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Summary. This chapter presents results on the application of the concept of entropy to esti-
mation of distribution algorithms (EDAs). Firstly, the Boltzmann mutual information curves
are introduced. They are shown to contain a lot of information about the difficulty of the
functions. Next, a design method of discrete benchmark functions is presented. The newly
developed approach allows the construction of both single and random classes of functions
that obey a given collection of probabilistic constraints. This application and the next – the
construction of low cost search distributions – are based on the principle of maximum en-
tropy. The last proposal is the linear entropic mutation (LEM), an approach that measures the
amount of mutation applied to a variable as the increase of its entropy. We argue that LEM is
a natural operator for EDAs because it mutates distributions instead of single individuals.

1 Introduction

Entropy is a measure of the uncertainty of a random variable, whereas mutual in-
formation measures the reduction of the entropy due to another variable. These are
fundamental quantities of information theory [3], the building blocks of a field that
overlaps with probability theory, statistical physics, algorithmic complexity theory
and communication theory, among others disciplines.

In this chapter, we explore several novel uses of the concept of entropy in
evolutionary optimization. In particular, we investigate intersections of information
theory and the field of estimation of distribution algorithms (EDAs) [26].

A major challenge of evolutionary optimization is the preservation of the right
balance between exploitation and exploration. From an entropic point of view, ex-
ploitation can be seen as a low-entropy search, whereas exploration is better under-
stood as a high-entropy search. This occurs both at the system and variable levels.
At the system level, we see how the joint entropy is reduced as the run approaches
the optimum. At the variable level, the mutual information comes into play, the re-
duction in uncertainty of a variable due to the remainder variables is an indicator of
what kind of entropic balance should be enforced at that point. These are just few
evidences about the fact that entropy is at the heart of the dynamics of artificial evo-
lution. This has been a major motivation of our work. We believe that EDAs will
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profit from greater efforts in this area of research. Keeping in mind these arguments,
in this chapter we approach the following issues:

• A method for analysing the difficulty of the functions (Sect. 3).
• A design method of benchmark functions (Sect. 4).
• A method for learning low cost maximum-entropy distributions (Sect. 5).
• An entropic approach to mutation (Sect. 6).

Nowadays, simulation is a fundamental tool of verification, validation and com-
parison of evolutionary algorithms. For EDAs, the design of benchmark functions
should emphasize, in the first place, the complexity of the probabilistic structure
of the search distributions. We have developed a method, which gives the designer
the possibility of specifying a collection of probabilistic constraints that have to be
fulfilled by the search distributions. The method is connected to the concept of en-
tropy because it constructs a maximum entropy distribution that satisfies the given
constraints.

A good design method should be accompanied by a good analysis method. We
introduce a new approach for function complexity analysis in the context of EDA
optimization. Our approach investigates the mutual information of Boltzmann distri-
butions as a function of the temperature parameter.

A critical problem of learning search distributions in an EDA, is the sample com-
plexity. Large sample sizes mean large number of function evaluations. The chal-
lenge is to reduce the number of evaluations, without damaging the effectiveness
and efficiency of the search. We use the concept of entropy to achieve this goal; the
true search distribution is substituted by a maximum entropy approximation, which
can be reliably computed with less population size.

EDAs have to approach mutation from a distribution perspective, in contrast with
the genotype perspective of GAs. While a GA mutates single individuals, an EDA
must mutate distributions. We have developed an approach that uses the concept
of entropy to fulfill this requirement. The relation between entropy and mutation is
quite intuitive: when a random variable is mutated, a certain degree of randomness
is added to it. Therefore, it seems reasonable to measure the amount of mutation
applied to a variable as the increase of its entropy.

The outline of this contribution is as follows. Section 2 presents the background
material. Then we discuss the above problems in Sects. 3-6. Finally, the conclusions
are given.

2 Background

This section introduces the general notation of the chapter. It also gives a short intro-
duction to the theories that underlie our main results.

2.1 General Notation

In this chapter, Xi represents a scalar random variable and p (xi) = p (Xi = xi)
its probability mass function with xi ∈ X = {0, 1, . . . ,K}. Note that p (xi) and
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p (xj) refer to two different random variables, and have in fact different proba-
bility mass functions, p (Xi = xi) and p (Xj = xj), respectively. Similarly, X =
(X1, X2, . . . , Xn) denotes a n-dimensional random variable, x = (x1, x2, . . . , xn)
is a configuration and p (x1, x2, . . . , xn) represents a joint probability mass. The
notation Xa and xa is used to denote sub-vectors of X and x with indexes from
a ⊂ {1, . . . , n}. p (xa) =

∑
xi,i/∈a p (x) and p (xa|xb) = p (xa,xb) /p (xb) define

marginal and conditional distributions, respectively. p (a) or pa are used to denote
p (xa).

2.2 Boltzmann Estimation of Distribution Algorithms

At the center of most of the ideas and results of this chapter, lies the Boltzmann
distribution. Some authors have considered it as the corner stone of the theory of
estimation of distribution algorithms [19,24,25]. We believe that this chapter is new
evidence that supports this way of thinking.

Definition 1 For β ≥ 0 define the Boltzmann distribution of a function f(x) as

pβ,f (x) :=
eβf(x)∑
y e

βf(y)
=
eβf(x)

Zf (β)

where Zf (β) is the partition function.

We also use Zβ,f , but to simplify the notation β and f can be omitted. If we
follow the usual definition of the Boltzmann distribution, then −f(x) is called the
free energy and 1/β the temperature of the distribution. The parameter β is usually
called the inverse temperature.

Closely related to the Boltzmann distribution is Boltzmann selection:

Definition 2 Given a distribution p (x) and a selection parameter γ, Boltzmann se-
lection calculates a new distribution according to

ps(x) =
p(x)eγf(x)∑
y p(y)eγf(y)

Boltzmann selection is important because the following holds [25]:

Theorem 1 Let pβ,f (x) be a Boltzmann distribution. If Boltzmann selection is used
with parameter γ, then the distribution of the selected points is again a Boltzmann
distribution with

ps(x) =
e(β+γ)f(x)∑
y e

(β+γ)f(y)

The Boltzmann estimation of distribution algorithm (BEDA) was introduced
in [25] on the basis of the above. Here, it is shown as Algorithm 1. BEDA is an al-
gorithm with good theoretical properties, it has even a convergence proof. However,
in the form in which it is shown in algorithm 1, it is just a conceptional algorithm.
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Algorithm 1 BEDA – Boltzmann Estimation of Distribution Algorithm

Step 1 t← 0, β (t)← 0 and p(xx, t) = 1
Zβ(t),f

Step 2 t← t+ 1, Δβ(t)← β (t)− β (t− 1) and

p(x, t+ 1)← p(x, t)eΔβ(t)f(x)∑
y p(y, t)e

Δβ(t)f(y)
(1)

Step 3 If the stopping criterion is not reached, go to step 2.

The reasons are twofold: the exponential complexity of the denominator of (1) and
the lack of a method for updating Δβ(t).

The next lemma solves the second problem. The reader is referred to [19] for
details.

Lemma 1 Δβ (t) = c/
√
V arf (β(t)) leads to an annealing schedule where the

average fitness, Wf (β(t)), increases approximately proportional to the standard de-
viation:

Wf (β(t+ 1)) −Wf (β(t)) ≈ c
√
V arf (β(t))

where c is a constant and V arf (β(t)) = σ2
f (β(t)) is the variance of the fitness func-

tion. This annealing schedule has been called standard deviation schedule (SDS).

The exponential complexity of computing the partition function can be avoided
if the Boltzmann distribution is approximated with a tractable distribution. There are
several ways of accomplishing this approximation [23]. However, for the purposes
of this chapter it is enough to restrict ourselves to the special case covered by the
factorization theorem [25].

The factorization theorem defines how and under what conditions the search dis-
tributions associated to discrete functions can be factorized. The factorization follows
the structure of the function and is only exact if the function obeys certain structural
constraints.

Definition 3 Let si ⊆ {1, . . . , n} (1 ≤ i ≤ m) be index-sets and let f (i) be func-
tions depending only on the variables Xj (j ∈ si). Then, f(x) =

∑m
i=1 f

(i) (xsi) is
an additive decomposition of the fitness function f (x) .

Definition 4 Given s1, . . . , sm, the sets di, bi and ci (i = 1, . . . ,m) are defined as
follows: d0 := ∅, di :=

⋃i
j=1 sj , bi := si \ di−1 and ci := si ∩ di−1.

Theorem 2 (Factorization theorem) For β ≥ 0, let pβ,f (x) be a Boltzmann distrib-
ution of a function f(x), and f(x) =

∑m
i=1 f

(i) (xsi) be an additive decomposition.
If dm = {1, . . . , n} and the following holds

∀i ∈ {1, . . . ,m} , bi �= 0
∀i ≥ 2,∃j < i such that ci ⊆ sj

(2)
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then

pβ,f (x) =
m∏
i=1

p (xbi |xci ) (3)

The proof can be found in [25]. Assumption 2 is called the running intersection
property [16].

