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Summary. We describe a framework for program evolution with an EDA-based approach.
In this framework, the probability distribution of programs is estimated using a Bayesian net-
work, and individuals are generated based on the estimated distribution. Considering that a
dependency relationship of nodes in a program tree is explicit, i.e. the dependency relation-
ship is strong between a parent node and its child node in a program expressed as a tree
structure, we have chosen a Bayesian network as the distribution model of programs.

In order to demonstrate the effectiveness of our approach, this chapter shows results of
comparative experiments with Genetic Programming. Thereafter, we discuss how Estimation
of Distribution Programming works and the transitions of the evolved programs that are the
forte of our methods. We also analyze the performance of a hybrid system which combines
Estimation of Distribution Programming and Genetic Programming.

1 Introduction

In this chapter, we describe a program evolution method based on a probabilistic
model and investigate the behavior of the proposed system.

A well-known technique for a program search is Genetic Programming (GP) [9].
Although various types of crossover and mutation operators were proposed for GP1

there have been very few basic algorithms comparable to GP. We use a program
evolution method which has different mechanisms from GP, and show that some of
the GP difficulties can be solved effectively2.

This chapter proposes Estimation of Distribution Programming (EDP) based on
a probability distribution expression using a Bayesian network. EDP is a search

1 For example, uniform crossover and one-point crossover [16], homologous crossover
and size fair crossover [10], depth-dependent crossover [8] [7], macromutation [2], self-
adaptive crossover [1], recombinative guidance crossover [6], and so on.

2 It is well known that GP search space is significantly constrained [5], and that the bloat
control is difficult [11]. Other GP difficulties have been reported in solving a royal tree
problem [18] and a max problem [17].
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method that uses an EDA-like approach to solve GP-applicable problems. In EDA,
it is important to assume a gene locus dependency relationship. In a program tree
this relationship is strong between the parent node and its child node, so that it is
expected that the EDA approach will be effective for solving tree structure search
problems [21]. We compare the performance of EDP and GP on several benchmark
tests, and discuss the trends of problems that are the forte of EDP.

We also discuss the performance of a hybrid system which consists of EDP and
GP. Applying the hybrid system of EDP and GP to a function regression problem,
we discover some important tendencies in the behavior of this hybrid system. The
hybrid system is not only superior to pure GP in a search performance but also have
interesting features in program evolution. More tests reveal how and when EDP and
GP compensate for each other.

2 Estimation of Distribution Programming

2.1 Algorithm of EDP

We give an outline of the proposed algorithm. EDP starts with a randomly gener-
ated population. Secondly, each individual in the current population is evaluated by
a fitness function and assigned its fitness value. Next, superior individuals with high
fitness values are selected, and a new distribution is estimated based on those se-
lected individuals (see Sect. 2.3). We use the elitist strategy and then individuals are
generated by using a newly acquired distribution (see Sect. 2.4). The estimation of
distribution and the program generation are repeated until a termination criterion is
met. Figure 1 indicates a pseudo code of EDP.

Initial Population

According to function node generation probability PF and terminal node generation
probability PT (1 − PF ), initial M individuals are generated randomly, where M is

Let P be a population, S a set of selected individuals, D a distribution, ES an
elite size, and M a population size.

1. P := Generate Programs Randomly
2. While (True)
3. Evaluate Individuals(P )
4. If (termination criterion) Return(P )
5. S := Selection(P )
6. D := Estimate Distribution(S)
7. P := Elite Selection(P , ES)
8. P := P + Generate Individuals(D, M − ES)

Fig. 1. Pseudo code of EDP
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the population size. However, if tree size limitation is reached, terminal nodes are
generated. Let F be the function node set and let T be the terminal node set. For
example, the probabilities of function node “+” and terminal node “x” are given:

If tree size limitation is not reached,{
P (X = “ + ”) = PF × 1

|F |
P (X = “x”) = PT × 1

|T |
(1)

If tree size limitation is reached,{
P (X = “ + ”) = 0
P (X = “x”) = 1

|T |
(2)

EDP Operator

Superior individuals with high fitness values are selected within sampling size SS ,
and a new distribution is estimated based on those selected individuals. We use the
elitist strategy, i.e. elite ES individuals are selected from the population in the order
of fitness superiority and copied to the new population, where ES is the elite size.

