other mergers) regarding the same destination are covered by
this merger. The covered filters (mergers) are removed from the routing
table and (their constituting filters) are added to the new merger (lines
26–32). If S ∈ NB, from a new or extended merger those constituting
filters are removed that are covered by another constituting filter (lines
34–38).

� The updated set S is returned to the administer procedure (line 43).

The code for the procedures tryadd and trynew is not given here because
they largely depend on the details of the underlying filter model.

Processing of a Set of Unsubscriptions Accompanied with a Set of
Covered Subscriptions

Every time a set of unsubscriptions accompanied with a set of covered sub-
scriptions is received, the following (Fig. 4.24) is done by the handleunsubs
procedure:

� If S ∈ NB, those filters and mergers regarding the same destination that
are covered by one of the subscriptions or unsubscriptions are removed
from the routing table (lines 3–7).

� Now the set of constituting filters of those mergers which are affected by
one of the unsubscriptions is updated (lines 11–18).
– If S ∈ NB, those filters are removed from the set of constituting filters

of a merger that are covered by an unsubscription but not covered by
any subscription (line 12).

– If S /∈ NB, only the unsubscriptions are removed from an affected
merger (line 15).

� If a merger from which some constituting filters were removed is afterwards
no longer a perfect merger of its remaining constituting filter, the merger
is removed from the routing table and added to the set of unsubscrip-
tions. This is determined by the disintegrated procedure. Its remaining
constituting filters are added to a set B (lines 19–23).

� After all mergers have been processed, all filters in B are added to the set
of subscriptions (line 26).

� The updated sets S and U are returned to the administer procedure (line
30).

The code for the procedure disintegrated is not given here because it largely
depends on the details of the underlying filter model.

4.5 Content-Based Routing Algorithms 103

1 procedure handleunsubs(Dest S, Set S, Set U)
begin

if S ∈ NB then

forall F ∈ S ∪ U do

TB ← TB \ CL
B(F, S);

6 endforall

endif

B ← ∅;
forall M ∈ M

|S
B do

11 if S ∈ NB then

A ← {F ∈ c(M) | ∃G ∈ U. G � F
∧�H ∈ S. H � F};

else

A ← c(M) ∩ U;

16 endif

if A �= ∅ then

c(M) ← c(M) \ A;

if disintegrated(M) then

TB ← TB \ {M, S};
21 B ← B ∪ {G | G ∈ c(M)};

U ← U ∪ {M};
endif

endif

endforall

26 S ← S ∪ B;

return (S, U);
end

Fig. 4.24. Merging: handling of unsubscriptions

Correctness

Since the correctness of the merging-based algorithm is based largely on
the correctness of the covering-based routing scheme, we only give the main
ideas for the correctness of merging-based routing here. Our algorithm solely
merges routing entries regarding the destination S that triggered the call of
administer at B. The main arguments for the correctness of our algorithm
are the following:

� The routing entry of a new, updated, or covering merger causes B to
forward exactly those notifications to S that match any of its constituting
filters (including F).

� Forwarding a new or updated merger M (that covers F) instead of F
ensures that the neighbors forward all notifications that match F or any
other filter in c(M) to B.

104 4 Distributed Notification Routing

� If F is added to a covering merger M , neither F nor M need to be for-
warded because M was already forwarded, ensuring that all neighbors of
B except S forward to B all notifications that match F .

� If some mergers are canceled, those of their remaining constituting filters
that are not covered by another filter of this set are inserted into the
routing table and forwarded as subscriptions. This ensures that all notifi-
cations matching any of those filters are (a) forwarded by B to S and (b)
forwarded to B by any neighbor of B except S.

4.5.6 Discussion

Overview and Use Cases of Algorithms

We now briefly recall the individual routing algorithms and describe their
advantages and disadvantages. This helps engineers to choose a particular
algorithm for different practical scenarios. One helpful indication are metrics
for the efficiency of routing algorithms. Two main metrics have emerged in the
past: the routing table sizes and the filter forwarding overhead [267]. The filter
forwarding overhead is the number of admin messages needed for changing
the routing tables in accordance with the used routing algorithm if a new
subscription is issued or an existing subscription is revoked. A summary of
the discussions is shown in Table 4.1.

Table 4.1. Portfolio of content-based routing algorithms

name use case

flooding Easy to implement, subscriptions become effective immedi-
ately, but has worst-case notification forwarding overhead

simple Significantly reduces notification forwarding overhead if sub-
scriptions and clients are sparsely distributed. Routing table
sizes grow linearly with the number of subscriptions. Every
routing table is affected by a new or canceled subscription

identity-based Reduces routing table sizes and filter forwarding overhead if
set of subscriptions contains a lot of identical entries; may de-
generate to simple routing otherwise. Identity test must be
efficiently computable

covering-based Efficient for intervallike subscriptions. May degenerate to
identity-based routing if subscriptions do not cover each other.
Covering test must be efficiently computable

perfect merging Reduce routing table sizes if subscriptions can often be merged
perfectly; may degenerate to covering-based routing if not. May
increase the filter forwarding overhead

imperfect merging Allows users to trade accuracy against efficiency. Degenerates
to flooding if too much imperfection is tolerated

4.5 Content-Based Routing Algorithms 105

With flooding, the routing tables have only local entries and no admin
messages must be handled, so in terms of the efficiency metrics it can be
regarded as a lower bound to the other algorithms. Flooding is, however,
a degenerated case of the other algorithms and can be used to determine
the worst-case notification forwarding complexity (all other algorithms try
to decrease the overall number of forwarded notifications). This is the main
disadvantage of flooding. Flooding is advantageous because of its simplicity
which makes it is easy to implement correctly. Moreover, new subscriptions
become effective immediately.

Because simple routing enforces that every broker has knowledge about
all active subscriptions, the size of each routing table grows linearly with the
number of active subscriptions. Moreover, all routing tables are affected if a
subscription is issued or revoked. In our framework this means that the number
of admin messages necessary to carry out such a change is independent of the
number of active subscriptions and equals the number of links in the broker
topology. Simple routing is preferable to flooding if the set of subscribing
clients is very sparse and if subscriptions do not change very often.

Identity-based routing degenerates to simple routing if distinct filters are
never identical. Hence in this worst-cast, routing table sizes and the filter for-
warding overhead of identity-based routing are the same as for simple routing.
However, our experimental findings [267] suggest that both numbers can be
much smaller in practice. For example, if the number of different filters is
bounded, the remote part of the routing tables grows only sublinearly in the
number of active subscriptions and converges to a limit for large numbers
of active subscriptions. This is because identity-based routing maintains the
following invariant, which can be proved by a simple induction: In a routing
table, there are never two distinct entries (F, H) and (G, H) for a neighbor H
for which F ≡ G. This limits the size of the remote part of the routing table
regarding a certain neighbor to at most the number of different filters.

Compared to simple routing, which forwards filters unselectively to all
neighbors, identity-based routing forwards a filter selectively only to those
neighbors that are in DI

B(F). This accounts for the observation that the filter
forwarding overhead is lower than for simple routing. Because the probability
that for a filter there is an identical filter increases with the number of active
subscriptions, the forwarding overhead monotonically decreases. However, to
use identity-based routing, a method to efficiently compute the identity rela-
tion is necessary. If such a method is not available, we must revert to simple
routing (this observation also holds for the more refined algorithms that fol-
low). A use-case for identity-based routing is a stock exchange quote service,
where only individual stocks can be subscribed to.

Covering-based routing degenerates to identity-based routing if no fil-
ter properly covers another filter. In this case, CL

B(F, S) = CI
B(F, S) and

DU
B(F) = DI

B(F). Hence, CL
B(F) \ CI

B(F) = ∅, implying that P = ∅, re-
sulting in identity-based routing. However, if filters properly cover each other,
covering-based routing does better than identity-based routing. Both the rout-

106 4 Distributed Notification Routing

ing table sizes and the filter forwarding overhead are reduced [267]. The reason
for this is that covering-based routing also maintains an invariant: In a routing
table there are no two distinct entries (F, H) and (G, H) for a neighbor H ,
where F � G. This invariant can also be proved by a simple induction. Com-
pared to identity-based routing this stronger invariant leads to a better be-
havior. Covering-based routing is advantageous over simple or identity-based
routing in case of intervals, for example, if stocks can be subscribed to for
special intervals (e.g., show me stock x if its value is between y and z).

Merging-based routing degenerates to covering-based routing if filters are
never merged. If filters are merged, the routing table size can be reduced sub-
stantially. The reduction ratio, however, depends on the degree of imperfection
that is tolerated (if any) and the filter predicates that are issued [262]. Our
experimental findings suggest that a reduction in the routing table sizes can
be achieved but that the filter forwarding overhead might increase in turn.

The Design Evolution of Content-Based Routing

As mentioned above, identity-based routing can be regarded as a special case
of covering-based routing: whenever an identity-based routing algorithm pro-
cesses a new filter that is identical to an existing filter, a covering-based rout-
ing algorithm would also process that new filter with the same effect on the
routing table. From an implementation perspective, on the one hand, covering-
based routing can be regarded as an “add-on” to identity-based routing (it
handles all the cases of identity-based routing, but also more). On the other
hand, identity-based routing can be achieved by “restricting” the power of
covering-based routing. Interestingly, we can extend this relation to all other
presented routing schemes, which results in a circular evolution hierarchy that
we now explain (Fig. 4.25).

flooding

simple

identity-based

covering-based

perfect merging

imperfect merging

Fig. 4.25. Circular evolution of CBR algorithms

Simple-routing results from restricting the power of identity-based routing,
i.e., by removing its potential to process identical filters. Therefore, simple

4.6 Extensions of the Basic Routing Framework 107

routing can be regarded as a special case of identity-based routing. Similarly,
covering-based routing results from a perfect merging algorithm by restricting
the types of filters which are merged: if only those filters are merged that
cover an existing filter we have covering-based routing. Obviously, imperfect
merging algorithms can be similarly regarded as a generalization of perfect
merging.

Interestingly, flooding can be regarded as both the starting and the ending
point of this design evolution (Fig. 4.25). Historically, it is the starting point
since the first schemes were based on flooding and more refined algorithms
were developed to prevent the deficiencies of this scheme. More formally, flood-
ing seems to be incomparable to, e.g., simple routing, because flooding does
not have remote routing table entries. However, flooding can be regarded as a
generalization of imperfect merging: consider an imperfect merging algorithm
in which there exists a special initial action that spontaneously adds the filter
that matches the set of all notifications to the routing table (i.e., performs an
imperfect merge) and never removes any filters. Clearly, this results in flood-
ing. In this sense flooding can be regarded as a generalization of imperfect
merging.

4.6 Extensions of the Basic Routing Framework

We present — on a less formal level — three important extensions of the basic
routing framework. It is shown how advertisements can be integrated into the
framework, how hierarchical versions of the routing algorithms versions can
be obtained, and how changes to the topology can be dealt with. The use
of advertisements can enhance the efficiency of the systems by limiting the
propagation of subscriptions into those subnets, where matching notifications
are potentially produced. Hierarchical routing algorithms reduce the filter
forwarding overhead and the routing table sizes but require the root broker to
handle every notification. This can be superior in some environments. Coping
with topology changes is important dealing with a changing system.

4.6.1 Routing With Advertisements

With the subscription-based routing algorithms presented in Sect. 4.5, sub-
scriptions are forwarded regardless of whether or not matching notification
are potentially produced in the respective subnet. Advertisements allow the
propagation of subscriptions to be limited to those subnets, where matching
notifications are potentially produced. The only assumption for the use of
advertisements is that it can be detected whether or not a subscription and
an advertisement overlap, i.e., whether there is a notification matching both
filters. Formally, two filters F1 and F2 overlap iff N(F1)∩N(F2) �= ∅. We also
say that a subscription can be served by an advertisement if both overlap.

108 4 Distributed Notification Routing

1 sync(µB) procedure pub (Client X,Notification n)
begin

if ∃(F, X) ∈ T A
B . n ∈ N(F) then

handleNotification(X, n);
endif

6 end

sync(µB) procedure adv(Client X, Filter F)
begin

(FS, FU) ← administerA(X, {F}, ∅);
11 handleAdminMessage(X, FS, FU , 1);

end

sync(µB) procedure unadv(Client X,Filter F)
begin

16 (FS, FU) ← administerA(X, ∅, {F});
handleAdminMessage(X, FS, FU , 1);

end

procedure handleMessage(Message m)
21 begin

switch

case m is “forward(n)” message from neighbor U:

handleNotification(U, n);
break

26 case m is “adminS(S, U)” message from neighbor U:

(FS, FU) ← administer(U, S, U);
handleAdminMessage(U, FS, FU , 0);

break

case m is “adminA(S, U)” message from neighbor U:

31 A ← prune(PB(S, U));
forall F ∈ A do

send “adminS({F}, ∅)” to U;

endforall

(FS, FU) ← administer(S, S, U);
36 handleAdminMessage(S, FS, FU , 1);

T S
B ← T S

B \ OB;

break

endswitch

end

Fig. 4.26. Routing using advertisements, part I

4.6 Extensions of the Basic Routing Framework 109

procedure handleAdminMessage(Dest D, Set MS ,Set MU ,Bool b)
begin

forall H ∈ NB \ {D}
45 A ← {F | (F, H) ∈ MS};

B ← {F | (F, H) ∈ MU};
if A �= ∅ ∨ B �= ∅ then

if b = 0 then

A ← QB(A, H);
50 B ← QB(B, H);

if A �= ∅ ∨ B �= ∅ then

send “adminS(A, B)” to H;

endif

else

55 send “adminA(A, B)” to H;

endif

endif

endforall

end

Fig. 4.27. Routing using advertisements, part II

If advertisements are used, each broker manages two routing tables, the
known subscription routing table T S

B (formerly TB) and an additional adver-
tisement routing table T A

B . While the former is used (as described before)
to route notifications from producers to interested consumers, the latter is
used to route subscriptions and unsubscriptions from interested consumers to
producers. Both routing tables have to be updated as clients issue or revoke
subscriptions and advertisements, respectively. This now takes places on two
cooperating levels. The first level is responsible for updating the subscrip-
tion table, while the second level keeps the advertisement table up to date.
For each of both levels one of the routing algorithms presented in Sect. 4.5
(except flooding) can be chosen. For example, simple routing can be used to
update the subscription table, while at the same time covering-based routing
is applied to the advertisement table. The basic idea of advertisements is that:

� A (un)subscription is only forwarded to a neighbor if it overlaps with an
advertisement from this neighbor.

� If a new advertisement is received from a neighbor H , subscriptions from
other neighbors that previously could not be served by any advertisement
from H but that now can be served are forwarded to H .

� If an advertisement is canceled by neighbor H , those subscriptions that
can no longer be served by any other but the originating neighbor are
removed from the routing table.

A disadvantage of advertisements is that notifications which only match
an advertisement that has been recently issued by a producer may not be

110 4 Distributed Notification Routing

delivered to all interested consumers. This is because the propagation of the
respective advertisement triggers the forwarding of newly overlapping sub-
scriptions. In the meantime, before this process has terminated, notifications
may be dropped or may not be forwarded to all neighbors which have con-
sumers with matching subscriptions in their subnet. This was also the main
reason to apply a weakened liveness condition (Sect. 2.5.4) if advertisements
are used. Indeed, with the proposed solution, delivery is only guaranteed after
the new advertisement has been propagated and the subscriptions that are
forwarded in turn have also been propagated. Both processes are guaranteed
to terminate after a finite time. Hence, the proposed solution satisfies Def. 2.9,
which defined simple event system with advertisements.

Integration into the Framework

Advertisements can easily be integrated into our framework. Two categories
of admin messages are used to distinguish among admin messages related to
subscriptions and those related to advertisements: adminS and adminA. The
existence of two instances of administer is now assumed: administerS and
administerA. The former defines the applied subscription routing algorithm.
It is called if a sub, an unsub, or an adminS message is received; it only works
on the subscription table. The latter defines the used advertisement routing
algorithm. It is called if adv or unadv is called by a local client, or if an adminA

message is received from a neighbor; it only works on the advertisement table.
In Figs. 4.26 and 4.27, the advertisement-enabled instantiation of those

parts of the framework are shown which replace the ones shown in Figs. 4.1
and 4.2. Most of the code has already been discussed. The more interesting
parts are (a) the forwarding of newly servable subscriptions (lines 31–34), (b)
the dropping of unservable subscriptions (line 37), and (c) the postprocessing
of subscriptions before the respective adminS messages are sent out (lines
49–50). These are described in the following.

procedure prunesi(Set A)
2 begin

return A;

end

Fig. 4.28. prune for simple routing

Forwarding of Newly Servable Subscriptions

An adminA message containing new advertisements might make some sub-
scriptions newly servable. If the adminA message is received from a neighbor

4.6 Extensions of the Basic Routing Framework 111

1 procedure pruneid(Set A)
begin

forall F ∈ A do

A ← A \ {G ∈ A | G �= F ∧ F ≡ G};
endforall

6 return A;

end

Fig. 4.29. prune for identity-based routing

H , this concerns all subscriptions of other neighbors which previously were
not served by any advertisement from H but which are served by one of the
new advertisement in S. We denote this set of newly serviceable subscriptions
with PB :

PB(S, H) = {F | (F, I) ∈ T S
B ∧ H �= I

∧ �(G, H) ∈ T A
B . N(F) ∩ N(G) �= ∅

∧ ∃G ∈ S. N(F) ∩ N(G) �= ∅}.
(4.32)

The subscriptions in PB are pruned by calling the prune procedure that is
tuned to the used subscription routing algorithm. For simple routing, it simply
returns the unchanged set (Fig. 4.28). For identity-based routing (Fig. 4.29),
it removes for each filter all identical filters. For covering and merging-based
routing (Fig. 4.21), it removes all filters that are covered by any other filter.

Dropping of Unservable Subscriptions

After an adminA message was processed, all routing entries corresponding
to subscriptions of neighbor brokers which cannot be served anymore are
removed from the routing table. Subscriptions of local clients are not dropped.
A subscription routing entry (F, H) ∈ T S

B cannot be served if there is no
(G, I) ∈ T A

B such that H �= I and N(F) ∩ N(G) �= ∅. The set of all such
routing entries regarding neighbors of B is given by:

OB = {(F, H) ∈ T S
B | H ∈ NB ∧

�(G, I) ∈ T A
B . H �= I ∧ N(F) ∩ N(G) �= ∅}. (4.33)

Postprocessing of Subscriptions

With advertisements, a (un)subscription is only forwarded to a neighbor if
it overlaps with an advertisement from this neighbor. This is achieved by
removing from the set of subscriptions and the set of unsubscriptions being
forwarded to a neighbor H those filters that do not overlap with an advertise-
ment of H . This is done by evaluating:

112 4 Distributed Notification Routing

QB(A, H) = {(F, H) | F ∈ A ∧ ∃(G, H) ∈ T A
B .

H ∈ NB ∧ N(F) ∩ N(G) �= ∅}. (4.34)

4.6.2 Hierarchical Routing Algorithms

n ∈ N(F)

1. sub(F) 2. sub(G) 3. pub(n)

(F, X1)
(G, X2)

(F, B2)

F � G

B2

X1 X2 X3

B3

B1

Fig. 4.30. Hierarchical covering-based routing

The routing algorithms discussed so far are called peer-to-peer routing
algorithms because no brokers are distinguished and filters are exchanged
between neighbors in both directions. With hierarchical routing, one broker
is distinguished as root of the broker topology and every notification that is
published is always forwarded stepwise to this root node. Hence, it is sufficient
to forward subscriptions and unsubscriptions only in the direction pointing to
the root broker (Fig. 4.30). Carzaniga has presented a hierarchical version of
covering-based routing [65] which is also used by JEDI [92]. With hierarchical
routing, every broker has to process every notification that is published in its
respective subtree, but its routing table only contains filters originated in its
subtree, too. Compared to peer-to-peer routing, hierarchical routing reduces
the sizes of the routing tables substantially. For a topology being a balanced
tree3 with n brokers, a subscription is only present in about O(log n) instead of
n routing tables in the worst-case, i.e., in a system with no other subscriptions.
When the number of subscriptions increases, the advantage of hierarchical
routing over peer-to-peer routing decreases. However, in a saturated system
with many subscriptions, hierarchical routing only saves 50% of the routing

3 Note that in this scenario the number of brokers grows exponentially in the num-
ber of hierarchy levels.

4.6 Extensions of the Basic Routing Framework 113

table sizes. For an individual broker, the reduction of its routing table size
corresponds to its level in the broker hierarchy. Its routing table only contains
filters that originated in its subtree. Hence, smaller routing tables are traded
for higher notification loads. For the root node, the size of its routing tables is
therefore not reduced, although it has to handle all notifications published in
the system. Hence, this node might possibly be overloaded. A possible solution
to this could be to replicate the root node and some of its child nodes exposed
to a higher load.

(F, X1)

(F, B4) (F, B1)

(F, B2)

1. sub(F) 2. pub(n)

(F, B2)

n ∈ N(F)

B2 B3

B4 B5 B6 B7

X1 X2

B8 B1

Hierarchical Routing

Peer-to-Peer Routing

Fig. 4.31. Hybrid routing

Another potential solution is hybrid routing [65], which combines hierar-
chical and peer-to-peer routing. In this case, for certain subtrees hierarchical
routing is used as described above, while in the other parts of the topology
peer-to-peer routing is used (Fig. 4.31). In the part of the topology, where
peer-to-peer routing is used, advertisements can be used as described previ-
ously. In a subtree, where hierarchical routing is used, advertisements are only
propagated to the parent node, and the advertisement routing table is ignored
for subscription routing by every broker except the root node of this subtree.
The root node uses the advertisement table for deciding which subscriptions it
forwards to its peer nodes to which it is connected. Directly combining hierar-
chical routing with advertisements is not sensible because hierarchical routing
is essentially the same as if peer-to-peer routing is used and the respective root
node issues an advertisement that overlaps with all subscriptions.

114 4 Distributed Notification Routing

Changes for Hierarchical Routing

Now let us look at how we can obtain the hierarchical variants of the routing
algorithms presented in the previous sections. We have only to slightly modify
notification forwarding such that a notification is always forwarded to the
parent broker and the individual routing algorithms such that a filter is only
propagated to the parent broker.

Let R be the root broker. For a broker B, let P (B) be the parent broker
of B if B �= R and B, otherwise.

� Framework algorithm (Figs. 4.1 and 4.2):
– Line 20 is replaced by:

send “forward(n)” to all neighbors in FB(n) ∪ {P (B)} \ {D};
� Simple routing (Fig. 4.5):

– Lines 5 and 6 are replaced by:

if B �= R then

MS ← {(F, P (B)) | F ∈ S};
MU ← {(F, P (B)) | F ∈ U};

4 else

MS ← ∅;
MU ← ∅;

endif

� Identity-based routing (Fig. 4.8):
– Line 13 is replaced by:

if B �= R then

if P (B) ∈ DI
B(F) then

3 A ← {(F, P (B))};
else

A ← ∅;
endif

endif

� Covering-based routing (Fig. 4.12):
– Line 15 is replaced by:

if B �= R then

if P (B) ∈ DU
B(F) then

3 MS ← MS ∪ {(F, P (B))};
endif

endif

– Line 26 is replaced by:

if B �= R then

if P (B) ∈ DU
B(F) then

MU ← MU ∪ {(F, P (B))};
endif

5 endif

4.6 Extensions of the Basic Routing Framework 115

– Lines 31–43 are replaced by:

if B �= R then

P ← P ∪ {(F, S) | F ∈ S};
endif

TB ← TB ∪ {(F, S) | F ∈ S};
5 endif

if B �= R then

forall (F, U) ∈ P do

P ← P \ {(G, H) | (G, H) ∈ P ∧ G ≡ F};
if P (B) ∈ DPU

B (F) then

10 MS ← MS ∪ {(F, P (B))};
endif

endforall

endif

� For merging-based routing, no changes are necessary.

4.6.3 Rendezvous-Based Routing

A complementary class of routing algorithms that can be combined with the
previous approaches follows a rendezvous-based routing strategy. Rendezvous-
based routing schemes derive from the observation that any content-based
routing algorithm has to set up routing paths from publishers to subscribers.
In the previous routing framework, this was achieved by propagating state
about subscriptions to all nodes in the system (subject to covering among
subscriptions). An alternative approach is to designate explicit nodes in the
network that act as “meeting points” for notifications and matching subscrip-
tions.

In rendezvous-based routing, a rendezvous node ensures that all interested
brokers agree on the same dissemination tree for events. This means that
a notification message that is sent to the rendezvous node is guaranteed to
encounter all relevant subscription states in the network. In the worst-case,
a notification will only a find matching subscription state once it reaches the
rendezvous node. When constructing a dissemination tree, subscriptions and
notifications are routed to the rendezvous node using the overlay network.
The rendezvous node must exist at a globally known location in the network.

Any broker in the system must have a way to send a message to the broker
acting as the rendezvous node for a given event type. A scalable implementa-
tion of such a scheme can be based on the routing substrate that is provided
by a distributed hash table(DHT) [316]. For example, the rendezvous node can
be chosen by using a unique event type name as a key for a lookup in a DHT.
The broker in the DHT responsible for this key then becomes the rendezvous
node. Due to the properties of the DHT, the chosen event broker will be glob-
ally agreed upon by all brokers so that every broker can use the peer-to-peer
routing substrate to send messages to this rendezvous node. We will describe

116 4 Distributed Notification Routing

this technique for building a content-based publish/subscribe system on top
of a peer-to-peer routing substrate in more detail in Sect. 4.6.8.

The idea of rendezvous nodes was introduced [24] in the context of core-
based trees for building multicast trees. However, core-based trees require all
messages to be routed via the rendezvous node, potentially creating a bottle-
neck at the node. In contrast, rendezvous-based routing can take advantage
of subscription state to reduce the load on the rendezvous node. Notifica-
tions can be delivered directly to subscribers when matching subscriptions
are encountered on the routing path to the rendezvous node.

A publish/subscribe system usually maintains multiple rendezvous nodes,
for example, one per event type or class of events. This enables the set-up of
multiple dissemination trees to balance the routing effort. Any broker in the
system can assume the role of a rendezvous node for one or more event types.
A rendezvous node is automatically created when a new event type is added.
Once a broker has become a rendezvous node, it is responsible for managing
that particular event type.

A rendezvous node can also be used to store metadata about a class of
events and manage the authoritative version of the event type schema used for
type-checking. Note that rendezvous nodes do not contain any state about the
event dissemination trees itself, which makes them simple to replace in case of
failure. When a rendezvous node fails, a new rendezvous node can take over
if the peer-to-peer routing substrate is capable of adaptation. To prevent the
event type metadata from being lost, they can be replicated across multiple
nodes. There exist several strategies for managing redundant rendezvous nodes
to achieve fault tolerance with rendezvous-based routing [310].

Fig. 4.32. Rendezvous-based routing

Figure 4.32 shows an example of an overlay network of brokers B1...5 with
one rendezvous node R. It illustrates how subscription (s1,2) and notifica-
tion messages (n1) are routed toward the rendezvous node R and how the
subscription messages s1,2 establish routing state at brokers along the path.
At first, a subscription message is routed toward the rendezvous node. The
subscription is stored at every broker along the path (B1,3,5 and R). After
the subscription message has reached the rendezvous node, it is discarded.

4.6 Extensions of the Basic Routing Framework 117

Notification messages are also routed to the rendezvous node. Whenever they
encounter a broker with matching subscriptions, they follow the reverse path
of the subscription. Note that no state is created at brokers that process noti-
fication messages, and messages are never forwarded to a broker that was the
previous hop on the path.

In this rendezvous-based routing scheme, a notification must reach the
rendezvous node but may be discarded there because it has already encoun-
tered all matching subscriptions on its path to the rendezvous node. This
has the drawback that the rendezvous node may become a bottleneck in the
system when a large number of notifications are flowing through it. To ad-
dress this issue, advertisements (as introduced in Sect. 4.6.1) can be used
to establish more complete routing states in the system. This then enables
notifications to follow the reverse path of subscriptions without necessarily
traversing the rendezvous node [311].

Rendezvous-based routing usually has a lower message forwarding over-
head than the other schemes because only brokers that are part of an event
dissemination tree need to maintain routing state [312]. In other words, an
inner broker that is not on the routing path from publishers and subscribers
to their rendezvous node does not need to store any state and can be oblivious
to the ongoing routing of notifications. This property is especially beneficial
in large-scale networks, in which much of the event dissemination is geograph-
ically localized and the creation of globally consistent state at all brokers is
an expensive operation. The price to be paid for this reduction in state is the
complexity of managing one (or more) rendezvous nodes and the global dis-
semination of their identities. Often, this is achieved by a peer-to-peer routing
substrate.

Even though rendezvous-based routing is not based on the flooding of sub-
scriptions or notifications, it can be extended in a similar fashion, as shown in
Fig. 4.25. Simple rendezvous-based routing can be combined with techniques
from identity-, covering-, and merging-based routing to exploit commonality
among subscriptions and reduce the amount of subscription states in the net-
work. In contrast to the flooding-based schemes, rendezvous-based routing
only installs filtering state along the routing paths from publishers and sub-
scribers to rendezvous nodes. This means that even with imperfect merging, a
rendezvous-based routing scheme will never have the high message forwarding
overhead of flooding.

4.6.4 Topology Changes

So far we have assumed a static broker topology. The topology changes if a
new broker connects to or a connected broker disconnects from the broker net-
work. Note that we do not deal with transient disconnections due to system
faults here but with desired connects and disconnects. In the following, we do
not elaborate how connect and disconnect decisions are made. Instead, we as-
sume that the system administrator makes these decisions. The administrator

118 4 Distributed Notification Routing

must take care to avoid cycles in the topology and undesired partitioning. For
brevity, we focus our discussion on peer-to-peer routing. Topology changes
in hierarchical routing can be handled similarly. We do not discuss how to
enforce ordering requirements which is an additional challenge if the topology
changes dynamically [303].

When a connection is established between two brokers, they exchange
their active subscriptions to establish the desired delivery paths. Note that,
similar to the case of advertisements, notification delivery can only be guar-
anteed eventually after a connection has been established. When an existing
connection among two brokers is removed, both brokers cancel the subscrip-
tions of the other broker at their remaining neighbors and delete the affected
subscriptions from their routing tables.

In Fig. 4.33 the code of the procedures needed for connection manage-
ment is shown. It assumes that the used routing algorithm is able to pro-
cess individual (un)subscriptions from neighbor brokers (lines 11+25). A new
connection is established by calling the connect procedure at a broker. This
sends a connect message to the desired neighbor broker and then also for-
wards the active subscriptions by calling the forwardFilters procedure. The
set of subscriptions forwarded is reduced by applying the prune procedure
corresponding to the used routing algorithm. An existing connection is can-
celed by calling the disconnect procedure at a broker. This procedure sends
a disconnect message to the desired neighbor broker and then calls the drop-
Filters procedure. This cancels all subscriptions of the neighbor broker as if
an unsubscription was received. The forwardFilters and the dropFilters pro-
cedures also have to be executed by the neighbor broker when it receives a
connect and disconnect message, respectively. Therefore, the following code is
inserted into the framework (Fig. 4.1) after line 38:

1 case m is “connect” message from neighbor U:

if U /∈ NB then

NB ← NB ∪ {U};
forwardFilters(U);

endif

6 break

case m is “disconnect” message from neighbor U:

if U ∈ NB then

NB ← NB \ {U};
11 dropFilters(S);

endif

break

Note that if advertisements are used, they are processed similarly, as de-
scribed above. In this case, advertisements instead of subscriptions are ex-
changed among the brokers when a new connection is established. This subse-
quently leads to the exchange of servable subscriptions. When a connection is
canceled, both affected brokers cancel their respective advertisements at their

4.6 Extensions of the Basic Routing Framework 119

procedure connect(Broker I)
2 begin

send “connect” to I;
forwardFilters(I);

end

7 procedure forwardFilters(Broker I)
begin

A ← prune({F | (F, D) ∈ TB ∧ D �= I});
forall F ∈ A do

send “admin({F}, ∅)” to I;
12 endforall

end

procedure disconnect(Broker I)
begin

17 send “disconnect” to I;
dropFilters(I);

end

procedure dropFilters(Broker I)
22 begin

A ← {F | (F, I) ∈ TB};
forall F ∈ A do

(MS , MU) ← administer(∅, {F});
forall H ∈ NB \ {I}

27 S ← {F | (F, H) ∈ MS};
U ← {F | (F, H) ∈ MU};
if S �= ∅ ∨ U �= ∅ then

send “admin(S, U)” to H;

endif

32 endforall

endforall

end

Fig. 4.33. Managing connects and disconnects

remaining neighbors and delete the affected advertisements from their routing
tables. This subsequently leads to the deletion of unservable subscriptions.

4.6.5 Joining and Leaving Clients

In a dynamic system, clients can join and leave the system. To support joining
and leaving clients, we change the routing framework in the following way:

� Each broker B manages a set CB containing B’s current set of local clients.
Initially, CB is the empty set.

120 4 Distributed Notification Routing

� If a client X calls one of the interface operations (e.g., pub, sub, unsub)
and X is not in CB, then X is added to CB and X ’s delivery queue is
initialized.

� If a client wants to leave the system, it calls the new leave interface oper-
ation. This operation removes X from CB and cancels all active subscrip-
tions (and advertisements, if advertisements are used). Furthermore, X ’s
delivery queue is freed.

4.6.6 Routing in Cyclic Topologies

Up to now, we have restricted the discussion to acyclic topologies. However,
the definition of valid routing algorithms also makes sense in cyclic topologies
(cf. Sect. 4.3.1). In this case, duplicates may be delivered to brokers if we
would apply notification forwarding without changes. To ensure safety, it must
be guaranteed that these duplicates do not reach a client. Next, we describe
how duplicates can be eliminated by using notification ID histories. Then,
we discuss routing algorithms for cyclic topologies. We do not discuss how
to enforce ordering requirements which is an additional challenge in cyclic
topologies.

Avoidance of Duplicates

Duplicates can be avoided in the following way: To detect duplicates each
broker stores the ID of every notification it processes. If a broker receives a
notification more than once, the broker ignores this notification.

Storing notification IDs for the whole lifetime of the system would sooner
or later consume all the memory of a broker. In order to avoid the case that
a broker has to store notification IDs forever, a broker must be able to detect
that a duplicate corresponding to a stored ID can no longer reach this broker.
In this case, the broker can delete this ID from its history. To make notification
ID history cleanup possible, notifications carry a timestamp that is filled in
at the time the notification is published by the broker hosting the publishing
client. We assume that the clocks of the brokers are approximately synchro-
nized and that notifications that are consecutively published at a broker get
distinct and increasing timestamps.

Each broker stores for each neighbor and itself the maximum timestamp it
has received from this neighbor in timestamp message and which corresponds
to the last notification published by a local client, respectively. Initially, the
maximum timestamp vector is initialized with sufficiently small timestamps.
Each broker computes from the maximum timestamp vector a minimum maxi-
mum timestamp for each of its neighbors by taking the minimum of all but this
neighbor’s maximum timestamps. If a broker receives a timestamp message,
it updates the respective neighbor’s vector component. Similarly, it updates
its own component in the vector if a local client publishes a notification. If

4.6 Extensions of the Basic Routing Framework 121

for a too long a period of time no local client has produced a notification,
the broker also updates its own component. If the minimum maximum times-
tamp of some neighbors has increased due to an update, the respective new
minimum maximum is sent to these neighbors. This way, every broker has a
current minimum maximum timestamp of all components of its vector that
monotonically increases. For a broker, it is safe to discard those notification
IDs whose timestamp is smaller than its current minimum maximum times-
tamp. Of course, timestamp messages can be piggybacked to forward and
admin messages. Message batching can be applied, too.

Routing Algorithms

Similar to acyclic topologies, the simplest routing algorithm for cyclic topolo-
gies is flooding. Flooding (Fig 4.4) can be reused for cyclic topologies without
changes. Applying flooding has the advantage of a maximum of fault toler-
ance. As long as the topology is connected, every notification will reach every
broker.

procedure administer(Dest S, Set S, Set U)
2 begin

S ← S \ {F | ∃(F, D) ∈ TB ∧ D �= S};

TB ← TB ∪ {(F, S) | F ∈ S};
TB ← TB \ {(G, S) | G ∈ U};

7 MS ← {(F, H) | H ∈ NB \ {S} ∧ F ∈ S};
MU ← {(F, H) | H ∈ NB \ {S} ∧ F ∈ U};
return (MS , MU);

end

Fig. 4.34. Simple routing in cyclic topologies: algorithm

Figure 4.34 shows simple routing adapted to cyclic topologies. There are
only slight changes necessary to use simple routing in acyclic topologies
(Fig. 4.5). In line 3, those filters are removed from S for which a routing entry
from another destination already exists. The rest of the code is not changed.
This algorithm actually creates a separate spanning tree for every subscrip-
tion (Fig. 4.35). The advantage of this approach is that the load caused by
notification is more balanced among the network connections than if a single
spanning tree was used. This is especially true if a network has many more
links than nodes. Note that simple routing in cyclic topologies has much in
common with directed diffusion [204]. Simple routing can be used for adver-
tisements and subscriptions. In this case, for each advertisement a separate
spanning tree is built and this spanning tree is used to propagate the sub-

122 4 Distributed Notification Routing

B1

B4

X1

B2

B3

B4

X2
X3

F

G

sub(X2, F) sub(X3, G)

Fig. 4.35. Example of simple routing in cyclic topologies

scriptions to the consumers. How advanced routing algorithms can be used in
cyclic topologies without relying on spanning trees is still an open issue.

4.6.7 Exploiting IP Multicast

Opyrchal et al. [291] described how IP multicast can be used in a publish/sub-
scribe system and in which cases it reduces the consumed network bandwidth.
They compare flooding to four multicast-enabled routing algorithms:

� ideal multicast assumes that for each set of brokers (having clients with
a matching subscription) a (perfect) multicast group exists. In this case,
a notification can be forwarded to all these brokers with a single send
operation. This strategy is only realistic for a small number of brokers
because for N brokers 2N groups are needed.

� clustered group multicast(CGM) divides the set of all brokers into several
mutually exclusive subsets called clusters. Then, for each cluster ideal mul-
ticast is used. For C equally large clusters, this strategy needs C sends,
decreasing the efficiency of the multicast. The number of groups necessary
is reduced by a factor of 2C/C, i.e., c · 2N/C groups are needed.

� Threshold Clustered Group Multicast(TCGM) sends a notification to all
members of all clusters if the number of receiving brokers exceeds a thresh-
old T . This approach reduces the number of groups to

C ·
∑

1≤i≤T

(
N/C

i

)
, (4.35)

but further reduces the efficiency of the multicast because now brokers
may receive notifications for which they do not have a local client with a
matching subscription.

4.6 Extensions of the Basic Routing Framework 123

� neighbor matching multicast forwards a notification in multiple steps from
the broker to which the publishing client is connected to the brokers which
have clients with a matching subscription. In each step, the sending broker
determines those neighbor brokers to which it should forward this notifi-
cation. This strategy has the disadvantage that those links that connect
brokers with (multicast routers) are traversed several times.

From the investigated multicast routing algorithms, the neighbor match-
ing algorithm can be directly integrated into our routing framework. Instead
of sending a notification to individual neighbors, now a corresponding multi-
cast group is used that contains all neighbors to which the notification should
be forwarded. If it is not possible to reserve a multicast group for each sub-
set of neighbors, threshold clustering can be used. The authors state that
neighbor matching is superior to flooding under conditions of high selectivity
and high locality of subscriptions. It can be expected that their results are
too pessimistic because their work depends on simple routing, i.e., the rout-
ing algorithm does not exploit covering and merging. They also assume that
event brokers are not placed nearby to the multicast routers and therefore the
use of multicast may even introduce a bandwidth penalty. They also did not
investigate the use of advertisements.

The other two multicast-enabled routing algorithms (i.e., CGM, TCGM)
assume that each broker has global knowledge about all active subscriptions
because notifications are forwarded in only one step from the producer’s broker
to the consumers’ brokers. These algorithms can easily be integrated with
simple routing to fit into our routing framework.

4.6.8 Topology Maintenance

From the previous discussion it becomes clear that the maintenance of an
overlay topology in the light of network and node failures and nodes joining
and leaving the system (also known as churn) can be complex. Therefore,
a publish/subscribe system benefits from a routing abstraction that handles
the maintenance of the overlay network of broker transparently to the higher
content-based routing layers. Recently, DHTs [316, 323, 331, 351] were intro-
duced as scalable data structures for building large distributed applications.
The multihop routing abstraction implemented by a DHT integrates natu-
rally with the need for globally unique rendezvous nodes in rendezvous-based
routing approaches (Sect. 4.6.3). In this section, we briefly introduce DHTs
and explain how they can be used to implement rendezvous-based event dis-
semination.

Distributed Hash Tables (DHTs)

A DHT maps a key to a value that is stored at a particular node in the
network. Rather than having global knowledge, nodes only need to know about

124 4 Distributed Notification Routing

a small subset of all existing nodes when performing key lookups. Lookup
requests are routed via the overlay network to the destination node that is
responsible for the key, even when nodes are constantly joining and leaving
the DHT. The load of storing data in the hash table is therefore spread across
all nodes in the system. The routing algorithm for the DHT builds a small-
world network [391], which has a small diameter but is highly clustered, so
that every node can be reached in a logarithmic number of hops.

Pastry [331], developed at Microsoft Research Cambridge, is an example of
a DHT with locality properties that forms a self-organizing, resilient overlay
network, which can potentially scale to millions of nodes. Its main operation is
a route(message, key) function that reliably routes a message to the Pastry
node that is responsible for storing the key. Messages take O(log N) hops on
average, where N is the number of nodes in the Pastry network. The overlay
network of nodes is organized so that routes with a lower proximity metric,
such as latency or bandwidth, are preferred.

The routing algorithm of Pastry relies on the fact that each Pastry node
has a unique node identifier, called a nodeID. NodeIDs populate a 128-bit
namespace that is uniformly distributed; they are grouped into digits with
base 2b for a given value of b. DHT keys can be transformed into nodeIDs by
using a hash function. The functionality of a DHT is implemented by routing
a message to a live node with a nodeID that is numerically closest to the
hashed key. The routing of messages relies on two data structures, a routing
table and a leaf set, maintained by each node.

Routing Table. The routing table has log2b N rows with 2b−1 columns. The
rows contain entries for nodes whose nodeID matches the local node’s
nodeID in the first d digits but then differs afterwards. Among several
candidate nodeIDs for an entry in the routing table, the one with the
minimum proximity metric is chosen. Secondary entries are kept as backup
in case the primary node fails.

Leaf Set. The leaf set has l nodeIDs as entries, which are the l/2 closest,
numerically larger and smaller nodeIDs with respect to the local nodeID.
This invariant must be maintained at all times, and routing will fail if
more than l/2 nodes with consecutive nodeIDs fail. The leaf set can be
used for data replication.

Routing in Pastry is a generalization of prefix routing: A message is for-
warded to a node that shares a longer prefix with the destination nodeID
than the current node. If such a node does not exist in the routing table, the
message is sent to a node with a nodeID that is numerically closer to the
destination. If the destination nodeID falls within the range of the leaf set,
the message is sent directly to the numerically closest nodeID. The process
of routing a message from node 123 to the key 333 with b = 2 is illustrated
in Fig. 4.36. The message is first forwarded to node 311, which is obtained
from the routing table at node 123. Each hop moves the message closer to the
destination node.

4.7 Further Reading 125

123

333

133

212

010

311
322

200

032

m

m

m

Fig. 4.36. Routing a message in a Pastry network

Rendezvous Nodes in a DHT

Rendezvous-based routing relies on globally known rendezvous nodes that
ensure that publishers and subscribers agree on the same dissemination tree.
If the overlay network of brokers forms a DHT, then its routing properties
can be exploited to create rendezvous nodes, as follows: DHT routing has the
property that a lookup of a nonexisting key will deterministically return the
numerically closest existing key in the system. To create a unique rendezvous
node for a given event type (or class of events), the event type name is used
as the lookup key in the DHT. The broker that is responsible for this key is
then designated as the rendezvous node for the event type. The load balancing
properties of a DHT encourage a uniform distribution of rendezvous nodes in
the system. Advertisement and subscription messages are routed using the
DHT and create filtering state along the path as explained in Sect. 4.6.3.
Notification messages then follow the reverse path and are filtered according
to subscriptions.

4.7 Further Reading

Epidemic Multicast

The idea of epidemic multicast algorithms was introduced by Demers et
al. [108] in 1987. The basic idea is very simple: The source of a notification
sends it to some randomly chosen brokers. A broker that receives a notifica-
tion for the first time also sends it to a number of randomly chosen brokers.
This way, all brokers receive the notification with a certain probability. The
algorithm can be tuned to make the probability that a broker misses a noti-
fication as low as desired. Many recent approaches use some sort of epidemic
algorithm to distribute information [41, 86, 122, 123, 125, 128].

126 4 Distributed Notification Routing

Evaluation of Routing Algorithms

Carzaniga, Rosenblum, and Wolf [65, 71] presented performance results which
are based upon a simulation framework. Their work investigated two variants
of covering-based routing, a peer-based and a hierarchical version. The simu-
lated algorithms are also incorporated into their publish/subscribe prototype
called Siena. Other routing algorithms are not considered.

The simulations investigated the total cost induced by the notification
service, the cost induced on individual brokers (and its variance), the aver-
age cost per subscription (and its worst-case), and the per-notification cost.
Unfortunately, it is not easy to interpret their results because the setup of
the main parameters influencing the results are not described. This includes
the metric underlying their cost analysis, the structure of the notifications,
subscriptions, and advertisements, and the rates of subscribing/unsubscribing
and advertising/unadvertising.

The current implementation of JEDI exploits a hierarchy of event brokers
in conjunction with the hierarchical version of covering-based routing [65].
The algorithm implies that a notification is always propagated to the root
broker regardless of the interests of the consumers. Moreover, an improved
version is suggested that extends the hierarchical algorithm by using adver-
tisements, and simulations have been carried out to compare the original with
the improved version [51, 52]. Bricconi, Di Nitto, and Tracanella [52] also pre-
sented the analytical model that underlies their simulations and which allows
the average number of notifications that is processed by an event broker to
be estimated.

Performance results related to the prototype of the Gryphon notification
service are presented by Banavar et al. [26] and Opyrchal et al. [291]. The
routing algorithm exploited by Gryphon is similar to simple routing without
advertisements. Their work concentrates on the use of multicast and efficient
matching of events to subscriptions [6]. The matching algorithm clearly out-
performs the simple sequential algorithm, but it depends on and supports only
a few types of attribute filters, limiting its usability. Moreover, updating the
matching data structure if clients subscribe and unsubscribe is costly.

The load caused at the individual brokers was investigated in the first arti-
cle mentioned above [26]. The results presented show that flooding overloads
at the same publishing rate regardless of the percentage of matches or the
number of active subscriptions. Filtering-based routing, on the other hand,
can handle much higher publication rates if subscriptions are highly selec-
tive or highly local, which can be expected in large-scale publish/subscribe
systems.

The second article [291] concentrates on bandwidth utilization. It com-
pares flooding to four multicast-enabled routing algorithms and ideal mul-
ticast, which assumes that for each event a perfect multicast group exists.
The authors state that filtering-based routing is superior to flooding under
conditions of high selectivity and high locality of subscriptions. This opinion

4.7 Further Reading 127

supports the findings of this work. Nevertheless, it can be expected that their
results are still too pessimistic because their work depends on simple routing,
i.e., the routing algorithm does not exploit covering and merging. They also
assume that event brokers are not placed nearby to the multicast routers and
therefore the use of multicast may even introduce a bandwidth penalty. More-
over, they did not investigate the use of advertisements. Mühl et al. [263, 267]
have investigated a set of routing algorithms and their effect on the routing
table sizes and the filter forwarding overhead.

5

Engineering of Event-Based Systems

In the previous chapters we have learned what the infrastructure of a dis-
tributed notification service looks like. This chapter starts to look at the en-
gineering issues in event-based systems.

The first part of the chapter presents main engineering problems, which
are partly derived from experience in request/reply-based systems. Looking
at example scenarios we see that current functionality is well suited for simply
structured systems, but essential software engineering paradigms are hardly
supported, which makes the engineering of complex systems very hard. Chap-
ter 6 will detail these higher-level engineering issues.

In Sect. 5.2 we describe different forms of application programming in-
terfaces (APIs) and Sect. 5.3 concentrates on how applications use the API.
Besides directly accessing an API, code instrumentation and aspect-oriented
programming are candidates for adding publishing functionality to existing
application code. Some programming languages even provide intrinsic event
handling mechanisms, like C# or some extensions of the Java language. Fur-
thermore, we discuss what data items contribute to an event and does every
change lead to a publication?

5.1 Engineering Requirements

This section analyzes engineering issues and points out shortcomings of many
current services that make them difficult to maintain, let alone control, and
that impede their use in complex application scenarios. The deficiencies are
illustrated with the help of example scenarios, and a set of engineering re-
quirements are inferred that should be addressed by event systems. Two main
problems are identified. The first is that event-based systems basically do not
imply other requirements for designing and engineering than those already
known from engineering request/reply systems. The second observation is that
while supporting abstractions are available for the latter, they are missing for
event-based systems.

130 5 Engineering of Event-Based Systems

(a) (c)(b)

Fig. 5.1. Data flow graphs of applications: bipartite single (a) and mult source (b),
and a general group (c)

5.1.1 Application Examples

A taxonomy of application scenarios is created according to the complexity of
interaction between application components. A data flow graph describes who
is sending notifications to whom: one-to-many, many-to-many, and repeated,
“stateful” communication.

Information Dissemination

The simplest and most obvious application scenario of event-based commu-
nication is information dissemination and push services. It is typically char-
acterized by a single, well-defined information source publishing notifications
toward consumers (one-to-many communication). Applications are oblivious
to the actual set of receivers and typically require high scalability. The call
graph is bipartite, cf. Fig. 5.1a, which means it consists of two distinct sets of
components and messages are sent only between, not within the sets. Example
applications are:

� monitoring of stock prices, sensor data, real-time control systems, process
execution, etc. [177, 224, 255]

� push services in electronic commerce, news feeds like weather forecasts and
sports [73, 109]

� content delivery networks [8, 333]

This is the classic application domain of event-based systems, and also
of network-level multicast [321]. However, even in this simple scenario issues
arise that are not covered by typical event services. The weather information
may contain temperatures in Fahrenheit, whereas consumers expect degrees
centigrade. Stock quotations may be published using an established financial
markup language like FIXML [273] to facilitate interoperability with exter-
nal system, whereas internal communication stick to more efficient binary
representations. The heterogeneity of data models and the limited support
thereof often demands manual adaptations before connecting components to
information buses.

Furthermore, security in event-based systems is a critical open issue. Who
is allowed to view sensor data that monitors a person’s presence or health?

5.1 Engineering Requirements 131

Access to real-time stock quotations may be restricted, requiring subscriptions
with additional fees.

Groups of Producers

In Fig. 5.1b a slightly more complex scenario is depicted that includes multiple
producers publishing similar notifications. This raises new problems if it is
necessary to distinguish the sources, especially when systems evolve from the
type shown in Fig. 5.1a to that shown in Fig. 5.1b. Consider

� multiple stock markets or auction platforms publishing similar informa-
tion [47, 138]

� multiple application-specific beacons or sensors that are deployed some-
where in the infrastructure [18]

When a system implementing one stock market is connected to another
market, measures must be taken to prevent unintended effects on existing
consumers. It must be possible to restrict communication to one market so
that components do not react incorrectly to external events. The necessary
distinction of markets is often achieved by simply having producers annotate
notifications with a name or an ID (of the market, for example). Here, pro-
ducers encode the context of an event in the notifications, e.g., the market
from which it originated. Consumers operate in a specific context if they test
for this information in their subscriptions.

This is a straightforward approach, of course, but it draws context knowl-
edge into application components that pertains to the interaction and not to
the component’s implementation. Moreover, this context specification not only
counteracts the characteristics of event-based systems, but it is unnecessary
within the respective context. Consider the second example where presence
awareness sensors inform about people/objects moving within a building. The
notifications include an ID of the object tracked and a room number. If events
from multiple buildings are integrated in a facility management application,
an identifier of the “source building” must be included in the notifications.
This approach would increase the coupling as it influences the internal con-
figuration of components when applications are integrated.

Therefore, application components should not be forced to deal with their
execution context. They would have to consider all possible contexts, which
inhibits runtime evolution and is neither desirable nor needed.

Complex Interaction

The third class considered comprises complex applications that have arbitrary
call graphs and include bidirectional communication (Fig. 5.1c). Examples are:

� chat groups, multiplayer games, or computer-supported cooperative work
(CSCW) tend to cluster interacting groups of components [117, 159].

132 5 Engineering of Event-Based Systems

� virtual marketplaces exhibit complex interactions where sequences of pub-
lished notifications are interrelated, e.g., auctions [47, 138].

� wireless sensor networks [9, 205] convey data from sources to sinks and
process and filter data within the network.

Apart from the last example, such scenarios are seldom considered in the
context of event-based systems. They are typically based on request/reply,
although their interaction is often event-based in essence: the initiator is the
producer of data and destinations are chosen indirectly, e.g., based on roles
or interests. Producers may get some information back from their consumers,
but not necessarily by replies. Such feedback is due to events triggering other
events and notifications following loops in the data flow graph. This should not
preclude such applications from exploiting the flexibility of the event-based
architectural style.

The requirements posed in these scenarios, however, exceed pure scalability
considerations. The examples show that the principle of locality is important
in event-based systems, too. Clusters of interacting participants can be identi-
fied as part of larger applications; the data flow graphs are more dense within
these clusters than toward the outside. And within such groups often more
stringent requirements are placed on communication quality. For instance, a
chat application exchanging user input via notifications will certainly gain
from ordering guarantees for notification delivery, e.g., atomic broadcast pro-
viding each participant with the same perceived order of inputs. In general, in-
tracluster communication may require dedicated services, whereas interaction
with the remaining system gets by with the basic functionality of notification
dissemination.

Virtual marketplaces illustrate the need to group notifications. Producers
and consumers do not know each other but must establish a conversation1

by relating notifications that belong to the same auction. Again, a simple
workaround is directly found by inserting identifiers in notifications, and the
same counterarguments as above still apply. Identifiers may be viable in this
simple case, but in more general terms the context of notifications must be
distinguished to relate bids to auctions, reactions to actions, and events to
transactions.

5.1.2 Requirements

The above discussion exemplifies the problems raised by the loose coupling
of the event-based style: effects and side effects, design, implementation, and
engineering, management, and security issues. From these problem domains
four requirements for the engineering of event-based systems are inferred:
bundling of components, support for heterogeneity, flexible customization,
and support for activities.

1 Repeated, possibly bidirectional communication.

5.1 Engineering Requirements 133

Illustrative Example

A stock trading application will be used as an illustrative example. It shall
not, of course, describe a perfect architecture for stock trading. The exam-
ple illustrates most of the aforementioned problems and helps underline the
requirements of engineering event-based systems.

The following components of a stock market can be identified (Fig. 5.2):

MarketCustomers

C1

C2

C3

Trading
FloorMatching

DB

Fig. 5.2. An example stock trading application

� Customers monitor quotations and issue orders to buy or sell shares.
� A central matching engine implements the matching algorithm and gener-

ates quotations.
� A database logs the generated data to ensure consistency and persistence,

and to audit the operation.

Nearly all parts of a stock trading application are inherently event based.
The dissemination of stock quotations from the central trading floor (or its
computerized equivalent) to the market participants is an accepted and plausi-
ble example of applying event notification services. The database and match-
ing engine are composed into the virtual trading floor, a component which
consumes orders and publishes notifications carrying share prices of success-
fully executed trades.

Bundling of Related Components

Locality, encapsulation, and the composition of existing components into
higher-level units are well-known concepts for mastering complexity and for
supporting evolution [300]. These concepts are used in request/reply systems,
but they are equally important here. The grouping of components that share
some commonality or achieve a common goal is a prerequisite for reasoning
about effects and side effects, and it is the basis for addressing both engineer-
ing and management issues.

Bundling is both a syntactic and a semantic abstraction. From the syntac-
tic point of view such a bundle limits the distribution of notifications produced

134 5 Engineering of Event-Based Systems

within; it identifies notification delivery localities. The bundling mechanism
should be orthogonal to any subscription mechanism so that grouping is in-
dependent from component implementation and it should not influence the
subscriptions issued by them. This is important to draw locality not only
based on the described interests of consumers but also on other criteria, such
as organizational and geographical constraints of a company or some other
application-specific semantics.

From the semantic point of view, bundles of components must be com-
ponents themselves with their own semantics. The bundles should not only
limit distribution, but should also publish notifications themselves as the re-
sult of notifications produced within the bundle, indicating important state
changes of the bundle as a whole. Similarly, they should consume notifications
from the outside by further propagating them to their internal participants.
This opens the possibility to recursively create higher-level components and
to hierarchically structure an event-based system.

Consider the running example. The virtual trading floor in the stock trad-
ing application is the first candidate of a component bundle. One can imagine a
“verbose” matching engine producing detailed notifications about the progress
of the matching algorithm, of which the majority is only relevant for logging
purposes (e.g., for auditing system operations) and only a few are relevant
for customers. Hence, it makes sense to constrain the visibility of most of the
notifications to the database component and to allow only a few of them to
pass the boundary of the trading floor bundle.

The next reasonable structuring step would be to bundle the trading
floor and a set of customers (i.e., the participants in the market described
in Fig. 5.2) into a higher-level syntactic and semantic market component. In
this way multiple trading floors could be supported without having customers
receive duplicate and inconsistent notifications. Such duplication cannot be
avoided in a flat design space, where all components in the system are visible
to each other. The absence of market bundles would require users to encode
knowledge about the market structure into the subscriptions of individual
components, which impedes reuse and system evolution (cf. Sect. 2.1.3).

Supporting Sessions and Activities

The engineering of complex systems benefits not only from bundling related
components according to application structure but also from grouping notifi-
cations into sessions. Be it because notifications originate from the same source
or because they belong to a set of cooperating components, sometimes it is
necessary to distinguish sessions of dependent interactions to identify conver-
sational state. This is especially important in event-based systems, where the
identity of peers is unknown. That is, without any additional information con-
secutive notifications cannot be related to each other. The publish/subscribe
paradigm does not offer any intrinsic means to identify conversational state
other than introducing IDs manually.

5.1 Engineering Requirements 135

An example for sessions is a stockbroker who listens to a specific share
traded on two stock markets. Obviously, notifications distributed in one mar-
ket must, generally, be invisible in the other. However, the stockbroker should
be able to observe and distinguish both. In general terms, individual com-
ponents should identify and participate in multiple sessions, delimiting them
from each other to support session state. However, taking up the discussion
about IDs in Sect. 5.1.1, it is generally undesired to have components do
session handling on their own. From an engineering point of view, it compli-
cates their implementation.2 More importantly, it reduces the loose coupling
of publish/subscribe by explicitly tangling notifications and interaction con-
trol. Using IDs is an ad hoc approach to distinguish groups of producers, but
it hides the fact that the underlying problem of session handling is not yet
addressed directly.

Furthermore, activities comprising bundles of notifications can be modeled
as well-defined structures as described for bundles of application components
above. Activities structure the interaction in the system and in themselves are
components with well-defined semantics. Drawing on localities of distribution,
they can determine when “internal” notifications are to be made visible to the
outside. This will help to prevent side effects, to build structured, hierarchical
sessions, and to customize and orchestrate them. Activities thus correspond
to a simplified version of the notion of transactions known from the world of
request/reply-based systems [102, 182].

Mastering Heterogeneity

A single uniform event notification service with uniform syntax and semantics
is hardly able to cope with the diverging requirements of large distributed sys-
tems, which typically operate in heterogenous environments [80]. As pointed
out in the examples of Sect. 5.1.1, an event service that, e.g., relies on a global
naming scheme is not scalable and complicates system integration. Further-
more, syntax and semantics of notifications are likely to vary and there are
inevitably different data models in use, which can be induced by hardware-
dependent issues (like bounded message size) or by middleware or application-
layer differences. While heterogeneity is a well-known problem in other areas
of computer science, it only recently started gaining attention in the context
of notification services [80, 146, 185].

From the observations above an apparent conclusion is that bundling of
related components should not only encapsulate functionality but also delimit
common syntax and semantics. This requires mechanisms to support adapting
data that cross boundaries of component bundles by mapping content and rep-
resentation. To motivate the requirement consider again the running example.
For efficiency reasons it is reasonable to distinguish between low-volume exter-
nal representations in XML versus more optimized internal representations.
2 Enterprise JavaBeans introduce session beans as a remedy to this problem in the

request/reply approach.

136 5 Engineering of Event-Based Systems

The matching and database components may use a binary representation,
while stock quotations are published using an established financial markup
language like FIXML [273] to facilitate interoperability. Hence, transforma-
tion between the external XML representation and the internal binary repre-
sentation would be needed for notifications crossing the border of a trading
floor composite.

Flexible Configuration and Customization

Similar to the heterogeneity discussion, a static definition of notification trans-
mission semantics is not adequate either. The service must be adaptable, and
it must be configured to meet applications needs. As pointed out in Sect. 5.1.1,
subsets of closely interacting participants often rely on communication guar-
antees that differ from those of basic notification dissemination. This includes
ordering or real-time guarantees that refine the specification of the simple
event-based system given in Sect. 2.5. But application-specific needs may
also demand deviation from this basic specification. For example, instead of
the default “broadcast” of notifications to all eligible consumers with match-
ing subscriptions, only a specific subset of them may be selected due to an
application-specific policy. An 1-of-n policy realizes load balancing within a
bundle of components, and outside of the components themselves.

In the stock trading application, the matching engine might be replicated
to distribute processing load over multiple instances using a delivery policy
that routes orders to instances dedicated to the respective share. Furthermore,
if the structure of the bundles is not static, security policies must control who is
allowed to join. The trading floor component could be compromised if everyone
is allowed to join and issue notifications influencing the matching engine. On
a lower level of adaptation the implementation of the trading floor will use
broadcast mechanisms of a local area network, whereas the dissemination of
price information on the Internet has to use other techniques.

In general, the ability to adapt and program bundles of components tack-
les the design, implementation, and engineering problems stated above. The
whole event service is subject to customization with respect to these bun-
dles: API, syntax, and semantics of subscriptions and notifications, security
policies, and implementation techniques of notification dissemination must be
tailored to fit the needs of evolving complex systems.

5.1.3 Existing Support

The bundling of components is the basic requirement presented in the previous
paragraphs, and it complies with the fact that information hiding and abstrac-
tion have long been identified as a fundamental principle in software engineer-
ing [300]. In request/reply-based distributed systems, like the Corba plat-
form [283], solutions exist for all of the outlined requirements. Object-oriented

5.2 Accessing Publish/Subscribe Functionality 137

programming and decomposition, heterogeneity by standardized interconnec-
tion protocols (e.g., Corba-IIOP, SOAP [400] based on XML), bundling of
activities with the help of transactions [37, 281], and security services, e.g.,
Kerberos [270], provide the appropriate support.

However, comparable hierarchical structuring mechanisms are missing in
event-based systems. The missing knowledge about communicating peers leads
to the desired separation of communication from computations. But control of
component interaction is drawn out of the application components themselves,
and any adequate support for the mentioned requirements must respect and
facilitate the external control of interaction. Unfortunately, existing services
recognize and address these issues only partially.

A first approach to achieving these goals would be to build on existing
features of notification services. For example, one could make use of content-
based filtering mechanisms [71, 262] to decompose and delimit sets of com-
ponents and notifications from each other. Subscriptions can be adapted to
encode additional constraints on the decomposed structure. This approach of
modifying application components counteracts the stated separation. Knowl-
edge about the application structure is put into the components, contradict-
ing the idea of components being loosely coupled and self-focused. Further-
more, the structure is not explicitly enforced by the system so that compo-
nents can deliberately modify their subscriptions to evade security measures.
Subject-based addressing is too limited to implement any sensible structur-
ing in addition to existing subscriptions, because different points of view are
not supported. Event channels like in the Corba Notification Service sup-
port structuring in addition to notification selection to some extent. However,
individual components still have to select channels manually.

The above points showed shortcomings of the plain API, which makes pub-
lish/subscribe communication difficult to maintain, let alone control, and that
impedes its use in complex application scenarios. The deficiencies are analyzed
with the help of example scenarios, and a set of engineering requirements are
inferred that should be supported by event systems. The next chapter intro-
duces a scoping concept that addresses the underlying problem of controlling
notification visibility and serves as a tool of both application design and event
system implementation.

5.2 Accessing Publish/Subscribe Functionality

5.2.1 Generic APIs

In Sect. 2.1 we described the constituents of a publish/subscribe system and
sketched its minimum functionality. Figure 5.3 depicts the interface operations
a generic implementation should provide. A number of standards are available
that define publish/subscribe APIs. Most notably, there are the Java Message
Service (JMS) [364] and the Corba Notification Service [287], which we will

138 5 Engineering of Event-Based Systems

detail later in Chap. 9. They both include this core set of functions, but differ
in the filter models they support and other higher level functionality. The
characteristic differences of publish/subscribe services can be summarized in
the following points:

� publish and subscribe are mandatory API operations. All implementa-
tions must provide these operations.

� Advertisements are optional because they are not necessary for the main
functionality. Hence, advertise and unadvertise are optional.

� Data and filter models are an important factor distinguishing notification
services. In most cases they are predetermined and only one model is
available.

� Notification services differ in the quality of service (QoS) they offer. Under
a similar API, reliability, performance, and dissemination semantics vary
largely.

� Black box or open implementation decide about adaptability. The layout
of the underlying infrastructure may be completely hidden from the ap-
plication, or it may be open for adaptation to better cope with aspects of
heterogeneity and customization.

The availability of publish and subscribe API calls is an obvious neces-
sity. Only their signature varies because of differences in QoS as well as in
data and filter models as described below. If the unsubscribe operation is
not provided, the subscription will usually be valid only for a limited time.
Advertisements are not mandatory for publish/subscribe communication, and
many systems do not offer them. However, advertisements help to improve re-
source usage (e.g., by enabling routing optimization [267]) and offer means
for implementing other higher level features like security [34]. They also allow
clients to determine the potential notifications that might be published by
producers.

The data and filter models offered by a notification service are critical for
its usefulness regarding a given application. Nearly all major standards and
nonstandard implementations differ in this respect. However, from an API
point of view these models can be transformed into each other with the help
of additional wrappers. Of course, this affects performance, but such wrapping
is often necessary anyway. Complex applications hardly fit into only one data
and filter model.

publish(n) publishes a notification n
subscribe(F) subscribes to a filter F
unsubscribe(F) revokes a subscription
advertise(F) all publications will conform to filter F
unadvertise(F) revokes an advertisement

Fig. 5.3. Generic publish/subscribe interface

5.2 Accessing Publish/Subscribe Functionality 139

The more important distinguishing factor is the level of QoS offered by the
publish/subscribe API. The definition of communication semantics in Sect. 2.5
is only an outline that any concrete implementation will refine in one way or
another.3 If the API offers more than one default behavior, it should not be
the publish and subscribe methods that take the QoS parameters. First, it
is unlikely that each publication is issued with different QoS parameters. And
second, in event-based systems producers do not know how important their
notifications are for the consumers, and thus they should not determine the
QoS. For example, if the notification service uses channels, we can determine
the QoS characteristics at channel creation time. And we can provide the
channels to the producers from the outside, which is also current software
engineering best practice and is known as dependency injection [153].

Open implementations [209, 220] are a more generic alternative to QoS-rich
APIs. An open implementation enables system engineers to not only wrap ex-
isting functionality but also to extend the service from within. This approach
is also known as reflective middleware [96, 223]. Interceptors, hooks, aspects,
dependency injection, etc., are the vehicles to insert code into the implemen-
tation of an existing notification service. These techniques change the internal
behavior and help to adapt the middleware below the API. Currently, only
some research prototypes of notification services use an open implementation.
On a lower layer, active networks also exploit this idea to construct network
infrastructures that are open for customization even after deployment [373].

5.2.2 Domain-Specific APIs

When focusing only on one specific application domain, it is often convenient
to offer publish/subscribe functionality through domain-specific communica-
tion APIs. We can distinguish two different approaches: the APIs either act
as wrappers, using other terms for generic communication facilities, or they
really provide an implementation tailored to domain characteristics. The first
alternative is often used for implementing typed on top of untyped eventing.

