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Summary. Feature subset selection is an important pre-processing step for classification. A
more general framework of feature selection is feature ranking. A feature ranking provides an
ordered list of the features, sorted according to their relevance. Using such a ranking provides
a better overview of the feature elimination process, and allows the human expert to gain
more insight into the processes underlying the data. In this chapter, we describe a technique to
derive a feature ranking directly from the estimated distribution of an EDA. As an example, we
apply the method to the biological problem of acceptor splice site prediction, demonstrating
the advantages for knowledge discovery in biological datasets with many features.

1 Introduction

Reduction of data dimensionality has become an apparent need in machine learn-
ing during the past decades. Examples of large datasets with instances described by
many features include problems in image processing, text mining and bioinformat-
ics. To efficiently deal with such data, dimension reduction techniques emerged as a
useful pre-processing step in the flow of data analysis. A subset of these techniques
is referred to as feature (subset) selection techniques. These techniques differ from
other reduction techniques (like projection and compression techniques) in that they
do not transform the original input features, but merely select a subset of them.

The reduction of data dimensionality has a number of advantages: attaining
good or even better classification performance with a restricted subset of features,
faster and more cost-effective predictors, and the ability to get a better insight in the
processes described by the data. An overview of feature selection techniques can be
found in [10] and [5].

Techniques for feature selection are traditionally divided into two classes: fil-
ter approaches and wrapper approaches [12]. Filter approaches usually compute a
feature relevance score such as the feature-class entropy, and remove low-scoring
features. As such, these methods only look at the intrinsic properties of the dataset,
providing a mechanism that is independent of the classification algorithm to be used
afterwards. In the wrapper approach, various subsets of features are generated, and
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evaluated using a specific classification model. A heuristic search through the space
of all subsets is then conducted, using the classification performance of the model as
a guidance to find promising subsets. In addition to filter and wrapper approaches,
a third class of feature selection methods can be distinguished: embedded feature
selection techniques [1]. In embedded methods, the feature selection mechanism is
built into the classification model, making direct use of the parameters of the induc-
tion model to include or reject features. Examples of these methods are the pruning
of decision trees, and recursive feature elimination (RFE) using the weight vector of
a linear Support Vector Machine [6].

In this chapter, we will focus on the wrapper approach for feature selection.
Wrapper based methods combine a specific classification model with a strategy to
search the space of all feature subsets. Commonly used search strategies are sequen-
tial forward or backward selection [11], and stochastic iterative sampling methods
like genetic algorithms (GA, [13]) or estimation of distribution algorithms (EDA,
[14]). The EDA approach to feature selection is shown in Fig. 1. In this case, each
individual in the population represents a feature subset, coded as a binary string. Each
bit represents a feature, a 1 indicating the presence, a 0 the absence of a particular
feature. Individuals are evaluated (step 2, Fig. 1) by training a classification model
with the features present in the individual (i.e. the ones having a 1), and afterwards
validating it, either by cross-validation on the training set, or by using a separate
training and holdout set. The feature subset returned by the algorithm is then the best
subset found during the search.

Instead of using the traditional crossover and mutation operators, inherent to GA,
an EDA explicitly constructs a model of the selected feature subsets (step 4). De-
pending on the complexity of the model, univariate, bivariate or multivariate inter-
actions between the encoded features are modelled. In a subsequent step (step 5),
the new population is created by sampling feature subsets from this model. The new
population can either be completely sampled from the distribution, or can partly con-
sist of sampled subsets and subsets retained from the previous population (elitists).
The use of EDAs for feature subset selection was pioneered in [8] and the use of
EDAs for FSS in large scale domains, was reported to yield good results [9, 22].