Then the remaining population, that isM−ES individuals, is generated by using
a newly acquired distribution. This new distribution is considered better than the
previous one because it samples superior individuals in the population.

2.2 Distribution Model

We use a Bayesian network as the distribution model of programs. Values of prob-
abilistic variables are symbols for each node in the program tree. Assign the index
numbers to each node of evolving programs as in Fig. 2, the range of probabilistic
variable Xi is the symbols of node i, that is, Xi ∈ T ∪ F .

For instance, assume F = {+,−, ∗, /} and T = {x1, x2} ,

P (X5 = “ + ”|X2 = “/”) =
2
7

(3)
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Fig. 2. Program tree
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means that the conditional probability that node 5 becomes “ + ” is 2
7 if node 2 is

“/”. Ci is the set of probabilistic variables which Xi is dependent on. In the former
example, C5 = {X2}.

The topology of a Bayesian network is fixed during evolution, and only condi-
tional probability tables are learned by sampling superior individuals in a population.
Let dmax be the depth of a Bayesian network. We assume that the max arity of node
symbols is 2 in this chapter. Although EDP cannot generate a larger program than a
complete binary tree with a depth dmax, it can generate a smaller one.

There are several efficient topologies of a Bayesian network as indicated in Fig. 3.
The simplest one, that is, #1 in Fig. 3, is used for our experiments. The topology of a
Bayesian network is tree-like and it is the same as program’s topology. In this model,
the probability of each node in a program tree is dependent on only its parent node
symbol. This is based on the assumption that a dependency relationship is strong
between the parent node and its child nodes.

2.3 Estimation of Distribution

The probability distribution is updated incrementally [3] as follows:

Pt+1(Xi = x|Ci = c) = (1 − η)P̂ (Xi = x|Ci = c) + ηPt(Xi = x|Ci = c) (4)

where Pt(Xi = x|Ci = c) is the distribution of the tth generation and P̂ (Xi =
x|Ci = c) is the distribution estimated based on superior individuals in the (t+ 1)th
population, η is the learning rate which means dependence degree on the previous
generation. The closer η is to 1, the less a change of distribution is. Especially in case
of η = 0, the distribution is updated based on the population at only the (t + 1)th
generation without referring to the past distribution.

P̂ (Xi = x|Ci = c) is estimated as follows. At first, SS individuals are sam-
pled by tournament selection with tournament size Tedp, and maximum likelihood
estimation is performed based on these selected individuals. Therefore,

P̂ (Xi = x|Ci = c) =
#(Xi = x,Ci = c)

#(Ci = c)
(5)

where #(Xi = x,Ci = c) is the number of selected individuals that node i is x
when its parent node is c, and #(Ci = c) is the number of selected individuals that
the parent node of node i is c.

In most cases, a program tree of a selected individual is smaller than the Bayesian
network. Therefore, probabilistic variables in deeper position have fewer samples.

2.4 Program Generation

At first, the acquired distribution Pt(Xi = x|Ci = c) is modified applying Laplace
correction [4] by

P ′t (Xi = x|Ci = c) = (1 − α)Pt(Xi = x|Ci = c) + αPbias(Xi = x|Ci = c) (6)
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where α is a constant that expresses the Laplace correction rate, Pbias(Xi = x|Ci =
c) is the probability to bias distribution. For instance, if it is already known that
X2 = “ + ” is desirable, adjusting Pbias(Xi = x|Ci = c) as the probability of
X2 = “+” is high would lead to more effective evolution. In this way, the system can
incorporate preknowledge by Laplace correction. For our experiments, the Laplace
correction rate α is decided as

α = 0.01(|F | + |T |) (7)

This modification also makes all occurrence probabilities of node symbols posi-
tive. Next, according to P ′t (Xi = x|Ci = c), node symbols are decided in sequence
from root to terminals. If the size of generated tree reaches dmax, only terminal node
symbols are selected. Therefore, a larger program tree than the Bayesian network is
not generated.

3 Performance of EDP

3.1 Comparative Experiments with GP

The performance was compared for EDP and GP in standard benchmark problems,
i.e. a max problem [17], a boolean 6-multiplexer problem [9], and a function regres-
sion problem [9]. Let progi be a program tree of the ith individual in a population. If
the program tree has some variables, progi(X) represents the value obtained by sub-
stituting X . If the program tree has no variable, progi represents the value returned
by the program tree. Let fiti be the fitness value of the ith individual.