If different terminology is used to offer an otherwise generic publish/
subscribe service, the classic wrapper or adaptor pattern is used [57, 161].
Internet NewsNet, newsgroups, and bulletin boards are examples.4 News is
posted without destination and is classified in newsgroups, and readers must
select the posts in which they are interested. Technically similar approaches
are Linda Tuple Spaces with their in and out commands [7, 64].

Other examples include building technology and control systems in gen-
eral. In nearly all of these systems, state changes are signaled: elevators move,
lights are turned on, temperature is monitored. Signaling is usually done using
APIs and messages that correspond to the domain entities, but those appli-
cations are essentially event-based. In order to easily set up and configure a

3 Note that performance metrics are not considered as part of this API discussion.
4 In fact, they also add some persistence mechanisms that we will not consider here.

140 5 Engineering of Event-Based Systems

specific configuration of the control system, system engineers exploit the indi-
rection of publish/subscribe. In business applications, databases often act as
central information hubs. Newly entered tuples trigger other operations, and
so the database can be seen as the notification service conveying data and
invoking reactions in consumers, see [172, 385].

Since events are used in many areas of computer science, APIs were created
with different terminology but the same notion of communication. Implicit
invocation is an early example that views publish/subscribe from a software
engineering perspective [164].

The other approach to domain-specific APIs is to utilize specialized im-
plementations that are not generic anymore but are instead tailored to the
specific domain. Signaling in telecom networks is like publish/subscribe, but
typically relies on specific assumptions about the hierarchical structure of the
network. Alarms in network management and SNMP traps similarly employ
an event-based style, yet alarm processing often is handled along a chain of
management stations. Each station may escalate event handling by forward-
ing the notification to the next station.5 A pragmatic implementation can
exploit this domain knowledge to send alarm notifications just to the next
management station.

Domain specific APIs and implementations are good for optimizing the
specific application. Nevertheless, system engineers should not forget that, in
principle, they still follow an event-based style. Publishing an alarm notifi-
cation is inherently event-based; even if we know that it is delivered to only
one consumer, the producer should not rely on this structural information.
As pointed out in Chaps. 1 and 2, the benefits of loose coupling can only be
fully exploited if the event-based architectural style is clearly identified in the
participating components; mixing styles complicates changes. And one way to
clearly identify the style is to use the plain publish/subscribe API somewhere
in the application stack.

5.3 Using the API

Whatever the API looks like and whatever QoS it offers, the application pro-
grammer has to decide how to use the API. We look at patterns for using a
publish/subscribe API and instrumentation techniques that “automatically”
invoke the API, and we raise the questions whether all changes shall be pub-
lished and how long notifications are in the system. These issues go deep into
the software engineering aspects of event-driven systems, and we can only
touch upon them in this book.

5 We deliberately disregard the annotations commonly added in each step.

5.3 Using the API 141

update()

Subject

attach(Observer)

detach(Observer)

notify()

ConcreteSubject

*

interface

Observer

ConcreteObserver
subject

interface

Fig. 5.4. The structure of the observer pattern

5.3.1 Patterns and Idioms

Best practices in designing software are compiled in software patterns. The
observer pattern [161] or publish/subscribe pattern [57] are two examples that
summarize the idea of having a producer that sends notifications to registered
consumers (Fig. 5.4). Observers are consumers and they register their interest
in receiving notifications at specific subjects, which are the producers of data.
Each subject maintains its own list of registered observers. Whenever the
subject changes, it calls the observers stored in its list.

In both patterns, however, the producer itself stores the list of consumers,
and the consumers have to register at individual producers. The patterns
correspond to the callback interaction model described in Sect. 2.2. The char-
acteristic decoupling of event-based communication is very restricted in this
way. Nevertheless, this pattern is used extensively in contemporary systems,
ranging from graphical user interfaces to the listener and delegate concepts in
Java and C# (see below).

The Event Channel variant offers complete decoupling [57]. It essentially
employs the idea of the mediator and broker patterns to decouple produc-
ers and consumers, and it corresponds to the channel filtering described in
Sect. 2.1. The Event Notification pattern [327] extends the observer pattern.
Producers and consumers define different types of events they are going to pro-
duce and consume as part of their interface—but it also contains the direct
reference from consumer to producer.

On the subscriber side, the Reactor pattern [337] dispatches incoming no-
tifications to one or more handlers. One reactor thread waits on operating
system handles for indications of incoming notifications and calls appropri-
ate handlers to fetch and further process the data. The single-threaded dis-
patching limits concurrency, but other patterns (e.g., Leader/Followers [337])
mitigate this problem, leading up to the implementation of scalable Internet
services, which is detailed elsewhere [389, 392]. The Proactor pattern [337]

142 5 Engineering of Event-Based Systems

describes how to handle replies of asynchronous requests, but does not focus
on event-based systems.

The term implicit invocation [164] describes loose coupling in the context
of classic procedure calls. Unlike the above patterns, the invoked procedures
(i.e., the consumers) do not determine the calling procedures (i.e., the pro-
ducers) a priori. The invocation of a procedure is divided into three parts:
(i) a call on the caller’s side is bound at runtime to a set of procedures, in-
troducing a one-to-many indirection; (ii) the bound procedures are invoked
concurrently; and (iii) multiple replies are handled.

An alternative approach is to offer publish/subscribe functionality through
data structures, for which distributed asynchronous collections are one ex-
ample [126]. A publish/subscribe API is not explicitly visible, but it is ex-
ploited to realize a distributed shared memory with a generic collection API.
Distributed hash tables (DHT) follow essentially the same idea, but typi-
cally have a completely different implementation [316, 351]. They store data
in a distributed data structure and we can disseminate content in this way,
cf. [85, 374].

Next, we will take a look at how current programming languages incorpo-
rate asynchronous communication and invocation. A patternlike implemen-
tation specific to a programming language is called indexidiomidiom [57]. In
Java, listeners implement the observer pattern. The Swing GUI library uses
listeners, and the java.nio networking code offers selectors as needed in the
Reactor pattern. Both may serve as basis for a subscriber implementation.
However, standard Java does not provide any dedicated support for notifica-
tion delivery and handler methods. Eugster et al. [127] and Damm et al. [99]
added publish and subscribe keywords to the Java language and generated
standard Java code with a precompiler.

In C++, function pointers are a low-level primitive, e.g., for referring to
handler functions. The Qt library also relies on a precompiler to extend the
language with signals and slots [383]. These indicate notification sources and
destinations, respectively. Slots are explicitly connected to signal sources, fol-
lowing the observer pattern. The Boost library uses templates to build signals
and slots without a precompiler [4].

C# introduces the delegates concept for event handling [395]. Delegates
are a type-safe way to treat methods as objects, which can be passed and
stored like any other object. The following snippet defines a delegate and
calls Method1 by invoking d1:

public delegate String SomeDelegate (int x, float y);

SomeDelegate d1 = new SomeDelegate(Method1);

String result = d1(42, 3.14);

Additionally, delegates support list operations of C#. We concatenate two
delegates like this:

SomeDelegate d2 = new SomeDelegate(Method2);

SomeDelegate d3 = d1 + d2;

5.3 Using the API 143

result = d3(42, 3.14);

which calls Method1 and then Method2, returning the result of the latter invo-
cation. The event keyword defines an instance variable that stores delegates
and can only be invoked from within the defining class.

Functional constructs like Lambda expressions or closures [152], which are
available in programming languages like Smalltalk, Python, Ruby, or Perl,
can be exploited to achieve similar solutions [272].

5.3.2 Emitting Notifications

From the preceding discussion we know various mechanisms for accessing the
publish/subscribe API. The important questions from an engineering point of
view are now:

� What are the appropriate data sources for detecting events?
� What additional information is put into a notification?
� Publish all changes of the identified data sources or only a subset?
� Publish notifications immediately or defer publication?
� Publish if there are no consumers?

Event Sources and Notification Content

In short, appropriate data sources for events are application specific and there
is no generic rule for selecting them. Event “detection” includes the case where
the producer modifies data and then publishes a change notification.

In most cases, however, events come from central parts of the software ar-
chitecture. That is, application engineers can identify relevant events within
the domain model and other high-level diagrams of the application. For ex-
ample, it should be easy to identify classes as possible event sources in UML
class diagrams [288].

There is currently no established way for identifying events and notifica-
tions in UML diagrams, but stereotypes and tagged values can be used infor-
mally to annotate classes as event sources. A stereotype is usually defined as
part of a UML profile, which extends standard UML, and it can be added to
classes, associations, and attributes. An �event-source� stereotype added to a
thermometer class identifies a source of temperature events (Fig. 5.5). And a
�notification� stereotype put on an association to a TempNotification class
defines the corresponding notification.

Code Instrumentation

Fortunately, old ideas from code instrumentation for system monitoring (e.g.,
[231]) and new ideas from aspect-oriented programming (AOP, [119]) can be
combined to generate code for publishing notifications. AOP separates code

144 5 Engineering of Event-Based Systems

Notification

temp : float

t : Time

notification
Thermometer

getTemp() : float

TempNotification
event-source

setTemp(float) publish

Fig. 5.5. Event and notification in a UML class diagram

that deals with different aspects of a program without destroying an underly-
ing object-oriented design. Common examples are business functionality ver-
sus logging or persistence—or eventing. At deployment the separated code is
woven together to accomplish the combined functions.

Once event sources and notifications are identified as shown above, we are
able to publish a TempNotification whenever the temperature changes on a
thermometer, for example, with the following AspectJ advice [226]:

public aspect TempNotificationAspect {

after(Temp t) : call (Thermometer.setTemp(float))

&& args(t) {

psService.publish (new TempNotification(t));

}

}

Of course, if publishing must be announce with advertisements, aspects can
be used for instrumenting constructors accordingly. With dynamic AOP, we
would be able to do such modifications even at runtime [45].

Change Encoding

The application developer has to decide how the observed changes are specified
in notifications. A notification can carry

� a copy of the data item, e.g., a Thermometer object
� the delta of the change, i.e., the difference to the previous publication
� a copy of both the old and the new value

The first approach simply publishes the new data and consumers have to
store and compare old values if they are interested in the difference. Filters
cannot test relative changes as they are usually stateless. Sending only the dif-
ferences in the second approach minimizes message size, but makes it harder
for consumers to maintain the absolute value. They must reliably receive and
process the complete stream of notification to not run out of synch. And they

5.3 Using the API 145

must initialize themselves through another path to the data. The last alter-
native certainly contains all possible information, but increases the message
size considerably. In object-oriented settings, the developer additionally has
to choose whether to send the complete object or just the parts that changed.
In this case, we might end up with a combination of the first two points.

Adding context information to notifications

A notification should contain as much additional information as necessary to
enable consumers to correctly interpret the context of the event. Therefore
notifications typically contain more data than only the changed value. This
could be:

� time of event occurrence
� source identifier
� sequence number
� geographical context, e.g., room location of a thermometer data source
� organizational context, e.g., security domain of detected intrusion

Unfortunately, the downside of loose coupling is that producers do not
know what additional information their possible consumers need. So far, we
cannot solve this conflict and notifications have to carry all information that
might be necessary—but we will discuss one solution in the next chapter.

Omit Some Changes

So far, a properly set up consumer gets every notification that matches its
subscription. This may lead to situations in which too many notifications are
delivered. We discuss stateful filters and rate control as countermeasure.

Consumers do not always need every single update. Consider, for instance,
a producer publishing temperature notifications with a precision of 0.1◦C
while consumers are only interested in changes of 1◦C. Or the consumers are
interested in changes of a certain percentage only. Otherwise, one oscillating
event source might continuously send notifications triggering other parts of
an event-based application unnecessarily. Generally, if producers work with
higher data precision than their consumers, this not only wastes network and
processing resources, but may lead to instable systems.

This example already indicates that stateful filters are necessary to smooth
the data stream. Filters without state evaluate each notification independently
and they are inadequate for the mentioned examples. If a filter keeps the
last n values, it is able to compute average and deviation. Shah et al. [342]
uses coherency constraints to limit the maximal difference between observed
and actual values. The stateful filters are either deployed within the publish/
subscribe service and help reduce the network load, or they reside on the
clients. Discarding messages on the client side (client-side filtering) makes
sense in cases where filtering capacity of the publish/subscribe middleware is
the limiting factor.

146 5 Engineering of Event-Based Systems

The other obvious problem of too many notifications is that consumers get
overloaded and are unable to process all incoming notifications. If available,
we can use flow control in the underlying communication layer to throttle in-
coming load. For example, if consumers are connected to the broker network
via TCP connections, delivery is delayed as long as the client TCP buffers are
full. This handles short load peaks, but when the in-network queues get filled
messages must be discarded. Several approaches exist to do this intelligently.
As usual, filters and consumers can be prioritized to keep important messages.
In this way, all notifications, e.g., of type CriticalAlert, and all tempera-
ture notifications with values above a certain threshold are not discarded. We
get a completely different approach if notifications can be summarized, e.g.,
to deliver only the average of a sequence of temperature notifications.6 The
specification in Chap. 2 currently forbids this behavior, because of the perfor-
mance impact on brokers and since interference with different subscriptions
is hard to predict. Yet, it might be a helpful extension for some application
scenarios.

In cases where the size of the message is the main load problem, notifica-
tion summaries are used to forward only a small portion of the data to the
consumer. The remaining part is stored in the network (e.g., in a database)
and the notification carries an identifier or uniform resource locator (URL) to
access this data instead.

Deferring Publication

It is not always appropriate to publish notifications directly when observing
the event. Consider a component that changes multiple data items, publishes
each of the changes, and then detects a failure that invalidates the compu-
tations. If the modifications include the addition of an item to a list, for
instance, it should not be on the list after the failure. In short, we need a
transaction [182] to make several publish calls succeed or fail in combina-
tion.

The Java Message Service (JMS) defines local transactions that support
exactly this behavior. The producer associates itself with a transaction and all
subsequently published notifications are held back until the producer confirms
the publication in a second step, i.e., commits the transaction. The transaction
is local because it cannot incorporate resources from other nodes. The data
distribution service (DDS) has such a function, too, cf. Sect. 9.1.4.

This simple support for deferring notifications is a building block for other,
more sophisticated services. If the local event broker commits the transaction
after successfully transmitting the messages to the border broker of the net-
work, the producer reliably handed over the data to the publish/subscribe
service. Such acknowledged handshakes are important for building reliable
distributed systems [239].

6 In signal processing such transformations are called downsampling.

5.4 Further Reading 147

Publication on Demand

Event-based systems often run at maximum load. Components operate on
all incoming data and produce new notifications without caring whether any
consumers are willing to accept them. Furthermore, complex components pos-
sibly create many different kinds of notifications on different levels of detail.
And we rarely need all state changes on any level of detail. This is situation
dependent and changes during the execution of the system. Consequently,
producers probably send many notifications for which no consumers exist.

The Elvin system has introduced quenching to reduce the unnecessary
load [341]. If the last consumer unsubscribes, the producer’s notifications
are discarded. It continues processing its own incoming notifications, but a
publish call has no effect. The producer may even be notified about the last
consumer leaving so that it can inactivate itself. If it unsubscribes in turn,
complete sequences of producers/consumers stop.

Once a new subscription enters the system, the inactive producers are
reactivated (recursively) to continue normal operation. This is essentially an
open field of future work.

5.4 Further Reading

The discussion of engineering requirements can only be preliminary, showing
an initial approach to understanding the problems inherent to the design of
loosely coupled systems. In general, the engineering of event-based systems
is possibly the field that can do most for the broad adoption of event-based
systems, but which is, at the same time, the one understood least. Essentially,
we hardly know the event-based analogs of object-oriented design [378], trans-
actions [237], and security [290], to name just a few well-known concepts from
the “classic” world of computing.

The discussion of publish/subscribe APIs can be supplemented with a
review of existing standards, like Corba Notification Service, JMS, DDS,
etc., which are detailed in Sect. 9.1. Chapter 9 also includes reviews of selected
notifications services. Alternatives to the plain publish/subscribe API can be
found in the area of domain-specific languages (DSLs, [129, 379]). They are
an interesting starting point for elaborating new APIs.

Best practices for using publish/subscribe can be found in the pattern
community, e.g., [56, 57, 161, 337] and the respective conferences and journals,
e.g., EuroPLoP, OOPSLA, etc.

Central engineering questions were touched when we discussed selecting
appropriate data sources, notification content, and when to publish the data.
These are issues of data and control flow modeling, i.e., software design. There
is little experience on methodologies for designing events or to what extent
object-oriented methods are suited in the context of event-based systems. A
good starting point to follow up on this topic is the book of Luckham [242],

148 5 Engineering of Event-Based Systems

which focuses on complex event processing. Another good complement are
more formal treatments like [396].

We shortly presented the idea of quenching producers when no consumers
are active. This idea can be generalized to sequences or networks of producers/
consumers that are turned on and off. They have their own requirements on
shutdown timeouts and restart times.

Furthermore, if we do not restrict ourselves to a predefined filter model,
we can generalize filters as remotely executed code. Eager handlers [411] ship
event handling code toward the sources to reduce network usage and respon-
siveness. The idea of exploiting mobile code in distributed “incident” handling
was also considered in tuple spaces [61, 160], agent systems [62, 175, 393], and
active networks [373].

6

Scoping

So far, the presented simple event systems merely provide the functionality
to distribute notifications, but still fails to offer any support for coping with
the complexities of designing and engineering distributed systems. The main
deficiency is the missing control of the interaction in the system, which is only
given implicitly. The resulting problems were recognized in different contexts,
and the means to address the missing control are centered around encapsula-
tion and information hiding, principal engineering techniques that are relevant
here, too.

This chapter investigates visibility as central abstraction to cope with engi-
neering complexity and introduces a scoping concept for event-based systems.
As an design and engineering tool, scopes offer a module construct to struc-
ture applications and compose new functionality. Second, scopes reify aspects
of event communication and thus make them adaptable within the composed
modules, e.g., access to underlying communication technologies, delivery to
module members, forwarding of events out of the module scope, transforming
heterogeneous data sources, etc.

The first section analyzes the notion of visibility in event-based systems
and relates it to the requirements defined in Sect. 5.1. The scoping concept
is defined in Sect. 6.2, including a formal specification of scoped event-based
systems that refines the specification of simple systems given in the previous
chapter. Scopes reintroduce control on communication, which was drawn out
of the components in event-based interaction, without impairing the benefits
of loose coupling. The concept is extended in Sects. 6.3 and 6.4 to include
interfaces and mappings; the former further refine visibility control, the lat-
ter generalize interfaces to transform notifications at scope boundaries, coping
with heterogeneous data models. While communication within scopes is by de-
fault like in traditional publish/subscribe systems, the transmission policies
presented in Sect. 6.5 adapt the semantics of notification dissemination within
scopes. In Sect. 6.6 we sketch a development process for scopes and present
a declarative scope language for defining and manipulating scope graphs. Fi-
nally, we investigate implementation strategies for scopes in Sect. 6.7 and dis-

150 6 Scoping

cuss combining these They open the publish/subscribe service implementation
and allow for the integration of a wide variety of communication techniques.

6.1 Controlling Cooperation

The visibility of transmitted data is of little concern in request/reply systems
where destinations are explicitly addressed. In event-based systems, however,
the visibility of notifications complements subscription techniques, for it deter-
mines which subscriptions have to be evaluated at all. Surprisingly, visibility
was rarely considered so far.

6.1.1 Implicit Coordination and Visibility

The problems of current event-based systems, which are described in the pre-
vious chapter, stem from the loss of control of interaction. This control has
been relinquished deliberately in favor of the loose coupling. It is withdrawn
from the components, replacing explicit addressing with the matching of noti-
fications to subscriptions. The explicit control of interaction given in request/
reply approaches is replaced by the implicit interaction in event-based sys-
tems.

The implicit interaction is characterized by an indirection of communi-
cation. Producers make notifications available and consumers select with the
help of subscriptions. This indirection gives room for a concept complementary
to the notification selection done by consumers. The visibility of a notification
limits the set of consumers that may pick this notification. If a notification is
not visible to a consumer, its subscriptions need not be tested at all. Notifica-
tions and subscriptions are unaltered, and matching takes place as before but
under the constraints of visibility limitations. Clearly, visibility influences the
interaction of components; it can even be seen as a means to govern implicit
coordination.

The implicit coordination1 of the components offers the desired loose cou-
pling but makes the overall functionality an implicit result of all the partici-
pating components. However, extracting control from application components
must not necessarily mean to have it nowhere. In fact, the requirements posed
in Sect. 5.1 demand some form of control on event-based communication. Vis-
ibility may offer such a control of notification dissemination.

The implications are twofold. First, visibility is an important factor of
implicit coordination, and second, it promises to be an important abstraction
in event-based systems. While subscriptions are related to the function of
individual consumers, visibility governs the interaction in the system. Hence,
the visibility of notifications is essential for the overall function of an event-
based system.
1 Explicit and implicit coordination are also termed objective and subjective coor-

dination in coordination theory [326].

6.1 Controlling Cooperation 151

6.1.2 Explicit Control of Visibility

The key to exploiting visibility is to regard it as a first-class citizen. While
existing work has addressed some facets of visibility, it was never taken as a
fundamental concept in event-based systems. Nevertheless, it will prove to be
the basis for both controlling and extending dissemination functionality.

Explicit visibility control constrains the areas where loose coupling and
implicit coordination are applied. It makes bundles of implicitly interacting
components explicit, and these bundles reify the structure of applications.
They serve as a tool for designing and programming event-based systems,
because once the interaction is localized at well-defined points, additional
mechanisms can be applied to control the interaction within and between
definite parts of the system.2

But how is visibility actually represented in an event-based system? Where
is it exposed? Any form of reintegrating control into the components counter-
acts the event-based paradigm. Whenever notifications are annotated to reach
a specific set of consumers, external dependencies are encoded in application
components, which defeats the benefits of the event paradigm. Visibility of
notifications is not a matter of producers because it concerns interaction and
communication, but not the computation within the component. Thus, the
necessary control must be exerted outside of the components themselves.

6.1.3 The Role of Administrators

When designing and engineering event-based systems, only the roles of pro-
ducers and of consumers were considered so far. They represent the tasks
of designing and programming individual application components. The self-
focus of event-based components is mirrored in these roles. They concentrate
on internal computation alone and disregard interaction. Due to the implicit
coordination, responsibility for the overall functionality is not assigned to any
specific role. It is delegated to producers and consumers, but with no adequate
support. The preceding discussion corroborates that an additional role in the
system to handle visibility is needed.

The obvious implication is to introduce the role of an administrator which
is responsible for orchestrating components in an event-based system. An
administrator may be human, but it can also be comprised of programs and
rules that maintain some system properties (cf. autonomic computing).

The main objective of this role is to support component assembling and
the management of their interrelationships. This role is employed to associate
visibility control with a distinguished role different from producers and con-
sumers. It is similar to those identified in component-based development or in
reference architectures of open systems [206]. In terms of coordination theory,
administrators are a means of objective coordination providing an exogenous

2 Technically, this is the essence of the scope concept presented in the following.

152 6 Scoping

extension of event-based interaction [36], which separates the shaping of in-
teraction from, and generally makes it invisible to, the computation in the
base entities.

Effective means to control visibility in event-based systems are necessary
to support the administrator’s role, and with respect to the requirements given
in Sect. 5.1, such a control is a prerequisite to solving the underlying problems
of current event systems. The demanded bundling of related components is
directly addressed by the visibility of notifications. Heterogeneity issues can
only be solved if communication is intercepted and converted, which requires
a limited visibility in the first place. The same holds for the customization and
configuration of the event service itself. With limited visibility the interaction
within certain system parts may receive a dedicated service tailored to its
needs, whereas interaction with the outside is handled differently, like the
case of heterogeneous data models.

Unfortunately, current work disregards this important role and does not
provide any appropriate support. The scoping concept presented in the next
section, however, describes visibility in event-based systems and offers the
explicit control needed by administrators.

6.2 Event-Based Systems With Scopes

This section formally introduces the notion of scoping in event-based sys-
tems.3 It extends the specification of the simple event system presented in
Sect. 2.5.2 and is the basis for further extensions and reasoning about scoping
functionality.

6.2.1 Visibility and Scopes

The notion of scoping in event-based systems is introduced to realize the
visibility of notifications. A scope bundles a set of producers and consumers
and limits the visibility of notifications to the enclosed components. The event-
based style of matching notifications and subscriptions is still used within the
scope, whereas the interaction of this bundle with the outside is no longer
implicit; it is prohibited at first. The notion of scopes serves two purposes.
The term is used to describe the visibility of notifications and to name the
entity that defines visibility.4

Scopes have interfaces to regulate the exchange of notification with the re-
maining system. Scopes forward external notifications to their members and
republish internal ones to the outside if they match the output and input
interfaces of the scope. In addition, scopes can recursively be members of

3 see also [135, 146].
4 In fact, in most cases we refer to the entity, which implies the scope of notifications

in the former meaning.

6.2 Event-Based Systems With Scopes 153

higher level scopes and in this way offer a powerful structuring mechanism.
Scopes thus act as components in an event-based system. They publish and
consume notifications and can be deemed equivalent to the simple base com-
ponents considered so far. So, the system consists of simple components and
of complex components that bundle other simple or complex components.

Component
Interface

2 *

*

Component

SimpleComponent Scope

SessionScope
Mappings

Policy
Security

Policy
Transmission

Fig. 6.1. A metamodel of scopes

The concept of scopes as illustrated in Fig. 6.1 includes further features
that will be described in the course of this chapter. Transmission policies can
be applied between scopes and within a scope to adapt notification forwarding,
allowing for tailoring notification delivery semantics to application needs in a
restricted part of the system. Furthermore, event mappings at scope bound-
aries generalize scope interfaces and are capable of transforming between dif-
ferent data models of notifications. Security policies are a straightforward way
to control the access to the scoping structure.

6.2.2 Specification

The notion of components is extended to distinguish simple and complex com-
ponents. The set of all simple components C includes any possible software
entity that accesses the notification service API. The set of all complex com-
ponents S describes all possible scopes. The set of all components K is defined
to be the union of the disjoint sets of simple components C and complex
components S, K = C ·∪ S.

A scope bundles a set of components, and a component can be a member of
multiple scopes. To denote the relationship between components and scopes,
a graph of scopes is defined.

Definition 6.1 (scope graph). Let K = C ·∪ S be the set of all simple and
complex components. A scope graph is an acyclic directed graph G = (C, E).
The graph consist of a set of components C ⊆ K as nodes and a relation
E ⊂ K × K as edges between the nodes so that (C1, C2) ∈ E ⇒ C2 ∈ S.

154 6 Scoping

U
Scope

Simple componentZ

T

X

S

Y

R

Fig. 6.2. An exemplary scope graph

A scope graph denotes the scope-component relationship. An edge (C, S)
from node C to node S indicates that C is a component of scope S.5 The stated
property (C1, C2) ∈ E ⇒ C2 ∈ S ensures that a simple component cannot be
a superscope of any node in G. C is a subscope if C ∈ S. Conversely, the scope
of a component C is any S such that (C, S) ∈ E. S is also called superscope
of C to emphasize the relationship between S and C, e.g., in cases where C is
a scope itself. In Fig. 6.2, X is a component of S, Y is a component of both
S and T , and T is a component/subscope of R and superscope of Y and Z.

The edges of the scope graph describe a partial order ≤ on C, where
C1 ≤ C2 iff (C1, C2) ∈ E ∨ C1 = C2. Avoiding the reflexivity of ≤, the scope-
component relation is described by �, where C1 � C2 ⇔ (C1, C2) ∈ E. The
transitive closure of� is denoted by

��;� and
��are defined accordingly. In the

example of Fig. 6.2, Y � T and Y
�� R hold. According to the partial order,

the simple components are the minimal elements and those scopes having no
superscopes are the maximal elements of C. Additionally, the following terms
are borrowed from graph theory. T is a parent of Y , and Y is a child of T . Y
is a sibling of Z, and vice versa, i.e., they have the same parent.

Based on these definitions, visibility can be defined formally. In the first
instance, the visibility of components is defined, which implies a visibility of
notifications.6 Informally, component X is visible to Y iff X and Y “share” a
common superscope.

Definition 6.2 (visibility of components). The visibility of components
is a reflexive, symmetric relation v over K, also written as v(X, Y), and is
recursively defined as:

5 Edges could have been defined in the inverse direction to emphasize that compo-
nents do not need to know their scopes and how they are aggregated. However,
the presented notation follows the one originally published in Fiege et al. [140].

6 The more general visibility of individual notifications is discussed in Sect. 6.3.1.

6.2 Event-Based Systems With Scopes 155

v(X, Y) ⇔ X = Y

∨ v(Y, X)
∨ v(X ′, Y) with X ′� X

⇔ ∃Z. X
��Z ∧ Y

��Z

In the graph of Fig. 6.2, for example, v(X, Y) and v(Y, U) hold, but not
v(X, Z).

Using this visibility, the specification of simple event-based systems given
in Def. 2.5 of Sect. 2.5 can be refined. For presentation purposes, the spec-
ification is at first restricted to static scopes, i.e., the scope hierarchy and
membership cannot change once the first notification has been published.
This restriction is relaxed later.

Definition 6.3 (scoped event system). A scoped event system ESS is a
system that exhibits only traces satisfying the following requirements:

� (Safety)

�[
notify(Y, n) ⇒ [��¬notify(Y, n)

]
∧ [∃X. n ∈ PX ∧ v(X, Y)

]
∧ [∃F ∈ SY . n ∈ N(F)

]]
� (Liveness)

�[
sub(Y, F) ⇒(�[�v(X, Y) ⇒ �(

pub(X, n) ∧ n ∈ N(F) ⇒ �notify(Y, n)
)])

∨
(�unsub(Y, F)

)]
Definition 6.3 differs only slightly from Def. 2.5 in Sect. 2.5. The safety

requirement contains an additional conjunct v(X, Y). This means that in ad-
dition to the previous conditions, the producer and the subscriber must also
be visible to each other when a notification is delivered. The liveness require-
ment has an additional precondition �v(X, Y) that can be understood in the
following way: If component Y subscribes to F , then there is a future point in
the trace such that if X remains visible to Y every publishing of a matching
notification will lead to its delivery at Y . The always operator requires the
scope graph to be static.

Note that Def. 6.3 is a generalization of Def. 2.5. A simple event system can
be viewed as a system in which all components belong to the same “global”
scope. This implies a “global visibility,” i.e., v(X, Y) holds for all pairs of com-
ponents (X, Y) and can be replaced by the logical value true in the formulas
of Def. 6.3, resulting in Def. 2.5.

156 6 Scoping

6.2.3 Notification Dissemination

According to the previous definition, a published notification is delivered to
all visible consumers that have a matching subscription. In order to clarify the
impact of the scoping structure and the dissemination of notifications through
the scope graph, the visibility of notifications is analyzed in the following.

The visibility of a notification n to a component C determines C’s ability
to deliver this notification at all, and is denoted by n� C. Visibility is a test
that precedes any subscription matching. Subscriptions decide in a second
step whether to deliver a visible notification or not. The visibility of notifica-
tions in the scope graph is directly related to the visibility of components, of
course. The visibility of a notification n, which is published by X , to a specific
component Y is denoted by X

n� Y , where

pub(X, n) ∧ v(X, Y) ⇒ X
n� Y.

A published notification is made visible in the scopes the producer belongs
to. Y

n1� S in Fig. 6.3a, or simply n1� S to denote the visibility alone if
the specific producer is not important. This rule is applied recursively to
make notifications visible in all further superscopes; Y

n1� T and Y
n1� T ′.

On the other hand, if a notification is visible within a scope S, n� S, it is
visible to all its children. Recursively applying this rule yields in Fig. 6.3b
X

n� T ⇒ X
n� S ⇒ X

n� Y . Note that edge direction indicates scope
membership but notifications can travel in both directions. In summary,
notification dissemination is governed by two rules, a publishing policy PP
and a delivery policy DP:

PP : X
n� S ∧ X� S� T ⇒ X

n� T (6.1)

DP : n� T ∧ S� T ⇒ n� S (6.2)

Consider Fig. 6.3. A notification n1 published by Y is forwarded to S and
to all children of S, and from S to T and T ′ and to all of their children, i.e., to
all siblings of S. n1 is an internal notification of S, T, and T ′, which means it
is visible to their children. X

n2� S is at first an external notification to S and
is made internal by the delivery policy of Eq. (6.2). A notification forwarded
in the direction of an edge, e.g., (S, T) ∈ E, is an outgoing notification with
respect to S; it leaves the scope of S. Conversely, a notification that travels
against an edge is an incoming notification, e.g., from T to X in Fig. 6.3a or
from T to S in Fig. 6.3b; in the latter case n2 is external to S.

The semantics of notification dissemination is that incoming notifications
are forwarded to all children of a scope, and outgoing notifications are for-
warded to superscopes and to all siblings. Note that incoming notifications
are not forwarded to superscopes; n2 is not visible to T ′ in Fig. 6.3 as X is
not visible to T ′. This default transmission of notification dissemination is
the consistent extension of the semantics of simple event systems. The intu-
itive meaning of scope membership corresponds to this definition. That is, (i)

6.2 Event-Based Systems With Scopes 157

S

T ′T

n1X

YZ

(a) outgoing

n2

S

T ′T

X

YZ

(b) incoming

Fig. 6.3. Outgoing and incoming notifications

siblings are eligible consumers as they are in the same scope, (ii) being a sub-
scope also denotes a part-of relationship, which makes it obvious that internal
notifications are also forwarded to superscopes, and (iii) external notifications
are made visible to members of complex components.

Visibility is a set inclusion test so far, which disregards the way a notifica-
tion becomes visible. In practice, however, the paths of dissemination in the
scope graph are of great importance for any analysis of system behavior.

Definition 6.4. A delivery path p between two components X and Y is a
sequence of components p = (Ci) = (X, C2, . . . , Cn−1, Y) for which holds:

1. p is an undirected path in the graph of scopes.
2. p obeys the visibility v in that v(Ci, Cj) holds for all 1 ≤ i < j ≤ n.

Delivery paths are not directed, which means that either (Ci, Ci+1) ∈ E or
(Ci+1, Ci) ∈ E. The dissemination in the scope graph is described by the
following

Lemma 6.1. Every delivery path p = (C1, . . . , Cn) can be subdivided into two,
possibly empty, parts: an upward path (C1, . . . , Cj) where (Ci, Ci+1)i<j ∈ E,
i.e., Ci� Ci+1, and a downward path (Cj , . . . , Cn) where (Ci+1, Ci)i≥j ∈ E.

Proof. Show that p turns at most once. A delivery path p = (C1, . . . , Cn)
connects two components C1 and Cn that are visible, v(C1, Cn). If C1

��Cn,
the downward path is empty and Cn is reached by forwarding notifications
to superscopes according to Eq. (6.1). If C1

��Cn, the upward path is empty
and Cn is reached by propagating visible notifications to children according
to Eq. (6.2). Otherwise, the path turns at least once and two cases can be
distinguished: p starts with an upward or a downward edge.

Assume p starts with a downward edge, C1� C2. Select d such that 1 ≤
d ≤ n and Ci�Ci+1 for all i ≤ d. If d �= n, the downward path is (C1, . . . , Cd)
and Cd � Cd+1. However, Eq. (6.1) allows this upward delivery only if the
notifications originated in Cd. This is not the case and by contradiction the
downward path ends at Cd = Cn.

158 6 Scoping

Assume p starts with an upward edge, C1� C2. In the same way p starts
with an upward path of length u ≤ n such that Ci�Ci+1 for all i ≤ u. If u �= n,
Cu�Cu+1. However, the path p′ = (Cu, . . . , Cn) starts with a downward edge
and from the preceding arguments follow that p′ consists only of downward
edges.

If p starts downwards, C1
�� Cn. If p starts upwards, either C1

�� Cn or the
path turns once downwards at a Cj , proving the lemma. ��

6.2.4 Duplicate Notifications

Between any two nodes of the directed acyclic scope graph there may ex-
ist zero, one, or more different delivery paths—the scope graph is not a tree
(Fig. 6.4). This may lead to duplicate notifications in certain implementations.
The specification of scoped event systems does not consider delivery paths but
demands notifications to be delivered at most once. So, concrete systems may
violate the specification. However, there are two reasons for not eliminating
duplicates in the scope model itself. First, duplicates generation and handling
is highly implementation dependent. And second, in some applications deliv-
ery along different paths leads to different semantics of notifications so that
they are not really duplicates.

S

U T

S

C1

T

C3 C4

C2 U

Fig. 6.4. Two ways of generating duplicates

The utilized implementation of scoping determines whether the conceptual
replication really results in duplicate deliveries. A broad range of possible im-
plementations of scoping exist,7 and in some of them different delivery paths
have no effect. For example, an explicit, externally available scope graph data
structure can be used in a centralized implementation to infer all destinations
before delivery is commenced. Furthermore, available countermeasures for du-
plicate detection are also highly dependent on the underlying implementation
technique.

From an application point of view, there are several reasons for not elimi-
nating duplicates in the scoped event system itself. First of all, in some appli-
cations notification processing is idempotent so that duplicate delivery does
7 Please refer to Sect. 6.7.1 for an overview.

6.2 Event-Based Systems With Scopes 159

not influence the function of an application. On the other hand, if duplicates
are not wanted, it is often easier to handle the elimination in the application
layer, or at least as an additional layer on top of simple notification dissem-
ination. In fact, the scope boundaries themselves offer a platform to install
such logic.

The most interesting point, however, is that on application level different
delivery paths may connote different notification semantics. Consider the left
example of Fig. 6.4, where two different delivery paths connect C1 and C2, and
assume that C1

n� C2 results in two notifications n′ and n′′ being forwarded
by T and U , respectively. Are the two notifications really equal? Are these
notifications really duplicates if they originate, at least from the consumer’s
point of view, from different components T and U? Within S, these two noti-
fications were published from different producers in the first place. The base
event notified with n′ may have a different meaning in the context of T than
the event notified with n′′ in U . Scope interfaces and mappings presented in
the next section will enable administrators to control notification forwarding
in a finer way.

In summary, there is no generic solution to handle duplicate notifications
in a scoped event-based system. The many available choices of possible imple-
mentation techniques offer all sorts of corresponding duplicate handling ca-
pabilities, which are too divergent to be included in the general scope model.
Note that duplicate notifications are forbidden in the specification of simple
event systems but are possible in scoped systems. Different delivery paths
conceptually deliver different notifications, even if triggered by the same base
event.

6.2.5 Dynamic Scopes

The above definition assumed a static scope hierarchy to provide a basic def-
inition that can be adapted and refined based on further requirements. In
the case of dynamic scopes, four additional operations have to be offered:
cscope(S) and dscope(S) to create and destroy a scope S, jscope(X, S) and
lscope(X, S) to join X to scope S or leave it, respectively. These operations are
typically available to the administrator role only, for individual components
do not necessarily need to know about their scope membership.

A system with static scopes can then be simulated by having the admin-
istrator set up the scope hierarchy with the appropriate operations before
clients start. However, dynamic scopes are not directly covered by the above
specification. A changing scope graph may conflict with the safety condition,
which is ambiguous in dynamic asynchronous system models. A notification
n is only allowed to be delivered to Y if the producer X is visible to Y . But
because delivery cannot be instantaneous, X may leave the scope in which
n was published before it is delivered, and so v(X, Y) may hold at time of
publication but not on delivery, rendering the specification ambiguous. The
specification does not cover systems that allow traces of the form

160 6 Scoping

σ4 = pub(X, n), . . . , lscope(X,S), . . . ,notify(Y, n),

where scope graph reconfigurations and notification publication and delivery
are mixed.

Several approaches to this problem exist. First of all, the assumed system
model may require delivery to be instantaneous so that notification dissem-
ination and scope reconfiguration cannot interleave. Any form of centralized
implementation is able to achieve this guarantee. A second approach is to
allow producers to leave a scope only if all their published notifications have
been delivered, preventing the interleaving in σ4 so that the resulting traces
are equivalent to the static case with respect to the safety condition. In effect,
this results in a type of synchronization similar to that of a global transaction:
scope joins and scope leaves must be reliably acknowledged by all other brokers
before the action is performed. Obviously, this type of dynamic scope seman-
tics is unfavorable since it incurs a high synchronization overhead. However,
scope reconfigurations may be so infrequent in practice that this is tolerable
for medium-size systems. At least these semantics have the advantage that
the safety part of Def. 6.3 can be used in the simple unmodified form. Inter-
estingly, this restriction resembles an object-oriented programming approach
where new subclasses and new methods are readily added, but modifying the
inheritance hierarchy is complicated.

A different approach would be to not hide scope graph changes but to
explicitly consider them in the specification. For the safety condition the vis-
ibility restriction v(X, Y) would have to reflect time delays in notification
delivery. On the other hand, the liveness part of Def. 6.3 does not consider
dynamic scopes at all. By including �v(X, Y) in its precondition, only static
graphs can fulfill liveness in the current definition. This specification is inten-
tionally restricted because it is intended to specify only basic functionality. It
currently covers a broad range of system models, and it can be refined (safety)
and extended (liveness) to incorporate dynamic scopes in more specific system
models. So, currently the following trace complies to the specification:

σ5 = sub(Y, F), jscope(X, s), jscope(Y, s), pub(X, n1), lscope(Y, s), . . . ,
jscope(Y, s), pub(X, ni), lscope(Y, s), . . .

In σ5 components X and Y start off in the same scope and X publishes
an “infinite” sequence of notifications ni. However, since Y leaves the scope
again after every publish operation, there is no point in time from which on
X and Y remain in the same scope. Therefore, delivery is not required and σ5

satisfies the liveness requirement. Of course, without knowing future traces a
notification service has to try to deliver any pending notifications.

So, dynamic changes of a scope graph can be supported if changes and
publications are serialized, or the safety condition has to be relaxed to cover
only durations in which the visibility of producer and consumer remain un-
changed.

6.2 Event-Based Systems With Scopes 161

6.2.6 Attributes and Abstract Scopes

The layout of a scope graph carries information on system structure. Anno-
tations of scopes allow the administrator to associate further information on
system operation, which will be done in the next subsections. Or annotations
are simply used to add application-specific data into the structure. Techni-
cally, the notion of scope attributes is introduced. Attributes associate data
to a specific scope according to a simple name/value pair model.

For example, a scope S is named and stores its time of creation in two
attributes:

S.name = “ItsMe” S.creation = “2004-12-20 12:22”

How attributes are set and used is described in Sect. 6.6.
Attributes may carry information about system configuration and man-

agement. Section 6.7.1 introduces alternative implementation approaches, and
attributes can store such annotations that refine the model expressed in the
scope graph. However, these kinds of information are typically valid for more
than one component of the graph. An obvious way to assign this information
to a group of components is to use a scope, which bundles the components
in question, just as a container carrying configuration data. This scope would
be a special type of scope, termed abstract scope.

Abstract scopes group components, but there is no communication within.
They are created for descriptive purposes and not to control communication
of their members. They are used for system management (cf. Sect. 6.6).

6.2.7 A Correct Implementation

The following presents a possible implementation of Def. 6.3 as a proof of con-
cept. The implementation uses a simple event system as specified in Sect. 2.5.2
as basic transport mechanism. This modular approach underlines the system’s
structure and shows the possibility of implementing the specification. But as
before, it does not concentrate on efficiency issues, and any available noti-
fication service satisfying the simple event system specification can be used
instead.

The architecture of the implementation is sketched in Fig. 6.5. The in-
terface operations of the scoped event system are local library calls, which
are mapped to appropriate messages of the underlying simple event system.
Again, this part of the client process is the local event broker of the client.
Conceptually, for every client an additional process at the interface of the sim-
ple event system is generated, the client’s proxy. Practically, the proxy will
be part of the local event broker. Note that the clients’ proxies are the only
components accessing the underlying simple service; no complex components
are instantiated in this implementation scenario.

162 6 Scoping

Simple Event System

Proxies

Client Local Event Broker

Fig. 6.5. A possible implementation of a scoped event system

Although dynamic scoping is not considered in the specification, the pre-
sented algorithm includes dynamic scopes in the style of Sect. 6.2.5. To sim-
plify the implementation, changes to the scope graph G = (C, E) are restricted:
only components with no incoming edges may join or leave scopes. This re-
striction prevents individual brokers from having to store G completely.

As noted above, the scope graph describes a transitive partial order ≤
on C with X ≤ X ′ ⇔ (X, X ′) ∈ E. The maximal elements of C have no
outgoing edges, i.e., they have no superscopes. These elements are termed
visibility roots, as the recursive definition of v(X, Y) is terminated by common
superscopes. The maximal elements that are visible from a component are
used to determine visibility of notifications.

Data Structures

For every client X , its proxy ProxX holds a list VX of its visibility roots. In
a system with static scopes, VX is initialized to the set of its visibility roots
in the given scope graph. With dynamic scopes where changes are limited to
the addition of new leaves—nodes with no incoming edges—VX is set at the
time of addition. In both cases, it remains constant and is not changed until
the whole systems stops or X is deleted.

Algorithm

If a client invokes pub(X, n), a message (pub, X, n) is sent to the client’s proxy.
At the interface of the simple event system, the proxy then invokes pub(ProxX ,
(n, R)), where R is set to the constant value VX .

Calls to sub(X, F) and unsub(X, F) are sent in a similar way to ProxX .
Using F , the proxy derives a filter F̃ that matches all notifications ñ = (n, R)
for which n matches F , and subsequently calls sub(ProxX , F̃).

6.2 Event-Based Systems With Scopes 163

Whenever the simple event system notifies the proxy of Y about a notifi-
cation ñ = (n, R), the proxy checks whether VY ∩R �= ∅. If the test succeeds,
a message is sent to the local broker of Y to invoke notify(Y, n). Otherwise
the notification is discarded.

Correctness

In order to show that Def. 6.3 is satisfied, the presented implementation must
obey the visibility v(X, Y) of the safety condition and the additional precon-
dition �v(X, Y) of the liveness condition. The remaining part is satisfied by
using the simple event system which satisfies Def. 2.5.

Lemma 6.2. For every pair of clients X and Y and for the set of visibility
roots VX and VY stored at the proxies, the following holds:

v(X, Y) ⇔ VX ∩ VY �= ∅

Proof. We need to show two implications. The first implication (⇒) is proved
by induction over the “visibility” path from X to Y . The second implication
(⇐) is shown as follows: If VX ∩ VY �= ∅, there exists a maximal element Z of
≤ such that X ≤ Z and Y ≤ Z. By the definition of ≤ this implies v(X, Y).
��

Now, the correctness of the sketched implementation can be proved in
terms of the safety and liveness conditions of scoped event systems.

Proof of Safety

Assume that notify(Y, n) is invoked at client Y . It must be shown that this
implies validity of the three conjuncts of the implication in the safety property
of Def. 6.3.

The first conjunct follows directly from the safety property of the simple
event system.

To prove the second and the third conjuncts, assume that the local broker
issues notify(Y, n) at client Y . This means that (a) the proxy of Y has pre-
viously received a notification ñ = (n, R) and that (b) the test VY ∩ R �= ∅
succeeded.

From (a) and the safety property of the simple event system follows that
ñ was previously published by some proxy ProxX . From Lemma 6.2 and (b)
follows that v(X, Y) holds. This proves the second conjunct.

From (a) and the safety property of the simple event system follows that ñ
matches some transformed filter F̃ of ProxY . This together with the algorithm
proves the third conjunct. This concludes the proof of the safety property.

164 6 Scoping

Proof of Liveness

Assume a client Y invokes sub(Y, F) and never unsubscribes to F . From the
algorithm it is implied that an “equivalent” subscription F̃ is issued into the
simple event system. Since scope reconfigurations are restricted to occur at
leaves, the values of VX and VY of existent components are constant. From
Lemma 6.2 this implies that v(X, Y) is always true for all clients X and Y
for which VX ∩ VY �= ∅.

From the liveness property of the simple event system and the algorithm
follows that there is a point in time after which every published notification
ñ = (n, R) that matches F̃ is delivered to every client proxy. So assume that
after this point in time some client X publishes a notification n matching F .
From the algorithm we have that ñ = (n, VX) is published within the simple
event system. Its liveness property gives us that ñ is eventually delivered at
the client proxy of Y . From the algorithm and because v(X, Y) holds, the test
VX ∩ VY �= ∅ will succeed and Y will eventually be notified of n.

6.3 Event-Based Components

6.3.1 Component Interfaces

So far, visibility is an only two-level hierarchy induced by the topmost super-
scopes, the visibility roots of the graph G. Any two components are either able
to see all of their published notifications or none at all. In order to overcome
this problem and to improve the structuring abilities, visibility is refined by
assigning input and output interfaces to scopes.

Input and output interfaces for simple components are subscriptions and
advertisements, respectively. Both include filters that describe the set of no-
tifications allowed to cross a component’s boundary. As defined in Sect. 3.1,
a notification n is either mapped on itself or to ε, indicating that n is either
matched or blocked. In the following, similar filter sets are associated with
scopes to make interfaces a feature of all components.8

6.3.2 Scope Interfaces

Scope input and output interfaces describe the set of notifications that are
allowed to cross the scope boundary. Only those notifications that match one
of the scope’s output filters are forwarded up into its superscopes as outgoing
notifications, and only those matching at least one of its input filters are
treated as incoming notifications that are forwarded to scope members. Filters
of scope interfaces are expressed in the same filter model used for subscriptions
and advertisements of simple consumers and producers.
8 The relationship between scopes and simple components is shown in the UML

class diagram in Fig. 6.1.

6.3 Event-Based Components 165

The base interface IC of a component C contains two sets of filters, iFC

and oFC , representing the input and output interfaces of the currently active
subscriptions and advertisements of the component. This base interface is
associated with every component of the event-based system with the known
function of letting notifications pass if they match one of the filters in iFC for
incoming notifications or oFC for outgoing notifications.

Formally, the interfaces are bound to edges of the scope graph. Depending
on the conceptual placement of filters with respect to the starting or ending
node of an edge, two refinements and the resulting combination of filters are
distinguished: selective, imposed, and effective interfaces (Fig. 6.6). While
the next paragraphs discusses the different forms of interfaces, the formal
definition of a scoped event system with interfaces is given in Sect. 6.4.1.

C

ST

IC

IC|S

IS
C

selective interface
component interface

imposed interface

Fig. 6.6. Different scope interfaces

Selective Interfaces

According to the preceding definition a component has an interface indepen-
dent of its scopes; it does not distinguish between superscopes. This conforms
to the intended loose coupling of event-based interaction. However, the ad-
ministrator knows the configuration of scopes and as part of this role it is
possible to distinguish superscopes.

A selective interface IC|T controls the communication between a compo-
nent C and a specific superscope T . It functions in the same way IC does, but
governs communication only between C and T . It is applied in addition to the
base component interface. In Fig. 6.6, for instance, some of the notifications
published by C are forwarded to S but not to T . If, in a type-based scheme,
IC|T contains an output filter that accepts notifications of type A but not B,
and if C happens to publish notifications nA and nB of type A and B, nA

would be visible in T but nB not. Communication with S is not affected by
IC|T .

So, notification forwarding depends on the destination scope. A component
may now exhibit different interfaces toward different superscopes. From an

166 6 Scoping

engineering point of view, this offers a fine control of interaction, which is
especially important when composing existing subsystems. Furthermore, the
functionality of the selective interfaces may be used to mitigate problems
of duplicate notifications by blocking certain delivery paths. On the other
hand, the administrator must be aware of possible effects of discriminating
interfaces. If the distinguished superscopes share a common visibility root
two different delivery paths may exist that preclude duplicate notifications
but break causal order of messages. Consider S and T in Fig. 6.6 having a
common superscope Z, then a short path exists connecting C and T directly,
and a longer one crossing S and Z to reach T . A first notification n1, which
is blocked by IC|T , may reach T after a second notification n2 that matches
IC|T . Although the specification of simple event systems does not assume a
specific ordering, many concrete systems provide a sender FIFO ordering that
would be broken in this way.

Imposed Interfaces

A converse refinement of interface definition is to install filters at the “other”
end of the scope graph edge. An imposed interface IS is specified within a
scope and wraps all of its members with an extra interface. It allows only
those notifications that match the imposed interface to be exchanged within
this scope, dedicating the scope to a specific kind of data. This interface does
not influence the communication of the affected component in other scopes.
Furthermore, interfaces can also be imposed on individual components. IS

C

in Fig. 6.6 restricts the interaction of C with S, without affecting the other
children in S. If IS

C contains an output filter that accepts notifications of type
B but rejects A, the above-mentioned notification nB published by C would
be forwarded into S, but nA is rejected by the imposed interface. Note that
notifications of type A may published by other members of S, which are not
affected by IS

C .
Imposed interfaces are a means to control communication within a scope.

Especially when an administrator integrates existing preconfigured compo-
nents, not all of their provided interfaces are of interest within the new scope,
or on the other hand, not all of the scope’s internal traffic shall be visible to
all components. As such, imposed interfaces are a security mechanism, too.
They enforce predefined filters on scope members and thus control what is
published and consumed within the scope. For instance, depending on secu-
rity credentials, different interfaces may be imposed on newly connected scope
members.

Effective Interfaces

The effective interface of a component concatenates the previously introduced
base interface with the selective and imposed interfaces. It is given with re-
spect to a specific outgoing edge of the component and describes the set of

6.3 Event-Based Components 167

notifications that are effectively allowed to cross the respective edge of the
scope graph. A notification matches the effective interface ÎS

C of a component
C� S iff it matches IC and IC|S and IS

C and IS .

6.3.3 Event-Based Components

Scopes are a composition mechanism that facilitates creating new, more com-
plex event-based components, showing essential characteristics of component
frameworks in the flavor of Szyperski [369]. They encode the interactions be-
tween components and act themselves as components on a higher level of
abstraction. The composed function is provided through a defined interface,
thus facilitating the reuse of the bundle while abstracting from its internal
configuration. Scopes are distributed event-based components (Sect. 6.6).

6.3.4 Example

The example stock trading application introduced in Sect. 5.1.2 is expanded
to illustrate the use of scopes (Fig. 6.7). There are two main scopes, M1
and M2, denoting two different stock markets. Within each market customers
are grouped into subscopes distinguishing private and professional customers.
Each customer is permanently represented by one of the scopes C1, C2, etc.,
which remain connected in the graph of scopes even if customers are not per-
sonally logged in. They group a customer’s PCs, cellular phones, or agents run-
ning on a remote server. An example “agent” would be a limit watcher which
continuously monitors a share’s price and issues a notification when a specific
share deviates from the overall market performance. Such agents can be in-
stalled within a customer’s scope without changing existing components—one
of the obvious benefits of event-based systems—and without affecting other
parts of the system, which is the prime attribute of scoping.

For the sake of simplicity, interest for at most one share is indicated be-
low the rectangles representing the customers’ PCs. The figure illustrates the
scenario when the trading floor TF participates in the stock market M1 and
issues a notification concerning SAP quotes. Although both consumers C3 and
C4 have subscribed for notifications on SAP quotes, this notification will only
reach C3, because C4 is not visible from the trading floor and C1 has sub-
scribed to a different share. On the other hand, consumer C3 listens to both
markets and may receive “duplicate” SAP quotes.

To illustrate how scope interfaces help in structuring event-based applica-
tions, let us consider the interfaces of the components in our running example
as summarized in Fig. 6.8.

Customers send out notifications of type Order which contain a share
identification, the number to be sold or bought, and potential price limits.
The trading floor TF listens to these orders, issues acceptance notifications, and

9 Delayed forwarding is discussed in Sect. 6.5.

168 6 Scoping

SAP

IBM

PC
Agent

DB ME

M2M1

N
N

TF

C1

C2 C3

PC

C4

PC

SAP

...

...

...

Private

Professional

...

Fig. 6.7. The graph of the stock application

Component Description Input Output

M1,M2 The Stock Markets – –

Private scope of all private customers – Trade

Prof. scope of all professionals Order
Accept,
Quote(delayed)9

C1,C2,... Customer representation Accept Order

TF Trading Floor Order Accept, Quote

ME Matching engine Order
Accept, Quote,
OrderBook

DB The logging database
Order,
Quote

–

Fig. 6.8. Interfaces of the components in the example application

sends out Quotes, informing about successfully executed orders. The trading
floor itself is composed of the matching engine ME and the database DB. While
the database only logs all Orders and Quotes, the matching engine receives
orders and issues Quotes of current prices. It maintains a list of open orders
and executes the matching algorithm that leads to acceptance notifications
(Accept) of matched orders. Additionally, the matching engine publishes an
orderbook summary with prices and volumes of the ten best bid and ask
orders. The summary is only visible within the trading floor, because the
interface of TF prohibits further distribution. Based on this data, additional
services may be integrated into the trading floor, like market makers ensuring
that there is always at least one buy and one sell order open.

6.4 Notification Mappings 169

6.4 Notification Mappings

So far, uniform data and filter models were assumed, which prescribe syntax
and semantics of notifications and filters throughout the whole system. In
large systems, however, characteristics and demands of applications are likely
to diverge and homogeneous models will not fit the needs, as pointed out in
the discussion of the engineering requirements in Sect. 5.1. If all components
are forced to agree on the same data and filter model, system integration and
efficiency is impeded drastically.

The diverging requirements will best be met with tailored data and filter
models—an idea which is obvious but hardly considered in the context of event
systems. Different system parts will use different representations and seman-
tics of events. With an appropriate support, one part of an application can
exchange binary encoded notification while still being able to communicate
with other parts of the system via serialized Java objects or XML encoded
notifications. Efficiency considerations result in differentiating low-volume ex-
ternal representations in XML from more efficient, optimized internal repre-
sentations.

An obvious implication of decomposing applications is that bundling of
related components should not only encapsulate functionality but also de-
limit common syntax and semantics. Constraining the visibility of notifications
is the basis for dealing with heterogeneity issues. Consequently, notification
mappings are introduced as extensions of scope interfaces. They transform
notifications at scope boundaries to map between internal and external rep-
resentations, without interfering with internal notifications.

Scopes are an appropriate place to localize such transformations because
bundled components are likely to agree on a common data and filter model,
whereas the interaction with the remaining system is decoupled by the scope
boundary. Notification mappings clearly address the heterogeneity require-
ments stated in Sect. 5.1 and facilitate construction and maintenance of large
event-based systems.

6.4.1 Specification

Notification mappings transform notification from one data model to another.
Mappings, however, do not primarily block notifications but transform them.
Notification mappings are defined as binary, asymmetric relations on the set N

of notifications. They are associated with scope graph edges, like scope inter-
faces, and two mappings ↗e and ↘e are attached to every edge e = (C, S) ∈ E.
Let n1 and n2 be two notifications. For any edge e and its associated rela-
tion ↗e, the mapping n1 ↗e n2 means that when “traveling” upwards along
the edge (i.e., in direction of the superscope) n1 is transformed into n2. The
relation ↘e is defined analogously for the reverse direction. Note, in order
to support heterogeneous data models the relations map between two sets

170 6 Scoping

X ′

Y

n1

n′ n′

n2

X

S

Y ′

Fig. 6.9. Recursive definition of the relation (n1, X) � (n2, Y)

of notifications used in C and S, respectively, i.e., ↗e⊂ NC × NS , but it is
implicitly assumed that N contains the different models for simplicity.

Now, the general visibility of notifications can be defined using these rela-
tions.

Definition 6.5. The visibility of notifications in a scope graph G = (C, E) is
defined by the relation � on N × K, where

(n1, X) � (n2, Y) or shorter X
n1�n2 Y

means that n1 visible to X is also visible to Y :

(n1, X) � (n2, Y) ⇔(
X = Y ∧ n1 = n2

)
∨ (∃e = (X, X ′) ∈ E. ∃n′ �= ε. n1 ↗e n′

∧ [
(n′, X ′) � (n2, Y)

])
∨ (∃e = (Y, Y ′) ∈ E. ∃n′ �= ε. n′ ↘e n2

∧ [
(n1, X) � (n′, Y ′)

])
The recursive definition of (n1, X) � (n2, Y) is illustrated by Fig. 6.9.

Intuitively, notification n1 “flows” from X to Y and, after potentially being
transformed several times, it is received as notification n2. The path on which
n1 flows to n2 is the same as for the visibility relation defined in Sect. 6.2, i.e.,
it can be characterized by a path from X up to a common superscope and
then down to Y . But in addition the notification is subject to any mappings
assigned to the relevant edges.

The semantics of scoped event systems with mappings are derived from
those of scoped event systems by the refined visibility definition. With like
arguments the graph of scopes and the relations ↗ and ↘ are assumed to be
static in the sense that a component’s mappings are not allowed to change
until all of its published notifications are delivered; otherwise the visibility
clause may corrupt the safety condition in the specification.

6.4 Notification Mappings 171

Definition 6.6 (scoped event system with mappings). A scoped event
system with mappings ESM is a system that exhibits only traces satisfying
the following requirements:

� (Safety)

�[
notify(Y, n′) ⇒ [��¬notify(Y, n′)

]
∧ [∃n. ∃X. n ∈ PX ∧ (

(n, X) � (n′, Y)
)]

∧ [∃F ∈ SY . n′ ∈ N(F)
]]

� (Liveness)

�[
sub(Y, F) ⇒(�[�(

(n, X) � (n′, Y)
) ⇒

�(
pub(X, n) ∧ n′ ∈ N(F) ⇒ �notify(Y, n′)

)])
∨

(�unsub(Y, F)
)]

The difference between this definition and that of scoped event systems
(Def. 6.3) is that the term v(X, Y) is replaced by the term (n, X) � (n′, Y)
and that the published notification n is not necessarily equal to the delivered
n′. This formulation extends the system to not only obey the visibility of
components but the visibility of individual notifications. The delivered noti-
fication n′ is the result of repetitive applications of the mappings ↗ and ↘
along the path implicitly defined by �. The present definition is even a gen-
eralization of the scoped delivery. This is because a scoped event system can
be regarded as one with event mappings where all mappings are the identity
relation, i.e., they do not change anything along the delivery paths. In such
a system, v(X, Y) is implied by the existence of a notification n such that
(n, X) � (n, Y).

Interfaces as Mappings

Notification mappings are a generalization of and subsume scope interfaces.
The relation ↗ might be undefined for an outgoing notification n1 so that
there is no n2 such that n1 ↗ n2. This blocks the notification just as a
nonmatching filter does. In order to seamlessly extend scope interfaces, ↗
and ↘ are constrained to always map to some notification, with the empty
notification ε as default.

Definition 6.7 (notification mappings). A notification mapping is given
by a function in M = {m | m : N → N}.

n1 ↗ n2 ⇒ ∃m ∈ M. m(n1) = n2

172 6 Scoping

Whenever a notification is mapped to ε it is considered to be blocked so
that filters are but special mappings: F = {f ∈ M | f(n) = n ∨ f(n) =
ε} ⊂ M. With this definition, a uniform way of filtering and transforming
notifications is accomplished so that, conceptually, interfaces and mappings
can be concatenated at scope boundaries, e.g., F1 ◦ F2 ◦ M1 ∈ M.

Next, interfaces and their concatenation are defined more formally to de-
fine ↗ and ↘ as concatenated interfaces and mappings.

Definition 6.8 (interface). An interface I consists of an input mapping iI
and an output mapping oI: I = (iI, oI) ∈ M × M. The base interface IC of a
component C represents the sets of open subscriptions and advertisements of
C:

IC = (iIC , oIC) ∈ M × M

� (iFC , oFC) =
{{F1, F2, . . . , Fk}, {F ′

1, F
′
2, . . . , F

′
l }

} ∈ P (F) × P (F)

where iIC and oIC are defined as

iIC(n) =

{
n ∃F ∈ iFC . F (n) = n

ε otherwise

oIC(n) =

{
n ∃F ∈ oFC . F (n) = n

ε otherwise

Selective interfaces IC|S and imposed interfaces IS and IS
C are defined likewise.

According to this definition an interface can transform notifications for the
seamless concatenation of filters and mappings.

Definition 6.9 (concatenation of interfaces). Two interfaces I1 and I2

are concatenated by
I1 ◦ I2 = (iI1 ◦ iI2,

oI2 ◦ oI1).

Note that the resulting interface evaluates the composed input and output
interfaces in inverse order. This is not necessary if only filters are considered,
but by incorporating mappings the sequences are no longer commutative. The
effective interface between two components C� S describes the notifications
transmitted along this edge in the scope graph and combines the aforemen-
tioned interfaces and notification mappings assigned to this edge, extending
the informal description given in Sect. 6.3.2.

Definition 6.10 (effective interface). The effective interface ÎS
C between

two components C� S is given by concatenating base interface, selective in-
terface, mapping, and imposed interface:

ÎS
C = IC ◦ IC|S ◦ MS

C ◦ IS
C ◦ IS

6.4 Notification Mappings 173

Finally, the interfaces between two components C�S are correlated to the
mapping relations ↗ and ↘ as follows:

n1 ↘ n2 ⇔ (IC ◦ IC|S ◦ iMS
C ◦ iIS

C ◦ iIS)(n1) = n2

⇔ iÎS
C(n1) = n2

n1 ↗ n2 ⇔ (oIS ◦ oIS
C ◦ oMS

C ◦ oIC|S ◦ oIC)(n1) = n2

⇔ oÎS
C(n1) = n2

The rules of notification forwarding in the scope graph given by the pub-
lishing and delivery policies in Eqs. (6.1) and (6.2) can be refined correspond-
ing to the above discussion:

PP : X
n1� S ∧ X� S� T ∧ oÎT

S (n1) = n2 ⇒ X
n1�n2 T (6.3)

DP : n1� T ∧ S� T ∧ iÎT
S (n1) = n2 ⇒ n2� S (6.4)

Despite the integration of interfaces and mappings, the scope overview in
Fig. 6.1 still distinguishes interfaces and mappings to underline their different
intentions, and also because their implementations are apt to diverge.

Some Further Comments

The already mentioned issue of duplicate notifications has to be reconsidered
here. A notification is duplicated if it travels along different paths from pro-
ducer to consumer, but it may now be subjected to different mappings so that
different versions of the same original notification are created. The specifica-
tion cannot rule out this case since it is highly application-dependent whether
this is an unwanted situation or not. The mappings may help handling al-
ternative delivery paths as they can annotate passing notifications, e.g., to
include information about the delivery path in the notification.

Trying to offer a sophisticated concept of heterogeneity support in event-
based systems is beyond the scope of this book, and thus notification mappings
are presented as a starting point for including appropriate enhancements. The
mappings underline the extensibility of the scoping concept and open it to
integrate existing works in the area of syntactic and semantic transformations
that are applicable here [46, 79, 232]. Furthermore, the current if implicit
assumption that notifications are mapped one-to-one is used for simplicity
only. Scope boundaries may turn out as the appropriate place to implement
more sophisticated event composition [146, 406].

6.4.2 A Correct Implementation

The following presents an implementation sketch of the scoped event system
with mappings. The implementation of a scoped event system with mappings

174 6 Scoping

YY
K

X
...

X

SS

n′

n
K

n′

n

K1
m K2

m

Fig. 6.10. Transformation of mappings into components

ESM is based on a scoped system ESS and a transformation of the graph of
scopes G that essentially follows the idea of adding activity to edges. Fig-
ure 6.10 sketches the transformation that creates G′ by replacing every edge
(K, S) that does not apply the identity mappings n ↗ n and n ↘ n for two
extra mapping components K1

m and K2
m. Two mapping components are taken

to constrain the visibility of the transformed notifications to the appropriate
scopes. If only one Km would be inserted, additional measures had to be taken
to distinguish the superscopes.

Figure 6.11 describes the architecture of the implementation for the exam-
ple system in Fig. 6.10. A component X connected to ESM is also directly con-
nected to an underlying scoped event system ESS. Calls to pub(X, n) of ESM

are forwarded to ESS without changes, and vice versa, calls to notify(X, n)
of ESS are forwarded to ESM.

X Y

Scoped Event System

K2
mK1

m

Fig. 6.11. Architecture of scoped event system with mappings

In general, if a scope K is to be joined to a superscope S by calling
jscope(K, S), two mapping components K1

m and K2
m are created that com-

municate directly via a point-to-point connection. K1
m joins K, subscribes

to all notifications published in K, and transforms and forwards them to its

6.4 Notification Mappings 175

peer. Furthermore, subscriptions in K have to be transformed before they are
forwarded. The implementation relies on externally supplied functions that
map notifications and filters/subscriptions between the internal and exter-
nal representations in K and S, respectively. K2

m joins S and republishes all
notifications it gets from its peer K1

m. It subscribes in S according to the
subscriptions forwarded by K1

m, transforms any notifications received out of
S, again with externally supplied functions, and forwards them to K1

m, which
republishes them into K.

