
Multi–objective Optimization
with the Naive MIDEA

Peter A.N. Bosman1 and Dirk Thierens2

1 National Research Institute for Mathematics and Computer Science P.O. Box 94079 1090
GB Amsterdam, The Netherlands
Peter.Bosman@cwi.nl

2 Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands
Dirk.Thierens@cs.uu.nl

Summary. EDAs have been shown to perform well on a wide variety of single-objective
optimization problems, for binary and real-valued variables. In this chapter we look into the
extension of the EDA paradigm to multi-objective optimization. To this end, we focus the
chapter around the introduction of a simple, but effective, EDA for multi-objective optimiza-
tion: the naive MIDEA (mixture-based multi-objective iterated density-estimation evolution-
ary algorithm). The probabilistic model in this specific algorithm is a mixture distribution.
Each component in the mixture is a univariate factorization. As will be shown in this chapter,
mixture distributions allow for wide-spread exploration of a multi-objective front, whereas
most operators focus on a specific part of the multi-objective front. This wide-spread explo-
ration aids the important preservation of diversity in multi-objective optimization. To further
improve and maintain the diversity that is obtained by the mixture distribution, a specialized
diversity preserving selection operator is used in the naive MIDEA. We verify the effective-
ness of the naive MIDEA in two different problem domains and compare it with two other
well-known efficient multi-objective evolutionary algorithms (MOEAs).

1 Introduction

In this chapter, we apply the EDA paradigm to multi-objective optimization. We
put the focus on a specific EDA, which we call the naive mixture-based multi-
objective iterated density-estimation evolutionary algorithm (naive MIDEA). The
naive MIDEA is an instance of the MIDEA framework for multi-objective opti-
mization using EDAs. We will show how the naive MIDEA can be implemented for
both binary as well as real problem variables.

The remainder of this chapter is organized as follows. In Sect. 2, we first dis-
cuss multi-objective optimization. In Sect. 3 we develop the MIDEA framework
and specifically focus on the naive MIDEA instance. In Sect. 4 we validate the
performance of MIDEAs on eight test problems and compare the results with two

P.A.N. Bosman and D. Thierens: Multi–objective Optimization with the Naive MIDEA, StudFuzz 192, 123–157 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

124 P.A.N. Bosman and D. Thierens

other state-of-the-art MOEAs and discuss our findings. We present our conclusions
in Sect. 5.

2 Multi-objective Optimization

Multi-objective optimization differs from single-objective optimization in that we
have a multiple of objectives that we wish to optimize simultaneously without an
expression of weight or preference for any of the objectives. Often, these multiple
objectives are conflicting. Such problems naturally arise in many real world situa-
tions. An example of conflicting objectives that often arises in industry, is when we
want to minimize the costs of some production process while at the same time we
also want to minimize the pollution caused by the same production process. Such
conflicting objectives give rise to a key characteristic of multi-objective optimization
problems, which is the existence of sets of solutions that cannot be ordered in terms
of preference when only considering the objective function values simultaneously.
To formalize this notion, four relevant concepts exist. Assuming that we have m ob-
jectives fi(x), i ∈M = {0, 1, . . . ,m− 1}, that, without loss of generality, we seek
to minimize, these four concepts can be defined as follows:

1. Pareto dominance
A solution x is said to (Pareto) dominate a solution y (denoted x ! y)
iff (∀i ∈M : fi(x) ≤ fi(y)) ∧ (∃i ∈M : fi(x) < fi(y))

2. Pareto optimal
A solution x is said to be Pareto optimal iff ¬∃y : y ! x

3. Pareto optimal set
The set PS of all Pareto optimal solutions: PS = {x|¬∃y : y ! x}

4. Pareto optimal front
The set PF of all objective function values corresponding to the solutions in
PS : PF = {(f0(x), f1(x), . . . , fm−1(x))|x ∈ PS}
The Pareto optimal set PS is a definition of all trade-off optimal solutions in

the parameter space. The Pareto optimal front PF is the same set of solutions, only
regarded in the objective space. The size of either set can be infinite, in which case
it is impossible to find the optimal set or front with a finite number of solutions.
Regardless of the size of PS or PF , it is commonly accepted that we are interested
in finding a good representation of these sets with a finite number of solutions. The
definition of a good representation, is difficult however. The reason for this is that
it is desirable to obtain a diverse set of solutions as well as it is desirable to obtain
a front or set that is close to the optimal one. Furthermore, it depends on the map-
ping between the parameter space and the objective space whether a good spread
of the solutions in the parameter space is also a good spread of the solutions in the
objective space. However, it is common practice [9] to search for a good diversity of
the solutions along the Pareto front. The reason for this is that a decision-maker will
ultimately have to pick a single solution. Therefore, it is often best to present a wide
variety of trade-off solutions for the specified goals.

Multi–objective Optimization with the Naive MIDEA 125

The notion of searching a space by maintaining a population of solutions is char-
acteristic of evolutionary algorithms (EAs), which makes them natural candidates
for multi-objective optimization aiming to cover a good approximation of the Pareto
optimal front. A strongly increasing amount of research has indeed been done in
the field of evolutionary multi-objective optimization in recent years [9] with very
promising results.

3 The Naive MIDEA

To obtain EDAs that are well-suited for multi-objective optimization, we propose
to instantiate two steps in the framework. Firstly, to stimulate the preservation of
diversity along the Pareto front, we instantiate the selection mechanism by using a
diversity preserving truncation selection operator. Secondly, we partially instantiate
the search for a probability distribution to use by enforcing the use of mixture distri-
butions.

3.1 Diversity-preserving Truncation Selection

Background and Motivation

Selection in evolutionary algorithms is meant to select the better solutions of the
population to perform variation with. In multi-objective optimization however, the
notion of “a better solution” has two sides to it. On the one hand we want the so-
lutions to be as close to the Pareto optimal front as possible. On the other hand, we
want a good diverse representation of the Pareto optimal front. A good selection op-
erator in a MOEA must thus exert selection pressure with respect to both of these
aspects.

Selection Pressure towards the Pareto Optimal Front

In a practical application, we have no indication of how close we are to the Pareto
optimal front. To ensure selection pressure towards the Pareto optimal front in the
absence of such information, the best we can do is to find solutions that are dominated
as little as possible by any other solution.

A straightforward way to obtain selection pressure towards non-dominated solu-
tions is therefore to count for each solution in the population the number of times it
is dominated by another solution in the population, which is called the domination
count of a solution [3, 16]. The rationale behind the domination count approach is
that ultimately we would like no solution to be dominated by any other solution, so
the less times a solution is dominated, the better. A lower domination count is prefer-
able. Using this value we can apply truncation selection or tournament selection to
obtain solid pressure towards non-dominated solutions.

Another approach to ensuring a preference for solutions that are dominated as
little as possible, is to assign a preference to different domination ranks [12, 17].

126 P.A.N. Bosman and D. Thierens

The solutions that are in the jth rank are those solutions that are non-dominated if
the solutions of all ranks i < j are disregarded. Note that the best domination rank
contains all solutions that are non-dominated in the complete population. A lower
rank is preferable. Using this value we can again apply for instance either truncation
selection or tournament selection. Similar to the domination count approach, this
approach effectively prefers solutions that are closer to the set of non-dominated
solutions. It has been observed that in practice the difference between domination-
counting and the domination-ranking schemes in practice is only very small [5].

Selection Pressure towards Diversity

In most multi-objective selection schemes, diversity is used as a second compari-
son key in selection. This prohibits tuning the amount of selection pressure towards
diversity to the amount of selection pressure towards getting close to the Pareto op-
timal front. An example is the approach taken in the NSGA-II in which solutions
are selected based on their non-domination rank using tournament selection [12]. If
the ranks of two solutions are equal, the solution that has the largest total distance
between its two neighbors summed over each objective, is preferred. This gives a
preference to non-crowded solutions.

The explicit selection pressure towards diversity may serve more than just
the purpose of ensuring that a diverse subset is selected from a certain set of
non-dominated solutions. If we only apply selection pressure to finding the non-
dominated solutions and enable diversity preservation only to find a good spread
of solutions in current Pareto front, we increase the probability that we only find a
subset of a discontinuous Pareto optimal front. Selection pressure towards diversity
will most likely be too late in helping out to find the other parts of the discontinu-
ous Pareto optimal front as well. Therefore, we may need to spend more attention
on diversity preservation during optimization and perhaps even increase the amount
of diversity preservation. Another reason why we may need to increase the selection
pressure towards diversity is that a variation operator is used that can find many more
non-dominated solutions, which could cause a MOEA to converge prematurely onto
subregions of a Pareto optimal front or onto locally optimal sets of non-dominated
solutions, unless the population size is increased. However, given a fixed number
of evaluations, this can be a significant drawback in approaching the Pareto optimal
front. This problem can be alleviated by placing more emphasis on selection pressure
towards diversity and by consequently reducing the effort in the selection pressure
towards getting close to the Pareto optimal front. By doing so, the variation opera-
tor is presented with a more diverse set of solutions from which a more diverse set
of offspring will result. Furthermore, solutions that are close to each other will now
have a smaller joint chance that they will both be selected, which improves the ability
to approach the Pareto optimal front since premature convergence is less likely.

Combining Selection Pressures

Concluding, to ensure pressure towards the Pareto optimal front and towards diver-
sity at the same time, the selection procedure must be provided with a component

Multi–objective Optimization with the Naive MIDEA 127

that prefers a diverse selection of solutions. However, since the goal is to preserve
diversity along the Pareto front, rather than to preserve diversity in general, the selec-
tion on the basis diversity should not precede selection on the basis of getting close
to the Pareto optimal front.

Selection Operator

In the selection operator that we propose, the ratio of the amount of selection pres-
sure towards the Pareto optimal front and the amount of selection pressure towards
diversity can be tuned using a single parameter δ to better fit the specific needs of
the problem solver. In most selection operators this ratio is fixed beforehand. Ulti-
mately, the selection operator selects �τn� solutions, where n is the population size
and τ ∈ [1

n ; 1] is the selection percentile. Just as there are two forms of selection
pressure to be exerted by the selection operator as discussed above, there are two
phases in our selection operator.

1. In the first phase, the domination count [16] of all solutions is first computed as
mentioned above. Subsequently, a pre-selection SP is made of �δτn� solutions
(δ ∈ [1; 1

τ]) using truncation selection on the domination count (select the best
�δτn� solutions). However, if the solution with the largest domination count to
end up in SP by truncation selection has a domination count of 0, all solutions
with a domination count of 0 are selected instead, resulting in |SP | ≥ �δτn�.
This ensures that once the search starts to converge onto a certain Pareto front,
we enforce diversity over all of the available solutions on the front.