In the simulations of this chapter we use mainly two algorithms: the factorized
distribution algorithm (FDA) and the Boltzmann FDA. Both algorithms use the fac-
torization (3) as a model of the search distributions. However, while the FDA uses
truncation selection, the BFDA uses Boltzmann selection with SDS.

The following lemma is relevant to this chapter [19].

Lemma 2 BFDA is invariant under linear transformation of the fitness function with
a positive factor.

2.3 Factorizations

As was said in the previous section, the factorization of probability distributions is
a major concern of EDA researchers. In this chapter, Bayesian factorizations are
specially relevant. They are connected with the concept of Bayesian network.

A Bayesian network (BN) [30, 31] is a directed acyclic graph containing nodes,
representing the variables, and arcs, representing probabilistic dependencies among
nodes. For any node (variable) Xi, and set of parents πXi , the Bayesian network
specifies a conditional probability distribution p(xi | πxi).

There are single-connected – no more than one undirected path connects two
nodes – and multiple-connected BNs. The single-connected BNs are also called
polytrees. In a polytree, a node may have several parents and many roots. Trees
are special class of polytrees, which have at most one parent and one root. Polytrees
describe higher-order interactions than trees, while retaining many of their compu-
tational advantages. In a polytree, structures like X → Z ← Y are often called
head-to-head patterns. This type of pattern makes X and Y conditionally dependent
given Z, which cannot be represented by a tree.

A junction tree [10, 14, 16] is an undirected tree, where each node contains a set
of variables. The junction tree satisfies the junction property: for any two nodes a
and b and any node h on the unique path between a and b, a ∩ b ⊆ h. The arcs
between the nodes are labelled with the intersection of the adjacent nodes; usually,
they are called separating sets or separators.

Junction trees are important for inference and sampling because they have
tractable algorithms for these tasks. Given a BN, it is possible to construct at least
one junction tree. The reader is referred to [10, 14, 16] for a complete discussion on
the issue.

2.4 Entropy and Mutual Information

The entropy H (X) of a discrete random vector X is defined in [3] by
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H (X) = −
∑
x∈X

p (x) log p (x) (4)

Note that entropy is a functional of the distribution of X . It does not depend on
the actual values taken by the random variable, but only on the probabilities. This
means that H (X) is a shortcut for H (p (X)). The logarithm in (4) is to the base
two and entropy is expressed in bits. We use the convention that 0 log 0 = 0.

For a binary variable X , such that p (X = 1) = p, we have

H (X) = H (p (X)) = H (p) := −p log p− (1 − p) log (1 − p) (5)

The entropy of a binary variable is a nonnegative, symmetric and concave func-
tion of the distribution. It has the maximum at the point (0.5, 1) and it is zero for
p ∈ {0, 1}.

The following theorem will be useful later on.

Theorem 3 (Independence bound on entropy [3]). Let p (x) be any joint probability
mass of a set of discrete random variablesX = (X1, X2, . . . , Xn), then

H (X) ≤
n∑
i=1

H (Xi)

with equality if and only if the variables are independent.

The concepts of marginal and conditional mutual information will be intensively
used in the chapter. The mutual information, I (X,Y ), is the reduction in the un-
certainty of X due to the knowledge of Y . The conditional mutual information,
I (X,Y |Z), represents the reduction in the uncertainty of X due to the knowledge
of Y given Z. The following theorem connects entropy and mutual information.

Theorem 4 Between mutual information and entropy the following holds [3]:

I (X,Y ) = H (X) +H (Y ) −H (X,Y ) (6)

I (X,Y |Z) = H (X|Z) −H (X|Y,Z) (7)

The Maximum-Entropy Principle

The maximum-entropy principle (MEP) plays an important role in this chapter. It
is used to build probability mass functions that fulfill a collection of marginal con-
straints. The ideas behind this concept can be shortly explained as follows.

Frequently, partial prior information is available outside of which it is desired to
use a prior that is as non-informative as possible. For example, suppose some prior
marginal distributions are specified, and among prior distributions with these mar-
ginals the most non-informative distribution is sought [12, 13]. If we have the joint
distribution with the maximum-entropy of all the joints that fulfill a given collection
of marginals, choosing a joint with less entropy amounts to add some information
that is not justified by the constraints.
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The iterative proportional fitting (IPF) algorithm can be used to find the
maximum-entropy distribution [11, 12, 18, 32]. The proof that IPF converges against
the maximum-entropy solution can be found in [4]. Unfortunately, the naive imple-
mentation of the IPF takes exponential time and space. Therefore, it is not suitable
for computing distributions with many variables.

For large distributions, an efficient implementation of the maximum-entropy al-
gorithm was developed in [15, 21]. The general idea is to improve the performance
of IPF by combining it with the junction tree technique. It consists of performing
IPF locally on the nodes and passing messages to the neighboring nodes. It has been
proved that this converges to the unique maximum-entropy solution, so it is equiv-
alent to IPF. The reader is referred to [29] for details on the implementation of the
method for computing maximum-entropy distributions of polytrees.

3 Mutual Information and Functions Difficulty

This section presents preliminary ideas about a novel method for analysing the com-
plexity of functions for evolutionary algorithms. The corner stone of the approach is
the concept of mutual information, which is studied through its relation with selec-
tion.

3.1 Boltzmann Mutual Information Curves

The Goldberg’s Deceptive3 function belongs to the class of the so called decep-
tive problems [6, 7] that are those having local optima which are easier to find than
global optima. Deceptive problems contain deceptive attractors, which mislead the
algorithm to search for sub-optima because their basins of attraction are much larger
than the ones favoring global optima. Often, deceptiveness is considered a challenge
to search algorithms. However, deception is a relative category that emerges solely
in the context of the relationship problem-algorithm. In other words, a problem may
be deceptive for one algorithm, but not for another.

Deception has been intensively studied in the context of genetic algorithms. In [6,
7,9], the authors described ways to construct deceptive functions and gave sufficient
conditions for deception. Figure 1 (left) shows the usual way of describing deceptive
problems as a function of unitation. Note, the deep valley separating the optimum
from the sub-optimum and the different sizes of their attractors.

In this section, we introduce a new method for analysing the function complexity
in the context of EDA optimization. Our approach investigates the mutual informa-
tion of Boltzmann distributions as a function of the parameter β. Given a function f ,
this method computes the Boltzmann distribution pf,β for β > 0. Then, it computes
the marginal and the conditional mutual information on any sub-set of variables. We
show that the Boltzmann mutual information curves, I (β), contain a lot of informa-
tion about the complexity of the function.

Table 1 shows the function Deceptive3 and its Boltzmann distribution for β =
10.49. On the other hand, Fig. 1 (right) presents the marginal mutual information
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Fig. 1. Explaining the complexity of Goldberg’s Deceptive3 function: (left) unitation approach
– the optimum is isolated and separated from the sub-optima by a deep valley (right) mutual
information approach – marginal (dashed line) and conditional (solid line)

Table 1. Goldberg’s Deceptive3 function and its Boltzmann distribution for β = 10.49. At
this value, I (X,Y ) = I (X,Y |Z)

x3x2x1 fdec3 (x) pβ=10.49 (x) x3x2x1 fdec3 (x) pβ=10.49 (x)

000 0.9 0.2038 100 0.8 0.0714
001 0.8 0.0714 101 0 0
010 0.8 0.0714 110 0 0
011 0 0 111 1 0.5820

and the conditional mutual information. Note that all edges have the same marginal
and conditional values of mutual information, i.e. the function is symmetric. This
property of the Deceptive3 simplifies its analysis.

To begin with, we recall a result that was presented in [35], which states that
the difference between conditional and marginal mutual information is invariant to
permuting the variables. Remarkably, the result holds for any three sets of variables
Xa, Xb and Xc.

Proposition 1 (Whittaker [35, Proposition 4.5.1]) Suppose that the partitioned ran-
dom vector (Xa, Xb, Xc) has a joint density function fabc. The difference between
the divergence against the conditional independence of Xa andXb givenXc and the
marginal independence of Xa and Xb is invariant to permuting the symbols Xa, Xb

and Xc.
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Fig. 2. Conditional information I (X,Y |Z) (dashed line) andG (X,Y, Z) = I (X,Y |Z)−
I (X,Y ) (solid line)

The above difference is denoted by G (a, b, c). As a consequence of the proposi-
tion 1, the curve G (a, b, c) and the three conditional information curves also contain
all the marginal mutual information. Therefore, we also use pictures like Fig. 2 as
tools for analysing the complexity of functions. In our framework, we refer to these
curves as Boltzmann-mutual-information curves or simply Boltzmann-information
curves.