2 EDA-based Feature Ranking

2.1 Feature Ranking

As mentioned in the introduction, the standard approach to using EDA for feature
subset selection (FSS), is to select the best feature subset encountered in the iterative
process as the final solution. However, selecting the single best subset of features
provides a rather static view of the whole elimination process. When using FSS to
gain more insight in the underlying processes, the human expert has no idea of the
context of the specific subset. Questions about how much and which features can still
be eliminated before the classification performance drastically drops down provide
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Fig. 1. The general scheme of the EDA approach to wrapper based feature selection

interesting information, yet remain unanswered using a static analysis. Feature rank-
ing is a first step towards a dynamical analysis of the feature elimination process.
The result of a feature ranking is an ordering of the features, sorted from the least
relevant to the most relevant. Starting from the full/empty feature set, features can
then be removed/added and the classification performance for each subset can be
calculated, providing a dynamic view.

Traditional sequential wrapper algorithms such as sequential forward/backward
search inherently provide a feature ranking. These algorithms either start from the
full or empty feature set, and greedily add or discard one feature at the time. If this
process is iterated until all features are added or removed, a complete view of the
selection process can be obtained. A similar methodology can be applied in the case
of most filter methods, where the feature relevance scores can be sorted and provide
a feature ranking.

When using stochastic methods like GA or EDA, a hybrid approach can be used
to yield a dynamical view of the selection process. The solution found by the evo-
lutionary algorithm is then used as the starting point for a sequential forward or
backward wrapper method. However, such practice may result in a large, sometimes
unfeasible, number of additional calculations, depending on the number of features
selected, or the range of the dynamic view.
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Instead of combining an evolutionary method with a sequential method into a
hybrid, we present an EDA-based technique that directly results in a feature ranking.
Instead of using a single best solution, we use the estimated probability distribution
as a basis for the feature ranking. As a consequence, this technique does not require
any additional calculations and, as all features are modelled in the estimated distrib-
ution, it provides a dynamic view of the whole selection process.

2.2 Deriving a Ranking from an EDA

The main action to be taken in an EDA-based evolutionary algorithm is the con-
struction of the probability distribution that models the variables and their dependen-
cies. In general, most EDAs can be represented graphically as probabilistic graphical
models [19]. The structure of the graphical model determines the expressive power
of the EDA to model dependencies between variables, and constitutes the major cri-
terion to distinguish subclasses of EDAs. The most common subclassification distin-
guishes between EDAs modelling univariate, bivariate and multivariate dependencies
between the variables. A second aspect of the probabilistic graphical model is a set
of generalized probability distributions, associated with the variables. Depending on
the domain of the variables, these distributions can be either discrete or continuous.
In the case of feature subset selection, all variables are discrete and binary. Fig. 2
shows a few examples of probabilistic graphical models for the three major classes
of EDAs in the case of a feature selection problem with eight features (X1, · · · , X8).
The notation p(xji ) denotes the probability of feature i having value j. As features
are either present or absent, j can only be 0 or 1.
The Univariate Marginal Distribution Algorithm (UMDA [18]) is a very simple
model, assuming variables are independent. This is reflected in the structure of the
graphical model, as no arcs between different variables are present, and the prob-
ability distributions do not contain conditional probabilities. In the Bivariate Mar-
ginal Distribution Algorithm (BMDA [21]), pairwise interactions between variables
are modelled, and in the case of multiple dependencies, higher order interactions
between the variables are modelled. Examples of these include the Bayesian Opti-
mization Algorithm (BOA [20]) and the Estimation of Bayesian Networks Algorithm
(EBNA [4]).

To derive a feature ranking from a probability distribution, some sort of impor-
tance or relevance score for each feature needs to be calculated. Evidently, a feature
i having a higher value for p(x1

i ) could be considered more important than a feature
j with a lower value for p(x1

j ). The generalized probabilities p(x1
i ) can thus be con-

sidered as feature relevance scores, and a list of features sorted by these probabilities
returns a feature ranking. The general algorithm to calculate such a ranking consists
of the steps presented in Fig. 3.