2. In the second phase, the final selection S is obtained from SP . To do so, a
nearest neighbor heuristic is used to promote diversity. First, a solution with an
optimal value for a randomly chosen objective is deleted from SP and added to
S. Note that the choice of objective is arbitrary as the key is to find a diverse
selection of solutions. To stimulate this, we can select a solution that is optimal
along any objective. For all solutions in SP , the nearest neighbor distance is
computed to the single solution in S. The distance that we use is the Euclidean
distance scaled to the sample range in each objective. The solution in SP with
the largest distance is then deleted from SP and added to S. The distances in
SP are updated by investigating whether the distance to the newly added point in
S is smaller than the currently stored distance. These last two steps are repeated
until �τn� solutions are in the final selection.

An example application of this operator is presented in Fig. 1. This selection
operator has a running time complexity of O(n2). This is no worse than the minimum
of O(n2) for computing the domination counts which is required in all MOEAs.

3.2 Mixture Distributions

A mixture probability distribution is a weighted sum of k > 1 probability distrib-
utions. Each probability distribution in the mixture probability distribution is called

128 P.A.N. Bosman and D. Thierens

1

2

3

4

5

6

f0

f1

Fig. 1. An example of the application of the diversity preserving selection operator with n =
22, δ = 5

3
, τ = 3

10
, which gives �δτn	 = 11 and �τn	 = 6. Objectives f0 and f1 should

both be minimized. The dominated solutions are black whereas the non-dominated solutions
are white. The solutions that belong to the preselection are outlined. The solutions that are
finally selected are numbered in the order in which they are chosen from the preselection.
Here objective f0 has been chosen to initiate the selection process

a mixture component. Let Z = (Z0, Z1, . . . , Zl−1) be a vector for all random vari-
ables involved in the EDA (i.e. Zi is a random variable associated with the ith prob-
lem variable). A mixture probability distribution for random variables Z is then de-
fined as follows:

P mixture(Z) =
k−1∑
i=0

βiP
i(Z) (1)

where βi ≥ 0, i ∈ {0, 1, . . . , k − 1}, and
∑k−1
i=0 βi = 1. The βi with which the

mixture components are weighted in the sum are called mixing coefficients.

The Benefit of Mixture Distributions

The general advantage of mixture probability distributions is that a larger class of
independence relations between the random variables can be expressed than when
using non-mixture probability distributions since a mixture probability distribution
makes a combination of multiple probability distributions. In many cases, simple
probability distributions can be estimated to get accurate descriptions of the data in
different parts of the sample space. By adding the k “simple” probability distribu-
tions into the mixture probability distribution, an accurate description of the data in
the complete sample space can be obtained. This allows for the modelling of quite
complex dependencies between the problem variables. By using mixture probability

Multi–objective Optimization with the Naive MIDEA 129

distributions, a powerful, yet computationally tractable type of probability distribu-
tion can be used within EDAs, that provides for processing complicated interactions
between a problem’s variables.

For multi-objective optimization, mixture distributions can have a specific ad-
vantage that renders them particularly useful. The specific advantage is geometrical
in nature. If we for instance cluster the solutions as observed in the objective space
and then estimate a simpler probability distribution in each cluster, the probability
distributions in these clusters can portray specific information about the different re-
gions along the Pareto optimal front that we are ultimate interested in multi-objective
optimization. Each simpler probability distribution to be used in each cluster can for
instance be a factorized probability distribution as is used in most EDAs. Drawing
new solutions from the resulting mixture probability distribution gives solutions that
are more likely to be well spread along the front as each mixture component deliv-
ers a subset of new solutions. The use of such a mixture distribution thus results in
a parallel exploration along the current Pareto front. This parallel exploration may
very well provide a better spread of new solutions along the Pareto front than when
a single non-mixture distribution is used to capture information about the complete
Pareto front. In Fig. 2 an example is given of what the result of clustering the se-
lected solutions in the objective space typically looks like. The effect of splitting up
the solutions along the Pareto front, thereby facilitating parallel exploration along
the front, can clearly be seen.

25

30

35

40

45

50

55

60

65

70

25 30 35 40 45 50 55 60 65 70 75

Population
Final selection

f0

f 1

Fig. 2. An example of the breaking up the front of selected solutions using clustering. Objec-
tives f0 and f1 should both be minimized. The four individual clusters that are defined in this
example are outlined

130 P.A.N. Bosman and D. Thierens

Estimating Mixture Distributions

From the previous subsection describing the specific advantages of mixture prob-
ability distributions for multi-objective, we already have a straightforward manner
to estimate mixture probability distributions from data using clustering. To actually
build the mixture distribution from the simpler distributions, the mixing coefficients
βi must still be chosen. This can be done in various ways. A common approach is
to set βi to the proportion of the size of the ith cluster with respect to the sum of
the sizes of all clusters. For the specific application of multi-objective optimization
however, we propose to assign each cluster an equally large mixing coefficient, i.e.
βi = 1/k. The reason for this is that we want to distribute the solutions as good as
possible along the Pareto front. Giving each cluster an equal probability of producing
new solutions maximizes parallel exploration along the Pareto front. The only thing
left to choose then is which clustering algorithm to use. Exact algorithms for parti-
tioning (i.e. clustering into mutually disjoint subsets) exist [20], but the running times
for these algorithms are of no practical use for building EDAs. What we require, is
a fast approximate assessment of clusters such that we can estimate a relatively sim-
ple probability distribution in each cluster in a good way. Computationally efficient
clustering algorithms exist that provide useful results [20]. Examples are the leader
algorithm and the K-means algorithm.

A different approach to estimating a mixture probability distribution from data
is to compute a maximum likelihood estimation. To this end, the Expectation Maxi-
mization (EM) algorithm [14] can be used. The EM algorithm is a general iterative
approach to computing a maximum likelihood estimate. Although the EM algorithm
is a valid approach to obtaining mixture probability distributions, it tends to be time-
consuming, especially if the dimensionality of the data increases. Moreover, since we
expect the specific benefit of mixture probability distributions to reside in dividing
the data on the basis of its geometry in the objective space, using the EM algorithm
seems less attractive because it builds a model completely based on the data as given
in the parameter space.

3.3 Elitism

If elitism is used, the best solutions of the current generation are copied into the next
generation. Alternatively, an external archive of a predefined maximum size na may
be used that contains only non-dominated solutions. This is actually similar to using
elitism in a population, because this archive can be seen as the first few population
members in a population for which the size is at least np and at most np +na, where
np is the size of the population in an archive-based approach and na is the size of the
external archive.

Elitism plays an important role in multi-objective optimization since many so-
lutions exist that are all equally preferable. It is important to have access to many
of them during optimization to advance the complete set of non-dominated solu-
tions further. An ideal variation operator is capable of generating solutions that are
closer to the Pareto optimal front, but also spread out across the entire current set

Multi–objective Optimization with the Naive MIDEA 131

of non-dominated solutions as well as possibly outside it to extend the diversity of
the set of non-dominated solutions even further. However, obtaining new and diverse
non-dominated solutions is hard, especially as the set of non-dominated solutions ap-
proaches the Pareto optimal front. If a non-dominated solution gets lost in a certain
generation, it may take quite some effort before a new non-dominated solution in its
vicinity is generated again. For this reason, elitism is commonly accepted [24,36] to
be a very important tool for improving the results obtained by any MOEA.

Elitism can be used within the MIDEA framework in a straightforward manner
because truncation selection is already used (Sect. 3.1). An elitist MIDEA selects
the best �τn� solutions using the diversity-preserving truncation selection operator.
Subsequently, only the worst n−�τn� solutions are replaced with new offspring that
result from sampling the estimated probability distribution. The best �τn� solutions
that were selected, are thus kept in the population.

3.4 The MIDEA Framework

The MIDEA variant that we use in our experiments is described in pseudo-code in
Fig. 3.

MIDEA

1 Initialize a population of n random solutions and evaluate their objectives
2 Iterate until termination

2.1 Compute the domination counts
2.2 Select �τn	 solutions with the diversity preserving selection operator
2.3 Estimate a mixture probability distribution P mixture(Z)
2.4 Replace the non-selected solutions with new solutions drawn from P mixture(Z)
2.5 Evaluate the objectives of the new solutions

Fig. 3. Pseudo-code for the MIDEA framework

The Naive MIDEA Instance

Probability Distributions in Each Cluster

In Sect. 3.2 we have argued that mixture distributions can play an important role in
multi-objective optimization. Moreover, we have argued that a simple, but effective
approach to estimating mixture distributions is to cluster the selected solutions on
the bases of the geometry of their objective values. We therefore suggest keeping
the probability distributions to be estimated in each cluster as simple as possible.
This suggestion leads to the choice of using univariate factorized probability distri-
butions in each cluster in the naive MIDEA. In a factorized probability distribution,
each random variable is regarded separately, meaning that a probability distribution
is estimated for each random variable separately. For discrete random variables, this

132 P.A.N. Bosman and D. Thierens

amounts to repeatedly counting frequencies and computing proportions for a single
random variable. For real-valued random variables this implies estimating for in-
stance the mean and variance of a one-dimensional normal distribution repeatedly.
The mathematical formulation of the univariate factorization is:

P univariate(Z) =
l−1∏
i=0

P (Zi) (2)

Since in each cluster we thus disregard all dependencies between random vari-
ables, we call this specific MIDEA instance naive in analogy with the well-known
naive Bayes classifier. However, the clusters are expected to already provide a large
benefit for multi-objective optimization. Moreover, algorithms such as UMDA [27]
and the compact GA [19] that use same probability distribution as in (2) (without
clustering) have provided good results on many interesting single-objective opti-
mization problems. Hence, we already expect good optimization behavior for the
naive MIDEA.

Clearly, non-naive instances of MIDEA can be made directly by estimating more
involved probability distributions in each cluster, such as Bayesian factorized prob-
ability distributions. Although we will present the results of some experiments with
such more involved probability distributions for comparison reasons, we refer the
interested reader for more details to the literature on either these probability dis-
tributions (e.g. [7, 10, 25]) or to the relevant literature on single-objective EDAs
(e.g. [1, 2, 4, 18, 23, 28–33]).

Clustering Algorithm

Since we are interested in obtaining useful results in as little time as possible, we
suggest the use of a fast clustering algorithm. Possibly this adds to the naiveness of
our naive MIDEA instance, but other clustering algorithms are easily implemented
if required.

The algorithm that we propose to use is the leader algorithm. The leader algo-
rithm is one of the fastest partitioning algorithms [20]. The use of it can thus be
beneficial if the amount of overhead that is introduced by factorization mixture se-
lection methods is desired to remain small. There is no need to specify in advance
how many partitions there should be. The first solution to make a new partition is
appointed to be its leader. The leader algorithm goes over the solutions exactly once.
For each solution it encounters, it finds the first partition that has a leader being closer
to the solution than a given threshold Td. If no such partition can be found, a new
partition is created containing only this single solution. To prevent the first partitions
from becoming quite a lot larger than the later ones, we randomize the order in which
the partitions are inspected. The asymptotic running time for finding the first parti-
tion with a leader closer than Td is the same as going over all partitions and finding
the closest partition. Therefore, we prefer to find the closest partition.