From an evolutionary point of view, the Boltzmann-information curves show
how selection influences the strength of the dependencies among the variables of the
problem. If the algorithm uses Boltzmann selection as is the case of BEDAs, then
β directly measures the selection pressure. Although for other selection schemes the
connection is not direct, the information gathered from curves is still useful.

The curves are continuous, monotonously increasing up to their maximum values
and decreasing to zero as β increases. This simple observation has an important
implication for learning: there is a strong correlation between mutual information
values at consecutive steps of the evolution.

Note in Fig. 1 (right), the horizontal lines at I ≈ 0.0069 and I ≈ 0.0107; they are
thresholds for marginal and conditional independence1. We recall that I (X,Y ) =
I (X,Y | ∅); it is assumed that the empty set has zero variables and thus |∅| = 1. The
above thresholds were computed with a confidence level of 95% and a sample size
of N = 280 (this is the sample size used in the numerical simulations).

We now discuss the critical points of the Boltzmann-information curves. There
are nine important critical points: the intersections of the threshold lines with

1 Under the null hypothesis that conditional independence of X and Y given Z holds, the
value 2NI (X,Y |Z) – which is called deviance against conditional independence – ap-
proximates a χ2 distribution with |Z| (|X| − 1) (|Y | − 1) degrees of freedom, where N
is the number of configurations in the sample and |S| represents the number of possible
values of the set of variables in S [35, Proposition 7.6.2]
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the marginal and conditional Boltzmann curves determine two pairs of β values
that define a marginal and a conditional dependence intervals, [βmmin, β

m
max] and

[βcmin, β
c
max], respectively; the maximal values of the curves, βmM , βcM and βGM ; the

zero and minimum value of G (1, 2, 3), βGz and βGm respectively.

3.2 Dissection of the Goldberg’s Deceptive3 Function

In this section we investigate the separable function

Fdec3 =
l∑
i=1

fdec3 (x3i−2, x3i−1, x3i)

and some other functions derived from it. As a rule we use the BFDA, but a few
results are also presented for a FDA with truncation selection.

The notation used in the tables is as follows: N is the population size, n is the
number of variables, %S is the success rate in 100 independent runs and Gc is the
average generation where the optimum is found. For the average β values, we use
βmin after the initial selection and βmax at the end of successful runs.

Deception and the Complete Bayesian Model

We start our investigation of the Deceptive3 by running the BFDA with the complete
Bayesian model of the marginal distributions p (x3i−2, x3i−1, x3i). In other words,
it uses the factorizations

p (x3i−2, x3i−1, x3i) = p (x3i−2) p (x3i|x3i−2) p (x3i−1|x3i−2, x3i) (8)

Equation (8) is the natural model for this function; any other model performs
worse than it does. The following simulation confirms this behaviour. We run the
BFDA 100 times, in a problem with 30 variables and 280 configurations. The algo-
rithm always finds the optimum with Gc = 12.97. The average β at the end of the
runs is 18.43, whereas the critical point βGz is reached as average at the generation 10.
This means that for approximately 3/4 of the evolution the conditional information
is stronger than the marginal information.

As can be seen from Fig. 1 (right) the variables are marginally and conditionally
dependent in the range of β observed in the simulation of [0, 18.43]. Note that this
interval is completely included in [βcmin, β

c
max] ⊂ [βmmin, β

m
max]. We recall that for

three variables the complete model is the only one that does not have any indepen-
dence relation, i.e. it is the best for the pair BFDA-Deceptive3.

We believe that deceptiveness is a direct consequence of having high values of
mutual information. As we pointed out before, deception is a relative category that
emerges solely in the context of the relationship problem-algorithm. In this relation-
ship the problem contributes with high values of mutual information, whereas the
algorithm’s contributions are the selection and the collection of dependencies that it
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can deal with. The collection must be a proper sub-set of the problem’s dependen-
cies. We believe that the size and strength of the basins of attraction for any problem
attractor depend on the amount of mutual information relevant to it. Without these
three ingredients there can not be any deception at all. The amount of mutual infor-
mation is a source of difficulty even when the right model or factorization is used.

BFDAs are perfect tools for studying the difficulty of the functions. They have
everything that is needed:

• Selection is given explicitly through the parameter β.
• The collection of dependencies the algorithm can deal with are fixed by the fac-

torization.
• The relation between mutual information and selection is given by the Boltzmann

information curves.

In BFDAs, deception arises in the context of the relationship problem-factorization,
i.e. a given problem may or may not be deceptive in relation to a particular factoriza-
tion.

Reducing the Mutual Information

Let pfdec3,βGz be the Boltzmann distribution of the Deceptive3 with βGz and Zf,βGz ,
i.e. the distribution when the mutual and conditional information are the same (see
Fig. 1).

In this section, we deal with the family of functions

fdec3 (α) =
log(pα)
βGz

+
log
(
Zf,βGz

)
βGz

(9)

where α ∈ {0, 0.05, 0.20, 0.40, 0.50} and pα is a distribution that obeys the follow-
ing entropic relation

H (pα) = (1 − α)H
(
pfdec3,βGz

)
+ 3α

This type of entropic relation is discussed in Sect. 6.3. For the purposes of the
current section it is enough to say that the mutual information in pα decreases as α
grows.

Table 2 shows the family of fdec3 (α) functions. Note that fdec3 (0) is the Decep-
tive3. Besides, it is worth noting, that the symmetry of the Boltzmann information
curves for the Deceptive3 is slightly broken in these functions. However, the dif-
ference is so small, that it is enough to show in Fig. 3 only the curves I (1, 2) and
I (1, 2| 3). The reader can easily check this by constructing the Boltzmann mutual
information curves of these functions.

Table 3 presents the numerical results. The difficulty of the function decreases
with increasing α, which means with increasing joint entropy and with decreasing
mutual information. Note the influence of α in the convergence time: as α grows, Gc
decreases. On the other hand, both βmin and βmax increase as α grows. We recall
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Table 2. The family of fdec3 (α) functions

x3x2x1

α 000 001 010 011 100 101 110 111

0.00 0.90 0.80 0.80 0.00 0.80 0.00 0.00 1.00
0.05 0.90 0.80 0.80 0.47 0.80 0.40 0.39 1.00
0.20 0.90 0.82 0.81 0.63 0.81 0.57 0.56 0.99
0.40 0.89 0.83 0.82 0.71 0.82 0.66 0.65 0.98
0.50 0.89 0.83 0.83 0.74 0.82 0.70 0.69 0.97
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Fig. 3. Boltzmann mutual information curves for the family fdec3 (α): (left) marginal,
(right) conditional. From top to bottom, fdec3, fdec3 (0.05), fdec3 (0.20), fdec3 (0.40) and
fdec3 (0.50)

Table 3. BFDA runs with the fdec3 (α) with the complete Bayesian model. The average β
values after the initial selection and at the end of successful runs are shown in columns βmin
and βmax, respectively. Setting: N = 280, n = 30

α %S Gc βmin βmax

0.00 100 12.97 0.75 18.43
0.05 100 10.31 1.41 18.25
0.20 100 9.32 2.14 21.11
0.40 100 8.39 2.96 23.14
0.50 100 8.14 3.53 25.86
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that βmin = β (1) = Δβ (1) = c/
√
V arf (β(1)), i.e. the standard deviation of the

fitness decreases in the first generation with increasing α. Besides, for all functions
we have that the interval [βmin, βmax] is included in their respective [βcmin, β

c
max].

If the reader constructs the unitation representation (Fig. 1) of the functions
fdec3 (α), he or she will observe that only the depth of the valley at unitation equal
to two changes significantly. For example, fdec3 (0.05) is exactly equal to the De-
ceptive3, except in the case when the unitation is equal to two. This is remarkable
because the definition of these functions did not consider any unitation argument.

Models with a Missing Arc

We investigate the performance of the BFDA when the marginal distributions of
the form p (x3i−2, x3i−1, x3i) are approximated with all Bayesian models with one
missing arc. Consider the following factorizations:

p12−32 (x1, x2, x3) = p (x1) p (x3) p (x2|x1, x3) (10)

p13−32 (x1, x2, x3) = p (x1, x3) p (x2|x3) (11)

p12−13 (x1, x2, x3) = p (x1, x3) p (x2|x1) (12)

Due to the symmetry of the function with respect to the mutual information, it
is enough to study these cases. For example, in the factorization 12-32 the arc 1-3 is
missing and the arcs 1 → 2 and 3 → 2 are present. However, it behaves exactly as
the factorizations 21-31 and 13-23.