The most important step in this algorithm is the extraction of the probabilities
p(x1

i ) from the model. For models with univariate dependencies like the UMDA, the
extraction of these probabilities is trivial, as they can be directly inferred from the
model. For higher order EDAs like BMDA, BOA and EBNA, the probabilities p(x1

i )
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Fig. 2. Some examples of probabilistic graphical models for EDAs with varying complexity:
univariate dependencies (UMDA), bivariate dependencies (BMDA) and multiple dependen-
cies (BOA, EBNA). The probability distributions are illustrated for a problem with discrete,
binary variables, e.g. FSS. The notation xji denotes the instantiation of variable i with value j
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1. Select S individuals from the final population Dfinal
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3. For each variable (feature) Xi, calculate the probability
p(x1

i )
4. Sort features X1, · · · , Xn by their p(x1

i ) probabilities
5. Write out the array of sorted features

Fig. 3. General algorithm to calculate a feature ranking (EDA-R)

need to be calculated in a forward manner, as they may involve conditional proba-
bilities. To enable this, an ancestral ordering of the nodes in the graphical model is
needed. The probabilities of nodes without ancestors are calculated first. Afterwards,
probabilities for nodes depending on these ancestors can be calculated, followed by
the probabilities of their descendants. This process is repeated in a forward manner,
until all probabilities are calculated. It has to be noted that an ancestral ordering is
not unique [7], yet the forward procedure of calculating the probabilities results in
a unique probability distribution. For the example network of BOA and EBNA in
Fig. 2, a possible ancestral ordering of the nodes is X1,X2,X3,X4,X5,X6,X7,X8.
Another possible ordering would be for example X1,X3,X4,X6,X5,X8,X7,X2.

Conceptually, the idea of EDA-based feature ranking is based on a balance be-
tween two characteristics of the population. On the one hand, the population should
consist of medium to good quality solutions, implying that already some sort of con-
vergence has been accomplished. On the other hand, the population should still pre-
serve some diversity, implying that it has not fully converged yet (e.g. in the ultimate
case of convergence all individuals in the populations are the same). Thus, we seek
a measure to define how long the iterative process should be continued, resulting in
a population that has already converged, but not too much.

To quantify this idea of “convergence” of a population we need a measure of how
similar/diverse it is. In the case of feature selection, the individuals are represented by
bitstrings, and we can use the Hamming distance as a measure of distance between
two individuals [15]. The Hamming distance HD(x, y) between two bitstrings of
length N is the number of bits in which the two strings differ. This number thus
varies between 0 and N . To normalize this number we calculate the scaled hamming
distance as

HDs(x, y) =
HD(x, y)

N
(1)

The convergence of a population can then be calculated as the average scaled ham-
ming distance between all pairs of individuals. For a population P of size S the
convergence is calculated as

C(P ) =
2 (
∑S−1
i=1

∑S
j=i+1HDs(xi,xj))
S (S − 1)

(2)
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where xi denotes the ith individual in the population. The parameter C(P ) can then
be monitored during the stochastic iterative sampling process, which can be stopped
when C(P ) falls below an a priori specified threshold. The calculation of this thresh-
old can be done using a sub-sample of the data.

A more advanced, yet computationally more expensive way of tuning the para-
meter C(P ) can be thought of, stopping the iterative procedure automatically when
the “optimal” convergence point has been reached. This can be done by calculating
at each iteration the feature ranking curve, and tracking the area under this curve. A
simple greedy heuristic can then be used to halt the iterative process when the area
under the ranking curve of the current iteration is less then the area under the ranking
curve of the previous iteration.

2.3 Deriving a Feature Weighting Scheme from an EDA

In the previous section, we described how a feature ranking could be derived from the
generalized probabilities p(x1

i ). However, these probabilities could also be directly
used as feature relevance scores, or feature weights. In this way, we can construct
a wrapper based feature weighting mechanism. The derivation of feature weights
conveys important additional information, that can be used to gain new insights in the
processes that generated the data (knowledge discovery). We will elaborate further
on that aspect in the second part of this chapter, where we will discuss the application
of the method to a biological classification problem.