Correctness

The algorithm from the previous section has to satisfy the requirements given
in Def. 6.6 of ESM, i.e., safety and liveness conditions. The correctness proof
largely depends on the correctness of the underlying scoped event system ESS.
The next lemma relates the graph transformation to the structure of delivery
paths.

Lemma 6.3. If (n, X) � (n′, Y) holds, then in the implementation of ESM

exists a sequence ρ = C1, C2, . . . , Cm of components for which holds:

1. C1 = X and Cm = Y .
2. for all 1 < i < m holds that Ci is a mapping component.
3. for all 1 ≤ i ≤ m−1 holds that Ci and Ci+1 either share a communication

link or reside in the same scope of ESS.

Proof. Assume (n, X) � (n′, Y) holds. From the definition of � follows that
there exists a delivery path τ = (X, S1, S2, . . . , Sl, Y) in the scope graph G.
Since visibility is recursively defined by having common superscopes, all Si

must be scopes.
The construction method of building G′ from G implies that every consec-

utive pair of scopes (Si, Si+1) in τ where mappings are applied is enhanced
with two mapping components K1

i and K2
i , which are joined by a direct

communication link. The mapping components K2
i and K1

i+1 of neighboring
edges reside in the same scope Si+1 or are visible to each other. The pro-
jection of τ to mapping components (and X and Y) results in a sequence
X, K1

1 , K2
1 , K1

2 , K2
2 , K1

3 , . . . , K2
l , Y , which is the witness for the sequence ρ of

the lemma. ��

Proof of Safety

Assume that Y is a simple component and that notify(Y, n′) of ESM is called.
It must be shown that the three conjuncts of the implication in the safety
property of Def. 6.6 hold.

From the algorithm description follows that notify(Y, n′) of ESS was called
before, implying that n′ is notified at most once and that n′ matches an active
subscription of Y . This proves the first and the third conjuncts.

176 6 Scoping

The second conjunct is proved by a backward induction on the path guar-
anteed by Lemma 6.3. The fact that Y is notified about n′ implies that there
is a component Z that has published n′ which resides in the same scope. If
this Z is not a mapping component, Z plays the role of X in the formula,
n′ = n, and the second conjunct follows immediately (this is the base case of
the induction). The step case of the induction is as follows: Assume that a
component Z ′′ along the path has published some notification n′′ which from
backward notification mappings resulted from n′. Then there exists a compo-
nent Z ′′′ which is either in the same scope or connected by a communication
link to Z ′′. In the first case, the step follows from the properties of ESS, and
in the second case from the algorithm. This implies that n ∈ PX and that(
(n, X) � (n′, Y)

)
, giving the second conjunct.

Proof of Liveness

The liveness property is proved by forward induction on the path guaranteed
by Lemma 6.3 in a similar way as in the proof of the safety property. As-
sume that Y subscribes to F and never unsubscribes. Then assume that after
subscribing, (n, X) � (n′, Y) begins to hold indefinitely. Then Lemma 6.3
guarantees a path between any publisher X of a relevant notification n and
Y . A similar way of reasoning as in the safety proof implies that n is forwarded
and transformed along the path resulting in n′, which Y is eventually notified
about.

6.4.3 Example

Returning to the stock exchange example, mappings can be exploited to con-
vert between different currencies.10 Quotations are typically given in a local
currency which needs to be transformed at the boundary of the local scope
in order to achieve comparability. As another example for the usefulness of
mappings, consider XML languages like FIXML [273] that standardize finan-
cial data exchange. These languages are used to connect external partners,
but they are typically too expensive for internal representations due to effi-
ciency reasons. Also, most likely, different representations of events will be
used inside the consumers, within the market, and within the trading floor,
e.g., Java objects, XML financial data, and EBCDIC mainframe text fields.
Notification mappings are installed at the consumers and at the trading floor
to map between serialized Java objects and their XML representation and
between XML and EBCDIC, respectively.

6.5 Transmission Policies

The discussion of engineering requirements in Sect. 5.1 argued not only for the
heterogeneity of data models but also emphasized the necessity to adapt noti-
10 At least from a technical point of view, disregarding varying exchange rates.

6.5 Transmission Policies 177

fication delivery semantics. The ability to accommodate diverging application
needs improves the utilizability of the event service. It helps to provide tai-
lored and efficient implementations, and it avoids a one-size-fits-all approach,
which is not appropriate for a communication substrate targeted at evolving
networked systems.

The next paragraphs distinguish transmission policies to describe how
notifications are forwarded in the scope graph. Transmission policies are a
way to influence notification dissemination beyond filtering on notifications.
While filters operate independently on independent notifications, i.e., they
are stateless, transmission policies may have their own state and they exploit
additional information not available in filters and interfaces. They refine the
visibility definition both within a scope and with respect to its superscopes.
Changing it affects the functionality of the overall system in a fundamental
way. However, once delimited by scope boundaries, such modifications are the
means that allow administrators to customize the interaction within and the
composed functionality of specific scopes.

Conceptually, notification forwarding at a node in the scope graph first
determines a set of eligible next-hop destinations according to the effective
interfaces and then applies the policies to refine this set before transmission.
Default policies implement the known semantics of notification delivery, and
by explicitly binding them to individual scopes in the specification of event
systems, they are subjected to modification on a per-scope basis. This gives
the administrator a tool to not only compose but to program scopes. Three
different policies are involved in notification transmission: publishing, delivery,
and traverse policies.

S

T T ′

publishing policy
delivery policy

delivery policy
internal

YX

Fig. 6.12. Three important transmission policies in scope graphs

6.5.1 Publishing Policy

A publishing policy is associated with a component and controls into which
superscopes an outgoing notification is forwarded. In Fig. 6.12, a publishing

178 6 Scoping

policy at S can prevent a notification Y
n1� S from being forwarded to T , even

if the notification conforms to the effective output interface oÎT
S . Out of the

set of eligible superscopes the publishing policy selects the subset to which
a notification is actually forwarded. One might reject the idea of manually
selecting the scopes into which data is published as contradicting the event-
based paradigm. However, the same arguments as for selective interfaces apply
here, too. The selection is part of the administrator’s role and is not interwoven
with application functionality in simple components. It can be seen as an
additional way to control interaction of components outside of the components
themselves.

In general, a publishing policy of a component C is a mapping of notifica-
tions to a subset of its scopes:

ppC : N → P (S)

The mapping relation ↗, which determines the visibility of notifications, can
be extended to respect publishing policies. For an edge e = (S, T) of G let

n1 ↗e n2 ⇔ oÎT
S (n1) = n2 ∧ T ∈ ppS(n1)

The general rule of forwarding outgoing notifications in the scope graph
is implied as follows. Assume Y made a notification n1 visible in its scope S,
Y

n1� S, and S is a subscope of T , S� T , then the notification shall be visible
in T if n1 matches the effective output interface between S and T and the
publishing policy (PP) does not object to T . That is,

PP : Y
n1� S ∧ Y � S� T︸ ︷︷ ︸

component
visibility

∧ oÎT
S (n1) = n2︸ ︷︷ ︸

interface
mappings

∧T ∈ ppS(n1)︸ ︷︷ ︸
publishing

policy

⇒ S
n1�n2 T (6.5)

This definition of PP refines the previous one of scoped delivery with
mappings given in Eq. (6.3). It can be reduced to the former definition by
setting ppS(n1) = S, which always validates T ∈ ppS(n1) and makes Eqs. (6.5)
and (6.3) equivalent. Note that the equation also implies Y

n1�n2 T .
A publishing policy might be used to check for attributes not available in

filters and interfaces. Since it is implemented as part of the administrator role,
it possibly has access to the scope graph layout and associated metadata. If the
availability of security credentials can be checked by the policy, a scope may
thus mandate that its notifications are only delivered if a certain privilege level
is held by the destination scope. But this simple definition leaves room for any
form of implementation. In the stock exchange example a market was divided
into a professional and a private market. The former gets undelayed stock
quotations and is modeled as a subscope of the private market. A publishing
policy at the boundary between these two scopes may be used to delay each
notification for a certain amount of time. Such implementation-specific issues
are not excluded by the above definition.

6.5 Transmission Policies 179

6.5.2 Delivery Policy

A delivery policy is associated with a scope and guides notifications that are to
be delivered to scope members. They may either be published in a superscope
or by some other constituent component. The delivery policy determines to
which members of the scope a notification is forwarded. In Fig. 6.12, a delivery
policy at S might direct a notification T

n� S to X , prohibiting the delivery
to Y even if the notification conforms to the effective input interface iÎS

Y . Out
of the set of eligible children the delivery policy selects a subset to which the
notification is actually forwarded.

Similar to publishing policies, a delivery policy of a scope S is a mapping
of notifications to a subset of components:

dpS : N → P (K)

The mapping relation ↘ can be refined so that it obeys scope interfaces and
reflects delivery policies on incoming notifications. Consider e = (X, S) as
given in Fig. 6.12 and a notification visible to S in T , T

n1� S. The visibility
of the notification within S is then determined by

n1 ↘e n2 ⇔ iÎS
X(n1) = n2 ∧ X ∈ dpS(n1).

Please note that this equivalence not only guides forwarding of incoming
notifications but also of internal notifications published by scope members; in

the example, T
n1� S and Y

n′
1� S would go down the same edge e = (X, S).

However, since internal and external communication is typically treated dif-
ferently, an additional internal delivery policy idpS is introduced to facilitate
this differentiation. The definition of ↘e has to distinguish between applying
dpS and idpS. In the first case, n1 is an incoming11 notification that is made
visible by a superscope T , i.e., X� S� T and T

n1� S. In the second case n′
1 is

an internal notification that is made visible by a member of S, i.e., a sibling

of the considered consumer X , X� S� Y and Y
n′

1� S.

n1 ↘e n2 ⇔
⎧⎨
⎩

iÎS
X(n1) = n2 ∧ X ∈ dpS(n1), if X� S� T ∧ T

n1� S

iÎS
X(n1) = n2 ∧ X ∈ idpS(n1), if X� S� Y ∧ Y

n1� S

The rule of downward notification delivery (p. 173) is thus given as follows:

11 The term “internal” and “incoming” notifications are also discussed on page 157
in Fig. 6.3a.

180 6 Scoping

DP : T
n1� S ∧ X� S� T︸ ︷︷ ︸
component visibility
incoming notification

∧ iÎS
X(n1) = n2︸ ︷︷ ︸

interface
mappings

∧X ∈ dpS(n1)︸ ︷︷ ︸
delivery
policy

⇒ S
n1�n2 X

(6.6)

iDP : Y
n1� S ∧ X� S� Y︸ ︷︷ ︸
component visibility
internal notification

∧ iÎS
X(n1) = n2︸ ︷︷ ︸

interface
mappings

∧X ∈ idpS(n1)︸ ︷︷ ︸
internal

delivery policy

⇒ S
n1�n2 X

(6.7)

Again, from the equations and the definition of � also follows that T
n1�n2 X

and Y
n1�n2 X .

An example of a delivery policy is an 1-of-n delivery where an incoming
notification is forwarded to only one out of a group of possible receivers. In this
way load-balancing characteristics may be implemented in a specific scope.
Internal delivery policies are pertinent whenever the data flow within a scope
shall be controlled in addition to the established filters. An internal delivery
policy is able to arrange multiple consumers into a chain. Consider a sequence
of exception handlers, each subscribed to the same type of failure, which it
tries to solve, and if not possible it republishes the received notification. An
internal delivery policy can forward each published error notification to the
next hop in the preconfigured list of consumers/handlers.

6.5.3 Traverse Policy

The last, only informally presented policy is the traverse policy, which is as-
sociated with a scope S and controls the downward path of incoming notifica-
tions in a scope. In contrast to the preceding policies, the traverse policy does
not select destinations within a certain scope but selects the scope into which
to descend first. It searches at different levels in the scope hierarchy below S
for a scope with eligible consumers, and if one is found it will stop searching
and refer the notification to the respective scope.

Actually, this policy allows a notification to deviate from a default path
through the graph of scopes. In a top-down traverse policy eligible receivers,
i.e., simple components with a matching subscription, are searched in the cur-
rent scope first. If no consumer is found at this stage, the search is continued
in the next lower level of scopes if the policy still applies there (same ad-
ministrative domain). The bottom-up traverse policy starts the search in the
deepest subscopes. “Broadcast” is the default policy, which does not inhibit
descending the scope graph and delivers to all eligible consumers C

��S below
the current scope S, subject to interfaces and delivery policies, of course.

This kind of dissemination control is apparently inspired by dynamic bind-
ing and method lookup in object-oriented class hierarchies. Multiple con-
sumers of the same notification, which are located at different levels in the
inheritance/scope hierarchy, can be considered to implement some form of
generalized method overriding. While traditional programming languages like

6.5 Transmission Policies 181

C++ and Java use only one static policy to resolve calls to overridden meth-
ods, traverse policies draw ideas from metaobject protocols [221] to determine
what kind of method lookup is used. The bottom-up policy resembles a vir-
tual method call in Java in that the implementation of the most derived class
is used. Other policies are possible that implement other kinds of method
lookups.

6.5.4 Influencing Notification Dissemination

Transmission policies are a means to adapt the event-based dissemination
within scopes, i.e., to tailor the quality of service (QoS). They make the in-
teraction in the graph programmable.

To some extent transmission policies bear similarities to metaobject pro-
tocols (MOP) known in object-oriented programming [221]. Metaobject pro-
tocols offer the ability to redirect or transform messages sent as method calls,
and this control allows one to influence object interaction outside of the ob-
jects’ implementation. Here, notifications are selected, transformed, ordered,
or queued, to manipulate the default visibility of notifications and to adapt
event-based interaction within the bounds given by the scoping structure to
which the policies are associated.

As for the expressiveness and possible implementations of transmission
policies, note that the above definition is not intended as an algorithmic de-
scription. It integrates with the specification of scoped event systems with
mappings given in Def. 6.6, and since the specification relies on linear tempo-
ral logic, it only describes valid traces of system execution. In particular, any
implementation that exhibits such traces conforms to the specification. So,
even if the rules PP, DP, and iDP might connote an algorithm for notification
forwarding, possible implementations covered by the definition of ppS , dpS ,
and idpS, and of ↗e and ↘e, can be Turing-complete. For instance, delaying
notification as part of a transmission policy is sanctioned as long as any later
delivered notification still adheres to the visibility definition and the safety
condition of the specification.

The decision made by a transmission policy is based on additional data not
available in filters and interfaces. Various characteristic approaches to decision
making can be distinguished. There are policies that essentially implement
filters on notifications like component interfaces, but which are able to exploit
additional metadata. Notifications carry management information, which is
annotated by the event system and stripped off before delivery, and as a tool
of the administrator policies might access this data. So, they would be able
to differentiate producers, e.g., to check security credentials. Furthermore,
transmission policies probably have (limited) knowledge about the current
scope graph layout and of a notification’s (partial) path through the graph.

The second, more complex form of transmission policy does not filter any
data contained in notifications, but compares all eligible destinations, ranking
them to do a top-k selection. The ranking may be random, based on lowest

182 6 Scoping

utilization, etc. And finally, when the policy implementation maintains its own
state, it might keep a record of the last sent notifications in order to limit the
maximal bandwidth toward a consumer by rejecting too frequent notifications.
Or it might realize a round robin 1-of-n delivery. With its own state the policy
is capable of delaying notifications for a certain amount of time or until a
specific condition becomes valid, i.e., a “releasing” event occurs. This opens
a venue to bind event composition to scope boundaries, or to implement a
form of acknowledged notification forwarding where acknowledgment is given
components other than the original producer.12

6.6 Engineering With Scopes

Scopes are an engineering abstraction for event-based systems. To some extent
they are comparable to classes and objects in object-oriented design and pro-
gramming. They can be used to model system entities and their relationship
and, on the other hand, they provide the basis for system implementation in
form of a specific object/component model.

So far, there was no clear distinction made between using the scope graph
as a modeling tool or as means of implementing system structure. In order to
reflect the different objectives, two types of scope graphs are distinguished.
Descriptive scope graphs describe a set of components, their relationships,
and visibility constraints as expressed by the scope features annotated in the
graph. An instantiated scope graph scoped event system, describes a running
which contains instances of various descriptive scope graphs. The former can
be seen as a collection of scope types and classes, while the latter constitutes
the runtime environment. Interestingly, both can be combined in one graph.
If the descriptive graph is treated as abstract scopes (cf. Sect. 6.2.6) in a
combined graph, instantiated components are members of their respective
descriptive scopes. This combination does not affect communication within
the instantiated scope graph, but allows for instance grouping and runtime
reflection [245].

In the remaining subsections a development process is described that shows
how scope graphs are created and how they are deployed. A language for
specifying and programming scopes and scope graphs is introduced afterwards.

6.6.1 Development Process

The development process for scoped event systems consists of four stages:

1. Component design. Individual simple components and preconfigured
scopes are created and put into repositories for later use. The design at
this stage specifies required and provided interfaces and employed scope

12 Let us call the releasing notifications commit and abort and you see the link to
transactions.

6.6 Engineering With Scopes 183

features. Larger descriptive scope graphs can be built up from these pre-
configured components.

2. Scope graph design. From a selection of existing and newly created
components a descriptive scope graph is created. This step concentrates
on orchestrating preconfigured components, resolving open interface con-
straints. No implementation issues are handled.

3. Scope graph deployment. An existing descriptive scope graph is trans-
lated into a running system. Implementation techniques are chosen, inte-
gration code to bridge with existing systems is generated, infrastructure
code is deployed to selected nodes of the network, etc.

4. System management. A running system is monitored and adapted at
runtime. This is necessary to react to failures, to install new components,
and to evolve the system where necessary.

6.6.2 Scope Graph Handling

Component Definition

From the engineering point of view, a scope can be considered as a module
construct for event-based systems, being an abstraction and encapsulation
unit at the same time. As an abstraction unit, a scope provides the rest
of the world with common higher-level input and output interfaces to the
bundled subcomponents, eventually mapping these interfaces to the interfaces
of the individual constituents. As an encapsulation unit, a scope constrains
the visibility of the notifications produced by the included components. It
hides the details of the composition implementation. The engineering of single
scopes is about building new event-based components.

Generally, programming of scopes has two sides. First, it is about arranging
and orchestrating a set of components; this is the structure of the scope. Sec-
ond, programming is about specifying the dependencies on other components
that are not part of the predefined scope. At runtime a certain environment of
available producers and consumers might be required, which are essential for
the operation of this scope, but not part of its definition; this is the context
of the scope.

How are these two tasks accomplished? Three ways for specifying and
programming scopes are considered here: scope API, XML description, and
SQL-like language. A basic programming API, e.g., in Java, is easily conceiv-
able. A scope class is the base class with a default implementation of scope,
which can be specialized in subclasses. On the programming language level,
scope classes are part of the descriptive scope graph and objects constitute
the instantiated scope graph. However, the scope concept is too generic to
come up with exactly one API proposition; an example can be found in [135].

The context of a scope is a list of requirements that is better encoded in
a descriptive language, like XML or SQL. An XSchema definition of scope
graphs defines the entities that compose a descriptive scope graph in form of

184 6 Scoping

an XML document. It includes descriptions of single scopes and their depen-
dencies in a scope graphs, but may also contain information about network
layout and broker networks; an example is available in [268].

The specification of dependencies to other points are called coupling points ,
which is a variation of UML (Unified Modeling Language) ports and inter-
faces. A coupling point is a description of what other components are needed
at deployment. It contains an expression on scope attributes, required inter-
faces, and the roles eligible components must play. Roles are introduced as a
suggestion to describe functionality on a level more abstract than interfaces.
Technically, roles involve only string matching on a well-defined attribute.
However, they enable system engineers to distinguish components even if they
have identical interfaces. As an example consider two components subscrib-
ing for temperature events. One component calculates the average, the other
one logs all published temperatures. Both would use the same interface and
a role annotation could help distinguish them. Roles are used to name sets of
interfaces and/or semantics of interfaces. A meaningful interpretation of the
names relies on agreements made outside of the notification service.13

The SQL-like language presented in later in this section facilitates the
definition of scopes and their features, and includes coupling points to ex-
press dependencies, rules for modifying scopes, and their position in the scope
graph.

Who is responsible for setting up and maintaining the scope graph? In
order to not impair the loose coupling of application components, they should
not be forced to interact with the scope graph. For this reason, they may
access the graph structure through the Java API, but typically programming
and configuration is done by the administrator, who knows the included com-
ponents and is able to govern their interaction. Of course, different adminis-
trators may be responsible for different scopes. We can use abstract scopes to
define different administrative domains [268].

As a result of component design a repository of components, i.e., a de-
scriptive scope graph, is created for later composition in bigger scope graphs
and for later deployment.

Scope Graph Composition

This second stage of the development process creates the descriptive scope
graph. From a selection of existing and newly created components a graph is
designed, typically for a specific application. This task includes the resolution
of dependencies on interfaces, attributes, and roles, and the specification of
application-specific implementation requirements.

The graph describes the relationship between components and stores pre-
defined configurations on a larger scale than single components. Similar to

13 The use of ontologies like in concept-based publish/subscribe [79] is an example
of such externally provided agreements.

6.6 Engineering With Scopes 185

class hierarchies, the scope graph offers a way to statically describe system
structure. The graph is created for a specific application, and so the question
is raised, what can be modeled with a scope graph? Since scopes are a generic
concept to partition applications and control their interaction, this question
asks for a methodology and design guidelines. Unfortunately, there are no
general guidelines available so far.

The question by what means an administrator creates this graph is an-
swered, though. Scope graph design must comprise tools and primitives to
compose scope graphs from given specifications, to create and configure con-
nections in the graph, and to resolve open dependencies. The Java API can be
used to wire specific components or to resolve dependencies by application-
specific rules. Existing scope specifications based on the XSchema grammar
can be joined, whereby unambiguous dependencies can be resolved with a
simple search on the available component definitions. The SQL-like scope lan-
guage also facilitates this step by altering existing definitions, substituting
descriptions of coupling points with lists of concrete components.

However, it may happen that not all dependencies can be resolved before
deployment, especially if the runtime environment consists of instances of
different descriptive scope graphs. They must be resolved at deployment time
or even at runtime. The scope language offers event–condition–action (ECA)
rules for this purpose.

Finally, the descriptive scope graph can carry annotations that have no
immediate meaning in this step, but are interpreted in later on, similar to
stereotypes in the Unified Modeling Language (UML, [154]). For example,
annotations of required quality of service attributes may govern the following
deployment step, hinting at appropriate implementation techniques.14

Scope Graph Deployment

Scope deployment creates or extends an instantiated scope graph, which
contains all scopes currently running in the system. This step deploys pre-
configured scopes of one or more descriptive scope graphs, it resolves open
dependencies, and chooses and parameterizes the implementation techniques
for the deployed scopes.

The remaining context dependencies of the descriptive scope graph are
resolved at deployment time. Often multiple descriptive graphs are used to
describe different applications and subsystems. Their models evolve indepen-
dently and they only rely on some of the services provided by others. So
the deployment step is also an integration step that combines (independently
administered) systems at a high level of abstraction.

Some dependencies are not resolved once and for all at deployment. They
do not pertain to the static structural layout of the system, but rather depend

14 Obviously, the stepwise transformation and deployment of the scope graph re-
sembles the ideas of model-driven development [155].

186 6 Scoping

on the execution of the event-based system. This is described as part of the
management paragraph below.

An important point, not only in this step but for the scope concept in
general, is the fact that the choice of a concrete implementation technique
is postponed until now. The implementation of a scope and its communica-
tion facilities is determined here based on annotations made in the descriptive
scope graph and/or based on decisions made by the administrator. This ap-
proach allows for a model-driven implementation, which fits the needs of the
application to the services available in the system. Requirements on causal
ordering or security considerations can be part of the application model, and
the administrator decides how these things are implemented using available
group communication protocols and encryption and key management schemes.
Consequently, scopes are the appropriate place to customize specific parts of
a system, as demanded in Sect. 6.1.

Management

Scope graph management comprises tools and primitives to maintain and
update the instantiated scope graph. All features of scopes are subject to up-
dates and even the layout of the scope graph can be changed, establishing and
destroying edges by joining and leaving scopes. It also covers the manual cre-
ation of new scopes, and thus deployment is part of scope graph management.
These tasks must be available in the API of the publish/subscribe service.

It gets interesting when considering automatic updates. As mentioned
above, scope graph layout can be dynamic depending on the execution of
the system. Automatic updates of the graph use the management functions
to react to events and conditions observed in the system. The scope language
presented below allows ECA rules to be associated with scopes. Each rule
reacts to arbitrary notifications visible to the respective scope, and if an op-
tional conditional expression is fulfilled arbitrary management commands are
executed. Binding these rules to scopes uses the visibility constraints of the
scope graph to apply them only in limited areas of the graph. As for the
scoped communication, this controls the execution of rules and reduces the
complexity of rule analysis [29].

Such rules can be used to define scopes that automatically include all
components conforming to a certain condition. One example is mobile systems,
which are an apparent application domain of scoped notification delivery.
The geographic vicinity to a reference location groups all components within
this area.15 In fact, whenever location models do not strictly correlate to
the topology of the network infrastructure, some form of application-specific
scoping is necessary [142].

15 Grouping always implies a common context, and scoping thus may contribute to
the discussion about context in mobile systems [335].

6.6 Engineering With Scopes 187

6.6.3 Scope Graph Language

In order to support the development process a specification language for scope
graphs is defined next. Corresponding to the generic nature of the scope con-
cept, the language definition is intended to be open for further refinements,
which are probably domain dependent. A Backus–Naur form is used to specify
the syntax in form of production rules like

rule1 ::= ("A" | rule2) [rule3] rule4-commalist

Here, rule rule1 is expanded to either the literal “A” or the result of
rule2, followed by zero or one expansion of rule3, followed by one or more
comma-separated expansions of rule4.

The next paragraphs introduce a grammar for defining scopes, their fea-
tures and dependencies. It includes the rule “...” at places of possible future
extensions.

Component References

In order to identify any specific component, a reference scheme for components
must be defined. For the sake of simplicity only symbolic names are considered
here.

simple-component-name ::= symbolic-name
simple-component-ref ::= simple-component-name

scope-ref ::= symbolic-name | ("MEMBERS(" scope-ref ")")

component-ref ::= simple-component-ref | scope-ref

Wherever a scope is referenced by its name, e.g., scope1, the scope itself
is meant, that is, the node in the scope graph. The MEMBERS(scope1) ex-
pression is used to refer to the members of the scope, that is, the set of nodes
Ci�scope1 of the scope graph.

Names are not globally unique; they are scoped. A component is part of
some scope and its name is, at first, only valid within its scope. A reference to
a scope is always resolved from a specific node in the scope graph. If for a given
name no component exists in the current scope, all superscopes are considered
recursively. This approach is similar to references to overloaded methods in
object-oriented programming languages, where the “nearest” definition is used
up the inheritance hierarchy. Of course, it may happen that a name cannot
be resolved or a name is ambiguous. For a concrete system, rules may be
established to devise globally unique names.

188 6 Scoping

Scope Definition

The definition of a scope consists of several parts: component selection, in-
terface and attribute definitions, actions, and update rules. Implementation
issues are not specified here. Defining a scope makes it part of the descriptive
scope graph; deployment is a second step described later in this section.

scope-definition ::=
"DEFINE SCOPE" component-name "AS"
component-selection-clauses
scope-feature-clauses

component-selection-clauses ::=
component-selection-clause [component-selection-clause]

component-selection-clause ::=
[component-identifier ":"]
(super-selection | member-selection)
["WHERE" boolean-expression]
[":" selection-property-clause]

super-selection ::= "SUPERSCOPE"
selection-qualifier
"FROM" (scope-ref-commalist | "*")

member-selection ::= ["MEMBER"]
selection-qualifier
"FROM" (component-ref-commalist | "*")

scope-feature-clauses ::=
scope-feature-clause [scope-feature-clause]

scope-feature-clause ::= (
(component-identifier ":"

selection-property-clause) |
interface-clause |
role-clause |
set-clause |
action-clause |
update-clause)

selection-property-clause ::= "{"
[interface-clause]
[action-clause]
"}"

6.6 Engineering With Scopes 189

boolean-expression ::=
(attribute-test | interface-test | role-test | ...)
[("OR" | "AND") boolean-expression]

attribute-test ::=
attribute-name
(numerical-comparison | string-comparison | ...)

numerical-comparison ::= numerical-operator number
string-comparison ::=

(string-comparison-op | string-matching-op) string

Component selection determines superscopes and members of the defined
scope if it starts with SUPERSCOPE or MEMBER, respectively. Any selec-
tion consists of two steps. First, a base set of components is given after the
FROM keyword, and the where clause selects in a second step those satisfying
a boolean expression.

The base set can be given as an enumeration of specific components, for
example

DEFINE SCOPE example AS ALL FROM prod1, prod2, scope1

which defines a scope example that contains exactly the components prod1,
prod2, and scope1. Or specific components and members of other scopes can
be mixed.

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world), A, B
WHERE has-temp-sensor = 1

defines a scope temp containing those components of the predefined scope
world plus A and B, which have an attribute has-temp-sensor set to one. The
star ∗ is a special scope name available for template definitions. It is later
replaced with the superscopes and siblings of the current scope when it is
deployed. It denotes all components visible at deployment time.

The where clause is a boolean expression on component attributes and
acts as filter. The expression tests individually each of the components given
in the from clause; no pairwise comparisons of components are done here. If
the where clause is omitted, a scope is defined containing exactly the specified
list of components.

The same syntax is used for selecting superscopes. The following definition
additionally specifies the superscopes S1, S2 of temp.

DEFINE SCOPE temp AS
m: ALL FROM MEMBERS(world), A, B

WHERE has-temp-sensor = 1
s: SUPERSCOPES ALL FROM S1, S2

190 6 Scoping

A component identifier is a name that is valid only within the scope def-
inition. It denotes each component included by the selection it is prepended
to. The names do not correspond to nodes in the scope graph; they rather
identify selections for later references, for example, when updating or refining
a scope definition. In the above example, s refers to S1 and S2 and m refers
components selected by the first selection clause.

Selection Qualifier

So far, all components matching the where clause are selected for the new
scope. However, sometimes a comparison and ranking of eligible components
is necessary. For example, the administrator may want to select those that
are nearest to a specific location or have the most free computing resources.
A selection qualifier is part of the selection:

selection-qualifier ::=
(ALL |
(TOP "(" attribute-name "," number ")") |
("[" [number] ".." [number] "]"))

The default qualifier is ALL (as in the previous examples). TOP performs
a top-k selection of all components satisfying the where clause. It sorts com-
ponents by the given attribute and chooses the first k of them. A qualifier of
the form [n..m] specifies the size of the respective selection. A minimum of n
matching components up to a maximum of m are chosen here. Either bound-
ary can be omitted, denoting a cardinality of zero and as many as possible,
respectively. Omitting both is like choosing ALL.

Many extensions are conceivable at this point. The top selector may
take a predicate as argument that evaluates expressions like “fixed-location -
location-attribute”, which sorts according to a distance metric. Other domain-
dependent functions may be added in specific implementations.

Interfaces

Component interfaces are defined as part of the scope feature clauses after all
selections. Selective and imposed interfaces are specified in selection property
clauses, which are either appended to the respective selection clauses or are
also given after all selections (see below). The interface clause begins with
the keyword “INTERFACES” and then includes a comma-separated list of
interface specifications. There is no specific filter model preset in the language
(cf. Sect. 6.3.1), and so a syntax corresponding to the available filter model
must be chosen.

interface-clause ::= ["INTERFACES" interface-commalist]
interface ::= ("INPUT(" | "OUTPUT(")

["0" | "1" | channel-interface | topic-interface |

6.6 Engineering With Scopes 191

typebased-interface | content-interface | ...]
")"

channel-interface ::= channel-name-commalist
topic-interface ::= topic-commalist
topic ::= "/" topic-name [topic]
typebased-interface ::= notification-type-name-commalist
content-interface ::=

boolean-attribute-expression-commalist

The two special interfaces “0” and “1” denote filters rejecting and accepting all
notifications. The following snippet defines a scope that outputs temperature
alarm notifications, but it does not receive any input from its superscopes S1
or S2.

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world)
WHERE has-temp-sensor = 1
SUPERSCOPE ALL FROM S1, S2
INTERFACES OUTPUT(AlarmNotification)

The next example is an extension that also includes imposed interfaces on the
components of temp that allow them only to send temperature notifications.
All other kinds of input or output traffic of members is prohibited.

DEFINE SCOPE temp AS
m: ALL FROM MEMBERS(world)

WHERE has-temp-sensor = 1
SUPERSCOPE ALL FROM S1, S2
m:{
INTERFACES OUTPUT(TempNotification), INPUT(0)

}
INTERFACES OUTPUT(AlarmNotification)

or alternatively

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world)
WHERE has-temp-sensor = 1 : {
INTERFACES OUTPUT(TempNotification), INPUT(0)

}
SUPERSCOPE ALL FROM S1, S2
INTERFACES OUTPUT(AlarmNotification)

Note that omitting a component interface is like setting it to “0”, whereas
omitting a selective or imposed interface is like setting it to “1” (cf. Sect. 6.3.2).

192 6 Scoping

Coupling Points

Coupling points generalize component selection. Coupling points are queries
on available components and their properties. They are half-edges in the scope
graph that describe dependencies on other components based on properties
like component interfaces, roles, or attributes.16 The dependencies must be
resolved at deployment by creating the necessary edges in the scope graph.

A coupling point either provides or demands a specific property. If it de-
mands, the coupling point of matching components must provide the required
properties, and vice versa. So far, where clauses request for attributes and
interface clauses provide interfaces. What is still needed are means to set at-
tributes, to require interfaces, and to set and require roles. References to the
following grammar rules are already part of where clause and scope feature
clause:

interface-test ::= ["HAS"] interface
role-test ::= "IS ROLE(" role-name ")"

role-clause ::= "ROLES" role-name-commalist
role-name ::= symbolic-name

set-clause ::= "SET" set-attribute-commalist
set-attribute ::= attribute-name "="
(value | notification-attribute | component-attribute)

The set clause supports setting scope attributes to constant values as well as
to values of notification or components declared in the update clause of the
scope (see below).

The next statements define two scopes admin and company. The latter in-
cludes one instance of the former due to its role definition. It imposes an output
interface so that only notifications conforming to the holidayAnnouncement
type can be passed into company. The latter also includes the top ten com-
ponents, termed worker, that either produce or consume other important no-
tifications.17

DEFINE SCOPE admin AS
ALL FROM c1, c2, c3
INTERFACES INPUT(something), OUTPUT(else)
ROLES boss

DEFINE SCOPE company AS
b:[1..1] FROM world

16 Dependencies on attributes can subsume the other two if a sufficiently rich data
model is available.

17 Actually, two distinct clauses should select producers and consumers to avoid
getting only one kind of components.

6.6 Engineering With Scopes 193

WHERE IS ROLE(boss)
INTERFACES OUTPUT(holidayAnnouncement)

worker:TOP(experience,10) FROM world
WHERE OUTPUT(necessaryInformation) OR

INPUT(furtherProcessing)
SET name = "Acme, Inc."

Actions

Scopes put components into groups for visibility purposes, but they can also
perform actions on notifications and components. Scope features like mappings
and transmission policies are functions executed on notifications.

action-clauses ::=
(map-clause | policy-clause | do-clause)
[action-clauses]

map-clause ::= "MAP" ("INWARD" | "OUTWARD")
("{" set-attribute-commalist "}" |
external-code-ref)

policy-clause ::=
(delivery-policy | publication-policy | ...)
[policy-clause]

The map clause defines a mapping which is either inward or outward,
transforming incoming or outgoing notifications, respectively. If only one di-
rection is specified, the other one must be derivable or prohibited by interface.
Mappings may be defined within the specification language, but most likely
externally provided functionality will be used as implementation. So, the map
clause includes a reference to external code, which could be a symbolic name
that refers to a repository of the notification service or a URL to an external
code repository. For the same reason there is no syntax for defining transmis-
sion policies; they are supposed to be externally provided, too.

do-clause ::= "DO" command

The do clause is included as hint for future extensions, but is not used so
far. It may provide a way to customize scope functionality or even to apply
code to all members of the scope. The latter is sketched in [349] for a scenario
of wireless sensor networks: application code is assigned to network nodes
based on scoped definitions.

Updates

The update clause defines ECA rules to adapt instantiated scopes. Any kind
of (application-specific) event visible to the scope can be used in these rules.

194 6 Scoping

There are special event types like pub(F(n)), which is the publication of a
notification n conforming to filter F , and sub(F), which is the event of some
component subscribing to the filter F , etc.

update-clause ::= "UPDATE ON" event
[condition]
DO action-commalist

event ::=
(("pub(" | "con(")

notification-identifier ":" interface ")" |
("sub(" | "unsub(" | "adv(" | "unadv(")
interface ")" |

join(C,S) | leave(C,S) | ...)

condition ::= "IF" boolean-attribute-expression

action ::= scope-change | create-clause

create-clause ::=
"CREATE NOW"
[INCLUDE COMPONENT [component-identifier]]

The notification identifier is a symbolic name valid within the scope defi-
nition. It is bound to the actual notification triggering the action and can be
used in other parts, e.g., in the set clause to update scope attributes.

Actions comprise the alter scope statement explained below and creation
rules. The create clause is a powerful tool to control the dynamics of scope
graphs. It defines rules to automatically create predefined scopes when spe-
cific events occur. Because this automatic creation can be combined with join
actions, new scopes can be created with the publisher of the triggering noti-
fication as first member of the scope. “INCLUDE COMPONENT” joins the
component that triggered the action. This is the producers or the consumer
of a notification (consuming a notification is considered as an event here), the
component changing its interface, etc.

In this way session scopes can be defined. They include the initial pub-
lisher, all consumers, and consumers of subsequently produced notifications.
The condition of the ECA rule controls the extension of such a dynamic
scope—a precondition to implement spheres of control or transaction con-
texts in event-based systems.

Deploying Scopes

Scope definitions extend the descriptive scope graph of the system. It is like
defining a class or type in a programming language; it does not create an

6.6 Engineering With Scopes 195

instance of the subject. An instance of a scope is created and deployed with
the following statement:

scope-deployment ::= "DEPLOY SCOPE" scope-ref
[component-selection-clauses]
[scope-feature-clauses]
architecture-clause

architecture-clause ::=
(brokerscope-clause | intergrated-routing-clause | ...)

brokerscope-clause ::= "BROKERSCOPE(" host ")"

To deploy a scope, an existing definition and an implementation is neces-
sary. The architecture clause lists scope architectures, which are introduced
in Sect. 6.7.1. Essentially, it refers to a scope implementation available in the
system. It carries implementation-specific parameters, like a host name for a
brokerscope implementation.

DEFINE SCOPE temp AS
a: ALL FROM *

WHERE has-temp-sensor = 1

DEPLOY temp
SUPERSCOPE ALL FROM S
a:{ INTERFACES OUTPUT(TempNotification) }
BROKERSCOPE(localhost)

This example defines a scope containing all members of S that have tem-
perature sensors. The scope is deployed in an existing scope S using a bro-
kerscope implementation on host localhost. It also adds imposed interfaces on
selection a permitting only temperature notifications.

Changing Scopes

An ALTER SCOPE statement is introduced to change any part of a scope.
It may refer to a definition as well as to an instantiated scope.

scope-change ::= "ALTER SCOPE" scope-ref
["ADD" | "DEL"]
[component-selection-clause]
[scope-definition-clauses]

The statement adds new selections or features to an existing scope, or deletes
or replaces existing parts of it.

ALTER SCOPE temp ADD
ALL FROM c
SUPERSCOPES ALL FROM S

196 6 Scoping

attribute

variability
static

update

frequency

real-time

never

attributes

highly dynamic

attributes

Fig. 6.13. Scope definition accuracy

The above statement adds a component c to the scope temp and joins it
to S, i.e., temp� S.

Maintenance and Definition Accuracy

The where clauses of component selections are rules that determine to which
of the available components edges are established in the scope graph. But
when are these rules evaluated? Once at deployment? Every t seconds? Or if
attributes deviate by more than 20%? Fig. 6.13 sketches alternative views on
the accuracy of scope definitions.

The degree of correlation between the rules expressed in the where clauses
and the currently established connections in the scope graph is called scope
definition accuracy. It depends on the variability of attributes and the fre-
quency with which rules are reevaluated.

We assume that queries are evaluated at deployment time only and that
their result is not automatically updated afterwards. This corresponds to the
lower left point in Fig. 6.13. However, the update clauses in scope definitions
allow system engineers to install custom ECA rules to maintain accuracy.

6.7 Implementation Strategies for Scoping

The concept of scopes can be implemented on top of a variety of techniques. In
fact, the ideas underlying the scope concept are quite common, but visibility
control is often implemented only partially and in an ad hoc manner.

This section investigates a number of approaches for implementing scopes.
They differ in the characteristics of the communication media used to con-
vey messages and in the strategies for scope graph distribution. The resulting
scope architectures are the blueprints of the implementation. All the architec-
tures implement the visibility constraints defined by scopes, but they diverge

6.7 Implementation Strategies for Scoping 197

Fig. 6.14. Design dimensions of scope architectures

in their support of other quality of service parameters, like communication
reliability and performance, and they also influence system extensibility and
adaptability. They emphasize different aspects of the visibility abstraction and
are therefore eligible for different application environments.

6.7.1 Scope Architectures

The concept of scopes can be implemented to target any of a wide range
of diverse requirements. The implementation influences the functionality and
quality of service an application can count on. The architectures presented
in this chapter cannot be ranked in general; they may fit the needs of an
application or not. There is no best architecture.

Two architectural dimensions are distinguished (Fig. 6.14): communication
medium and scope implementation. The combination of these dimensions gives
rise to a number of scope architectures that determine the principal layout of
the scoped event service (cf. Fig. 6.16). The third dimension turns out to clas-
sify the architectures’ ability to control communication. This section details
the architectural choices and defines a metric for comparing the architectures
presented later.

Communication Medium

The notion of a communication medium denotes any technology that is used
to convey notifications between nodes of the scope graph. The communication
medium is the basic building block of scope implementation and determines
which scope features are supported directly, which features can be imple-
mented efficiently on top, and which features are hardly achievable at all.
Any means of data sharing and transport can act as communication medium,
ranging from shared memory and TCP [370] connections to IP multicast [106]
and peer-to-peer networks [310, 374]. Moreover, existing publish/subscribe
services, database management systems [172], and tuple spaces [174] are also

198 6 Scoping

eligible candidates for implementing scope graphs. They offer different qual-
ity of service and determine the flexibility and functionality of a scoped event
system beyond visibility rules.

Although within a single scope different kinds of traffic might be conveyed
on top of different communication media, a single medium per scope is as-
sumed for simplicity here. Please refer to Sect. 6.8 for a general discussion on
combining media and scopes.

In the following, communication media are differentiated according to their
support for unicast/multicast delivery and their addressing capabilities. These
are not orthogonal dimensions, rather they highlight different technical aspects
that affect scope implementation.

Unicast vs. Multicast

The basic distinguishing feature of communication media is whether they for-
ward data point-to-point or point-to-multipoint, i.e., unicast versus multicast.
Unicast media send data directly to a specific, identified receiver. In order to
reach a number of recipients the send operation must be repeated. Examples
include TCP, RPC, and messaging systems. Perhaps surprisingly, unicast me-
dia are viable implementation techniques for certain classes of event-based
systems; they are considered as a medium to implement scopes, while the
producer’s and consumer’s view (API) on the notification service remains un-
changed. Multicast media send data to groups of receivers. Multicast media
like shared memory, IP multicast, existing notification services, and database
tables are common implementation techniques that intuitively correspond to
the characteristics of notification distribution.

Obviously, multicast media distribute notifications more efficiently than
unicast media. On the other hand, multicast limits the ability to distinguish
recipients and control the actual set of receivers. Scope features like deliv-
ery and security policies, which are meant to re-introduce control, cannot be
implemented directly on top of multicast media without additional filtering
(cf. client-side filtering later in this section). Exploiting the knowledge about
scope members enables system engineers to shape traffic, implement advanced
transmission policies, encrypt data, etc. At the cost of multiple send opera-
tions and the need to maintain the current set of scope members, unicast
media are more flexible than multicast media. In practice there are applica-
tions for both unicast and multicast media, and the main issue is a tradeoff
between efficiency of data distribution and addressing granularity.

Direct, Group, and Indirect Addressing

Communication media can be further distinguished according to their ad-
dressing schemes. While unicast media use direct addressing, which identifies
an individual receiver uniquely in the network, multicast media can be sub-
divided into group addressing and indirect addressing. In group addressing

6.7 Implementation Strategies for Scoping 199

data are sent to a named group of recipients. The name of the group is spec-
ified by the sender, and all members of the group get messages sent within.
Group membership is handled separately via membership protocols. IP mul-
ticast and group communication protocols [319] are examples of this form of
communication.

In indirect addressing, the second form of multicasting to a set of receivers,
no destinations are specified. Instead of naming groups of receivers, the set of
receivers is determined indirectly with the help of information given in mes-
sages and by potential receivers. For instance, content-based routing delivers
notifications according to consumer-provided filters that test notification con-
tent. Another example is proximity group communication [258, 320], where
messages are sent only to receivers that are physically close by, i.e., addressees
are implicitly determined by location metadata.

Communication Media, Publish/Subscribe, and Visibility

The choice between unicast and multicast media is mainly a tradeoff between
efficiency and control, as described above. But what media are good candidates
to implement a publish/subscribe service, and do some of them even offer a
visibility mechanism comparable to scopes? What are the characteristics of
group and indirect addressing that influence the implementation of scopes?

As for the general applicability to implement a publish/subscribe API,
group and indirect addressing is related to the discussion on filter models
(channel-, subject-, and content-based filtering) given in Sect. 2.1.3. Group
addressing is like channels in that a name representing a set of receivers is used
by the sender to disseminate data. Subject-based addressing is an extension
that allows for subgroups [289, 380], which is, to some extent, also supported
by IP multicast [259].

Group-based multicast media establish visibility constraints in that they
encapsulate intragroup traffic. Notifications published within a multicast
group, or under a specific subject, are a priori not visible to outside consumers.
However, groups classify messages either based on content (all notifications
of type A) or based on application structure (all database servers in a com-
pany’s back-end infrastructure). Furthermore, groups are often not able to
reflect the acyclic scope digraph, because they are mostly arranged in trees,
as in IP multicast and subject-based addressing. Even if one tries to model
different viewpoints with the help of subgroups, the exponentially growing
number of necessary groups limits practical applicability (see Sect. 2.1.3).

Scopes, on the other hand, are orthogonal to consumer subscriptions. They
handle interfaces (i.e., subscriptions, group names, etc.) and system structure
(the organization of scopes in the scope graph) independently. Thus, groups
do not directly implement scopes.

Indirect addressing media can avoid many of the problems of group ad-
dressing. They are typically more flexible, but less efficient as they do not
easily map to hardware-supported multicast mechanisms. In the generic form,

200 6 Scoping

like in content-based publish/subscribe, implementations based on database
management systems (DBMS), and tuple spaces, they are able to carry dif-
ferent viewpoints (content vs. structure) simultaneously. Available products/
prototypes are able to offer only a few of the features of scopes, but they are
an ideal basis for their implementation.

Scope Distribution

Considering individual scopes, there are three basic choices of how a scope can
be realized: implicit with all the control in the local event brokers of mem-
bers; instantiated with an explicit administrative component that represents
the scope and is responsible for membership control, transmission policies, and
mappings; and finally, the implementation of a single scope can be distributed
on multiple administrative components residing in different nodes of the net-
work. Note that similar alternatives exist for the scope graph. Implicit scopes
imply an implicit scope graph, administrative components can either be cen-
tralized in a single node or run on different nodes of the network (centralized
or distributed scope graph), and distributed scopes imply a distributed scope
graph.

Implicit Scope Implementation

The first approach is to collocate scoping with application components. The
implementation is shifted into the communication library used to connect
application components to the notification service, i.e., into the local event
brokers in Rebeca terminology (cf. Sect. 2.4). The local event brokers use the
addressing and filtering capabilities of the underlying communication medium
to implement scope boundaries. The main idea is to annotate notifications to
carry scope graph data. Extended subscriptions then exploit these annotations
to filter not only on the original consumer’s interest, but also on visibility
constraints imposed by the scope graph. Consider, for instance, a scope graph
with unique scope names, local event brokers that annotate notifications with
scope names (n.scope = “MY-SCOPE”) and modify each original subscription
F to F ′ = F ∧ n.scope = “MY-SCOPE” + interfaces.

The extended subscriptions F ′ must be mapped to the medium’s filter
capabilities, which is possible if expressive filter models are available like in
the Java Message Service or in Rebeca. If this mapping is not possible,
client-side filtering must enforce the visibility constraints to guarantee that
all requirements of the safety condition of scoped event systems are met, cf.
Def. 6.3 in Sect. 6.2.2.

For example, consider the members of a scope forming a group that com-
municates notifications via a group-addressing medium like subject-based
publish/subscribe to all scope members. This floods all notifications to all
members of this scope, postponing original subscription processing to the

6.7 Implementation Strategies for Scoping 201

S T

c3c2c1

c1 c2 c3

S, TS T

c

Fig. 6.15. Implicit implementation shifts visibility control into application compo-
nents

client side. If content-based filters are available, processing of both client sub-
scriptions and scope interfaces can be shifted into the medium; the former F ′

could be supplied to JMS or Rebeca.
In an implicit scope implementation the structure modeled by the scope

graph is transformed into a flat implementation, as illustrated in Fig. 6.15.
Every component is connected to the same medium, and conventions must
determine how visibility constraints are implemented on top of the addressing
mechanisms offered by the medium. In order to meet the safety and liveness
conditions, each component must maintain the necessary management infor-
mation about the layout of the scope graph and the current scope interfaces.
So, scoping structure can be transparently implemented in the local event
brokers without modifying application code, but scope graph changes require
update processing in potentially many of the components.

The problem of shifting scope control into local event brokers is that com-
ponents not adhering to these conventions may bypass visibility constraints,
both as consumer and as producer. Since the scope structure exists only im-
plicitly in the components of the system, no external entity controls and en-
forces scope boundaries, giving rise to both reliability and security concerns.
Consumers might arrange to listen to notifications they are not intended to
receive, and even worse, they may send notifications to any component, dis-
rupting correctness in other parts of the system as well. Moreover, more ad-
vanced features of scopes, namely transmission policies and mappings, are
even harder to implement using an implicit implementation.

Instantiated Scope Implementation

To exert more control on notification dissemination the scope graph must be
managed within the notification service infrastructure. A basic approach is
to explicitly instantiate administrative components to represent scopes. They
are generated and controlled by the notification service itself and contain an
implementation of scopes outside of application components.

This scenario is further subdivided into a centralized graph and a central-
ized scope form. The former implements the whole scope graph in a single
node of the distributed system and amounts to a central information hub.
This is a widely used approach for implementing unscoped event systems,
because it simplifies notification routing and access control, but comes at

202 6 Scoping

the expense of scalability and diversity support. Examples range from cen-
tralized databases [172, 292] (see later in this section) to content delivery
networks [333], which can be seen as logically centralized nodes optimized for
one-way delivery efficiency. In the centralized scope form, each scope is repre-
sented by one administrative component, but each such component may run
on a different node in the network.

Administrative components make the scope structure explicit and acces-
sible to the system engineer, who is now able to customize (parts of) it to
the local needs of an application. This approach facilitates configuration and
integration of heterogeneous components on a per-scope basis as each ad-
ministrative component may act as bridge between different implementations
(different data/filter models, communication medium, etc., see Sect. 6.8). In
contrast to an implicit solution, instantiated scopes make it easier to control
adherence to a specific scope graph and it relieves clients from management
tasks.

Distributed Scope Implementation

A single, distributed scope consists of multiple administrative components
that together constitute this scope. Each scope member is assigned to one
administrative component. The same type of communication medium is still
assumed for delivery to scope members, but communication between the ad-
ministrative components may be based on a different technique. Scalability is
obviously improved since multiple administrative components share and sub-
divide the load to distribute intrascope notifications; they may even exploit
effects of locality when notifications are only forwarded within one adminis-
trative component.

For example, consider two groups of application components belonging to
the same scope, but located at two different border brokers of the underlying
network, e.g., an Internet of two LANs connected by a WAN. Instantiating
a scope implementation solely in one LAN would diminish the benefits of
locality for the other side. But if administrative components are available on
both sides, they may draw on a local broadcast medium and connect each
other using a point-to-point link.

Example Architectures

Figure 6.16 shows possible architectures that are defined as specific combina-
tions of scope distribution and communication medium. They are sketched in
the following and two of them are detailed in Sects. 6.7.3 and 6.7.4.

Static Deployment

The combination of implicit scope implementation and point-to-point com-
munication leads to a static deployment where every scope member knows its
siblings and communicates directly with them. When subscriptions are known

6.7 Implementation Strategies for Scoping 203

communication
medium

scope
implementation distributed

S
ta

ti
c

D
e
p
lo

y
m

e
n
t

Addressing Scopes

instantiated

Pub/SubMulticast

implicit

Pt-to-Pt

Brok
er

Sc
op

es

Inte
gra

ted
Routing

Collapsed Filters

Client-Side
Filtering

indirect

DB

Hub

direct group

Fig. 6.16. A comparison of scope architectures

to all members, notifications are sent to subscribed consumers only. Otherwise,
notifications are sent to all scope members, which evaluate their own filters on
any notification published in the scope. Output interfaces toward superscopes
and input interfaces of sibling subscopes must be known as well so that cross-
scope notifications can be sent to a consumer in the destination scope, which
in turn relays them within. This scenario is called static deployment since it
is an eligible architecture option if the scope graph is static, rather small, and
does not change at runtime. System configuration can then be compiled into
the local event brokers without affecting the publish/subscribe API, as it is
for any of the presented architectures. In such a situation even remote proce-
dure calls are a suitable implementation technique to convey notifications. If
the system is not static the necessary configuration data in the components
must be kept up to date. Examples of this approach are data-driven coor-
dination languages (e.g., Manifold [296, 297]), which connect input/output
ports of coordinated entities, and even an implementation using TCP/IP to
connect the participants is eligible, particularly if the system footprint has
to be kept small. Interestingly, the JavaBeans programming model [84, 359]
and component-oriented programming in general [234, 369] are related to this
approach in that they facilitate the wiring of interfaces and ports.

Another application of static deployment is to wrap a callback-based sys-
tem with a publish/subscribe API. That is, undirected subscriptions are re-
solved and directly registered at corresponding callback handlers that are vis-
ible according to the locally stored scope graph. Although somewhat unusual,
this might offer a way to draw from existing request/reply or directed messag-
ing systems, when possible, and from their established benefits, for instance,
in security and transactional data management.

Client-Side Filtering

The client-side filtering architecture also utilizes an implicit scope implemen-
tation but is built on a multicast medium that provides group-based address-
ing, like IP multicast. Each scope is assigned a multicast group address and

204 6 Scoping

all members of a scope are reached with only one call to the medium. Com-
pared to static deployment, the required network bandwidth is considerably
reduced. However, since there are still no administrative components the vis-
ibility constraints defined by the current scope graph must be enforced on
producer and/or consumer side. As described earlier in this section, the local
event brokers may annotate notifications and must select appropriate des-
tination group addresses on producer side. And on consumer side incoming
notifications must be filtered out so that in combination only matching notifi-
cations are delivered that comply with the scope graph and satisfy the safety
condition of the scoped event systems definition.

A different way of using group-based multicast here is to group according
to content instead of structure. In such a scenario multicast groups might be
used to group subscriptions, which is the common use of multicast in publish/
subscribe systems [87, 291]. Consumers would have to determine the visibility
of incoming notifications by evaluating the interfaces of the scope graph as part
of their client-side filtering. Thus, in the first approach producers have to know
the current scope graph layout to select the correct destination scopes, while
in the second approach consumers are in charge of this. The two approaches
differ mainly in the selectivity of the grouping and the implied costs of keeping
the graph information up-to-date.

Another extension is to instantiate administrative components within
scopes that are responsible for relaying incoming and outgoing notifications.
In this way the need to store the full scope graph in local event brokers is
removed, since these relaying components have to know their adjacent nodes
only.

Client-side filtering is obviously applicable when scope graphs are rather
static and of limited size. For instance, if scope graph changes are just induced
by moving simple components the assignment of group addresses to scopes
remain unchanged. The moving components have to join the respective groups,
but the scope graph information need not be updated elsewhere. Scope graph
management is thus reduced to group membership management, which is
provided by the communication medium. Nevertheless, this architecture is
left out of consideration in favor of more flexible solutions.

Collapsed Filters

In the Collapsed Filters architecture, the visibility constraints expressed in
the scope graph are merged into the subscriptions issued by consumers. This
leads to a flat notification service where enhanced subscriptions implement
the scope graph implicitly, requiring an expressive subscription like in content-
based publish/subscribe. Extra effort is necessary on both the producer and
consumer sides. Producers, i.e., their local event broker, annotate notifications
and add data necessary for visibility filtering. Consumers have to extend their
subscriptions to test as much of the imposed visibility constraints as possible.
If the filter model is not expressive enough, they must locally evaluate the
remaining filters on every received notification.

6.7 Implementation Strategies for Scoping 205

The collapsed filters approach is a simple implementation of scoping as
a layer on top of an existing communication infrastructure. But it does not
provide the full control of visibility at runtime. Notification mappings and
delivery polices are not always implementable. Furthermore, graph changes are
difficult and costly to deploy, because application components are not easily
reconfigurable and changes to the graph have to be consistently distributed
to all affected components.

The system’s functionality in a collapsed graph depends on the correct
function of all participating components. It renders control of the visibility to
the components. A corrupted or malevolent component may publish or eaves-
drop in any scope. The discussion on combining different scope architectures
in Sect. 6.8 leads to a possible solution when gateway components bridge
two separated subgraphs and provide an explicit encapsulation of visibility
constraints.

Central Hub

The “classic” data management approach of using a central database may
also be beneficial in an event scenario. It is an alternative implementation of
collapsed filters and it easily offers sophisticated quality of service guaran-
tees in addition to the basic safety and liveness requirements of scoped event
systems.

Using databases for implementation blurs the distinction between the col-
lapsed filter and the central hub scope architectures. Similar to the content-
based publish/subscribe medium assumed above, a database table can hold
all published notifications, and subscriptions are merely queries to this table.
In fact, database technology provides a wide spectrum of functionality [172]
that may be exploited to extend the quality of service offered by the event
system beyond the definitions given in Chap. 2. On the other hand, there
are drawbacks like their maintenance complexity, resource consumption, and
acquisition and operation costs.

Addressing Scopes

Addressing scopes is an extension of the client-side filtering approach that
no longer relies on multicast but instead on content-based publish/subscribe.
Each scope has a unique name that is appended to published notifications.
Every subscription is extended to accept notifications only if they are issued
in the consumer’s scope. The scope address type of architecture introduces ad-
ministrative components that localize the implementation of interfaces, pub-
lishing policies, and mappings. They offer a finer control of interscope com-
munication than the collapsed scopes.

Scoping is still implemented on a shared multicast medium and the imple-
mentation is not aware of the underlying network layout. In fact, intrascope
communication is not directly governed by the administrative components and
relies on the filtering capabilities of the communication medium. The local

206 6 Scoping

event brokers of producers and consumers modify notifications and subscrip-
tions before sending them out. With respect to intrascope communication,
scope addressing is similar to collapsed scopes. Internal delivery policies, ad-
mission to scopes, and, in general, conformance to the visibility defined in the
scope graph is achieved only if producers and consumers operate cooperatively
and correct.

Compared to the collapsed scopes, which need only one access to the
medium to reach every consumer, the administrative components repetitively
access the medium to forward a notification along a delivery path in the
scope graph. In situations where some consumers are connected via long de-
livery paths, this approach apparently induced a considerable communication
overhead. But the indirection introduced by the administrative components
relieves simple components from maintaining the current graph structure. Es-
pecially the last point touches on a well-known tradeoff between scalability
and expressiveness [69]. In the collapsed scope graph approach lots of extended
filters are issued, whereas with scope addresses the filter complexity is limited
at the expense of increasing communication bandwidth.

Broker Scopes

Broker scopes are a one-to-one implementation of the scope graph in that each
scope is explicitly represented by an event broker of the broker network (cf.
Sect. 2.4). This approach is detailed in Sect. 6.7.3.

Integrated Routing

Integrated routing fully integrates scoped notification delivery into the routing
infrastructure. The routing tables themselves are extended to reflect visibility
constraints of the scope graph. This architecture is described in Sect. 6.7.4.

Scope Graph Distribution—Types of Architectures

While the choices described above consider individual scopes only, the follow-
ing looks at scope graph implementation as a whole. The general processing
steps of scoped notification delivery are described, which identify potential
places to implement scoping functionality in the system. These steps serve
as a basis to compare the preceding example architectures and to classify
them in three types of architectures. These types differ in the degree they
support scope graph reconfigurations, transmission policies, and, in general,
any distribution control beyond scope interfaces.

Figure 6.17 sketches the delivery in a scoped event system. The numbered
course shows the forwarding of a notification that moves along an exemplary
delivery path (p, S2, . . . , Sn−1, c) between producer p and consumer c in an
arbitrary scope graph.

1. In the first step a notification is published by producer p.

6.7 Implementation Strategies for Scoping 207

Local Event Broker

Scope Distribution
Scopes

Components
Application

S2

1.
2.

4a 4c

3c

3aCommunication Medium

3b

Sn−1

6.

Event Service

Communication Hops

cc′p

5.5a

...

Fig. 6.17. Steps of scoped notification delivery

2. The access to the event notification service is provided by the local event
broker, which is conceptually part of the application component. The
broker may process the notification as part of an implicit scope imple-
mentation (cf. static deployment) before it is forwarded by accessing the
communication medium.

3a. If scopes are instantiated in administrative components, the notification
is delivered to an instance of S2 of the example delivery path.

3b. If scopes are distributed, the notification is also sent to other instances of
this scope if needed.

3c. Delivery in S2 is completed when the notification is forwarded toward
its members and superscopes, accessing the underlying medium for the
second time.

4. The previous three steps are repeated for all other scopes.
5. The notification is received by the local event broker of the potential

consumer, which may again process and filter the notification before it is
delivered to the consumer.

6. Finally, the notification is delivered to the consumer c.

An implementation of scope graphs may stretch across up to three layers:
On the lowest layer, the communication medium is parameterized to distin-
guish scopes or at least administrative components representing scopes. On
the middle layer explicit administrative components implement scope fea-
tures within the notification service. At the highest layer, code is collocated
to application components in local event brokers to modify notifications and
subscriptions.

The figure illustrates all possible steps although only a subset is relevant
for a specific architecture. In an implicit scope implementation no scopes are
instantiated within the event service and steps 3 and 4 are omitted. With a
centralized scope implementation step 3b is not needed. Whether any process-
ing is done in the local event brokers (steps 2 and 5) depends on the concrete
implementation, but it is definitely required in implicit approaches. When
group-based multicast is used to address all members of a scope additional
client-side filtering is also needed in step 5.

208 6 Scoping

publication
control

inter-scope
control

full control

accesses 1 n − 2 n − 1

possible
medium

any group or indirect direct

scope
distribution

implicit
central./

distributed
central./

distributed

data flow
control

no explicit
control

control
inter-scope traffic

control every
edge

examples

static
deployment,
client-side
filtering,

collapsed filters

addressing scopes
broker scopes,

integrated
routing

Fig. 6.18. Types of architectures, their characteristics, and examples

The different choices to partition scope implementation among these steps
turn out to be a fundamental characteristic of scope architectures. It de-
termines their ability to adopt scope graph changes and to implement any
sophisticated control of communication beyond interfaces. For an assessment
it is crucial to compare the amount of control residing within the notification
service with the amount shifted into the communication medium and the ap-
plication components, respectively. For this purpose the number of accesses to
the communication medium that are necessary to forward a notification along
a delivery path is taken as a measure to distinguish architecture types. These
accesses are labeled as communication hops in Fig. 6.17, whereas communica-
tion between instances of the same distributed scope (step 3b) is not counted,
since it does not leave the scope’s sphere of control. Based on this consider-
ation, three modes of notification forwarding are identified and depicted in
Fig. 6.18.

1. Publication control. All consumers are reached with only one access to
the medium. All interfaces and delivery policies bound to the scope graph
must therefore be evaluated within the communication medium or as part
of the local event brokers of producers and consumers. There is no control
within the medium or the publish/subscribe service infrastructure once
the message is sent. Accessing the communication medium means here
that all eligible consumers in the whole system get the notification.

2. Inter-scope control. In this approach, scopes are represented by admin-
istrative components that govern the interfaces toward superscopes and
relay incoming and outgoing notifications if they match the respective in-
put and output interfaces. Within scopes, however, lists of members are

6.7 Implementation Strategies for Scoping 209

not maintained and notifications are not directed to specific addressees. A
multicast medium is used that may reach all scope members in one step.
Since producers do not distinguish any siblings, the consumers’ subscrip-
tions must either be completely handled by the communication medium
or, if all scope members are indistinctively addressed as a group, consumer-
side filtering must be applied.
Accessing the communication medium means here that a scope and all
of its members get the notification. For an arbitrary delivery path, one
access to the communication medium is needed for every edge, except for
the root scope of the path where sending and receiving components are
siblings. This leads to n−2 calls to the communication medium for a path
of length n.

3. Full control. Each scope is represented by an administrative component,
and notifications are forwarded strictly along the edges in the scope graph,
resulting in n− 1 accesses to the medium for a delivery path of length n.
Each scope is implemented in one or more brokers in the routing network.
Delivery is controlled even within a scope.
This is an one-to-one implementation of the scope graph, and accessing
the communication medium means here that notifications are sent to the
next hop node in the scope graph or only within one scope graph node
that resides on multiple network nodes (e.g., integrated routing).

This classification describes what part of the scope graph is offered through
the communication medium and the implicit implementation in application
components, on the one hand, and what part is implemented in administra-
tive components instantiated in the infrastructure, on the other hand. This
distinction determines how the different number of accesses to the commu-
nication medium determines the ability of a scope architecture to adapt the
current configuration of the system. While explicit administrative components
are readily adaptable, it is far more difficult to update infrastructure code in
a consistent and transparent way when it resides in local event brokers.

An even more important fact is that the granularity of the control exerted
on notification distribution gets inevitably more coarse if fewer accesses to
the medium are needed. With fewer accesses more consumers are reached in
one step, which implies uniform delivery to larger sets of nondiscriminated
components. However, any form of refining and controlling dissemination will
have to differentiate subsets of these components. And the number of accesses
to the medium characterize how much of the structure identified in the scope
graph is reflected in the implementation.

6.7.2 Comparing Architectures

Scope architectures can be classified in the architectural dimensions given
above. However, further criteria are necessary for comparing and assessing
their functionality from an application point of view. The architectures pre-
sented in the next sections are compared according to the following criteria:

210 6 Scoping

� Impact on infrastructure and components: What must be changed to im-
plement scoping?

� Implementation overhead: What is the overhead implied by a given scope
architecture? What are the communication costs compared to unscoped
publish/subscribe and compared to other scope architectures?

� Reliability: How do failures of components affect single scopes or overall
system correctness?

� Reconfiguration: What kinds of changes of the scope graph are possible in
the running system? What are the costs of scope graph updates? Adapt-
ability and flexibility to change system structure are the main issues here.

� Customization: While all scope architectures obey the visibility constraints
expressed in a scope graph, which of the other features of scopes are sup-
ported? What kinds of mappings, transmission policies, security policies,
etc. can be established?

The comparison of the scope architectures is summarized in Fig. 6.19.

impact on ability to

infrastr. components overhead reliability reconfigure customize

collapsed filters + – � – – –

hub + � � + � +

static deploy. + – + � – �
addressing scopes + � � � + �
broker scopes � + � + + +

integrated routing – + + + + +

Fig. 6.19. Comparison of scope architectures (+ means low impact and overhead,
and high ability to achieve reliability, reconfiguration, and customization)

6.7.3 Implement Scopes as Event Brokers

The broker scope approach is the most general implementation of scopes. It
uses administrative components representing scopes, as before, but relies on
their forwarding even for intrascope communication. It directly implements
the structure of the scope graph in the sense that publishing within a scope
first requires accessing the communication medium to send the notification to
the representing scope instance, which, in the second step, sends the notifi-
cation to all its children and, after applying the output filters, to the eligible
superscopes. In terms of Fig. 6.17, all the steps are explicitly implemented.
With brokering each notification individually, even the delivery of notifica-
tions to separate consumers could be distinguished in steps 5 and 5a. The

6.7 Implementation Strategies for Scoping 211

existence of step 3b depends on the internal implementation of each scope
representative, of course.