Max Problem

In a max problem, the purpose is to create the maximum value, based on the assump-
tion that T = {0.5} and F = {+, ∗}, and the maximum tree depth is 7. For a tree
produces the largest value, the + nodes must be used with 0.5 to assemble subtrees
A with the value 2.0. These can then be connected via ∗, as shown in Fig. 4. Hence,
65536 is the optimum solution 3. The fitness value for ith individual is the value of
tree, that is,

fiti = progi (8)

The parameters of EDP and GP are indicated in Table 1.
Figure 5 and Table 2 show the results of a comparative test using EDP, GP and a

random search. The vertical axis represents the max fitness value in a population at
each generation: fitmax, i.e.

fitmax = max
i∈M

fiti (9)

3 The maximum node size for the depth of 7 is 127 in a complete binary tree. Within the
node size of 127, it is proved that the maximum value is not 65536, but 123596.1914.
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Fig. 4. The maximum value by a tree of limited depth

Table 1. Parameters for a max problem

Common parameters for EDP and GP

M : population size 200
ES : elite size 5
F : function node sets {+, ∗}
T : terminal node sets {0.5}
PF : generation probability of function node 2

3

PT : generation probability of terminal node 1
3

Tree size limitation in initializing population max depth = 7

EDP parameters

α: Laplace correction rate 0.03
Pbias: the probability to bias distribution 1

|F |+|T | = 1
3

η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 7

GP parameters

PM : mutation probability 0.1
PC : crossover probability 0.9
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 7

The mean and the standard deviation for 100 runs are indicated in Fig. 5. Note that
they are not a mean fitness value and a standard deviation of a population. The solu-
tion in an evolutionary computing is given by an individual who has the maximum
fitness value in a population. Therefore, system performances should be compared
in maximum fitness values. It can be seen that EDP method produces a higher mean
fitness value at each generation and also higher performance on the average. In ad-
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Fig. 5. Comparative results with a max problem

dition, the standard deviation of EDP, i.e. the deviation due to the search runs, is so
small that the likelihood of the search being successful is higher.

As presented in Table 2, EDP was able to find the optimal solution in all runs,
whereas only 34 runs (out of 100 runs) resulted in evolving the optimal solution with
GP. These results suggest intrinsic difference between EDP and GP.

Next, the experiment was carried out with the addition of “0” to the terminal node
set. In this problem “0” is completely useless and harmful as a node, and produces
non-functional code segments, i.e. introns. As shown in Fig. 6, although the perfor-
mance of GP was low, with EDP algorithm the most suitable solution was found
successfully.

Boolean 6-Multiplexer Problem

Consider the problem of learning the Boolean 6-multiplexer function F6mp :
{0, 1}6 → {0, 1}. The input to the Boolean 6-multiplexer function consists of 2
address bits and 22 data bits, where 6 = 2 + 22. The value of the Boolean multi-

Table 2. Percentage of runs finding the optimal solution

Method Max problem Multiplexer problem Max problem adding
“0” terminal node

EDP 100 23 86
GP 34 82 0

Random 0 0 0
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Fig. 6. Comparative results when “0” terminal node was added with a max problem
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plexer function is the Boolean value (0 or 1) of the particular data bit that is singled
out by the 2 address bits of the multiplexer. Formally,

F6mp(a0, a1, d0, d1, d2, d3) = d21a1+a0 (10)

The node set is T = {x0, x1, x2, x3, x4, x5}, F = {and, or, not}. The parame-
ters of EDP and GP are indicated in Table 3. There are 26 = 64 possible combina-
tions of the 6 arguments, and we use the entire set of 64 combinations of arguments
as the fitness cases for evaluating fitness. That is, we do not use sampling. The fitness
values are simply the number of fitness cases for which the individual tree returns
a correct Boolean value. Let Xi be an input data set, i.e. Xj = {xj1, . . . , xj6},
where xjk is the kth digit of the number j. Then, the fitness value is given with the
following formula:

fiti =
63∑
j=0

match(progi(Xj), F6mp(Xj)) (11)

where

Table 3. Parameter for a boolean 6-multiplexer problem

Common parameters for EDP and GP

M : population size 500
ES : elite size 5
F : function node sets {and, or, not}
T : terminal node sets {x0, x1, x2, x3, x4, x5}
PF : generation probability of function node 3