The advantage of using EDA-R as a feature weighting mechanism, compared to
other feature weighting methods like filter methods, is that it can directly use the
feedback (classification performance) of classifiers that allows modelling of higher
order dependencies, whereas most filter methods only determine the relevance of
each feature by itself. As a direct extension of using EDA-R to rank individual fea-
tures, it can be easily seen that the method can be generalized to subsets of k features
(e.g. weighting of all pairs, triples, of features). Thus the method can be easily ex-
tended to feature subset weighting. Another possibility for future extensions of this
method is by incorporating a more sophisticated weighting scheme, and also tak-
ing into account the fitness of the selected individuals when assigning the feature
weights.

3 A Real-World Application: Acceptor Splice Site Prediction

Recent advances in genomics have generated large amounts of biological sequence
data. An important problem in bioinformatics is to analyse these sequences and pre-
dict the location and structure of genes, often referred to as gene prediction. Because
the problem of correctly predicting genes is quite complex [16], gene prediction sys-
tems have a modular structure, combining the outputs of several components that
are specialized in recognizing specific structural elements of a gene. An example
of such structural elements are the so-called splice sites. These sites are the bound-
aries between coding and non coding regions in the genomes of higher organisms
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(eukaryotes), and are of key importance in identifying the correct gene structure. In
this chapter we will focus on acceptor splice site prediction, which is the transition
from a non coding region (intron) to a coding region (exon). Acceptor splice sites are
characterized by the fact that they have a conserved AG subsequence at the intron
border side. As a result, acceptor prediction can be formally stated as a two-class
classification task: given an AG subsequence, predict whether it is a true acceptor
splice site or not. In this chapter we will focus on the prediction of acceptor splice
sites in the plant model species Arabidopsis thaliana.

The Arabidopsis thaliana data set was generated from sequences that were re-
trieved from the EMBL database, and contained only experimentally validated genes
(i.e. no genes that resulted from a prediction). Redundant genes were excluded, and
splice site datasets were constructed from 1495 genes. More details on how these
datasets were generated can be found in [2].

Because in real sequences, the number of true acceptor sites is largely outnum-
bered by the number of false acceptor sites, we chose to enforce a class imbalance in
our datasets for feature selection. We constructed a dataset of 6000 positive instances
and 36,000 negative instances. To obtain stable solutions for feature selection, a 10-
fold validation of this dataset was used to test all feature selection methods. This was
done by doing 5 replications of a two-fold cross-validation, maintaining the same
class imbalance of 1 positive versus 6 negative instances in every partition. For the
EDA-based wrapper approach, the internal evaluation of classification performance
was obtained by doing a 5-fold cross-validation on the training set.

As the EDA-R method is a wrapper approach, it is specific to a fixed classifica-
tion model. In our experiments, we used the Naive Bayes method (NBM [3]). This
classification method follows the Bayes optimal decision rule, combining it with the
assumption that the probability of the features given the class, is the product of the
probabilities of the individual features (conditional independence assumption). The
advantages of using NBM in the context of feature selection are its abilities to cope
with high-dimensional data, its robustness and its speed. The latter aspect is of par-
ticular importance when using population based methods like EDA or GA , because
for every individual, a classification model has to be trained, and tested by cross-
validation. As a measure of classification performance, we used the F-measure [17]
due to its ability to deal well with imbalanced datasets.

3.1 Feature Ranking for Acceptor Prediction

We start from the knowledge that the discrimination between true and false acceptor
sites is determined by the part of the sequence where the site is located, more pre-
cisely the local context around the acceptor site. Therefore, the nucleotides A,T,C
and G occurring on either side of the acceptor constitute a basic feature set. A lo-
cal context of 100 nucleotides (50 to the left, 50 to the right) around the acceptor
sites was chosen, having at each position one of the four nucleotides {A,T,C,G}.
These features were extracted for the positive and negative instances, resulting in
a dataset of 100 4-valued features, which were converted into binary format using
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Fig. 4. Evolution of the population convergence as a function of the number of iterations

sparse vector encoding (A = 1000, T = 0100, C = 0010, G = 0001). This results in a
dataset described by 400 binary features.