The characteristics of this approach are the independently operating ad-
ministrative components that represent each scope and have full knowledge
about adjacent subcomponents and superscopes. And, in principle, a point-to-
point communication between the nodes is assumed so that arbitrary delivery
can be implemented in scopes. In practice, a number of different commu-
nication media and schemes for implementing and locating administrative
components are possible.

One Scope, One Broker

The simplest form is a one-to-one implementation of the scope graph, which
instantiates exactly one administrative component per scope and uses point-
to-point media to convey data as defined by the edges of the graph. The point-
to-point communication to all children offers the full control of intrascope
traffic. Any constraint bound to the scope graph is easily implemented at this
explicit point in the infrastructure: no restrictions of applicable transmission
policies, mappings, and security measures are imposed.

From a technical point of view, an implementation with scopes as brokers
is similar to the architecture described in Sect. 2.4, only that a strict treelike
network is no longer mandated. Instead, the undirected form of the directed
acyclic scope graph constitutes the overlay network used to convey the data.
The original restriction to trees was made to simplify analysis and implemen-
tation of general routing protocols, which is a reasonable initial assumption
for a research prototype. Here, this restriction is removed. However, the prob-
lems inherent to arbitrary graphs are not solved in general, rather scoping
and the definition of visibility constrains the possible routing configurations
in the graph. The network layout is no longer an infrastructure independent
of the application components; the administrator of the system is provided
with means to shape its layout and control the distribution of notifications.
Routing is the implementation of visibility, and the responsibility of ensuring
sensible routing is now partially transfered to the administrator.

A possible drawback of this approach might be its degradation of com-
munication efficiency. To convey data along a given delivery path of length
n, n − 1 accesses to the underlying medium are necessary, which is only one
more than in the scope address approach. But if only intrascope traffic is
considered, which may dominate in many systems anyway, the necessary ac-
cesses are doubled. However, even if other implementation approaches may
be more efficient for certain system configurations, broker scopes provide the
most general implementation of scope graphs, and the ones most adaptable
to any kind of reconfigurations. So, the alleged inefficiency has to be com-
pared with the indirection of the scope brokers and the enhanced control they
introduce thereby.

212 6 Scoping

Distributed Scopes

The above discussion assumed a single administrative component per scope,
which is responsible for filtering incoming and outgoing traffic and internal for-
warding. With distributed scopes, this task is performed by multiple instances,
that is, by distributed administrative components of one scope. Whenever the
instances are not independent, they have to communicate with each other and
thus implement step 3b of Fig. 6.17. For the communication between these
instances a communication medium can be used that is different from the one
conveying data between the scope graph nodes. However, the same arguments
regarding addressing capabilities, scalability, and flexibility hold as before.

A number of objectives are achievable with distributed scopes. An obvious
improvement is to instantiate multiple administrative components for each
scope to prevent single points of failure. The instances may be identical repli-
cas using a primary/backup approach [11] or operating in parallel indepen-
dently of each other. Alternatively, each of the instances may be responsible
for a different subset of the scope’s components so that in case of failure only
one subset is affected, but not all components of the scope. In these cases, a
point-to-point communication within a known set of scope representatives is
indicated.

Furthermore, scope distribution facilitates adaptation. For example, if one
administrative component is instantiated per superscope, each instance han-
dles the interfaces, mappings, and transmission policies with respect to one
superscope. The addition of edges simply requires adding the respective ad-
ministrative components. And if a multicast medium is used to forward no-
tifications from scope members to all the administrative instances, edge con-
figuration does not even influence any other parties in the scope. Another
option is to provide specialized services by different scope representatives for
certain types of notifications, such as internal delivery policies or encryption
for specific notifications. This implementation partially backs off the initially
stated assumption that only one communication medium is used per scope.
The same result could be achieved if each of the specialized administrative
components is created as a full scope in the scope graph.

The above examples employ separate administrative components to fa-
cilitate the implementation and reconfiguration of a scope graph, but they
do not consider distribution with respect to the actual layout of the phys-
ical network. A very important aspect of distributed scopes is their ability
to bridge between the structure of the application given in the scope graph
and the structure of the underlying network. Consider a scope that groups
physically dispersed members located in two different subnetworks. With a
single administrative component all traffic would be centralized, whereas dis-
tribution helps exploit locality. If an instance of the scope is present in each
of the subnetworks, notification forwarding is decoupled and done locally in
each network. And the bandwidth necessary between the networks can be re-

6.7 Implementation Strategies for Scoping 213

duced once the connected administrative components remember the remotely
published subscriptions, i.e., they maintain a routing table.

The previous description shows clearly that multiple explicit scope in-
stances constitute a distribution network by itself. When several scopes are
distributed, several of these overlay networks coexist. In this situation scoping
and routing are mixed, which is investigated in Sect. 6.7.4.

Collocating Broker Scopes

A special solution is to collocate all administrative components at one node in
the network. Scope-internal traffic still needs two accesses to the underlying
medium, but all interscope communication is done locally. Although closely
related to the central hub approach, cf. Sect. 6.7.1, the scope graph is explic-
itly instantiated here, only that interscope communication is implemented by
interprocess communication (IPC). Separate administrative components can
still evolve independently, they just happen to be collocated, so to speak, to
improve efficiency, auditability, or other global constraints.

Evaluation

Scopes as brokers are the most flexible implementation of the scope graph.
They offer all features of the scoping concept and the flexibility to adapt all as-
pects of the one-to-one realization of the scope graph. Every feature is localized
in the infrastructure. Apart from this configuration viewpoint, broker scopes
make the infrastructure itself visible and adaptable, for it provides administra-
tors with means to map application structure to infrastructure components,
that is, to event brokers.

This scope architecture is possibly not the most efficient implementation
of a certain scope graph, but it is the most generic one. It is not a service of the
publish/subscribe infrastructure, but instead a way to define and adapt the
infrastructure itself, and it will serve as a basis for refining the implementation
of subgraphs, as discussed in Sect. 6.8. However, it is not always acceptable
to have such a close correlation between the application structure supposedly
encoded in the scope graph and the implied, dependent layout of the network
infrastructure.

6.7.4 Integrate Scoping and Routing

The explicit instantiation of administrative components described in the previ-
ous section makes the full range of scope features available to system engineers,
i.e., administrators. However, it also determines the layout of the underlying
network infrastructure, which is no longer independent of the applications.
In contrast, the following integrates scoping into the routing infrastructure.
Visibility control becomes an inherent service of the event notification service
and is no longer implemented as a layer above the underlying broker network.

214 6 Scoping

S

T

c5 c2

c4c3c1

U

c6

Fig. 6.20. An exemplary scope graph

Scopes as Overlays

Given a network of brokers and a scope graph, the simple components of a spe-
cific scope are in general connected to arbitrary border brokers, irrespective
of their scope membership. They are reachable via a subset of the border bro-
kers, and the notification service must ensure that notifications are forwarded
to these brokers if they match one of the subscriptions of the respective sim-
ple components. Consider the exemplary scope graph and the broker network
depicted in Figs. 6.20 and 6.21. Brokers B1, B2, and B4 are part of scope T ,
that is, they are scope brokers18 of T . Together with B3, they are also scope
brokers of S. B2 is in both cases an intermediate broker that currently does
not have any directly connected scope members. B1 and B5 are scope brokers
of U .

c5

B5

B1

c1 c2
c3

c6

c4

B4

B3

B2

T
S

U

Fig. 6.21. Scopes as overlays within the broker topology

18 Mind the difference between scope brokers and broker scopes. The former are
part of an independent broker network and sustain a specific scope, whereas the
latter is a scope architecture and a different way to implement the scope graph
(Sect. 6.7.3).

6.7 Implementation Strategies for Scoping 215

Filter Destination

iIc1 c1

iIc2 c2

iIc3 B2

iIc4 B2

iIc6 B2

iIc5 B5

Fig. 6.22. A flat routing table for broker B1

The main idea is to rely on any of the existing routing schemes, e.g., those
offered by Rebeca (Sect. 2.4), as before, but to use it for intrascope traffic
only and for each scope separately. Still, the same broker network is used
to route all notifications and a connected subset of brokers routes the traffic
internal to a given scope without heeding other scopes. The separate routing
for each scope effectively establishes scope overlays in the broker network,
which are sketched in Fig. 6.21. On the other hand, the separation of scope-
internal routing necessitates a special handling of interscope transitions. In
Fig. 6.21, B1 is scope broker of both S and U to bridge between the overlays
of the two scopes.

Consequently, two kinds of routing are utilized to integrate scoping into
the broker network: intrascope within a specific scope and interscope rout-
ing between scopes adjacent in the scope graph. In intrascope routing each
scope overlay maintains its own routing tables so that each broker has a rout-
ing table per scope it supports. The employed routing scheme maintains the
independent routing tables and handles advertisements and notifications as
before. Hence, brokers constituting a scope overlay behave like a traditional
flat publish/subscribe service in which no visibility constraints exist. In inter-
scope routing brokers must arrange for the transition of notifications between
scope overlays according to the scope graph and the assigned interfaces and
mappings. The current assumption is that two scopes S� T have to share at
least one common scope broker to implement the scope graph edge at this
point. In the previous example both B4 and B5 support scopes S and T , and
both are able to let notifications cross the respective boundaries; the same
holds for B1 and S and U .

Enhancing Routing Tables

The original flat routing tables maintained in each broker contain filter-desti-
nation pairs that list issued subscriptions and the next-hop nodes from which
they were received, describing the paths to consumers. Figure 6.22 shows
the flat routing table RTB1

of broker B1 of the previous example. The en-
hanced routing tables subdivide these entries and group them in separate
scope-specific tables RTS

B1
, RTT

B1
, and RTU

B1
, sketched in Fig. 6.23. From the

216 6 Scoping

point of view of a specific scope S, both simple and complex components are
entries in a scoped routing table RTS

B1
. Although technically equal, entries of

subscopes are distinguished from entries of superscopes, which is necessary
to correctly implement the visibility of components as described in the next
subsection.

The “Filter” and “Destination” columns have still the same semantics
as before: an entry indicates that notifications are to be forwarded to the
given destination if they match the respective filter. In distinction to the
original flat table, however, the new tables store arbitrary mappings instead
of just filters. In this way the effective interfaces between components can
be tested, including any mappings assigned in the scope graph. Of course,
any implementation is free to still store simple filters separately from more
complex notification processing functions. For instance, the filter–link pairs of
the original routing tables may be transformed into triples of filter sequences
and links plus mapping sequences.

The destinations stored in the enhanced tables are either network links
or locally stored data structures. The former represents an implementation
to communicate with next-hop brokers and clients, the latter are the routing
tables of next-hop nodes in the scope graph. They mix and integrate the two
levels of routing between physical brokers, on the one hand, and between scope
overlays, on the other hand.

The scoped routing tables RTSi

Bi
govern notification forwarding both within

and between scopes, once set up properly. But in order to establish new edges
in the scope graph and to create and link the respective routing tables, ad-
ditional information must be maintained in the broker network. Each broker
keeps a scope lookup table STBi that contains pairs of scope identifiers and net-
work links, indicating in which direction scope brokers of the specified scope
can be found. These tables are updated upon scope creation and deletion, as
discussed below. For the previous example they look like in Fig. 6.24.

iÎc1

iÎc3

iÎc4

oÎT
S

oÎU
S iÎc5

iÎU
S

iÎc2

iÎc6

iÎT
S

B2

B2

c1

B5

B2

c1

RTT
B1

RTT
B1

RTS
B1

RTU
B1

RTS
B1

RTU
B1

RTS
B1

super-

scopes

scope

members

Fig. 6.23. Enhanced routing tables of B1 incorporating scopes

6.7 Implementation Strategies for Scoping 217

STB1 STB2 STB3

· · ·S B1 S B2 S B2

T B1 T B2 T B3

U B1 U B1 U B2

Fig. 6.24. Scope lookup tables

Setting Up Routing Tables

Once created, the routing tables are filled when consumers subscribe, and
the underlying routing algorithm must forward and register these subscrip-
tions. Chapter 2 described simple routing and covering and merging, which
may be applied to accomplish this task. The scoped routing tables themselves
and the references between them are set up as reactions to scope graph re-
configurations. In addition to the plain publish/subscribe primitives pub, sub,
and notify , Sect. 6.2.5 on dynamic scopes introduced four new operations:
cscope(S), dscope(S), jscope(X, S), and lscope(X, S), which create and de-
stroy a scope S, and join X to scope S and remove it, respectively. While the
network of brokers is still assumed fixed, the following describes how routing
tables are adjusted to reflect these operations. Section 6.6 has suggested tools
that support system engineers in this task.

Adding and Removing Scopes

The primitive cscope(S) creates a new scope S if invoked by the system en-
gineer at a specific broker B. If no scope of this name is known before, a new
routing table RTS

B is created and the scope lookup table STB is updated. By
default the creation is announced as unscoped notification and every broker
listening to these kinds of notifications updates its scope lookup table accord-
ingly. If a new scope shall not be made publicly available but only as a member
of a specific superscope T , the initial announcement can be postponed until
it has joined T . The announcement is then sent within T and its visibility is
governed by the installed interfaces. Without such restrictions the full list of
all scopes instantiated in the system would be listed in all lookup tables, as is
the case for advertisements or subscriptions in flat publish/subscribe systems.
Applying scope interfaces to restrict the distribution of scope announcements
helps limit the amount of management information kept in the system.

To complete the scope configuration, additional data about its interfaces,
transmission policies, or security policies is necessary. This information is also
provided by the system engineer and is stored as an extension of its routing
tables RTS

Bi
in all scope brokers.

A scope is removed from the system by calling dscope(S) at one of its scope
brokers. Following the entries in its routing table a message is sent to all of
its scope brokers to remove its routing tables and any references from rout-

218 6 Scoping

ing tables of adjacent scopes. Its members are notified with a corresponding
notification.

Joining a Scope

An arbitrary component C is joined to a scope S by calling jscope(C, S)
at the local or border broker of C. The scope lookup table is used to route a
ScopeJoin message to the first scope broker of S. These special messages leave
a trail of temporarily stored source-pointers in the visited brokers that allows
a response to be routed backwards to C. A scope broker of S that receives
a ScopeJoin message takes two steps. It includes the border broker of C as
scope broker of S and forwards the interface of the new component to existing
scope brokers to get the routing tables updated. The first step requires that
the current routing table is forwarded along the stored trail toward C so that
each visited broker creates an initialized routing table for scope S. If security
policies are installed in the scope brokers, a join request may be denied, which
results in a rejection sent toward C.

A simple component leaving a scope is similar to just unsubscribing to
all issued subscriptions. Scope brokers may regularly test if any members are
locally connected, and if other scope brokers are reachable via only one link,
this scope broker is an unused border broker of the scope overlay and may
be shut down. If a scope leaves one of its superscopes, i.e., lscope(S, T), an
appropriate message is distributed to the scope brokers of both scopes and the
references to the respective other scope are removed from all involved RTS

Bi

and RTT
Bi

routing tables.

Scoped Routing

Scoped routing uses the enhanced routing tables to forward notification in
accordance with the current scope graph. The algorithm basically extends the
plain Rebeca algorithm of flat publish/subscribe routing. It is executed in
each broker B and operates on a set of enhanced routing tables RTSi

B of scopes
Si, of which B is currently a scope broker.

Notification Layout

The algorithm needs some additional management information to operate
properly. This information is annotated to notifications by the routing imple-
mentation and is not accessible to applications.

To prevent loops and infinite forwarding, notifications must not be sent
back on links they were received from, both network links and scope graph
edges. As in the original Rebeca routing, notifications are annotated in each
broker with an identifier of the source network link to prevent it from being
sent back in the direction from where it was received. Additionally, each noti-
fication carries an identifier of the current scope and of the source component,

6.7 Implementation Strategies for Scoping 219

which are accessed by get scope(n) and get source(n), respectively. These
identifiers signify the scope in which the notification is currently visible and
the (last) component from where it was forwarded into this scope. Note that
the latter does not name the original publisher but the last node in the scope
graph visited before the current one. The local event broker of the original
producer is responsible for setting the identifiers initially.

These component identifiers must be unique with respect to the current
scope and its adjacent nodes in the scope graph so that they identify its
components or superscopes unambiguously. However, such edgewise distinct
names may not suffice, because many scopes may be hosted in one broker
and naming must be unambiguous within a broker. So, besides the simple
but restrictive assumption of globally unique identifiers, a scheme similar to
the mappings of virtual channel identifiers in Asynchronous Transfer Mode
(ATM) networks [233] might be devised that maps identifiers on both sides
of a network link to guarantee uniqueness.

The next paragraphs introduce different states of routing that are accessed
by get state(n). Of course, all get-functions are accompanied by the respec-
tive set methods.

Routing States

Following the discussion about delivery paths in scope graphs and transmis-
sion policies, three states of routing are distinguished:

� scope internal routing: A notification is forwarded to siblings in the same
scope.

� downward routing: An incoming notification is forwarded to scope mem-
bers.

� upward routing: An outgoing notification is forwarded to superscopes.

A notification published by a simple component is initially handled in the
internal routing state. It may alternate between internal and upward states,
but once in downward routing it may not switch back. Adherence to this
sequence is mandatory to not break the bipartite nature of delivery paths,
that is, notifications are always first sent up in the scope graph before they
solely travel down against the edges of the graph. Internal routing is expressly
distinguished to facilitate the respective transmission policy, cf. Sect. 6.7.4.

The Algorithm

Figures 6.25 and 6.26 illustrate the algorithm, which basically extends the
plain Rebeca algorithm of flat publish/subscribe routing and is executed in
each broker B. The main control loop main loop is triggered whenever new
data is appended to the receiving queue, which may either be due to incoming
network traffic or via cross-scope traffic. The expected pair (n, l) contains the
notification to be forwarded and a link from which it was received. The latter

220 6 Scoping

procedure main_loop

loop

// the queue is fed from network links

4 (n, l) = get_next (recvQ)
scoped_routing(n, l)

end

end

9 procedure scoped_routing (n, l)
Input n: notification

l: source link

s := get state(n)
S := scope(n)

14

--- internal routing

D := destinations(n, remote components(RTS
B))

foreach (n′, l′) ∈ D
if l �= l′ then send (n′, l′)

19 end

--- downward routing

D := destinations(n, subscopes(RTS
B))

cross_scope(S, D, “downward′′)
24

--- upward routing

if not s = “downward′′ then

D := destinations(n, superscopes(RTS
B))

cross_scope(S, D, “upward′′)
29 fi

end

Fig. 6.25. Overall routing algorithm

may be either a network link or a local routing table, i.e., a routing destination
in the enhanced routing tables.

The procedure scoped routing determines the next destinations of a no-
tification currently visible in a scope S. It interprets the current routing state
and accordingly queries different parts of the routing table RTS

B . The function
subscopes(RTS

B) returns a routing table that contains all entries that point to
a locally stored routing table of a subscope of S. Similarly, superscopes(RTS

B)
contains entries of local superscope routing tables. Conversely, remote com-
ponents(RTS

B) returns the remaining entries, which are reachable via network
connections. In the case of RTS

B1
of Fig. 6.23, the three functions return en-

tries of {}, {RTT
B1

, RTU
B1

}, and {c1, B2}, respectively. First, eligible destinations
within the considered scope and then the locally available routing tables of

6.7 Implementation Strategies for Scoping 221

function destinations (n, T)
Input n: notification

T: routing table

Output D: list of notification-destination pairs

5 foreach (I, d) ∈ T
n′ := I(n)
if n′ �= ε then

D := D ∪ (n′, d)
fi

10 end

end

Fig. 6.26. The näıve matching algorithm with mappings

subscopes are determined; both must be done for all routing states. A dis-
tinction of states is at this point only necessary when transmission policies
are applied, cf. Sect. 6.7.4. Last, the upward direction is examined to find
all locally available routing tables of eligible superscopes, which is only done
if routing is not in downward state. Taken together, these steps follow the
default delivery and publishing policies of Sect. 6.4.1 that describe visibility
in the scope graph.

The above procedures rely on the function destinations to determine all
eligible destinations in the specified routing table. The näıve matching algo-
rithm, extended with mappings, is given in Fig. 6.26 for illustrative purposes.
It returns pairs of destinations and notifications to send there, allowing for a
seamless integration of mappings in the routing decision. Of course, in practice
more efficient matching algorithms, e.g., [133, 404], and a more sophisticated
handling of notification copies may be applied.

Crossing Scopes

The scoped routing algorithm relies on cross scope to forward a notification
between scopes (Fig. 6.27). It is responsible for relaying the current notifica-
tion to other routing tables stored in the same broker. In fact, an underlying
assumption is that scope transitions take place only within a broker. Routing
tables of a super- and subscope pair S� T must be collocated at the same
broker to enable interscope routing. In the above example B1 is a scope broker
of all scopes and may route between S, T , and U , whereas B2 and B4 can
route between S and T only.

cross scope takes a list D of pairs of eligible destination scopes, whose
interfaces match, and notifications that shall be sent there. In this way, the
current notification may be forwarded in different representations. With the
help of the reference to the source component (get source(n)) the algorithm
prevents notifications from being sent back along the scope graph edge they

222 6 Scoping

procedure cross_scope (S,D, s)
--- forward all notifications to next routing tables

Input S: current scope

D: list of notification-routing table pairs

s: routing state

4

foreach (n, RTS′
B) ∈ D

if get_source(n) �= S′ then

set_source(n, S)
set_scope(n, S′)

9 set_state(n, s)

put_in_front(recvQ, (n, RTS
B))

fi

end

end

Fig. 6.27. Interscope forwarding

were received from. This does not preclude duplicates because of alternative
paths in the scope graph, but it rules out erroneous duplication because of
repeated processing, at least in one broker. How to prevent this repetition in
different brokers is detailed below.

The procedure sets the source component to the current scope and the
intended destination as new current scope and then puts the relayed notifi-
cation into the incoming queue recvQ. This eventually triggers the main loop
and starts routing of n in the destination scope. The routing state recorded
in each notification is updated according to the specified parameter s that is
supplied by the main scoped routing algorithm.

Crossing at Different Locations

Although interscope routing is not possible at arbitrary brokers, there still may
be multiple brokers where two scopes S� T coincide. And thus a notification
might cross a scope boundary repetitively at different brokers, duplicating
notifications even along a single edge of the scope graph. Furthermore, security
considerations or the implementation of advanced ordering schemes might
necessitate a designated broker that bridges all traffic between the respective
scopes. In the previous example, a notification published by c1 is distributed
in its scope S and may enter superscope T at B1, B2, or B4.

Three choices for placing interscope routing are distinguished according
to the following criteria. First, are the scope-crossing functions applied at
only one broker or at several different brokers? Second, if only at one, is it
a designated gateway broker or an arbitrary broker that conveys the traffic
between the respective two scopes? The following alternatives are available:

6.7 Implementation Strategies for Scoping 223

1. Transition at designated central gateway: All interscope traffic of a scope
S is handled by a single gateway broker Bi of that scope. Only at this
gateway the routing table RTS

Bi
contains an entry pointing to sub- and

superscopes.
2. Transition anywhere, but only once: Interscope traffic is transfered into

its destination scope at the first possible broker, and nowhere else.

The first approach of having a designated gateway is the simplest solution.
It instantiates the respective scope graph edge at a single point in the broker
network. Only at this gateway broker a routing entry for the specific super-
scope is stored, say (oÎT

S , RTT
B1

) as part of RTS
B1

if B1 is the gateway broker
of S � T . All other scope brokers of S register an entry oÎT

S that points
toward this gateway broker, e.g., (oÎT

S , B2) is stored in B4. This is necessary
to get published notifications matching the output interface forwarded to the
gateway broker. Within T all routing table entries pointing to the subscope
S are similarly adapted to direct downward traffic to B1 as well. Each gate-
way broker links a specific pair of scopes, but generally system engineers may
decide to group all gateway brokers at one network node, to group them for
each scope, or to place all gateways independently.

A drawback of this strict separation of inter- and intrascope routing is
wasted network bandwidth. Consider c4 and c6 connected to broker B4 in the
previous example. Notifications from c4 to c6 are routed through broker B1 to
enter T there and go back to B4 again. The adequate placement of gateway
functionality has a major influence on network utilization. On the other hand,
the centralized gateway offers full control of the incoming and outgoing traffic
at a designated broker. This allows trusted software modules to be employed
for cross-scope communication at a single trusted broker, for example, to
authenticate all outgoing notifications or to link separate security domains
without disclosing other scope brokers. The implementation of transmission
policies is simplified, too, as pointed out in the next subsection. In general,
if the placement of scope brokers corresponds to the physical layout of the
underlying network, gateway brokers may also represent the physical gateway
between different networks hosting the adjacent scopes.

The second approach allows notifications to cross-scope boundaries be-
tween two two scopes S � T at the first possible broker that sustains both
scopes. When c1 publishes n, it is forwarded into S, T , and U at B1, assum-
ing matching interfaces, of course. An appropriate countermeasure must be
provided to prohibit repeated scope transitions in B2 and B4. This is achieved
by testing whether the destination scope T was already seen in the last broker
from which n is received, in which case the transition has already happened
in a previous broker. Notification forwarding in cross scope is denied if an
entry in RTT

B exists that points toward link(n). In the example, B2 has stored
an entry (iIT

c2
, B1) in RTT

B2
and does not forward n into T again.

Unfortunately, so far each scope transition generates a new notification
and the transition at the earliest encountered broker leads to messages being

224 6 Scoping

sent on the network that differ only in the annotated current scope they are
visible in. In the example, two messages are sent to B2 and B4, one visible in
S and one in T . A possible improvement is a combined delivery to all eligible
superscopes, which are identified by a list of scopes annotated on the notifi-
cation instead of just one identifier. The multiplicity of messages is replaced
by a list of scopes, at least as long as no mappings transform the notifica-
tion. The routing decision is evaluated as before, only that scoped routing
is called multiple times to fill the list of next-hop destinations. At each broker,
the available routing tables are checked, and whenever additional scopes are
detected and entered the list of visible scopes is updated. In the example,
a notification forwarded from S to T is annotated with both scopes and is
transmitted only once between B1, B2 and B4.

Transmission Policies

The distinguished routing states directly correspond to the delivery, internal
delivery, and publishing policy. The policies are encoded as part of the en-
hanced routing tables, even if they include general mappings in the routing
decision. As discussed in Sect. 6.5, the policies operate on sets of notifications
and must be evaluated after the eligible destinations are determined by the
matching algorithm in destinations.

The three policies can be inserted into the three parts of the sketched
scoped routing algorithm. Internal routing is refined by evaluating

D := idpS(D)

on the set of eligible consumers before it is processed in the foreach loop.
Delivery and publishing policy are intended to be applied at scope boundaries,
and so they are evaluated in cross scope,

D := ppS(D)

for upward routing and
D := dpS(D)

for downward routing, again just before sending the notifications in the foreach
loop.

Scope Multicast

So far, intrascope routing has stuck to strict routing where notifications are
forwarded only if a matching subscription is available. This prevents notifi-
cations from being always sent to all scope brokers of a scope, but induces
multiple point-to-point messages and repeated routing decisions. An alterna-
tive strategy for routing in a scope S is to send all notifications to all of its
scope brokers irrespective of any subscriptions. In a second step, the so-called

6.8 Combining Different Implementations 225

fan-out of the broker network to the consumers is implemented via point-to-
point communication. The routing tables of S are evaluated in every scope
broker of S and each matching and locally connected consumer is notified
separately.

If implemented as part of the broker implementation, an application layer
multicast scheme is established within the broker network. This approach does
not avoid multiple point-to-point messages between the scope brokers, but is
readily applicable in most networks. On the other hand, IP multicast offers
an established, well-known facility to speed up communication to a group
of receivers. The original decision of using point-to-point communication in
the broker topology is partially inspired by the assumption that the sets of
consumers are rather volatile and vary frequently. A multicast solution that
directly communicates to consumers requires frequent group changes, and
the explicit control of individual delivery is lost. However, IP multicast is a
convenient technique to connect scope brokers. The broker topology can be
supposed to change less frequently than the consumers and thus does not
overwhelm multicast group management. So, intrascope routing is reduced to
a notification being conveyed to all scope brokers with one multicast datagram
before it is explicitly directed to any matching consumers. This approach
combines multicast efficiency with the full control of notification delivery.

Evaluation

The integrated routing architecture is possibly the most generic scope ar-
chitecture. It combines the efficiency of a distributed solution, incorporates
multicast delivery, and still offers the flexibility to control the hop of noti-
fication delivery to consumers. It extends the known routing tables and can
build on various existing routing protocols, such as covering- or merging-based
routing provided by Rebeca and other notification services. Scoping is here
offered as a service of the event infrastructure. The layout of the publish/
subscribe network is independent from the actual application structure given
by the scope graph.

On the other hand, the option to connect scope members to arbitrary
brokers may increase network utilization, and the dispersion of components
and traffic may increase the complexity of the system. But this is essentially
always the case for distributed solutions.

6.8 Combining Different Implementations

The preceding discussion assumed the same type of architecture for all scopes
in the system, which is, obviously, a severe limitation of potential application
domains. In fact, one of the primary benefits of the scoping concept is its
ability to facilitate the customization of the infrastructure. Once groups of
components are identified, their scopes can be based on those architectures

226 6 Scoping

T

S

B B

c1 c2

S1 S2

T

A

c1 c2

A A

A

Fig. 6.28. Duplicate scopes to separate QoS requirements

that fit their respective needs best. The special requirements of their inter-
action are addressed by employing appropriate implementations of scoped
notification dissemination. But yet, the different implementations must be
seamlessly integrated.

6.8.1 Architectures and Scope Graphs

In the first place, scopes model application structure. But they are also a
tool for determining notification semantics within the application structure.
Different types of notifications may demand different quality of service (QoS)
even within a specific scope. For example, consider noncritical timer informa-
tion sent in bulk (type A in Fig. 6.28) and personnel record updates (type B)
that are supposed to be encrypted and delivered to authenticated consumers
only. While both are consumed in the same part of the application, i.e., in
the same scope, these two data types obviously ask for different architectures
and communication media that facilitate scalable delivery of the former and
secured delivery of the latter.

In principle, several different communication media might be used in one
scope to facilitate different QoS. Alternatively, a scope with complex semantics
is duplicated in Fig. 6.28, and each instance is tailored for a different kind
of QoS supported. The interfaces are split so that the same notifications are
forwarded into T as before. Publishing policies and imposed interfaces assigned
to c1 and c2 ensure that the traffic within S1 and S2 is separated and directed
to the scopes that offer the necessary quality of service. In the above example,
the timer notifications would be distributed via scope S1 operating on top of
a scalable messaging system, and S2 would employ encrypted point-to-point
connections to meet the security requirements of type B. The edges (c1, S2)
and/or (c2, S1) are necessary if the c1 and c2 shall get the same notifications
as before, but additional interfaces are necessary to prevent messages from
leaking with wrong QoS.

Instead of dealing with arbitrary combinations of communication media,
dissemination semantics, and scopes, the following assumes a specific scope
architecture per scope. For implementation purposes, bridging takes place
between connected subgraphs of the graph of scopes that share a common

6.8 Combining Different Implementations 227

architecture. However, to simplify the discussion, only pairs of scopes and the
bridging in between are investigated next.

6.8.2 Bridging Architectures

Combining different scope architectures requires a gateway between the dif-
ferent implementations of two scopes S�T . The simple components of a scope
have as part of their local event brokers an architecture-specific implementa-
tion for accessing the underlying communication medium (cf. Fig. 6.17). The
gateway relies on two local event brokers to bridge the respective implemen-
tations of the architectures. Gateway functions are assigned to the considered
subscope, S, and enforce the input and output interfaces of S, its publishing
and delivery policies, and any mapping applied on the edge (S, T).

Collapsed Filters

The collapsed filters architecture does not instantiate administrative com-
ponents and so gateway functions must reside in all members of the scope.
Because of the required duplication of code in simple components, an extra
gateway component is preferable. Such a component would not interfere with
the internal delivery of notifications. It is similar to the mapping components
used in Sect. 6.4.2 to sketch the feasibility of scoped systems. It acts as an
additional producer/consumer in scope S and manually implements the edge
to superscope T , being a regular member there as well.

The distinguished scope destination and visibility roots approaches to an-
notate notifications and extend subscriptions are hardly different regarding
the implementation of the gateway. In both cases a gateway component is
instantiated for each bridged scope–superscope pair or for all bridged super-
scopes collectively. Only their subscriptions must reflect the differences in the
lists of annotated scope identifiers: the former lists all reachable scopes while
the latter lists only visibility roots on upward paths. Upon receiving a notifi-
cation, the gateway component tests which of the edges it controls is eligible,
applies the assigned output interfaces and publishing policies, and forwards
the data, if appropriate.

In the same way, the gateway registers in the superscope(s) and, upon
receiving a notification from there, evaluates the assigned input interfaces
and delivery policies. Since delivery policies need cooperative filtering in all
consumers, the gateway’s functionality depends on the filtering supported in
the present implementation of the collapsed scope graph.

Scope Address

In the scope address architecture there are administrative components avail-
able to execute gateway functions. Cross-scope traffic is matched against the
interfaces, while publishing and delivery policies are applied as before. The
same implementation can be used, only a second local event broker to bridge
the different architecture’s implementations must be present.

228 6 Scoping

Broker Scopes

Broker scopes are administrative components that represent a specific scope
and explicitly control all internal and external traffic. Thus, they may directly
implement any gateway to other architectures.

Integrated Routing

Although no individual representatives of scopes exist, scopes and transitions
between scopes are explicitly recorded as routing tables with entries referenc-
ing other routing tables. Instead of pointing to other tables, the entries may
refer to a second local event broker to access another’s scope architecture.
Interface and transmission policies are handled as before—they are always
explicitly applied. The discussion about locating cross-scope transitions (cf.
Sect. 6.7.4) holds for gateways as well.

6.8.3 Integration With Other Notification Services

The gateway of a scope may not only bridge different scope architectures,
but may also facilitate coupling of a scoped system with other notification
services. The gateway functions simply have to implement another service’s
API to act as a regular producer/consumer within that service. The traf-
fic flowing between the scoped and the external system is controlled by the
gateway functions, i.e., interfaces, mappings, and transmission policies. By
creating an “outside” scope and a gateway that connects other communica-
tion services, external data is incorporated into the scoped system without
impairing visibility control. On the other hand, this gateway retains the com-
ponent characteristic of scopes with respect to the outside system. The flow
of notifications leaving the scope follows the definition of the scope graph.

Of similar importance is the coupling of scoped and unscoped applica-
tions, which are likely to coexist. Consider the integrated routing approach,
for instance, and two applications, one scoped and one unscoped. The scoped
routing tables are used in addition to a traditional implementation, which is
nothing more than a further routing table not connected to the scope rout-
ing tables. All scoped clients are assigned to some RTSi

Bi
, and the nonscoped

(“legacy”) clients are still maintained in separate old-style routing tables RTBi
.

In fact, the overlay of all RTBi
constitutes a default scope to which every newly

created simple component may be assigned. In this way, scoped and nonscoped
clients can interact in a controlled way.

6.9 Further Reading

This chapter has introduced the concept of scoping in event-based systems.
It offers a module construct; it is an extension point for the integration of

6.9 Further Reading 229

different communication techniques, for handling quality of service, security,
and data heterogeneity; and it facilitates the management of event-based sys-
tems. Accordingly, related work is very broad and comes from many areas of
computer science [135].

The Common Object Request Broker Architecture (Corba) provides a
number of mechanisms to organize and structure distributed systems [283].
It includes the Corba Notification Service [287]. Event management do-
mains [282] support the federation of multiple notification channels in arbi-
trary topologies. However, applications have to select their channels and thus
move information about application structure into the components—there is
no support for an administrator to orchestrate channels and components. A
generic solution to avoid static configurations is reflective middleware [96, 223].

The enterprise edition of Java (J2EE, [365]) specifies an execution environ-
ment that contains a component model and a number of standardized services,
including a notification service (JMS), which is described in Sect. 9.1.3. The
standard offers the plain publish/subscribe API (plus transaction support),
but not the engineering features of scopes. Many JMS implementations exist,
some offer extensions like topic hierarchies, e.g., [97]. In terms of managing
application components, Java Management Extensions (JMX) defines a stan-
dardized Java way to management and monitoring [363].

If a database management system such as Oracle Streams Advanced Queu-
ing (AQ), cf. Sect. 9.2.3, transports our notifications, we can exploit all the
features offered by a database, like transactions, rules, consistency constraints,
logging, high availability, authentication, access control, etc., and apply them
to the publish/subscribe communication as well [172]. The focus is then more
on advanced QoS features than on lean implementation.

Many domain-specific implementations of publish/subscribe run into the
engineering issues addressed by scopes. Eder and Panagos [118] pointed out
the problems that arise from missing structures in workflow systems. They
connected workflow engines from multiple sites with the READY notifica-
tion service [185]. The service introduced event zones to cluster components
based on (either) logical, administrative, or geographical boundaries. Bound-
ary brokers connect zones and control the communication between them. A
component can belong to only one zone, which limits the structuring capabil-
ities and prohibits composition and mixing of aspects [147, 188].

Wireless sensor networks (WSNs, [95]) also exploit eventing, and the need
for structuring mechanisms was identified before, cf. [350, 397].

The field of software architecture is concerned with the overall organi-
zation of a software system [165]. Architecture definition languages (ADLs)
are employed to describe the high-level conceptual architecture consisting of
components, connectors, and specific configurations [256] of these. Typical,
well-understood arrangements of connectors and configurations are identified
as architectural styles [3], the patterns of software architecture, and events and
implicit invocation are among them. Luckham [242] presented the RAPIDE
language family. It includes event processing agents to encapsulate event pro-

230 6 Scoping

cessing rules behind input and output interfaces. The architecture definition
language can be used to arrange a number of these agents, similar to scope
graphs.

Sullivan and Notkin introduced mediators as a design approach that ex-
plicitly instantiates and expresses integration relationships and separates them
from component function [356]. In a less general approach, Evans and Dick-
man defined zones to support partial system evolution [130]. Barrett et al. [31]
proposed an event-based integration (EBI) framework that also covers scope
features like transmission policies, mappings, and hierarchical grouping.

As event services are the basis for application integration and evolution,
they cannot be expected to run in homogeneous environments. Heterogene-
ity issues can be handled in traditional request/reply systems, but they are
rarely considered in event systems [32]. Database research contributes to the
necessary syntactic and semantic data mappings [54, 80].

The field of coordination theory investigates techniques for managing the
dependencies between a set of active components [246]. It differentiates com-
putation from coordination [295] and localizes interaction in coordination me-
dia [64, 78]. Scopes event-based communication directly corresponds to this
viewpoint.

A key point of scoping is that it does not imply a specific implementation
per se. Depending on the intended semantics, adaptability, communication
efficiency, etc., alternative implementations are applicable. The system engi-
neer can incorporate existing work on group communication [319]. A wide
variety of work exists in this area that supports nested groups [42] and re-
liable communication [43, 213]. Peer-to-peer systems are another candidate
[311, 331, 374].

On lower layers, IP multicast is an obvious implementation candidate.
Deering and Cheriton [106] introduce multicast scope control with the help
of time-to-live fields (TTL). Administratively scoped IP multicast exploits hi-
erarchical administrative boundaries [259]. Multicast scopes bundle network
nodes, but do not support communication between scopes and require static
configuration within the IP network routers. Interestingly, such multicast
scopes allow us to implement publish/subscribe on IP multicast [26, 291, 357]
only within restricted parts of the scope graph.

7

Composite Events

For certain applications, the expressiveness of subscriptions used by the local
notification matching algorithms introduced in Chap. 3 is not sufficient. As a
remedy, a service for composite event detection facilitates the management of
a large volume of events by enabling subscribers to specify their interest more
precisely. The composite event service supports the advanced correlation of
events through the detection of complex event patterns. In this chapter we
describe composite event detection services for publish/subscribe systems.

We start with two application scenarios that benefit from composite event
detection in the next section. After that, we list the requirements for such a
detection service (Sect. 7.2) and introduce composite events in more detail in
Sect. 7.3. We then give an example of composite event detectors based on finite
state automata (Sect. 7.4.1) and a corresponding language (Sect. 7.4.2). Com-
posite events (CE) are detected by automata that support distribution and a
flexible time model for composite events. Event subscribers of the composite
event service use a core composite event language to specify event patterns
using a series of operators. We also gave examples for three higher-level spec-
ification languages for composite events that are domain-specific. Section 7.5
has a discussion of centralized and distributed architectures for composite
event detection. We also explain how distribution is controlled by distribution
and detection polices. The design space for distribution polices gives rise to
a variety of different strategies for distributing composite event expressions.
We conclude the chapter with an overview of other composite event detection
services in Sect. 7.6.

7.1 Application Scenarios

Many application scenarios for a publish/subscribe service benefit from a
general-purpose composite event service that enhances the expressiveness of
subscriptions. In the following we will consider how composite events can be

232 7 Composite Events

used in a ubiquitous computing environment and for network systems moni-
toring. For each application scenario, we provide two examples of composite
event subscriptions.

Office 1 Office 2

Meeting Room 1 Meeting Room 2

Office 3

A

A

A

A

A

A

A

A

A

A

TT

T T

T

T

T

Location Sensor (Active Bat)

Temperature Sensor

W

W

W

Whiteboard Sensor

L

L

L

L

L L

L

Lighting Sensor

DDD

D

D

D D

Door Sensor

Fig. 7.1. The Active Office with different sensors

The Active Office

One example of a ubiquitous computing environment is theActive Office, a
sensor-rich environment inside a computerized building (Fig. 7.1). In this
building, sensors that are installed in offices provide information about the
environment to interested devices, applications, and users. The Active Office
is aware of its inhabitants’ behavior and enables them to interact with it in a
natural way. The large number of sensors potentially produce a vast amount
of data. Building users wear Active Bats [5] that publish location information,
and static sensors gather data about doors, lighting, equipment usage, and en-
vironmental conditions. However, information consumers prefer a high-level
view of the primitive sensor data. Thus, a middleware used in this applica-
tion scenario has to cope with high-volume data and be able to aggregate and
transform it before dissemination. Composite event detection can help process
the primitive events produced by the large number of sensors and provide a
higher-level abstraction to users of the Active Office.

1. A user may subscribe to be notified when a meeting with at least three
people working in the messaging department takes place during working
hours in one of the meeting rooms.

2. Building services may be interested in composite events about a drop in
temperature by 15 degrees for at least 15 min in any occupied office.

7.1 Application Scenarios 233

P

P

P

P

SSS

P

P

P
P

P

P

P

P

P

P

Fig. 7.2. A system for monitoring faults in a network

Network Systems Monitoring

When monitoring the operation of networks [49], network entities publish
notifications that are related to fault conditions in the network, such as that
shown in Fig. 7.2. In practice, millions of events may be published daily in
respect of fewer than a hundred real faults that require human intervention.
The task of network systems monitoring can thus be simplified by expressing
patterns associated with real problems as composite event subscriptions.

1. The network management center may want to be notified when at least
five workstations in different parts of the network detect a degradation in
network bandwidth.

2. A network customer may be interested in composite events when none of
its load-balanced Web servers are available to the outside world unless the
downtime is part of scheduled maintenance work.

The XenoTrust Framework

Recent efforts, such as the XenoServer project [30], are building large-scale,
public infrastructures for general-purpose, distributed computing with re-
source management and sharing. In such environments, reputation informa-
tion about participants must be disseminated in a timely and scalable fashion
so that entities can make trust-dependent decisions. Composite events can
help participants receive notifications about changes in reputation of their re-
source providers or consumers, thus creating a global-scale trust management
system [225].

1. A user may want to be notified when the reputation of any of its currently
active resource providers drops below a certain threshold and there is an
alternative provider that is capable of taking over the current resource
contract.

234 7 Composite Events

2. A resource provider may submit a subscription causing a composite event
when a new client receives a low reputation rating from at least three
other providers within three days while requesting significant resources.

7.2 Requirements

From the above application scenarios for composite event detection, we derive
several requirements for a composite event detection service.

� The composite event service must be expressive enough when it comes to
the specification of composite events. Depending on the application do-
main, users will describe event patterns of varying complexity. The com-
posite event service must naturally capture common use patterns.

� The composite event service must be usable. From a user’s perspective,
it must be easy to express complex event patterns in the composite event
service. A too-expressive language for the specification of composite events
may lead to poorly usability.

� The composite event service must be efficient in terms of the user’s per-
formance goals, such as low detection delay or bandwidth consumption. In
particular, there must exist an efficient implementation technique for com-
posite event detectors in the service. Often, a distributed implementation
improves the service.

Obviously, there is a tension between these requirements: A very expressive
composite event service may not result in an efficient or usable system. In
contrast, a very efficient implementation of composite event detector may
lead to a limited system with low expressiveness. In the following, we will
describe a composite event service based on extended finite state automata
that attempts to balance these trade-offs.

7.3 Composite Events

A composite event service is based on the notion of a composite event. Com-
posite events prevent subscribers from being overwhelmed by a large number
of primitive event publications by providing them with a higher-level abstrac-
tion. A composite event is published whenever a certain pattern of events
occurs in the publish/subscribe system. This means that subscribers can sub-
scribe directly to complex event patterns, as opposed to having to subscribe
to all the primitive events that make up the pattern and then performing the
detection themselves.

Often a subscriber is interested in the primitive events that caused a com-
posite event. Therefore, when a composite event has been detected by the
composite event service, it is published and contains all primitive events that

7.4 Composite Event Detection 235

contributed to its occurrence. Since composite events are build from primitive
ones according to a well-defined set of rules, every composite event can be as-
signed a composite event type. It is built from the types of the included events
and the relation between them in the composite event subscription. Note that
primitive events can also be considered degenerate composite events, thus
unifying primitive and composite event types within the publish/subscribe
system.

Definition 7.1 (Composite Event). Every composite event c has a com-
posite event type τc and belongs to the composite event space C,

(c : τc) ∈ C,

A composite event type τc corresponds to a valid expression C in a composite
event language,

τc ≡ C.

A composite event c consists of an interval timestamp tc and a set of composite
subevents {c1, c2, . . . , ck},

c : τc = (tc, {c1, c2, . . . , ck}).

A composite event is associated with a timestamp tc that states when it
has occurred. In a distributed system, there is no concept of global time [227],
which is why the timestamps of composite events caused by distributed
sources can be captured more accurately using partially ordered interval
timestamps [238]. An interval timestamp has a start and end time so that
it can express the local clock uncertainty at an event broker and also the
duration associated with a composite event from the first contributing event
to the last. To capture the temporal relations between composite events, we
define a partial and a total order over interval timestamps that will be used
by the weak and strong transitions in the detection automata described in the
next section.

Definition 7.2 (Interval Timestamp). An interval timestamp tc,

tc = [tlc; t
h
c],

has a start time tlc and an end time thc with tlc ≤ thc . Interval timestamps are
partially-ordered (<) and totally-ordered (≺) as follows,

tc1 < tc2 � thc1
< tlc2

,

tc1 ≺ tc2 � (thc1
< thc2

) ∨ (thc1
= thc2

∧ tlc1
<tlc2

).

236 7 Composite Events

Higher-

Level

Languages

Core Composite

Event Language

Composite Event

Detection Automata

Expressiveness

Human

Specification

Decomposition

and Distribution

Execution

and Detection

Fig. 7.3. The components of the composite event detection service

7.4 Composite Event Detection

From the description of the application scenarios, it becomes clear that it
is challenging to design a single language for composite events that is both
expressive and intuitive to use by, say, a human user in the Active Office
environment. Therefore, an alternative approach is shown in Fig. 7.3, with
several specification layers that have different powers of expressiveness. At
the bottom layer, composite event detection automata provide maximum ex-
pressiveness and perform the actual detection of composite events described in
the next section. Composite event subscriptions specified in the core compos-
ite event language presented in Sect. 7.4.2 can be decomposed for distributed
detection. Finally, domain-specific higher-level languages constitute the top
layer and only expose a subset of the core language—supporting a simpler
definition of composite events for a given application domain. Expressions in
higher-level languages are automatically compiled down to composite event
detection automata by the composite event service.

7.4.1 Composite Event Detectors

In this section, we describe a composite event service that uses composite
event detection automata, which are finite state automata [193] that are ex-
tended with support for temporal relationships and concurrent events, to
analyze event streams. Basing composite event detection on extended finite
state automata has several advantages. First, finite state automata are a well-
understood computational model with a simple implementation. Second, their
restricted expressive power has the benefit of limited, predictable resource us-
age, which is important for the safe distribution of detectors in the publish/
subscribe system. Third, regular expression languages have operators that are
tailored toward the detection of patterns, which avoids the risk of redundancy
or incompleteness when defining a new composite event language. Finally,

7.4 Composite Event Detection 237

complex expressions in a regular language may easily be decomposed for dis-
tributed detection.

A detection automaton consists of a finite number of states and transitions
between them. To ensure that each state only has to consider certain events
for transitions, it is associated with an input domain Σ, which is a generaliza-
tion of the concept of an input alphabet in traditional finite state automata.
An input domain is a collection of describable event sets A, B, C, . . ., which
correspond to sets of events that are matched by a primitive or composite
event subscriptions. In a given state, only these events need to be considered
by the automaton because other events are not relevant for the composite
event being detected. In practice, the automaton issues subscriptions for all
describable event sets in the input domain of a state. The resulting incoming
events are ordered according to the total timestamp order (≺) (see Def. 7.2)
into an event input sequence and are consumed by the automaton sequentially.

S0

Σ0

Initial state

S1

Σ1

Ordinary state

A;B

Σ2

Generative state

T1

Σ3

Generative
time state

(1min)

Fig. 7.4. The states in a composite event detection automaton

As shown in Fig. 7.4, a detection automaton has four types of state. Detec-
tion starts in a unique initial state and continues through a series of ordinary
states. A generative state is an accepting state that also publishes the com-
posite event that has been detected by the automaton.Generative time states
deal with timing by publishing an internal time event when a timer (e.g.,
1min) associated with the state expires. The automaton treats time events
like regular events, but they are not visible externally.

S1

Σ1

S2

Σ2

S3
A B C

Fig. 7.5. The transitions in a composite event detection automaton

Each state can have two forms of outgoing transition that are labeled with
the describable event sets of the events that trigger them. Note that since
describable event sets can be defined by composite event subscriptions, our
automata support the detection of event patterns involving concurrency. In
the sample automaton in Fig. 7.5, the transition between states S1 and S2 is

238 7 Composite Events

a weak transition that requires the timestamps of the events from the describ-
able event sets A and B to be partially ordered (<). A strong transition, such
as between states S2 and S3, mandates a total ordering (≺) between events
from B and C. Strong and weak transitions therefore allow the expression
of different temporal orderings between events. When an event that is part
of the input domain but without a matching outgoing transition is received,
the detection in the automaton fails. Several matching transitions and empty
ε-transitions are followed nondeterministically. Although the following presen-
tation of the detection automata uses nondeterminism, standard techniques
can be used to convert them into deterministic automata [193].

S0

A ∪ B

S1

ε

S2

ε

S3

(5min)

C ∪ {t}
S4

A

B

ε

ε

C

Fig. 7.6. A composite event detection automaton

In Fig. 7.6, we give an example of a composite event detection automaton.
This automaton starts in state S0 with an input domain of A∪B. A strongly
followed event from A causes a transition to state S1; a weakly followed event
from B leads to state S2. Once the generative time state S3 is reached, a timer
starts that will expire after 5 min, publishing time event t. Since this event is
part of the input domain for state S3 but there is no corresponding outgoing
transition, detection will fail unless an event from C is received before the
timer expires, triggering a transition to state S4. The generative state S4

signals the successful detection of a composite event with a composite event
publication.

7.4.2 Composite Event Language

In a composite event detection service, composite event subscriptions are ex-
pressed in a composite event language. Expressions in this language define the
set of composite events in which an event client is interested. In this section
we describe a core composite event language that corresponds to the extended
finite state automata introduced in the previous section. We present the lan-
guage’s operators and the construction of corresponding composite event de-
tection automata from subautomata. Some operators in this language, namely
concatenation, alternation, and iteration, are influenced by those found in
regular languages. However, other operators reflect the special features of our
detection automata. We finish with examples of core language expressions

7.4 Composite Event Detection 239

and discuss three higher-level languages that can be built on top of the core
language for domain-specific composite event specification.

Atoms. [A, B, C, . . . ⊆ Σ0]

S0

Σ0

A,B, C, . . .

Atoms detect individual events in the input stream of all events that are
in the input domain Σ0. Here only events in the describable event sets A ∪
B ∪ C ∪ . . . are matched and cause a transition to a generative state. Other
events in Σ0 result in failed detection, and events outside Σ0 are ignored. The
trivial atom [A ⊆ A] is abbreviated as [A].

Negation. [¬E ⊆ Σ] � [Σ\E ⊆ Σ]

Negation is shorthand for an atom that matches all events in the input do-
main Σ except for events in the negated describable event set E. Note that
this semantics differs from more powerful negation operators found in other
event algebras.

Concatenation. C1C2

S0 S0 S0

C1 C2

εε ε
C1 C2 C1C2

The concatenation operator detects a composite event matching expres-
sion C1 with a timestamp that weakly follows the timestamp of a composite
event matching C2. The detection automaton for concatenation is constructed
by connecting the generative state of C1 with a weak ε-transition to the initial
state of C2.

Sequence. C1; C2

S0 S0 S0

C1 C2

εε ε
C1 C2 C1;C2

The sequence operator detects an event of type C1 strongly followed by
an event of type C2. Unlike concatenation, this means that the interval time-
stamps of the events matching C1 and C2 must not overlap. The construction of
the sequence detection automaton uses a strong transition for the ε-transition
between the two subautomata.

240 7 Composite Events

Iteration. C ∗
1

S0 S0
ε

ε

C1

Any number of occurrences of C1 are matched by the iteration operator. Its
detection automaton creates a loop from the generative state of C1 back to its
initial state. If C1 receives an event that causes it to fail, then the composite
expression C ∗

1 also fails.

Alternation. C1 |C2

S0

S0

S0

ε

ε

ε

ε

C2

C1

C2

C1

C1|C2

This composite event expression matches if either C1 or C2 is detected.
The new automaton has an initial and a generative state with ε-transitions to
both of the two subautomata introducing nondeterministic behavior.

Timing. (C1, C2)T1=tspec

S0 S0 S0

Σ0∪{T1} Σ1∪{T1}

C1 C2

εε ε
T1

Timing relationships between composite events are supported by the tim-
ing operator that can detect event combinations within, or not within, a given
time interval. This operator generates an event of type T1 at the relative
or absolute time specification tspec after a composite event of type C1 has
been detected. The second expression C2 may then use T1 in its specifica-
tion for atoms and input domains. Since time events are only locally visible,
automata C1 and C2 must reside on the same node.

7.4 Composite Event Detection 241

Parallelization. C1 ‖C2

S0

C1‖C2
C1

C2

C2

C1

S0 S0

C1 C2

The final operator is parallelization and allows detection of two composite
events C1 and C2 in parallel, only succeeding if both are detected. Unlike alter-
nation, any interleaving of the two composite events is permitted. The detec-
tion automaton for parallelization is constructed by creating a new automaton
that uses the composite events detected by C1 and C2 for its transitions.

Examples

The following examples illustrate valid expressions in the core composite event
language. Let the describable event set A represent events corresponding to
the subscription that “Alice is in the office”, let Ā be “Alice has left the
office”, let B be “Bob is in the office”, and let P be “anyone is in the office”,
as detected by an Active Bat.

1. [A];[B]. Alice enters the office followed by Bob.
2. [A ⊆ {A, B}]. Alice enters the office before Bob.
3. ([A], [B⊆{B, T1}])T1=1h. Alice enters, and Bob follows within 1 h.
4. [Ā] [¬A⊆P] [A]. Someone else enters the office when Alice is away.

Higher-Level Composite Event Languages

We can now use the core composite language as a basic building block for
other composite event detection languages. In general, when designing a lan-
guage for composite event detection, we have two conflicting requirements. On
one hand, the language should be machine processable so that it supports the
efficient creation of composite event detection automata and the automatic
decomposition of expressions for distributed detection. On the other hand,
the syntax and semantics of the language should be high-level and intuitive,
facilitating the task of writing expressions by programmers or end users. This
means that the language should be human processable. To unify these two
requirements, one can define higher-level composite event languages for the
specification of composite events in a natural and domain-specific way. Expres-
sions from higher-level languages are then translated automatically into the
core language described above. The following are three possible higher-level
composite event languages.

242 7 Composite Events

Pretty Language

The “pretty” language has a more verbose syntax compared to the core lan-
guage and resembles rule-based specification languages found in active data-
base systems. It has a redundant set of operators, and its specifications are
close to English language statements. A composite event specification, such
as

Event A followed by Event B within 1 hour,

makes it easier for nonprogrammers to use composite events.

Programming Language Binding

This binding provides programming language-specific access to composite
event specification. It avoids having to deal with a special composite event
language by allowing the construction of composite event expressions from
method calls, such as

eventA.after(eventB.repeated(3)).

At runtime these method calls are translated into core composite event lan-
guage expressions for detector construction.

Graphical Composition Model

In a ubiquitous computing environment, a user-friendly way for composite
event specification is needed that makes it easy for users to interact with the
system at runtime. Composite events, such as “Turn the office light out after
7 pm when the office is empty”, can be described using a graphical composition
tool that is based on a simple model familiar to users. For example, composite
event streams could be visualized as water flows with different forms of piping
for the construction of composite event expressions [194].

7.5 Detection Architectures

In this section we present an architecture for a composite event service. The
design requirements for the service can be derived from the above application
scenarios. In general, the service should be applicable to a wide range of pub-
lish/subscribe designs and therefore should make few assumptions about the
underlying publish/subscribe implementation. Ideally, it should only rely on
standard interfaces provided by the publish/subscribe system and not require
special extensions to the event model. For example, content-based routing
and filtering support should be exploited for the dissemination of composite
events. To satisfy the requirement of scalability, composite event detection
can be distributed, decomposing complex composite event subscriptions into
subexpressions and detecting them at different nodes in the system.

7.5 Detection Architectures 243

Network Transport

Event-based Middleware

Composite Event Service

Application

sub

sub(CE)

pubnotifysub pubnotify

Fig. 7.7. The architecture for the composite event detection service

CED

Wide-Area
Network

P1

P2
P3

P4

P5

S1 S2 S3

Low-Bandwidth
Network Link

High-Bandwidth
Network Link

Fig. 7.8. Illustration of centralized composite event detection

The architecture for a general composite event service is shown in Fig. 7.7.
The service uses the event client API of the publish/subscribe system so that
composite event detectors can subscribe to primitive events and detect the
occurrence of composite events. The publish/subscribe system is also used
to coordinate the detection of decomposed composite event expressions and
publish detected composite events. Note that the publish/subscribe system
does not need to be aware of composite event types because composite event
publications can be disguised using new primitive event types. Content-based
routing and filtering of events is carried out by the publish/subscribe system.
An application with event clients can either use the composite event service to
submit composite event subscriptions and cause the instantiation of detectors,
or interact directly with the publish/subscribe system for normal middleware
functionality.

7.5.1 Centralized Detection

The most straightforward architecture for a composite event detection service
is centralized, as shown in Fig. 7.8. In a centralized architecture, a single
composite event detector (CED) is subscribes to all primitive events that may
contribute toward the detection of composite events. When a composite event

244 7 Composite Events

CED1

CED2

CED3

CED4

Wide-Area
Network

P1

P2 P3 P4 P5

S1 S2 S3

Low-Bandwidth
Network Link

High-Bandwidth
Network Link

Fig. 7.9. Illustration of distributed composite event detection

has been detected, a new composite event notification is published by the
detectors.

An obvious disadvantage of a such an approach is that the centralized
event detector can become in a bottleneck in a large-scale system. This may
happen if the network bandwidth or processing resources at the detection
site are insufficient to keep up with the stream of incoming primitive events.
In addition, a centralized detector wastes network bandwidth because many
primitive events are sent to the detector over the network only to be discarded
there. A distributed implementation of the composite event detection service
is more complex but has the advantage that primitive events can be discarded
close to event publishers.

7.5.2 Distributed Detection

A composite event service can also implement the detection of composite
events in a distributed fashion. This is achieved by decomposing expressions
from the composite event language into subexpressions that are detected by
separate detectors distributed throughout the system. The support for the
decomposition of composite event expressions allows popular subexpressions
to be reused among event subscribers, thus saving computational effort and
network bandwidth. In particular, the amount of communication is reduced
because detectors for subexpressions can be positioned close to primitive event
publishers that produce the events necessary for detection. Subexpressions can
also be replicated for load balancing and increased availability, and compu-
tationally expensive expressions can be decomposed to prevent any detector
from becoming overloaded.

A system that benefits from distributed composite event detection is shown
in Fig. 7.9. The composite event detectors CED1−4 for subexpressions are lo-
cated close to the primitive event publishers P1−5 that publish events at a
high rate and therefore must be connected through high-bandwidth network

7.5 Detection Architectures 245

links. Low-bandwidth links in a wide-area network are used to connect the
composite event subscribers S1−3. The traffic on these network links is signif-
icantly lower because fewer event publications need to be transmitted after
composite event detection. Since each detector subscribes to at most two event
streams, no detector can get overwhelmed by the event rate.

S0

{B} {P}

B; P
B P

C1

S0

{[B];[P], M}

C1|M
[B];[P], M

C2

[B];[P]

Fig. 7.10. Two cooperating composite event detectors for distributed detection

The detection automata described earlier directly support distribution be-
cause they can subscribe to composite events detected by other automata in
the publish/subscribe system. In Fig. 7.10 the two automata C1 and C2 co-
operate in order to detect the composite event expression ([B];[P]) | [M]. The
subautomaton C1 detects the expression [B];[P], which is then used by C2 in
the event input domain and transition of state S0. When this composite event
is received, it causes a transition to the generative state S1. Next we present
the capabilities of mobile composite event detectors.

Mobile Composite Event Detectors

A mobile composite event detector implements the distributed detection of
composite events. Mobile composite event detectors are agentlike entities co-
hosted at event brokers that encapsulate one or more composite event detec-
tion automata for expressions from the core composite event language. They
can subscribe to event publishers (and other mobile detectors) and publish the
composite events detected by their automata. In addition, a mobile detector
can move from one event broker to another in order to optimize the detection
of composite events in the system.

When an event subscriber submits a new composite event subscription,
a mobile detector is instantiated at an event broker and is then responsible

Construction DestructionControl

Fig. 7.11. The life cycle of a mobile composite event detector

246 7 Composite Events

for the detection of the new expression. The life cycle of a mobile compos-
ite event detector is summarized in Fig. 7.11. In the construction phase, the
mobile detector establishes the detection of the new composite event sub-
scription by cooperating with other existing mobile detectors. It then enters
a control phase, during which the detection is optimized by adapting to dy-
namic changes in the environment and ensuring that it maintains compliance
with distribution and detection policies described below. Finally, a destruction
phase is reached when the mobile detector is no longer required because all
event clients have unsubscribed or other detectors have made it redundant.

While in its control phase, a mobile detector can carry out several actions
that are governed by distribution policies explained in the next section.

1. It can instantiate new automata for the detection of new composite event
expressions or any subexpressions.

2. For distributed detection, it can decompose composite event expressions
and delegate detection to other, already existing mobile detectors.

3. The mobile detector can migrate to another event broker that, for ex-
ample, is closer to the event publishers that the detector has subscribed
to.

4. Finally, it can destroy any of its composite event detection automata that
are no longer required.

Distribution Policies

A remaining difficulty is the decision on an optimal strategy for the decom-
position of composite event expressions and the placement of composite event
detectors in the system. This is complicated by the fact that the require-
ments for distributing detectors are potentially conflicting. For example, to
minimize usage of network bandwidth, existing detectors should be reused
for subexpressions as much as possible. However, if low notification latency
is important, detectors should be replicated in various parts of the network,
thus leading to increased bandwidth consumption. An optimal solution is a
trade-off that takes the static and dynamic characteristics of the application
and the network into account.

To make these trade-offs explicit, we introduce the notion of a distribution
policy, which is a set of heuristics that governs the actions of mobile compos-
ite event detectors in the control phase. Each composite event subscription
submitted to the composite event service includes its own distribution policy
for detection, depending on the application requirements of the event sub-
scriber. During their lifetime, mobile composite event detectors attempt to
comply with their distribution policy. Some distribution policies may require
the aggregation of network or event broker statistics by mobile composite
event detectors, such as communication latency or computational load. When
defining distribution policies, three independent dimensions can be identified
that help restrict the design space, as shown in Fig. 7.12.

7.5 Detection Architectures 247

D
e
c
o
m

p
o
s
it
io

n

N
o
n
e

F
u
ll

None Full

S
u
b
sc

ri
b
e
r

P
u
b
lis

h
e
r

N
o
n
e

Reuse
L
o
ca

lit
y

Fig. 7.12. The design space for distribution policies

Decomposition. The degree of decomposition of the composite event expres-
sion must be stated in the policy (with optional hints from the applica-
tion). In order to reuse existing detectors in the system, an expression may
have to be decomposed into subexpressions. Decomposition may increase
the reliability of detection if multiple detectors are detecting overlapping
expressions. For load-balancing reasons, a complex expression may be de-
composed into manageable subexpressions. The degree of decomposition
ranges from no decomposition to full decomposition, where every possi-
ble subexpression is factored out. Some policies allow decomposition only
when there already exist detectors that can be reused for a subexpression.

Reuse. This dimension specifies to what extent already existing detectors are
reused for a new composite event expression or any of its subexpressions.
Not reusing existing detectors can result in more reliability, whereas max-
imum reuse will save bandwidth and computational effort. In situations
in which detection latency is important, only local detectors that are in
close proximity should be reused.

Locality. The location of new mobile composite event detectors must be
determined. For certain scenarios, bandwidth usage can be reduced by
moving detectors as close to primitive event sources as possible. Primitive
events that constitute a composite event may be of interest only to the CE
detector and should therefore not be widely disseminated throughout the
entire system unnecessarily. This is called publisher locality. The opposite
approach is to put new CE detectors close to application components that
subscribe to them to improve reliability and detection latency. This leads
to a policy with subscriber locality.

248 7 Composite Events

Table 7.1. Example of five distribution policies

Policy Name Decomposition Reuse Locality

Minimum Latency None With locality only Subscribers
Minimum Bandwidth For reuse only Max Publishers
Minimum Impact For reuse only Max None
Minimum Load Max Max None
Maximum Reliability For reuse only At least 2 None

In practice, only certain combinations of these three dimensions will result
in useful distributions policies. Table 7.1 summarizes five example policies that
each attempt to optimize a different metric in the composite event framework.

Minimum Latency Policy. The detection latency is minimized by placing
new detectors as close to subscribers as possible. Composite event expres-
sions should not be decomposed into subexpressions as this would increase
the detection latency. Similarly, an existing detector should only be reused
if it is close to the subscriber and detects exactly the required composite
events.

Minimum Bandwidth Policy. Bandwidth consumption is minimized by
placing the detectors close to the primitive event publishers, leveraging
the filtering aspect of composite event detectors. In addition, existing
detectors should be used as much as possible so that no new traffic is
generated. The reuse of subexpressions may lead to decomposition.

Minimum Impact Policy. This policy minimizes the impact that new de-
tectors have on the entire system. This involves minimizing bandwidth,
as before, but also means that computational load should be spread out
evenly among detectors. Therefore, new detectors do not have locality,
but existing detectors should be maximally reused.

Minimum Load Policy. The fourth policy minimizes the load on composite
event detectors by decomposing an expression into the smallest possible
subexpressions and distributing them evenly among detectors in the sys-
tem. It attempts to reuse already existing detectors.

Maximum Reliability Policy. The last policy makes the composite event
detection more resistant to node failure by instantiating redundant de-
tectors for extra reliability. Old detectors are reused only when at least
two already exist; new detectors are created otherwise. (This “at least 2”
partial reuse policy lies between no reuse and full reuse in Fig. 7.12). To
limit extra points of failure, detectors are decomposed for reuse only, and
no locality restrictions are imposed on new detectors.