The results are presented in the first row (α = 0) of Table 4. The BFDA behaves
much better with the factorization 12-32 than with the factorizations 12-13 and 13-
32. The use of the last two factorizations leads to similar results. In what follows, we
try to explain this behaviour in the context of Boltzmann information curves.

It is worth noting, that βmax is about 30 for all models, which is close to βcmax.
Furthermore, we have observed that the critical value βGz is reached as average in
the generation 10 with the model 12-32 and in the generation 12 with the models
12-13 and 13-32. This means that a successful run occurs in range of β where both
the marginal and the conditional information are above the independence thresholds,
i.e. the variables are not independent. Moreover, during the first half of the evolution
(before βGz is reached) G (1, 2, 3) > 0.

Table 4. BFDA runs with the fdec3 (α). The marginal distributions p (x3i−2, x3i−1, x3i) are
approximated with all two-arcs models. Setting: N = 280, n = 30

12-32 12-13 13-32

α %S Gc βmax %S Gc βmax %S Gc βmax

0 94 18.57 30.5 22 21.82 30.48 34 22.20 29.64
0.05 99 14.75 29.58 92 16.15 29.31 84 16.11 28.67
0.20 100 12.97 32.03 99 13.25 29.69 95 13.14 28.82
0.50 100 11.24 37.26 100 10.46 32.95 100 10.37 31.89
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By comparing (10)–(12) with the chain rule, it is easy to see that each equation
makes exactly one wrong assumption:

• Equation (10) assumes marginal independence of X1 and X3.
• Equation (11) assumes conditional independence of X2 and X1 given X3.
• Equation (12) assumes conditional independence of X2 and X3 given X1.

The conditional mutual information is farther away from its independence thres-
hold than the marginal mutual information. The independence lines get closer as the
sample size increases; forN = 280, their difference is just 0.0038. Therefore, we can

assume that there is a unique threshold It. It is easy to see that
∫ βGz

0
G (1, 2, 3) dβ can

be used as an estimate of the magnitude of the error of using the factorizations 12-13
or 13-32 instead of 12-32. In other words, the assumption of the model 12-32 is much
less traumatic than the other assumptions when β ∈ [βcmin, β

c
max]. The situation is

reversed for β > βcmax, but this happens when the first half of the evolution is already
gone, thus having little impact in the outcome of the optimization.

We have also tested the above factorizations with the functions fdec3 (α). Table 4
presents the results. As was shown in Sect. 3.2, the reduction of the mutual informa-
tion also implies a reduction of the difficulty of the function. Here, we can observe
the effect on the convergence time as well as on the success rate. Note for example,
that from α = 0 to α = 0.05 the success rate goes from 22% to 92% in the case of the
factorization 12-13. Another interesting observation is about the difference between
the performance of different factorizations as α grows. For example, the difference
between the convergence time for the complete factorization (8), 12-13-32, and for
the factorization 12-13 decreases as α grows: 8.85, 5.84, 3.93, 2.66 and 2.32. We
believe that the last result is an evidence supporting the following statement: the
reduction of the mutual information increases our choices in model selection.

Some Results with Truncation Selection

For the sake of completeness, Table 5 presents the results of running a FDA with
truncation selection on the family of functions fdec3 (α). The reader can easily check
the similarities of these results with those obtained with Boltzmann selection. For
example, they also support the claim that the reduction of the mutual information
amounts to a reduction of the functions difficulty.

4 Designing Test Functions by Maximum-Entropy

In spite of recent research advances in EDAs we still do not have a complete, sound,
consistent and rigorous theory of evolutionary algorithms. In practice, this leads to
the use of simulation as a fundamental tool of verification, validation and comparison
of algorithms. One common simulation method is the use of test functions obtained
by concatenation of elementary functions of small order. Usually, the design of such
functions is focused on considerations about specific aspects of the complexity of
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Table 5. FDA runs with the fdec3 (α). Setting: N = 280, n = 30 and truncation selection of
0.3

12-13-32 12-32 12-13 13-32

α %S Gc %S Gc %S Gc %S Gc

0 100 5.99 91 8.49 35 9.74 34 9.68
0.05 100 5.74 95 8.18 65 8.61 75 8.52
0.20 100 5.32 99 7.18 85 7.61 89 7.65
0.50 100 4.91 100 6.74 100 6.30 99 6.42

the elementary functions: multimodality, isolation of the optimum value, proximity
of the function values of the good configurations, frustration of overlapped elemen-
tary functions, etc. In this scenario, it is important to know the properties of the
elementary functions and how these properties are combined to define the properties
of the whole function. Moreover, it would be useful to design functions that are not
given as a combination of smaller elementary functions.

The design of benchmark functions for testing EDAs have to emphasize, in the
first place, the complexity of the probabilistic structure of the search distributions.
The fitness function, the intensity and type of selection determine for each configu-
ration its probability of being in the selected set and consequently the probabilistic
structure of the search distributions.

A successful EDA builds a probabilistic model that captures the important cor-
relations of the search distribution, assigning high probability values to the selected
configurations. Therefore, it would be convenient to design functions that enforce a
given set of “important correlations”, but do not enforce any other correlation con-
straint. In this section, we present an approach to this problem, where the designer
gives a collection of probabilistic constraints that have to be fulfilled by the search
distributions of the function. Our method is connected to the concept of entropy
because it constructs a maximum-entropy distribution that satisfies the given con-
straints.

4.1 The General Framework

The corner stone of our approach to the design of benchmark functions for discrete
optimization is what we have called the family of Boltzmann functions

fβ (x) =
log(pf,β (x))

β
+
log (Zf (β))

β
(13)

Equation (13) comes from the definition of the Boltzmann probability mass
pf,β (x). From the point of view of this model, (13) are members of the parametric
class F (β,Z, pf,β (x)), which could be refined by including additional parameters
of the distribution pf,β (x). For example, when the distribution factorizes and no
factor contains more than K variables, we are dealing with the parametric sub-class
F (β,Z, pf,β (x) ,K).
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Avoiding the Exponential Effort

The computation of the partition function is always problematic; it needs an expo-
nential effort. Fortunately, in our approach this can be avoided. Note that in (13), the
second term is a constant that is added in all configurations. It is a shift along the
fitness dimension and has little to do with the complexity of the function. Therefore,
nothing prevents us from fixing the value of the partition function. Moreover, for
BFDA the following lemma holds.

Lemma 3 The difficulty of (13) for a BFDA is completely determined by the distrib-
ution pf,β (x).

Proof 1 The proof follows immediately from lemma 2.

If the distribution pf,β (x) is known and Z is set to an arbitrary value, then the
function fβ (x) is well defined for any β, i.e. for any configuration x, the value
fβ (x) can be computed. This means that the computation of the function for all
possible configurations is not necessary.

Usually, we use factorizations to deal with the exponential complexity of distrib-
utions. In the context of functions design, the factorizations also help to compute the
optima and the central moments of the functions. This kind of information is useful
to understand the functions’ properties. Moreover, sometimes it is useful to have a
fast procedure for computing the optima of benchmark functions when testing evo-
lutionary algorithms. For example, when the benchmark functions are drawn from
a distribution (Sect. 4.3) and the optima are needed to set the stopping criteria. The
reader is referred to [27,28] for a complete description of two methods that compute
the above-mentioned values for junction tree factorizations.

Whenever we have a distribution we can build a Boltzmann function. For exam-
ple, there are famous Bayesian networks (like the ALARM network [2]) that can be
used for this purpose. However, in this chapter we are more interested in the case
when, instead of having a distribution, we have a collection of probabilistic con-
straints that must be satisfied by the distribution.

Dealing with Mutual Information Constraints

We have already met the family of functions (13) in Sect. 3.2. Also we have learned
that the mutual information of pf,β (x) contains a lot of information about the com-
plexity of the function fβ (x). Therefore, when dealing with complexity issues, it
makes sense to design functions that fulfill mutual information constraints like:

I (Xa, Xb|Xc) ≥ A
I (Xa, Xb|Xc) ≤ B
I (Xa, Xb|Xc) ≤ I (Xd, Xe|Xf )

(14)

In (14), the letters a, b, c, d, e and f denote sub-sets of indexes, andA,B are con-
stants. Moreover, Xc and Xf may be empty, meaning that the expressions represent
marginal information.
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We formulate the general design problem as follows:

Given a collection of mutual information constraints C = {c1, . . . , cL}, find
a function f (x), whose Boltzmann distribution satisfies C within a given
temperature interval.

Our approach to the above-mentioned problem considers structural and paramet-
ric constraints. The structural constraints are specified by Bayesian or Markov net-
works, which use the separation and d-separation concepts [30] to codify statements
of probabilistic independence. The parametric constraints are statements about the
configurations’ probabilities.