To this dataset, we applied the EDA-R feature ranking method. For different
population sizes, ranging from 100 to 1000 individuals, we ran the experiments for 40
iterations. For each iteration i, we monitored the value of C(P ) and derived a feature
ranking Fi. Afterwards, we compared the evaluations for each feature ranking.

The convergence of the population was calculated at each iteration using equa-
tion 2, and its evolution for population sizes of 500 and 1000 is shown in Fig. 4.
The x-axis shows the number of iterations, while the y-axis shows the convergence
value C(P ) of the population. At the beginning of the iterative process, the initial
population consists of randomly generated feature subsets, where, for every feature,
p(x1

i ) = p(x0
i ) = 0.5. As a result, feature subsets will have, on average, half of the

features in common, and C(P ) will be approximately equal to 0.5. When the itera-
tive process would be repeated ad infinitum, all individuals in the population would
converge to the same individual, resulting in C(P ) = 0. The figure shows that for 40
iterations, convergence will be roughly half way between 0.5 and 0.

As mentioned earlier, the ideal value of C(P ) is achieved when the population
has already converged, yet not too much. To explore the effect of the number of
iterations (and thus C(P )) on the feature ranking, we compared the evaluation of
the feature ranking during the course of evolution. For a particular iteration number,
we derived a feature ranking from the population at that time. This was done by
starting with the full feature set, and iteratively eliminating the least relevant feature,
according to the feature ranking. The results for a few iterations (iteration 1, 20 and
40) are shown in Fig. 5.

The left part of the figure shows the results for a population of 500 individuals,
the right part for a population of 1000 individuals. The results after the first iteration
are shown as a baseline result. As soon as the first iterations have passed, the feature
ranking improves quickly, until at some point a good feature ranking is obtained (it-
eration 20). If the iterative process is then continued, populations that are too specific
are obtained (iteration 40), characterized by the fact that classification performance
drops down earlier when smaller feature sets are evaluated. Furthermore it can be ob-
served that the results for a population size of 1000 individuals are only marginally
better than the results using a population of 500 individuals. Gradually worse results
are obtained when populations smaller than 500 individuals are used.
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Fig. 5. Evaluation of a feature ranking for a number of iterations (1, 20 and 40). The left part
shows the results for a population size of 500 individuals, the right part for a population of
1000 individuals. The origin represents the full feature set. The x-axis represents the num-
ber of features that have been eliminated thus far, while the y-axis shows the classification
performance on the test set (F-measure)

It can be observed that, e.g. for the case of 20 iterations, many features can be
eliminated before the classification performance drops down, showing that many
irrelevant or redundant features are present in the dataset. The advantage of a feature
ranking is the identification of a “break-point” region. This is the part of the graph
where the classification performance drastically drops down, indicating the removal
of strongly relevant features. It should be noted that the observation of a break-point
region is strongly dependent on the dataset. For many biological processes, it is not
completely known which features are relevant for the classification task at hand.
Therefore, many potentially useful features are included in the dataset, hoping that
the relevant features are included as well. As a result, many irrelevant or redundant
features will be present, and a clear break-point can be observed. For other datasets
with little or no redundant features, this phenomenon will not be observed.

Strictly speaking, the identification of the break-point region should be consid-
ered as a part of the training process. Therefore, the identification of this region
should be done on the training set, and only thereafter the test set can be used for
evaluation. Fig. 6 shows the results for feature selection on both the training and test
set. When comparing the results, it can observed that the break-point regions for both
data sets are very similar.

3.2 Feature Weighting for Knowledge Discovery in Acceptor Prediction

An important advantage of feature selection techniques is their ability to distinguish
between relevant and irrelevant features, providing new insights in complex datasets.

It is known that correlations exist between nucleotides in the vicinity of splice
sites. To detect these dependencies, higher-order (i.e. non-linear) classification meth-
ods can be used. When combining higher-order classification methods with EDA-
based feature selection, this would require the use of higher-order estimation mod-
els. An example of such a combination could be a second order polynomial Support
Vector Machine , in combination with the BMDA. However, using such higher order
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Fig. 6. Evaluation of the feature ranking obtained with a population size of 500 individuals
after 20 iterations. Both the evaluation of the ranking on the training and on the test set are
shown

classification algorithms and estimation models would make the EDA-R method very
slow.