One of the drawbacks of the (randomized) leader algorithm is that it is not in-
variant given the sequence of the input solutions. Most partitioning algorithms do
not have this property, but not as strongly as the leader algorithm. Therefore, to be

Multi–objective Optimization with the Naive MIDEA 133

sure that the ordering of the solutions is not subject to large repeating sequences of
solutions, we randomize the ordering of the solutions each time the leader algorithm
is applied.

Pseudo-Code

The naive MIDEA is an instance of the general MIDEA framework. Figure 4 shows
how the naive MIDEA can be obtained from the general MIDEA framework by
using a specific instantiation of lines 2.3 and 2.4.

naive MIDEA
(instantiation of steps 2.3 and 2.4 of the general MIDEA framework)

1 (c0, c1, . . . , ck−1)← LeaderAlgorithm(Td)
2 for i← 0 to k − 1 do

2.1 βi ← 1/k
2.2 for j ← 0 to l − 1 do

2.2.1 Estimate a one-dimensional probability distribution P i,j(Zj) for
random variable Zj from the solutions in the ith cluster (i.e. ci)

3 for i← �τn	 to n− 1 do
3.1 Initialize a new solution z
3.2 Choose an index q ∈ {0, 1, . . . , k − 1} with probability βq
3.3 for j ← 0 to l − 1 do

3.3.1 Draw a value for zj from the one-dimensional probability distribution
P q,j(Zj) associated with the qth-cluster

3.4 Add z to the set of new offspring.

Fig. 4. Pseudo-code for the naive MIDEA

4 Experiments

In this section we compare MIDEA instances to two well-known state-of-the-art
MOEAs that aim at obtaining a diverse set of solutions along the Pareto front. The
SPEA algorithm by Zitzler and Thiele [38] and the NSGA-II algorithm by Deb et
al. [12] showed superior performance compared to most other MOEAs [12,36]. The
test suite we used consists of eight multi-objective optimization problems. We var-
ied the dimensionality of these problems to get a total of sixteen problem instances
to test the MOEAs on. The multi-objective optimization problems are described in
Sect. 4.1. The performance measures we use to score the results of the algorithms
with are described in Sect. 4.2. In Sect. 4.3 we present our experiment setup. In
Sect. 4.4 we discuss the obtained results. Finally, in Sect. 4.5 we give a short sum-
mary for the EA practitioner.

134 P.A.N. Bosman and D. Thierens

4.1 Multi-objective Optimization Problems

Our test suite consists of problems with real-valued variables as well as with binary
variables. To make a clear distinction between these two cases, we write real-valued
variables as yi and binary variables as xi. In both cases we have used four different
optimization problems and two different dimensionalities for these problems to ob-
tain a total test suite size of 16 problems. In the following we give a brief description
of the problems in our test suite.

Real-valued Multi-objective Optimization Problems

A variety of test problems for real-valued variables has been proposed that may cause
different types of problems for multi-objective optimization algorithms [11, 13, 36].
From this set of problems, we have selected three problems that are commonly used
to benchmark multi-objective optimization algorithms. The fourth real-valued test
problem is a new test problem we have designed to test the performance of MOEAs
if there are strong interactions between the problem variables. These problems rep-
resent a spectrum of multi-objective problem difficulty as they make it difficult for a
multi-objective optimization algorithm to progress towards the global optimal front
and to maintain a diverse spread of solutions due to properties such as discontinuous
fronts and multi-modality. The problems with real-valued variables that we use in
our experiments are all defined for two objectives. An overview of our test problems
is given in Fig. 5.

BT1

Function BT1 differs from the other three functions in that it has multivariate (linear)
interactions between the problem variables. Therefore, more complex factorizations
are required to exploit these interactions, whereas the other functions are well-suited
to be optimized using the univariate factorization. The Pareto optimal front is given
by f1(y) = 1 − y0.

ZDT4

Function ZDT4 was introduced by Zitzler et al. [36]. It is very hard to obtain the
optimal front f1(y) = 1−√

y0 in ZDT4 since there are many local fronts. Moreover,
the number of local fronts increases as we get closer to the Pareto optimal front. The
main problem that a MOEA should be able to overcome to optimize this problem is
thus strong multi-modality.

ZDT6

Function ZDT6 was also introduced by Zitzler et al. [36]. The density of solutions
in ZDT6 increases as we move away from the Pareto optimal front. Furthermore,
ZDT6 has a non-uniform density of solutions along the Pareto optimal front as there
are more solutions as f0(y) goes up to 1. Therefore, a good diverse spread of solu-
tions along the Pareto front is hard to obtain. The Pareto front for ZDT6 is given by
f1(y) = 1 − f0(y)2 with f0(y) ∈ [1 − e−1/3; 1].

Multi–objective Optimization with the Naive MIDEA 135

Name Definition Range

BT1

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = 1− f0(y) +

107 − 100

(10−5+
∑ l−1
i=1|∑ i

j=1 yi|)

• y0 ∈ [0; 1]

• yi ∈ [−3; 3]

(1 ≤ i < l)

ZDT4

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ
(

1−
√

f0(y)
γ

)
• γ = 1 + 10(l − 1) +

∑l−1
i=1

(
y2
i − 10cos(4πyi)

)
• y0 ∈ [0; 1]

• yi ∈ [−5; 5]

(1 ≤ i < l)

ZDT6

Minimize (f0(y), f1(y))

Where • f0(y) = 1− e−4y0sin6(6πy0)

• f1(y) = γ

(
1−

(
f0(y)
γ

)2
)

• γ = 1 + 9
(∑l−1

i=1
yi
9

)0.25

• yi ∈ [0; 1]

(0 ≤ i < l)

CTP7

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ
(

1− f0(y)
γ

)
• γ = 1 + 10(l − 1) +

∑l−1
i=1

(
y2
i − 10cos(4πyi)

)
Such that • cos(− 5π

100
)f1(y)− sin(− 5π

100
)f0(y) ≥

40| sin(5π
[
sin(− 5π

100
)f1(y)+

cos(− 5π
100

)f0(y)
]
)|6

• y0 ∈ [0; 1]

• yi ∈ [−5; 5]

(1 ≤ i < l)

Fig. 5. Real-valued multi-objective optimization test problems

CTP7

Function CTP7 was introduced by Deb et al. [13]. Its Pareto optimal front differs
slightly from that of ZDT4, but otherwise shares the multi-modal front problem. In
addition, this problem has constraints in the objective space, which makes finding
a diverse representation of the Pareto front more difficult since the Pareto front is
discontinuous and it is hard to obtain an approximation that has a few solutions in
each feasible part of that front.

Binary Multi-objective Optimization Problems

In Fig. 6, we have specified four binary multi-objective optimization problems. Next
to being binary, these problems are also multi-objective variants of well-known com-

136 P.A.N. Bosman and D. Thierens

Name Definition

MS

(
Maximum

Satisfiability

)

Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑ci−1
j=0 sgn

([∑l−1
k=0(Ci)jk ⊗ xk

])

• sgn(x) =

⎧⎨
⎩

1 if x > 0

0 if x = 0

−1 if x < 0
• ⊗ 0 1

−1 1 0

⊗ 0 1

0 0 0

⊗ 0 1

1 0 1

KN
(Knapsack)

Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1
j=0 Pijxj

Such that • ∀i∈M :
∑l−1
j=0 Wijxj ≤ ci

SC
(Set Covering)

Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1
j=0 Cijxj

Such that • ∀i∈M : ∀0≤j<r :
∑l−1
k=0(Ai)jkxk ≥ 1

MST

(
Minimal

Spanning

Tree

)
Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1
j=0 Wijxj

Such that • ∀S⊆V :
∑
xj∈(S×(V−S)) xj ≥ 1

• ∀S⊆V :
∑
xj∈(S×S) xj ≤ |S| − 1

Fig. 6. Binary multi-objective combinatorial optimization test problems

binatorial optimization problems. The number of objectives for these problems is not
restricted to two and is denoted by m.

It is important to note that we have used random instances for the combinatorial
optimization problems. In the case of only a single objective, random instances may
on average be easy for some combinatorial problems. However, in the case of multi-
ple objectives, finding the Pareto front is usually much more difficult, even if efficient
algorithms are available for the single-objective case [15]. Therefore, the instances
used in our test suite are not expected to be over-easy. Furthermore, the problems
also serve to indicate differences between the different multi-objective algorithmic
approaches other than the fact that dependencies between problem variables can be
exploited. This relative performance of the algorithms may be well observed using
our proposed test-suite. On the other hand, the degree of interaction between the
problem variables in randomly generated problem instances may not be too large,
which may cause optimization algorithms that regard the problem variables indepen-
dently of each other to be the most efficient.

Multi–objective Optimization with the Naive MIDEA 137

Maximum Satisfiability

In the maximum satisfiability problem, we are given a propositional formula in con-
junctive normal form. The goal is to satisfy as many clauses as possible. The solution
string is a truth assignment to the involved literals. These formulas can be represented
by a matrix in which row i specifies what literals appear either positive (1) or neg-
ative (−1) in clause i. In the multi-objective variant of this problem, we have m of
such matrices and only a single solution to satisfy as many clauses as possible in
each objective at the same time.

Knapsack

The multi-objective knapsack problem was first used to test MOEAs on by Zitzler
and Thiele [38]. We are given m knapsacks with a specified capacity and n items.
Each item can have a different weight and profit in every knapsack. Selecting item i
in a solution implies placing it in every knapsack. A solution may not cause exceed-
ing the capacity of any knapsack.

Set Covering

In the set covering problem, we are given l locations at which we can place some
service at a specified cost. Furthermore, associated with each location is a set of
regions ⊆ {0, 1, . . . r − 1} that can be serviced from that location. The goal is to
select locations such that all regions are serviced against minimal costs. In the multi-
objective variant of set covering, m services are placed at a location. Each service
however covers its own set of regions when placed at a certain location and has its
own cost associated with a certain location. A binary solution indicates at which
locations the services are placed.

Minimal Spanning Tree

In the minimal spanning tree problem we are given an undirected graph (V,E) such
that each edge has a certain weight. We are interested in selecting edges ET ⊆ E
such that (V,ET) is a spanning tree. The objective is to find a spanning tree such that
the weight of all its edges is minimal. In the multi-objective variant of this problem,
each edge can have a different weight in each objective.