In our method, the inequality

Ak ≤
M−1∑
i=0

aikp
(
x(i)
)
≤ Bk (15)

denotes the k-th parametric constraint. The sum is for all configurations x(i) of X ,
i.e. M denotes the size of the space. Ak, Bk are real constants and aik ∈ {0, 1}.

It is worth noting, that some sub-sets of the inequalities (15) may define mar-
ginal distributions of p (x) when Ak = Bk for all inequalities in the sub-set. In this
chapter, we deal only with this type of constraint. Therefore, the mutual information
constraints (14) have to be mapped to marginal distributions. It is an interesting open
question how to translate other types of constraints to probabilistic statements.

Once the collection of marginal constraints has been derived from the mutual
information constraints it is necessary to compute the joint probability distribution.
The next section presents the issue.

Computing the Joint Probability Distribution

Algorithm 2 presents the general scheme of the design of Boltzmann functions. In the
step 2, the algorithm computes a junction tree from the given structural constraints.
The computation of a junction tree out from a Bayesian or a Markov network is a
well-studied problem [31]. In the step 3, is computed a maximum-entropy distribu-
tion that is compatible with the given structural and parametric constraints. There are
two possibilities as it is explained below.

The classic implementation of the IPF algorithm can be used to compute the
joint probability distribution when the number of variables is small. If the collection
of marginals is consistent, the outcome of running the IPF is a maximum-entropy
joint.

For larger number of variables, the IPF has to be combined with the junction tree
technique. It is run locally on the nodes and the results are sent as messages to the
neighboring nodes. It has been proved that this converges to the unique maximum-
entropy solution, so it is equivalent to IPF. The interested reader is referred to [23,29]
for details on the implementation of the method for computing maximum-entropy
distributions on multi-connected Bayesian networks and polytrees.

Finally, in the step 4, the desired function is computed as the function that makes
of p (x) a Boltzmann distribution with parameters β, Z and f (x).
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Algorithm 2 A maximum-entropy method for designing Boltzmann functions

Step 1 Input β, Z, and the collection of structural and parametric constraints.
Step 2 Compute a junction tree compatible with the structural constraints.
Step 3 Compute the maximum-entropy junction tree distribution p (x) that fulfill the

parametric constraints.
Step 4 Output fβ (x) = log(p(x))

β
+ log(Z)

β

4.2 Designing the First-Polytree Functions

In this section, we take a closer look at our method through the design of three binary
functions whose structure of the search distribution is single-connected. For obvious
reasons, we say that they belong to the polytree class of functions. The functions have
been called FirstPolytree3 (f3

Poly), FirstPolytree5 (f5
Poly) and OneEdge (f3

OneEdge).
Figure 4 presents their graph definitions, i.e. their structural constraints.

1 3

2

1 2

34

5

1 2

3

Fig. 4. Structural constraints of the first-polytree functions. From left to right: f3
Poly , f5

Poly

and f3
OneEdge

The polytree functions can be specified with simple mutual information cons-
traints. The marginal mutual information of every pair of parents of a variable
should be below the marginal independence threshold It, for the given confidence
level. Similarly, the marginal mutual information of every child-parent pair should
be greater than It.

We first list the marginal mutual information constraints:

OneEdge: I (1, 3) > It I (1, 2) < It I (2, 3) < It
FirstPolytree3: I (1, 3) < It I (1, 2) > It I (2, 3) > It

FirstPolytree5:
I (1, 2) < It I (3, 4) < It I (1, 3) > It
I (2, 3) > It I (3, 5) > It I (4, 5) > It
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Algorithm 3 Designing bivariate marginals

Step 1 Input I (X,Y ).
Step 2 Set the univariate probabilities to some random values px y py .
Step 3 if I (X,Y ) < It, then set pxy = pxpy .
Step 4 if I (X,Y ) > It, then set pxy as far as possible from pxpy .

Another type of constraints is needed to specify the orientation of the edges. The
d-separation concept says that in the structure X → Z ← Y , the variables X and Y
are marginally independent and conditionally dependent given Z [5]. If Ict denotes
the conditional independence threshold, then the second list of mutual information
constraints is the following:

OneEdge: I (1, 3| 2) > Ict I (1, 2| 3) < Ict I (2, 3| 1) < Ict
FirstPolytree3: I (1, 3| 2) > Ict I (1, 2| 3) > Ict I (2, 3| 1) > Ict

FirstPolytree5:
I (1, 3| 2) > Ict I (1, 2| 3) > Ict I (2, 3| 1) > Ict
I (3, 4| 5) > Ict I (3, 5| 4) > Ict I (4, 5| 3) > Ict

Designing Bivariate Marginals with Given Mutual Information

Once the list of constraints has been given, we construct a set of bivariate marginals
that satisfy the constraints. The algorithm 3 does the job.

It is known, that the sufficient statistics for the specification of any binary bi-
variate marginal p (x, y), are the values px = p (X = 1), py = p (Y = 1) and
p = pxy (X = 1, Y = 1). Moreover, either pxy ∈ [max (px + py − 1, 0) , pxpy]
or pxy ∈ [pxpy, min (px, py)]. Taking the univariate probabilities px and py as in-
put values, we proceed as follows: if I (X,Y ) < It, then we just make pxy = pxpy .
Otherwise, we put pxy as far as possible from pxpy to maximize the mutual informa-
tion. Finally, the bivariate marginal is given by

pxy (00) = 1 − px − py + pxy pxy (10) = py − pxy
pxy (01) = px − pxy pxy (11) = pxy

(16)

After all univariate and bivariate marginals have been computed, the next step of
the Algorithm 2 is the construction of the joint probability.

The classic implementation of the IPF algorithm can deal with our functions
because the number of variables is small. If the IPF is run with the above marginals,
a trivariate maximum-entropy joint is obtained. For larger number of variables we
must resort to the junction tree implementation of the maximum-entropy algorithm.

Each node of the junction tree associated to a polytree is formed by one vari-
able and the set of its parents. This means that the trivariate functions have only one
clique and therefore, the simple IPF will be enough. The junction tree for the func-
tion FirstPolytree5 contains two cliques and therefore, the advanced implementation
of the algorithm is needed. In this way, we have constructed high order marginals
using only univariate and bivariate marginals. We must check that the second list of
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constraints are also fulfilled. Moreover, to guarantee consistency the design of these
marginals must satisfy additionally the following constraint [17]:

Let d be the number of variables in a junction tree node. For all 2 ≤ k ≤ d and
all possible choices j1, . . . , jk of k elements out of {1, . . . , d} the condition

1 ≥
k∑
i=1

pji −
k∑

i,l=1,i �=l
pjijl

must be fulfilled.
We use the values 12.94, 16.40 and 87.97 as input values for the partition func-

tions of f3
OneEdge, f

3
Poly and f5

Poly , respectively. The univariate probabilities also
are set. For example, the values used in the function f3

Poly are 0.79, 0.46 and 0.24
for X1, X2 and X3, respectively. Finally, we set β = 2.

Tables 6, 7 and 8 present the resulting functions f3
OneEdge, f

3
Poly and f5

Poly , re-
spectively. The Boltzmann distributions with parameter β = 2 are polytree distribu-
tions satisfying the structural and parametric constraints given above. The reader can
easily check this by computing their Boltzmann distributions and then computing the
mutual information values.

Table 6. OneEdge function

x3x2x1 f3
OneEdge (x) x3x2x1 f3

OneEdge (x)

000 1.042 100 −0.083
001 −0.736 101 0.092
010 0.357 110 −0.768
011 −1.421 111 −0.592

Table 7. FirstPolytree3 function

x3x2x1 f3
Poly (x) x3x2x1 f3

Poly (x)

000 −1.186 100 −4.391
001 1.074 101 −1.122
010 0.469 110 −0.083
011 0.096 111 0.553

Investigating the Polytree Functions

Figure 5 presents the Boltzmann conditional curves and the curve G (1, 2, 3) for
the FirstPolytree3 function. Note that the curves I (1, 3| 2) and G (1, 2, 3) coincide
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Table 8. FirstPolytree5 function (x = (x5, x4, x3, x2, x1))

x f5
Poly (x) x f5

Poly (x) x f5
Poly (x) x f5

Poly (x)

00000 –1.141 01000 –0.753 10000 –3.527 11000 –6.664
00001 1.334 01001 1.723 10001 –1.051 11001 4.189
00010 –5.353 01010 –4.964 10010 7.738 11010 –10.876
00011 –1.700 01011 –1.311 10011 –4.085 11011 –7.223
00100 0.063 01100 1.454 10100 1.002 11100 –1.133
00101 –0.815 01101 0.576 10101 0.124 11101 –2.011
00110 –0.952 01110 0.439 10110 –0.013 11110 –2.148
00111 –0.652 01111 0.739 10111 0.286 11111 –1.849
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Fig. 5. Boltzmann information curves for the FirstPolytree3 function: (plus) I (2, 3| 1),
(square) I (1, 2| 3), (solid line) and (circle) G (1, 2, 3). Note that the last two curves coin-
cide at the chosen scale

at the chosen scale. This means that the marginal curve I (1, 3) is close to zero.
The actual values are below 10−3, which amounts to independence for sample sizes
below 2000 configurations. The other two marginal dependencies are quite strong
for β = 2 (the value used in the design of the function). As far as G (1, 2, 3) is
always positive we conclude that for any selection pressure we have more evidence to
decide against conditional independence than against marginal independence. Note
that the conditional interval [βcmin, β

c
max] for I (1, 3| 2) is completely included in

the other two conditional intervals for any sample size. Note that in contrast with the
Deceptive3, in this function the value βGz is not inside the interval [βcmin, β

c
max].