9

PT : generation probability of terminal node 6
9

Tree size limitation in initializing population max depth = 6

EDP parameters

α: Laplace correction rate 0.09
Pbias: the probability to bias distribution 1

|F |+|T | = 1
9

η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 6

GP parameters

PM : mutation probability 0.1
PC : crossover probability 0.9
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 6
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match(a, b) =

{
1 if a = b

0 else
(12)

Figure 7 shows the results of a comparative test using EDP, GP and a ran-
dom search. We cannot confirm the superiority of EDP with this experiment. In
6-multiplexer problem, EDP could not search more efficiently than GP. However,
EDP was superior to a random search.
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Fig. 7. Comparative results with a boolean 6-multiplexer problem

Function Regression Problem

Consider a function regression problem. fobj is the function to be approximated. The
fitness value is given with the following formula:

fitness = 1000 − 50
30∑
j=1

|prog(Xj) − fobj(Xj)| (13)

where

Xj = 0.2(j − 1) (14)

i.e. training examples are the real values at intervals of 0.2 from 0 to 5.8. Objective
functions are

A : fobj(x) = (2 − 0.3x) sin(2x) cos(3x) + 0.01x2 (15)

B : fobj(x) = x cos(x) sin(x)(sin2(x) cos(x) − 1) (16)

C : fobj(x) = x3 cos(x) sin(x)e−x(sin2(x) cos(x) − 1) (17)

which are plotted in Fig. 8. Objective function C is cited from [19]. Although B is
obtained from simplification of C, B is more difficult to search. A is our original
function and the most difficult of the three objective functions.

As indicated in Figs. 9, 10 and 11, EDP’s performance was worse than GP’s in
a function regression problem. This result seems to suggest that EDP is not always
superior. However, as we can see later, the EDP operator plays an inevitable role
in combination with GP. The effectiveness of the hybrid system of EDP and GP is
described in Sect. 4.
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Fig. 8. Objective functions
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Fig. 9. Comparative results with objective function A
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Fig. 10. Comparative results with objective function B
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Fig. 11. Comparative results with objective function C

3.2 Summaries of EDP Performance

EDP was able to search for a solution effectively in a GP-hard problem, i.e. a max
problem. On the other hand, in both a boolean 6-multiplexer problem and a function
regression problem, it has been shown that EDP’s performance was worse than GP’s.
In order to conclude that the differences of these values are statistically significant
and reliable, not only mean but also standard deviation and sample size (100) should
be taken into consideration. We used Welch’s test for the obtained experimental re-
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Table 4. Parameter for a function regression problem

Common parameters for EDP and GP

M : population size 1000
ES : elite size 5
F : function node sets {+,−, ∗, /, cos, sin}
T : terminal node sets {x, 0.05, 0.10, 0.15, . . . , 1.00}
PF : generation probability of function node 0.8
PT : generation probability of terminal node 0.2
Tree size limitation in initializing population max depth = 6

EDP parameters

α: Laplace correction rate 0.27
Pbias: the probability to bias distribution 1

|F |+|T | = 1
27

η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 6

GP parameters

PM : mutation probability 0.1
PC : crossover probability 0.9
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 6

Table 5. P-values on Welch’s test

Problem EDP and GP EDP and Random

Max problem 3.49× 10−25 1.10× 10−340

Multiplexer problem 4.53× 10−21 2.52× 10−59

Regression A 2.53× 10−11 1.80× 10−7

Regression B 8.52× 10−30 5.44× 10−19

Regression C 6.96× 10−75 7.03× 10−10

sults. By means of Welch’s test, it can be judged whether 2 data sets are samples
from the same statistical population or not. As a result of Welch’s test with 5% sig-
nificance level, the differences between EDP and GP at the 100th generation were
significant in all cases. Statistically speaking, the null hypothesis that data in EDP
and in GP were sampled from the same statistical population was rejected (the prob-
ability that the null hypothesis is correct is less than 5%). Welch’s test concluded that
the differences were significant. Table 5 indicates the p-values obtained in the test.
This seems to indicate that EDP works intrinsically differently from the traditional
GP.
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In a max problem, in order to produce better solutions, it is necessary for EDP to
increase the generation probability of “∗” from the depth 1 to 4, and the probability
of “+” at the depth 6. In the early stage of the evolution, the generation probability
of “+” is expected to become high in a shallow part. Then, more frequently subtrees
identical to (+ (+ 0.5 0.5) (+ 0.5 0.5)) (subtree A shown in Fig. 4) are produced in
a deep part, the higher the generation probability of “∗” becomes.