Note that a distribution policy is associated with a particular CE expres-
sion, so that every mobile CE detector can have its own policy. This enables
event subscribers to specify a desired distribution policy at subscription time
depending on application requirements. The effectiveness of distribution poli-

7.5 Detection Architectures 249

cies can be enhanced when mobile CE detectors are able to obtain network-
and system-specific parameters such as the current load of a broker node or the
communication latency to a particular publisher. A mobile CE detector may
use this information to optimize detection in compliance with its distribution
policy.

Detection Policies

In a distributed system, events from different event sources travel along sep-
arate network routes to a mobile CE detector. Even if we assume that the
network itself does not reorder events, out-of-order arrival of events at the de-
tector can occur because of the different associated network delays. Whenever
a new event arrives, it has to be inserted at the correct position in the totally
ordered event input stream before the stream is fed into the automaton.

The problem is to decide when the next event in the event input stream can
be safely consumed by the automaton without risking that an event with an
older timestamp is still being delayed by the network. Premature consumption
could lead to an incorrect detection or nondetection of a composite event.
Thus, each CE subscription is annotated with a detection policy that specifies
when a detector can consume an event from an event input stream.

Best-Effort Detection. A best-effort detection policy states that events are
consumed from event input streams without delay. Whenever an event is
available, it will cause a state transition (or failure) in the automaton.
Although this policy may lead to incorrect detection, it can be applied by
applications that are sensitive to detection delay and are willing to ignore
false positives.

Guaranteed Detection. Under a guaranteed detection policy, an event is
consumed from an event input stream only once it has become sta-
ble1 [238]. The consumption of only stable events ensures that no spurious
composite events are detected. In our model, we assume that the network
itself does not reorder events autonomously so that events coming from
the same event source can be expected to arrive in chronological order at
a detector. A detector knows that an event is stable and can be consumed
after another event with a later timestamp from the same event source has
been inserted in the event input stream. An event source that does not
publish events at a high enough frequency can publish dummy heartbeat
events that are used to “flush the network”.

In an asynchronous distributed system, a guaranteed detection policy po-
tentially introduces an unbounded delay at the detector. For instance, an
event source might fail or decide not to cooperate by not sending heartbeat
events. This could prevent the detector from consuming any events of that
1 An event is stable if there is no other event with an earlier timestamp in the system

that should be part of this event input stream and should thus be consumed
instead.

250 7 Composite Events

type. To avoid this problem, we are currently investigating a probabilistic sta-
bility metric. As opposed to a simple binary stability measure, a detector
attempts to model the probability that a particular event in an event input
stream is stable and the event is only consumed if its stability metric is above
a given threshold.

7.6 Further Reading

In this section we provide an overview of related work on composite event de-
tection. A more detailed description of distributed composite event detection
can be found in [314]. Composite event detection first arose in the context
of triggers in active database systems. Other related application areas are
network systems monitoring and the interaction with ubiquitous computing
environments. In general, distributed publish/subscribe systems leave the de-
tection of composite events to the application programmer. An exception is
Siena (described in Sect. 9.3.2), which includes restricted event patterns with-
out defining their precise semantics or giving a complete pattern language. A
service for the detection of composite events using Corba is presented by
Liebig [238]. Similar to the described composite event service, it uses interval
timestamps to make the uncertainty of timestamps in a distributed system
explicit. The notion of event stability is introduced to handle communication
delays. A system and language for complex event processing is proposed by
Luckham [242]. The Rapide language [243] supports the specification of event
patterns in areas such as process management, network monitoring, and enter-
prise management. Event patterns are detected using event processing agents
that have access to event histories and mine the event stream.

Active Database Systems

Composite event detection in active database systems is usually not dis-
tributed. Early languages for triggers follow an event–condition–action (ECA)
model [105, 304] and resemble database query algebras with an expressive,
yet complex, syntax. In the Ode object database [173], composite events are
specified with a regular language and detected using finite state automata.
Equivalence between the language and regular expressions is shown. Since
a composite event has a single timestamp—that of the last primitive event
that led to its detection—a total event order is established that does not deal
with time issues. Composite event detectors based on Petri nets [307] are used
in the SAMOS database [170]. Colored Petri nets can represent concurrent
behavior and store complex event data during execution. A disadvantage is
that even for simple composite event expressions, Petri nets quickly become
complicated. SAMOS does not support distributed detection and has a sim-
ple time model. The motivation for Snoop [74] was to design an expressive
composite event language with temporal support. A detector in Snoop is a

7.6 Further Reading 251

tree that mirrors the structure of the composite event expression. Its nodes
implement language operators and conform to a given consumption policy. A
consumption policy determines the semantics of operators by resolving the
order in which events are consumed from an event history. For example, un-
der a recent consumption policy only the event that most recently occurred
is considered and others are ignored. Detection then propagates up the tree
with the leaves being primitive event detectors. A drawback of this approach
is that detectors are Turing-complete, which makes it difficult to estimate
their resource usage in advance. In addition, consumption policies influence
the semantics of operators in a nonintuitive and operator-dependent way. For
simplicity we have decided to only support a chronicle consumption policy.

Distributed Systems Monitoring

Similar to network systems monitoring in Sect. 7.1, composite events can
be used for the monitoring of distributed systems. Schwiderski presents a
distributed composite event monitoring architecture [339] based on the 2g-
precedence time model. This model makes strong assumptions about the clock
granularity that are not valid in large-scale, loosely coupled distributed sys-
tems. The composite event language and detectors are similar to Snoop and
suffer from the same shortcomings. The work addresses the issue of delayed
events in distributed detection by evaluation policies. Asynchronous evalua-
tion allows a detector to consume an event without delay, whereas synchronous
evaluation forces it to wait until all earlier events have arrived, as indicated by
a heartbeat infrastructure. Although the detection can be made distributed,
the placement of detectors in the system is left to the user. The GEM sys-
tem [250] has a rule-based event monitoring language. It also follows a tree-
based approach and assumes a total time order. Communication latency is
handled by annotating rules with tolerable delays, which may not be feasible
in an environment with unpredictable delays, such as a large-scale distributed
system.

Ubiquitous Systems

Research efforts in ubiquitous computing have resulted in composite event
languages that are intuitive to use by users of environments such as the Ac-
tive Office. The work by Hayton [189] on composite events in the Cambridge
Event Architecture defines a language that is targeted at nonprogrammers.
Push-down finite state automata are used to detect composite events, but
the semantics of some of the operators is nonintuitive. Although detection
automata can use composite events for input, distributed detection is not
handled explicitly and only scalar timestamps are used in the time model.

8

Advanced Topics

In this chapter we provide an overview of several areas of event-based systems
that are still the focus of ongoing research. The entire space is too vast to be
covered in this book, so we have chosen five topics that are of particular inter-
est to designers of event-based systems instead. In Sect. 8.1 we discuss security
in a publish/subscribe system and describe a secure publish/subscribe model
that can be used as a foundation for access control using events. Section 8.2
investigates the issue of fault tolerance in event-based systems. The goal is to
build systems that are robust in the face of failure, for instance, by designing
self-stabilizing routing algorithms that are guaranteed to reach a correct state
after a finite number of steps. The issue of congestion in publish/subscribe
systems is addresses in Sect. 8.3. Here, we give an example of two congestion
control algorithms that are targeted at the asynchronous, decoupled commu-
nication in a network of event brokers. Finally, in Sect. 8.4 we focus on mobility
in event-based systems. The loose coupling of clients in a publish/subscribe
system has natural advantages when applied to mobile clients that migrate
through the systems, deattaching and reattaching at different points in the
network.

8.1 Security

Security has received surprisingly little attention in publish/subscribe systems
so far. Unlike composite event detection, it affects many different parts of a
publish/subscribe system. In this chapter, we provide an example of a security
service [34] for a distributed event system that uses role-based access control
to provide three mechanisms: restrictions on the interaction of event clients
with the publish/subscribe system, trust levels for event brokers, and the en-
cryption of event data to control information flow in the publish/subscribe
system on a fine-grained basis. An advantage of this approach is that it does
not require separation of the overlay broker network into distinct trust do-
mains but instead any broker can handle any potentially encrypted event.

254 8 Advanced Topics

The described security service is influenced by the security needs of two
applications scenarios discussed in the next section. In Sect. 8.1.2 we define the
requirements of a security service, showing how publish/subscribe communi-
cation impacts on security. After briefly summarizing existing access control
techniques in Sect. 8.1.3, we introduce the secure publish/subscribe model
implemented by the service in Sect. 8.1.4. It includes boundary access con-
trol using restrictions, different levels of event broker trust, and encryption of
event attributes. We finish the overview of related work on security in publish/
subscribe systems in Sect. 8.1.5.

8.1.1 Application Scenarios

In this section we look at two application scenarios and examine how they mo-
tivate the need for security in a publish/subscribe system. When considering
security, we focus on issues of access control to the system and confidentiality
of the event data being disseminated in the system.

The Active City

The Active City is an extension of theActive Office environment introduced
in Sect. 7.1 to a geographically larger system covering an entire city. In an
Active City, different city services, such as police and fire departments, ambu-
lances, hospitals, and news agencies, cooperate using a shared event system for
information dissemination. Since these city services are under separate man-
agement and have individual security implications, the event system must be
flexible enough to accommodate a wide range of security policies and mecha-
nisms to enforce them.

An excerpt of a sample event type hierarchy with event attributes that
could be employed by cooperating services in an Active City is shown in
Fig. 8.1. Information about a road traffic accident reported to the police in an
AccidentEvent should be visible to the emergency services so that an ambu-
lance can be dispatched if there are any casualties, but only anonymized data
should be passed on to a news agency. The challenge is that some information
may flow freely through the Active City, whereas other information has to
be closely controlled. A simple solution would be for each city service to op-
erate a separate, trusted event-based middleware deployment with controlled
gateways between networks, forming an event federation [192]. However, this
would result in complex policy management at the gateways, a significant
waste of resources due to redundancy, and an increased event notification de-
lay between services. It would also prevent event clients from one domain using
the infrastructure of another while roaming. For this application scenario, a
more complex solution is required.

8.1 Security 255

EmergencyEvent
location
severity
isDrill

��

FireEvent
buildingType
enginesPresent

�
FireAlarmEvent
detectorType

PoliceEvent
polCode
source

��

AccidentEvent
roadType
casualties
specialHazard

BurglaryEvent
zoning

isa isa

isaisa

Fig. 8.1. An event type hierarchy for the Active City

News Story Dissemination

In an Internet-wide system for the dissemination of news stories, it is im-
portant that customers only receive the service that they are paying for. For
example, a customer who has subscribed to a premium service should receive
up-to-date news bulletins without delay, as opposed to a standard service sub-
scriber that can only see events relating to older news reports. Moreover, sub-
scribers should only be allowed to subscribe to the news topics that they are
entitled to. To ensure this, it is not sufficient to merely rely on subscriptions
in the publish/subscribe system because event brokers that perform content-
based routing of news events may be under the administration of customers
and thus not trusted to honor subscriptions correctly. Using partially trusted
event brokers for event dissemination in customer networks is otherwise in
the interest of news agencies because it reduces the resource requirements of
their middleware deployments. When the service subscription of a customer
changes, the event system should quickly adapt to the change in policy.

8.1.2 Requirements

Security mechanisms for an event system differ from traditional middleware se-
curity because of publish/subscribe communication semantics. Many-to-many
interaction in a publish/subscribe system mandates a scalable access control
mechanism. The anonymity of the loose coupling between event publishers
and subscribers makes it difficult to use standard security techniques, such
as access control lists, since principals can often not be identified beforehand.
Content-based routing of events conflicts with the encryption of data because

256 8 Advanced Topics

an event broker must have access to the content of an event for its routing
decision [390]. Any access control mechanism should incur little overhead at
publication time because event publications may have a high rate and thus
routing should be carried out as quickly as possible.

Since event clients are not trusted, a security service should include perime-
ter security to control access of event clients to the publish/subscribe system.
As seen in the application scenarios, event brokers are trusted to cooperate
for the sake of event dissemination, but they may not be allowed to see all
event data. Different levels of event broker trust are necessary and must come
with mechanisms to remove compromised event brokers. The confidentiality
of data stored in event attributes must be preserved even in the light of event
matching and content-based routing. At the same time, as much as possible
of the overlay broker network should be used for event dissemination so that a
single infrastructure for both public and private information exists in order to
improve efficiency, administerability, and redundancy in the publish/subscribe
system.

8.1.3 Access Control Techniques

In this section, we describe different access control techniques and highlight
their applicability to publish/subscribe communication. We assume that the
system consists of a set of objects, a set of principals, and a set of permissions.
The goal of an access control scheme is to define what principals have what
permission to access what objects, as shown below. In a publish/subscribe
context, principals correspond to event clients, objects are the event noti-
fications, and permission are the standard operations, such as publish and
subscribe.

Principals Permissions Objects

Our discussion will focus on discretionary access control, where users them-
selves set access control rights, as opposed to mandatory access control, in
which rights are set by a centralized authority for the entire system. Dis-
cretionary access control is more suitable for large-scale distributed systems
because it does not depend on a centralized entity.

Access Control Lists

A simple way to implement discretionary access control are access control
lists (ACLs). An ACL is associated with every object and specifies the access
permissions of principals to that object. For example, an ACL for file foo may
state that the file is writable and readable by user Alice and only readable by
user Bob.

A drawback of ACLs is that they create a direct mapping between objects
and principals. This is undesirable in a publish/subscribe context, in which

8.1 Security 257

the identities of event publishers and event subscribers are not globally known.
In addition, events in a publish/subscribe system are short-lived, which makes
them bad candidates to manage access permissions.

Capabilities

The opposite approach to an ACL is a capability that stores access permissions
with the principal instead of the object. When a principal wants to access a
given object, she must present the capability with the appropriate permissions
first. For example, the capability owned by user Alice may state that she
can read and write file foo and only read file bar. Of course, this means that
capabilities need to be protected from tampering by principals through digital
signatures or secure storage in memory.

Capabilities are more compatible with publish/subscribe communication
because event clients manage their own capabilities. However, they are harder
to manage because access permissions cannot easily be revoked. In addition,
capability-based access control is often not scalable because principals may
end up with a large number capabilities when the set of objects in the system
changes dynamically. Finally, it also suffers from the problem that both prin-
cipals and objects need to know about each other, which is not the case in a
publish/subscribe system.

Role-Based Access Control

An access control model that extends capabilities and attempts to address
some of its short-comings is role-based access control model (RBAC) [332].
RBAC simplifies security administration by introducing roles as an abstrac-
tion between principals and permissions, as shown below. Roles permit prin-
cipals and permissions to be grouped intuitively in the system and addresses
the anonymity of event clients in an event-based middleware. This grouping
increases scalability of the access control mechanism because there are fewer
roles than principals and permission in the system. The access control policy
for the system focuses on the concept of a role, which is long-lived. To obtain
privileges, a principal such as an event publisher or subscriber presents cre-
dentials that allow it to acquire a role membership that is associated with the
desired permissions. In the rest of this chapter, we describe an access control
model for publish/subscribe communication that is based on RBAC.

Principals Roles Permissions Objects

In our secure publish/subscribe model, we assume the decentralized im-
plementation of a RBAC scheme, such as Open Architecture for Secure Inter-
working Services (OASIS) [22]. OASIS includes an expressive policy language
to specify rules for role acquisition. It uses a session-based approach with

258 8 Advanced Topics

B1

B3

B2

B5

B4

P1

S1

cred1

cred2OASIS

OASIS

PoliceEvent

EmergencyEvent

Permitted Event Type

police trainingtraining

Key-Class

police

fire

fire

Fig. 8.2. Illustration of the secure publish/subscribe model

event communication to revoke currently active roles of principals in a timely
manner after prerequisite credentials were revoked. Credentials in the OASIS
implementation are protected with X.509 certificates [207] for authentication
and proof of role membership.

8.1.4 Secure Publish/Subscribe Model

In this section we describe a secure publish/subscribe model for an event
system. As a general design philosophy, the model couples access control with
types of events. If the event space is already structured into event types, it
is intuitive to leverage this for the specification of access control policy, but
more fine-grained specification in terms of event attributes and content-based
subscriptions is also supported by the model.

An example of an distributed publish/subscribe deployment with event
brokers that implement the secure publish/subscribe model is given in Fig. 8.2.
There are three mechanisms in the model to accomplish access control. First,
boundary access control to the middleware, as described in the next sec-
tion, is achieved by controlling access of event clients to local event bro-
kers with an OASIS policy. Services requested by event clients can either
be granted, rejected, or partially granted after imposing restrictions. As ex-
plained in Sect. 8.1.4, the second mechanism assigns an event broker to a
particular trust category that prescribes the types from the event type hier-
archy that the event broker is permitted to handle. Finally, confidential event
attributes in event notifications are encrypted, limiting access to those at-
tributes. A single event publication can contain both public and private data.
Content-based routing decisions on encrypted event attributes can only be
carried out by event brokers that possess the necessary decryption key, other-
wise events need to be flooded. Event attribute encryption will be introduced
in Sect. 8.1.4.

8.1 Security 259

Boundary Access Control

Local event brokers that host event clients are OASIS-aware and perform
access control checks for every request made to them. This ensures that only
authorized clients have access to the publish/subscribe system in compliance
with access control policies. As shown in Fig. 8.2, local event brokers delegate
the verification of credentials passed to them by event clients to an OASIS
engine. Four types of OASIS policy restrict the actions of event clients. The
event client that creates a new event type becomes its event type owner and
is then responsible for specifying policy.

Connection Policy. This policy states the required credentials for an event
client to be permitted hosting by a given event broker. A client can only
use the publish/subscribe system if it maintains a connection with at least
one local event broker.

Type Management Policy. The creation, modification, and removal of
event types in the event type hierarchy is controlled by a type management
policy. Usually, credentials certifying that an event client has the role of
event type owner for an event type allow it to perform type management.
This also avoids conflicts between clients from different applications.

Advertisement Policy. For every event type in the system, an advertise-
ment policy specifies the roles an event publisher must acquire in order
to advertise events of this type. This policy is generally specified by the
event type owner.

Subscription Policy. Similarly, a subscription policy lists the necessary
roles for an event subscriber to subscribe to events of that type. The policy
may also prescribe the content-based filter expressions that are permitted
and is again defined by the event type owner.

When an event client violates the connection or type management policies,
the event broker rejects the operation invoked by the client. For advertisement
and subscription policies, certain requests may be partially accepted by im-
posing a restriction on the original event advertisement or subscription. An
advertisement restriction limits the advertisement by restricting the events
that the event publisher is allowed to publish. Likewise, a subscription restric-
tion transforms the client-requested subscription into a different, less powerful
one. The client may or may not be notified by its local event broker that a re-
striction has been imposed for privacy reasons. The secure publish/subscribe
model supports two flavors of restrictions.

Publish/Subscribe Restrictions

This kind of restriction takes the original submitted advertisement or sub-
scription and replaces it by a different, more limited one, as defined by a
coverage relation. In the case of an event advertisement, the event type in the
advertisement is replaced by a less specific parent type from the event type hi-
erarchy. For event subscriptions, the publish/subscribe restriction specifies an

260 8 Advanced Topics

upper bound on the event type and content-based filtering expression that the
event subscriber is allowed to submit. If the submitted subscription is covered
by the subscription restriction, the subscription is accepted without change,
otherwise it is automatically downgraded to the restricted subscription.

Generic Restrictions

A generic restriction is not expressible by the publish/subscribe system since
it can include any predicate evaluations permitted by OASIS. Although the
original advertisement or subscription submitted by the event client is passed
on to the publish/subscribe system, all later events are restricted according
to the arbitrary predicate function in the generic restriction. For example, a
generic advertisement restriction may reject the publication of events with
certain content, and a generic subscription restriction may perform additional
filtering of events on the message size of the event notification, which otherwise
could not be expressed in an event subscription.

The advantage of publish/subscribe restrictions is that they do not incur
an overhead during the dissemination of events. Since the original advertise-
ment or subscription is replaced by a more limited version, the event-based
middleware implicitly enforces policy and no events need to be dropped at
client-hosting brokers. The same is not true for generic restrictions because
their additional expressiveness comes with the price of having to evaluate ar-
bitrary predicates at client-hosting brokers to decide whether an event client
can publish or be notified of a given event publication.

Event Broker Trust

The previous mechanism for boundary access control using restrictions as-
sumes that all event brokers are equally trusted to process data, which is not
true in practice. When an event broker joins the publish/subscribe system, it
authenticates with its credentials and is then believed to participate correctly
in the routing of events according to a content-based routing algorithm. It
maintains encrypted network connections with its neighbouring event brokers
in the overlay broker network. However, an event broker may not be trusted
enough to gain access to data in particular event notifications or subscriptions.
To make these trust relationships explicit, event brokers are associated with
event types from the event type hierarchy that they are permitted to handle.
This is illustrated in Fig. 8.2. Event broker B3 is only permitted to process
events of type PoliceEvent. Event brokers may be authorized to handle all
event types that are more specific or more general than a given type, in other
words are sub- or supertypes of an event type.

When routing event advertisements, subscriptions, and notifications in the
overlay broker network, an event broker only passes on a message to the next
event broker after obtaining proof in the form of a role membership certificate
that this event broker is authorized to handle that particular event type. Oth-
erwise, the event broker is forced to make a different routing decision. This can

8.1 Security 261

be done by acting as though the untrusted event broker has failed, relying on
the fault tolerance properties of event routing in the publish/subscribe system
that will ensure a different routing path. Note that event broker trust encom-
passes the handling of entire event types only, but we relax this restriction by
using of event attribute encryption, as described in the next section.

Event Attribute Encryption

The mechanism for event broker trust from the previous section excludes
brokers that are not trusted to handle specific event types from routing. As
mentioned before, this coarse-grained approach effectively splits the overlay
broker network into several trust domains, thus weakening the reliability and
efficiency of event routing. A better solution is to prevent an untrusted event
broker from accessing confidential data but still enabling it to perform content-
based routing on other attributes. We achieve the goal of a single event that
can hold private and public information by encrypting event attributes in
event publications with different cryptographic keys. Although this introduces
a larger runtime overhead due to cryptographic operations during event rout-
ing, this is justifiable as it leads to more expressive access control specifications
where event types no longer have to be strictly divided into private and public
categories. Another advantage of this scheme is that access control policy can
also associate event clients, which have access privileges, to event attributes.

In addition to event types, event brokers are also trusted with a number
of key classes . A key class is a collection of cryptographic keys for encrypting
event attributes, that supports key rotation and revocation. Access control to
individual event attributes is achieved by signing and encrypting them with
a key from a given key class so that only trusted event brokers can decrypt
these attributes. An event broker can only read or write an event attribute if
it has a role membership that includes access to the appropriate key classes.
This also means that an event client can only submit an event subscription or
notification that refers to encrypted attributes to its local event broker if it
can prove that it possesses credentials for the required key classes. The event
broker then performs the cryptographic operations on the client’s behalf.

To include event attribute encryption in a typed event model, the event
type hierarchy is extended with a description of the key classes that are nec-
essary to access the content of event attributes, as shown in Fig. 8.3. Each
event attribute is annotated with its key classes in disjunctive normal form.
A conjunction of key classes means that the attribute is encrypted with keys
from several key classes in sequence. For example, the isDrill attribute in
the EmergencyEvent type has to be either encrypted under the police and
training, or under the fire and training key classes. This prevents anyone re-
ceiving emergency-related events in the Active City from finding out whether
this is an exercise drill unless they are a training instructor with access to the
training key class. Unencrypted event attributes are denoted with the empty

262 8 Advanced Topics

EmergencyEvent
locationemergency∨police∨fire∨∅
severity∅
isDrill(police∧training) ∨ (fire∧training)

��

FireEvent
buildingType∅
enginesPresentfire

�
FireAlarmEvent

detectorType∅

PoliceEvent
locationpolice∨fire∨∅
polCodepolice

sourcepolice

��

AccidentEvent
roadType∅
casualtiespolice∨∅
specialHazardpolice∨fire∨∅

BurglaryEvent
locationpolice

zoning∅

isaisa

isaisa

Fig. 8.3. An event type hierarchy with attribute encryption

key class ∅. In Fig. 8.2 event brokers are annotated with the key classes that
they are permitted to use.

Note that the standard subtyping relation between event types must still
hold so that a subtype is more specific than its parent type. As a result, key
classes can only be removed from inherited event attributes but never added.
This is illustrated with the location attribute whose access becomes more
restrictive as new event types are derived.

Encrypted Attribute Coverage

When an event subscriber submits a content-based subscription for an event
type with encrypted attributes, attribute predicates in the subscription must
also be encrypted with appropriate key classes for the subscription to match
events. The subscriber selects one or more key classes for the encryption of the
attribute predicate from all the key classes for which it is authorized. As a con-
sequence, the event model of the publish/subscribe system must be extended
to support a coverage relation between event subscriptions and notifications,
and among event subscriptions that use attribute encryption. Informally, an
encrypted attribute predicate can only be matched by an encrypted event at-
tribute in a notification if it was encrypted with the same key classes. When
an attribute predicate should match attributes encrypted under several differ-
ent key classes, it must be disjunctively encrypted multiple times using these
key classes and several copies of the attribute predicate must be included in
the subscription. For coverage among subscriptions, an attribute predicate
encrypted under particular key classes is covered by another encrypted pred-

8.1 Security 263

s1: PoliceEvent

�
s2: PoliceEvent
p1(locationpolice∨fire∨∅)

� �
s3: PoliceEvent
p1(locationpolice∨fire)

� �
s4: PoliceEvent
p1(locationpolice)

s5: BurglaryEvent
p1(locationpolice∨fire)

s6: BurglaryEvent
p1(locationpolice∨fire∨∅)

�

covers covers

coverscoverscovers

Fig. 8.4. Subscription coverage with attribute encryption

icate if the second predicate covers the first and is encrypted under at least
the key classes of the first predicate.

Definition 8.1 (Encrypted Attribute Coverage). An encrypted event at-
tribute aK is covered by (or matches) an encrypted attribute predicate pL,

aK � pL,

iff
a � p ∧ K ⊆ L

holds, where K is the set of key classes under which a is conjunctively en-
crypted and L is the set of a conjunction of key classes under which p is
disjunctively encrypted. An encrypted attribute predicate pL1

1 is covered by
another encrypted attribute predicate pL2

2 ,

pL1
1 � pL2

2 ,

iff
∀a. a � p1 ⇒ a � p2 ∧ L1 ⊆ L2,

holds, where a is an event attribute and L1 and L2 are sets of conjunctions of
key classes with disjunctive encryption.

We illustrate this extended coverage relation in Fig. 8.4, which shows six
example subscriptions with regard to the previous event type hierarchy. Sub-
scription s1 is the most generic because it does not include any attribute
predicates. The attribute predicate in subscription s3 does not match events
with an unencrypted location attribute, and therefore s3 is covered by s2.
Subscription s4 is most specific because the attribute predicate is only en-
crypted under the police key class.

264 8 Advanced Topics

8.1.5 Further Reading

In this section we provide an overview of previous work in the area of secu-
rity in publish/subscribe systems. Preliminary work on security issues under
publish/subscribe semantics can be found in [390]. It identifies the necessity
for ensuring the confidentiality of event publications and subscriptions and
suggests accountability for billing purposes; however, no mechanisms are pro-
vided. In the work by Miklós [260], upper bound filters on advertisements and
subscriptions in Siena are proposed, but the confidentiality of event publica-
tions within the publish/subscribe system is not guaranteed.

The Narada Brokering project includes a distributed security frame-
work [294, 405] that uses access control lists to control event publishers and
subscribers for a topic, limiting the scalability. Cryptographic keys for encrypt-
ing publications are centrally managed by a key management center (KMC).
An event publisher can choose to use a central topic key from the KMC or the
public keys of all event subscribers for encryption, which contradicts decou-
pled publish/subscribe semantics. Access control can only be provided at the
granularity of whole events, and event brokers are implicitly trusted, rather
than using different trust levels as supported by our security service.

A publish/subscribe system with scopes (Chap. 6) can be extended to
include access control [145]. Scopes, which model visibility in a distributed
publish/subscribe system, can be used to split the event system into different
trust domains. In effect, this creates multiple distinct overlay networks of event
brokers. Secure events only stay within a scope and are therefore never handled
by untrusted event clients or brokers. Interactions between trust domains
are precisely specified through scope interfaces. Scope interfaces express the
access control policies for events crossing trust boundaries. Partitioned overlay
networks can use untrusted brokers to create an encrypted tunnel for secure
events. This work also proposes an implementation strategy based on aspect-
oriented programming [222] to integrate access control with existing publish/
subscribe implementations.

8.2 Fault Tolerance

The behavior of a system in the presence of faults is an important property
of the system. In Sect. 2.5.2 we described the formal specification of a simple
event system. An important goal for such a system was to guarantee safety
and liveness conditions. Recall that a safety condition ensures that nothing
bad will happen, whereas liveness stipulates that eventually something good
will occur. In other words, Def. 2.5 requires that the system is correct, i.e.,
exhibits the desired functionality at its interface under all circumstances. To
satisfy the specification, all faults occurring in the real world would have to
be masked. However, masking all faults is costly if not impossible. Provided

8.2 Fault Tolerance 265

that a temporary failure of the system can be accepted, making a system self-
stabilizing is an attractive alternative or supplement to fault masking. We
will see that self-stabilization comes at cost, namely the weakening of safety
conditions. In the following, we describe fault masking and self-stabilization
in an event system with an emphasis on the latter.

8.2.1 Fault Masking

Fault masking requires redundancy either in time or in space. While time
redundancy repeats actions (e.g., resending a message to cope with message
loss), space redundancy uses independent copies of the resources that can be
affected by faults (e.g., communication channels). Of course, both approaches
can also be combined in a single system. However, research about applying
fault masking to publish/subscribe systems is still in an early stage.

What are typical scenarios for fault masking in publish/subscribe sys-
tems? For example, assume that communication channels fail with in a fail-
stop model. Then, we could connect each pair of neighbored brokers with two
instead of one communication channel. If one of the communications fails,
the brokers can still communicate using the communication channel that is
still working. This way, failed communication channels can be masked by the
system as long as for any pair of neighbored brokers only one of the two
communication channels fails. To be able to mask broker and communica-
tion channel failures, we can use two independent broker topologies that do
not share physical communication links or computers hosting brokers. In this
case, we would have to modify our model such that a client can connect to
two remote brokers. We also must take care that no duplicates are delivered
and that—if required—the FIFO-producer or causal ordering of messages is
ensured. If Byzantine faults can occur, fault masking is much more compli-
cated than in the fail-stop model. This is due to the fact that in the Byzantine
model failed links and brokers can behave arbitrarily.

Another possibility for implementing fault masking is to reconfigure the
broker network in case of failures such that the failed resources are no longer
used in the system. This approach is feasible but not trivial to implement if
concurrent faults can occur. While the reconfiguration is in progress, notifi-
cations must be buffered at certain brokers. We must ensure that no notifica-
tions are lost or duplicated. Extra effort is needed to keep notification ordering
guarantees such as publisher-based FIFO or causal ordering, if required [302].

8.2.2 Self-Stabilizing Publish/Subscribe Systems

An alternative (or sensible addition) to fault masking is self-stabilization, a
concept introduced by Dijkstra [113] in 1974. He defined a system as being
self-stabilizing if “regardless of its initial state, it is guaranteed to arrive at
a legitimate state in a finite number of steps”. In contrast to that, a system
which is not self-stabilizing may stay in illegitimate states forever, leading to

266 8 Advanced Topics

a permanent failure of the system. Self-stabilization models the ability of a
system to recover from arbitrary transient faults within a finite time without
any intervention from the outside. If the time between consecutive faults is
long enough, the system will start to work correctly again. Transient faults
include temporary network link failures resulting in message duplication, loss,
corruption, or insertion, arbitrary sequences of process crashes and subsequent
recoveries, and arbitrary perturbations of the data structures of any fraction
of the processes. The program code running at the nodes and inputs from
the outside, however, cannot be corrupted. Dolev [116] gives a comprehensive
discussion of self-stabilization.

However, it is, in general, impossible under the fault assumption of self-
stabilization to require any property that prohibits certain states, i.e., safety
properties. For example, the system could deliver a notification n to a client X
although X has no active subscription matching n because a fault corrupted
the state of the system such that that it “thinks” that X subscribed to n.
Therefore, we require that a self-stabilizing publish/subscribe system satisfies
the safety property of Def. 2.5 only eventually. This ensures that the system
starting from any state will eventually satisfy the actual safety property and
continue to do so if no faults occur. The liveness property of Def. 2.5 can be left
unchanged. This leads to the following definition of self-stabilizing publish/
subscribe systems:

Definition 8.2. A self-stabilizing publish/subscribe system is a publish/sub-
scribe system satisfying the following requirements:

1. Eventual Safety Property: Starting from any state, the system eventually
satisfies the safety property of Def. 2.5.

2. Liveness Property: Starting from any state, the system satisfies the live-
ness property of Def. 2.5.

A formal version of this specification can be found in [263].

8.2.3 Self-Stabilizing Content-Based Routing

Under the fault assumption of self-stabilization, the routing configuration can
arbitrarily be corrupted by transient faults. Therefore, the applied routing
algorithm must ensure (a) that corrupted routing entries are corrected or
deleted from the routing table and (b) that missing routing entries are inserted
into the routing table.

We assume that each broker stores the information about its neighbors
in its ROM. This ensures that this information cannot be corrupted. If it
would be stored in RAM or on harddisk, it could also be corrupted by a fault.
In this case, we would have to layer self-stabilizing content-based routing on
top of a self-stabilizing spanning tree algorithm. Layered composition of self-
stabilizing algorithms is a standard technique which is easy to realize when
the individual layers have no cyclic state dependencies [116]. In this case, the

8.2 Fault Tolerance 267

stabilization time would be bounded by the sum of the stabilization times of
the individual layers.

Basic Idea

The basic idea for making content-based routing self-stabilizing is that routing
entries are only leased. To keep a routing entry, it must be renewed before the
leasing period π has expired. If a routing entry is not renewed in time, it is
removed from the routing table. Interestingly, this approach does not only
allow the publish/subscribe system to recover from internal faults but also
from certain external faults. For example, if a client crashes, its subscriptions
are automatically removed after their leases have expired.

To support leasing of routing table entries, we use a second chance al-
gorithm. Routing entries are extended by a flag that can only take the two
values 1 and 0. Before a routing entry is (re)inserted into the routing table, all
existing routing entries whose filter has the same ID (as the ID of the filter of
the routing entry to be inserted) are removed from the routing table. This is
necessary as the IDs of the routing entries can be corrupted, too. We assume
that the clock of a broker can only take values between 0 and π − 1 to en-
sure that if the clock is corrupted, it can diverge from the correct clock value
by at most π. When its clock overruns, a broker deletes all routing entries,
whose flags have the value 0 from the routing table and sets the flags of all
remaining routing entries to 0 thereafter (new subscriptions have their flags
set to 1 initially). Hence, it must be ensured that an entry is renewed once in
π to prevent its expiration. On the other hand, it is guaranteed that an entry
which is not renewed will be removed from the routing table after at most 2π.

The renewal of routing entries originates at the clients. To maintain its
subscriptions without interruption, a client must renew the lease for each of
its subscriptions by “resubscribing” to the respective filter once in a refresh
period ρ. Resubscribing to a filter is done in the same way as subscribing. In
general, π must be chosen to be greater than ρ due to varying link delays.
The link delay δ is the amount of time needed to forward a message over a
communication link and to process this message at the receiving broker. In
our model, it is considered a fault when δ is not in the range between δmin

and δmax. It is important to note that assuming an upper bound for the link
delay is a necessary precondition for realizing self-stabilization.

Flooding

The näıve implementation of a self-stabilizing publish/subscribe system is
flooding: When a broker receives a notification from a local client, the bro-
ker forwards the notification to all neighbor brokers. When it receives a no-
tification from a neighbor broker, the notification is forwarded to all other
neighbor brokers. Additionally, each processed notification is delivered to all
local clients with a matching subscription. Flooding only requires a broker to

268 8 Advanced Topics

keep state about the subscriptions of its local clients. Therefore, errors in this
state can be corrected locally by forcing clients to renew their subscriptions
once in a leasing period. This means that ρ = π. The main advantage of this
scheme is that a coordination among neighboring brokers is not necessary.
Hence, no additional network traffic is generated. Additionally, new subscrip-
tions become active immediately. While a corrupted or erroneously inserted
subscription survives at most 2π in a routing table and a missing subscription
is reinserted after at most π, an erroneously inserted or corrupted notification
disappears from the network after at most d · δmax, where d is the network
diameter, i.e., the length of the longest path a message can take in the broker
network. Hence, for flooding, the stabilization time ∆, i.e., the time it takes
for the system to reach a legitimate state starting from an arbitrary state,
equals max{2π, d · δmax}.

Simple Routing

The solution for flooding can be extended to simple routing. Simple rout-
ing treats each subscription independently of other subscriptions. A (un)sub-
scription is inserted into (removed from) the routing table and flooded into
the broker network. If a broker receives a (un)subscription from a local client,
it is forwarded to all neighbor brokers. If it was received from a neighbor
broker, it is forwarded to all other neighbor brokers. Thus, simple routing is
idempotent to resubscriptions, and a subscription is redistributed through the
broker network when it is renewed by the client. Note that here subscriptions
become active only gradually.

A critical issue is that the timing assumptions must allow the clients to
renew their leases everywhere in the network before they expire. How large
must π be with respect to ρ in this case? To answer this question, consider
two brokers B and B′ connected by the longest path a message can take in
the broker network. This situation is illustrated in Fig. 8.5. Assume a local
client X of B leases a routing table entry of B at time t0 and renews this lease
at time t1 = t0 + ρ. X ’s lease causes other leases to be granted all along the
path to broker B′. Considering the best- and worst-cases of the link delay, the
first lease reaches B′ at time a0 = t0 + d · δmin in the best case, and the lease
renewal reaches B′ at time a1 = t1 + d · δmax in the worst-case. If X refreshes
its leases after ρ time and if network delays are unfavorable, two lease renewals
will arrive at B′ within at most a1 − a0. Hence, π > a1 − a0 must hold to
ensure that the entry is renewed in time. Thus, we get π > ρ+d·(δmax−δmin).

The stabilization time ∆ depends on the value of π. Since corrupted or
erroneously inserted messages can contaminate the network, a delay of d ·δmax

must be assumed before their processing is finished. After at most 2π, their
effects will be removed everywhere. Overall, the stabilization time sums up to
∆ = d · (δmax − δmin) + 2π. For example, assume that d = 10, δmax = 25 ms,
and δmin = 5 ms. To guarantee a stabilization time of ∆ = 30 s, π = 14.9 s
and thus ρ = 14.7 s follows. There is a tradeoff between π and ρ. To have low

8.2 Fault Tolerance 269

21

B′
d · δmin π

t1 time

B

d · δmaxt0 ρ

a1

a0

message

d hops

renewal

Fig. 8.5. Deriving the minimum leasing time

message overhead, ρ should be as large as possible. However, this implies a
large value of π, but π should be as small as possible to facilitate fast recovery.

Advanced Routing Algorithms

The situation is more complicated if advanced content-based routing algo-
rithms such as identity-based, covering-based, or merging-based routing are
applied. Contrary to flooding and simple routing these algorithms are—at
least the versions presented so far—not idempotent with respect to resub-
scriptions. However, they can be made idempotent with some minor changes.
Note that the maximum stabilization time ∆ is not affected by whether an
advanced routing algorithm or simple routing is applied because in the worst-
case a filter will nevertheless travel all along the longest path in the network.

Consider identity-based routing (for more details we refer to [263]). When
a broker B processes a new or canceled subscription F from destination D, it
counts the number d of destinations D′ �= D for which a subscription matching
the same set of notifications exists in TB. Depending on the value of d, F is
forwarded differently. If d = 0, F is forwarded to all neighbors if D ∈ LB and
to all neighbors except D if D ∈ NB. If d = 1 and D′ ∈ NB, F is forwarded
only to D′. If d = 1 and D′ ∈ LB or if d ≥ 2, F is not forwarded at all.
This scheme is not idempotent to resubscriptions because if d ≥ 2 and one of
the identical subscriptions is renewed at B, none of those subscriptions will
be forwarded. This can be circumvented if B takes only those subscriptions
into account when calculating d whose flag is 1. In this case, in each leasing
period that subscription of the identical subscriptions which is renewed first
after the broker has run the second chance algorithm is forwarded, ensuring
correct forwarding.

Covering-based routing can also be made self-stabilizing. In this case, only
routing entries with flag 1 are taken into account when looking for identical
subscriptions. However, when looking for subscriptions that really cover a
given subscription (i.e., match a real superset of notifications), additionally

270 8 Advanced Topics

also those routing entries with flag 0 are considered. This is to avoid sending
covered subscriptions unnecessarily to neighbors because they are refreshed
before a covering subscription is refreshed. To make merging-based routing
self-stabilizing, the refreshing of merged filters must additionally be ensured.

Discussion

The values of π and ρ depend on the delay of the links in the network. So
far, we assumed that these values are fixed and equal for every broker in the
system. In many scenarios, link delays vary a lot such that it could be ad-
vantageous to incorporate this property into the algorithm. We assume that
the value of link delay stored at every adjacent broker cannot be corrupted
(i.e., it is stored in ROM). The values of π and ρ have then to be calcu-
lated individually for every subscription, depending on where the publishers
are. Additionally, π and ρ have to be refreshed the same way as described
previously for subscriptions. Advertisements that are sent periodically by the
publishers could be used for this purpose. Taking this approach, the broker
algorithm can take advantage of faster links and stabilize subtrees of the bro-
ker topology faster if the links allow for this. The application of leasing is a
common way to keep soft states. This technique is used in many protocols
and algorithms such as the Routing Information Protocol (RIP, RFC2453)
and Directed Diffusion [205].

Simulation

We carried out a discrete event simulation to compare self-stabilizing content-
based routing to flooding with respect to their message complexity. Before we
discuss the results, we describe the setup of the experiments.

Setup

We consider a broker hierarchy being a completely filled 3-ary tree with five
levels. Hence, the hierarchy consists of 121 brokers of which 81 are leaf brokers.
Since we use a tree for routing, this implies a total number of 120 communi-
cation links. We use hierarchical routing, but similar results can be obtained
for peer-to-peer routing, too. With hierarchical routing, subscriptions are only
propagated from the broker to which the subscribing client is connected to-
ward the root broker. This suffices because every notification is routed through
the root broker. Hence, control messages travel over at most four links. We use
identity-based routing and consider 1000 different filter classes (e.g., stocks)
to which clients can subscribe.

Subscribers only attach to leaf brokers. Results for scenarios where clients
can attach to every broker in the hierarchy can be derived similarly. Instead
of dealing with clients directly, we assume independent arrivals of new sub-
scriptions with exponentially distributed interarrival times and an expected

8.2 Fault Tolerance 271

time of λ−1 between consecutive arrivals. When a new subscription arrives,
it is assigned randomly to one of the leaf brokers and one of the filter classes
is randomly chosen. The lifetime of individual subscriptions is exponentially
distributed with an expected lifetime of µ−1. Each notification is published at
a randomly chosen leaf broker. Hence, notifications travel over at most eight
links. The corresponding filter class is also chosen randomly. The interarrival
times between consecutive publications are exponentially distributed with an
expected delay of ω−1. We assume a constant delay in the overlay network of
δ = 25 ms, including the communication and the processing delay caused by
the receiving broker.

To illustrate the effects of changing the parameters, we considered two
possible values for some of the system parameters: For each of the 1000 filter
classes, a publication is expected every 1 s (10 s), i.e., ω1 = 1000 s−1 (ω2 =
100 s−1). The expected subscription lifetime is 600 s (60 s), i.e., µ1 = (600 s)−1

(µ2 = (60 s)−1). Each client refreshes its subscriptions once in 60 s (600 s), i.e.,
a refresh period of ρ1 = 60 s (ρ2 = 600 s). Since d = 8 in our scenario, the leas-
ing period is π1 = 60.2 s (π2 = 600.2 s) for ρ1 (ρ2). Hence, a subscription will
on average be refreshed 10 (100) times before it is canceled by the subscrib-
ing client if µ = (600 s)−1. The resulting stabilization time is ∆1 = 120.6 s
(∆2 = 1200.6 s).

We are interested in how the system behaves in equilibrium for different
numbers of active subscriptions N . In equilibrium, dN/dt = 0 where dN/dt =
λ−µ·N(t), implying N = λ/µ. Thus, if N and µ is given, λ can be determined.
If the system was started with no active subscriptions, we would have to
wait until the system approximately reached equilibrium before we begin the
measurements. However, in our scenario it is possible to start the system right
in the equilibrium. At time 0, we create N subscriptions. For each of these
subscriptions, we determine how long it will live, for which filter class it is, and
at which leaf broker it is allocated. Since we use an exponential distribution
for the lifetime, this approach is feasible because the exponential distribution
is memoryless.

Results

The results of our simulation are depicted in Fig. 8.6. Note that the right plot
is a magnification of the most interesting part of the left plot. In Fig. 8.6, bs1/2

is the notification bandwidth saved if filtering is applied instead of flooding.
The figure shows bs1 and bs2, which correspond to the publication rate ω1 and
ω2, respectively. Because bs linearly depends on ω, a decrease of ω by a factor
of 10 leads to a use of one tenth as much notification bandwidth. If there
are no subscriptions in the system, bs1 = 116, 000 s−1 and bs2 = 11, 600 s−1,
respectively. These numbers are 4000 s−1 and 400 s−1 less than the overall
number of notifications published per second. This is because with hierarchical
routing, a notification is always propagated to the root broker. The control
traffic bc is caused by subscribing, refreshing, and unsubscribing clients. It only

272 8 Advanced Topics

0

20000

40000

60000

80000

100000

120000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

bs1

bs2

bc1

bc2

bc3

bc4

0

500

1000

1500

2000

2500

3000

0 100000 200000 300000 400000 500000 600000 700000

M
es

sa
ge

s
sa

ve
d

re
sp

.
sp

en
t

Number of subscriptions in the system

Fig. 8.6. Notification bandwidth saved by doing filtering instead of flooding (bs1 :
ω1 = 1000 s−1, bs2 : ω2 = 100 s−1) and control traffic caused by filtering and leasing
(bc1, bc4 : ρ1 = 60 s, bc2, bc3 : ρ2 = 600 s, bc1, bc2 : µ1 = (600 s)−1, bc3, bc4 : µ2 =
(60 s)−1). The lower figure magnifies the most interesting part of the upper figure

arises if filtering is used. The figure shows bc1, bc2, bc3, and bc4, which result
from the different combinations of µ and ρ. The value to which bc converges for
large numbers of subscriptions mainly depends on the refresh period ρ. Thus,
bc1 and bc3 converge to 120, 000/ρ1 = 2000s−1, while bc2 and bc4 converge
to 120, 000/ρ2 = 200s−1. The evolution of bc for numbers of subscriptions in
the range between 0 and 200, 000 is largely influenced by the value of µ. A
small µ such as µ2 leads to a hump (cf. bc3 and bc4 in Fig. 8.6). Filtering saves
bandwidth compared to flooding if bs exceeds bc. The points where the curve
of the respective variants of bs and bc intersect are important: If the number
of subscriptions is smaller than at the intersection point, filtering is superior,
while for larger numbers flooding is better. For example, the curves of bs1 and
bc1 intersect for about 300, 000 subscriptions. Thus, filtering is superior for less
than 300, 000 subscriptions, while flooding is superior for more than 300, 000

8.2 Fault Tolerance 273

subscriptions. Since we consider eight scenarios, we have eight intersection
points in Fig. 8.6.

The results gained through the simulation show that applying self-stabi-
lizing filtering makes sense if the average number of subscriptions in the system
does not grow beyond a certain point. However, it is important to note that all
assumptions taken for the simulation depict worst-case scenarios. For example,
the equal distribution of subscriptions to leaf brokers is disadvantageous for
filtering. If there was locality in the interests of the clients, filtering would
always save a portion of the notification traffic, regardless of how large the
number of subscriptions grows [263], and the control traffic would also be
smaller. In such scenarios, filtering can be superior to flooding for all numbers
of subscriptions. Recently, Jaeger and Mühl [212] have published analytical
results that come to the same results as those presented here.

8.2.4 Generic Self-Stabilization Through Periodic Rebuild

In a self-stabilizing system, arbitrary transient faults can occur. The only
parts that cannot be corrupted are the program code and the data stored
in ROM. In general, we cannot reason about how a routing algorithm (that
works correctly in a fault-free system) behaves when it receives corrupted
messages or when it is applied to perturbed routing tables. What can merely
be assumed is that it will eventually work correctly again when it is restarted
from a legitimate initial routing configuration.

In this section, we present a generic wrapper algorithm A that makes a
publish/subscribe system self-stabilizing, regardless of which correct routing
algorithm R it wraps. The only assumptions are that (a) R has no private state
but draws its decision solely on the basis of the respective routing table, that
(b) R terminates after finite time when called, and that (c) each client refreshes
its subscriptions once in a refresh period ρ. The wrapper algorithm periodically
rebuilds the routing tables starting from an initial routing configuration that
is stored in the ROM of each broker. Note that most routing algorithms use
an empty initial routing configuration [263]. Our algorithm can be seen as a
periodic precautionary distributed reset [16].

Basic Idea

Each broker B maintains two routing tables T 0
B and T 1

B, which are alternately
rebuilt on a periodic basis, and a flag aB ∈ {0, 1} that determines which of
both routing tables is currently rebuilt.1 However, notification routing always
uses both routing tables to determine the target destinations of a notification.
A notification is forwarded to a destination if it matches a routing entry for

1 An optimized solution can be implemented with only one table and two flags for
every entry indicating to which routing table(s) the entry belongs.

274 8 Advanced Topics

B′

ππswitch(x) switch(¬x) switch(x)

x¬xx

“old” “new”

d hops

d · δmin d · δmaxd · δmax

message

R

Fig. 8.7. Choosing π such that “old” and “new” update messages do not interleave

this destination in any of the two routing tables. If the routing tables are in
a correct state, this does no harm.

Since A wraps R, every call to R is intercepted by A. This way, A de-
termines which routing table the next call of R operates on in the following
way: For every (un)subscription from a local client of B, T aB

B will be used. If
update messages are generated by R in reaction to the (un)subscription, they
will be tagged with aB. Accordingly, when a broker B′ receives an update
message tagged with x from a neighbor broker, then T x

B′ will be used by R

for this call.
The periodical rebuild is triggered by a modulo clock on the root broker R

every π. The rebuild sets aR ← ¬aR. Then, it initializes T aR

R with the initial
routing configuration stored in ROM and propagates a switch(aR) message to
all of its neighbors. Similarly, when a broker B′ receives a switch(x) message
from a neighbor, it sets aB′ ← x, initializes T

aB′
B′ , and forwards a switch(x)

message to all other neighbors. If a (un)subscription is issued twice by a client
between two consecutive switch messages without an intervening unsubscrip-
tion (subscription), this could raise a problem because R might not tolerate
resubscriptions. To avoid this potential problem, a (un)subscription from a
local client will be discarded by the wrapper algorithm A if it is redundant
with respect to the contents of the currently active routing table.

Correctness

Before we show the correctness of our scheme, we prove a preparatory lemma.

Lemma 8.1. In a correct system, if π > 2d · δmax, no “old” update messages
tagged with x can arrive at any broker after the root broker issued the next
“new” switch(x) message.

Proof. Old update messages tagged with x disappear at most d·δmax after the
last broker has received the switch(¬x) message. This means that at most

8.2 Fault Tolerance 275

2d ·δmax after the root broker has sent the switch(¬x) message no old update
messages tagged with x can arrive. Since π is greater than this value, only
new update messages tagged with x can arrive at any broker after the next
new switch(x) message is issued by the root broker (Fig. 8.7). ��
Theorem 8.1. When the wrapper algorithm is applied and π ≥ ρ+2 ·d · δmax

holds, the publish/subscribe system is self-stabilizing and the stabilization time
∆ is bounded by 2 · π + d · δmax.

Proof. For the correctness, we have to show that (a) the system stays in a
correct state if it currently is in a correct state and that (b) the system will
eventually enter a correct state if it is currently in an incorrect state.

(a) For the system to stay in a correct state, we have to ensure that (a1) at
each broker the rebuild process of the routing table which is currently rebuilt
is completed before the next switch message is received, that (a2) the rebuild
is based only on new update messages, and that (a3) all new updates messages
are received after the respective switch message.

(a1) This means that at each broker the time between two consecutive
switch messages must be large enough to ensure that all necessary update
messages are received in time. The time difference at which two brokers receive
the same switch message cannot be greater than d · δmax. At all brokers, the
clients need at most ρ to reissue all their subscriptions after the broker has
received the switch message. The resulting update messages need at most
d · δmax to travel through the broker network. Therefore, π ≥ ρ + 2 · d · δmax

must hold to guarantee that at each broker the rebuild is complete before the
next switch message is received.

(a2) By Lemma 8.1 and the fact that π ≥ ρ + 2 · d · δmax.
(a3) Due to the FIFO property of the communication channels and the

fact that the topology is acyclic, a broker B′ can only receive update messages
and (un)subscriptions of local clients tagged with x after B′ received the
corresponding switch(x) message.

(b) Starting from an arbitrary state, every broker receives the next switch
message after at most π + d · δmax. This message causes the receiving broker
to reinitialize one of its two routing tables. As a result of (a) it is guaranteed
that this routing table will be completely rebuilt before the subsequent switch
message is received. This second switch message is received by all brokers at
most 2π + d · δmax from the beginning. It causes the other routing table to be
reinitialized. After all brokers have received and processed the second switch
message, the system is guaranteed to be in a correct state again. This is
because at all brokers the one routing table is completely rebuilt, while the
other is reinitialized. Therefore, the stabilization time ∆ is 2 · π + d · δmax in
the worst-case (Fig. 8.8). ��

276 8 Advanced Topics

B′

π

d ∗ δmax

switch(x)

ρ

t0 t1

d hops

R

∆ = t1 − t0

π

message

d · δmax d · δmax

switch(¬x)

Fig. 8.8. Derivation of the maximum stabilization time

8.2.5 Further Reading

Many self-stabilizing algorithms have been proposed for various kinds of sce-
narios, while there are only a few contributions that cover publish/subscribe
systems. Recently, Shen and Tirthapura [343] presented an alternative ap-
proach for self-stabilizing content-based routing. In their approach, all pairs of
neighboring brokers periodically exchange sketches of those parts of their rout-
ing tables concerning their other neighbors to detect corruption. The sketches
that are exchanged are lossy because they are based on bloom filters (which are
a generalization of hash functions). However, because of the information loss,
it is not guaranteed that an existing corruption is detected deterministically.
Hence, the algorithm is not self-stabilizing in the usual sense. Moreover, al-
though generally all data structures can be corrupted arbitrarily, the authors’
algorithm computes the bloom filters incrementally. Thus, once a bloom fil-
ter is corrupted, it may never be corrected. Furthermore, in their algorithm,
clients do not renew their subscriptions. Without this, corrupted routing en-
tries regarding local clients are never corrected. Finally, their algorithm is
restricted to simple routing in its current form.

8.3 Congestion Control

Many existing research prototypes of publish/subscribe systems make the as-
sumption that event publication messages are negligible in size and therefore
cannot saturate the available network bandwidth or processing power. How-
ever, this is not true in practice, and a publish/subscribe system can suffer
from congestion leading to a degradation of service to clients. In this section
we discuss the connection problem in the context of a publish/subscribe sys-
tems. We describe a scalable congestion control mechanism [313] that prevents
the occurrence of congestion in a reliable publish/subscribe system. It con-
sists of two algorithms, PDCC and SDCC, that are used in combination to

8.3 Congestion Control 277

address different aspects of congestion control in the event-based middleware.
To motivate the need for congestion control in an event-based middleware,
we begin with an overview of the congestion control problem and the require-
ments for a mechanism to handle congestion. The main part of this section
is the description of the two congestion control algorithms as an example of
how to perform congestion control in a publish/subscribe system.

8.3.1 The Congestion Problem

We argue that it is necessary to provide congestion control for overlay net-
works, such as the one established by a distributed publish/subscribe system.
Congestion occurs when there are not enough resources to sustain the rate at
which event publishers send publication messages in an event-based middle-
ware. We distinguish between two kinds of congestion,

1. network congestion, where the network bandwidth between event brokers
is the limiting resource

2. event broker congestion, when the processing of messages at an event
broker cannot cope with the data rate

Both kinds of congestion may lead to the loss of messages at event brokers.
Message loss is especially undesirable under guaranteed delivery semantics be-
cause the resulting retransmission of messages worsens the level of congestion
in the system. An event-based middleware suffers from congestion collapse
when the message loss dominates its operation and prevents event clients
from receiving any useful service.

Usually there are two reasons for congestion in an event-based middle-
ware. In many cases, congestion is caused by the underprovisioning of the
deployed middleware in terms of network bandwidth or processing power of
event brokers so that the middleware cannot handle resource requirements of
event dissemination during normal or peak operation. A second, more subtle
cause for congestion is the temporary need for more resources as a result of
recovery after a failure under guaranteed delivery semantics.

Note that even though connections between event brokers use TCP con-
gestion control, this is not sufficient to prevent congestion in the overlay
broker network because of application-level queuing at event brokers. Both
network and event broker congestion manifest themselves as the buildup of
buffer queues at event brokers. To deal with congestion, current middleware
deployments are often vastly overprovisioned, which is a waste of resources.
Instead, a congestion control mechanism can address this problem directly.

8.3.2 Requirements

A congestion control mechanism in a publish/subscribe context differs from
traditional congestion control found in other networking systems. This is due

278 8 Advanced Topics

to the many-to-many communication semantics supported by the publish/
subscribe model and the content-based filtering of messages at application-
level event brokers during event dissemination. Not all event subscribers re-
ceive the same set of publication messages sent by event publishers, as opposed
to the case in application-level multicast, for example. Reliable event dissemi-
nation semantics leads to the selective retransmission of publication messages
to a subset of recovering event subscribers, which further complicates con-
gestion control. To guide the design of our congestion control mechanism, we
formulate six requirements for congestion control in an event-based middle-
ware:

Burstiness. The processing of publication messages at event brokers is
bursty because of application-level scheduling and the variable process-
ing cost of content-based filtering of event publications. This means that
a congestion condition can arise quickly, requiring early detection by the
congestion control mechanism.

Queue Sizes. Due to the burstiness of event routing and the need to cache
event streams for retransmission, buffer sizes at event brokers are much
higher compared to standard networking components. Buffer overflow only
occurs when significant congestion already exists in the system. As a con-
sequence, message loss cannot be used as an indicator for congestion in
event-based middleware.

Recovery Control. The congestion control mechanism must ensure that
event brokers that are recovering event publications that were previously
lost will eventually complete recovery successfully. At the same time, re-
covering event brokers must be prevented from contributing to conges-
tion. Although negative acknowledgment (NACK) messages are small and
themselves cause little congestion, they potentially trigger the retransmis-
sion of large event publication messages.

Robustness. It is important that the congestion control mechanism is robust
and can protect itself against malicious event clients. A possible design
choice is to provide congestion control in the overlay broker network only,
ensuring that the publication rate of messages by publisher-hosting bro-
kers can be supported by all interested subscriber-hosting brokers. Flow
control between client-hosting brokers and event clients is handled by a
separate mechanism that can disconnect malicious clients.

Architecture Independence. The congestion control mechanism should
not be tightly coupled to internal implementation details of an event bro-
ker. Instead, as a higher-level middleware service, it should support the
evolution of the event broker implementation. For example, the detection
of congestion should not depend on a particular buffer implementation or
queuing discipline used by event brokers.

Fairness. When congestion requires the reduction of publication rates, fair
throttling of event publishers must be ensured. The available resources at

8.3 Congestion Control 279

publisher-hosting brokers should be split equally among all hosted event
publishers.

8.3.3 Congestion Control Algorithms

Typically a congestion control mechanism first detects congestion in the sys-
tem and then adapts system parameters to remove its cause. In this section
we describe two such algorithms that provide congestion control for a pub-
lish/subscribe system in accordance with the requirements stated in the pre-
vious section. The algorithms involve publisher-hosting brokers (PHB) and
subscriber-hosting brokers (SHB).

1. A PHB-driven congestion control algorithm ensures that publisher-hosting
brokers cannot cause congestion because of too high a publication rate.
This is achieved by a feedback loop between publishers and subscribers to
monitor congestion in the overlay broker network and control the event
publication rate at the publishers.

2. An SHB-driven congestion control algorithm manages the recovery of sub-
scribers after failure. It limits the rate of NACK messages that cause the
retransmission of event publications from publisher-hosting brokers de-
pending on congestion.

These two congestion control algorithms are independent of each other
but should be used in conjunction to prevent congestion during both regular
operation and recovery. Both algorithms need to distinguish between recover-
ing and nonrecovering event brokers in order to ensure that subscribers can
recover successfully. For a simpler presentation of the algorithms, we assume
that only event brokers are internal nodes in event dissemination trees with
client-hosting brokers constituting the root or leaf nodes. Next we will describe
the two algorithms in turn.

PHB-Driven Congestion Control

The PHB-driven congestion control algorithm (PDCC) controls the rate at
which new publication messages are published by a publication endpoint
(pubend), such as a set of event publishers. The publication rate is adjusted
depending on acongestion metric. We use the observed rate of publication mes-
sages at subscriber-hosting brokers as our congestion metric, which is similar
to the throughput-based metric of TCP Vegas [50]. The rationale behind this
is that a decrease in the message rate at a subscriber-hosting broker with an
unchanged publication rate at the pubend is an indication of more queuing
in the overlay broker network. This queue buildup is considered to be caused
by network or event broker congestion in the system. Subscriber-hosting bro-
kers calculate their own congestion metric and notify the publishers upstream
whenever they believe that they are suffering from congestion. Congestion in-
dications are aggregated at intermediate brokers so that the pubend is only

280 8 Advanced Topics

informed of the worst congestion point. Two types of control messages are used
to exchange congestion information between event brokers in an aggregated
fashion.

Downstream Congestion Query (DCQ) Messages

The PDCC mechanism is triggered by DCQ messages sent by a publisher-
hosting broker down the event dissemination tree to all subscriber-hosting
brokers. Since congestion control is performed per tree, a DCQ message carries
a tree identifier (treeID). A monotonically increasing sequenceNo is used for
aggregation and the mPos field stores the current position in the event stream,
which is, for example, the latest assigned event timestamp.

pubendID sequenceNo mPubend

Upstream Congestion Alert (UCA) Messages

UCA messages are sent by subscriber-hosting brokers to inform about conges-
tion. They flow upwards in the event dissemination tree and are aggregated at
intermediate brokers so that a publisher-hosting broker only receives a single
UCA message in response to a DCQ message. Apart from the tree identifier
and the sequence number of the triggering DCQ message, a UCA message con-
tains the minimum throughput rates observed at recovering (minRecSHBRate)
and nonrecovering (minNonRecSHBRate) subscriber-hosting brokers.

pubendID sequenceNo minRecSHBRate minNonRecSHBRate

PHB

IB

SHB1 SHB2

UCA

UCA

DCQ

DCQ DCQ

Fig. 8.9. Flow of DCQ and UCA messages

8.3 Congestion Control 281

Figure 8.9 summarizes the propagation of DCQ and UCA messages
through an overlay broker network in the PHB-driven congestion control al-
gorithm. For the PDCC scheme to be efficient, DCQ and UCA messages must
not suffer from congestion and should maintain low delays and loss rates. Next
we describe the behavior of the three types of event brokers when processing
DCQ and UCA messages in the PDCC algorithm.

Publisher-Hosting Broker (PHB)

A publisher-hosting broker triggers the PDCC mechanism by periodically
sending DCQ messages with an incremented sequence number. The inter-
val tdcq at which DCQ messages are dispatched determines the time between
UCA responses in a congested system. The higher the rate of responses, the
quicker the system adapts to congestion.

When the PHB has not received any UCA messages for a period of
time tnouca, it assumes that the system is currently not congested. There-
fore, it increases the publication rate if the rate is throttled and the pubend
could publish at a higher rate. To increase the publication rate, we use a hy-
brid scheme with additive and multiplicative increase. The new rate rnew is
calculated from the old rate rold according to

rnew = max
[

rold + rmin, rold + fincr · (rold − rdecr)
]
, (8.1)

where rdecr is the publication rate after the last decrease, fincr is a multi-
plicative increment factor, and rmin is the minimum possible increase. The
multiplicative use of fincr allows the publication rate to grow faster than a
fixed additive increase. However, when the publication rate is already close to
the optimal operation point before congestion occurs, it is necessary to limit
the increase. This is done by recording the publication rate rdecr at which
the increase started and using it to restrict the multiplicative increase. This
scheme results in the publication rate probing whether the congestion con-
dition has disappeared and, if not, oscillating around the optimal operation
point.

When the PHB receives a UCA message, a decision is made about a reduc-
tion of the current publication rate. The rate is kept constant if the sequence
number in the received UCA message is smaller than the sequence number of
the DCQ message that was sent after the last decrease. The reason for this is
that the system did not have enough time to adapt to the last change in rate
and therefore more time should pass before another adjustment. The rate is
also not reduced if the congestion metric in the UCA message is larger than
the value in the previous message. This means that the congestion situation
in the system is improving, and further reduction of the rate is unnecessary.
Otherwise, the publication rate is decreased according to

rnew = max
[

fdecr1 ·rold, rdecr+fdecr2 ·(rold − rdecr)
]

iff rdecr �= rold (8.2)

282 8 Advanced Topics

rnew = fdecr1 · rold otherwise, (8.3)

where fdecr1 and fdecr2 are multiplicative decrement factors. The first term
in Eq. (8.2) multiplicatively decreases the rate by a factor fdecr1, whereas the
second term reduces the rate relative to the previous decrement rdecr. Simi-
lar to Eq. (8.1), the second term prevents an aggressive rate reduction when
congestion is encountered for the first time after an increase. Since the PDCC
mechanism constantly attempts to increase the publication rate in order to
achieve a higher throughput, it will eventually cause SHBs to send UCA mes-
sages if there is resource shortage in the system, but this should not result in
a strong reduction of the publication rate. Taking the maximum of the two
decrement values ensures that the publication rate stays close to the optimal
operating point. If the congestion situation does not improve after one reduc-
tion, the publication rate is reduced again. This time a strong multiplicative
decrease according to Eq. (8.3) is performed because the condition rdecr = rold

holds.

Intermediate Broker (IB)

To avoid the problem of feedback implosion [100], aggregation logic for UCA
messages at intermediate brokers (IB)must consolidate multiple messages from
different SHBs such that the minimum observed rate at any SHB is passed
upstream in a UCA message. This enables the publisher-hosting broker to
adjust its publication rate to provide for the most congested SHB in the
system. Another requirement is that UCA messages that occur for the first
time are immediately sent upstream, allowing the publisher-hosting broker to
respond as quickly as possible to new congestion in the system.

In Fig. 8.10 the algorithm for processing DCQ and UCA messages at an in-
termediate broker is given. An IB stores the maximum sequence number seqNo
and the minimum throughput values for nonrecovering (minNonRecSHBRate)
and recovering (minRecSHBRate) SHBs from the UCA messages that it
has processed. After the initialization of these variables (line 1), the func-
tion processDCQ handles DCQ messages by relaying them down the event
dissemination tree in line 6. When a UCA message arrives, the function
processUCAMsg is called, which first updates the throughput minima (lines 10–
11). A new UCA message is only sent upstream if the sequence number of the
received message is greater than the maximum sequence number stored at
the IB (line 12). This ensures that UCA messages with the same sequence
number coming from different SHBs are aggregated before propagation. The
first UCA message with a new sequence number immediately triggers a UCA
message so that the pubend is quickly informed about new congestion. Subse-
quent UCA messages from other SHBs that have the same sequence number
will be aggregated and contribute toward the throughput minima in the next
UCA message. After a UCA message has been sent in line 13, seqNo is up-
dated (line 14) and both throughput minima are reset in line 15.