Figure 6 presents the conditional and marginal Boltzmann curves for the OneEdge
function. For all β, the values I (1, 3) and I (1, 3| 2) are very close; their difference,
G (1, 2, 3), is less than 10−8 and negative. The curves I (1, 2| 3) and I (2, 3| 1) are
below 10−9, which implies independence.
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Fig. 6. Boltzmann information curves for the OneEdge function. The second row, from left
to right, contains the conditional curves I (1, 2| 3), I (1, 3| 2) and I (2, 3| 1). The upper row
contains the corresponding marginal curves

In what follows, we use the BFDA to investigate two separable functions of
30 and 60 variables. The functions are formed by concatenating either the function
f3
OneEdge or the function f3

Poly .
By just looking at Tables 1, 6 and 7 it is difficult to draw any conclusion about

what is the best factorization and which is the more difficult function for the BFDA.
Following the theorem 2 the choice would be the complete model, which was shown
to be the best factorization for the Deceptive3. However, the simulations of this sec-
tion show that this is not the case for the other functions.

Table 9 presents the results of running the BFDA with the population size set
to 120 for the FirstPolytree3. This time the factorization 12-32 is the clear winner.
The convergence is almost twice as fast and its success rate is twice as high, in the
factorization 12-32, as in the complete model. Similarly, the number of function eval-
uations is much bigger if the complete factorization is used. Therefore, we conclude

Table 9. BFDA runs with the FirstPolytree3. Setting: N = 120

12-32 12-13-32

n %S Gc βmin βmax %S Gc βmin βmax

30 95 13.32 0.197 4.927 55 22.29 0.139 7.954
60 85 13.49 0.196 5.526 38 21.95 0.139 8.715
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that the assumption making the variables 1 and 3 marginally dependent is wrong.
This is what we expected from our design decisions.

Regarding the Boltzmann curves the important observation is that the runs occur
within the most inner interval [βcmin, β

c
max]. Moreover, the better the conditions for

the optimization are, the smaller the value of βmax. For example, for a fixed model,
the smallest problem converges with the smallest βmax. Alternatively, if the size of
the problem is fixed, then the best model has a smaller βmax. The same is observed
in the simulations with the OneEdge. Table 10 presents the results.

Table 10. BFDA runs with the OneEdge. Setting: N = 120

12-32 12-13-32 13

n %S Gc βmax %S Gc βmax %S Gc βmax

30 94 11.64 4.724 98 9.36 3.917 100 9.25 3.867
60 39 20.82 7.026 75 17.067 6.151 98 17.03 6.045

For the OneEdge function three models are investigated. The model 13 – the
one that is used in the design of the function – is the best. For example, compare
the success rate of the complete model and the best model for 60 variables. Note
that the convergence time is the same. In the model 12-32 the variables 1 and 3 are
independent, which explains its poor performance.

We also have investigated the functions with the FDA. Besides the separable
problem, in the simulations an overlapped additive function have been included. The
overlapped case is constructed as follows: the last variable of a sub-set is also the
first variable of the next sub-set in the additive decomposition. We use the letter O to
denote this case. For example, contrast O-12-32 with 12-32.

Tables 11 and 12 present the numerical results. The factorizations 12-32 and O-
12-32 are the best for the functions f3

Poly . Similarly, the models 13 and O-13 perform
better for the function f3

OneEdge. Both the separable and the overlapped complete
models do not scale well. For example, compare the success rates for the overlapped
case of the OneEdge function.

Table 11. FDA runs with the FirstPolytree3

N %S Gc %S Gc %S Gc

n = 30 n = 60 n = 90

12-13-32 120 92 5.39 42 9.10 6 12.33
12-32 120 93 5.36 67 9.46 27 13.04

n = 31 n = 61 n = 91

O-12-13-32 200 83 6.81 25 11.04 4 14.00
O-12-32 200 94 6.59 63 11.28 20 14.90
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Table 12. FDA and the OneEdge function

N %S Gc %S Gc %S Gc

n = 30 n = 60 n = 90

12-13-32 60 54 5.12 6 8.33 0 −
13 60 95 4.53 65 8.18 28 10.71

n = 31 n = 61 n = 91

O-12-13-32 100 71 5.57 20 10.00 2 12.50
O-13 100 100 5.20 81 9.03 57 12.52

We summarize the results as follows. The behaviour of the polytree functions
investigated in this section, agrees with our design expectations. On the other hand, a
clear correspondence between what happened in the simulations and the Boltzmann
curves was observed. We take this as a sort of validation of both the usefulness of the
analysis and design method introduced in this chapter.

4.3 Designing Random Class of Functions

In the previous section, we followed the common practice of concatenating low order
functions to form larger additively decomposable functions. However, it would be
useful if we could design a complete additive function with a given structure without
resorting to the trick of concatenating small sub-functions. Moreover, it would be
even more useful to design random class of functions, instead of isolated functions.
To accomplish this task our method has to be extended.

In this section, we restrict ourselves to the design of the random class of binary
polytree functions. This will provide the reader with general ideas and guidelines
that might be helpful to undertake other design efforts.

Sampling the Structural Constraints

The first step is the generation of a random polytree graph. As was explained in Sect.
4.2, it is the structural constraint.

There exist simple methods for generating random graphs. Any of these algo-
rithms together with a rejection sampling technique to reject graphs with directed
cycles and undirected cycles, will do the job. At this stage the method outputs the
graph, its junction tree and two lists, L1 and L2. If a pair (i, j) belongs to the first
list, both i and j are parents of the same node and therefore, I (Xi, Xj) < It. On
the other hand, the second list contains a pair (i, j), if and only if, j is the parent of
i. In this case, I (Xi, Xj) > It. For each pair (i, j) in the lists, we sample a bivari-
ate marginal distribution p (xi, xj), that obeys the corresponding mutual information
constraint. This non-trivial task is discussed in what follows.
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Sampling Bivariate Marginals Under Independence

The problem is related to the evaluation of the exact sampling distributions of the
cell counts in applied multivariate analysis [35]. Therefore, we set ni = Np (xi),
nj = Np (xj) and nij = Np (xi, xj), where N is the sample size.

Let assume Poisson, multinomial or independent multinomial sampling. Under
the null hypothesis of independence, the conditional distribution of nij given the ob-
served marginal counts ni and nj is the central hyper-geometric distribution, which
is known exactly. The random scalar variable Nij is given by

Nij ∼

(
ni
nij

)(
N − ni
nj − nij

)
(
N
nj

) (17)

Let ni and nj be given. Then, for any pair (i, j) in the list L1 we generate the
bivariate marginal p (xi, xj) by sampling nij from (17), and then substituting pij =
nij/N , pi and pj in (16).

It is worth noting, that the method can be extended to deal with variables of
cardinality greater than two [35].

Sampling Correlated Bivariate Marginals

For the computation of the marginals associated to the list L2, the solution comes
from the exact non-null distribution theory [1].

Let assume multinomial sampling and let θ be the odds ratio [35]. Conditional
on ni and nj , the distribution of nij depend only on θ, and is given by

Nij ∼

(
ni
nij

)(
N − ni
nj − nij

)
θnij

M∑
u=m

(
ni
u

)(
N − ni
nj − u

)
θu

(18)

where m = max (0, ni + nj − n) and M = min (ni, nj).
As far as the constraints are specified using the mutual information, one could try

a reparameterization of (18). However, we use directly the odds ratio, which obeys
0 ≤ θ < ∞. Values of θ farther from 1.0 in a given directions represent higher
values of mutual information. Moreover, if θ1 = 1/θ2, then both θ1 and θ2 represent
the same level of dependence.

Let ni and nj be given. For any pair (i, j) in the list L2, we compute θ according
to the mutual information I (Xi, Xj). Then, nij is sampled from (18) and p (xi, xj)
is obtained from (16).