4.2 Performance Indicators

To measure the performance of a MOEA we only consider the subset of all non-
dominated solutions that is contained in the final population that results from running
the MOEA. We call such a subset an approximation set and denote it by S. The size
of the approximation set depends on the settings used to run the MOEA with.

To actually measure performance, performance indicators are used. A perfor-
mance indicator is a function that, given an approximation set S, returns a real value
that indicates how good S is with respect to a certain feature that is measured by the

138 P.A.N. Bosman and D. Thierens

performance indicator. Performance indicators are commonly used to determine the
performance of a MOEA and to compare this performance with other MOEAs if the
number of evaluations is fixed beforehand. More detailed information regarding the
importance of using good performance indicators to evaluate MOEAs may be found
in dedicated literature [5, 22, 37].

Since we are interested in performance as measured in the objective space, we
define the distance between two multi-objective solutions z0 and z1 to be the Euclid-
ean distance between their objective values f(z0) and f(z1):

d(z0,z1) =

√√√√m−1∑
i=0

(fi(z1) − fi(z0))2 (3)

If we only want to measure diversity, we can use the FS (Front Spread) indicator.
This performance indicator was first used by Zitzler [35]. The FS indicator indicates
the size of the objective space covered by an approximation set. A larger FS indicator
value is preferable. The FS indicator for an approximation set S is defined to be the
maximum Euclidean distance inside the smallest m-dimensional bounding-box that
contains S. This distance can be computed using the maximum distance among the
solutions in S in each dimension separately:

FS(S) =

√√√√m−1∑
i=0

max(z0,z1)∈S×S{(fi(z0) − fi(z1))2} (4)

In combination with the FS indicator, it is also important to know how many
points are available in the set of non-dominated solutions, because a larger set of
trade-off points is more desirable. This quantity is called the FO (Front Occupation)
indicator and was first used by Van Veldhuizen [34]. A larger FO indicator value is
preferable.

FO(S) = |S| (5)

The ultimate goal is to cover the Pareto optimal front. An intuitive way to define
the distance between an approximation set S and the Pareto optimal front is to aver-
age the minimum distance between a solution and the Pareto optimal front over each
solution in S. We refer to this distance as the distance from a set of non-dominated
solutions to the Pareto optimal front and it serves as an indicator of how close an
approximation set has come to the Pareto optimal front. We denote it by DS→PF

.
This performance indicator was first used by Van Veldhuizen [34]. A smaller value
for this performance indicator is preferable.

DS→PF
(S) =

1
|S|

∑
z0∈S

minz1∈PS
{d(z0,z1)} (6)

An approximation set with a good DS→PF
indicator value does not imply that

a good diverse representation of the Pareto optimal set has been obtained, since the

Multi–objective Optimization with the Naive MIDEA 139

indicator only reflects how far away the obtained points are from the Pareto optimal
front on average. An approximation set consisting of only a single solution can al-
ready have a low value for this indicator. To include the goal of diversity, the reverse
of the DS→PF

indicator is a better guideline for evaluating MOEAs. In the reverse
distance indicator, we compute for each solution in the Pareto optimal set the dis-
tance to the closest solution in an approximation set S and take the average as the
indicator value. We denote this indicator by DPF→S and refer to it as the distance
from the Pareto optimal front to an approximation set. A smaller value for this per-
formance indicator is preferable. In the definition of this indicator, we must realize
that the Pareto optimal front may be continuous. For an exact definition, we there-
fore have to use a line integration over the entire Pareto front. For a 2-dimensional
multi-objective problem we obtain the following expression:

DPF→S(S) =
∫

PF

minz0∈S{d(z0,z1)}df(z1) (7)

In most practical experiments, it is easier to compute a uniformly sampled set of
many solutions along the Pareto optimal front and to use this discretized representa-
tion ofPF instead. A discretized version of the Pareto optimal front is also available
if a discrete multi-objective optimization problem is being solved. In the discrete
case, theDS→PF

indicator is defined by:

DPF→S(S) =
1

|PS |
∑

z1∈PS

minz0∈S{d(z0,z1)} (8)

An illustration of the DPF→S indicator is presented in Fig. 7. The DPF→S in-
dicator represents both the goal of getting close to the Pareto optimal front as well as

f0(z)

f1(z)

S0 S1 PF

Fig. 7. The approximation set S1 is closer to the (discretized) Pareto optimal front but has less
diversity, while approximation set S0 is further away from the front but has greater diversity:
both sets have approximately the sameDPF→S indicator value though

140 P.A.N. Bosman and D. Thierens

the goal of getting a diverse, wide-spread front of solutions. The DPF→S indicator
for an approximation set S is zero if and only if all points in PF are contained in S
as well. Furthermore, a single solution from the Pareto optimal set will lead to the
same DPF→S indicator as a more diverse set of solutions that has objective values
that are slightly further away from the Pareto optimal front. Moreover, a similarly
diverse approximation set of solutions that is closer to the Pareto optimal front, will
have a lower DPF→S indicator value. However, an approximation set of solutions
that is extremely diverse but far away from the Pareto optimal front, such as the non-
dominated solutions of a randomly generated set of solutions, has a bad DPF→S
indicator value. This underlines the important point that diversity is not equally im-
portant as is getting close to the Pareto optimal front because a larger diversity is
often not hard to come by. What is important is the diversity along the objectives
of a set of non-dominated solutions that is as close as possible to the Pareto optimal
front.

A performance indicator that is closely related to the DPF→S indicator, is the
hypervolume indicator by Knowles and Corne [22]. In the hypervolume indicator, a
point in the objective space is picked such that it is dominated by all points in the
approximation sets that need to be evaluated. The indicator value is then equal to the
hypervolume of the multi-dimensional region enclosed by the approximation set and
the picked reference point. This value is an indicator of the region in the objective
space that is dominated by the approximation set. The main difference between the
hypervolume indicator and the DPF→S indicator is that for the hypervolume indi-
cator a reference point has to be chosen. Different reference points lead to different
indicator values. Moreover, different reference points can lead to indicator values
that indicate a preference for different approximation sets. Since in the DPF→S in-
dicator the true Pareto optimal front is used, the DPF→S indicator does not suffer
from this drawback. Of course, a major drawback of theDPF→S indicator is that in
a real application the true Pareto optimal front is not known beforehand. In that case,
the Pareto front of all approximation sets could be used as a substitute for the actual
Pareto optimal front.

4.3 Experiment Setup

Optimization Problem Dimensionalities

Real-Valued Multi-Objective Optimization Problems

For the real-valued problems, we tested all algorithms with both l = 10 and l = 100
problem variables.

Binary Multi-Objective Optimization Problems

For the binary problems, we used test instances with l = 100 and l = 1000. For
the maximum satisfiability problem, we generated the test instances by generating
2500 clauses for l = 100 and 12500 clauses for l = 1000 with a random number

Multi–objective Optimization with the Naive MIDEA 141

of literals between 1 and 5. For the knapsack problem, we generated instances by
generating random weights in [1; 10] and random profits in [1; 10]. The capacity of
a knapsack was set at half of the total weight of all the items, weighted according
to that knapsack objective. For set covering, the costs were generated at random
in [1; 10]. We used 250 regions and 2500 regions to be serviced for l = 100 and
l = 1000 respectively. We varied the problem difficulty through the region-location
adjacency relation. This relation was generated by making each location adjacent
to 70 and 50 randomly selected regions for l = 100 and l = 1000 respectively.
Finally, for the minimum spanning tree problem, we used full graphs with 105 edges
(15 vertices) and 1035 edges (46 vertices). The dimensionality of these problems
is therefore not precisely 100 and 1000. The weights of the edges were generated
randomly in [1; 10].

Optimization Problem Constraints

Problems CTP7, set covering, knapsack and minimal spanning tree have constraints.
To deal with them, we can use a repair mechanism to transform infeasible solu-
tions into feasible solutions. Another approach is based on the notion of constraint-
domination introduced by Deb et al. [13]. This notion allows to deal with constrained
multi-objective problems in a general fashion. A solution z0 is said to constraint-
dominate solution z1 if any of the following is true:

1. Solution z0 is feasible and solution z1 is infeasible
2. Solutions z0 and z1 are both infeasible, but z0 has a smaller overall constraint

violation
3. Solutions z0 and z1 are both feasible and z0 ! z1

The overall constraint violation is the amount by which a constraint is violated,
summed over all constraints. We have used this principle for problems CTP7 and
set covering. For the knapsack problem, an elegant repair mechanism was proposed
earlier by Zitzler and Thiele [38]. For the minimal spanning tree problem, the num-
ber of constraints grows exponentially with the problem size l. We therefore propose
to use repair mechanisms for these latter two problems.

Knapsack Repair Mechanism

If a solution violates a constraint, the repair mechanism iteratively removes items un-
til all constrains are satisfied. The order in which the items are investigated, is deter-
mined by the maximum profit/weight ratio. The items with the lowest profit/weight
ratio are removed first.

Minimal Spanning Tree Repair Mechanism

First the edges are removed from the currently constructed graph and they are sorted
according to their weight. Next, they are added to the graph so that no cycles are

142 P.A.N. Bosman and D. Thierens

introduced. This is done by only allowing edges to be introduced between the con-
nected components in the graph. If after this phase, the number of connected com-
ponents has not been reduced to 1, all edges between the connected components are
regarded in increasing weight and again the connected components are merged until
a single component is left.

General Algorithmic Setup

We ran every algorithm 50 times on each problem. In any single run we chose to
allow a maximum of 20 · 103 evaluations for the real-valued problems of dimension-
ality l = 10 and the binary problems of dimensionality l = 100 and a maximum
of 100 · 103 evaluations for the real-valued problems of dimensionality l = 100 and
the binary problems of dimensionality l = 1000. As a result of imposing the restric-
tion of a maximum of evaluations, a value for the population size n exists for each
MOEA such that the MOEA will perform best. For too large population sizes, the
search will move towards a random search and for too small population sizes, there
is not enough information to perform adequate model selection and induction. We
therefore increased the population size in steps of 25 to find the best results. To ac-
tually select the best population size, we selected the result with the lowest value for
theDPF→S indicator.

Algorithms

We tested a few variants of three MOEAs. In the following we will describe the
details that are required in addition to the details given in earlier sections for con-
structing the actual MOEAs that we will use for testing.

SPEA

For SPEA, we used uniform crossover and one-point crossover with a probability of
0.8. Bit-flipping mutation was used in combination with either of these recombina-
tion operators with a probability of 0.01. These settings were used previously by the
SPEA authors [36]. We allowed the size of the external storage in SPEA to become
as large as the population size. For the real problems, we encoded every variable with
30 bits.

NSGA-II

For NSGA-II, we used the same crossover and mutation operators and the same
encoding for the real variables.