8.3 Congestion Control 283

1 initialization:
2 seqNo ← 0
3 minNonRecSHBRate ← ∞
4 minRecSHBRate ← ∞
5

6 processDCQ(dcqMsg):
7 sendDownstream(dcqMsg)
8

9 processUCA(ucaMsg):
10 minNonRecSHBRate ←
11 MIN(minNonRecSHBRate, ucaMsg.minNonRecSHBRate)
12 minRecSHBRate ←
13 MIN(minRecSHBRate, ucaMsg.minRecSHBRate)
14 IF ucaMsg.seqNo > seqNo THEN
15 sendUpstream(ucaMsg.seqNo, minNonRecSHBRate,
16 minRecSHBRate)
17 seqNo ← ucaMsg.seqNo
18 minNonRecSHBRate ← ∞
19 minRecSHBRate ← ∞

Fig. 8.10. Processing of DCQ and UCA messages at IBs

The example in Fig. 8.11 demonstrates the operation of the aggregation
logic at IBs. The topology of six event brokers has two congested event brokers,
SHB1 and SHB2, and three intermediate brokers IB1,2,3 that aggregate UCA
messages. Congestion in the system is first detected by SHB1, and its UCA
message with a congestion metric of 0.8 is directly propagated to the PHB.
When SHB2 notices congestion, its UCA message is consolidated at IB2, which
updates its throughput minimum to 0.4. Eventually a UCA message with the
congestion value of SHB2 will propagate up the event dissemination tree in
response to a new DCQ message because SHB2 is more congested than SHB1.

PHB

IB2

IB1

SHB1

SHB2

UCA1

UCA1

UCA1

1 0.8

1 0.8

1 0.8

PHB

IB3

IB2

IB1

SHB1

SHB2

UCA2

UCA2

1 0.4

1 0.4

IB3

1 0.4

1 0.8

minNonRec
SHBRate

seqNo

1 0.8

(a) (b)

Fig. 8.11. Consolidation of UCA messages at IBs

284 8 Advanced Topics

Subscriber-Hosting Broker (SHB)

The congestion metric used by subscriber-hosting brokers depends on their
observed throughput of publication messages and is independent of the actual
publication rate of the pubend. An SHB monitors the ratio of PHB and SHB
message rate,

t =
rpubend

rSHB
, (8.4)

and uses this to decide when to send UCA messages with congestion alerts.
To allow for burstiness in the throughput due to application-level routing as
mentioned previously, t is passed through a standard first-order low-pass filter,

t̄ = (1 − α) t̄ + α t, (8.5)

to obtain a smoothed congestion metric t̄ with an empirical value of α = 0.1.
An SHB has to apply a different strategy for sending UCA messages depending
on whether it is recovering event publications or not. We assume that an SHB
can determine whether it is a recovering or a nonrecovering event broker. A
suitable criterion to detect recovery would be, for example, that the SHB is
ignoring new event publications because its event stream is saturated with old
events caused by NACK messages.

Nonrecovering SHB. A nonrecovering SHB should receive publication mes-
sages at the same rate at which they are sent by the pubend. Therefore, if the
smoothed throughput ratio t̄ drops below unity by a threshold ∆tnonrec,

t̄ < 1 − ∆tnonrec, (8.6)

the SHB assumes that it has started falling behind in the event stream be-
cause of congestion. In rare cases, an SHB could be falling behind slowly
because t̄ stays below 1 but above 1−∆tnonrec for a long time. Unless there is
already significant congestion in the system, this will not cause a queue over-
flow if buffer sizes are large. An SHB can detect this situation by periodically
comparing its current position in its event stream mSHB to the event stream
position mtree from the last received DCQ message. If the difference is larger
than ∆ts,

mSHB < mtree + ∆ts, (8.7)

a UCA message is triggered, even though the congestion metric t̄ is above its
threshold value.

Recovering SHB. A recovering SHB must receive publication messages at a
higher rate than the publication rate, or it will never manage to successfully
catch up and recover all lost publication messages. In some applications there
is an additional requirement to maintain a minimum recovery rate 1 + ∆trec

8.3 Congestion Control 285

in order to put a bound on recovery time. Thus, a recovering SHB sends a
UCA message if

t̄ < 1 + ∆trec. (8.8)

The threshold value ∆trec influences how much of the congested resource will
be used for recovery messages as opposed to new publication messages and
hence controls the duration of recovery.

SHB-Driven Congestion Control

The SHB-driven congestion control algorithm (SDCC) manages the rate at
which an SHB requests missed event publications by sending NACK messages
upstream to the corresponding PHB. An SHB maintains aNACK window to
decide which parts of the event stream to request. To control the rate of NACK
messages being sent, the NACK window is open and closed additively by the
SDCC algorithm depending on the level of congestion in the system. As for
the PDCC mechanism, the change in recovery rate throughput is used as a
metric for detecting congestion.

At the start of recovery, an SHB uses a small initial NACK window
size nwnd0. The NACK window is adjusted during recovery when the re-
covery rate rSHB changes. The recovery rate rSHB is defined as the ratio be-
tween the current NACK window size nwnd and the estimate of the round
trip time RTT , which it takes to retrieve a lost event publication from the
pubend,

rSHB =
nwnd

RTT
. (8.9)

The NACK window size is changed in a similar fashion to TCP Vegas. When
the recovery rate rSHB increases by at least a factor αnack, the NACK window
is opened by one additional NACK message per round trip time. When rSHB

decreases by at least a factor βnack, the NACK window is reduced by one
NACK message,

nwndnew = nwndold ± sizenack. (8.10)

This is sufficient to ensure that resent event publications triggered by NACK
messages from recovering event brokers do not overload the publish/subscribe
system.

8.3.4 Further Reading

A large body of work exists in the area of congestion control in networks,
although these solutions do not address the special requirements for congestion
control in an publish/subscribe system. In this section we provide a brief
overview of applicable work, contrasting it with our approach for congestion
control.

286 8 Advanced Topics

Transmission Control Protocol (TCP)

The TCP protocol comes with a point-to-point, end-to-end congestion control
algorithm with a congestion window that usesadditive increase, multiplicative
decrease (AIMD) [211]. Slow start helps open the congestion window more
quickly. Packet loss is the only indicator for congestion in the system, and
fast retransmit enables the receiver to signal packet loss by ACK repetition to
avoid timeouts. TCP Vegas [50] attempts to detect congestion before packet
loss occurs by using a throughput-based congestion metric, which is similar
to the congestion metric used in the PDCC and SDCC algorithms.

Reliable Multicast

Reliable multicast protocols are similar to reliable publish/subscribe systems
due to their one-to-many communication semantics, but typically they have
no filtering at intermediate nodes and do not guarantee that all leaves in the
multicast tree will eventually catch up with the sender. In general, multicast
congestion control schemes can be divided into two categories [407], namely:

1. sender-basedschemes, in which all receivers support the same message rate
2. receiver-basedschemes with different message rates by means of transcoded

versions of data

Since we can make few assumptions about the content of event publica-
tions, a receiver-based approach is not feasible. Congestion control for multi-
cast is often implemented at the transport level relying on router support. It
must adhere to existing standards to ensure fairness and compatibility with
TCP [149, 179]. Since there are many receivers in the multicast tree, scalable
feedback processing of congestion information is important. Unlike feedback
suppression [107], our approach does not discard information because it con-
solidates feedback in a scalable way.

The PGMCC congestion control protocol [328] forms a feedback loop be-
tween the sender and the most congested receiver. The sender chooses this
receiver depending on receiver reports in NACK messages. The congestion
control protocol for SRM [344] is similar except that the feedback agent can
give positive and negative feedback, and a receiver locally decides whether
to send a congestion notification upstream to compete for becoming the new
feedback agent. An approach that does not rely on network support, except
minimal congestion feedback in NACK messages, is LE-SBCC [376]. Here a
cascaded filter model transforms the NACK messages from the multicast tree
to appear like unicast NACKs before feeding them into an AIMD module.
However, no consolidation of NACK messages can be performed. All these
schemes have in common that they use a loss-based congestion metric, which
is not a good indicator for congestion in an application-level overlay network.

8.4 Mobility 287

Multicast Available Bit Rate (ABR) ATM

The ATM Forum Traffic Management Specification [334] includes an available
bit rate (ABR) category for traffic though an ATM network. At connection
setup, forward and backward resource management (FRM/BRM) cells are
exchanged between the sender and receiver to create a resource reservation,
which is modified at intermediate ATM switches. All involved parties agree
on an acceptable cell rate depending on the congestion in the system. In our
case, it is difficult to determine an acceptable message rate for an IB since the
cost of processing event publications varies depending on size, content, and
event subscriptions.

Multicast ABR requires flow control for one-to-many communication. An
FRM cell is sent by the source and all receivers in the multicast tree respond
with BRM cells, which are consolidated at ATM switches [329]. Different ways
of consolidating feedback cells have been proposed [134]. These algorithms
have a trade-off between timely response to congestion and the introduction
of consolidation noise when new BRM cells do not include feedback from all
downstream branches. Our consolidation logic at intermediate brokers tries to
balance this trade-off by aggregating UCA messages with the same sequence
number, but also short-cutting new UCA messages. The scalable flow control
protocol in [409] follows a soft synchronization approach, where BRM cells
triggered by different FRM cells can be consolidated at a branch point.

Overlay Networks

Congestion control for application-level overlay networks is sparse, mainly
because application-level routing is a novel research focus. A hybrid system for
application-level reliable multicast in heterogeneous networks that addresses
congestion control is RMX [76]. It uses a receiver-based scheme with the
transcoding of application data. Global flow control in an overlay network
can be viewed as a dynamic optimization problem [13], in which a cost-benefit
approach helps find an optimal solution.

8.4 Mobility

The emergence of mobile computing has opened up a whole new field of ser-
vices provided for the benefit of the mobile user. Many such services can
exploit the fact that the mobile device is aware of its current location. For
example, car navigation systems use knowledge about current and past lo-
cations to aid drivers in finding their way through unknown cities. Location
information can even be combined with other sources of data, e.g., the weather
report, information on traffic jams, or free parking spaces. In such cases, the
system can propose routes that avoid places where traffic is high or weather

288 8 Advanced Topics

conditions are unpleasant, or can direct the driver to the nearest free parking
space. All these are examples for location-based services.

A convenient way to construct location-based services is to build them
using event infrastructures, such as those provided by publish/subscribe sys-
tems. Here, producers and consumers are enabled to exchange information
based on message type or content rather than particular destination identifiers
or addresses. This loose coupling of producers and consumers is the premier
advantage of publish/subscribe systems, which facilitates mobile communica-
tion. Producers are relieved from managing interested consumers, and vice
versa. In the following we study how these advantages can be exploited and
what extensions are eligible in the context of mobile services.

We argue that support for mobility should be an issue of the publish/
subscribe middleware itself and not be delegated to the application layer.
Three kinds of application scenarios have to be supported: (i) existing ap-
plications in a static environment, (ii) existing applications in a mobile envi-
ronment, and (iii) mobility-aware applications. Since publish/subscribe sys-
tems and applications have been deployed very successfully, extending existing
systems and models is preferred to creating new “mobile” middleware from
scratch in order to facilitate the integration of the first two scenarios. As a con-
sequence, the middleware must transparently handle some of the new mobility
issues. This allows existing event-based applications to directly interact with
and even to be deployed as mobile applications. On the other hand, mobility-
aware applications (the third scenario) require the middleware to support a
semiautomated handling of location changes. If no such support is available,
mobility is actually controlled by the application and not by the movement
of the client.

We differentiate among support for two different and orthogonal types of
mobility. The first type of mobility is called physical mobility, where clients
may temporarily disconnect from the publish/subscribe system (due to power-
saving requirements or the network characteristics). This means that applica-
tions are not necessarily aware of the fact that the client is moving, allowing
existing applications to be transferred to mobile environments. The second
type of mobility is called logical mobility, where clients remain attached to
the their broker and have an application-level notion of location, which is
described by location-dependent subscriptions. As an example, consider a car
looking for a free parking space in the street it is currently driving along. In
this situation it may subscribe to “New free parking space on Rebeca Drive”.
However, if Rebeca Drive is a very long street, the same driver will also re-
ceive notifications about free parking spaces very far down the road (or behind
him), which are impossible to reach in good time. What the user would like
to do is to specify a subscription such that he receives all notifications about
“vacancies in the vicinity of his current location”. We call these subscriptions
location-dependent.

In this section we analyze and discuss the basic issues involved when adding
mobility support to a publish/subscribe infrastructure. We identify and define

8.4 Mobility 289

two orthogonal forms of mobility (physical and logical mobility) and discuss
the requirements of a system supporting both types of mobility.

8.4.1 Mobility Issues in Publish/Subscribe Middleware

Mobile clients have many characteristics, among them the need to disconnect
from the network for different reasons. Be it for geographical, administrative,
or power saving reasons, being connected to the same broker all the time is no
longer possible. Hence, we have to take into account that clients will disconnect
from their border broker once in a while. The middleware has to deal with
moving clients and the possibility that a disconnected client reconnects at the
same or a different broker later.

A first step toward mobility is to enhance existing publish/subscribe mid-
dleware to allow for roaming clients so that existing applications can be used
in mobile environments. This means that the existing interface operations
for accessing the middleware and the applications on top are not required to
change. More important, the quality of service offered by the middleware must
not degrade substantially. The resulting location transparency is necessary to
make existing applications mobile, e.g., stock quote monitoring seamlessly
transferred from PCs to PDAs.

On the other hand, future applications do not want complete transparency,
but rely on mobility awareness. More specifically, mobility support should
blend out unwanted phenomena, like disconnectedness, and enforce wanted
behavior, like the location awareness in location-based services. Consequently,
extending the interface of the publish/subscribe middleware to facilitate lo-
cation awareness is a promising open issue, since most existing work concen-
trated on the transparency only.

When roaming, clients change (at least some portion of) the context they
are operating in, and they might want to react to these changes, e.g., to adapt
their subscriptions. However, an appropriate infrastructure support has to
relieve the application from having to react “manually” to all changes. The
middleware should rather offer an automated adaptation to context changes,
i.e., facilitating location dependency. This leads to different notions of mobility
and we distinguish:

� Physical mobility: A client that is physically mobile disconnects for certain
periods of time and has different border brokers along its itinerary through
the infrastructure. The main concern of physical mobility is location trans-
parency.

� Logical mobility: A client that is logically mobile is aware of its location
changes. In order to relieve the client from adapting manually to new loca-
tions, the main concern of logical mobility is automated location awareness
within the publish/subscribe middleware.

Physical and logical mobility are two orthogonal aspects of mobility. Since
the physical layout of a publish/subscribe system does usually not correspond

290 8 Advanced Topics

to geographical realities, it seems reasonable to separate the two notions of
mobility. In the following, we assume logical mobility to be a refinement of
physical mobility in that a client remains connected to the same broker when
roaming logically. The two notions have different quality of service require-
ments and therefore different solutions are developed to match both.

8.4.2 Physical Mobility

Physical mobility is similar to what in the area of mobile computing is called
terminal mobility or roaming. A client accesses the system through a certain
number of access points (GSM base stations, WLAN access points, or border
brokers). When moving physically, the client may get out of reach of one
access point and move into the reach of a second access point which are not
necessarily overlapping. In general we cannot expect to have seamless access
to the broker network but more a sequence of phases of connectedness, e.g.,
on the daily route between home and office. In this setting we analyze the
quality of service requirements from the viewpoint of roaming clients:

� Interface. Obviously, the existing interface to the publish/subscribe sys-
tem must not change as legacy applications are not aware of mobility.

� Completeness. Despite intermittent disconnects, the liveness condition of
Def. 2.5 must be satisfied, i.e., a finite time after subscribing, the delivery of
notifications that are published after this time and match the subscription
is guaranteed.

� Ordering. In Sect. 2.5.3 FIFO-producer and causal ordering were dis-
cussed; they are eligible features in the mobile case, too.

� Responsiveness. The delay of relocating a roaming client should be min-
imal to maximize the responsiveness of the system. This has to be taken
into account when designing a relocation protocol.

Possible Solutions

One solution would be to rely on Mobile IP [306] for connecting clients to
border brokers, hiding physical mobility in the network layer. The drawback,
however, is that the communication is also hidden from the publish/subscribe
middleware, which is then not able to draw from any notification delivery
localities or routing optimizations, thereby possibly violating the requirement
of responsiveness. Such an approach might only be feasible if the physical and
logical layout of a given system is completely orthogonal.

A different, näıve solution to implement physical mobility would be to
use sequences of sub-unsub-sub calls to register a client at a new broker.
When a client moves from border broker B1 to B2, it simply unsubscribes
at B1 and resubscribes at B2, without any support in the middleware. But
a client may not detect leaving the range of a broker and is in this case
not able to unsubscribe at its old location. Even more severely, during its

8.4 Mobility 291

B1

B2

B3

event is delivered twice event is not delivered

producer

Fig. 8.12. Missing notifications in a flooding scenario

time of disconnectedness, the client might miss several notifications or or get
duplicates, even if notifications are flooded in the network and the location
change is instantaneous. This problem is depicted in Fig. 8.12. Hence, this
solution is not complete and we outline an algorithm in Sect. 8.4.2 that takes
into account all requirements stated above. The complete algorithm is detailed
by Zeidler and Fiege [408].

Notification Delivery with Roaming Clients

In this section we introduce an algorithm for extending standard brokers
(cf. Chap. 4) to cope with mobile clients, maintaining their subscriptions as
well as guaranteeing the required quality of service as described in the previous
section. Apart from guaranteeing complete notification delivery, our algorithm
also ensures that the old border broker will eventually receive an equivalent
to an explicit sign-off from the client, even if an explicit unsubscribe was not
possible.

Our mechanism uses a natural way of distributed caching, which seems in
general preferable to a potentially problematic central caching proxy.

Prerequisites

The solution sketched below can be used in every environment that meets the
following requirements:

1. Border brokers have to install and maintain a buffer for all notifications
that are not yet delivered in order to deal with disconnects.

2. The underlying routing infrastructure uses advertisements. Although not
strictly necessary, the relocation effort is reduced substantially in that
they guide the search for the old delivery path. Simple routing is assumed
as routing strategy for now, and more advanced routing algorithms are
discussed later.

3. Border brokers or clients must have some means of detecting the new
configuration that a client has entered the range of the broker. Some form
of beacon or heartbeat is presupposed; we do not go into the details here.

292 8 Advanced Topics

4. For now, we assume that only subscribers are mobile and that clients
acting as producers remain stationary.

Algorithm Outline

We use a stepwise refinement of traditional subscription forwarding, as dis-
cusses in Chap. 4, to devise the algorithm:

1. When reconnecting to a broker, subscriptions are automatically reissued
so that clients do not need to resubscribe manually.

2. The broker network configuration is updated to accommodate to client
relocation rather than handling an independent new (re)subscription from
a new location.

3. Notifications forwarded to the old location have to be replayed to the new
one in order to bridge disconnectedness.

4. Delivery of new notifications has to be postponed until the replay is fin-
ished. In this way, moving does not influence the FIFO-producer order of
notifications, fulfilling the ordering requirement.

Consider the scenario of Fig. 8.13(a) with a single consumer. Client C is
moving from broker B6 to broker B1 (step 1 in the figure). The local broker,
which resides on the client, e.g., in the form of libraries, is informed by the new
border broker (i.e., B6) about its relocation, according to the prerequisites.
The local broker then reissues the active subscriptions, which were previously
forwarded through and recorded in the local broker anyway. By avoiding man-
ual resubscriptions of the client application, the first requirement stated at
the beginning of this section is achieved, i.e., the interface to the middleware
is not changed.

In the second step, we enable the publish/subscribe middleware to relocate
the client. The goal of the relocation process is to update the routing configu-
ration by redirecting the delivery paths currently leading to the old destination
of C to the new destination. During this process, reissued subscriptions are
propagated as usual, e.g., in the direction of any received advertisement if
advertisements are used, through B2 and B3 to broker B4, setting up their
routing tables. At B4 the old and new path from producer P to client C
meet (dotted and dashed line, respectively). Broker B4 is aware of the junc-
tion because an entry of the old path of this subscription/ client is already
in its routing table.2 When the routing table in the junction is updated, new
published notifications will be delivered to the relocated client. Without as-
suming any knowledge about the old location of the moving client, the system
is able to draw from localities in that only a portion of the delivery path is
changed. Changes are limited to the smallest subgraph necessary for diverting
routing paths, facilitating the timeliness/efficiency requirement, which is only
available with inherent middleware support.

2 Subscriptions can be identified if simple routing is used.

8.4 Mobility 293

C

C

1

2

6

87

3
5

4

Virtual World

Real World

1. move
2. new

4. Relocate!

3. Re

Junction

Old Path

New Path

NewBorder Broker
Old

Border Broker

P

Moving

Client

Producer of
Notifications

5. fetch!

subscription(C,F,123)

 location!

6. Replay&
 clean up

(a) Single Producer

C

C

1

2

6

87

3
5

4

Virtual World

Real World

1. new location
2. "new

location!"

4. Relocate!

3. Re

Junction

Old Path

New Path

NewBorder Broker
Old

Border Broker

P

Moving

Client

Producer of
Notifications

P

9

6. Replay&
clean up

5. fetch!

subscription(C,F,123)

(b) Multiple Producer

Fig. 8.13. Moving client scenarios with one and multiple producers

The third step ensures completeness over phases of disconnectedness dur-
ing movement. The junction broker B4 sends a fetch request along the old
path to B6 following the routing table entries for the given subscription. All
brokers along this path update their routing tables such that they are pointing
into the direction the fetch originates from, i.e., B4. Border broker B6 as last
recipient replays all buffered notifications. If delivered notifications are anno-
tated with sequence numbers by the border broker, reissued subscriptions can
in turn carry the last received number to qualify the replay. Note that replays
are forwarded only in the direction of a specific subscription and do not min-
gle with other clients’ data. After replaying, the path from the old broker to
the junction broker can be shut down by deleting the subscription’s routing
table entries as long as advertisement and routing entry point into the same
direction; thereby excluding and stopping at the junction. In this way the
notifications that passed the junction broker before its update are collected
and sent toward the new location, ensuring the required completeness.

The last step finally reorders the notifications so that the sender FIFO
condition remains valid after relocation. The new border broker has to block
and cache all incoming notifications that are to be delivered to the given client
(not impeding communication of other clients) until the replay is finished. As
with all buffering, consistency can always only be guaranteed for a predefined,
finite amount of time or space.

Figure 8.13(b) shows a scenario with multiple producers. In this case,
several junctions exist which all lie on the path from the first junction to the
old border broker of the client. For the two producers, the junctions are at
brokers B4 and B5, respectively.

294 8 Advanced Topics

Extensions

Mobile Producers. So far we have assumed that only consumers can be
mobile. When a producer is mobile, the notifications it publishes while it is
disconnected from the system are not forwarded but are queued by its lo-
cal broker. When the producer reconnects to a new border broker, the local
broker reissues the advertisements currently active, while still queuing newly
published notifications. The forwarding of these advertisements will in turn
lead to overlapping subscriptions being forwarded to the new location of the
producer. When this process has finished, the queued notifications are for-
warded if a matching subscription exists or they are discarded, otherwise.
Then, the normal handling of published notifications starts again. Delivery
paths that lead to the old location of the producer and which are no longer
needed are similarly dropped as described above.

Covering-Based Routing. If covering-based routing instead of simple
routing is used, the fetch phase of the algorithm has to be extended. Now, the
junction is reached if an entry with a covering subscription F ′ ⊃ F is already
registered. At this point the delivery path to the new location is correctly built
up, but we do not know whether the old location lies in the direction of F ′ or in
the direction of the advertisements. The fetch phase is extended in that fetch
requests are sent toward all advertisements and all covering subscriptions; it is
a kind of flooding in the overlay network of matching producers and consumers
of similar interests. Only one of the fetch requests will not get dropped and
reach the old border broker. The replay has to be flooded in the same overlay
network if no tunneling mechanisms, internal or external, are used.

Merging-Based Routing. The extension for covering stated above can
also cope with a broker network applying merging. Only the number of poten-
tial covers increases, and hence the size of those parts of the overlay network
that are flooded. Both covering and merging promise to increase routing effi-
ciency, but, on the other hand, aggravate relocation management.

Movement Speed. For simplicity reasons we assume that the client’s
movement speed is not too fast for the relocation process to terminate be-
fore the client moves again, i.e., the process always terminates at the correct
broker. However, if resubscriptions of the local broker are annotated with a
relocation counter, which is reset after a successful replay, concurrent relo-
cation processes can be identified and controlled in the middleware, avoiding
the speed limit.

Cache Management. Even if storage constraints in the border brokers
are not of concern, mobile clients may be disconnected for a long period of
time in which more missed notifications are cached than the client can handle
during replay. The possibly limited resources of mobile clients must be taken
into account when designing cache sizes or limiting the replay by semantic
filtering [195].

8.4 Mobility 295

Discussion

The above algorithm shows how relocation and adaptation of the delivery
paths is performed in a fully distributed fashion. Many optimizations exist for
this algorithm (e.g., [59, 92]). They typically reduce the number of necessary
messages, but they also impose further constraints on network layout or re-
quire additional information about client movement. The approach presented
here is a generalization that is robust and simple. Its central features are:

� No explicit moveOut. The algorithm ensures by design that the new
broker can identify a relocated client and handle this appropriately. More-
over, the algorithm ensures that the broker at the old location eventually
receives an equivalent to a moveOut for proper garbage collection.

� No central caching proxy. The algorithm is fully distributed and buffers
information wherever necessary, thereby drawing optimally from localities.

� No information loss. By buffering information appropriately, the algo-
rithm ensures that no information is lost due to relocation. As with all
buffering schemes, this is only true modulo space and/or time constrains.

� No “out-of-band” communication. All messages sent related to a re-
location process are sent explicitly within the broker network and not leav-
ing the paradigm of publish/subscribe. Therefore, we do not need globally
unique sequence numbers and can guarantee FIFO-producer ordering as
well as not sending duplicates.

� Optimal use of localities. The algorithm draws optimally from localities
and ensures that only the least necessary subgraph is reconfigured.

8.4.3 Logical Mobility

While physical mobility is a rather technical issue invisible to the application,
logical mobility involves location awareness. An example for logical mobility
is when clients move around a house or building that is served by only one
border broker. In this case, the user might be interested to receive just those
notifications that refer to the room in which he is currently located. Note that
a client can be both logically and physically mobile at the same time.

A logically mobile client moving from one location to another, e.g., from
one room to the other in a company building, will expect a frictionless change
of location explicitly without a notable setup time after having changed from
its own office to the conference room next door. The adaptation of some
location-dependent subscription should take place “instantaneously”. Intu-
itively, we would like to experience the notion of being subscribed to “every-
thing, everywhere, all the time” and increase the reactivity of the system to
moving clients.

Location-Dependent Filters

A publish/subscribe system offering location-dependent filters has the same in-
terface as a regular publish/subscribe system (i.e., it offers the pub, sub, unsub,

296 8 Advanced Topics

notify primitives). However, in specifying subscription filters for name/value
pairs referring to “location”, it supports a new primitive to specify things like
“all notifications where the attribute location equals my current location”.
More precisely, we postulate a specific marker myloc that can be used in a
subscription. The marker stands for a specific set of locations that depend
on the current location of the client. For example, a client could issue a sub-
scription for all free parking spaces in the vicinity of his current location as
follows: (service = “parking”), (location ∈ myloc), (car-type ≥ “compact”).

The set of locations associated with the marker is taken from a particu-
lar range L of locations. This set is application dependent and can, for in-
stance, contain all the different rooms of a building, all the streets of a town,
or all the geographical coordinates given by a GPS system up to a certain
granularity. Given a notification with the attribute location , the subscription
(location ∈ myloc) will evaluate to true for a particular client at location y iff
x ∈ myloc(y), where myloc(y) is the specific set of locations associated with
y. Then, we say that the notification matches the location-dependent filter.

The simplest form of myloc(y) is simply the set {y}. In this case a noti-
fication matches the subscription if x = y. But in the car example, the car
driver looking for a parking space might want to specify:

(location = “at most two blocks away from myloc”)

Then, myloc corresponds to all elements of L that satisfy this requirement.

A Tentative but Incomplete Solution for Logical Mobility

While location-dependent filters are not directly supported by current pub-
lish/subscribe middleware, one might argue that it is not very difficult to
emulate them on top of currently available systems in this case. The idea
would be to build a wrapper around an existing system that follows the loca-
tion changes of the users and transparently unsubscribes to the old location
and subscribes to the new one when the user moves. However, depending on
the internal routing strategy of the event system, it may lead to unexpected
results. The routing strategies deployed in many existing content-based event
systems such as Siena [71], Elvin [341], and Rebeca [136] lead to blackout
periods where no notifications are delivered. The problem is that it usually
takes a significant time delay to process a new subscription. After subscrib-
ing to a filter, it takes some time td until the subscription is propagated to
a potential source. Then it takes at least another td time until a notification
reaches the subscriber. This phenomenon is depicted in Fig. 8.14. (Note that
the delay td may be different for different notification sources and may change
over time.) If the client remains at any new location less than 2td time, then
the subscriber will “starve”, i.e., it will receive few or no notifications.

An intuitive but inefficient solution

Another basic solution that can immediately be built using existing technol-
ogy is again based on flooding. The local broker can then decide to deliver a

8.4 Mobility 297

Fig. 8.14. Blackout period after subscribing with simple routing

Fig. 8.15. Blackout period with flooding and client-side filtering

notification to a client depending on the client’s current location (Fig. 8.15).
Obviously, flooding prevents the blackout periods, which were present in the
previous solution, but it should be equally clear that flooding is a very expen-
sive routing strategy, especially for large pub/sub systems [267].

Quality of Service of Logical Mobility

Interestingly, while flooding is very expensive and therefore not desirable, it
comes very close to the quality of service that we would like to achieve for
logical mobility, namely to the notion of being subscribed to “everything,
everywhere, all the time”. The problem is that it is hard to precisely define
the behavior of flooding without reverting to some unpleasantly theoretical
constructions of operational semantics.

With logical mobility there is, however, no danger of receiving a notifi-
cation twice because the consumer remains attached to the same “delivery
path”. The quality of service we require for logical mobility therefore is sim-
ply stated as follows: On change of location from x to y, all notifications
should be delivered to the consumer “as if” flooding were used as underlying

298 8 Advanced Topics

Fig. 8.16. Defining the quality of service for logical mobility using virtual notifi-
cations ny→z that arrives at the consumer just at the time of the location change
from y to z

routing strategy. This statement is made a little more concrete in Fig. 8.16,
where the sequence of notifications generated by any consumer is divided
into epochs that correspond to when the notification actually arrives at the
consumer (the epoch borders between locations y and z are drawn as a vir-
tual notification ny→z). We require that all notifications matching the current
location-dependent subscription from every such epoch must be delivered. In-
tuitively, the epochs define the semantics of flooding.

Location-Dependent Filters for Logical Mobility

We now describe the algorithmic solution to the scenario where clients are
only logically mobile, i.e., they remain attached to a single border broker.

Main Idea

Consider an arbitrary routing path between a producer and a consumer. This
path consists of a sequence of brokers B1, B2, . . . , Bk−1, Bk, where B1 is the
local broker of the consumer and Bk is the local broker of the producer
(Fig. 8.17 shows the setup for k = 3). Assume the consumer has issued a
location-dependent subscription F . Using the “usual” content-based routing
algorithms, the current value F̃ of F , which instantiates the marker variable
with the current location, would permeate the network in such a way that
the filters along the routing path allow a matching subscription published
by the producer to reach the consumer. Formally, the filters F1, F2, . . . , Fk

along the links between the brokers should maintain a set-inclusion property
(cf. Sect. 4.3.2))

Fk ⊇ Fk−1 ⊇ . . . ⊇ F2 ⊇ F1 ⊇ F0 = F̃.

8.4 Mobility 299

Fig. 8.17. Network setting for the example

Fig. 8.18. Movement graph defining movement restrictions of a consumer

Obviously, if for any new value F̃ of F a new subscription must flow
through the network toward the producers, notifications published in the
meantime might go unnoticed. The idea of the proposed scheme is to always
have the local broker of the consumer do perfect client-side filtering (i.e., set
F0 = F̃), but to let possible future notifications reach brokers that are nearer
to the consumer so that their delay to reach the consumer is lower once the
consumer switches to a new location.

Let T denote the set of time values, which for simplicity we will assume
to be the set of natural numbers N. Let L denote the set of all consumer
locations. Then we define a function loc : T → L that describes the movement
of the consumer over time. For example, for a location set L = {a, b, c, d} a
possible value of loc is {(1, a), (2, b), (3, d), . . .}, meaning that at time 1, the
consumer’s location is a, at time 2 it is b, and so on.

We assume that loc is subject to some movement restrictions, which in
effect define a maximum speed of movement for the consumer. We assume
that such a restriction is given by a movement graph such as the one depicted
in Fig. 8.18. The graph formalizes which locations can be reached from which
locations in one movement step of the consumer. One movement step has some
application-defined correspondence to one time step.

Given the function loc and a movement graph, it is possible to define a
function ploc : L × N → 2L of possible (future) locations (the notation 2L

denotes the powerset of L, i.e., the set of all subsets of L). The function takes
a current location x and a number of consumer steps q ≥ 0 and returns the
set of possible locations, which the consumer could be in starting from x after
q steps in the movement graph.

Since a possible move of the consumer always is to remain at the same
location, for all locations x ∈ L and all q ∈ N we should require that

ploc(x, q) ⊆ ploc(x, q + 1). (8.11)

Taking the example values from above, possible values for ploc are as follows:

ploc(a, 0) = {a} ploc(a, 1) = {a, b, c} ploc(a, 2) = {a, b, c, d}

300 8 Advanced Topics

Now, if the consumer is at location a, for example, every broker Bi along the
path toward a producer should subscribe for ploc(a, q) for some q, which is
an increasing sequence of natural numbers depending on i and the network
characteristics. If the time it takes for a broker to process a new subscription
is on the order of the time a client remains at one particular location, then the
individual filters Fi along the sample network setting in Fig. 8.17 should be set
as Fi = ploc(a, i), e.g., F0 = ploc(a, 0) = {a}, F1 = ploc(a, 1) = {a, b, c}, and
so on. This requirement should be maintained throughout location changes by
the consumer. For example, whenever a consumer moves from an old location
x to a new location y, this will cause B1 to change the location-dependent part
of filter F0 for client-side filtering from the old to the new location. Broker B1

updates its routing table appropriately.
In general, broker Bi sends a message with the new location to Bi+1 in-

structing it to change Fi from ploc(x, i) to ploc(y, i) and consequently to
update the routing table by removing certain locations and adding new loca-
tions. Removing and adding new locations corresponds to unsubscribing and
subscribing to the corresponding filters. The normal administration messages
can be used to do this. Note that Eq. (8.11) guarantees the subset relationship,
which should always hold on every path between a producer and a consumer.

Example

As an example, consider the value of loc where at time 1 the client is in
location a, at time 2 at b, and at time 3 at d in the movement graph depicted
in Fig. 8.18. Table 8.1 gives the values of ploc for all locations and the first
four time instances. For t = 0 the value of ploc is equal to the current location.
For t = 1 it returns all locations reachable in one time step in the movement
graph, etc.

Table 8.1. Values of ploc(x, t) for the example setting

t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Now assume again the setting depicted in Fig. 8.17. The values of Table 8.1
directly determine the filter settings for F0, . . . , F3 as shown in Table 8.2. At
time t = 1 the client moves to location b. This means that F0 changes from
{a} to {b} and that F1 must unsubscribe to c and subscribe to d, yielding
F1 = {a, b, d}. At time t = 2 the client moves to d, causing F0 to change to
{d} and F1 to unsubscribe to a and subscribe to c. All other filters remain
unchanged.

8.4 Mobility 301

Table 8.2. Values of filters in example setting

time t F3 F2 F1 F0

0 {a, b, c, d} {a, b, c, d} {a, b, c} {a}
1 {a, b, c, d} {a, b, c, d} {a, b, d} {b}
2 {a, b, c, d} {a, b, c, d} {b, c, d} {d}

10000

100000

1e+06

1e+07

1e+08

0 10 20 30 40 50 60 70 80 90 100

flooding
new alg. for Delta=1

new alg. for Delta=10

Fig. 8.19. Total number of messages generated for flooding and two scenarios of
the new algorithm (∆ = 1s and ∆ = 10s). Note that the y-axis has a logarithmic
scale. The x-axis denotes time in seconds

The example nicely shows that the method does some sort of “restricted
flooding”, i.e., all notifications reach broker B2, but from there the uncertainty
is restricted and so is the flow of notifications forwarded by B2. In fact, the
method described above using the ploc function can be regarded as an abstrac-
tion of both “trivial” implementations discussed (i.e., both implementations
are instantiations of our scheme).

We have informally analyzed the total number of messages (notifications
and administrative messages) generated by our new algorithm for an arguably
realistic network setting, exactly one consumer and two different speeds of con-
sumer movement: fast movement (∆ = 1s) and slow (∆ = 10s). We compare
the results of these calculations with the total number of messages generated
by flooding in Fig. 8.19 (see [143] for a detailed description of the system
assumptions and the derivation of these numbers). It is interesting to see that
although our algorithm generates administrative messages on all network links
for every location change of the consumer, the fraction of messages saved is
still considerable. We also note that many of the assumptions made in cal-
culating these figures have been very conservative. For example, we assume
that there is only one consumer in the network and that notifications are
generated by the producers according to a uniform distribution over set of
locations. Both assumptions prevent routing strategy optimizations to play
to their strengths.

302 8 Advanced Topics

Concluding Mobility

The presented approach to support mobility in publish/subscribe middleware
can only be seen as a first start for generic mobility support. We have analyzed
the problem of mobility from the viewpoint of the event-based paradigm and
have identified two separate flavors of mobility. While physical mobility is tied
to the notion of rebinding a client to different brokers and can be implemented
transparently, logical mobility refers to a certain form of location awareness
offering a client a fine-grained control over notification delivery in the form of
location-dependent filters.

Many other interesting problems concerning the combination of mo-
bility and publish/subscribe infrastructures remain. For example, location-
dependent filters may be generalized to “dynamic filters” that depend on a
function of the local state of the client (not only its current location), like a
client interested in receiving notifications for sales that he still can afford.

8.4.4 Further Reading

Further details on the movement algorithms can be found in [141, 142, 408].
Work on middleware for mobile computing usually concentrated on classical
synchronous middleware like CORBA. Only recently, position papers have
stated that publish/subscribe systems have an enormous potential to better
accommodate the needs of large mobile communities [89, 208]. Research in
publish/subscribe systems has mainly focused on static systems, where clients
do not move and the publish/subscribe infrastructure remains relatively sta-
ble throughout the system’s lifetime, e.g., Elvin [341], Gryphon [197], Re-
beca [144], and Siena [71]. If present at all, mobility support is a concern of
the application layer. Applications detect the need to change a subscription
and have to react explicitly and manually to this detection.

Huang and Garcia-Molina [195, 196] provide a good overview of possi-
ble options for supporting mobility in publish/subscribe systems. They de-
scribe algorithms for a “new” middleware system tailored and optimized to
mobile and ad hoc networks, not so much an extension of an existing sys-
tem. Cambridge Event Architecture (CEA) [20] and JEDI [92] also address
problems of mobility. JEDI uses explicit moveIn and moveOut operations to
relocate clients. Hence, mobility is controlled by the application, which is not
transparent and even is unrealistic since clients usually only can react after
having been moved. The mobility extensions of Siena [59] are very similar.
Explicit sign-offs are required and interim notifications stored during discon-
nectedness are directly forwarded to a new location upon request. Cugola et
al. [89] proposes a leader election and group management protocol for dy-
namic dispatching trees to dynamically adapt the internals of the JEDI event
system, their implementation model is based on multicast and it groups iden-
tical subscribers. An extension for Elvin allows for disconnectedness using a

8.4 Mobility 303

central caching proxy [368], which is a potential performance bottleneck. Ja-
cobsen [208] presents some very interesting ideas on location-based services
and the possible expressiveness of subscription languages. STEAM [257] is an
event service designed for wireless ad hoc networks. Subscribers consume only
events produced by geographically close-by publishers. It relies on proximity-
based group communication.

9

Existing Notification Services

In this chapter we describe some standards (Sect. 9.1), commercial systems
(Sect. 9.2), and research prototypes (Sect. 9.3) that are closely related to
event-based systems.

9.1 Standards

In this section we describe standards which are related to event-based systems.
This includes the Corba Event Service, the Corba Notification Service, the
Java Message Service (JMS), and the Data Distribution Service (DDS).

9.1.1 Corba Event and Notification Service

The Common Object Request Broker Architecture (Corba) [283] is a plat-
form- and language-independent object-oriented middleware architecture fa-

Fig. 9.1. Internal structure of an object request broker (ORB)

306 9 Existing Notification Services

cilitating interoperability. Corba is standardized by the Object Management
Group (OMG), and vendors can implement the specification with their prod-
ucts. Corba is a mature middleware technology that is widely used in finan-
cial and telecommunication systems and has inspired many recent middleware
initiatives. Some reasons for Corba’s success are its good programming lan-
guage integration across several mainstream languages, the extensibility of the
platform using object services, and its adaptation to heterogeneous distributed
systems. The Corba specification describes the functionality, structure, and
the interfaces of the object request broker (ORB). An ORB consists of the
following main components (cf. Fig. 9.1):

Object Request Broker (ORB) Core. The ORB core forms the heart of
the middleware and handles communication. It resolves object references
to locations, performs the marshaling and unmarshaling of method pa-
rameters, and sends invocations and results over the network.

Interface Definition Language (IDL). Interfaces of remote objects are
defined in IDL, which is purely declarative and is independent of the pro-
gramming language(s) used for implementations. IDL supports the usual
primitive (integers, floats, etc.) and composite data types (e.g., structs).
Programming language mappings define how an IDL type is mapped to a
type of the programming language that is used.

Static Invocation Interface (SII). An IDL compiler transforms the static
interface definitions given in IDL into client-side stub and server-side skele-
ton source code (in a given programming language). The stubs are called
by the client, do the marshaling and unmarshaling of method arguments
and method results, and pass the results back to the client. The stubs are
also called Static Invocation Interface (SII) because their use requires the
interface of the called object to be known at compile time. This approach
has the advantage that remote method invocations can be statically type-
checked by the compiler.

Dynamic Invocation Interface (DII). The DII allows the remote call to
be constructed at runtime. This is, for example, useful if the interface of
the remote object to be invoked is not known at compile time. Dynamic
invocations are usually less efficient than static invocations since they
require more code and type-checking must be done at runtime. The server-
side complement of the DII is the Dynamic Service Interface (DSI). DII
and DSI can together be used for implementing general-purpose gateway,
proxy, or browser objects.

Object Adapter (OA). An object adapter is interposed between the ORB
and the skeletons. The OA dispatches upcalls received from the ORB to
the skeleton of the called object implementation or to the DSI. Other re-
sponsibilities of the OA include generation and interpretation of object
references, security of interactions, object and implementation activation
and deactivation, mapping object references to implementations, and reg-

9.1 Standards 307

istration of implementations. There can be different types of OAs. The
Portable Object Adapter (POA) is currently most commonly used.

Interface Repositories. The interface repository contains the IDL defini-
tions of interfaces. The repository can be queried either at compile time
or at runtime.

Implementation Repository. The implementation repository contains all
implementations of a remote interface at the server side so that remote
objects can be located and activated on demand.

Although the need for asynchronicity has been recognized by the OMG, the
core design of Corba is still based on synchronous communication. Before the
Asynchronous Message Invocation (AMI) was standardized, the only possibil-
ity to issue asynchronous two-way calls had been to use deferred synchronous
calls, which depend on the tedious dynamic invocation interface. With the
static invocation interface, only one-way calls had been possible which pro-
vide best-effort method invocations not expecting a return value and thus not
requiring blocking. The AMI closes this gap and enables asynchronous two-
way calls using the SII. It supports two models, the polling model and the
callback model. In the polling model, the issuer of a call can poll a collocated
value-type object to test whether or not the results are now available. In the
callback model, the results are delivered to the client by calling a handler
method with the results as parameters.

The Corba platform is extensible by means of object services that address
different facets of a distributed computing environment, ranging from transac-
tional support to security. In the next sections, we will take a closer look at the
Corba Event and Notification Services that explicitly deal with anonymous
asynchronous communication by providing publish/subscribe functionality.

Corba Event Service

The OMG acknowledged the need for publish/subscribe communication by
introducing the Corba Event Service [277] as a Corba service in 1994. The
current version as of 2005 is 1.2 [285]. With the Event Service, communication
among suppliers and consumers can be in push mode, in which case a sup-
plier pushes data to a consumer, or in pull mode, in which case a consumer
requests data from a supplier. Instead of communicating directly with each
other, consumers and suppliers are decoupled by an event channel. This way
it is possible to use push and pull communication at both sides.

The Event Service specification supports two models: typed and untyped
event communication. With the untyped model, which is most common, events
are of the Corba datatype any and can thus contain any IDL datatype.
Suppliers can call push on the PushConsumer interface to deliver data and
pull-based consumers can call pull on the PullSupplier interface to get data
(Fig. 9.2). Since consumers and suppliers are decoupled by the event channel,
they call these methods not on each other but on the event channel’s interface

308 9 Existing Notification Services

ConsumerPush Mode

Pull Mode

Supplier

Consumer Supplier

Interface

PushConsumer

PullSupplier

ConsumerPush Mode

Pull Mode

Supplier

Consumer Supplier

Interface

PushConsumer

PullSupplier

Fig. 9.2. Push mode vs. pull mode (typed event communication)

Event

Channel

PullConsumer PushSupplier

pushpull

PushConsumer push PullSupplier
pull

ProxyPullSupplier

ProxyPushConsumer

Fig. 9.3. Typed event communication using an event channel

(Fig. 9.3). For typed event communication, which is less common, suppliers
and consumers agree on a particular IDL interface and use its methods to
exchange information in pull or in push mode.

The Event Service enables Corba clients to participate in many-to-many
communication through an event channel. However, the asynchronous commu-
nication is implemented on top of Corba’s synchronous method invocation
and thus has the substantial overhead of performing a remote method invoca-
tion for every event communication. Moreover, event consumers cannot filter
the events they receive from an event channel because no event filtering is
supported. In particular, the lack of filtering mechanisms has led to the de-
velopment of the Notification Service, which can be seen as the successor of
the Event Service.

Corba Notification Service

As the successor of the Event Service, the Corba Notification Service [287]
addresses the shortcomings of the Event Service by providing event fil-
tering, quality of service (QoS), and a lightweight form of typed events,
calledstructured events. With the Notification Service, suppliers can discover
which event types are currently required by all consumers of a channel so
that suppliers can produce events on demand, or avoid transmitting events in

9.1 Standards 309

domain_name

type_name

event_name

ofh_name1

ohf_name2

…

…

remainder of body

ofh_value1

ofh_value2

ohf_namen ofh_valuen

fd_name1

fd_name2

fd_value1

fd_value2

fd_namen fd_valuen

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body

Remaining Body

domain_name

type_name

event_name

ofh_name1

ohf_name2

…

…

remainder of body

ofh_value1

ofh_value2

ohf_namen ofh_valuen

fd_name1

fd_name2

fd_value1

fd_value2

fd_namen fd_valuen

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body

Remaining Body

Fig. 9.4. The structure of a structured event (from [287])

which no consumers have interest. Similarly, consumers can discover all event
types offered by suppliers so that consumers may subscribe to new event types
as they become available. The Notification Service Specification also addresses
an optional event type repository that, if present, makes information about
the structure of events which may flow through the channel available.

Structured events are divided into a header and a body (Fig. 9.4). The
header consists of a fixed and an optional variable header, while the body
comprises a filterable and the remaining body. The fixed header contains the
domain name, the type, and the unique name of the event. The variable header
and the filterable body both contain name/value pairs that hold the data as-
sociated with the event. Event consumers can restrict the events that they
receive from the event channel by specifying filters over the name/value pairs.
The Notification Service Specification requires that an implementation sup-
port the Default Filter Constraint Language, which is an expressive content-
based filtering language that also allows users to filter events based on QoS
constraints. Besides the default filter constraint language, an implementation
may support any number of additional filter constraint languages.

The Notification Service suffers from the same problems with regard to
communication efficiency as the Event Service since both use synchronous
two-way calls for event delivery. Moreover, there are still a number of prob-
lems inherent to a channel-based solution. Producers and consumers, that is,
the application components, have to deal with channels explicitly. They have
to select the right ones moving information about the application structure
into the components—there is no support for the role of an administrator to
arrange channels, producers, and consumers from a system point of view. Us-
ing channels also limits system evolution, since the set of channels referenced

310 9 Existing Notification Services

by applications is static, a problem which is only recently addressed by reflec-
tive middleware [96]. Regarding the structure of a system, Corba channels
cannot reflect any hierarchy because their traffic is completely separated. Al-
though event management domains [282] support the federation of multiple
channels in arbitrary topologies, they do not offer any filtering of notifications
between coupled channels.

Notification Service instances may be federated with the help of ORB do-
mains. However, the necessary bridging between these domains has to be set
up manually. The domains are mostly seen as means to model the network and
broker infrastructure [318]; they are not targeted at engineering issues of ap-
plication design. So, in the end one can only assess that the standardized API
does not support visibility control and system management sufficiently well,
but the Corba Notification Service may serve as a communication technique
to realize a subset of a scope graph.

9.1.2 Jini

The Java programming language is popular for network programming and
therefore has some built-in middleware functionality. TheJava Remote Method
Invocation (RMI) specification [367] describes how to synchronously in-
voke methods of remote objects using request/reply communication between
twoJava Virtual Machines (JVMs) running on separate nodes. The Java RMI
compiler generates marshaling code for the proxy object and the server skele-
ton. Because of the homogeneous environment created by JVMs, in which
there is only a single programming language, the burden on the middleware
is lower. It is even possible to move executable code between JVMs by us-
ing Java’s object serialization to flatten an object implementation into a byte
stream for network transport.

Asynchronous event communication within a single JVM is mainly used in
the abstract window toolkit(AWT) [358] libraries for graphical user interfaces.
The EventListener interface can be implemented by a class to become a call-
back object for asynchronous events, such as mouse or keyboard events. The
Jini framework, described below, extends this to provide event communica-
tion between different JVMs. Other variants of asynchronous communication
in Java are provided by the messaging infrastructure of JMS (Sect. 9.1.3).

The Jini specification [360] enables programmers to create network-centric
services by defining common functionality for service descriptions to be an-
nounced and discovered. For this, it supports distributed events between
JVMs. A RemoteEventListener interface is capable of receiving remote call-
backs of instances of the RemoteEvent class. A RemoteEvent object contains
a reference to the Java object where the event occurred and an eventID that
identifies the type of event. A RemoteEventGenerator accepts registrations
from objects and returns instances of the EventRegistration class to keep
track of registrations. It then sends RemoteEvent objects to all interested
RemoteEventListeners. Event generators and listeners can be decoupled by

9.1 Standards 311

third-party agents, for example, to filter events, but the implementation is
outside the Jini specification and left to the programmer.

JavaSpaces [366] are a part of the Jini framework; they are similar to Linda
tuple spaces. With JavaSpaces, tuples can be inserted, read, and removed from
a space which stores each tuple from the time it is inserted to the time it is
removed. The corresponding operations are write, read, and take. read and
take take a template and block until a tuple that matches the given template
is present in the space. readIfExists and takeIfExists are the nonblocking
versions of read and take; they return instantaneously if a matching tuple
is not in the space. To reveal clients from polling for matching tuples, clients
can be notified when a matching tuple is inserted into the tuple space via the
notify operation. However, since there can be multiple listeners notified, it is
not guaranteed that a notified client will actually retrieve a matching tuple.
There can be multiple spaces that can reside on different hosts. Transactions
are also supported. For example, a tuple which is written within a transaction
becomes visible outside the transaction only after the transaction committed.
More details on transactions can be found in the Jini specification. Fairness
and ordering of operations is not addressed by the JavaSpaces specification.
TSpaces [402] developed by IBM are similar to JavaSpaces.

Summarizing, as is the case for Corba, event communication in Jini is
built on top of synchronous communication (Java RMI), so the same restric-
tions that limit scalability and efficiency apply.

9.1.3 Java Message Service (JMS)

The Java Message Service (JMS) [364] defines a messaging API for Java.
Differently from the Corba Event or Notification Service, JMS can be used
without the enterprise object platform, i.e., J2EE [365], of which it is part.
JMS clients can choose any vendor-specific implementation of the JMS spec-
ification, called a JMS provider. JMS comes with two communication modes:
point-to-point and publish/subscribe communication. Point-to-point commu-
nication follows the one-to-one communication abstraction of message queues.
Queues are stored and managed at a JMS server that decouples clients from
each other. Direct communication between a sender and a receiver without
an intermediate server is not supported. In publish/subscribe communication,
the JMS server manages a number of topics . Clients can publish messages to
a topic and subscribe to messages from a topic.

JMS provides a topic-based publish/subscribe service with limited content-
based filtering support in the form of message selectors. A message selector
allows a client to specify the messages it is interested in by specifying a filter
that operates on the fields of the message header; body fields cannot be evalu-
ated. The selector syntax is based on a subset of the SQL92 [101] conditional
expression syntax.

Like structured Corba events, a JMS message is divided into a message
header and body. The header contains various fields, including the destination

312 9 Existing Notification Services

of the message, its delivery mode, a message identifier, the message priority, a
type field, and a timestamp. The delivery mode can be set to PERSISTENT to
enforce exactly-once delivery semantics; otherwise best-effort delivery applies.
The type of a message is an optional field that can be used by a JMS provider
for type-checking the message. Apart from predefined fields, the header can
also contain any number of user-supplied fields. The message body is in one
of several formats: a StreamMessage, a TextMessage, and a ByteMessage
containing the corresponding Java primitive types. A MapMessage is a dictio-
nary of name/value pairs similar to the fields found in the header. Finally,
an ObjectMessage uses Java’s object serialization feature to transmit entire
objects between clients.

Messages can be consumed synchronously or asynchronously, i.e., either
pull or push can be used to transfer messages to the respective consumer.
There exist two ways of message acknowledgment: messages can either be
acknowledged automatically or specifically by the client. Moreover, messages
can be persistent or volatile. Persistent messages are delivered exactly once
to a consumer. They also do not get lost if the provider fails; they usually are
logged to stable storage. However, this comes at the cost of a much higher
overhead. Volatile messages are delivered at most once; they may get lost if
the provider fails.

With JMS, subscriptions can either be durable or not. With durable sub-
scriptions, notifications are retained while the subscriber is disconnected from
the provider until they have been delivered or expired. To the contrary, with a
nondurable subscription, notifications that are published while the subscriber
is disconnected may get lost.

Sessions can be transactional or nontransactional. Transactional sessions
allow clients to group the publication and the consumption of several mes-
sages into an atomic unit of work. On the producer side, produced messages
are retained until commit and if transaction aborts messages are discarded.
On the consumer side, all consumed messages are kept until commit and are
automatically acknowledged on commit. If the transaction aborts, the mes-
sages are redelivered. Hence, messages are actually sent and received when
the transaction commits. Since the production and the consumption of the
same message cannot be part of the same transaction, only local transactions
are possible. Another consequence is that transacted sessions cannot be used
to implement request/reply interaction. Moreover, point-to-point operations
and publish/subscribe operations cannot be mixed inside a single transaction.

Although, at first sight, JMS appears to be a strong contestant for a large-
scale middleware, it suffers from several shortfalls: First, the entire model is
centralized with respect to JMS servers. As a result, JMS servers are heavy-
weight middleware components and can become bottlenecks because the JMS
specification does not address the routing of JMS messages across multi-
ple servers or the distribution of servers to achieve load balancing. Second,
content-based filtering of messages in JMS only considers the message header
but not the message body. This seriously reduces the usefulness of message

9.1 Standards 313

filtering. Finally, JMS is tightly integrated with the Java language. This has
the advantage that object instances can be published in a message, but comes
with the price of only supporting Java clients, which is not feasible in a large-
scale, heterogeneous distributed system.

Another main problem is that aspects that will be important for any JMS
implementation are not addressed by the JMS specification. This includes,
for example, exception handling, load balancing, fault tolerance, end-to-end
security, administration, and message type repositories. For example, the spec-
ification leaves open how to define topics or how they are interrelated. Many
of these aspects are nevertheless addressed and implemented differently by in-
dividual vendors. Hence, applications using these products are incompatible
if they use these implementation-specific features.

9.1.4 Data Distribution for Real-Time Systems (DDS)

The Data Distribution Service for Real-Time Systems (DDS) [286, 299] was
standardized by the OMG in 2004. DDS follows a “data-centric” approach: it
creates the illusion of a global data space populated by data objects that ap-
plications in distributed nodes can access via read and write operations [298].
Related industrial products, e.g., Splice DDS from Thales (US) [375, 384] and
NDDS [324] from Real-Time Innovations (US) are available. The specification
describes two layers of interfaces:

� The mandatory data-centric publish/subscribe (DCPS) level is targeted
toward the efficient delivery of information to interested recipients. It al-
lows for content-based publish/subscribe communication between publish-
ers and subscribers and lays an emphasis on quality of service (QoS).

� The optional higher data local reconstruction layer (DLRL) level allows for
a simple integration of the service into the application layer. The DLRL
automatically reconstructs the state of cached objects locally from updates
and allows applications to access objects as if they were local.

Since real-time systems are the application domain of the DDS, special
care must be taken to design the interfaces such that real-time requirements
can be met by the implementation. The service implementation must be able
to preallocate resources reducing dynamic resource allocation to a minimum.
For example, copying data should be minimized for efficiency reasons and
resource usage should be predictable and bounded. Also due to efficiency
reasons, typed events with interfaces are used such that type-safety can be
ensured at compile time. Here, typed means that for each datatype, specific
classes are generated. Generation tools translate event descriptions into the
proper interfaces bridging the gap between typed interfaces and the generic
service implementation. The specification pays attention to separate producers
from consumers such that they can be implemented independently to facilitate
extensibility. QoS is an important issue for the DDS. QoS is supported through
several QoS policies that declaratively specify which QoS should be provided

314 9 Existing Notification Services

instead of how this QoS should be realized. Publishers offers a maximum
level for each QoS policy, while subscribers request a minimum level for each
QoS policy. For example, a subscriber can request that it wants to receive an
update at least once in a given time interval. The next two sections describe
the DCPS and the DLRL in more detail.

Data-Centric Publish/Subscribe (DCPS)

The Data-Centric Publish/Subscribe (DCPS) layer is responsible for getting
data from publishers to interested subscribers. In the following we describe
the main components of DCPS (Fig. 9.5).

DataWriterDataWriterDataWriter

Publisher

DataReaderDataReaderDataReader

SubscriberTopic

Application Application

… …

DataWriterDataWriterDataWriter

Publisher

DataReaderDataReaderDataReader

SubscriberTopic

Application Application

… …

Fig. 9.5. Conceptual overview of data-centric publish/subscribe (DCPS)

A Publisher is an object responsible for data distribution. A DataWriter
is a typed facade that provides access to a publisher. It is bound to ex-
actly one Topic, Publisher, and application datatype. An application uses
a DataWriter to communicate with a Publisher to the let it know the
existence and the value of data objects of a given type. A Subscriber is
an object responsible for receiving published data. A DataReader provides
typed access to a subscriber, i.e., to the received data. It is bound to ex-
actly one Topic, Subscriber, and application datatype. The application as-
sociates a DataReader to a Subscriber to receive the datatype described by
the DataReader. The QoS experienced by a subscriber is affected by a number
of issues. In addition to the Topic QoS, the QoS of the DataWriter, and the
QoS of the Publisher affect the QoS on the publisher’s side. On the sub-
scriber’s side, the QoS is affected by the Topic QoS, the DataReader QoS,
and the Subscriber QoS. A Topic is conceptually located between publishers
and subscribers. It has a name that is unique in the domain and a QoS policy.
DCPS differs from other notification services by the fix binding of a Topic
to a datatype. ContentFilteredTopic and MultiTopic derive from Topic;
they can only be used by a Subscriber. A ContentFilteredTopic provides
means for content-based filtering that is similar to the WHERE clause of an SQL
query. The optional MultiTopic class allows users to get data from multiple

9.1 Standards 315

topics and to combine, filter, and rearrange this data. The data will then be
filtered and possibly rearranged using aggregation and projection.

Topic, Publisher, and Subscriber objects are created using the respec-
tive create operation of DomainParticipant. A DomainParticipant acts
as an entry point for an application to the service, serves as a factory for
many of the classes, and acts as container for the other objects that make
up the service. It represents the local membership of an application in a do-
main which is a distributed concept, allowing all applications of this domain
to communicate with each other.

Datatypes represent information that is sent and received atomically. In-
stances of a datatype are identified by a key. Data with the same key are
treated as successive values of the same instance, while data with different
keys are treated as referring to different instances. By default, data modifi-
cations are disseminated individually, independently, and uncorrelated from
other modifications. It is, however, possible that an application requests sev-
eral modifications to be sent and also received atomically.

To publish data an application first creates a DomainParticipant using
DomainParticipantFactory. If the respective Topic does not exist, the appli-
cations creates it using the DomainParticipant. Then, the application creates
a Publisher using the DomainParticipant and uses the Publisher to create
a DataWriter. If the application decides to publish data, it calls the write
on the corresponding DataWriter.

To subscribe to data, an application uses a DomainParticipant to find
the Topic of interest. Then, it uses the DomainParticipant to create a
Subscriber and uses the Subscriber to create a DataReader. To receive
data an application can either use a Listener or a WaitSet object. These
represent the two basic ways of receiving data and are called notification-
based and wait-based, respectively.

The notification-based interaction style uses listeners. Applications register
handlers that are invoked by the middleware to notify the applications about
asynchronous events such as the arrival of new data or a QoS violation. From
the Listener interface, more specific listeners such as DataReaderListener
derive; they add methods depending on the concrete Listener.

The wait-based interaction style uses WaitSet objects that allow an
application to wait until one or more of the attached Condition objects
are triggered or else until a timeout expires. Condition is subclassed by
GuardCondition,StatusCondition, and ReadCondition. A GuardCondition
is under the control of an application and can be used by the application to
manually wake up the WaitSet. A StatusCondition is attached to any entity;
it provides information about the communication status of the respective en-
tity such as the arrival of new data. A ReadCondition allows an application to
specify the data samples, in which it is interested. This allows the middleware
to enable the condition only when suitable information is available. If data
are available, the application can either call read or take on the respective

316 9 Existing Notification Services

DataReader. While read allows the data to be read again later, take removes
the data from the DataReader.

Data Local Reconstruction Layer (DLRL)

The Data Local Reconstruction Layer (DLRL) is an optional layer that may
be built on top of DCPS. DLRL allows for a simple integration of the service
into the applications by offering an interface on a higher level than DCPS
does. DLRL defines an object cache that allows the application to access
objects “as if” it were locally available by automatically reconstructing the
state of the cached objects from the updates received. To achieve this, object
modifications are propagated using DCPS to all parties having a copy of the
respective object in their cache and the copies are accordingly updated.

With the DLRL an application can describe DLRL objects with methods,
attributes, and relations. Attributes can be either local or shared. As their
name suggests, only shared attributes take part in dissemination. To ensure
their dissemination, shared attributes are attached to DCPS entities. A DLRL
object has at least one shared attribute. DLRL objects can be manipulated
using the native language constructs, which in turn triggers changes to the
corresponding DCPS entities in the background. Single inheritance of DLRL
objects is supported and different kinds of associations can be used to relate
DLRL objects to each other. The associations can be used to navigate among
the DLRL objects. With the DLRL, the application model is given in OMG
IDL. In addition, for example, the mapping from application types to topics
and which attributes should be shared are defined using XML. The required
classes are then generated automatically by an IDL compiler.

To achieve the dissemination of object modifications, the DLRL specifica-
tion defines several mappings between the DCPS and the DLRL layer:

1. The structural mapping defines the relation between DLRL objects and
DCPS data. It is very similar to an object to relation mapping known
from database management. Each DLRL object is mapped to a DCPS
data sample. Topics correspond to database tables, and data samples cor-
respond to tuples.

2. The operational mapping defines the relation between DLRL objects and
DCPS entities (e.g., Topic). For example, each DLRL class is mapped to
several DCPS topics. The use of the DCPS entities is totally transparent
to the application using DLRL.

3. The functional mapping defines the relation between DLRL functions
(mainly access to the DLRL objects) and the DCPS functions.

Several classes are used by an application to access DLRL objects at run-
time. A Cache contains a set of objects that are locally available and that are
managed consistently. Its contents are updated transparently when updates
arrive. A Cache is created using a CacheFactory. At creation time its mode
is set to read-only, write-only, or read/write. A Cache comprises one or more

9.1 Standards 317

CacheAccess objects that isolate a set of objects in a given access mode. A
CacheAccess allows users to globally manipulate DLRL objects in isolation.

9.1.5 WS Eventing and WS Notification

Most early Web services were based on synchronous request/reply interaction.
After Web services had been on the market for some years, the need for asyn-
chronous push capabilities was recognized. These capabilities are needed for
services such as stock quoting services if they should not be based on resource-
intensive polling. Pushing information to a service requires that the service
can be contacted using a communication endpoint. Web Services Address-
ing (WS-Addressing) introduces service endpoint references for Web services.
These endpoints can be passed as message parameters, for example, to register
a subscription, and to subsequently deliver messages to the registered service.
The different parts of WS-Addressing are currently being standardized by the
World Wide Web Consortium (W3C). On top of WS-Addressing, Web Ser-
vices Eventing (WS-Eventing) [201, 387] resides. It lets a Web service, called
event sink, register at another Web service, called event source, such that the
former can receive notification messages from the latter. A subscription is only
valid until an expiration time, which is passed by the event source to the event
sink as part of the subscription reply message. The event sink can request the
notifications to be filtered by an event filter, which is a Boolean expression
that is by default given as an XML XPath expression.

Web Services Notification (WSN) [200, 386] is an alternative to WS-
Eventing. WSN is currently being standardized by the OASIS (Organiza-
tion for the Advancement of Structured Information Standards). It consists
of Web Services Base Notification (WS-BaseNotification) [274], Web Ser-
vices Brokered Notification (WS-BrokeredNotification) [275], and Web Ser-
vices Topics (WS-Topics) [276]. WSN also builds upon WS-Addressing.
WS-BaseNotification defines the NotificationConsumer interface and the
NotificationProducer interface used for direct notification, and specifies
messages and message exchanges to be implemented by services that wish
to act in these roles along with operational requirements expected of them.
Consumers register their subscriptions directly at the producers. Content-
based filtering is supported by selector expressions. A producer sends a no-
tification directly to the consumers that registered a matching subscription.
WS-BrokeredNotification defines interfaces, messages, and message exchanges
needed for brokered notification, which uses notification brokers as intermedi-
aries to decouple producers from consumers. WS-Topics define the concepts
centered around topic-based publish/subscribe such as topics, topic spaces,
topic trees, and topic expressions.

9.1.6 The High-Level Architecture (HLA)

The High-Level Architecture(HLA) [98] originated at the U.S. Department of
Defense in 1996 and was later standardized by the IEEE (Standard 1516)

318 9 Existing Notification Services

and by the OMG. The corresponding standard of the OMG is described in
the Distributed Simulation Systems (DSS) specification [284]. The HLA is
mainly used to deploy distributed simulations. It provides the specification of
a common technical architecture for use across all classes of simulations in the
US Department of Defense serving as a structural basis for simulation inter-
operability. With the HLA a simulation is carried out by a set of federates.
Each federate manages a set of objects (e.g., tanks), which move in a rout-
ing space. Inside the HLA, Data Distribution Management (DDM) services
support the routing of data among federates during the course of a federa-
tion execution. Especially, DDM allows for content-based subscriptions based
on object attributes. However, content-based filtering is usually done on the
client side. Federates express their interest to receive updates by subscribing
to all updates that occur in a rectangular region of the routing space. Besides
these subscription regions, there are update regions. Regions may change, for
example, when an object moves in the routing space.

For distributing the updates, region-based and grid-based approaches are
used [48]. With the region-based approach usually one multicast group is used
for every update region and the subscribing federates join those groups that
overlap with their subscription regions. With the grid-based approach, the
routing space is divided into cells and for each cell a multicast group is used.
Publishing federates publish updates to those multicast groups the update
belongs to and subscribing federates join all groups that overlap with their
subscription regions.

9.2 Commercial Systems

We discuss IBM WebSphere MQ in Sect. 9.2.1, TIBCO Rendezvous in
Sect. 9.2.2, and Oracle Advanced Queuing in Sect. 9.2.3. Instead of describing
all features of these commercial systems, we put an emphasis on those features
which are related to publish/subscribe.