Once all the bivariate marginals have been computed we are ready to build the
maximum-entropy junction tree. Afterwards, we obtain an instance of the random
class by substituting in (13) the distribution and the given β.
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How to Test EDA Algorithms

The procedure introduced in the previous sections allows us to define a large class of
functions: the class of random Boltzmann polytree functions (RBPF). We denote the
class byRBPF (n, K, β), whereK is the maximum number of parents in the poly-
tree. Note that Z is not included as a parameter because it is chosen automatically in
such a way to make the function non-negative for any configuration x.

Testing evolutionary algorithms have been recognized as a major problem in cur-
rent EDA research [23]. We believe that the approach presented in this chapter will
improve the ability of the research community to test and compare EDA algorithms.
Moreover, the design of random classes of Boltzmann functions should help to un-
derstand the complex mechanisms involved in EDA optimization, because now we
have an explicit control of the dependencies presented in the functions. We are con-
fident that others random classes can be designed using similar ideas to the ones
presented in this chapter.

Within our framework, any optimization algorithm should be tested in samples
of carefully designed random classes of functions. In other words, instead of using
a single function and running the algorithm 100 times, we prefer to use once 100
different functions sampled from the same random class.

5 Learning Low Cost Max-Entropy Distributions

A critical problem of learning search distributions in EDAs is the sample complexity,
which is related with the number of functions evaluations. One important challenge
of an evolutionary algorithm is the reduction of the number of evaluations, while
the effectiveness and efficiency of the search is preserved. In this section we will
use the concept of entropy to achieve this goal. Our idea is simple: the true search
distribution is substituted by an approximation, which can be reliably computed with
less population size.

The following definitions will help to clarify our ideas.

Algorithm 4 Maximum-entropy EDA

Step 1 Set t← 1. Generate N � 0 points randomly.
Step 2 Select M points according to a selection method.
Step 3 Find a suitable R and learn a Rps(x),R from the selected set.
Step 4 Compute the maximum entropy distribution psR (X).
Step 5 Sample N new points according to the distribution

p (x, t+ 1) = psR(x1, . . . , xn)

Step 6 Set t← t+ 1. If termination criteria are not met, go to step 2.
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Definition 5 Let p (X1, . . . , Xn) be the factorization of the selected set. We say that
p (X1, . . . , Xn) is a true search distribution if it was computed from a data set, whose
size allows reliable estimates of the factors’ probabilities.

Definition 6 Let X be a random vector of dimension n and R = {r1, . . . , rm} be
a set of index-sets. A restriction of a joint distribution p (x) is a set of marginal
distributions

Rp(X),R = {p (Xr1) , . . . , p (Xrm)}
of p (x), such that the following holds:

1. ∀i, 1 ≤ i ≤ m, ri ⊂ {1, . . . , n} and ri �= ∅
2. ∀i, j, 1 ≤ i, j ≤ m, ri � rj

Definition 7 Let Rp(X),R be a restriction of p (x), then pR (x) is defined as the
maximum-entropy distribution that fulfills the constraints Rp(X),R.

Using the above definitions, we introduce an EDA that uses the MEP (see algo-
rithm 4). We have called it maximum-entropy EDA (meEDA).

Step 2 is a critical point of the meEDA algorithm because the algorithm has to
choose a suitable restriction set. It is an open problem how to identify good restric-
tions of the search distributions. For example, besides the primary goal of getting a
sampling distribution with less cost than the true distribution, there could be other
reasons that determine a good choice of the restriction set. On the other hand, an
efficient procedure for the computation of the maximum-entropy distribution exists
only if the structure of the restriction set satisfies certain constraints. The next sec-
tion presents an algorithm EDA where the maximum-entropy distribution can be
computed efficiently.

5.1 Extending PADA2 with Maximum-Entropy

The polytree functions designed in Sect. 4 have a common property: their search
distributions are single-connected. In this section we modify PADA2 – an algorithm
specially designed to deal with single connected Bayesian networks – to transform it
into a meEDA.

The polytree approximation distribution algorithm (PADA) [33,34] was designed
to deal with the whole class of single-connected Bayesian networks; also called the
polytree class. It uses first, second and third order marginals to recover polytrees from
data. In this work we will use PADA2 [33] – variant of PADA, which learns only
first and second order marginals distributions. PADA2 is inspired by an algorithm
proposed by Rebane and Pearl [30]. We shortly outline the basic ideas behind the
algorithm.

A polytree with n variables has a maximum of n − 1 arcs, otherwise it would
not be single connected. PADA2 chooses the edges that have the largest values of
the magnitude H (X) + H (Y ) − H (X,Y ), which is also called mutual informa-
tion [3]. The selection of the edges is done by a greedy maximum weight spanning
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tree algorithm. These edges form the so-called skeleton (the underlying undirected
graph).

After the construction of the skeleton is done, a procedure tries to orient the
edges by using the following scheme: if X − Z − Y ∈ skeleton, then whenever
H (X) + H (Y ) = H (X,Y ) holds statistically it orients the edges to Z. In this
case it is said that Z is a head to head connection. The edges that were not oriented
after the above test are directed at random without introducing new head to head
connections.

Both during learning and sampling, EDAs that learn general Bayesian networks
need a population size, which is exponential in the number of parents. This is im-
portant to get reliable estimates of the conditional probabilities. However, although
PADA2 only learns first and second order marginals, it has to deal with the same
exponential problem in the sampling step, i.e. what is gained in learning is lost in the
sampling.

To transform PADA2 into mePADA2 we must define the polytree’s restriction
set, i.e. all bivariate marginals that belong to the skeleton and the bivariate marginals
defined for each pair parent-child. Note that this restriction set was used as a para-
metric constraint in Sect. 4.2. The next step consists in computing the higher order
marginals as the maximum-entropy distributions that obey the given second order
marginals. Consistency is guaranteed by propagating across the junction tree associ-
ated to the polytree as was explained in Sect. 2.4.

Now we present some numerical results to support the theoretical claims. We use
two separable ADF functions, which are based on the Deceptive3 and FirstPolytree5.
Although the structure of the Deceptive3 function is not single-connected, PADA2
tries to build the better single-connected approximation it can. It is remarkable that
the method still produces very good results. We recall that the basic claim of our
research is that the maximum-entropy distribution, which can be computed with a
smaller population size than the true search distribution, is suitable for sampling.
Moreover, sometimes it gives better results than the true distribution.

The algorithms are run until a maximum of 20 generations with a truncation
selection of 0.3 and without elitism. Each experiment is repeated 100 times. The
problem sizes were set to 21 variables for the Deceptive3 and 20 variables for the
FirstPolytree5.

As can be seen from Table 13 the improvement of mePADA2 is enormous as
compared to PADA2. For the f5

Poly , the superiority of mePADA is more evident; not
only it scales much better than PADA2, but the convergence time is drastically re-
duced. It is also remarkable that the number of generations until success always stays
the same or even improves. It has also stabilized as can be seen from the decrease in
the standard deviation.

The idea of improving the performance of EDAs by constructing maximum-
entropy approximations of the search distributions was first introduced in [29]. Later
it was further developed in [23] for multi-connected networks.
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Table 13. PADA2 vs. mePADA2 with fdec3 and f5
Poly

fdec3 f5
Poly

PADA2 mePADA2 PADA2 mePADA2

N %S Gc %S Gc %S Gc %S Gc

200 0 − 2 8.5± 0.7 25 10.1± 2.1 59 5.1± 1.1
600 8 9.7± 1.5 69 7.4± 1.1 50 10.4± 2.6 100 3.9± 0.7
800 10 8.7± 3.2 90 7.0± 1.2 54 10.6± 2.3 100 3.7± 0.6
5000 92 7.2± 1.2 100 5.8± 0.9 55 10.8± 1.5 100 2.9± 0.4

6 Entropy and Mutation

The last section of this chapter relates the concept of entropy toa powerful operator
of evolutionary algorithms: mutation.

The mutation operator did not receive much attention during the early years of re-
search in EDAs. It was believed to play no important role due the dramatic improve-
ment in search efficiency achieved by EDAs, with regard to GAs. People profoundly
believed that the success of EDAs is determined by the amount of knowledge it has
about the search distributions, i.e. the best informed models were considered – and
still are considered – the best models. Within this way of thinking there was little
space for mutations. However, after some years of hard work, researchers have come
to the conclusion that mutation is also a powerful operator within EDAs. Therefore,
new and original developments are needed in the field to deal with this issue.

To begin with, we must draw the reader attention to the fundamental shift in the
interpretation of mutation: EDAs have to approach mutation from a distribution per-
spective, in contrast with the genotype perspective of GAs. While a GA mutates sin-
gle individuals, an EDA must mutate distributions. We have developed an approach
to fulfill this requirement.