MIDEA

For MIDEA, we used the leader clustering algorithm in the objective space such
that four clusters were constructed on average. If the number of clusters becomes
too large, the requirements for the population size increases in order to facilitate

Multi–objective Optimization with the Naive MIDEA 143

proper factorization selection in each cluster. We do not suggest that the number of
clusters we use is optimal, but it will serve to indicate the effectiveness of parallel
exploration along the Pareto front as well as diversity preservation. In each cluster,
we either used the univariate factorization (i.e. naive MIDEA) or we estimated a
Bayesian factorization based upon normal distributions in the case of real variables.
For details on how the Bayesian factorization is learned, see [1]. However, in the case
of 100-dimensional real-valued problems, we allowed only at most a single parent
for any variable. In the case of binary variables, we used the optimal dependency
tree algorithm by Chow and Liu [8] to estimate a tree factorization in each cluster.
To further investigate the influence of the different components in the MIDEA algo-
rithm, we also performed tests in which only a single cluster is used. Furthermore, we
also replaced the use of estimating probability distributions by the use of one-point
crossover and uniform crossover with mutation as used in the SPEA and NSGA-II
algorithms. In the case of clustering in combination with the use of crossover oper-
ators, restricted mating was employed in order to ensure clustered exploration along
the front. In restricted mating crossover, an offspring is produced using two parent
solutions that are picked from the same cluster. For the truncation percentile, we used
the rule of thumb by Mühlenbein and Mahnig [26] and set τ to 0.3. Furthermore, for
the comparison benchmarks, we set the diversity preservation parameter to δ = 1.5,
which was experimentally determined to give good results both with respect to diver-
sity preservation as well as selective pressure. For an investigation of the influence of
δ on the performance of MIDEA, we also varied δ and observed the results in some
additional experiments, the results of which are reported below.

Overview of Abbreviations

In presenting the results, the different evolutionary algorithms that were tested are
abbreviated to save space. For reference, a list of abbreviations that we have used is
presented in Fig. 8.

Abbrev. Meaning

UX Uniform crossover (prob. 1) + bit-flipping mutation (prob. 0.01)

1X One-point crossover (prob. 1) + bit-flipping mutation (prob. 0.01)

Univariate The univariate factorization (2)

Learning A more advanced Bayesian factorization is learned

1 Cluster No clustering because everything is placed in a single cluster

Par. Clust. Clustering in the parameter space

Obj. Clust. Clustering in the objective space

M An instance of the MIDEA framework

Fig. 8. List of abbreviations used in the presentation of the results

144 P.A.N. Bosman and D. Thierens

4.4 Results

To compare the MOEAs, we investigate their average performance with respect
to performance indicators introduced in Sect. 4.2. The performance indicators that
we use are the DPF→S indicator, the FS indicator and the FO indicator. For the
DPF→S performance indicator, we used different sets to represent the Pareto op-
timal front for the real-valued optimization problems and the binary optimization
problems. For the real-valued optimization problems we used a uniformly sampled
set of 5000 solutions along the Pareto optimal front. Since we do not know the Pareto
optimal front for the binary optimization problems, we used the Pareto front over all
results obtained by all MOEAs.

For each of the performance indicators, we computed their average and standard
deviation over the 50 runs to get an assessment of their performance. The averages
are tabulated in Figs. 9 through 14. The best results are written in boldface. For each
algorithm, the type of variation is indicated as a superscript. The MIDEA algorithms
are indicated by a single M symbol. For all tested MIDEA algorithms, the subscript
indicates whether only a single cluster was used or whether clustering was performed
in either the parameter space or the objective space. The population sizes that led to
the best performance, are tabulated in Figs. 15 and 16. For the standard deviations,
we refer the interested reader to a technical report [6]. Although the average behav-
ior is the most interesting, the standard deviations are vital to determine whether the
differences in the average behavior of the different algorithms are significant. To in-
vestigate these significances, we have performed Aspin-Welch-Satterthwaite (AWS)
statistical hypothesis T -tests at a significance level of α = 0.05. The AWS T -test is
a statistical hypothesis test for the equality of means in which the equality of vari-
ances is not assumed [21]. For each problem, we verified for each pair of algorithms
whether the average obtained performance indicator values differ significantly. We
assigned a value of 1 if an algorithm scored significantly better and a value of −1 if
an algorithm scored significantly worse. We summed the so obtained matrices over
all problems to get the statistically significant improvement matrices that are shown
in Figs. 17 through 19. We also computed the sum for each algorithm of its signif-
icant improvement values over all other algorithms to indicate the summed relative
statistically significant performance of the algorithms. A less detailed summary of
the statistical significance tests is shown in Fig. 21. In this figure histograms are
used to indicate the sum of the results of the statistical significance tests for each
algorithm compared with all other algorithms. The histogram represents the sums
for the real-valued problems and the combinatorial problems for the different tested
dimensionalities and the average of these four sums.

Influence of Problem Dimensionality

Although the MIDEA variants already mostly outperform the other tested algorithms
in the case in which the dimensionality of the problem is smaller (l = 10 for the real-
valued problems, l = 100 for the binary problems), they perform even better in the
case in which the dimensionality of the problem is larger. This is most likely due to

Multi–objective Optimization with the Naive MIDEA 145

DPF→S
EA BT10

1 ZDT10
4 ZDT10

6 CTP10
7 BT100

1 ZDT100
4 ZDT100

6 CTP100
7

SPEAUX 100 · 105 4.62 0.193 7.97 100 · 105 470 7.64 499

SPEA1X 100 · 105 3.90 0.172 7.31 100 · 105 447 7.06 476

NSGA-IIUX 100 · 105 4.39 0.303 7.25 100 · 105 360 5.99 348

NSGA-II1X 100 · 105 1.40 0.328 3.32 100 · 105 297 6.59 303

M
UX
1 Cluster 100 · 105 4.43 0.358 6.63 100 · 105 374 6.72 378

M
1X
1 Cluster 100 · 105 1.89 0.291 4.13 100 · 105 336 6.81 345

M
UX
Par. Clust. 100 · 105 4.01 0.368 6.42 100 · 105 400 6.98 394

M
1X
Par. Clust. 100 · 105 1.65 0.298 3.77 100 · 105 332 7.01 340

M
UX
Obj. Clust. 100 · 105 3.98 0.354 7.27 100 · 105 311 5.96 326

M
1X
Obj. Clust. 100 · 105 2.03 0.311 3.95 100 · 105 328 6.74 335

M
Univariate
1 Cluster 100 · 105 14.0 1.08 16.5 100 · 105 774 3.06 875

M
Learning
1 Cluster 100 · 105 11.2 0.00239 15.3 100 · 105 597 0.434 600

M
Univariate
Par. Clust. 999 · 104 5.36 0.798 7.93 100 · 105 168 3.70 192

M
Learning
Par. Clust. 999 · 104 14.0 0.159 17.1 100 · 105 416 0.470 523

naive MIDEA 100 · 105 5.00 0.306 8.64 100 · 105 157 4.60 161

M
Learning
Obj. Clust. 998 · 104 11.5 0.287 12.6 100 · 105 144 1.30 165

Fig. 9. Average of the DPF→S performance indicator on all real-valued problems. Note:
naive MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

DPF→S
EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 12.7 10.4 2.93 2.10 181 83.9 550 6.78

SPEA1X 11.8 9.14 2.99 2.12 270 105 484 6.40

NSGA-IIUX 11.5 8.29 1.79 1.88 180 76.4 289 7.15

NSGA-II1X 11.7 9.33 2.64 2.22 283 114 360 6.60

M
UX
1 Cluster 9.65 6.20 0.931 2.76 80.4 52.3 72.4 5.14

M
1X
1 Cluster 12.4 7.34 1.9 2.72 135 93.0 109 4.66

M
UX
Par. Clust. 10.6 6.96 1.23 2.69 104 58.8 75.4 5.42

M
1X
Par. Clust. 13.4 8.13 1.54 2.86 169 107 101 4.96

M
UX
Obj. Clust. 7.50 3.71 1.49 1.30 69.0 18.8 189 3.33

M
1X
Obj. Clust. 10.5 5.98 1.89 1.54 116 46.3 305 3.11

M
Univariate
1 Cluster 18.8 16.4 1.48 3.18 141 117 76.5 9.60

M
Learning
1 Cluster 11.4 7.25 1.50 2.70 262 77.6 94.2 5.89

M
Univariate
Par. Clust. 18.3 13.2 1.54 3.26 168 118 105 9.68

M
Learning
Par. Clust. 12.5 7.56 1.85 2.54 262 115 269 7.69

naive MIDEA 7.20 4.32 1.24 1.54 36.9 28.1 181 3.58

M
Learning
Obj. Clust. 9.37 5.91 2.52 1.72 52.4 37.4 650 2.64

Fig. 10. Average of theDPF→S performance indicator on all combinatorial problems. Note:
naive MIDEA could also have been abbreviated as MUnivariate

Obj. Clust

146 P.A.N. Bosman and D. Thierens

Front Spread FS

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 225 51.4 5.22 44.9 2.06 692 1.85 733

SPEA1X 369 55.8 5.26 46.3 2.31 736 3.02 773

NSGA-IIUX 179 3.60 1.09 1.76 0.413 35.2 0.756 29.3

NSGA-II1X 23.4 8.93 1.03 1.31 1.02 33.4 0.665 13.9

M
UX
1 Cluster 655 8.55 2.90 39.1 2.18 395 3.43 365

M
1X
1 Cluster 78.6 2.46 1.92 1.41 2.27 94.0 1.40 88.6

M
UX
Par. Clust. 357 12.2 5.05 4.85 2.11 384 3.10 345

M
1X
Par. Clust. 199 2.45 5.33 1.66 2.31 129 1.53 93.1

M
UX
Obj. Clust. 685 40.8 4.11 41.8 2.15 740 4.75 737

M
1X
Obj. Clust. 262 3.38 3.94 58.9 2.29 359 2.30 371

M
Univariate
1 Cluster 293 70.8 1.15 84.7 1.82 393 0.180 347

M
Learning
1 Cluster 129 · 101 84.9 3.00 87.4 2.12 635 2.20 342

M
Univariate
Par. Clust. 508 · 101 24.0 2.47 28.8 2.19 231 0.05 306

M
Learning
Par. Clust. 112 · 102 142 5.15 116 1.91 577 7.01 588

naive MIDEA 209 · 101 90.4 5.29 114 2.45 636 8.10 619

M
Learning
Obj. Clust. 164 · 102 197 3.68 188 3.28 175 · 101 3.97 183 · 101

Fig. 11. Average of the FS performance indicator on all real-valued problems. Note: naive
MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

Front Spread FS

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 116 69.5 64.6 30.6 288 254 631 52.1