To circumvent the use of higher order models, yet still be able to extract corre-
lations between nucleotides, we applied the following trick. We constructed an addi-
tional set of features that captures the nucleotide correlations already at the feature
level. This has the advantage that linear models can still be used, while at the same
time considering nucleotide dependencies. Another important advantage is that the
combination with feature selection techniques allows us to select those dependencies
that are of primary importance, and visualize them.

In addition to the simple nucleotide features used in the previous section, we
added two layers of more complex features. The first layer captures the idea of com-
positional sequence information. These type of features extract sequence information
that is position invariant. In our experiments, we included position invariant features
of length 3, capturing the occurrence of subsequences of length 3 in the sequence
neighbouring the splice site. An example of such a feature would be the occurrence
of the subsequence “TCA” in the sequence to the left of the acceptor site. For the se-
quence on either side of the acceptor, including these features results in an additional
set of 128 binary features, a 1 indicating the presence, a 0 the absence of the spe-
cific subsequence. The second layer of complexity comprises features that capture
dependencies between adjacent nucleotides. To this end, we included all position
dependent dinucleotides (subwords of length 2) in our analysis, resulting in an ad-
ditional set of 1568 features. Summing up all features eventually results in a dataset
described by 2096 features.

To this dataset we applied the EDA-R feature ranking method, deriving the fea-
ture weights from the probabilities p(x1

i ) of the population at iteration 20 (for com-
putational reasons we used the same EDA setting as in the previous experiment).
A nice way of visualizing the feature weights is by color coding them using a heat



254 Y. Saeys et al.

D
at

as
et

 2
 : 

20
96

 fe
at

ur
es

P
ar

t a

P
ar

t b

D
at

as
et

 1
 : 