9.2.1 IBM WebSphere MQ

IBM WebSphere MQ (MQ) [198, 199] (formerly known as IBM MQSeries) is a
messaging platform that is part of IBM’s WebSphere suite. MQ is a powerful
middleware, whose strength lies in the simple integration of legacy applications
through loosely coupled queues. A particular strength of WebSphere MQ is
its availability for many platforms including Windows, Linux, Solaris, and
many others. Its main focus is on point-to-point messaging using queues,
especially request/reply on communication. A queue manager is a process that
manages a set of queues and offers the queuing services to applications via an
API. Several programming language bindings of the API to send and receive
messages to and from queues exist. WebSphere MQ comes with advanced
messaging features, such as transactions, clustered queue managers for load

9.2 Commercial Systems 319

balancing and availability, and built-in security mechanisms. Additionally, a
queue manager provides functions to administrators so that they can create
new queues, alter the properties of existing queues, and control the operation
of the queue manager. For a program to use the services of a queue manager,
it must establish a connection to that queue manager.

WebSphere MQ Publish/Subscribe (MQPS)

WebSphere MQ Publish/Subscribe (MQPS) allows MQ applications to com-
municate using publish/subscribe communication. MQPS was originally a
supplement for MQSeries but was later incorporated into WebSphere MQ.
It offers topic-based publish/subscribe communication; no content-based sub-
scriptions are supported. In topic-based subscriptions, two wildcards can be
used: while a ? can be replaced by any single character, an * can be replaced
by any sequence of characters. It is suggested to use the / to organize the top-
ics into a hierarchy. The publisher specifies the topic of a publication when
it publishes the information, and the subscriber specifies the topics on which
it wants to receive publications. The routing of messages from producers to
subscribers is carried out by a broker that uses standard MQ functionality
to achieve this. Hence, an application using MQPS can use all the features
available to existing MQ applications. Publishers can optionally register their
intention to publish information on a certain topic at the broker. Publishers
and subscribers do not have to be on the same machine as a broker. They can
reside anywhere in the network, provided there is a route from their queue
manager to the broker.

Related topics can be grouped together to form a stream. Streams separate
the information flow of the grouped topics from topics in other streams. At
each broker that supports a stream, there is a queue with name of the stream.
There is a default stream. Streams can also be used to restrict the types of
publication a broker has to deal with. This can, for example, be used for load
balancing. Access control is also done based on streams.

Brokers can be connected to each other to form a hierarchy. Subscriptions
flow to all nodes in the network that support the respective stream. A broker
consolidates all the subscriptions that are registered with it, whether from ap-
plications directly or from other brokers. In turn, it registers subscriptions for
these topics with its neighbors, unless a subscription already exists. Hence,
forwarding of identical subscriptions is avoided. When an application pub-
lishes information, the receiving broker forwards it (possibly through one or
more other brokers) to any applications that have valid subscriptions for it,
including applications registered at other brokers supporting this stream.

MQPS allows publications to be retained such that they can be delivered
to subsequent subscribers. This way, new subscribers can gather information
without having to wait until it (or an updated version) is published again.

320 9 Existing Notification Services

WebSphere Business Integration Event Broker (BIEB)

The WebSphere Business Integration Event Broker (BIEB) is a complement
to WebSphere MQ. BIEB provides high-performance nonpersistent publish/
subscribe functionality to clients that can then use content-based subscrip-
tions in addition to topic-based subscriptions. Brokers can be connected to
form a hierarchy. Brokers can also be grouped together to form fully connected
collectives ; in this case, the collectives are then connected to form a hierarchy.
Brokers can also be cloned to improve the availability of the publish/subscribe
system. Subscriptions are propagated through the broker network. However,
only the topic filter is propagated and not the content filter. Hence, a bro-
ker might receive publications in which none of its subscribers is interested.
Additionally, it is possible to use IP multicast to distribute subscriptions and
publications in LANs.

Message flows can be defined that describe operations to be performed on
an incoming message, and the sequence in which they are carried out. A flow
consists of a number of flow nodes, each of which corresponds to a processing
step. The flow connections, which connect flow nodes, define which processing
steps are carried out, in which order, and under which conditions. A flow node
can also contain a subflow which allows message flows to be composed. Mes-
sage flows run in a container called message flow project which are deployed
at a broker. Subscription points can be used to make information associated
with a particular topic available in a number of different formats. For exam-
ple, stock prices might be published with a default currency of dollars, but
might be required by subscribers expressed in other currencies. Subscription
nodes are implicitly connected to publication nodes of message flows.

9.2.2 TIBCO Rendezvous

TIBCO Software (US) is a major player in the publish/subscribe middle-
ware market. Its publish/subscribe middleware product TIBCO Rendezvous
has been available for many years and has been applied by major customers,
especially in the area of financial services. For example, the NASDAQ has im-
plemented its trading floor using TIB Rendezvous. According to TIBCO, the
trading floor infrastructure handles 1.8 billion real-time messages per day and
25 thousand trades per second. The current version of TIBCO Rendezvous, as
of January 2006, is Version 7.4 [381]. TIBCO Rendezvous is available for many
platforms including Linux, Windows, Solaris, and FreeBSD, and APIs are
available for many programming languages including Java, C, C++, and Perl
5. TIBCO Rendezvous originally was called TIBCO’s Information Bus (TIB)
and was renamed later. It is based on ideas presented by Oki et al. [289], who
proposed a distributed implementation of a subject-based publish/subscribe
system called the Information Bus.

TIBCO Rendezvous uses patented subject-based addressing [345]. Sub-
scriptions select subjects from a subject hierarchy. A single subject is se-
lected by its dotted name (e.g., stocks.technology.fooInc), where the

9.2 Commercial Systems 321

parts of the name that are separated by dots are called elements. An ap-
plication can use wildcards to select more than one subject. The wildcard *
can be replaced by any element, while the wildcard > can be replaced by any
dot-separated sequence of elements. Hence, stocks.technology.* matches
stocks.technology.foo but not stocks.technology.software.bar, while
stocks.technology.>matches both. The mapping from subjects to underly-
ing transport protocols, in particular to specific IP multicast addresses, has to
be done manually, and it is statically encoded in every producer and consumer.
Although the inherent communication efficiency of IP multicast is appealing,
it comes at the cost of a rather static configuration, which not only compli-
cates maintenance, but also restricts configurability and integration, and thus
the range of possible application domains [382].

A program, which wants to participate in a distributed system in which
hosts communicate by the means of TIBCO Rendezvous, uses a TIBCO Ren-
dezvous API library matching the used platform and programming language.
In such a system each participating host runs a rendezvous daemon (rvd),
which runs as a separate process. Each message published by a program is
handed out to the local daemon via the API library and is then multicast
to all daemons in this network. Programs attempt to connect to a local dae-
mon. If a local daemon process is not yet running, the program starts one
automatically and connects to it. The daemons hide many details from the
programs such as data transport, packet ordering, receipt acknowledgment,
and retransmission requests.

With TIBCO Rendezvous messages are the entities that travel among
programs. A message comprises data fields, a subject indicating its destination,
and an optional reply-to subject. Each field contains one data item which can
be identified by either by its name or by its numerical identifier. Programs
do not have to know the wire format of messages; conversions to and from
the wire format are transparent to the application. The wire format contains,
besides the data itself, also metainformation about the data contained such
that the data is “self-describing” in the sense that the receiver is able to
interpret and use the data properly.

To register interest in a set of event occurrences, a program creates an
event object whose parameters specify that set. The programmer can specify
in which event queue an occurred event is inserted and which callback function
is invoked when the event is dispatched. Dispatching can be done in several
ways. Queues can be prioritized and grouped to have a fine-grained control of
dispatching. Discarding policies can be chosen that specify which event (e.g.,
the first in a queue) is discarded when the queue size exceeds a given limit.
Besides message events, which signal the arrival of a message, timer events
and I/O events are supported. The event driver recognizes the occurrence of
events and places them in the appropriate event queues for dispatch. To receive
messages, programs create listener events, which specify that messages which
match a subject name (that may contain wildcards) are of interest, define
callback functions to process the inbound messages, and dispatch events in

322 9 Existing Notification Services

a loop. A transport defines the delivery scope of messages. While network
transports deliver messages across a network, intraprocess transports deliver
messages only between program threads within a single process. The creation
of a transport takes a service parameter. Messages do not travel among
transports having different service parameters. Together with all listener
events bound to a transport, a transport defines the actual set of receivers of
a published message.

TIBCO Rendezvous supports two levels of message reliability. With re-
liable delivery the middleware tries to do its best to ensure that a message
reaches all participants. However, certain faults, such as daemon crashes, can
lead to applications not getting all messages they would have gotten without
this fault. The advantage of this scheme is its good performance. With certified
delivery, the delivery of messages is guaranteed. Messages additionally carry
the sender’s name, a subject-independent message ID, and an expiration time.
This information is used by daemons and routers to request retransmissions
of missing messages and to discard expired messages. Despite retransmissions,
the order in which messages are delivered satisfies a FIFO-sender policy. To
ensure that messages can be delivered even in case of daemon crashes and sub-
sequent restarts, messages are stored persistently. However, reliability comes
at a cost: certified delivery greatly degrades the performance of the system.

Independent networks of TIBCO Rendezvous instances can be connected
with information routers. They forward messages between distinct networks
so that subscribers can transparently listen for subject names and receive
messages from other networks. Administrators managing the routers have
control over the subject names (and associated messages) that are relayed and
flow in or out of a network. These routers offer a basic means of structuring.

TIBCO Rendezvous has proven to be scalable to large-scale systems. How-
ever, if the subject-based filtering is not expressive enough, extra filtering of
events is left to the subscribers. In these cases, scalability can become a prob-
lem and the network might be overwhelmed by too many event broadcasts. A
JMS implementation is also available from TIBCO (cf. Sect. 9.1.3).

9.2.3 Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing (AQ) was the first database-integrated
messaging system in the industry. This approach is contrary to products such
as TIBCO Rendezvous (cf. Sect. 9.2.2), which are not bundled with a da-
tabase. With the release of Oracle 10, AQ was renamed to Oracle Streams
Advanced Queuing. AQ offers a JMS implementation (cf. Sect. 9.1.3) called
Oracle JMS, which is compliant to JMS 1.1 and a proprietary API for queues.
Oracle recommends using the standardized JMS API instead of the propri-
etary AQ API, if Java is used as programming language. As a result of the
database integration of AQ, all the functionality offered by the Oracle 10 da-
tabase can be applied to messaging. This includes query support, indexing,

9.2 Commercial Systems 323

transactions, triggers, consistency constraints, logging, replication, authenti-
cation, access control, backup, recovery, data export, and data import.

The basic abstraction of AQ, which decouples producers of messages from
consumers of messages, are queues. Due to the tight database integration
of AQ, queues are normal database tables and messages are normal rows in
database tables. Hence, messages can be accessed (i.e., queried) using standard
SQL. SQL can be used to access the message properties and the payload.
Message histories are available and indexes can be used to optimize access.

Messages can be enqueued into or dequeued from a queue. Multiple produc-
ers can enqueue messages into a queue, and multiple consumers can dequeue
messages from a queue. AQ distinguishes among single-consumer and multi-
consumer queues. While single-consumer queues are used for point-to-point
messaging, multiconsumer queues can be used for different kinds of point-to-
multipoint messaging, including publish/subscribe communication. To allow
multiple consumers to dequeue the same message from a queue, AQ supports
message recipients and queue subscriber. If a message should be consumed by
multiple consumers, it remains in the queue until it is consumed by all its
intended consumers. While message recipients are specified by the producer
of a message, applications or other queues must subscribe to a queue to be-
come a queue subscriber. Subscriptions can be rule based. In this case, not all
messages that are enqueued can be dequeued by a queue subscriber, but only
those that match the subscription, which is specified in a syntax similar to a
WHERE clause of SQL. A subscriber can specify a callback that is invoked to
notify it asynchronously about the availability of a new matching message.

There are a number of enqueue and dequeue options available, such as
an earliest dequeue time for a message and a message expiration time. Mes-
sages are not necessarily dequeued in the order in which they are enqueued.
Messages can be grouped to form a set that can only be consumed by one
consumer at a time. This feature can, for example, be used to transfer a huge
payload by a set of messages. Messages can be retained for a given period af-
ter consumption. In a message history also the enqueue time and the dequeue
time of a message is saved. Retained messages can be related to each other
and applications can track sequences of related messages and produce event
journals automatically.

Messages can be propagated based their content from a queue to other
queues residing either in the same database or in remote databases. This
enables applications to communicate that are not connected to the same queue
or to the same database. With message propagation, messages can be fanned
out to a large number of recipients without requiring them all to dequeue
messages from a single queue. This is known as compositing or funneling
messages. Messages can also be propagated using HTTP or HTTPS. AQ allows
for message format transformations which are represented by SQL functions.
Messages can be transformed during enqueue or during dequeue.

An alternative to persistent messaging is buffered messaging, which pro-
vides a much faster queuing implementation. Buffered messaging is useful for

324 9 Existing Notification Services

applications not requiring the reliability and transaction support of persistent
messaging. It is faster because it stores messages in main memory and only
writes messages to disk if the main memory is too small to hold all current
messages. Buffered messaging uses the same API as persistent messaging.

In summary, Oracle Streams Advanced Queuing is a feature-rich messag-
ing system that supports different communication styles including publish/-
subscribe. Because of its tight database coupling it exhibits many interesting
features that other systems do not expose. However, this comes at the cost of
a rather heavyweight implementation.

9.3 Research Prototypes

Many research prototypes have emerged since the second half of the 1990s. The
pioneers of this area were the Gryphon (Sect. 9.3.1), the Siena (Sect. 9.3.2),
the JEDI (Sect. 9.3.3), the READY (Sect. 9.3.8), and the Elvin (Sect. 9.3.7)
event notification services and the Cambridge Event Architecture (CEA)
(Sect. 9.3.6). From the newer approaches we present Rebeca in Sect 9.3.4
and Hermes in Sect. 9.3.5. Each of the systems we discuss in the follow-
ing has its own focus (e.g., routing or matching) and differs from the others
in some way. With the above selection of systems we try to cover most of
the area. Of course, there are many other research prototypes that are not
discussed in this book.

9.3.1 Gryphon

The Gryphon project at IBM Research [203] led to the development of an
industrial-strength, reliable, content-based event broker that is now part of
IBM’s WebSphere suite as the IBM WebSphere MQ Event Broker [202]. It
is a mature publish/subscribe middleware implementation with a JMS inter-
face that provides a redundant, topic- and content-based multibroker publish/
subscribe service. The Gryphon event broker has been successfully deployed
for large-scale information dissemination at global sports events, such as the
Olympic Games. Opyrchal et al. have also investigated how IP multicast can
be used to improve the efficiency of event distribution [291] (cf. Sect. 4.6.7).
Gryphon includes an efficient event matching engine [6], a scalable routing
algorithm, and security features.

Gryphon is based on an information flow model for messaging [28, 354].
An information flow graph (IFG) specifies the exchange of information be-
tween information producers and consumers. Information flows can be altered
by (1) filtering, (2) stateless transformations, and (3) stateful transformations
(aggregation). A logical IFG is mapped onto a physical event broker topology.
Figure 9.6 shows an example of a Gryphon deployment. Nodes in the IFG are
partitioned into a collection of virtual brokers PHB, IB1,2, and SHB1−4, which
are then mapped onto clusters of physical event brokers called cells . Similarly,

9.3 Research Prototypes 325

B1

IB1

PHB

B2 B3

SHB1

B6

SHB2

B7

IB2

B4 B5

SHB3

B8

SHB4

B9

Fig. 9.6. A Gryphon network with virtual event brokers

edges connecting nodes in the IFG are virtual links that map onto link bun-
dles , containing multiple redundant connections between event brokers for
reliability and load balancing.

An event broker that has publishing clients connected to it is called a
publisher-hosting broker (PHB). It contains publisher endpoints (or pubends),
which represent a collection of publishers that enter information into the IFG.
Correspondingly, a subscriber-hosting broker (SHB) consumes information
through one or more subscriber endpoints (or subends) from the IFG accord-
ing to its subscriptions. An event broker that is neither publisher-hosting nor
subscriber-hosting is an intermediate broker (IB). The topology mapping is
statically defined at deployment time, although more recent work [410] in-
cludes dynamic topology changes due to failure and evolution. Several exten-
sions are implemented as part of the Gryphon event broker; these are discussed
in the following.

Guaranteed Delivery

A guaranteed delivery service [39] provides exactly-once delivery of events, as
required for JMS persistent events. The propagation of information (knowl-
edge) from pubends to subends is modeled with a knowledge graph. Lost
knowledge due to message loss causes curiosity to propagate up the knowl-
edge graph and trigger the retransmission of events. Curiosity is implemented
as negative acknowledgment (NACK) messages sent by SHBs. A subscriber
that remains connected to the system is guaranteed to receive a gapless or-
dered filtered subsequence of the event stream published at a pubend. A more
detailed description of guaranteed delivery and how it can be extended to
address congestion in an event-based middleware is given in Sect. 8.3.

326 9 Existing Notification Services

Durable Subscriptions

The durable subscription service [40] guarantees exactly-once delivery despite
periods of disconnection of event subscribers from the system. This means that
the event stream is buffered while a subscriber is not available and replayed
upon reconnection. As for the guaranteed delivery service, an event log is kept
at PHBs and cached at intermediate brokers.

Relational Subscriptions

The final extension is the relational subscription service [214]. Its goal is to
implement the stateful transformations supported by Gryphon’s IFG model,
combining messaging with a relational data model. Relational subscriptions
can be seen as a continuous query over event streams, providing event sub-
scribers with the expressiveness of a relational language. This relates to the re-
quirement for composite event detection in an event-based middleware, which
is discussed in Chap. 7.

The Gryphon event broker includes many of the features that a distributed
systems’ programmer expects from an event-based middleware. However, the
overlay network of event brokers is static, as it is defined in configuration
files at deployment time. This makes it difficult for the middleware to adapt
to changing network conditions. Failure within a cell of event brokers can be
tolerated, but major changes to the IFG cannot be compensated for. Although
composite event detection is provided by relational subscriptions, a relational
data model for messaging might be too heavy-weight for many applications.

9.3.2 Siena

One of the first implementations of a distributed content-based publish/
subscribe system was the scalable internet event notification architecture
(Siena) [65, 71]. Siena is a multibroker event notification service that targets
at Internet-scale deployment. Brokers are called servers in Siena. As usual,
event publishers and subscribers connect to a server in the logical overlay
network. Events published by publishers are then routed through the overlay
network of servers depending on the subscriptions submitted by subscribers.

Siena uses covering-based routing in its hierarchical and its peer-to-peer
variants. Other routing algorithms are not supported. The algorithms used by
Siena are similar to those presented in Sects. 4.5.4 and 4.6.2. In case the peer-
to-peer variant is applied, advertisements are supported. The algorithms build
upon a partially ordered set (POSET), which allows brokers to keep track of
the covering relations among filters. More precisely, the transitive reflexive
reduction of the partial order induced by the covering relation is stored. Each
server manages a POSET that is accordingly updated when a subscription or
unsubscription is processed by the server.

9.3 Research Prototypes 327

Fig. 9.7. A hierarchical topology in Siena

Fig. 9.8. An acyclic peer-to-peer topology in Siena

The POSET can also be used for matching [71] by traversing it, for example
in depth-first order, starting from the root filters, i.e., from those filters which
cover all other filters. If a visited filter does not match, then no child filter can
match the notification. Carzaniga et al. [67, 70] also presented an alternative
matching algorithm that is based on the counting algorithm (cf. Sect. 3.2.2)
and that is similar to those presented by Mühl [262].

In Siena a notification consists of a set of typed attributes. Subscrip-
tions and advertisements are conjunctions of attribute filters, which are sim-
ple predicates (e.g., comparisons) over the event attributes. If there is only
one attribute filter per attribute, a notification matches a subscription (an
advertisement) if it satisfies all attribute filters. However, the interpretation
is different for subscriptions and advertisements if there is more than one at-
tribute filter for an attribute. For a subscription, a notification has to match
all of these attribute filters, while for an advertisement, a notification has to
match at least one of these attribute filters. Hence, the models of subscrip-
tions and advertisements differ. This fact complicates computing overlapping
and covering among filters for more complex data types.

Siena considers three different types of topologies: hierarchical (Fig. 9.7),
acyclic peer-to-peer (Fig. 9.8), and generic peer-to peer (Fig. 9.9). In contrast
to an acyclic topology, a generic peer-to-peer topology is not restricted to be
a tree. Here, peer-to-peer only means that there is no master/slave relation
among servers as there is for hierarchical topologies. In a hierarchical topol-
ogy, hierarchical covering-based routing is used. In this case, the protocol that

328 9 Existing Notification Services

Fig. 9.9. A generic peer-to-peer topology in Siena

clients use to interact with the respective server they are connected to is the
same that a server uses to interact with its master server. Hence, there is an
unidirectional flow of subscriptions from servers to their parent servers. In an
acyclic or a generic peer-to-peer topology, peer-to-peer covering-based rout-
ing is applied. In this case, for the communication among servers a different
protocol is used that allows for a bidirectional flow of subscriptions and adver-
tisements. While in an acyclic peer-to-peer topology one common tree is used
for filter and notification propagation, in a generic peer-to-peer topology for
each producer the minimum spanning tree is used that connects this server
with all others servers. A filter is then only forwarded by a server B if it comes
from those neighbor servers being on the shortest path from the originating
server to B.

There exists no precise specification of the semantics of notification deliv-
ery, and the informally described semantics has several peculiarities. A no-
tification should only be delivered to a client if the client had a matching
subscription at the time the notification was published, and notifications may
be delivered after cancellation of the respective subscriptions. A client that
unsubscribes to a filter implicitly unsubscribes to all filters that are covered
by the former filter, too. This approach burdens the client with keeping track
of covering relations among the issued subscriptions. Hence, it makes clients
depend on the applied routing algorithm. The benefit of this approach is that
it simplifies routing because (un)subscriptions from neighbors and local clients
can then be treated in the same way.

Siena lacks support for type-checking of events. The complete freedom
given to publishers to advertise and publish any event makes it harder to
catch type-mismatch errors during system development. Siena also addressed
security issues [390]. Even though the idea of event patterns is introduced as
a higher-level service, little detail is given on detection and temporal issues.
Only the detection of sequences of events is discussed. The topology of the
overlay network of event servers is static and must be specified at deployment
time. The efficiency of the content-based routing will therefore depend on the
quality of the overlay network topology.

9.3 Research Prototypes 329

B1

B2 B3

B4 B5

P S

e

e

e

e

e

s

s
s

Fig. 9.10. Hierarchical event routing in JEDI

9.3.3 JEDI

The Java Event-Based Distributed Infrastructure (JEDI) [92] is a Java-based
implementation of a distributed content-based publish/subscribe system from
the Politecnico di Milano, Italy. Events in JEDI are tuples having a name
and a list of values called event parameters. Subscriptions are specified as
templates (cf. Sect 3.1.1). A JEDI system consists of active objects , which
publish or subscribe to events, and event dispatchers , which route events.
Event dispatchers are organized in a tree structure, and routing is performed
according to hierarchical covering-based routing. Subscriptions propagate up-
wards in the tree, and state about them is maintained at the event dispatchers.
Events also propagate upwards but follow downward branches whenever they
encounter a matching subscription, as shown in Fig. 9.10. Since hierarchical
routing is applied, advertisements are not used to restrict the propagation of
subscriptions.

Support for Mobile Clients

The system has been extended to support mobile computing [89]. Event dis-
patchers support moveOut and moveIn operations that enable subscribers to
disconnect and reconnect at a different dispatcher in the network. There is
no single event dissemination tree for all subscriptions, but instead a tree is
built dynamically as a core-based tree [24]. The core, called a group leader,
has to make a global broadcast to announce its presence. A new event dis-
patcher, wanting to become part of the dissemination tree, directly contacts
the group leader. The group leader then delegates the request to an appro-
priate event dispatcher in the dissemination tree, which becomes the parent
of the new node. As a downside, this algorithm requires that every event
dispatcher must have knowledge of all group leaders in the system.

330 9 Existing Notification Services

Dynamic Reconfigurations

An approach for dynamically reconfiguring the dissemination tree is proposed
by Cugola et al. [93, 308]. They focus on the reconfigurations that substitute
one link by another one (Fig. 9.11). Instead of intentionally reconfigurations

removed

new

Fig. 9.11. Substituting one link with another link

(e.g., triggered by an administrator), their approach also works for reconfigu-
rations caused by link faults. Regarding routing algorithms, they only consider
simple and identity-based routing; however, they state that their algorithms
could be generalized to covering-based routing. The use of advertisements is
not discussed.

First, the authors describe more precisely than previous work the straw-
man approach. With this approach, both endpoints of the removed link behave
as if they had received an unsubscription for each of the subscriptions of the
other that are currently active. The endpoints of the added link exchange all
to establish the delivery of all notifications needed at the other side. The pro-
cesses of tearing down the old link and establishing the new link are carried
out concurrently. As the authors explain, this has the consequence that no-
tifications might get lost, duplicated, or reordered (violating FIFO-producer
or causal ordering). The approach is also inefficient with respect to the filter
forwarding overhead because subscriptions might be canceled that are shortly
later reinserted, and vice versa. The strawman approach also leads to correct
routing tables if multiple links are exchanged concurrently.

After discussing the strawman approach, the authors also propose a so-
lution that (is according to their simulation results) more efficient than the
strawman approach but which exhibits the same deficiencies with respect to
notification loss, duplication, and reordering. With this solution, the new link
is established a bounded delay (i.e., a timeout is used) before the old link is re-
moved, i.e., subscription propagation starts earlier than unsubscription prop-
agation. However, choosing a sensible value for the timeout seems difficult.
To avoid the propagation of subscriptions that would otherwise be removed
a short time later, subscriptions located at an endpoint of a removed link are
removed from the routing tables of the respective brokers instantaneously and
only their propagation is delayed.

9.3 Research Prototypes 331

More recently, the authors presented a more advanced approach to deal
with reconfigurations [94] based on reconfiguration paths which identify the
minimal portion of the system affected by a fault. This approach is better
suited for controlled administration than for dealing with faults.

9.3.4 Rebeca

The Rebeca notification service [136] implements the publish/subscribe in-
terface and conforms to the definition of simple event systems (cf. Sect. 2.1).
Its basic architecture is a representative example of a distributed notification
service, which is comparable to that of other services such as Siena, JEDI.
However, Rebeca is different from other services:

Formal Specification. Rebeca is based on a formal specification that de-
fines the intended behavior of the notification unambiguously.

Extensible Data and Filter Model. The default data model of Rebeca
is the name/value pair model. However, the set of datatypes and con-
straints that can be used is not fixed but extensible.

Extensible Routing Framework. Rebeca is designed to support various
routing algorithms [263, 267]. Peer-to-peer and hierarchical variants of the
algorithms as well as advertisements can be used.

Visibility Control. With Rebeca it is possible to control the visibility of
notifications [139, 144] by using the scopes.

Architecture

B2

B3 B4

B5

Border Broker

B1

Local Broker
X4’s Access Broker Inner Broker

Broker Network

Component

X4

X5

X3

X2

X1

X8 X7

X6

Fig. 9.12. An exemplary router network of Rebeca

The constituents of the system are the components (i.e., producers and
consumers)and the notification service (Fig. 9.12). The notification service

332 9 Existing Notification Services

Distinguishable

Ordered

Constraint

Equality

Inequality

Comparison

Value

AttributeFilter

n

Exists

AttributeNameAttribute

Notification

*

Filter

*
1

1 1

1

Distinguishable

Ordered

Constraint

Equality

Inequality

Comparison

Value

AttributeFilter

n

Exists

AttributeNameAttribute

Notification

*

Filter

*
1

1 1

1

Fig. 9.13. The filtering framework of Rebeca

consists of a number of brokers that form an overlay network in the underly-
ing physical network. Brokers are processes that run on physical nodes. The
communication topology of the overlay is an acyclic graph. Edges are commu-
nication links that are mapped to TCP/IP connections. As an alternative, IP
multicast can be used. Obviously, an acyclic topology is can become a bottle-
neck, but extensions exploiting redundancy are available to tackle problems
of scalability and single points of failure [86, 311, 374].

Rebeca distinguishes three types of brokers: local, border, and inner bro-
kers. Local brokers provide access to the middleware by offering the publish/
subscribe interface to the components. Usually, they are part of the communi-
cation library loaded into application components; they are not represented in
the graph, but only used for implementation issues. A local broker is connected
to one border broker. Border brokers form the boundary of the distributed
communication middleware and maintain connections to local brokers, i.e.,
the clients of the service. Inner brokers are connected to other inner or border
brokers; they do not maintain connections to clients.

Local brokers put the first message containing a newly published notifi-
cation into the network. Border and inner brokers forward the messages to
neighbor brokers according to filter-based routing tables and respective rout-
ing strategies. At the end, the messages are sent to the local brokers of the
consumers, and from there the notifications are delivered to the application
components.

Extensible Data and Filter Model

In the default data model of Rebeca, a notification consists of a set of at-
tributes that are name/value pairs. Attribute values can be of different types,

9.3 Research Prototypes 333

including the usual primitive types such as integers, strings, Booleans, and
floats but also composite types such as points or rectangles. It is possible to
add new datatypes to the filtering framework (Fig. 9.13) easily. New data
types should support the operations which are needed by the applied routing
algorithms such that routing optimizations become possible. The set of con-
straints that can be imposed on attributes contains the usual operator such as
equality, inequality, and comparisons. It can be extended by new constraints.
For more details regarding the data and filter model of Rebeca please refer
to Chap. 3.

Extensible Routing Framework

Rebeca is based on a flexible routing framework which allows new routing
algorithms to be added easily. If a new algorithm is added, it can be used for
subscriptions and for advertisement propagation. It can also be combined with
other routing algorithms in the sense that, for example, the new algorithm
is used for subscription forwarding and a previously existing algorithm is
used for advertisement forwarding. In contrast to, for example, Siena, the
publish/subscribe interface used by components is independent of the applied
routing algorithm. Thus, applications need not to be changed if a new routing
algorithm is applied.

Currently, Rebeca supports flooding, simple, identify-based, covering-
based, and merging-based routing (cf. Sect. 4.5). The implementation of the
routing algorithms closely follows the pseudocode we have presented and so
we can place high confidence on the correctness of the implementation. The
following combinations of routing algorithms are possible: If only subscrip-
tions are used, any of the four filter-based routing algorithms can be applied.
If advertisements are used, for subscription forwarding and for advertisement
forwarding one of the filter-based routing algorithms can be used, resulting in
ten possible combinations. The use of advertisements can greatly enhance the
efficiency of the system if certain kinds of notifications can only be produced
in certain parts of the broker network. In this case, the size of the subscription
routing tables and the filter forwarding overhead is reduced. In the hierarchi-
cal setting, again any of the four filter-based routing algorithms can be used.
Together with flooding, this results in altogether 19 different combinations of
routing algorithms. Flooding can only be combined with a filter-based routing
algorithm in a hybrid routing scheme. In this case, in a subtopology notifi-
cations are flooded and filters are only forwarded to the root broker of this
subtopology. For more details regarding the routing framework please refer to
Chap. 4.

Visibility Control

In large-scale publish/subscribe systems, the ability to control the visibility
of notifications is a crucial feature. If a notification should not be visible

334 9 Existing Notification Services

in some part of the system, then it is also not necessary to distribute the
notification into this part. The visibility of events can be controlled with scopes
that facilitate information hiding. Together with input and output interfaces
this points the way toward event-based components. Event mapping can be
used to transform notifications from one representation to another, which is a
necessity in heterogeneous systems. For more details regarding scopes please
refer to Chap. 6.

Available Prototypes

Two prototypes have emerged and are available: a Java-based prototype and a
prototype based on Microsoft’s .NET platform. We are implementing a bridge
between the two prototypes to make them interoperable. Other developers in
the Rebeca project are currently implementing the scoping concept [138, 140,
144] that allows the visibility of notifications to be constrained using a scope
graph. Histories supporting caching of past notifications [81] and that support
client and broker mobility [141, 142, 408] as well as P2P-based routing [374]
are also part of current implementation and research efforts.

9.3.5 Hermes

Another research prototype is Hermes [310], a distributed, event-based mid-
dleware platform. Hermes is aimed at a generic class of large-scale data dis-
semination applications, such as Internet-wide news distribution and a sensor-
rich, active building. It follows a type- and attribute-based publish/subscribe
model that places particular emphasis on programming language integration
by supporting type-checking of event data and event type inheritance.

To handle dynamic, large-scale environments, Hermes uses peer-to-peer
techniques for autonomic management of its overlay network of event brokers
and for scalable event dissemination. It is based on an implementation of a
peer-to-peer routing layer to create a self-managed overlay network of event
brokers for routing events. Its content-based routing algorithm is scalable be-
cause it does not require global state to be established at all event brokers. Its
routing algorithms use rendezvous nodes, as explained in Sec. 4.6.3, to reduce
routing state in the system, and include fault tolerance features for repairing
event dissemination trees. Hermes is also resilient against failure through the
automatic adaptation of the overlay broker network and the routing state at
event brokers. An emphasis is put on the middleware aspects of Hermes so
that its typed events support a tight integration with an application program-
ming language.

A primary feature of the Hermes event-based middleware is scalability.
Hermes includes two content-based routing algorithms to disseminate events
from event publishers to subscribers. The type-based routing algorithm only
supports subscriptions depending on the event type of event publications.
It is comparable to a topic-based publish/subscribe service but differs by

9.3 Research Prototypes 335

B4
B2

P2

P3 P4

P5

P7

B1

P1

P6

B3

B4
B2

B1

B3

Overlay

Network

Physical

Network

Event

Dissemination

Tree

Fig. 9.14. Layered networks in Hermes

observing inheritance relationships between event types. The second algorithm
is type- and attribute-based routing, which extends type-based routing with
content-based filtering on event attributes in publications. In both algorithms,
event-type specific advertisements are sent by publisher-hosting brokers to set
up routing state. Advertisements are not broadcast to all event brokers, but
instead event brokers can act as special rendezvous nodes that guarantee that
event subscriptions and advertisements join in the network in order to form
valid event dissemination trees.

System Model

Both routing algorithms use a distributed hash table to set up state for event
dissemination trees. The distributed hash table functionality is implemented
by a peer-to-peer routing substrate, called Pan, formed by the event brokers
in Hermes. Pan is an extended implementation of the Pastry routing al-
gorithm. The advantage of such peer-to-peer overlay networks are threefold:
first, the overlay network can react to failure by changing its topology and thus
adding fault tolerance to Hermes. Second, the peer-to-peer routing substrate
that manages the overlay network is responsible for handling membership of
event brokers in a Hermes deployment. Third, the discovery of rendezvous
nodes, which must be well-known in the network, is simplified by the standard
properties of the distributed hash table.

The three layers of networks in Hermes are illustrated in Fig. 9.14. The
bottom layer is the physical network with routers and links that Hermes is
deployed in. The middle layer constitutes the peer-to-peer overlay network
that offers a distributed hash table abstraction. The top layer consists of
multiple event dissemination trees that are constructed by Hermes to realize
the event-based middleware service. When a message is routed using the peer-
to-peer overlay network, a callback to the upper layer is performed at every
hop, which allows the event broker to process the message by altering it or its
own state.

In addition to scalable event dissemination, Hermes supports event typ-
ing, the creation of event type hierarchies through inheritance, and generic, su-

336 9 Existing Notification Services

Network Layer

Overlay Routing Layer

Type-based Publish/Subscribe Layer

Type- and Attribute-based Publish/Subscribe Layer

Event-based Middleware Layer

Services Layer

QoS Transactions Composite Events Security

Fig. 9.15. Overview of the Hermes architecture

pertype event subscriptions. This enhances its integration with current object-
oriented programming languages such as Java or C++.

Architecture

As shown in Fig. 9.15, the architecture of Hermes has six layers. Each layer
builds on top of the functionality provided by the layer underneath and ex-
ports a clearly defined interface to the layer above. Apart from that, the
layers are independent of each other. A layered architecture for a communica-
tions system has the advantage that each layer can have its implementation
easily replaced by a different implementation if necessary. For example, if a
more efficient implementation of a distributed hash table becomes available,
Hermes can benefit from this without major modification. Since Hermes is
implemented by the event brokers, its layered structure is also reflected in the
implementation of an event broker. Next, we describe the role of each layer,
starting with the lowest one.

Network Layer. The lowest layer is the network layer that represents the
unicast communication service of the underlying physical network. This
assumes that Hermes is deployed in a network with full unicast connec-
tivity between nodes, such as the Internet. No other network-level services,
such as group communication primitives, are necessary.

Overlay Routing Layer. This layer implements an application-level rout-
ing algorithm that provides the abstraction of a distributed hash table.
A peer-to-peer implementation of this layer is chosen for reasons of scala-
bility and robustness. It takes application-level nodes, which are Hermes
event brokers, and creates routing state in order to hash keys to nodes. It
also handles the addition, removal, and failure of nodes in the overlay net-
work. The topology of the overlay routing layer is optimized with respect
to a proximity metric of the underlying physical network.

9.3 Research Prototypes 337

Type-Based Publish/Subscribe Layer. This layer exports a primitive
type-based publish/subscribe service on top of the distributed hash table
established by the previous layer. Type-based routing supports subscrip-
tions according to an event type and observes the inheritance relationships
between event types. Event dissemination trees are then created with the
help of rendezvous nodes in the system. Trees are also repaired by retrans-
mitting messages after state at event brokers has been lost.

Type- and Attribute-Based Publish/Subscribe Layer. This layer ex-
tends the type-based service with content-based filtering on event at-
tributes. The same rendezvous node mechanism is used for the construc-
tion of event dissemination trees. However, the trees are annotated with
filtering expressions derived from the type- and attribute-based subscrip-
tions. These filtering expressions are placed at strategic locations in the
network, usually as close to event producers as possible in order to discard
unnecessary events as early as possible.

Event-Based Middleware Layer. At this layer, event-based middleware
functionality is added to the content-based publish/subscribe system of
the previous layers. Typing information is maintained by the rendezvous
nodes so that event publications and subscriptions can be type-checked
automatically by Hermes. The event-based middleware layer also extends
the API used by event clients to invoke Hermes.

Services Layer. The services layer is a set of pluggable extensions to the
event-based middleware layer. It allows the Hermes middleware to pro-
vide a wide range of higher-level middleware services. For example, dif-
ferent guarantees of publication and subscription semantics can be sup-
ported by a QoS module at the services layer. Another service may deal
with composite event detection or transaction support. Services may vio-
late the strict layering of the architecture and obtain direct access to lower
layers if this is necessary for their functionality.

9.3.6 Cambridge Event Architecture (CEA)

The Cambridge Event Architecture (CEA) [18, 20] was created in the early
1990s to address the emerging need for asynchronous communication in
multimedia and sensor-rich applications. It introduced the publish–register–
notify paradigm for building distributed applications. This design paradigm
allows the simple extension of synchronous request/reply middleware, such
as Corba, with asynchronous publish/subscribe communication. Middleware
clients that become event sources (publishers) or event sinks (subscribers) are
standard middleware objects.

The interaction between an event source and sink is illustrated in Fig. 9.16.
First, an event source has to advertise the events that it produces, for example,
in a name service. In addition to regular methods in its synchronous interface,
an event source has a special register method so that event sinks can sub-
scribe (register) to events produced by this source. Finally, the event source

338 9 Existing Notification Services

Event

Source

Event

Sink

1. Publish

3. Notify

Fig. 9.16. The publish–register–notify paradigm in the CEA

performs an asynchronous callback to the event sink’s notify method (notify)
according to a previous subscription. Note that event filtering happens at the
event sources, thus reducing communication overhead. The drawback of this
is that the implementation of an event source becomes more complex since it
has to handle event filtering. Another drawback is that the transmission of
notifications to multiple consumers are independent unicast communications.

Direct communication between event sources and sinks causes a tight cou-
pling between clients. To address this, the CEA includes event mediators ,
which can decouple event sources from sinks by implementing both the source
and sink interfaces, acting as a buffer between them. Chaining of event me-
diators is supported, but general content-based routing, as done by other
distributed publish/subscribe systems, is not part of the architecture. More
recent work [192] investigates the federation of separate CEA event domains
using contracts that are enforced by special mediators acting as gateways be-
tween domains. A Java implementation of the CEA, Herald [346], supports
storage of events.

The design goal of the CEA is to seamlessly integrate publish/subscribe
with standard middleware technology. Therefore, events are strongly typed
objects of a particular event class and are statically type-checked at compile
time. Initially, subscriptions were template-based for equality matching only,
but they were then extended with a predicate-based language withname/value
pairs. These subscriptions are type-checked dynamically at runtime. Further-
more, the CEA provides a service for complex subscriptions based on compos-
ite event patterns [189]. This is an important requirement for an event-based
middleware. We presented our approach for detecting composite events in
Chap. 7.

COBEA

The CEA was implemented on top of Corba in the Corba-based event archi-
tecture (COBEA) [244]. Events are passed between event sources and sinks as
parameters in Corba method calls. Event clients can by typed or untyped: a

9.3 Research Prototypes 339

typed client encodes the structure of an event type in an IDL struct datatype,
whereas an untyped client uses the generic any datatype. Type-checking for
typed clients is done by the IDL compiler. The subscription language consists
of a conjunction of predicates over the attributes defined in the event type.

ODL-COBEA

The use of Corba IDL to express event types is cumbersome since its original
purpose is the specification of interfaces for remote method calls. In [309],
COBEA is extended with an event type compiler that transforms event type
definitions in the Object Definition Language (ODL) [72] into appropriate
Corba IDL interfaces. ODL is a schema language defined by the Object Data
Management Group (ODMG). With ODL, objects can be described language-
independently for storage in an object-oriented database. The advantage of
using ODL for event definitions is that it provides support for persistent events
because it unifies the mechanisms for transmission and storage of events [19].

An example of an ODL-defined event type, as it would be used in the
Active Office application scenario, is given in Fig. 9.17. Event types consist of
a set of typed attributes and form an ODL inheritance hierarchy, in which all
types are derived from the BaseEvent ancestor class. The BaseEvent type has
attributes that all event types inherit, namely a unique id field, a priority
field, a source field with the name of the event source that generated this
event, and a timestamp. ODL-COBEA is aware of inheritance relationships
between event types and supports supertype subscriptions. When an event
subscriber subscribes to an event type, it will also receive any published events
that are of a subtype of the type specified in the subscription. This means that
an event subscriber that subscribes to the BaseEvent type will consequently
receive all events published at a given event source.

The CEA and in particular the ODL-COBEA implementation recognize
the importance of type-checking for events in a publish/subscribe system.
The object-oriented approach for defining event types cleanly integrates with
current object-oriented programming languages and middleware architectures.
Static type-checking, as done by an event type compiler, does not introduce
a runtime cost, but it tightly couples event sinks to sources.

The main disadvantage of the CEA is the lack of content-based event
routing between event mediators. This limits the scalability of the architec-
ture as it forces a subscriber to know the publisher (or mediator) that offers

1 class LocationEvent extends BaseEvent {
2 attribute short id;

3 attribute string location;

4 attribute long lastSighting;

5 };

Fig. 9.17. An ODL definition of event types in ODL-COBEA

340 9 Existing Notification Services

a particular event type. In addition, it makes the implementation of event
sources challenging because they are required to perform event filtering de-
pending on subscriptions. Several distributed content-based publish/subscribe
systems were proposed after the CEA to address these problems.

9.3.7 Elvin

Elvin [341] is a notification service for application integration and distributed
systems monitoring developed by the Distributed Systems Technology Centre
in Australia. It features a security framework, internationalization, and plug-
gable transport protocols, and has been extended to provide content-based
routing of events [340]. Events are name/value pairs with a predicate-based
subscription language. An interesting feature of Elvin is a source quenching
mechanism, where event publishers can request information from event bro-
kers about the subscribers currently interested in their events. This enables
publishers to stop publishing events when there are no subscriptions, reducing
computation and communication overheads.

Clients for a wide range of programming languages are available, which led
to the implementation of many notification applications. Applications, such as
a ticker-tape, were evaluated as means for collaboration in a pervasive office
environment [148]. Other work investigates event correlation and support for
disconnected operation in mobile applications [368].

9.3.8 READY

The READY event notification service [184] introduced event zones to parti-
tion components based on logical, administrative, or geographical boundaries
and to delimit the visibility of events. Boundary brokers connect zones and
control the communication between them, and may enforce security policies
on connected clients. Although similar to scoping, zones resemble more the
domain idea of Corba as it mainly addresses control on the physical routing
network; the engineering aspect is lacking. For instance, in READY a compo-
nent belongs to exactly one zone so that there is only a two-level hierarchy.
The system is structured only based on one specific point of view, prohibiting
composition and mixing of aspects [188]. Heterogeneity issues are only men-
tioned in READY: boundary brokers could apply transformations on crossing
notifications. Following the idea of Corba domains, brokers operate here on a
rather coarse and static granularity, whereas event mappings (Sect. 6.4) allow
for syntactic and semantic mappings in the formal model and at every layer
of abstraction in a scoped system.

9.3.9 Narada Brokering

The Narada Brokering project [293] aims to provide a unified messaging envi-
ronment for grid computing, which integrates grid services, JMS, and JXTA.

9.3 Research Prototypes 341

It is JMS compliant (Sect. 9.1.3), but also supports a distributed network
of brokers as opposed to the centralized client/server solution advocated by
JMS. The JXTA specification [180] is used for peer-to-peer interactions be-
tween clients and brokers.

Events can be XML messages that are matched against XPath [398] sub-
scriptions by an XML matching engine. The network of brokers is hierarchical,
built recursively out of clusters of brokers. Every broker has complete knowl-
edge of the topology, so that events can be routed on shortest paths following
the broker hierarchy. In general, there is the additional overhead of keeping
event brokers organized hierarchically, which can be costly. Dynamic changes
of the topology are propagated to all affected brokers.

10

Outlook

Events are of increasing importance in modern distributed systems. Grow-
ing interconnectivity, continuous evolution, and real-time adaptation demand
a loose coupling of communicating parties and asynchronous communication
that traditional approaches such as request/reply cannot provide. The event-
based computing paradigm offers the required behavior and flexibility. Survey-
ing the current state of distributed applications, event-based techniques can
already be found in a wide-range of domains, including telecommunication
systems, network management, mobile and ad hoc networking, application
integration, control systems, and user interfaces. They have proven to help in
constructing loosely coupled systems in a pragmatic way. With a thorough un-
derstanding of the principles of event-based computing, which we attempted
to further with this book, we feel that the applicability of event-based tech-
niques will expand so that an increasing number of engineers can exploit the
inherent benefits of this communication paradigm.

In this book we gave an overview of the broad area of event-based systems.
We introduced the basic concepts of publishing and subscribing for notifica-
tions along with theoretical foundations necessary to specify the behavior of
event-based systems. We also presented different content-based models and
matching algorithms that can be used to implement event-based systems.
Many of these algorithms can be extended to the distributed case in order to
provide truly scalable notification services for Internet-wide applications. To
show the breadth of event-based systems, we also investigated several current
research directions: scoping as a software engineering technique for structuring
event-based systems, composite events as a way of increasing the expressive-
ness of subscriptions, and a range of advanced research topics such as security
models, fault tolerance, and congestion control, that are likely to play a major
role in future event-based systems.

344 10 Outlook

Open Topics

Event-based systems have come a long way from their beginnings as active
database triggers to current sophisticated Internet-wide notification services.
Nevertheless, there is much scope for future work in many areas before event-
based systems become a dominating paradigm for the engineering of large-
scale distributed applications. This section provides a subjective overview of
topics that we believe are important for future investigation. This will help
remove the remaining stumbling blocks that hinder a larger deployment of
event-based systems.

Algorithms

Although algorithms are already a major focus of current work in event-based
systems, many questions remain unanswered. As distributed systems embrace
Web service techniques and XML becomes the lingua franca of the Inter-
net, routing and matching algorithms for publish/subscribe systems must ac-
knowledge this. Initial work on semistructured data models for notification
systems (Sect. 3.1.3) and on efficient matching and routing algorithms for
XML (Sect. 3.2.5) already exists but is bound to receive more attention in
the near future. Specifications for asynchronous event communication in Web
services such as the WS Eventing and Notification efforts (Sect. 9.1.5) will
bring the benefits of event-based techniques to Web services engineers.

Future content-based routing algorithms will be affected by the desire of
applications to increase the amount of expressiveness when specifying sub-
scriptions. As a result, composite event detection will become an important
way to support a more fine-grained expression of subscriber interests in many
applications and will become an integral part of the basic architecture of a
large-scale notification service.

Another requirement for routing and matching algorithms is the support
for QoS features. QoS covers a broad range of issues from bandwidth and real-
time constraints to reliability and transactional processing. Many real-world
applications expect hard guarantees on notifications that must be respected
by the event-based system. This can only be achieved if routing and matching
algorithms have been designed with QoS features from the beginning. The
majority of current algorithms only operate on a best-effort basis.

A natural step in the evolution of overlay networks is that their func-
tionality will eventually be included in the networking hardware itself. In re-
cent years, Internet routers have already shown limited filtering capabilities to
carry out efficient and intelligent multicast routing [88]. As advances in router
hardware reach widespread availability, content-based routing techniques can
be supported natively in hardware and replace address-based point-to-point
routing as the dominant communication paradigm.

From a methodological point of view, the design of routing algorithms
should be guided by real-world workloads that publish/subscribe applications
experience. With larger deployment of such application, sets of work-load

10 Outlook 345

traces should become available that researchers and engineers can use to as-
sess the efficiency and performance of their routing algorithms and implemen-
tations. Similar to standardized benchmark suites that evaluate processor or
database performance, notification services require widely accepted bench-
mark standards that help users choose between different event-based systems.

Data Management and Processing

The goal of notification systems is to disseminate events to interested clients
without changing the data itself. Services for composite event detection per-
form processing on event data to discovery patterns that are of interest to
clients. As the next step in this direction, generic stream-processing systems
carry out arbitrary data transformations on stream of events. This richer pro-
cessing abstraction enables applications to push the business logic into the
middleware infrastructure. Such a unification of data dissemination and pro-
cessing blurs the boundary between the network and the application. As a
result, in-network resources can be exploited for data processing. The net-
work is used more efficiently because data is only transported in its most
aggregated form to the application. Long-term event flows can be set up in
the form of continuous database queries, taking the burden of event processing
away from the distributed application.

A related but orthogonal issue is the life cycle management of event data.
Notifications have a temporal component and are tied to current events but
often applications also want to access historical events. Ideally, a notification
system should provide access to future events (in the form of subscriptions),
current events (in the form of notifications), and past events (in the form of
historical queries). For example, caches [81] and histories [263] can be installed
to make past notifications available to applications. Such an approach removes
the boundary between a notification service and a classical database system.

Software Engineering

To achieve a larger adoption of event-based techniques in industry, it is im-
portant to provide the software engineering toolbox necessary to implement
such applications. However, existing work on event-based systems has focused
so far on scalability issues in terms of communication efficiency and size, and
problems of software engineering and management were often neglected. Scal-
able distributed application design using event-based techniques cannot be
exploited in practice if the adopted design methodologies are incompatible or
cumbersome to use with such an approach. For example, the loose coupling
between components in a publish/subscribe system is often not expressible in
traditional design frameworks. Many existing asynchronous design frameworks
are illustrated with target application scenarios that have a rather simple
structure, e.g., one-way information dissemination such as stock monitoring.
Instead, we need design frameworks that naturally match the properties of
complex event-based systems.

346 10 Outlook

Our discussion of scoping in Chap. 6 has demonstrated the power of new
design abstractions that asynchronous event-based communication can bring
to the table. Visibility in event-based systems, from which scoping is derived,
is at the heart of many problems, and scoping provides a way to address
these problems. It separates coordination from computation and allows for
model-driven development of distributed event-based systems. Existing design
methodologies need to embrace these techniques and expose their flexibility
in a sensible and controlled manner to the application designer.

Programming Paradigms and Tools

Most popular programming languages are firmly rooted in a synchronous re-
quest/reply approach and require the system designer to jump through hoops
when building a truly asynchronous distributed system. For example, event-
driven programming can simplify the implementation of distributed algo-
rithms by reducing the potential for race conditions and deadlocks. It also
facilitates debugging because at each node in the system it creates a linear
execution trace of events that can be inspected to track problems. However,
modern programming languages such as Java make it difficult to write entirely
nonblocking code as most of their network functionality has been written with
multithreading in mind. Mainstream languages could also aid the implemen-
tation of large-scale distributed applications by integrating asynchronous pub-
lish/subscribe primitives as first class citizens in the language. Unfortunately,
most languages require the system designer to conceptualize their designs at
the level of direct point-to-point connections between the components of an ap-
plication. A higher-level, event-based view could help mask unnecessary com-
plexity. Finally, current programming languages do not handle asynchronous
failure notification, which is the common case in Internet-scale distributed
applications.

A related concern to software engineering is the availability of tool support
when implementing and debugging event-based systems. In particular, devel-
opment environments must support the implementation of event-based de-
signs. For example, a recent masters thesis [268] successfully used Eclipse [377]
as an integration platform for design and management plug-ins. This is a
promising starting point for more sophisticated tools to facilitate the design,
programming, deployment, and management of event-based systems. Design
methodologies such as the Corba Method Driven Architecture (MDA) [155]
can be used to define an abstract model with loosely coupled components,
which is then transformed into skeleton code for the implementation. The
event-based interaction specified by the model can then be implemented with
one of several routing algorithms depending on application requirements and
expected workloads. Likewise, there are many ways to implement scoping as
prescribed in a model. To improve efficiency, a middleware architecture could
pick the most appropriate implementation dynamically at runtime.

10 Outlook 347

Security

Security is a major concern in Internet-wide applications with potentially
millions of users under different administrative domains. As system design-
ers gain more experience with the deployment and management of large-scale
event-based applications, the security requirements of such systems should be
explored in more detail, affecting the design of suitable access control models.
The loose coupling of components in event-based systems makes it harder to
establish traditional authentication and trust relationships. Therefore, new
access control models are necessary to support the specifics of event-based
communication. In Sect. 8.1, we have given the flavor of one such secure
publish/subscribe model based on role-based access control. As an alterna-
tive approach, since any form of trust corresponds to some correlation of the
participants, scoping suggests itself as a mechanism to incorporate security
policies and implementation [145].

Adaptability

The management complexity of large-scale distributed systems has led to ef-
forts in the direction of self-organizing and autonomic computing [219]. Dis-
tributed event-based systems can take advantage of these techniques for over-
lay management. Currently content-based routing algorithms using peer-to-
peer substrates exist, in which the overlay network adapts to mask failure and
improve routing performance [312]. As a next step, a more dynamic overlay
broker network could start and shut down brokers on demand in response to
event flows in the system. For example, an event broker that only has a sin-
gle downstream child can be removed from the forwarding path because it is
redundant. Similarly, the event flows along certain parts of the overlay topol-
ogy could control the connectivity among brokers to increase the efficiency of
covering or merging relations between the subscriptions hosted in the system.
We believe that such dynamic adaptation techniques will hide the complexity
of running an efficient large-scale notification from system administrators.

Dependability

Dependability and fault tolerance are other topics in event-based systems that
have not received the attention that they deserve. Any deployed Internet-scale
notification service must handle network and node failure. However, depend-
ability can only be achieved if it is part of the entire system architecture. In
Sect. 8.2, we described how self-stabilizing routing algorithms can help build
dependable event-based systems. Other techniques, such as the routing of
events via multiple paths, can further improve the availability of notification
services in practice.

Another important technique to achieve robust system behavior is trans-
actions. Transactions enable applications to roll-back system state to recover

348 10 Outlook

after a failure condition has been encountered. To support transactions, suit-
able transactional semantics needs to be defined for event-based systems, and
only initial work exists in this area [236]. A challenge is that the implemen-
tation of distributed transactions can have high overhead, thus limiting the
feasibility of transactions for performance-aware applications. Also, the decou-
pled nature of subscribers and publishers makes it hard to follow the progress
of a transaction in the system and to collect sufficient state for a potential
roll-back.

Theory

Distributed notification systems are harder to deploy in practice because of
the lack of models for the provisioning of such systems. Addressing this is-
sue requires the development of formal techniques to model the behavior of
real-world event-based systems. Formal approaches enable a system designer
to reason about the correct execution of complex distributed applications
that use asynchronous event-based communication. Research into theoretical
computer science has resulted in a number of promising asynchronous calculi
such as Π-calculus [261] and join calculus [150] that are directly applicable to
event-based systems. This theoretical work should enable the design and im-
plementation of event-based systems that stand on firmer theoretical grounds.

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model and ar-
chitecture for data stream management. VLDB, 12(2):120–139, August
2003.

[2] M. Abadi and L. Lamport. Composing specifications. ACM Transac-
tions on Programming Languages and Systems, 15(1):73–132, January
1993.

[3] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand de-
scriptions of software architectures. ACM Software Engineering Notes,
18(5):9–20, 1993.

[4] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Con-
cepts, Tools, and Techniques from Boost and Beyond. Addison-Wesley
Professional, 2004.

[5] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward,
and A. Hopper. Implementing a sentient computing system. IEEE
Computer Magazine, 34(8):50–56, August 2001.

[6] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra. Match-
ing events in a content-based subscription system. In Proceedings of the
18th ACM Symposium on Principles of Distributed Computing (PODC
1999), pages 53–61, 1999.

[7] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer,
19(8):26–34, August 1986.

[8] Akamai Technologies, Inc. Content and application delivery. On-
line information: http://www.akamai.com/en/html/services/content/
application/delivery.html, 2003.

[9] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: A survey. Computer Networks, 38(4):393–422, 2002.

[10] B. Alpern and F. B. Schneider. Defining liveness. Information Process-
ing Letters, 21:181–185, 1985.

350 References

[11] P. A. Alsberg and J. D. Day. A principle for resilient sharing of dis-
tributed resources. In International Conference on Software Engineering
(ICSE’76), pages 562–570, October 1976. IEEE Computer Society.

[12] M. Altinel and M. J. Franklin. Efficient filtering of XML documents
for selective dissemination of information. In The VLDB Journal, pages
53–64, 2000.

[13] Y. Amir, B. Awerbuch, C. Danilov, and J. Stanton. Global flow control
for wide area overlay networks: A cost-benefit approach. In Proceedings
of OPENARCH’02, pages 155–166, June 2002.

[14] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
Semantic foundations and query execution. Technical report, Stanford
University, 2003.

[15] F. Arbab and C. Talcott, editors. 5th International Conference on Coor-
dination Models and Languages (COORDINATION 2002), volume 2315
of LNCS, 2002. Springer.

[16] A. Arora and M. Gouda. Distributed reset. IEEE Transactions on
Computers, 43(9):1026–1038, September 1994.

[17] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD
Record, 30(3):109–120, 2001. ISSN 0163-5808.

[18] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using events to build
distributed applications. In IEEE SDNE Services in Distributed and
Networked Environments, pages 148–155, June 1995.

[19] J. Bacon, A. Hombrecher, C. Ma, K. Moody, and W. Yao. Event stor-
age and federation using ODMG. In Proceedings of the 9th Interna-
tional Workshop on Persistent Object Systems (POS9), pages 265–281,
September 2000.

[20] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel,
and M. Spiteri. Generic support for distributed applications. IEEE
Computer, 33(3):68–76, 2000.

[21] J. Bacon, L. Fiege, R. Guerraoui, H.-A. Jacobsen, and G. Mühl, editors.
1st Intl. Workshop on Distributed Event-Based Systems (DEBS’02),
2002. IEEE. ISBN 0-7695-1588-6. Published as part of the ICDCS ’02
Workshop Proceedings.

[22] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based ac-
cess control and its support for active security. ACM Transactions on
Information and System Security (TISSEC), 5(4):492–540, November
2002.

[23] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. The
design of the Borealis stream processing engine. In Proceedings of the
2005 ACM SIGMOD international conference on Management of data,
pages 13–24. ACM, January 2005.

[24] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT).
In Proceedings of ACM SIGCOMM’93, pages 85–95, September 1993.
ISBN 0-89791-619-0.

References 351

[25] G. Banavar, editor. Advanced Topic Workshop Middleware for Mobile
Computing (Middleware 2001), November 2001.

[26] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom,
and D. C. Sturman. An efficient multicast protocol for content-based
publish-subscribe systems. In Proceedings of the 19th IEEE Interna-
tional Conference on Distributed Computing Systems, pages 262–272,
1999.

[27] G. Banavar, T. D. Chandra, R. E. Strom, and D. C. Sturman. A case
for message oriented middleware. In P. Jayanti, editor, 13th Interna-
tional Symposium on Distributed Computing (DISC’99), volume 1693 of
LNCS, pages 1–17. Springer, 1999.

[28] G. Banavar, M. Kaplan, K. Shaw, R. Strom, D. Sturman, and W. Tao.
Information flow based event distribution middleware. In W. Sun,
S. Chanson, D. Tygar, and P. Dasgupta, editors, ICDCS Workshop on
Electronic Commerce and Web-based Applications/Middleware, pages
114–121, 1999.

[29] E. Baralis, S. Ceri, and S. Paraboschi. Modularization techniques for
active rules design. ACM Transactions on Database Systems (TODS),
21(1):1–29, 1996.

[30] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Princi-
ples (SOSP’03), pages 164–177, October 2003.

[31] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework
for event-based software integration. ACM Transactions on Software
Engineering and Methodology, 5(4):378–421, October 1996.

[32] J. Bates, J. Bacon, K. Moody, and M. Spiteri. Using events for the scal-
able federation of heterogeneous components. In P. Guedes and J. Ba-
con, editors, Proceedings of the 8th ACM SIGOPS European Workshop:
Support for Composing Distributed Applications, pages 58–65, Septem-
ber 1998.

[33] P. C. Bates. Debugging heterogeneous distributed systems using event-
based models of behavior. ACM Transactions on Computer Systems,
13(1):1–31, February 1995.

[34] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and
K. Moody. Role-based access control for publish/subscribe middleware
architectures. In Jacobsen [210], pages 1–8.

[35] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process
Algebra. North-Holland, 2001.

[36] M. Bernardo and F. Franzè. Exogenous and endogenous extensions of
architectural types. In Arbab and Talcott [15], pages 40–55.

[37] P. A. Bernstein. Transaction processing monitors. Communications of
the ACM, 33(11):75–86, Nov. 1990.

[38] B. Betts and C. Heinrich. Adapt or Die: Transforming Your Supply
Chain into an Adaptive Business Network. John Wiley, 2003.

352 References

[39] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach. Exactly-
once delivery in a content-based publish-subscribe system. In Fabre
and Jahanian [131], pages 7–16.

[40] S. Bhola, Y. Zhao, and J. Auerbach. Scalably supporting durable sub-
scriptions in a publish/subscribe system. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks (DSN’03),
pages 57–66, June 2003.

[41] K. Birman. The surprising power of epidemic communication. In
A. Schiper, A. Shvartsman, H. Weatherspoon, and B. Zhao, editors,
International Workshop on Future Directions in Distributed Computing
(FuDiCo 2002), volume 2584 of LNCS, pages 97–102, 2002. Springer.

[42] K. P. Birman. The process group approach to reliable distributed com-
puting. Communications of the ACM, 36(12):37–53, December 1993.

[43] K. P. Birman and T. A. Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems (TOCS), 5(1):47–
76, 1987.

[44] A. Birrell and B. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39–59, February 1984.

[45] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual ma-
chine support for dynamic join points. In Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development
(AOSD’04), pages 83–92, 2004. ACM Press.

[46] C. Bornhövd and A. P. Buchmann. A prototype for metadata-based in-
tegration of Internet sources. In M. Jarke and A. Oberweis, editors, 11th
International Conference on Advanced Information Systems Engineer-
ing (CAiSE’99), volume 1626 of LNCS, pages 439–445, 1999. Springer.

[47] C. Bornhövd, M. Cilia, C. Liebig, and A. P. Buchmann. An infra-
structure for meta-auctions. In Second International Workshop on
Advance Issues of E-Commerce and Web-Based Information Systems
(WECWIS’00), pages 21–30, June 2000.

[48] A. Boukerche and C. Dzermajko. Dynamic grid-based vs. region-based
data distribution management strategies in multi-resolution large-scale
distributed systems. In Proceedings of the 18th International Paral-
lel and Distributed Processing Symposium, pages 243–248. IEEE, April
2004. doi: 10.1109/IPDPS.2004.1303296.

[49] A. T. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault
identification in communication networks. IEEE Transactions on Com-
munications, 42(2/3/4):523–533, February 1994.

[50] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP vegas: New
techniques for congestion detection and avoidance. In Proceedings of
ACM SIGCOMM’94, pages 24–35, August 1994. ACM.

[51] G. Bricconi, E. D. Nitto, A. Fuggetta, and E. Tracanella. Analyzing the
behavior of event dispatching systems through simulation. In Proceed-
ings of the 7th International Conference on High Performance Comput-

References 353

ing, volume 1970 of Lecture Notes In Computer Science, pages 131–140.
Springer, 2000.

[52] G. Bricconi, E. D. Nitto, and E. Tracanella. Issues in analyzing the
behavior of event dispatching systems. In Proceedings of the 10th Inter-
national Workshop on Software Specification and Design (IWSSD-10),
pages 95–103. IEEE Computer Society, 2000.

[53] M. Broy and E.-R. Olderog. Trace-oriented models of concurrency. In
Bergstra et al. [35], chapter 2.

[54] A. Buchmann, C. Bornhövd, M. Cilia, L. Fiege, F. Gärtner, C. Liebig,
M. Meixner, and G. Mühl. Dream: Distributed reliable event-based
application management. In M. Levene and A. Poulovassilis, editors,
Web Dynamics—Adapting to Change in Content, Size, Topology and
Use, pages 319–349. Springer, 2004. ISBN 3-540-40676-X.

[55] P. Buneman. Semistructured data. In Proceedings of the 16th ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database Sys-
tems (PODS’97), pages 117–121, 1997.

[56] F. Buschmann and K. Henney. A distributed computing pattern lan-
guage. In Seventh European Conference on Pattern Languages of Pro-
grams (EuroPLoP 2002), 2002.

[57] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture: A System of Patterns. Wiley,
1996.

[58] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient fil-
tering in publish-subscribe systems using binary decision diagrams. In
Proceedings of the 19th Conference on Software Engineering, pages 443–
452, May 2001. IEEE Computer Society.

[59] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of
clients mobility in the Siena publish/subscribe middleware. Technical
report, Department of Computer Science, University of L’Aquila, Octo-
ber 2002.

[60] L. Capra, W. Emmerich, and C. Mascolo. Middleware for mobile com-
puting (a survey). Research Note RN/30/01, University College London,
July 2001.

[61] B. Carbunar, M. Valente, and J. Vitek. CoreLime: A coordination model
for mobile agents. In International Workshop on Concurrency and Co-
ordination (ConCoord 2001), 2001.

[62] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor,
Proceedings of Foundations of Software Science and Computation Struc-
tures (FoSSaCS), volume 1378 of LNCS, pages 140–155, 1998. Springer.

[63] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. B. Zdonik. Monitoring streams — a
new class of data management applications. In VLDB, pages 215–226,
2002.

[64] N. Carriero and D. Gelernter. Linda in context. Communication of the
ACM, 32(4):444–458, April 1989.

354 References

[65] A. Carzaniga. Architectures for an Event Notification Service Scalable
to Wide-area Networks. PhD thesis, Politecnico di Milano, Milan, Italy,
December 1998.

[66] A. Carzaniga and P. Fenkam, editors. 3rd Intl. Workshop on Distributed
Event-Based Systems (DEBS’04), May 2004. IEE.

[67] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network.
In A. Feldmann, M. Zitterbart, J. Crowcroft, and D. Wetherall, ed-
itors, Proceedings of the 2003 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIG-
COMM’03), pages 163–174, 2003. ACM.

[68] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in
supporting event-based architectural styles. In Proceedings of the Third
International Workshop on Software Architecture (ISAW ’98), pages
17–20, 1998.

[69] A. Carzaniga, D. R. Rosenblum, and A. L. Wolf. Challenges for dis-
tributed event services: Scalability vs. expressiveness. In W. Emmerich
and V. Gruhn, editors, ICSE ’99 Workshop on Engineering Distributed
Objects (EDO ’99), May 1999.

[70] A. Carzaniga, J. Deng, and A. L. Wolf. Fast forwarding for content-
based networking. Technical Report CU-CS-922-0, Department of Com-
puter Science, University of Colorado, Boulder, Colorado, November
2001.

[71] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evalua-
tion of a wide-area event notification service. ACM Transactions on
Computer Systems, 19(3):332–383, 2001.

[72] R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamer-
man, D. Jordan, A. Springer, H. Strickland, and D. Wade. The Object
Database Standard: ODMG 2.0. Morgan Kaufmann, San Francisco, CA,
USA, 1997.