In a boolean 6-multiplexer problem, a positional restriction of EDP operator
seems to have caused the worse performance. Using the 3-multiplexer function
F3mp, it is easy to compose the 6-multiplexer function in the following way:

F6mp(a0, a1,d0, d1, d2, d3) =
(or (and F3mp(a1, d0, d1) (not a0))

(and F3mp(a1, d2, d3) a0)) (18)

Furthermore, it has been reported that the 11-multiplexer function and the 6-multipl-
exer function were easily acquired by GP with the 6-multiplexer and the 3-multiplexer
structures respectively [9]. An individual equivalent to the 3-multiplexer function
would be assigned a high fitness value, i.e. 32 + 16 = 48. Therefore, the composi-
tion of the 3-multiplexer functions is so important for the effective evolution of the
6-multiplexer function that they are expected to prosper in a population. Note that
useful subtrees, i.e. so-called building blocks, cannot shift their position with EDP
because the probability distribution is dependent on the position within a tree, while
GP crossover can move them to an arbitrary position. In other words, EDP imposes a
positional restriction. Consequently, EDP could not always use the generated struc-
ture of the 3-multiplexer function efficiently in order to compose the 6-multiplexer
function. This is the reason why EDP operator failed to generate better individuals
in some cases.

4 Hybrid System of EDP and GP

4.1 Algorithm of Hybrid System

We research the hybrid system which consists of EDP and GP. Figure 12 indicates a
pseudo code of our hybrid system.

The most important parameter in this algorithm is “r”, it decides the system be-
havior and the ratio of GP to EDP in an individual generation, called the hybrid ratio.
Through the combination of EDP and GP, the difficulty indicated in Sect. 3.2 might
be overcome. However, it is not obvious whether GP gains anything from hybridiza-
tion. In this section, we test the system performance in a function regression problem
changing the hybrid ratio r from 0 to 1.

4.2 Performance Difference Due to the Hybrid Ratio

Figures 13, 14, and 15 show the mean of max fitness values for 100 runs. Note that it
is not a mean fitness value of a population, but a mean value of the maximum fitness
value.
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Let P be a population, S a set of selected individuals, D a distribution, r a
hybrid ratio, ES an elite size, and M a population size.

1. P := Generate Programs Randomly
2. While (True)
3. Evaluate Individuals(P )
4. If (termination criterion) Return(P )
5. S := Selection(P )
6. D := Estimate Distribution(S)
7. P := Elite Selection(P , ES)
8. P := P + Crossover&Mutation(P , rM − ES)
9. P := P + Generate Individuals(D, (1− r)M )

Fig. 12. Pseudo code of the hybrid system

100 200 300 400 500
generation

500

550

600

650

700

750

Mean of max fitness

values at each generation
r = 0.5

r = 0.0
r = 1.0
r = 0.7
r = 0.3
r = 0.4

0.2 0.4 0.6 0.8 1
r

680

700

720

740

Mean of max fitness

values at the 500th generation

Fig. 13. Results for objective function A
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Fig. 14. Results for objective function B

Figure 16 shows the frequency of runs in which the maximum fitness value at the
500th generation is over x, that is,

F (x) =
100∑
k=1

δ(x ≤ f
maxk,500) (19)

where fmaxk,500 is the maximum fitness value in a population of the 500th genera-
tion at the kth run, and

δ(x ≤ a) =

{
1 : x ≤ a

0 : x > a
(20)
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Fig. 15. Results for objective function C
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functions A and B

Figures 13, 14, 15, and 16 indicate the similar tendency in each case. Although
the r = 1.0 system which is pure GP, demonstrated the best performance in younger
generations, gradually hybrid systems overtook pure GP one after another. The
“overtaking” was conspicuous when r = 0.3 or r = 0.4. At the 500th genera-
tion, the performance of the r = 0.5 system was the best in all cases. The system
performances at the 500th generation reached a peak at r = 0.5, and got worse as
the hybrid ratio was biased.