40
0 

fe
at

ur
es

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

50
49

48
47

46
45

44
43

42
41

40
39

38
37

36
35

34
33

32
31

30
29

28
27

26
25

24
23

22
21

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

A T C G

50
49

48
47

46
45

44
43

42
41

40
39

38
37

36
35

34
33

32
31

30
29

28
27

26
25

24
23

22
21

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

A T C G A
A

A
T

A
C

A
G

T
A

T
T

T
C

T
G

C
A

C
T

C
C

C
G

G
A

G
T

G
C

G
G

A
A

A
A

A
A

A
A

T
A

A
T

A
A

C
A

A
C

A
A

G
A

A
G

A
T

A
A

T
A

A
T

T
A

T
T

A
T

C
A

T
C

A
T

G
A

T
G

A
C

A
A

C
A

A
C

T
A

C
T

A
C

C
A

C
C

A
C

G
A

C
G

A
G

A
A

G
A

A
G

T
A

G
T

A
G

C
A

G
C

A
G

G
A

G
G

T
A

A
T

A
A

T
A

T
T

A
T

T
A

C
T

A
C

T
A

G
T

A
G

T
T

A
T

T
A

T
T

T
T

T
T

T
T

C
T

T
C

T
T

G
T

T
G

T
C

A
T

C
A

T
C

T
T

C
T

T
C

C
T

C
C

T
C

G
T

C
G

T
G

A
T

G
A

T
G

T
T

G
T

T
G

C
T

G
C

T
G

G
T

G
G

C
A

A
C

A
A

C
A

T
C

A
T

C
A

C
C

A
C

C
A

G
C

A
G

C
T

A
C

T
A

C
T

T
C

T
T

C
T

C
C

T
C

C
T

G
C

T
G

C
C

A
C

C
A

C
C

T
C

C
T

C
C

C
C

C
C

C
C

G
C

C
G

C
G

A
C

G
A

C
G

T
C

G
T

C
G

C
C

G
C

C
G

G
C

G
G

G
A

A
G

A
A

G
A

T
G

A
T

G
A

C
G

A
C

G
A

G
G

A
G

G
T

A
G

T
A

G
T

T
G

T
T

G
T

C
G

T
C

G
T

G
G

T
G

G
C

A
G

C
A

G
C

T
G

C
T

G
C

C
G

C
C

G
C

G
G

C
G

G
G

A
G

G
A

G
G

T
G

G
T

G
G

C
G

G
C

G
G

G
G

G
G

Fig. 7. Color coding of the feature weights using a gradient from black (the feature should be
left out) to white (the feature should be included). Part ‘a’ shows the result for the simplest
dataset (400 features), part ‘b’ shows the result for the complex dataset (2096 features). Fea-
tures are grouped by their position relative to the acceptor site, which is denoted by the blank
space in the middle. For each part of the context the position invariant features of length 3 are
grouped according to their composition (A-rich, T-rich, C-rich, G-rich, equally distributed)

map, where a gradient ranging from black (the feature should be left out) to white
(the feature should be included) shows the feature weights. This is shown in Fig. 7
where we graphically show the feature weights for both the simple dataset (400 fea-
tures) and the extended dataset (2096 features). In this figure, features are shown row
wise, while the columns indicate positions around the splice site (the gap in the mid-
dle). Part ‘a’ shows the results for the simplest dataset: every row represents one of
the nucleotides A,T,C and G. Part ‘b’ shows the results for the complex dataset, with
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Fig. 8. Evaluation of the classification performance on both datasets, when features are it-
eratively discarded. The left part of the figure shows the result for the most simple dataset
(400 features), while the right part shows the result for an extended version of this dataset,
using also position invariant features and position dependent dinucleotide features (2096 fea-
tures). The x-axis shows the number of features that have been eliminated, the y-axis shows
the classification performance (F-measure)

the position invariant features (middle part) and the position dependent dinucleotides
(lower part).

Several patterns can be observed. In both datasets, the nucleotides immediately
surrounding the acceptor splice site are of key importance. Another pattern can be
explained by looking at the right side of the context. In the simplest dataset, a clear
periodical pattern is visible for the nucleotides T and G, capturing the fact that the
right side of the context is a coding region (exon). In this region, nucleotides are
organised in codons (triplets). However, as this is a general characteristic of the se-
quence, it is observed that the position invariant features in the second dataset better
seem to grasp this characteristic.

Another important pattern are the nucleotides T at the left side of the acceptor
for the simplest dataset. In the complex dataset, this pattern has completely disap-
peared, and is replaced by a stretch of AG dinucleotides that now seems to be most
important. This is a nice example of the combination of a wrapper based method
with NBM. It is known that the classification performance of NBM can be improved
by discarding correlated features. Without going into much detail, we here mention
that the presence of a poly-pyrimidine stretch (an excess of nucleotides C and T) to
the left of the acceptor is correlated with the absence of AG dinucleotides in this
part of the sequence. Apparently, NBM chooses the absence of AG dinucleotides as
being more informative than the importance of T, and thus discards the T features
to the left of the acceptor. The benefit of not including these features is even more
apparent when looking at the position invariant features in part ‘b’, where all T-rich
subsequences of length 3 are colored dark. This indicates that NBM strongly benefits
from not including these features.

To verify that the features selected for the complex dataset are indeed better at
describing the acceptor prediction problem, we compared the classification perfor-
mance for both datasets (Fig. 8). This figure shows that better classification perfor-
mance can be obtained using the more complex features.
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4 Conclusions

In this chapter, we introduced two extensions of EDA-based feature selection: EDA-
based feature ranking and EDA-based feature weighting. Using the EDA framework,
these extensions can be naturally derived from the estimated distribution, and are
immediately available when using simple EDA algorithms like the UMDA. We il-
lustrated both techniques on a biological classification problem: the prediction of
acceptor splice sites, an important subtask of gene prediction. Using the combina-
tion of more complex features and feature selection, we were able to extract a new,
important feature for acceptor prediction: the inhibition of dinucleotides AG imme-
diately upstream the acceptor site. Using feature selection allows us in this way to
gain more insight in the computational modelling of this particular biological classi-
fication problem.
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