SPEA1X 126 82.6 50.1 32.3 399 308 636 50.8

NSGA-IIUX 120 78.3 17.3 26.3 370 288 144 33.7

NSGA-II1X 129 79.0 12.8 23.9 364 291 107 36.1

M
UX
1 Cluster 132 92.6 20.7 17.8 304 285 112 40.1

M
1X
1 Cluster 141 91.9 18.3 19.3 329 247 105 47.9

M
UX
Par. Clust. 129 90.8 20.1 18.4 265 289 125 40.7

M
1X
Par. Clust. 132 91.4 17.3 20.1 277 261 112 46.8

M
UX
Obj. Clust. 187 119 21.9 30.1 600 483 199 58.7

M
1X
Obj. Clust. 183 103 21.1 26.0 579 430 155 58.0

M
Univariate
1 Cluster 79.2 43.3 16.1 16.9 122 98.4 10.8 22.7

M
Learning
1 Cluster 143 90.0 18.2 19.7 124 214 135 37.5

M
Univariate
Par. Clust. 90.8 57.4 16.7 16.7 72.9 85.2 10.7 23.1

M
Learning
Par. Clust. 143 106 18.4 20.5 124 109 19.2 32.1

naive MIDEA 192 116 27.6 32.1 665 503 313 65.2

M
Learning
Obj. Clust. 191 125 22.4 30.3 784 512 66.2 60.2

Fig. 12. Average of the FS performance indicator on all combinatorial problems. Note: naive
MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

Multi–objective Optimization with the Naive MIDEA 147

Front Occupation FO

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 60.9 99.0 50.0 43.5 49.8 27.6 18.7 26.7

SPEA1X 38.7 187 49.6 43.2 48.8 27.4 29.3 26.8

NSGA-IIUX 5.42 59.7 47.5 59.3 100 5.80 6.00 4.00

NSGA-II1X 29.5 32.7 31.2 9.98 75.0 5.00 6.60 3.00

M
UX
1 Cluster 9.92 41.7 8.06 9.00 14.4 12.8 14.4 12.6

M
1X
1 Cluster 13.4 30.3 6.52 11.9 16.5 7.10 6.64 5.94

M
UX
Par. Clust. 7.46 25.4 8.02 18.2 15.4 12.9 15.2 12.4

M
1X
Par. Clust. 9.78 24.7 7.80 11.9 17.5 7.20 8.12 6.68

M
UX
Obj. Clust. 13.9 10.0 8.48 8.62 19.1 20.0 19.6 21.7

M
1X
Obj. Clust. 9.94 31.4 7.32 15.6 17.4 12.2 9.76 12.2

M
Univariate
1 Cluster 5.74 6.88 4.90 4.14 36.7 6.9 2.55 3.20

M
Learning
1 Cluster 6.06 8.36 258 4.96 13.1 5.25 369 3.75

M
Univariate
Par. Clust. 29.6 98.8 30.0 82.0 33.4 69.4 3.70 18.3

M
Learning
Par. Clust. 52.7 65.4 104 69.2 149 105 92.0 112

naive MIDEA 12.5 68.7 56.3 34.0 64.5 106 27.7 78.9

M
Learning
Obj. Clust. 30.1 26.4 197 32.1 111 50.8 163 43.0

Fig. 13. Average of the FO performance indicator on all real-valued problems. Note: naive
MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

Front Occupation FO

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 46.8 46.5 25.1 42.8 49.4 49.5 26.2 48.8

SPEA1X 46.1 77.6 24.3 93.2 49.9 49.7 26.5 95.0

NSGA-IIUX 33.5 35.5 12.0 32.3 35.4 33.1 7.50 64.7

NSGA-II1X 41.1 35.4 6.80 24.5 42.0 36.4 7.20 64.8

M
UX
1 Cluster 100 28.1 11.3 20.8 197 46.8 12.4 25.4

M
1X
1 Cluster 130 43.8 14.9 20.3 212 43.1 16.1 38.5

M
UX
Par. Clust. 112 32.2 10.6 23.7 171 46.9 13.0 26.0

M
1X
Par. Clust. 136 50.2 13.2 24.5 179 44.1 17.8 37.1

M
UX
Obj. Clust. 165 48.4 11.1 29.3 269 78.1 15.0 44.2

M
1X
Obj. Clust. 160 61.1 16.2 33.5 325 52.3 13.2 48.5

M
Univariate
1 Cluster 56.9 15.6 8.56 17.6 37.5 20.6 3.92 16.7

M
Learning
1 Cluster 105 37.5 10.0 20.9 48.5 64.2 19.2 61.0

M
Univariate
Par. Clust. 59.8 21.9 8.87 16.6 85.4 15.9 4.90 16.3

M
Learning
Par. Clust. 104 40.9 9.60 20.9 48.5 47.5 8.67 58.7

naive MIDEA 147 36.1 11.9 25.9 129 65.1 16.1 41.9

M
Learning
Obj. Clust. 143 51.8 10.0 25.3 411 101 8.0 65.9

Fig. 14. Average of the FO performance indicator on all combinatorial problems. Note: naive
MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

148 P.A.N. Bosman and D. Thierens

Population Size n

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 50 50 25 25 25 25 25 25

SPEA1X 25 100 25 25 25 25 25 25

NSGA-IIUX 200 200 100 100 100 200 200 150

NSGA-II1X 200 375 75 300 75 200 150 300

M
UX
1 Cluster 75 100 25 25 100 125 200 125

M
1X
1 Cluster 100 450 25 300 125 325 100 175

M
UX
Par. Clust. 175 75 25 100 75 125 150 175

M
1X
Par. Clust. 125 450 25 275 150 175 100 175

M
UX
Obj. Clust. 225 25 25 25 125 200 200 300

M
1X
Obj. Clust. 150 475 25 725 125 200 100 150

M
Univariate
1 Cluster 150 50 75 50 100 75 375 50

M
Learning
1 Cluster 150 75 425 75 175 100 700 100

M
Univariate
Par. Clust. 175 125 175 125 225 150 450 150

M
Learning
Par. Clust. 400 250 275 250 200 150 550 125

naive MIDEA 275 125 200 125 250 200 800 200

M
Learning
Obj. Clust. 450 200 250 150 225 300 400 250

Fig. 15. Population sizes used for the real-valued problems. Note: naive MIDEA could also
have been abbreviated as MUnivariate

Obj. Clust.

Population Size n

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 25 25 25 25 25 25 25 25

SPEA1X 25 50 25 125 25 25 25 50

NSGA-IIUX 350 325 300 200 200 200 200 250

NSGA-II1X 100 325 250 200 150 250 150 200

M
UX
1 Cluster 575 350 550 1250 775 775 325 1000

M
1X
1 Cluster 550 400 300 1200 800 625 500 1050

M
UX
Par. Clust. 500 525 500 2600 650 775 350 1100

M
1X
Par. Clust. 525 575 425 2375 650 650 475 1200

M
UX
Obj. Clust. 550 425 550 1975 750 775 775 1800

M
1X
Obj. Clust. 475 425 825 1400 825 500 650 1750

M
Univariate
1 Cluster 700 200 450 5000 1375 800 225 800

M
Learning
1 Cluster 850 700 700 1850 1350 850 500 1600

M
Univariate
Par. Clust. 750 600 525 7000 300 375 250 700

M
Learning
Par. Clust. 1075 950 1050 1850 1350 700 700 2900

naive MIDEA 500 300 900 2500 875 750 900 1850

M
Learning
Obj. Clust. 1000 925 1050 4000 1400 1500 1100 2350

Fig. 16. Population sizes used for the combinatorial problems. Note: naive MIDEA could also
have been abbreviated as MUnivariate

Obj. Clust.

Multi–objective Optimization with the Naive MIDEA 149

DPF→S

Statistically
Significant

Improvement
Matrix

SPE
A

U
X

SPE
A

1X

N
SG

A
-II U

X

N
SG

A
-II 1X

M
U

X
1

C
luster

M
1X1

C
luster

M
U

X
Par.C

lust.

M
1XPar.C

lust.

M
U

X
O

bj.C
lust.

M
1XO

bj.C
lust.

M
U

nivariate
1

C
luster

M
L

earning
1

C
luster

M
U

nivariate
Par.C

lust.

M
L

earning
Par.C

lust.

naive
M

ID
E

A

M
L

earning
O

bj.C
lust.

Sum

SPEAUX 0 -8 -7 -4 -9 3 -10 3 -11 3 4 -4 -2 -1 -12 -7 -62

SPEA1X 8 0 -7 -3 -8 5 -8 6 -9 5 6 -3 -1 0 -12 -8 -29

NSGA-IIUX 7 7 0 2 -3 5 -4 4 -10 4 6 -2 -2 3 -13 -7 -3

NSGA-II1X 4 3 -2 0 -1 11 -1 9 -6 12 5 -5 0 -1 -11 -8 9

M
UX
1 Cluster 9 8 3 1 0 3 6 3 -8 2 11 7 6 6 -7 -6 44

M
1X
1 Cluster -3 -5 -5 -11 -3 0 -1 -4 -7 -8 -4 -7 -10 -8 -11 -11 -98

M
UX
Par. Clust. 10 8 4 1 -6 1 0 2 -7 1 11 6 6 5 -9 -8 25

M
1X
Par. Clust. -3 -6 -4 -9 -3 4 -2 0 -7 3 -4 -7 -10 -8 -10 -11 -77

M
UX
Obj. Clust. 11 9 10 6 8 7 7 7 0 6 8 6 2 8 -3 1 93

M
1X
Obj. Clust. -3 -5 -4 -12 -2 8 -1 -3 -6 0 -4 -8 -10 -8 -11 -11 -80

M
Univariate
1 Cluster -4 -6 -6 -5 -11 4 -11 4 -8 4 0 -10 -4 -7 -12 -11 -83

M
Learning
1 Cluster 4 3 2 5 -7 7 -6 7 -6 8 10 0 1 2 -8 -7 15

M
Univariate
Par. Clust. 2 1 2 0 -6 10 -6 10 -2 10 4 -1 0 -1 -6 -7 10

M
Learning
Par. Clust. 1 0 -3 1 -6 8 -5 8 -8 8 7 -2 1 0 -8 -6 -4

naive MIDEA 12 12 13 11 7 11 9 10 3 11 12 8 6 8 0 5 138

M
Learning
Obj. Clust. 7 8 7 8 6 11 8 11 -1 11 11 7 7 6 -5 0 102

Fig. 17. Number of times an improvement was found to be statistically significant in the
DPF→S performance indicator, summed over all tested problems. The numbers in a sin-
gle row indicate the summed number of significantly better or worse results compared to the
algorithms in the different columns. Note: naive MIDEA could also have been abbreviated as
MUnivariate

Obj. Clust.

the more powerful diversity exploration and preservation in MIDEA. As the dimen-
sionality of the problem goes up, the parameter space (i.e. the search space) becomes
larger. In the case of the binary combinatorial problems, the number of solutions in
the objective space becomes larger as well. If clustering in the objective space is used
in MIDEA, better results are obtained on average as the dimensionality of the prob-
lem increases. In Fig. 20 the Pareto fronts over 50 runs for a selection of algorithms
are plotted on one problem from each problem class and dimensionality. The better
diversity preservation and proper distribution of the points along the front can be
seen clearly for the problems of larger dimensionality. For the lower dimensionality
problems, better diversity preservation can also be observed, which is most exempli-
fied by the fact that MIDEA obtains non-dominated solutions at the outer ends of the
front for the knapsack problem with l = 100.