As a result of Welch’s test with 5% significance level, the differences between the
r = 0.5 system and pure GP at the 500th generation were significant in all cases. The
p-values obtained in the test for objective function A, B, and C were 2.57 × 10−7,
1.23 × 10−4, and 1.52 × 10−27 respectively. In the case of objective function C,
although the difference in values was slight, standard deviation was negligible (see
Fig. 16); Welch’s test concluded that the differences were significant.

Mean cannot give adequate information for system performances, hence we
showed Fig. 16. Figure 16 demonstrates that the hybrid system is also superior to
pure GP in the success rate of a search. For instance, in the case of A, the probabili-
ties that the maximum fitness value at the 500th generation is over 700 are 63

100 with
r = 0.5 and 30

100 with pure GP respectively.

4.3 Analysis of the Behavior of EDP

This section investigates the hybrid system’s performance, changing the hybrid ratio
r at each generation. In Fig. 13, until the 50th generation, the higher the GP ratio of
the system is, the better its performance. Therefore, the system that has a high GP
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Table 6. Systems with changing r, where i is the generation number

System r

A: classical hybrid r = 0.3
B: classical hybrid r = 0.5
C: pure GP r = 1.0

D: linear increasing r =
i

500

E: linear decreasing r = 1− i

500
F: random r is a random value at each generation

G: switching r =

{
1.0 : i < 205

0.3 : i ≥ 205

H: switching r =

{
1.0 : i < 40

0.5 : i ≥ 40

ratio in younger generations and decreases the ratio later is expected to have higher
performance.

Comparative experiments were carried out with 8 variations of systems, as shown
in Table 6. The objective function is the first one used in Sect. 3.1, i.e. (15). In the
system D, the GP ratio is linearly increased from 0, at the initial generation, to 1.0, at
the 500th generation, whereas it is linearly decreased in the system E. In the system
G, the ratio is changed from 1.0 to 0.3 at the 205th generation. Note that the r = 0.3
system overtook the pure GP at the 205th generation (see Fig. 13). In the system H,
the ratio is tuned in the same manner as G. Therefore, H and G are supposed to be
the top favorites among these systems.

Figures 17 and 18 show the results of comparative experiments. Surprisingly,
system A overtook G. As a result of Welch’s test with 5% significance level, the
differences were significant. The p-value obtained in the test was 0.026. This result
means that population states of A and G are far different in spite of close performance
at the 205th generation. In other words, EDP’s behavior before the 205th generation
likely has a good influence later. Although B also overtook H, the result was not
significant statistically. The p-value obtained in the test for system B and H was
0.364.

Another interesting result is that system D was superior to all other systems,
especially E. As a result of Welch’s test with 5% significance level, the differences
were significant. The p-value was 0.0473. Although it was expected that D would be
worse than E, judging from Fig. 13, the result was quite the opposite. This point is
evidence that EDP functions well in early generations.

In order to test the hypothesis that the probability distribution memorizes the past
EDP’s work, the system of η = 0 was simulated. This system estimates distribution
without referring to the past distribution (see Sect. 2.3). Objective function A was
used.
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Fig. 18. Mean of max fitness values at each generation
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Fig. 19. System of η = 0

As indicated in Fig. 19, the characteristic of the hybrid system was kept. The
“overtaking” still took place and the r = 0.5 system was the best. Therefore, the
past information accumulated in the probability distribution does not cause the high
performance of the hybrid system.

5 Discussion

The previous experimental results revealed the following aspects of EDP:

• EDP’s search was intrinsically different from GP’s.
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• EDP’s search was successful in a max problem with the addition of “0” to the
terminal node set.

• Subtrees were not easily shifted in EDP.
• The hybrid system outperformed the pure GP in later generations.
• The hybrid system with linearly increasing hybrid ratio gave the best perfor-

mance.

EDP does not refer to the previous generation directly, but abandon all individu-
als in previous generation and generate new individuals based on the distribution at
an every generation. Thus, a random search is regarded as EDP with an uniform dis-
tribution. In 6-multiplexer problem and a regression problem, although EDP could
not search more efficiently than GP, EDP was superior to a random search. There-
fore, the probability distribution could be estimated effectively. The estimation of a
distribution was done to some extent for the program search.