[73] A. Celik, A. Datta, and S. Narasimhan. Supporting subscription ori-
ented information commerce in a push-based environment. IEEE Trans-
actions on Systems, Man and Cybernetics, 30(4):433–445, July 2000.

[74] S. Chakravarthy and D. Mishra. Snoop: An expressive event specifica-
tion language for active databases. Technical Report UF-CIS-TR-93-
007, Department of Computer and Information Sciences, University of
Florida, Gainesville, FL, March 1993.

[75] S. Chandrasekaran, O. Cooper, A. Deshpande, et al. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In Proc. of
the 1st Biennial Conf. on Innovative Data Systems Research (CIDR’03),
January 2003.

[76] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable Multicast
for Heterogeneous Networks. In Proceedings of INFOCOM’00, pages
795–804, March 2000.

[77] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable
continuous query system for internet databases. In Proceedings of the

References 355

2000 ACM SIGMOD International Conference on Management of Data,
pages 379–390. SIGMOD, 2000.

[78] P. Ciancarini. Coordination models and languages as software integra-
tors. ACM Computing Surveys (CSUR), 28(2):300–302, 1996.

[79] M. Cilia. An Active Functionality Service for Open Distributed Heteroge-
neous Environments. PhD thesis, TU Darmstadt, Darmstadt, Germany,
2002.

[80] M. Cilia, C. Bornhövd, and A. P. Buchmann. Moving active function-
ality from centralized to open distributed heterogeneous environments.
In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Pro-
ceedings of the 6th International Conference on Cooperative Informa-
tion Systems (CoopIS ’01), volume 2172 of LNCS, pages 195–210, 2001.
Springer.

[81] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. Buchmann. Looking into
the past: Enhancing mobile publish/subscribe middleware. In Jacobsen
[210]. doi: 10.1145/966618.966631.

[82] M. Cilia, M. Haupt, M. Mezini, and A. P. Buchmann. The convergence
of AOP and active databases: Towards reactive middleware. In F. Pfen-
ning and Y. Smaragdakis, editors, Proceedings of the International
Conference on Generative Programming and Component Engineering
(GPEC’03), volume 2830 of LNCS, pages 169–188, 2003. Springer.

[83] M. Cilia, M. Antollini, C. Bornhoevd, and A. Buchmann. Dealing with
heterogeneous data in pub/sub systems: The concept-based approach.
In Carzaniga and Fenkam [66].

[84] M. Colan. InfoBus 1.2 Specification. Lotus, 1999.
[85] P. Costa and D. Frey. Publish-subscribe tree maintenance over a DHT.

In Dingel and Strom [114], pages 414–420.
[86] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Introducing reli-

ability in content-based publish-subscribe through epidemic algorithms.
In Jacobsen [210].

[87] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Efficient query
subscription processing in a multicast environment. In Proceedings of the
16th International Conference on Data Engineering (ICDE), page 83,
2000.

[88] J. Crowcroft, J. Bacon, P. Pietzuch, G. Coulouris, and H. Naguib. Chan-
nel islands in a reflective ocean: Large-scale event distribution in het-
erogeneous networks. IEEE Communications Magazine, 40(9):112–115,
September 2002.

[89] G. Cugola and E. Di Nitto. Using a publish/subscribe middleware to
support mobile computing. In Banavar [25].

[90] G. Cugola and H.-A. Jacobsen. Using publish/subscribe middleware for
mobile systems. ACM SIGMOBILE Mobile Computing and Communi-
cations Review, 6(4):25–33, 2002.

[91] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based
infrastructure to develop complex distributed systems. In Proceedings

356 References

of the 1998 International Conference on Software Engineering, pages
261–270. IEEE Computer Society, 1998.

[92] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infra-
structure and its application to the development of the OPSS WFMS.
IEEE Transactions on Software Engineering, 27(9):827–850, 2001.

[93] G. Cugola, G. P. Picco, and A. L. Murphy. Towards dynamic reconfig-
uration of distributed publish-subscribe middleware. In W. Emmerich,
A. Coen-Porisini, and A. van der Hoek, editors, 3rd International Work-
shop on Software Engineering and Middleware (SEM 2002), volume
2596 of Lecture Notes in Computer Science, pages 187–202. Springer,
2002.

[94] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the
reconfiguration overhead in content-based publish-subscribe. In H. M.
Haddad, A. Omicini, R. L. Wainwright, and L. M. Liebrock, editors, Pro-
ceedings of the 2004 ACM Symposium on Applied Computing (SAC’04),
pages 1134–1140, 2004. ACM.

[95] D. E. Culler and W. Hong. Special issue: Wireless sensor networks —
introduction. Communications of the ACM, 47(6):30–33, 2004.

[96] E. Curry, D. Chambers, and G. Lyons. Reflective channel hierarchies. In
The 2nd Workshop on Reflective and Adaptive Middleware, Middleware
2003, 2003.

[97] E. Curry, D. Chambers, and G. Lyons. Extending message-oriented
middleware using interception. In Carzaniga and Fenkam [66].

[98] J. S. Dahmann, R. Fujimoto, and R. M. Weatherly. The Department
of Defense High Level Architecture. In S. Andradóttir, K. J. Healy,
D. H. Withers, and B. L. Nelson, editors, Proceedings of 29th Winter
Simulation Conference, pages 142–149, 1997.

[99] C. H. Damm, P. T. Eugster, and R. Guerraoui. Linguistic support for
distributed programming abstractions. In T. H. Lai and K. Okada, edi-
tors, Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04), pages 244–251, March 2004. IEEE
Computer Society Press.

[100] P. B. Danzig. Optimally Selecting the Parameters of Adaptive Backoff
Algorithms for Computer Networks and Multiprocessors. PhD thesis,
University of California, Berkeley, CA, 1989.

[101] C. Date. An Introduction to Database Systems. Addison-Wesley, 8th
edition, 2003.

[102] C. T. Davies, Jr. Data processing spheres of control. IBM Systems
Journal, 17(2):179–198, 1978.

[103] U. Dayal, B. T. Blaustein, A. P. Buchmann, U. S. Chakravarthy, M. Hsu,
R. Ledin, D. R. McCarthy, A. Rosenthal, S. K. Sarin, M. J. Carey, and
R. J. Miron Livny. The HiPAC project: Combining active databases
and timing constraints. SIGMOD Record, 17(1):51–70, 1988.

[104] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: A
knowledge model for an active, object-oriented database system. In

References 357

Proceedings of the 2nd International Workshop on Object-Oriented Da-
tabase Systems, volume 334 of LNCS, pages 129–143. Springer, 1988.

[105] U. Dayal, A. P. Buchmann, and S. Chakravarthy. The HiPAC Project.
Active Database Systems: Triggers and Rules For Advanced Database
Processing, pages 177–206, 1996.

[106] S. E. Deering and D. R. Cheriton. Multicast routing in datagram in-
ternetworks and extended LANs. ACM Transactions on Computer Sys-
tems, 8(2):85–110, May 1990.

[107] D. DeLucia and K. Obraczka. Multicast feedback suppression using
representatives. In Proceedings of INFOCOM’97, pages 463–470, April
1997.

[108] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic
algorithms for replicated database maintenance. In Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Computing,
pages 1–12. ACM, 1987.

[109] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and
P. Shenoy. Adaptive push-pull: Dissemination of dynamic web data. In
10th International World Wide Web Conference, pages 265–274, May
2001. ACM.

[110] Y. Diao and M. J. Franklin. High-performance XML filtering: An
overview of YFilter. IEEE Data Engineering Bulletin, March 2003.

[111] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path
sharing and predicate evaluation for high-performance XML filtering.
ACM Transactions on Database Systems, 28(4):467–516, 2003.

[112] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-scale XML
dissemination service. In M. A. Nascimento, M. T. Özsu, D. Koss-
mann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors, Proc. of
VLDB’04, pages 612–623, 2004. Morgan Kaufmann.

[113] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974. ISSN 0001-0782.

[114] J. Dingel and R. Strom, editors. 4th Intl. Workshop on Distributed
Event-Based Systems (DEBS’05), June 2005. IEEE.

[115] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Reasoning about implicit
invocation. In Proceedings of of the 6th International Symposium on the
Foundations of Software Engineering (FSE-6), pages 209–221, Novem-
ber 1998. ACM.

[116] S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA, 2000.
[117] S. Duarte, J. L. Martins, H. J. Domingos, and N. Preguiça. A case

study on event dissemination in an active overlay network environment.
In Jacobsen [210].

[118] J. Eder and E. Panagos. Towards distributed workflow process man-
agement. In C. Bussler, P. Grefen, H. Ludwig, and M.-C. Shan, editors,
Proceedings of the Workshop on Cross-Organisational Workflow Man-
agement and Coordination, 1999.

358 References

[119] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10):29–32, 2001. Special
Issue on Aspect-Oriented Programming.

[120] P. Eugster, R. Guerraoui, and J. Sventek. Type-based publish/sub-
scribe. Technical Report DSC ID:200029, EPFL Lausanne, Lausanne,
Switzerland, 2000.

[121] P. Eugster, R. Guerraoui, and C. Damm. Linguistic support for large-
scale distributed programming. In Proceedings of the Intl. Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 131–146. ACM, 2001.

[122] P. Eugster, S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and
P. Kouznetsov. Lightweight probabilistic broadcast. In Proceedings
of The International Conference on Dependable Systems and Networks
(DSN 2001), pages 443–452, July 2001. IEEE Computer Society.

[123] P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov, and A.-M.
Kermarrec. Lightweight probabilistic broadcast. ACM Transactions on
Computer Systems, 21(4):341–374, 2003.

[124] P. T. Eugster and R. Guerraoui. Content-based publish/subscribe with
structural reflection. In In 6th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS’01), pages 131–146. USENIX, 2001.

[125] P. T. Eugster and R. Guerraoui. Probabilistic multicast. In Fabre and
Jahanian [131].

[126] P. T. Eugster, R. Guerraoui, and J. Sventek. Distributed asyn-
chronous collections: Abstractions for publish/subscribe interaction. In
E. Bertino, editor, European Conference on Object-Oriented Program-
ming (ECOOP 2000), volume 1850 of LNCS, pages 252–276, 2000.

[127] P. T. Eugster, R. Guerraoui, and C. H. Damm. On objects and events.
In L. Northrop and J. Vlissides, editors, Proceedings of the OOPSLA
’01 Conference on Object Oriented Programming Systems Languages
and Applications, pages 254–269, 2001. ACM.

[128] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulieacute.
Epidemic information dissemination in distributed systems. IEEE Com-
puter, 37(5):60–67, May 2004.

[129] E. Evans. Domain-Driven Design. Addison-Wesley Professional, 2003.
[130] H. Evans and P. Dickman. DRASTIC: A run-time architecture for

evolving, distributed, persistent systems. In M. Akşit and S. Mat-
suoka, editors, European Conference for Object-Oriented Programming
(ECOOP ’97), volume 1241 of LNCS, pages 243–275, 1997. Springer.

[131] J.-C. Fabre and F. Jahanian, editors. International Conference on De-
pendable Systems and Networks (DSN’02), 2002. IEEE.

[132] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient matching
for content-based publish/subscribe systems. Technical report, INRIA,
2000.

[133] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe.

References 359

In T. Sellis and S. Mehrotra, editors, Proceedings of the 20th Intl. Con-
ference on Management of Data (SIGMOD 2001), pages 115–126, 2001.

[134] S. Fahmy, R. Jain, R. Goyal, B. Vandalore, S. Kalyanaraman, S. Kota,
and P. Samudraand. Feedback Consolidation Algorithms for ABR Point-
to-Multipoint Connections in ATM Networks. In Proceedings of IEEE
INFOCOM’98, volume 3, pages 1004–1013, March 1998.

[135] L. Fiege. Visibility in Event-Based Systems. PhD thesis, Technical
University of Darmstadt, Darmstadt, Germany, 2005.

[136] L. Fiege and G. Mühl. Rebeca Event-Based Electronic Commerce Ar-
chitecture, 2000. http://event-based.org/rebeca.

[137] L. Fiege, G. Mühl, and A. Buchmann. An architectural framework for
electronic commerce applications. In Informatik 2001: Annual Confer-
ence of the German Computer Society, 2001.

[138] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. Engineering event-
based systems with scopes. In B. Magnusson, editor, Proceedings of
the European Conference on Object-Oriented Programming (ECOOP),
volume 2374 of LNCS, pages 309–333, June 2002. Springer.

[139] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. Visibility as cen-
tral abstraction in event-based systems. In A. Beugnard, S. Sadou,
L. Duchien, and E. Jul, editors, Concrete Communication Abstractions
of the Next 701 Distributed Object Systems (ECOOP 2002 Workshop),
volume 2548 of LNCS, 2002. Springer.

[140] L. Fiege, G. Mühl, and F. C. Gärtner. A modular approach to build
structured event-based systems. In Proceedings of the 2002 ACM Sym-
posium on Applied Computing (SAC’02), pages 385–392, 2002. ACM.

[141] L. Fiege, F. C. Gärtner, S. B. Handurukande, and A. Zeidler. Dealing
with uncertainty in mobile publish/subscribe middleware. In 1st Inter-
national Workshop on Middleware for Pervasive and Ad-Hoc Computing
(MPAC 03), pages 60–67, 2003. PUC-Rio.

[142] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mobil-
ity in content-based publish/subscribe middleware. In M. Endler and
D. C. Schmidt, editors, ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003), volume 2672 of LNCS, pages 103–122,
2003. Springer.

[143] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mobil-
ity in content-based publish/subscribe middleware. Technical Report
IC/2003/11, Swiss Federal Institute of Technology (EPFL), School of
Computer and Communication Sciences, Lausanne, Switzerland, March
2003.

[144] L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based systems.
The Knowledge Engineering Review, 17(4):359–388, 2003.

[145] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Mühl. Se-
curity aspects in publish/subscribe systems. In Carzaniga and Fenkam
[66].

360 References

[146] L. Fiege, M. Cilia, and A. B. Gero Mühl. Publish/subscribe grows up:
Support for management, visibility control & heterogeneity. IEEE In-
ternet Computing: Special Issue — Asynchronous Middleware and Ser-
vices, 10(1):48–55, January 2006.

[147] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, editors. Aspect-
Oriented Software Development. Addison-Wesly, 2005.

[148] G. Fitzpatrick, S. Kaplan, T. Mansfield, A. David, and B. Segall. Sup-
porting public availability and accessibility with elvin: Experiences and
reflections. Computer Supported Cooperative Work, 11(3):447–474, 2002.
ISSN 0925-9724.

[149] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control
in the internet. IEEE/ACM Transactions on Networking, 7(4):458–472,
1999.

[150] C. Fournet and G. Gonthier. The reflexive CHAM and the Join-
Calculus. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
372–385, 1996. ACM.

[151] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[152] M. Fowler. Closure. http://www.martinfowler.com/bliki/Closure.html,
September 2004.

[153] M. Fowler. Inversion of control containers and the dependency injec-
tion pattern. http://martinfowler.com/articles/injection.html, January
2004.

[154] M. Fowler. UML Distilled. Addison-Wesley, 2004.
[155] D. S. Frankel. Model Driven Architecture. Wiley, 2003.
[156] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu,

O. Cooper, A. Edakkunni, and W. Hong. Design considerations for
high fan-in systems: The HiFi approach. In Proc. of CIDR’05, January
2005.

[157] M. J. Franklin and S. B. Zdonik. A framework for scalable
dissemination-based systems. In A. M. Berman, M. Loomis, and
T. Bloom, editors, Proceedings of the 12th ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA ’97), pages 94–105, Oct. 5–9, 1997.

[158] M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Tech-
nology in Perspective. In L. M. Haas and A. Tiwary, editors, Proceed-
ings ACM SIGMOD International Conference on Management of Data
(SIGMOD’98), pages 516–519, 1998. ACM.

[159] L. Fuchs. Area: A cross-application notification service for groupware.
In S. Bødker, M. Kyng, and K. Schmidt, editors, The 6th European
Conference on Computer Supported Cooperative Work (ECSCW 1999),
pages 61–80, 1999. Kluwer Academic.

[160] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility.
IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

References 361

[161] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, Reading, MA, USA, 1995.

[162] J. Garćıa, J. Borrell, M. A. Jaeger, and G. Mühl. An alert communica-
tion infrastructure for a decentralized attack prevention framework. In
Proceedings of the IEEE International Carnahan Conference on Secu-
rity Technology (ICCST), pages 234–237, October 2005. IEEE. ISBN
0-7803-9245-0.

[163] J. Garćıa, M. A. Jaeger, G. Mühl, and J. Borrell. Decoupling compo-
nents of an attack prevention system using publish/subscribe. In Pro-
ceedings of the 2005 IFIP conference on Intelligence in Communication
Systems, pages 87–98, October 2005. Springer.

[164] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation
mechanisms. In S. Prehn and W. J. H. Toetenel, editors, VDM ’91:
Formal Software Development Methods, volume 551 of LNCS, pages 31–
44, 1991. Springer.

[165] D. Garlan and M. Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineering
and Knowledge Engineering, volume 1, pages 1–40. World Scientific,
1993.

[166] D. Garlan, G. E. Kaiser, and D. Notkin. Using tool abstraction to
compose systems. IEEE Computer, 25(6):30–38, June 1992.

[167] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEE Software, 12(6):17–26, November 1995.

[168] F. C. Gärtner. Fundamentals of fault-tolerant distributed computing
in asynchronous environments. ACM Computing Surveys, 31(1):1–26,
March 1999.

[169] F. C. Gärtner. Formale Grundlagen der Fehlertoleranz in verteilten
Systemen. PhD thesis, TU Darmstadt, Darmstadt, Germany, 2001.

[170] S. Gatziu and K. R. Dittrich. Detecting composite events in active da-
tabase systems using petri nets. In Proceedings of the 4th International
Workshop on Research Issues in Data Engineering: Active Database Sys-
tems (RIDE-AIDS’94), pages 2–9, February 1994.

[171] S. Gatziu, A. Koschel, G. von Bültzingsloewen, and H. Fritschi. Un-
bundling active functionality. SIGMOD Record, 27(1):35–40, Mar. 1998.

[172] D. Gawlick and S. Mishra. Information sharing with the Oracle data-
base. In Jacobsen [210].

[173] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification in an
active object-oriented database. In Proceedings of ACM International
Conference on Management of Data (SIGMOD’92), pages 81–90, June
1992.

[174] D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, January 1985.

[175] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications
of the ACM, 37(7):48–53, July 1994.

362 References

[176] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of
workflow management: From process modeling to workflow automation
infrastructure. Distributed and Parallel Databases, 3(2):119–153, April
1995.

[177] A. Geppert and D. Tombros. Event-based distributed workflow exe-
cution with EVE. In N. Davies, K. Raymond, and J. Seitz, editors,
Middleware ’98. Springer, 1998.

[178] A. Goldberg and D. Robson. Smalltalk 80: The Language and its Im-
plementation. Addison-Wesley, 1983.

[179] S. J. Golestani and K. K. Sabnani. Fundamental observations on multi-
cast congestion control in the internet. In Proceedings of INFOCOM’99,
pages 990–1000, March 1999.

[180] L. Gong. Project JXTA: A Technical Overview. Whitepaper, Sun Mi-
crosystems, October 2002. http://www.jxta.org.

[181] J. Gough and G. Smith. Efficient recognition of events in distributed
systems. In Proceedings of 18th Australasian Computer Science Confer-
ence (ACSC), February 1995.

[182] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[183] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
streams with deterministic automata. In ICDT ’03: Proceedings of the
9th International Conference on Database Theory, pages 173–189, 2002.
Springer. ISBN 3-540-00323-1.

[184] R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the
READY event notification service. In P. Dasgupta, editor, Proceedings
of the 19th IEEE International Conference on Distributed Computing
Systems, Middleware Workshop, pages 108–113, May 1999. IEEE.

[185] R. Gruber, B. Krishnamurthy, and E. Panagos. READY: A high per-
formance event notification service. In Proceedings of the 16th Interna-
tional Conference on Data Engineering, pages 668–669. IEEE Computer
Society, 2000.

[186] S. Handurukande, P. T. Eugster, P. Felber, and R. Guerraoui. Event
systems: How to have ones cake and eat it too. In Bacon et al. [21].
ISBN 0-7695-1588-6. Published as part of the ICDCS ’02 Workshop
Proceedings.

[187] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predicate
matching algorithm for database rule systems. In 19th ACM SIGMOD
Conference on the Management of Data (SIGMOD), pages 271–280,
May 1990.

[188] W. Harrison and H. Ossher. Subject-oriented programming (A critique
of pure objects). In A. Paepcke, editor, Proceedings of the 8th ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’93), pages 411–428, 1993.

References 363

[189] R. Hayton. OASIS: An Open Architecture for Secure Interworking Ser-
vices. PhD thesis, University of Cambridge Computer Laboratory, Cam-
bridge, United Kingdom, June 1996. Technical Report No. 399.

[190] C. Heinlein. Workflow and process synchronization with interaction
expressions and graphs. In A. Reuter, D. Lomet, A. Buchmann, and
D. Georgakopoulos, editors, Proc. of the 17th International Conference
on Data Engeneering (ICDE), pages 243–252, 2001. IEEE Computer
Society.

[191] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[192] A. B. Hombrecher. Reconciling Event Taxonomies Across Administra-
tive Domains. PhD thesis, University of Cambridge Computer Labora-
tory, Cambridge, United Kingdom, June 2002.

[193] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001.

[194] J. Huang, A. Black, J. Walpole, and C. Pu. Infopipes — an abstraction
for information flow. In Proceedings of the ECOOP Workshop on The
Next 700 Distributed Object Systems, June 2001.

[195] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile envi-
ronment. In S. Banerjee, editor, 2nd ACM International Workshop on
Data Engineering for Wireless and Mobile Access (MobiDE’01), pages
27–34, 2001.

[196] Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction
in wireless ad-hoc networks. In M.-S. Chen, P. Chrysanthis, M. Sloman,
and A. Zaslavsky, editors, 4th International Conference on Mobile Data
Management (MDM 2003), volume 2574 of LNCS, pages 122–140, 2003.
Springer.

[197] IBM. Gryphon: Publish/subscribe over public networks. Technical re-
port, IBM T.J. Watson Research Center, 2001.

[198] IBM. WebSphere MQ: Application Programming Guide Version 6.0,
May 2005.

[199] IBM. WebSphere MQ: Publish/Subscribe User’s Guide Version 6.0, May
2005.

[200] IBM, Akamai Technologies, Computer Associates, Fujitsu Laborato-
ries of Europe, Globus, Hewlett-Packard, SAP AG, Sonic Software, and
TIBCO Software. Publish-subscribe notification for Web services,
March 2004. http://www.ibm.com/developerworks/library/
specification/ws-pubsub.

[201] IBM, BEA Systems, Microsoft, Computer Associates, SUN Microsys-
tems, and TIBCO Software. Web Services Eventing (WS-Eventing)
Specification, August 2004. http://www.ibm.com/developerworks/
webservices/library/specification/ws-eventing/.

[202] IBM Corporation. IBM WebSphere MQ Event Broker, May 2002.
http://www.ibm.com/software/integration/mqfamily/eventbroker.

364 References

[203] IBM TJ Watson Research Center. Gryphon: Pub-
lish/Subscribe over Public Networks. December 2001.
http://researchweb.watson.ibm.com/gryphon/Gryphon

[204] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
In Proceedings of the Sixth Annual International Conference on Mobile
Computing and Networking (MobiCom’00), pages 56–67, 2000.

[205] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM Transac-
tions on Networking (TON), 11(1):2–16, 2003.

[206] ISO/IEC. Open distributed processing–reference model. International
Standard ISO/IEC IS 10746, May 1995.

[207] ITU-T. ITU-T X.509. Recommendation, ITU-T International Telecom-
munication Union, Geneva, Switzerland, 2000.

[208] H.-A. Jacobsen. Middleware services for selective and location-based
information dissemination in mobile wireless networks. In Banavar [25].

[209] H.-A. Jacobsen. Middleware architecture design based on aspects, the
open implementation metaphor and modularity. In A. Rashid and
L. Blair, editors, Workshop on Aspect-Oriented Programming and Sep-
aration of Concerns, August 2001.

[210] H.-A. Jacobsen, editor. 2nd Intl. Workshop on Distributed Event-Based
Systems (DEBS’03), June 2003. ACM.

[211] V. Jacobson and M. J. Karels. Congestion avoidance and control. In
Proceedings of ACM SIGCOMM’88, pages 314–332, August 1988.

[212] M. A. Jaeger and G. Mühl. Stochastic analysis and comparison of self-
stabilizing routing algorithms for publish/subscribe systems. In The
13th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS
2005), pages 471–479, September 2005. IEEE.

[213] K. Jenkins, K. Hopkins, and K. Birman. A gossip protocol for subgroup
multicast. In M. Raynal and L. Rodrigues, editors, International Work-
shop on Applied Reliable Group Communication (WARGC 2001), 2001.
IEEE.

[214] Y. Jin and R. Strom. Relational subscription middleware for internet-
scale publish-subscribe. In Jacobsen [210].

[215] T. Joseph. A messaging-based architecture for enterprise application
integration. In Proceedings of the 15th International Conference on Data
Engineering (ICDE’99), pages 62–63, 1999.

[216] M. Kahani and H. W. P. Beadle. Decentralised approaches for network
management. ACM SIGCOMM Computer Communication Review, 27
(3):36–47, 1997.

[217] G. Kappel, S. Rausch-Schott, and W. Retschitzegger. Coordination in
workflow management systems—a rule-based approach. In W. Conen
and G. Neumann, editors, Coordination Technology for Collaborative

References 365

Applications (ASIAN 1996 Workshop), volume 1364 of LNCS, pages
99–120. Springer, 1998.

[218] A. M. Keller and J. Basu. A predicate-based caching scheme for client-
server database architectures. VLDB Journal, 5(1):35–47, 1996.

[219] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
IEEE Computer Magazine, pages 41–50, January 2000.

[220] G. Kiczales. Beyond the black box: Open implementation. IEEE Soft-
ware, 13(1):8–11, January 1996.

[221] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Meta-
Object Protocol. MIT Press, Cambridge, MA, USA, 1991.

[222] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Akşit
and S. Matsuoka, editors, ECOOP’97—Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer, 1997.

[223] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The case for reflective
middleware. Communications of the ACM, 45(6):33–38, 2002.

[224] H. Kopetz. Event-triggered versus time-triggered real-time systems. In
Proceedings of the International Workshop on Operating Systems of the
90s and Beyond, volume 563 of LNCS, pages 87–101. Springer, 1991.

[225] E. Kotsovinos, B. Dragovic, S. Hand, and P. R. Pietzuch. Xenotrust:
Event-based distributed trust management. In Proceedings of Trust and
Privacy in Digital Business (TrustBus’03). In conjunction with the 14th
International Conference on Database and Expert Systems Applications
(DEXA’03), September 2003.

[226] R. Laddad. AspectJ in Action. Manning, 2003.
[227] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565, July 1978.
[228] L. Lamport. Proving the correctness of multiprocess programs. IEEE

Transactions on Software Engineering, 3(2):125–143, March 1977.
[229] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor,

Proceedings of the IFIP Congress on Information Processing, pages 657–
667, 1983. North-Holland.

[230] L. Lamport and N. Lynch. Distributed computing: Models and methods.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, pages 1157–1199. Elsevier,
1990.

[231] F. Lange, R. Kröger, and M. Gergeleit. JEWEL: Design and imple-
mentation of a distributed measurement system. IEEE Transactions on
Parallel and Distributed Systems, 3(6):657–671, 1992.

[232] O. Lassila and R. R. Swick. Resource description framework (RDF)
model and syntax specification. W3C Recommendation, Feb. 1999.
http://www.w3.org/TR/REC-rdf-syntax.

[233] J. Le Boudec. The Asynchronous Transfer Mode: a tutorial. Computer
Networks and ISDN Systems, 24:279–309, 1992.

366 References

[234] G. T. Leavens and M. Sitaraman, editors. Foundations of Component-
Based Systems. Cambridge University Press, 2000.

[235] J. Liberty. Programming C#. O’Reilly, 3rd edition, 2003.
[236] C. Liebig and S. Tai. Advanced transactions. In Proceedings of the 2nd

International Workshop on Engineering Distributed Objects (EDO’00),
volume 1999 of Lecture Notes in Computer Science, pages 188–193,
November 2000. Springer.

[237] C. Liebig and S. Tai. Middleware mediated transactions. In G. Blair,
D. Schmidt, and M. Takizawa, editors, 3rd Intl. Symposium on Dis-
tributed Objects and Applications (DOA’01), September 2001. IEEE
Computer Society.

[238] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-
dependent distributed systems. In Proceedings of the 4th Intl. Con-
ference on Cooperative Information Systems (CoopIS ’99). IEEE Com-
puter Society, September 1999.

[239] B. Liskov and R. Scheifler. Guardians and actions: Linguistics support
for robust, distributed systems. ACM Transactions on Programming
Languages and Systems, 5(3):381–404, 1983.

[240] H. Liu and H.-A. Jacobsen. A-ToPSS — a publish/subscribe system
supporting approximate matching. In Procedings of the 28th VLDB
Conference, 2002. http://www.vldb.org/conf/2004/DEMP8.PDF.

[241] L. Liu, C. Pu, W. Tang, and W. Han. Conquer: A continual query
system for update monitoring in the WWW. International Journal
of Computer Systems, Science and Engineering, Special issue on Web
semantics, 14(2):99–112, 1999.

[242] D. Luckham. The Power of Events. Addison-Wesley, 2002.
[243] D. C. Luckham. Rapide: A language and toolset for simulation of dis-

tributed systems by partial ordering of events. In DIMACS Partial
Order Methods Workshop IV. Princeton University, July 1996.

[244] C. Ma and J. Bacon. COBEA: A CORBA-based event architecture. In
J. Sventek, editor, Proceedings of the 4th Conference on Object-Oriented
Technologies and Systems (COOTS-98), pages 117–132, 1998. USENIX
Association.

[245] P. Maes. Concepts and experiments in computational reflection. In
N. Meyrowitz, editor, Proceedings of the 2nd ACM Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’87), pages 147–155, October 1987. ACM. ISBN 0-89791-
247-0.

[246] T. W. Malone and K. Crowston. The interdisciplinary study of coordi-
nation. ACM Computing Surveys, 26(1):87–119, 1994.

[247] T. W. Malone and R. J. Laubacher. The dawn of the E-Lance economy.
Harvard Business Review, pages 145–152, September 1998.

[248] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems. Springer, 1992.

References 367

[249] M. Mansouri-Samani. Monitoring of Distributed Systems. PhD thesis,
Imperial College, London, UK, 1995.

[250] M. Mansouri-Samani and M. Sloman. Gem: A generalised event mon-
itoring language for distributed systems. IEE/IOP/BCS Distributed
Systems Engineering Journal, 4(2):96–108, June 1997.

[251] M. Mansouri-Samani and M. Sloman. Gem — a generalised event mon-
itoring language for distributed systems. In Joint International Con-
ference on Open Distributed Processing (ICODP) and Distributed Plat-
forms (ICDP) ’97, 1997.

[252] R. C. Martin. The Dependency Inversion Principle. C++ Report, 8(6):
61–66, June 1996.

[253] D. Mason and D. Woit. Problems with software reliability com-
position. In Proceedings of 1998 International Symposium on
Software Reliability Engineering (ISSRE’98 Fast Abstracts), 1998.
http://www.chillarege.com/fastabstracts/issre98/98408.html.

[254] F. Mattern. The vision and technical foundations of ubiquitous com-
puting. Upgrade, II(5), 2001. Special issue on Ubiquitous Computing.

[255] N. Maxemchuk and D. Shur. An internet multicast system for the stock
market. ACM Transactions on Computer Systems, 19(3):384–412, 2001.

[256] N. Medvidovic and R. N. Taylor. A framework for classifying and
comparing architecture description languages. In M. Jazayeri and
H. Schauer, editors, ESEC/FSE ’97, volume 1301 of Lecture Notes in
Computer Science, pages 60–76. Springer, 1997.

[257] R. Meier and V. Cahill. Steam: Event-based middleware for wireless ad
hoc networks. In Bacon et al. [21]. ISBN 0-7695-1588-6. Published as
part of the ICDCS ’02 Workshop Proceedings.

[258] R. Meier, M.-O. Killijian, R. Cunningham, and V. Cahill. Towards
proximity group communication. In Banavar [25].

[259] D. Meyer. RFC 2365: Administratively scoped IP multicast.
http://www.ietf.org/rfc/rfc2365.txt, July 1998. Status: Best Current
Practice.

[260] Z. Miklós. Towards an access control mechanism for wide-area publish/-
subscribe systems. In Bacon et al. [21], pages 516–521. ISBN 0-7695-
1588-6. Published as part of the ICDCS ’02 Workshop Proceedings.

[261] R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cam-
bridge University Press, May 1999.

[262] G. Mühl. Generic constraints for content-based publish/subscribe sys-
tems. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors,
Proceedings of the 6th International Conference on Cooperative Infor-
mation Systems (CoopIS ’01), volume 2172 of LNCS, pages 211–225,
2001. Springer.

[263] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD
thesis, Darmstadt University of Technology, Darmstadt, Germany, 2002.
http://elib.tu-darmstadt.de/diss/000274/.

368 References

[264] G. Mühl and L. Fiege. Supporting covering and merging in content-
based publish/subscribe systems: Beyond name/value pairs. IEEE Dis-
tributed Systems Online (DSOnline), 2(7), 2001.

[265] G. Mühl, L. Fiege, and A. P. Buchmann. Evaluation of cooperation mod-
els for electronic business. In Information Systems for E-Commerce,
Conference of German Society for Computer Science, pages 81–94,
November 2000. ISBN 3-85487-194-5.

[266] G. Mühl, L. Fiege, and A. P. Buchmann. Filter similarities in content-
based publish/subscribe systems. In H. Schmeck, T. Ungerer, and
L. Wolf, editors, International Conference on Architecture of Computing
Systems (ARCS), volume 2299 of Lecture Notes in Computer Science,
pages 224–238, 2002. Springer.

[267] G. Mühl, L. Fiege, F. C. Gärtner, and A. P. Buchmann. Evaluating
advanced routing algorithms for content-based publish/subscribe sys-
tems. In A. Boukerche, S. K. Das, and S. Majumdar, editors, The Tenth
IEEE/ACM International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS 2002),
pages 167–176, October 2002. IEEE.

[268] M. Mühleisen. Programming and administration of publish-subscribe
systems (in German). Master’s thesis, Technische Universität Darm-
stadt, 2005.

[269] S. Mullender, editor. Distributed Systems. Addison-Wesley, 2nd edition,
1993.

[270] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for com-
puter networks. IEEE Communications Magazine, 32(9):33–38, Septem-
ber 1994.

[271] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML
data on the Web. SIGMOD Record, 30(2):437–448, 2001.

[272] D. Notkin, D. Garlan, W. G. Griswold, and K. Sullivan. Adding im-
plicit invocation to languages: Three approaches. In Proceedings of the
JSSST International Symposium on Object Technologies for Advanced
Software, volume 742 of Lecture Notes in Computer Science, pages 489–
510. Springer, November 1993.

[273] FIXML — A Markup Language for the Financial Information eX-
change (FIX) protocol. Oasis, July 2001. http://www.oasis-
open.org/cover/fixml.html.

[274] OASIS. Web Services Base Notification (WS-BaseNotification), July
2005.

[275] OASIS. Web Services Brokered Notification (WS-BrokeredNotification),
July 2005.

[276] OASIS. Web Services Web Services Topics (WSTopics), July 2005.
[277] Object Management Group (OMG). CORBA event service specifica-

tion. OMG Document formal/94-01-01, 1994.
[278] Object Management Group (OMG). Corba components, 1999. OMG

document orbos/99-07-01.

References 369

[279] Object Management Group (OMG). CORBA notification service. OMG
Document telecom/99-07-01, 1999.

[280] Object Management Group (OMG). CORBA event service specifica-
tion, version 1.0. OMG Document formal/2000-06-15, 2000.

[281] Object Management Group (OMG). CORBA transaction service v1.1.
OMG Document formal/00-06-28, 2000.

[282] Object Management Group (OMG). Management of event domains.
Version 1.0, Formal Specification, 2001. OMG document formal/01-06-
03.

[283] Object Management Group (OMG). The common object request broker:
Architecture and specification, version 3.0. OMG document formal/02-
06-33, July 2002.

[284] Object Management Group (OMG). Distributed simulation systems
specification, version 2.0. OMG Document formal/02-11-01, 2002.

[285] Object Management Group (OMG). CORBA event service specifica-
tion, version 1.2. OMG Document formal/2004-10-02, 2004.

[286] Object Management Group (OMG). Data distribution service for real-
time systems. OMG Document formal/04-12-02, 2004.

[287] Object Management Group (OMG). CORBA notification service, ver-
sion 1.1. OMG Document formal/2004-10-11, 2004.

[288] Object Management Group (OMG). UML superstructure specification,
v2.0. OMG document formal/05-07-04, 2005.

[289] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus—an
architecture for extensible distributed systems. In B. Liskov, editor,
Proceedings of the 14th Symposium on Operating Systems Principles,
pages 58–68, December 1993. ACM.

[290] L. Opyrchal. Content-Based Publish/Subscribe Systems: Scalability and
Security. PhD thesis, University of Michigan, Ann Arbor, MI, USA,
2004.

[291] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Stur-
man. Exploiting IP multicast in content-based publish-subscribe sys-
tems. In J. Sventek and G. Coulson, editors, IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2000), vol-
ume 1795 of LNCS, pages 185–207. Springer, 2000.

[292] Oracle, Inc. Introduction to Oracle Advanced Queuing (AQ). Applica-
tion Developer’s Guide, July 2001.

[293] S. Pallickara and G. Fox. Naradabrokering: A middleware framework
and architecture for enabling durable peer-to-peer grids. In M. Endler
and D. Schmidt, editors, Proceedings of the 4th International Conference
on Middleware (Middleware’03), volume 2672 of LNCS, pages 41–61,
June 2003.

[294] S. Pallickara, M. Pierce, G. Fox, Y. Yan, and Y. Huang.
A Security Framework for Distributed Brokering Systems.
http://www.naradabrokering.org/papers/NB-SecurityFramework.pdf,
2003.

370 References

[295] G. A. Papadopoulos and F. Arbab. Coordination models and languages.
In M. Zelkowitz, editor, The Engineering of Large Systems, volume 46
of Advances in Computers. Academic, August 1998.

[296] G. A. Papadopoulos and F. Arbab. Modelling activities in information
systems using the coordination language manifold. In K. M. George and
G. B. Lamong, editors, Proceedings of the ACM Symposium on Applied
Computing (SAC ’98), pages 185–193, 1998. ACM.

[297] G. A. Papadopoulos and F. Arbab. Configuration and dynamic re-
configuration of components using the coordination paradigm. Future
Generation Computer Systems, 17(8):1023–1038, June 2001.

[298] G. Pardo-Castellote. OMG data distribution service: Real-time pub-
lish/subscribe becomes a standard. RTC Magazine, jan 2005.

[299] G. Pardo-Castellote. OMG data distribution service: Architectural
overview. In Wu [401], pages 200–206.

[300] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, December
1972.

[301] C. Partridge, T. Mendez, and W. Milliken. RFC 1546:
host anycasting service, November 1993. Status: Informational,
http://www.ietf.org/rfc/rfc1546.txt.

[302] H. Parzyjegla. Ein adaptives brokernetz für publish/subscribe systeme.
Master’s thesis, Technische Universität Berlin, Berlin, Germany, Octo-
ber 2005.

[303] H. Parzyjegla, G. Mühl, and M. A. Jaeger. Reconfiguring publish/sub-
scribe overlay topologies. In 5th Intl. Workshop on Distributed Event-
based Systems (DEBS’06), July 2006. IEEE Press.

[304] N. W. Paton and O. Diaz. Active Database Systems. ACM Computing
Surveys, 31(1):63–103, 1999.

[305] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for
Web-based publish/subscribe systems. In O. Etzion and P. Scheuer-
mann, editors, Proc. of the Int. Conf. on Cooperative Information Sys-
tems (CoopIS), volume 1901 of LNCS, pages 162–173, 2000. Springer.

[306] C. Perkins. Mobile IP. IEEE Communications Magazine, 35(5):84–99,
May 1997.

[307] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252,
September 1977.

[308] G. P. Picco, G. Cugola, and A. L. Murphy. Efficient content-based event
dispatching in the presence of topological reconfiguration. In P. McKin-
ley and S. Shatz, editors, Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems (ICDCS 03), pages 234–243,
2003. IEEE.

[309] P. R. Pietzuch. An Event Type Compiler for ODL. Computer Science
Tripos Part II Project Dissertation, University of Cambridge Computer
Laboratory, Cambridge, United Kingdom, June 2000.

References 371

[310] P. R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD
thesis, University of Cambridge, Cambridge, United Kingdom, February
2004.

[311] P. R. Pietzuch and J. Bacon. Hermes: A distributed event-based mid-
dleware architecture. In Bacon et al. [21], pages 611–618. ISBN 0-7695-
1588-6. Published as part of the ICDCS ’02 Workshop Proceedings.

[312] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in
an event-based middleware. In Jacobsen [210].

[313] P. R. Pietzuch and S. Bhola. Congestion control in a reliable scalable
message-oriented middleware. In M. Endler and D. Schmidt, editors,
Proceedings of the 4th International Conference on Middleware (Mid-
dleware’03), volume 2672 of LNCS, pages 202–221, June 2003. ACM/I-
FIP/USENIX, Springer Verlag.

[314] P. R. Pietzuch, B. Shand, and J. Bacon. Composite event detection
as a generic middleware extension. IEEE Network Magazine, Special
Issue on Middleware Technologies for Future Communication Networks,
Jan/Feb 2004.

[315] D. Platt. The COM+ event service eases the pain of publishing and
subscribing to data. Microsofts Systems Journal, September 1999.

[316] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In Proc. of the
9th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA’97), pages 311–320, 1997. ACM.

[317] A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981.

[318] A. Pope. The CORBA Reference Guide. Addison-Wesley, Reading, MA,
USA, 1997.

[319] D. Powell. Group communication. Communications of the ACM, 39(4):
50–53, April 1996.

[320] R. Prakash and R. Baldon. Architecture for group communication in
mobile systems. In The 17th IEEE Symposium on Reliable Distributed
Systems (SRDS ’98), pages 235–242, October 1998.

[321] B. Quinn and K. Almeroth. RFC 3170: IP multicast applications:
Challenges and solutions, September 2001. Status: Informational,
http://www.ietf.org/rfc/rfc3170.txt.

[322] K. Ramamritham, P. Deolasee, A. Katkar, A. Panchbudhe, and
P. Shenoy. Dissemination of dynamic data on the Internet. In S. Bhalla,
editor, Databases in Networked Information Systems (DNIS 2000), vol-
ume 1966 of LNCS, pages 173–187, 2000. Springer.

[323] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
scalable content-addressable network. In Proceedings of the 2001 Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), pages 161–172, 2001. ACM.

[324] Real-Time Innovations (RTI), Inc. Network data distribution services
(NDDS), 2006. http://www.rti.com/products ndds.html.

372 References

[325] S. P. Reiss. Connecting tools using message passing in the Field envi-
ronment. IEEE Software, 7(4):57–66, July 1990.

[326] A. Ricci, A. Omicini, and E. Denti. Objective vs. subjective coordination
in agent-based systems: A case study. In Arbab and Talcott [15], pages
291–299.

[327] D. Riehle. The event notification pattern—integrating implicit invoca-
tion with object-orientation. Theory and Practice of Object Systems, 2
(1):43–52, 1996.

[328] L. Rizzo. pgmcc: A TCP-friendly single-rate multicast congestion con-
trol scheme. In Proceedings of ACM SIGCOMM’00, pages 17–28, August
2000. ISBN 1-58113-223-9.

[329] L. Roberts. Rate-based algorithm for point to multipoint abr service.
ATM Forum Contribution 94-0772R1, November 1994.

[330] M. T. Rose. The Simple Book: An Introduction to Internet Management.
P T R Prentice-Hall, 2nd edition, 1994.

[331] A. Rowstron and P. Druschel. Pastry: scalable, decentraized object
location and routing for large-scale peer-to-peer systems. In R. Guer-
raoui, editor, Proceedings of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), volume 2218 of
LNCS, pages 329–350, 2001. Springer.

[332] R. Sandhu, E. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based
Access Control Models. IEEE Computer, 29(2):38–47, 1996.

[333] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy.
An analysis of internet content delivery systems. ACM Operating Sys-
tems Review, 36(SI):315–327, 2002.

[334] S. S. Sathaye. ATM Forum Traffic Management Specification 4.0. ATM
Forum af-tm-0056.000, April 1996.

[335] B. Schilit, N. Adams, and R. Want. Context-aware computing applica-
tions. In IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 85–90, 1994.

[336] D. Schmidt and S. Vinoski. Time-independent invocation and interop-
erable routing. C++ Report, 11(4), April 1999.

[337] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
Wiley, 2000.

[338] D. C. Schmidt and S. Vinoski. Programming asynchronous method
invocations with corba messaging. C++ Report, 11(2), February 1999.

[339] S. Schwiderski. Monitoring the Behaviour of Distributed Systems. PhD
thesis, 1996, Cambridge, United Kingdom, University of Cambridge.

[340] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content-
based routing in Elvin4. In Proceedings of AUUG2K, June 2000.

[341] W. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. In Pro-
ceedings of the 1997 Australian UNIX Users Group, Bris-

References 373

bane, Australia, September 1997., pages 243–255, 1997.
http://elvin.dstc.edu.au/doc/papers/auug97/AUUG97.html.

[342] S. Shah, S. Dharmarajan, and K. Ramamritham. An efficient and re-
silient approach to filtering and disseminating streaming data. In VLDB
2003, Proceedings of 29th International Conference on Very Large Data
Bases, pages 57–68. Morgan Kaufman, 2003.

[343] Z. Shen and S. Tirthapura. Self-stabilizing routing in publish-subscribe
systems. In Carzaniga and Fenkam [66].

[344] S. Shi and M. Waldvogel. A rate-based end-to-end multicast congestion
control protocol. In Proceedings of 5th IEEE Symposium on Computer
and Communication (ISCC’00), pages 678–686, July 2000.

[345] M. D. Skeen and M. Bowles. Apparatus and method for providing decou-
pling of data exchange details for providing high performance communi-
cation between software processes. United States Patent No. 5,557,798,
September 1996.

[346] M. D. Spiteri. An Architecture for the Notification, Storage and Re-
trieval of Events. PhD thesis, University of Cambridge Computer Lab-
oratory, Cambridge, United Kingdom, January 2000.

[347] M. Stal. Web services: Beyond component-based computing. Commu-
nications of the ACM, 45(10):71–76, 2002.

[348] W. Stallings. SNMP and SNMPv2: The infrastructure for network man-
agement. IEEE Communications Magazine, 36(3):37–43, March 1998.

[349] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Scoping in wireless
sensor networks. In 2nd International Workshop on Middleware for
Pervasive and Ad-Hoc Computing, pages 167–171, 2004. ACM. ISBN
1-58113-951-9.

[350] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Towards multi-purpose
wireless sensor networks. In P. Dini et al., editors, Proc. of SENET’05,
pages 336–341, August 2005. IEEE Computer Society.

[351] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for Internet appli-
cations. In Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), pages 149–160, August 2001. ACM.

[352] M. Stonebraker, E. N. Hanson, and S. Potamianos. The postgres rule
manager. IEEE Transactions on Software Engineering, 14(7):897–907,
1988.

[353] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee,
D. Sturman, and M. Ward. Gryphon: An information flow based ap-
proach to message brokering. In Int’l Symposium on Software Reliability
Engineering, 1998.

[354] D. Sturman, G. Banavar, and R. Strom. Reflection in the Gryphon
message brokering system. In In Reflection Workshop of the 13th ACM
Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA’98), 1998.

374 References

[355] K. J. Sullivan and D. Notkin. Reconciling environment integration and
component independence. In R. N. Taylor, editor, Proceedings of the 4th
ACM SIGSOFT Symposium on Software Development Environments,
pages 22–33, 1990. ACM.

[356] K. J. Sullivan and D. Notkin. Reconciling environment integration and
software evolution. ACM Transactions of Software Engineering and
Methodology, 1(3):229–269, July 1992.

[357] Q. Sun. Reliable multicast for publish/subscribe systems. Master’s
thesis, Massachusetts Institute of Technology, 2000.

[358] Sun Microsystems, Inc. Java AWT delegation event model, 1997.
[359] Sun Microsystems, Inc. JavaBeans API specification version 1.0.1, 1997.

http://java.sun.com/products/javabeans/.
[360] Sun Microsystems, Inc. Jini Specification, Version 2.0. Specification,

Sun Microsystems, June 2003. http://java.sun.com/products/jini/.
[361] Sun Microsystems, Inc. Distributed Event Specification, 1998.
[362] Sun Microsystems, Inc. Enterprise JavaBeans specification, version 2.0.

Proposed Final Draft, 2000. http://java.sun.com/products/ejb.
[363] Sun Microsystems, Inc. Java management extensions. Instrumentation

and Agent Specification, v1.2, October 2002.
[364] Sun Microsystems, Inc. Java Message Service (JMS) Specification 1.1,

2002.
[365] Sun Microsystems, Inc. Java 2 Platform Enterprise Edition Specifica-

tion, v. 1.4, July 2003.
[366] Sun Microsystems, Inc. JavaSpaces Service Specification version 2.0,

June 2003.
[367] Sun Microsystems, Inc. Java Remote Method Invocation (RMI) Speci-

fication 1.5. Sun Microsystems, 2004. http://java.sun.com/j2se/1.5.0/
docs/guide/rmi/spec/rmiTOC.html.

[368] P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness —
transparent information delivery for mobile and invisible computing.
In First International Symposium on Cluster Computing and the Grid,
pages 277–287, May 2001. IEEE/ACM.

[369] C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1997.

[370] A. S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.
[371] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles

and Paradigms. Prentice Hall, 2002. ISBN 0-13-066102-3.
[372] W. Tang. Scalable Trigger Processing and Change Notification in the

Continual Query System. Oregon Graduate Institute, 1999.
[373] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and

G. J. Minden. A survey of active network research. IEEE Communica-
tions Magazine, 35(1):80–86, January 1997.

[374] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A
peer-to-peer approach to content-based publish/subscribe. In Jacobsen
[210].

References 375

[375] Thales. Splice data distribution service, 2006.
http://www.prismtechnologies.com.

[376] P. Thapliyal, Sidhartha, J. Li, and S. Kalyanaraman. LE-SBCC: Loss-
event oriented source-based multicast congestion control. Technical re-
port, Rensselaer Polytechnic Institute ECSE, Troy, NY, 2001.

[377] The Eclipse Foundation. Eclipse. http://www.eclipse.org, 2005.
[378] D. Thomas. Message oriented programming. Journal of Object Tech-

nology, 3(5):7–12, 2004.
[379] D. Thomas and B. M. Barry. Model driven development: The case for

domain oriented programming. In R. Crocker and G. L. Steele, Jr.,
editors, Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pages 2–7, 2003. ACM.

[380] TIBCO, Inc. TIB/Rendezvous. White Paper, 1996.
http://www.rv.tibco.com.

[381] TIBCO, Inc. TIBCO Rendezvous: Concepts, software release 7.4 edition,
2004.

[382] P. Timberlake. The pitfalls of using multicast publish/subscribe for EAI.
IBM MQseries Whitepaper, 2002. also published on messageQ.com.

[383] Trolltech. The Qt class library. http://www.trolltech.com/products/qt,
2005.

[384] J. van’t Hag. “Data-centric to the max”, the SPLICE architecture ex-
perience. In 23rd International Conference on Distributed Computing
Systems Workshops, pages 207–212. IEEE, May 2003. doi: 10.1109/ICD-
CSW.2003.1203556.

[385] L. Vargas, J. Bacon, and K. Moody. Integrating databases with pub-
lish/subscribe. In Dingel and Strom [114], pages 392–397.

[386] S. Vinoski. More Web services notifications. IEEE Internet Computing,
8(3):90–93, May-June 2004.

[387] S. Vinoski. Web services notifications. IEEE Internet Computing, 8(2):
86–90, March-April 2004.

[388] J. Vitek, N. Horspool, and A. Krall. Efficient type inclusion tests. ACM
SIGPLAN Notices, 32(10):142–157, October 1997. ISSN 0362-1340.

[389] W. Z. Vivek S. Pai, Peter Druschel. Flash: An efficient and portable web
server. In A. Rubin, editor, Proceedings of the 1999 USENIX Annual
Technical Conference, pages 199–212, 1999. USENIX.

[390] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues
and requirements for Internet-scale publish-subscribe systems. In Pro-
ceedings of the Thirty-fifth Hawaii International Conference on System
Sciences (HICSS-35), pages 3940–3947, January 2002.

[391] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world
networks. Nature, 393:440–442, June 1998.

[392] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable Internet services. In K. Marzullo and M. Satya-

376 References

narayanan, editors, Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles, pages 230–243, October 2001. ACM.

[393] J. E. White. Mobile agents. In J. Bradshaw, editor, Software Agents.
MIT Press, 1997.

[394] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann, 1996.

[395] R. Wiener. Delegates and events in C#. Journal of Object Technology,
3(5):78–85, 2004.

[396] R. J. Wieringa. Design Methods for Reactive Systems. Morgan Kauf-
mann, 2002.

[397] A. Woo, S. Madden, and R. Govindan. Networking support for query
processing in sensor networks. Communications of the ACM, 47(6):
47–52, 2004.

[398] World Wide Web Consortium (W3C). XML path language (XPath)
version 1.0. Technical Report, November 1999.
http://www.w3.org/TR/xpath.

[399] World Wide Web Consortium (W3C). Extensible markup language
(XML) 1.0 (second edition), 2000.

[400] World Wide Web Consortium (W3C). Simple object access protocol
(SOAP) 1.2. Recommendation, June 2003.
http://www.w3.org/TR/SOAP/.

[401] J. Wu, editor. 23rd International Conference on Distributed Computing
Systems Workshops (ICDCSW’03), 2003. IEEE.

[402] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T Spaces.
IBM Systems Journal, 37(3):454–474, 1998.
http://www.research.ibm.com/journal/sj/373/wyckoff.pdf.

[403] T. W. Yan and H. Garcia-Molina. Index structures for information filter-
ing under the vector space model. In A. K. Elmagarmid and E. Neuhold,
editors, Proceedings of the 10th International Conference on Data En-
gineering, pages 337–347, February 1994. IEEE Computer Society.

[404] T. W. Yan and H. Garcia-Molina. Index structures for selective dissem-
ination of information under the Boolean model. ACM Transactions on
Database Systems, 19(2):332–364, 1994.

[405] Y. Yan, Y. Huang, G. Fox, S. Pallickara, M. Pierce, A. Kaplan, and
A. Topcu. Implementing a prototype of the security framework for
distributed brokering systems. In Proceedings of the International Con-
ference on Security and Management (SAM’03), pages 212–218, June
2003.

[406] S. Yang and S. Chakravarthy. Formal semantics of composite events for
distributed environments. In Proceedings of the 15th International Con-
ference on Data Engineering (ICDE ’99), pages 400–407. IEEE Com-
puter Society, 1999.

[407] Y. R. Yang and S. S. Lam. Internet multicast congestion control: A
survey. In Proceedings of the International Conference on Telecommu-
nications (ICT’00), May 2000.

References 377

[408] A. Zeidler and L. Fiege. Mobility support with rebeca. In Wu [401],
pages 354–361.

[409] X. Zhang, K. G. Shin, D. Saha, and D. D. Kandlur. Scalable flow control
for multicast abr services in atm networks. IEEE/ACM Transactions
on Networking, 10(1), February 2002.

[410] Y. Zhao, D. Sturman, and S. Bhola. Subscription propagation in
highly-available publish/subscribe middleware. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, pages
274–293. Springer, 2004. ISBN 3-540-23428-4.

[411] D. Zhou and K. Schwan. Eager handlers — communication optimization
in Java-based distributed applications with reconfigurable fine-grained
code migration. In 3rd International Workshop on Java for Parallel and
Distribute Computing (held in conjunction with the IPDPS 2001), page
110, 2001.

Index

A-ToPSS 64
abstract scope 161, 184
abstract window toolkit 310
access control 256
access control list 256
ACL see access control lists
action 24
activation see quenching
active bat 232
active object 329
active office 6, 232, 254
activity 135
additive increase, multiplicative

decrease 286
administrator 151
advertisement 13, 23, 31, 107, 138
advertisement routing table 109
always 25
anonymous request/reply 15–16
AOP see aspect-oriented program-

ming
API see application programming

interface
application programming interface

137
approximate matching 64
AQ see Oracle Advanced Queuing
aspect-oriented programming 143
atomic step 69
attribute 37
attribute filter 36
AWT see abstract window toolkit

BDD see binary decision diagram

binary decision diagram 61–62
ordered 61
reduced ordered 62

blackout period 296
border broker 22, 332
broker 67

border see border broker
inner see inner broker
local see local broker
virtual see virtual broker

brute force 59

callback 16
cambridge event architecture 337–340
capability 257
causal ordering 31
CEA see Cambridge Event Architec-

ture
cell 324
CGM see clustered group multicast
channel 19, 68
channel-based 309
client 67
clustered group multicast 122
COBEA see Corba-based event

architecture
Common Object Request Broker

Architecture 305
communication medium 197
component 3, 12, 14, 17, 21, 26, 167,

187
complex see scope

composite event 234–235
core language 238

380 Index

detection 242
detection automata 236
requirements 234

composite event detection 236–242
composite event detection automata

236
composite event type 235
congestion 277
congestion collapse 277
congestion control 276–287

receiver-based 286
sender-based 286

congestion metric 279
conjunctive filter 37
consolidation noise 287
construction phase 246
consumer 3, 12, 18
consumption policy 251
content-based filtering 20
content-based routing 80–107
context 145
control phase 246
Corba see Common Object Request

Broker Architecture
Corba-based event architecture 338
Corba Event Service 19, 307–308
Corba Notification Service 19, 36,

137, 308–310
core-based tree 116, 329
core composite event language 236
counting algorithm 59
coupling point 184, 192
covering-based routing 23, 105, 106
covering algorithm 50
covering of conjunctive filters 44
curiosity 325

data-centric publish/subscribe 314
database management system 198,

199, 205, 250
Data Distribution Service 146,

313–317
data local reconstruction layer 316
data model 35, 37, 53, 332
DBMS see database management

system
DCPS see data-centric publish/sub-

scribe
DDS see Data Distribution Service

decision tree 60–61
delivery policy 179
describable event set 237
destruction phase 246
DHT see distributed hash table
directed diffusion 8, 121, 132, 270
distributed hash table 115, 123, 142
distribution policy 246
DLRL see data local reconstruction

layer
domain specific language 139, 147
DSL see domain specific language
duplicate avoidance 120
duplicate notification 158, 166, 173
durable subscription service 326

ECA see event–condition–action
Elvin 36, 296, 302, 340
engineering 183

requirements 129
with scopes 182–196

epidemic multicast 125
evaluation policy 251
event 3, 11
event–condition–action 7, 185, 186,

193, 250
event-based 16–17
event-based style 3, 17, 140
event-based system 3, 11
event broker 21
event broker congestion 277
event channel 307
event composition 182
event dispatcher 329
event input sequence 237
event mediator 338
event notification service 3, 13
event pattern 250, 328
event sink 337
event source 337
event stream 325
event system 14
event type owner 259
eventually 25
eventual monotone remote validity 76
eventual superset validity 75

fairness 68
fairness property 68

Index 381

fan-out 225
fast retransmit 286
fault masking 265
fault tolerance 264–276
feedback suppression 286
FIFO-producer ordering 30
filter 13, 37

covering 39
disjoint 37
identical 37
merging 47–49
overlapping 37, 107

filtering 19–20
channel 19
content-based 20
subject-based 19
type-based 19

filter model 13, 35, 37, 53, 332
flooding 22, 105, 107

GEM 7, 251
generative state 237
generative time state 237
group leader 329
Gryphon 36, 65, 126, 302, 324–326
guaranteed delivery service 325

Herald 338
Hermes 117, 334–337
heterogeneity 2, 135, 173
hierarchical routing 112
hierarchical routing algorithm 112
high-level architecture 317
higher-level language 236
HLA see high-level architecture
human processable 241
hybrid routing 113

IBM WebSphere MQ 318
ideal multicast 122
identity-based routing 23, 105, 106
identity of conjunctive filter 43
IFG see information flow graph
imperfect merger 98
imperfect merging 49
implementation 17
implicit invocation 7, 142
InfoBus 34
Information Bus 320

information flow graph 324
initial routing configuration 72
initial state 237
inner broker 22, 332
input domain 237
input interface 164
interaction 17
interaction model 14–18

anonymous request/reply 15
callback 16
event-based 16
request/reply 15

interface 24, 26, 164, 181, 190
intermediate broker 325
interval timestamp 235
IP multicast 198, 199, 203, 225, 230

Java Event-Based Distributed Infra-
structure 329

Java Message Service 33, 36, 137,
311–313

Java Remote Method Invocation 310
Java RMI see Java Remote Method

Invocation
JavaSpaces 35, 311
JEDI 35, 126, 329–331
Jini 310–311
JMS see Java Message Service

key class 261
knowledge 325
knowledge graph 325

Linda tuple space 18, 35
link bundle 325
liveness 29, 155, 164, 171
local broker 22, 332
local routing configuration 72
local subset validity 75
local validity 76
loose coupling 3, 132

machine processable 241
management 186, 196
mapping see notification mapping
matching

approximate 64
by name 36
by position 36

382 Index

of XML documents 63
matching algorithm 50, 57–64

binary decision diagram 61
brute force 59
counting algorithm 59
decision trees 60

MDA see model driven software
development

MDSD see model driven software
development

merger 98
merging-based routing 23, 106, 107
merging algorithm 51
merging of conjunctive filters 47
message 11
message batching 68, 121
message selector 311
meta object protocol 181
middleware 2
mobile composite event detector 245
mobility 287–303
model driven software development

185
monotone valid routing algorithms

76–77
multicast 122, see IP multicast

epidemic see epidemic multicast
IP see IP Multicast

NACK window 285
name/value pair 37, 309, 312, 331, 338,

340
name/value term 332
Narada Brokering 340
negative acknowledgment 325
neighbor matching multicast 123
network congestion 277
next 25
notification 3, 11, 37
notification classification scheme 13
notification delivery 72
notification forwarding 57, 72
notification mapping 169–176
notification matching 57
notification service 21
notification summary 146

OBDD see ordered binary decision
diagram

object 56
Object Definition Language 339
object serialization 310
Ode 250
ontology 184
open implementation 139
Oracle Advanced Queuing 229
Oracle Streams Advanced Queuing

322
orchestration 183, 184
ordered binary decision diagram 61
ordering 118, 120

causal see causal ordering
FIFO-producer see FIFO-producer

ordering
total see total ordering

ordinary state 237
output interface 164
overlapping of conjunctive filters 46
overlay network 21

peer-to-peer routing 112
perfect merger 98
perfect merging 47
permission 257
PHB see publisher-hosting broker
PHB-driven congestion control

algorithm 279
Point-to-point communication 311
port see coupling point
principal 257
producer 3, 12, 18
pubend 325
publication endpoint 279
publish–register–notify 337
publish/subscribe communication 311
publish/subscribe

concept-based 20, 184
content-based 20
self-stabilizing 265–266
subject-based 19
topic-based 33
type-based 19

publisher see producer
publisher-hosting broker 325
publisher endpoint 325
publishing policy 177
pull mode 307
push mode 307

Index 383

QoS see quality of service
quality of service 138, 181, 226
quenching 147, 148

READY 229, 340
Rebeca 20, 22, 36, 296, 302, 331–334
record

flat 36
hierarchical 36
semistructured 52–56
structured 36–52

reduced ordered binary decision
diagram 62

reflection 182
relational subscription service 326
remote procedure call 2
remote routing configuration 72
rendezvous-based routing 115
rendezvous node 115, 125
request/reply 15

anonymous see anonymous
request/replay

restriction 259
RMI see Java Remote Method

Invocation
ROBDD see reduced ordered binary

decision diagram
role 184, 257
role-based access control 257
routing

content-based see content-based
routing

hierarchical 112–115
in cyclic topologies 120–122
rendezvous-based 115–117
self-stabilizing 266
using multicast 122–123
with advertisements 107–112
with joining and leaving clients

119–120
with topology changes 117–119

routing algorithm 74
covering-based 91–98
evaluation 126
flooding 81–82
framework 69–74
hybrid 113
identity-based 85–89
merging-based 98–104

monotone valid see monotone valid
routing algorithm

simple 82–85
valid see valid routing algorithm

routing configuration 72
initial 72
local 72
remote 72

routing entry 72
routing framework

extensions 107–125
valid instantiation 77–80

routing optimization 43
routing table 72

scoped see scoped routing table
update 73

RPC see remote procedure call

safety 29, 155, 163, 171
SAMOS 250
scalable internet event notification

architecture 326
scope 152

abstract see abstract scope
context 183
defining 183, 188
deployment 185
engineering see engineering

scope architecture 197, 209
addressing scope 205
broker scope 210
central hub 205
client-side filtering 203
collapsed filters 204
integrated routing 213
static deployment 202

scope attributes 161
scope distribution 200
scoped routing table 215
scope graph 153

combining 182, 225
composition 184
descriptive 182
engineering process 182
instantiated 182
management see management

scope language 187
scope model 153
scope overlay 215

384 Index

security 253–264
SHB see subscriber-hosting broker
SHB-driven congestion control

algorithm 279, 285
Siena 36, 38, 39, 126, 264, 296, 302,

326–328
simple event system 28
simple routing 23, 105, 106, 121
slow start 286
small-world network 124
Snoop 250
software engineering see engineering
software pattern 141
source quenching mechanism 340
space redundancy 265
specification 25

of an event system 23–33
trace-based 28–30
with advertisements 31–33
with ordering requirements 30–31

state 24
strawman approach 330
strong transition 238
structured event 308
subcriber see consumer
subend 325
subject 19
subject-based filtering 19, 320
subscriber-hosting broker 325
subscriber endpoint 325
subscription 3, 13

uncovered 92
subscription routing table 109
subtrace 25
summary see notification summary
supertype subscription 339
system model 67–69

TCGM see threshold clustered group
multicast

template 35
temporal operator 25

always 25
eventually 25
next 25

Threshold Clustered Group Multicast
122

TIBCO Rendezvous 320
time redundancy 265
timestamp message 120
topic 33, 311
topology change 117
topology maintenance 123
total ordering 31
trace 25, 72
transaction 135, 147, 182
transmission policy 176–182
traverse policy 180
TSpaces 311
tuple 35–36
type- and attribute-based routing 335
type-based filtering 19
type-based routing algorithm 334

UML see Unified Modeling Language
Unified Modeling Language 143, 184,

185

valid routing algorithm 74–76
virtual broker 324
virtual link 325
visibility 152, 199

weak transition 238
wireless sensor network 6, 132, 229
WS-Addressing 317
WS-Eventing 317
WSN see wireless sensor network
WS Notification 317

XFilter 63
XML 20, 63
XPath 20, 52, 63

YFilter 63

Authors’ Biographies

Gero Mühl is a postdoctoral researcher at the Berlin University of Tech-
nology. His research interests include middleware, event-based systems, self-
organization, and mobile computing. He received a master degree in Computer
Science (Dipl.-Inform.) and a master degree in Electrical Engineering (Dipl.-
Ing.) from the FernUniversität in Hagen, and a Ph.D. degree (Dr.-Ing.) in
Computer Science from the Darmstadt University of Technology.

Ludger Fiege works as senior engineer at Siemens Corporate Technology. His
interests include middleware and software architecture, asynchronous messag-
ing, event-based systems, and model driven development. He received a master
degree from Universität Bonn and a Ph.D. degree in computer science from
Technische Universität Darmstadt.

Peter Pietzuch is a postdoctoral fellow in the Systems Research Group
at Harvard University. His research interests focus on large-scale distributed
systems, including publish/subscribe infrastructures, global stream-processing
applications, and peer-to-peer overlay networks. Prior to joining Harvard, he
received his Ph.D. degree from the University of Cambridge in England, work-
ing on scalable event-based architectures. In 2000, he obtained a B.A. degree
in Computer Science, also from the University of Cambridge.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