150 P.A.N. Bosman and D. Thierens

Front Spread FS

Statistically
Significant

Improvement
Matrix

SPE
A

U
X

SPE
A

1X

N
SG

A
-II U

X

N
SG

A
-II 1X

M
U

X
1

C
luster

M
1X1

C
luster

M
U

X
Par.C

lust.

M
1XPar.C

lust.

M
U

X
O

bj.C
lust.

M
1XO

bj.C
lust.

M
U

nivariate
1

C
luster

M
L

earning
1

C
luster

M
U

nivariate
Par.C

lust.

M
L

earning
Par.C

lust.

naive
M

ID
E

A

M
L

earning
O

bj.C
lust.

Sum

SPEAUX 0 -7 8 8 2 13 5 11 -3 11 11 3 13 2 -7 -9 61

SPEA1X 7 0 16 14 8 15 10 13 0 13 11 5 13 3 -6 -7 115

NSGA-IIUX -8 -16 0 5 -8 3 -8 3 -15 1 3 -8 1 -6 -16 -14 -83

NSGA-II1X -8 -14 -5 0 -8 1 -8 1 -16 -1 1 -9 0 -6 -16 -14 -102

M
UX
1 Cluster -2 -8 8 8 0 12 3 11 -12 5 9 -2 10 -4 -16 -12 10

M
1X
1 Cluster -13 -15 -3 -1 -12 0 -12 -2 -13 -6 0 -11 -4 -7 -15 -14 -128

M
UX
Par. Clust. -5 -10 8 8 -3 12 0 12 -11 8 9 0 8 -3 -15 -11 7

M
1X
Par. Clust. -11 -13 -3 -1 -11 2 -12 0 -11 -6 0 -9 -5 -7 -15 -13 -115

M
UX
Obj. Clust. 3 0 15 16 12 13 11 11 0 9 11 9 14 6 -9 -8 113

M
1X
Obj. Clust. -11 -13 -1 1 -5 6 -8 6 -9 0 2 -8 2 -8 -16 -12 -74

M
Univariate
1 Cluster -11 -11 -3 -1 -9 0 -9 0 -11 -2 0 -11 1 -13 -15 -16 -111

M
Learning
1 Cluster -3 -5 8 9 2 11 0 9 -9 8 11 0 12 -4 -13 -13 23

M
Univariate
Par. Clust. -13 -13 -1 0 -10 4 -8 5 -14 -2 -1 -12 0 -14 -15 -16 -110

M
Learning
Par. Clust. -2 -3 6 6 4 7 3 7 -6 8 13 4 14 0 -8 -11 42

naive MIDEA 7 6 16 16 16 15 15 15 9 16 15 13 15 8 0 -2 180

M
Learning
Obj. Clust. 9 7 14 14 12 14 11 13 8 12 16 13 16 11 2 0 172

Fig. 18. Number of times an improvement was found to be statistically significant in the FS
performance indicator, summed over all tested problems. The numbers in a single row indicate
the summed number of significantly better or worse results compared to the algorithms in the
different columns. Note: naive MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

Influence of Mixtures by Clustering the Objective Space

The fact that the use of mixtures by clustering the objective space allows for en-
hanced diversity exploration and preservation, can also be observed by the difference
between the spread obtained by MIDEA with crossover operators using only a single
cluster versus the case in which on average four clusters are used. A wider spread
of solutions is found when clustering in the objective space is enabled. Furthermore,
although clustering in the parameter space is a powerful approach to enhance the
learning of probabilistic models, it does not immediately lead to better results in
multi-objective optimization.

Influence of the Problem Structure Exploitation Capabilities of EDAs

On the BT1 problem, modelling interactions in MIDEA clearly leads to better results
than those obtained by the other MOEAs. Thus, exploiting interactions can be bene-
ficial in multi-objective optimization. For the BT1 problem with l = 10, if we allow
for 5 ·105 evaluations, the MIDEA variant that learns Bayesian factorizations is even

Multi–objective Optimization with the Naive MIDEA 151

Front Occupation FO

Statistically
Significant

Improvement
Matrix

SPE
A

U
X

SPE
A

1X

N
SG

A
-II U

X

N
SG

A
-II 1X

M
U

X
1

C
luster

M
1X1

C
luster

M
U

X
Par.C

lust.

M
1XPar.C

lust.

M
U

X
O

bj.C
lust.

M
1XO

bj.C
lust.

M
U

nivariate
1

C
luster

M
L

earning
1

C
luster

M
U

nivariate
Par.C

lust.

M
L

earning
Par.C

lust.

naive
M

ID
E

A

M
L

earning
O

bj.C
lust.

Sum

SPEAUX 0 -3 10 12 11 16 11 16 7 16 14 5 7 -3 1 -4 116

SPEA1X 3 0 11 13 12 16 12 16 10 16 14 7 8 -1 3 0 140

NSGA-IIUX -10 -11 0 2 -1 8 1 6 -3 8 11 -3 2 -8 -4 -6 -8

NSGA-II1X -12 -13 -2 0 -3 9 -3 8 -6 7 10 -4 0 -11 -8 -11 -39

M
UX
1 Cluster -11 -12 1 3 0 10 0 10 -10 9 14 2 3 -7 -14 -10 -12

M
1X
1 Cluster -16 -16 -8 -9 -10 0 -11 -4 -11 -8 -2 -5 -14 -16 -15 -15 -160

M
UX
Par. Clust. -11 -12 -1 3 0 11 0 10 -10 8 14 2 3 -5 -14 -12 -14

M
1X
Par. Clust. -16 -16 -6 -8 -10 4 -10 0 -12 -4 -1 -5 -14 -16 -16 -15 -145

M
UX
Obj. Clust. -7 -10 3 6 10 11 10 12 0 12 14 7 3 -2 -2 -8 59

M
1X
Obj. Clust. -16 -16 -8 -7 -9 8 -8 4 -12 0 -2 -4 -13 -16 -16 -15 -130

M
Univariate
1 Cluster -14 -14 -11 -10 -14 2 -14 1 -14 2 0 -12 -7 -16 -16 -16 -153

M
Learning
1 Cluster -5 -7 3 4 -2 5 -2 5 -7 4 12 0 2 -3 -6 -8 -5

M
Univariate
Par. Clust. -7 -8 -2 0 -3 14 -3 14 -3 13 7 -2 0 -11 -10 -9 -10

M
Learning
Par. Clust. 3 1 8 11 7 16 5 16 2 16 16 3 11 0 2 -2 115

naive MIDEA -1 -3 4 8 14 15 14 16 2 16 16 6 10 -2 0 -3 112

M
Learning
Obj. Clust. 4 0 6 11 10 15 12 15 8 15 16 8 9 2 3 0 134

Fig. 19. Number of times an improvement was found to be statistically significant in the FO
performance indicator, summed over all tested problems. The numbers in a single row indicate
the summed number of significantly better or worse results compared to the algorithms in the
different columns. Note: naive MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

capable of finding near optimal solutions whereas the other MOEAs were observed
not to be able to produce comparable results. Furthermore, if we compare the results
of the MIDEA without clustering and with learning interactions with the MIDEA
without clustering and also without learning interactions (i.e. MLearning

1 Cluster vs. MUnivariate
1 Cluster),

exploiting interactions often leads to better results and thus enhances the quality
of the multi-objective search process. However, the same can be said for clustering
the objective space in general. Moreover, the much cheaper operation of clustering
the objective space can lead to significant improvements, regardless of the type of
recombination used inside each cluster. Concordantly, the naive MIDEA in which
objective clustering is used obtains good results overall. In fact, summarized over
all problems, the naive MIDEA is arguably the best algorithm that we have tested.
Moreover, the naive MIDEA runs quickly, even for problems with many variables.
Hence, learning dependencies between a problems’ variables does not necessarily
lead to advanced information about the trade-off in objective space that is the most
important in multi-objective optimization problems. Clustering the objective space
on the other hand does seem to help directly.

152 P.A.N. Bosman and D. Thierens

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

f 1

f0

ZDT4, l = 10

NSGA-II UX
SPEA UX

MIDEA UX 1 Cluster
MIDEA Learning Obj. Clust.

naive MIDEA

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f 1
-9

99
99

95

f0

BT1, l = 100

NSGA-II UX
SPEA UX

MIDEA UX 1 Cluster
MIDEA Learning Obj. Clust.

naive MIDEA

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 400

 280 300 320 340 360 380 400

f 1

f0

Knapsack, l = 100

NSGA-II UX
SPEA UX

MIDEA UX 1 Cluster
MIDEA Learning Obj. Clust.

naive MIDEA

 10400

 10500

 10600

 10700

 10800

 10900

 11000

 11100

 10300 10400 10500 10600 10700 10800 10900 11000 11100

f 1

f0

Maximum Satisfiability, l = 1000

NSGA-II UX
SPEA UX

MIDEA UX 1 Cluster
MIDEA Learning Obj. Clust.

naive MIDEA

Fig. 20. Pareto fronts over 50 runs on a few of the tested problems. For clarity only a selection
of all tested algorithms is shown. Note: naive MIDEA could also have been written as MIDEA
Univariate Obj. Clust.

Using more advanced factorizations to further exploit a problem’s structure in
the form of dependencies between a problem’s variables can lead to the generation
of more solutions on a less preferred front. Although such an approximation set is a
result that can be found more efficiently by estimating involved probability distrib-
utions instead of using classical recombination operators, such a result is intuitively
less desirable. More research is required to investigate the issue of exploiting depen-
dencies between a problem’s variables in an EDA for multi-objective optimization
further. On the one hand it would be interesting to attempt to overcome this prob-
lem and ensure that the added complexity of the inductive capabilities of estimating
probability distributions results in a more effective exploration towards the Pareto
optimal front. On the other hand it would be interesting to investigate what type of

Multi–objective Optimization with the Naive MIDEA 153

-60

-40

-20

0

20

40

60

-60

-40

-20

0

20

40

60

-60

-40

-20

0

20

40

60

D
P

F
→
S

F
S

F
O

SP
E

A
U

X

SP
E

A
1X

N
SG

A
-I

IU
X

N
SG

A
-I

I1X

M
U

X
1

C
lu

st
er

M
1X 1

C
lu

st
er

M
U

X
Pa

r.
C

lu
st

.