In the r = 0.5 hybrid system, the updating times of the maximum fitness values
at each generation of the EDP operator and the GP operator are counted respec-
tively. Surprisingly, the EDP operator hardly contributes to construction of the best
individual directly, and only the GP operator does. In addition, as shown in Fig. 17,
system D, which has linearly increasing hybrid ratio, gave the best performance of
all. System D cannot benefit from EDP in later generations. These results suggest
individuals constructed by EDP have more multifarious sub-structures in an early
stage, and these various structures are put together in later generations. It is GP that
can build better individuals, but not EDP.

The hybrid algorithm was tested in a function regression problem where the be-
havior of the EDP algorithm was bad. We also research how the hybrid system de-
grades in a max problem where previously EDP behaved properly. Figure 20 shows
the performance of the hybrid system in a max problem. Although the performance
of the hybrid system was a little worse than pure EDP’s, the search by the hybrid
system was successful.

20 40 60 80 100
generation

0

20000

40000

60000

Mean of max fitness
values at each generation

EDP

Hybrid System: r=0.5

Fig. 20. Performance of the hybrid system in a max problem
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6 Conclusion

This paper presented a new EDA-based approach, i.e. EDP, to program evolution and
have shown the experimental results with EDP and GP.

When “0” was added to a set of terminal nodes, EDP performed much better
than GP. We cannot always know what are effective nodes for problems before. This
result suggests that EDP can perform evolution skillfully even if harmful nodes are
included in a node set. Thus, it is expected that the occurrence probability of this
harmful node is kept lower by the EDP method due to the obtained distribution.
This indicates that EDP can control introns effectively, while GP may suffer from
increasing introns and allow them to cause a bloat [10].

The experimental results clearly indicated that EDP worked effectively in early
generations and contributed to later high performance. It turned out that pure GP
could not generate enough kinds of subtrees in early generations to build better so-
lutions. On the other hand, useful subtrees are not easily shifted by EDP to another
position in the tree. We conclude that hybridization helps EDP and GP compensate
for their defects and build a better evolutionary system.

Future and Related Works

Probabilistic Incremental Program Evolution (PIPE) [19] was used to perform a pro-
gram search based on a probabilistic model. However, PIPE assumes the indepen-
dence of program nodes and differs from our approach using a Bayesian network in
this assumption. The merits of having probabilistic dependency relationship are as
follows:

1. Because an occurrence probability of a node symbol is dependent on its parent
node, estimation and generation are serial from a parent node to a child. There-
fore, it can derive and generate building blocks.

2. The past dominant structure can survive after switching the probability distribu-
tion based on a parent node symbol.

On the other hand, optimization using a Bayesian network is much researched,
e.g., EBNA (Estimation of Bayesian Network Algorithm) [12] and EGNA (Estima-
tion of Gaussian Networks Algorithm) [13]. Recently, EDA has been extended with
reinforcement learning [14]. We are also currently working on EDA application for
a gene expression-based classification [15]. However, their application is limited to
fixed length array search problems, not program search.

It is not clear how EDP really works in the hybrid system. In future works, the
details of EDP’s facilities in early generations will be researched. We are also inter-
ested in the control rule of the hybrid ratio r and the robust behavior shown in our
experiments.

The Bayesian network in our probabilistic model has the simplest topology, i.e.
only parent-child links exist. The model selection is one of the most important prob-
lems. As the number of dependent variables per a variable increases, the required
memory size is exponentially increasing. The adequate sampling size for updating a
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distribution is also proportional to the exponential of the number of dependency links
per a node. Therefore, the trade-off exists between the performance and calculation
costs. Our future research will be on the study of the system performance with other
topologies. We also plan to improve EDP in order to shift subtrees within a program
tree, independently from the hybridization with GP.

This chapter discussed the program evolution on the premise that program repre-
sentation consists of a single parse tree. However, the validity of the representation
depends on the problem class. Without recursion and memory, the expressiveness of
a parse tree is not Turing-complete. It is suggested that the different choice of rep-
resentation will result in the different program evolution [20]. The extension of the
program representation should be considered for the sake of establishing a proba-
bilistic model-based evolution.
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