M
1X Pa

r.
C

lu
st

.

M
U

X
O

bj
.C

lu
st

.

M
1X O

bj
.C

lu
st

.

M
U

ni
va

ri
at

e
1

C
lu

st
er

M
L

ea
rn

in
g

1
C

lu
st

er

M
U

ni
va

ri
at

e
Pa

r.
C

lu
st

.

M
L

ea
rn

in
g

Pa
r.

C
lu

st
.

na
iv

e
M

ID
E

A

M
L

ea
rn

in
g

O
bj

.C
lu

st
.

Real-valued, 10 dimensions
Combinatorial, 100 dimensions
Average

Combinatorial, 1000 dimensions
Real-valued, 100 dimensions

Fig. 21. A summary of the results of the statistical hypothesis tests performed for each pair
of algorithms. For each algorithm, the sum of the outcome of the statistical hypothesis tests is
shown for the real-valued problems and the combinatorial problems for each dimensionality
separately. Furthermore, the average of these values is also shown, which serves as a global
indicator of the performance of an algorithm relative to the other tested algorithms. Note:
naive MIDEA could also have been abbreviated as MUnivariate

Obj. Clust.

(real-world) multi-objective optimization problems can be solved more efficiently
using MIDEA instances because of difficulties such as non-linear dependencies be-
tween the problem variables.

The Influence of δ

In our benchmarks, we have picked a specific value for δ. However, the δ parameter
is a unique parameter that determines the balance between non-domination selection
pressure and diversity preservation selection pressure. Although we acknowledge
the influence of this parameter, we find it outside the scope of this chapter for an

154 P.A.N. Bosman and D. Thierens

in-depth discussion. We refer the interested reader to existing literature regarding the
influence of δ [5].

4.5 Practitioner’s Summary

Our experimental results indicate that clustering the objective space leads to superior
MOEAs. For EDAs this implies that constructing mixture probability distributions
in MIDEAs based on geometric aspects of the objective space is a good approach.
This makes the naive MIDEA instance based on mixture probability distributions
truly an effective and easy-to-use new tool for multi-objective optimization. Further-
more, NSGA-II is overall the most competitive. However, there is an added value
to the use of MIDEA in that it is able to obtain and maintain a larger and more
diverse Pareto front by parallel front exploration and diversity preserving selection.
The experiments underline these results as the front spread (Figs. 11 and 12), front
occupation (Figs. 13 and 14) and the global Pareto fronts in Fig. 20 indicate a better
performance. This increased performance is also statistically significant, as can be
seen in figures 18 and 19. The use of clustering to obtain mixture probability distri-
butions clearly leads to a significant increase of performance in the preservation and
exploration of diversity.

Overall, the naive MIDEA is a very good MOEA that could be applied to real-
world problems. We suggest setting δ ∈ [1; 11

2] and to first use simple factorizations
such as the univariate factorization. If more time and function evaluations are avail-
able, more complex factorizations can be used as well. An implementation of the
naive MIDEA in C is available for download from the website of the first author.

5 Conclusions

In this paper we have presented the naive MIDEA for multi-objective optimization.
The naive MIDEA clusters the selected solutions in the objective space, after which it
estimates a univariate factorization in each cluster separately. New solutions are then
drawn from the so-obtained mixture probability distribution. The naive MIDEA is a
specific instance of the algorithmic framework MIDEA which is a general form of
an EDA for multi-objective optimization in which a probabilistic model is learned.
For the specific task of multi-objective optimization, the use of mixture distributions
obtained by clustering the objective space has been observed to stimulate the desir-
able parallel exploration along the Pareto front. The naive MIDEA has only little
computational overhead since clustering in the objective space can be done very fast
as can the estimation of a univariate factorization. Furthermore, although no fur-
ther exploitation of dependencies between a problem’s variables is used in the naive
MIDEA, the results obtained for the naive MIDEA are already superior to results
obtained with algorithms in which clustering the objective space is not used. Con-
cluding, the naive MIDEA has been found to be a fast, easy-to-use and effective tool
for multi-objective optimization.

Multi–objective Optimization with the Naive MIDEA 155

References

1. P. A. N. Bosman and D. Thierens. Advancing continuous IDEAs with mixture distribu-
tions and factorization selection metrics. In M. Pelikan and K. Sastry, editors, Proceedings
of the Optimization by Building and Using Probabilistic Models OBUPM Workshop at the
GECCO-2001 Genetic and Evolutionary Computation Conference, pp. 208–212. Morgan
Kaufmann Publishers, 2001.

2. P. A. N. Bosman and D. Thierens. Exploiting gradient information in continuous iterated
density estimation evolutionary algorithms. In B. Kröse, M. de Rijke, G. Schreiber, and
M. van Someren, editors, Proceedings of the 13th Belgium-Netherlands Artificial Intelli-
gence Conference BNAIC’01, pp. 69–76, 2001.

3. P. A. N. Bosman and D. Thierens. Multi-objective optimization with diversity preserving
mixture-based iterated density estimation evolutionary algorithms. International Journal
of Approximate Reasoning, 31:259–289, 2002.

4. P. A. N. Bosman and D. Thierens. Permutation optimization by iterated estimation of
random keys marginal product factorizations. In J. J. Merelo, P. Adamidis, H.-G. Beyer,
J.-J. Fernández-Villicañas, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature - PPSN VII, pp. 331–340, Berlin, 2002. Springer-Verlag.

5. P. A. N. Bosman and D. Thierens. The balance between proximity and diversity in multi-
objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
7:174–188, 2003.

6. P.A.N. Bosman and D. Thierens. A thorough documentation of obtained results on real-
valued continuous and combinatorial multi-objective optimization problems using diver-
sity preserving mixture-based iterated density estimation evolutionary algorithms. Tech-
nical report UU-CS-2002–52, Institute of Information and Computing Sciences, Utrecht
University, Utrecht, 2002.

7. W. Buntine. Operations for learning with graphical models. Journal of Artificial Intelli-
gence Research, 2:159–225, 1994.

8. C. K. Chow and C. N. Liu. Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, 14:462–467, 1968.

9. C. A. Coello Coello. A comprehensive survey of evolutionary-based multiobjective op-
timization techniques. Knowledge and Information Systems. An International Journal,
1(3):269–308, 1999.

10. A. P. Dawid and S. L. Lauritzen. Hyper Markov laws in the statistical analysis of decom-
posable graphical models. Annals of Statistics, 21:1272–1317, 1993.

11. K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test
problems. Evolutionary Computation, 7(3):205–230, 1999.

12. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature - PPSN VI, pp. 849–858. Springer, 2000.

13. K. Deb, A. Pratap, and T. Meyarivan. Constrained test problems for multi-objective evolu-
tionary optimization. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, First International Conference on Evolutionary Multi-Criterion Optimization, pp.
284–298, Berlin, 2001. Springer-Verlag.

14. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistic Society, Series B 39:1–38, 1977.

15. M. Ehrgott and X. Gandibleux. An annotated bibliography of multi-objective combi-
natorial optimization. Technical Report 62/2000, Fachbereich Mathematik, Universität
Kaiserslautern, Kaiserslautern, 2000.

156 P.A.N. Bosman and D. Thierens

16. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjec-
tive optimization. Evolutionary Computation, 3(1):1–16, 1995.

17. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, 1989.

18. G. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL Technical
Report 99010, 1999.

19. G. Harik, F. Lobo, and D. E. Goldberg. The compact genetic algorithm. In Proceedings
of the 1998 IEEE International Conference on Evolutionary Computation, pp. 523–528.
IEEE Press, 1998.

20. J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., 1975.
21. M.G. Kendall and A. Stuart. The Advanced Theory Of Statistics, Volume 2, Inference And

Relationship. Charles Griffin & Company Limited, 1967.
22. J. Knowles and D. Corne. On metrics for comparing non-dominated sets. In Proceedings

of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 666–674, Piscataway,
New Jersey, 2002. IEEE Press.

23. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, 2001.

24. M. Laumanns, E. Zitzler, and L. Thiele. On the effects of archiving, elitism, and den-
sity based selection in evolutionary multi-objective optimization. In E. Zitzler, K. Deb,
L. Thiele, C. A. Coello Coello, and D. Corne, editors, Proceedings of the First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization - EMO 2001, pp. 181–
197. Springer-Verlag, 2001.

25. S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.
26. H. Mühlenbein and T. Mahnig. FDA - a scalable evolutionary algorithm for the optimiza-

tion of additively decomposed functions. Evolutionary Computation, 7:353–376, 1999.
27. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distribu-

tions I. binary parameters. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature - PPSN V, pp. 178–187. Springer, 1998.

28. A. Ochoa, H. Mühlenbein, and M. Soto. A factorized distribution algorithm using single
connected Bayesian networks. In M. Schoenauer et al., editor, Parallel Problem Solving
from Nature - PPSN VI, pp. 787–796. Springer, 2000.

29. M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic al-
gorithms. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the
GECCO-2001 Genetic and Evolutionary Computation Conference, pp. 511–518. Morgan
Kaufmann, 2001.

30. M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications, 21(1):5–20, 2002.

31. M. Pelikan, D. E. Goldberg, and K. Sastry. Bayesian optimization algorithm, decision
graphs and Occam’s razor. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-
M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors,
Proceedings of the GECCO-2001 Genetic and Evolutionary Computation Conference,
pp. 519–526. Morgan Kaufmann, 2001.

32. R. Santana, A. Ochoa, and M. R. Soto. The mixture of trees factorized distribution al-
gorithm. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the
GECCO-2001 Genetic and Evolutionary Computation Conference, pp. 543–550. Morgan
Kaufmann, 2001.

Multi–objective Optimization with the Naive MIDEA 157

33. M. Soto and A. Ochoa. A factorized distribution algorithm based on polytrees. In Pro-
ceedings of the 2000 Congress on Evolutionary Computation CEC00, pp. 232–237. IEEE
Press, 2000.

34. D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analy-
ses, and New Innovations. PhD thesis, Graduate School of Engineering of the Air Force
Institute of Technology, WPAFB, Ohio, 1999.

35. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Appli-
cations. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland,
1999.

36. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

37. E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. Grunert da Fonseca. Why qual-
ity assessment of multiobjective optimizers is difficult. In W. B. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. We-
gener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors,
Proceedings of the GECCO-2002 Genetic and Evolutionary Computation Conference,
pp. 666–674, San Francisco, California, 2002. Morgan Kaufmann.

38. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, 1999.