6.1 How do we Measure the Effect of the Mutation?

A major problem with the mutation operator in evolutionary algorithms, is the lack
of a comprehensible, uniform and standard mechanism for measuring its impact in
the evolution. There are almost as many mutation operators as problems, and only
few of them are problem-independent. The common way of assessing the amount
of mutation considers the probability or frequency of application of the operator,
i.e. there are no measurements units for mutation. The obvious drawback of this
approach is that it is difficult to compare the impact of different operators or the
effect of the same operator in different situations.

Our approach to mutation solves the above-mentioned problems. It has a distri-
bution perspective, is problem-independent, has measurements units, and its impact
in different scenarios can be easily compared. It is based on the concept of entropy.

The relation between entropy and mutation is quite intuitive: when a random
variable is mutated a certain degree of randomness is added to it. In others words,
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mutation increases the level of uncertainty we have about the exact value of a random
variable. Therefore, it seems reasonable to measure the amount of mutation applied
to a variable as the increase of its entropy. This connection was first made in [33].

Linking the concepts of mutation and entropy has some important advantages:

• Entropy is a well understood information-theoretic concept, which encapsulates
the notion of randomness and uncertainty.

• It connects the mutation to other fundamental concepts like mutual information
and relative entropy.

• Mutation also gets from entropy measurements units: bits or nats, instead of using
the popular, but less clear notion of probability of application of the mutation
operator.

6.2 From Bit-flip to Entropic Mutation

In this section, we shortly discuss two important mutation schemes that precede
our proposal. One was introduced in GAs, and the other was recently introduced
in EDAs. The observation of the entropic variations produced by these schemes was
a major motivation for our work.

Bit-flip Mutation

The classical GA mutation operator for binary problems is a bit-flip (BF ) operation
that is applied to each gene with a certain given probability μ [8]. The next lemma
relates BF-mutation with the univariate probabilities.

Lemma 4 For binary variables, BF mutation changes the probability according to

pf − pi = μ (1 − 2pi)

where pf is the probability after mutation and pi is the probability before mutation.

Proof 2 Let the probability of a bit flip be μ, and pi be the probability of a gene being
1 before mutation. As these events are independent, we can write for the probability
pf of the gene being 1 after mutation

pf = pi (1 − μ) + (1 − pi)μ = pi (1 − 2μ) + μ (19)

and from this we get
pf − pi = μ (1 − 2pi) � (20)

If we compute the entropy of a variable before and after the BF-mutation, H (pi)
and H (pf ) respectively, then we can measure the increase of entropy produced by
this operation

δH = H (pf ) −H (pi)

Figure 7 shows δH curves for six different values of the probability of mutation
μ. Note that δH is nonlinear for small values of the initial entropy, H (pi), and
small μ. However, for large values of H (pi) the curves approach a linear function.
Moreover, for large μ the curves approach lines. The limit case, μ = 0.5, defines a
random walk: for any pi the probability after mutation is 0.5.
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Fig. 7. Entropic curves δH vs H for bit-flip mutation

Prior Mutation

Prior mutation was introduced in [20]. It uses the concept of Bayesian prior, which
assumes that the probability of an event has an a priori known distribution. Usually,
for binomial variables, the family of Dirichlet distributions plays the role of prior
distributions.

In an EDA with prior mutation, the univariate probabilities are not approximated
by the maximum likelihood estimates m/N (m is the number of 1 in N cases). In-
stead the approximation (m+ r) / (N + 2r) is used, where r is the hyper-parameter
of the Dirichlet distribution. Prior mutation is linked to bit-flip mutation. The follow-
ing theorem was proved in [20].

Theorem 5 For binary variables, a Bayesian prior with parameter r corresponds to
mutation rate μ = r/ (N + 2r)

Therefore, for the univariate case bit-flip mutation amounts to prior mutation,
and as a consequence, they have the same entropic curves.

6.3 Entropic Mutation

The linear properties of both the bit-flip and prior entropic curves, have suggested
that we consider a mutation scheme where δH changes linearly. As a result we have
come out with a novel mutation scheme that we have called linear entropic mutation
(LEM). In this chapter, we just outline the general ideas.
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The Univariate Case

In this section, we discuss the entropic mutation of a binary scalar random variable.

Definition 8 Let X be a random scalar variable with entropy H (X). We say that to
the variable X has been applied the univariate entropic mutation δH (X) , if after
mutation the entropy of the variable is given by

Hm (X) = H (X) + δH (X)

This is a general definition, which can be applied as well to discrete and contin-
uous random vector variables. Besides the univariate mutation, we have defined the
conditional and the joint entropic mutations. However, these cases are beyond the
scope of this work.

Definition 9 (Full mutation) Let X be a binary random scalar variable with entropy
H (X). We say that δH (X) is a full (or complete) mutation of the variable X if

δH (X) = 1 −H (X)

Full mutation amounts to bit-flip mutation with μ = 0.5. In this case, a variable
gets an increase of entropy equal to what it needs to reach its maximum entropy.
This kind of mutation has little use in an optimization context. At this point it is
natural to ask ourselves when and how much the entropy of a given variable should
be changed. A simple answer based on common sense says that one would like to
change a variable if it has low entropy. Indeed, it does not make any sense to mutate
a variable with probability p = 0.5 (H(p) = 1).

Figure 8 shows the line of full mutation as a function of the initial entropy, to-
gether with two others linear functions of H . The slopes of the lines are the mutation
intensities, α. The following definition formalizes this idea.

Definition 10 LetX be a random scalar variable with entropyH (X). We say that to
the variableX has been applied the linear entropic mutation δH (X) with parameter
α if after mutation it has entropy Hα (X) and the following holds

δH (X) = (1 −H (X))α ⇔ Hα (X) = (1 − α)H (X) + α (21)

Note in Fig. 8, that α is the ordinate for H(X) = 0. So, it is bounded by α = 1
(full mutation) and α = 0 (no mutation).

The mutation intensity α controls the strength of the mutation, i.e. how much the
entropy of a variable is changed. In an optimization scenario α might change across
time; thus, the general form of the mutation intensity is α (t).

The computation of a LEM-mutation of p (X) is accomplished in two steps.
Firstly, Hα (X) is computed according to (21), and then the new probability distrib-
ution pα (X) is obtained from Hα (X). However, as the entropy of binary variables
is symmetric – each entropy value is mapped to exactly two probability values – we
introduce the following definition to resolve the ambiguity.
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Fig. 8. LEM-mutation of a random binary variable. From top to bottom the slopes (α) are
equal to 1, 0.5 and 0.1

Definition 11 (Inverse function of H (X)). Let H(−1) : [0, 1] × [0, 1] → [0, 1] be a
function such that for any real numbers p and q, with 0 ≤ p, q ≤ 1,

p = H(−1) (H (p) , q) ⇒ (2p− 1) (2q − 1) ≥ 0

Definition 11 says that for a given pair 〈h, q〉 (with h = H (p)), the function
H(−1) (h, q) returns a probability p, such that both p and q lie together in the interval
[0, 0.5) or in [0.5, 1]. This definition is useful because for any p, pα lie in the same
half of [0, 1] as p. Finally we can write the expression for pα as follows:

pα = H(−1) ((1 − α)H (X) + α, p) (22)

A Note on the Multivariate Case

The multivariate LEM is more difficult than the univariate case, even for binary vari-
ables. Here we just give a necessary condition. Other results for multidimensional
distributions will be published elsewhere soon.

Definition 12 Let p (x1, x2, . . . , xn) and pα (x1, x2, . . . , xn) denote a binary joint
probability mass and its LEM-mutation with mutation intensity α. If H (X) and
Hα (X) are their respective entropy values, then the following holds:

δH (X) = (n−H (X))α and Hα (X) = (1 − α)H (X) + nα (23)

Table 14 shows the set of joint probability distributions pα (x1, x2, . . . , xn) that
were used to compute the family of functions fdec3 (α) in Sect. 3.2. Note in the
second column that the entropy values obey the relation (23), where H (X) is the
entropy of the first row and n = 3. However, computing pα (x1, x2, . . . , xn) from
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Table 14. LEM mutation and the family fdec3 (α).

x3x2x1

α Hα 000 001 010 011 100 101 110 111

0.00 1.74 0.204 0.071 0.071 0.000 0.071 0.000 0.000 0.582
0.05 1.80 0.202 0.075 0.074 0.002 0.073 0.001 0.001 0.572
0.20 1.99 0.197 0.084 0.082 0.012 0.078 0.006 0.006 0.536
0.40 2.24 0.189 0.095 0.091 0.028 0.086 0.017 0.015 0.479
0.50 2.37 0.184 0.100 0.096 0.038 0.090 0.024 0.022 0.446

p (x1, x2, . . . , xn) and α is not a trivial task and is beyond the scope of this chapter.
Here we just present a special case where we easily can show a distribution that fulfill
(23). The following theorem gives the details.

Theorem 6 Let p (x) be the joint probability mass of a set of independent random
variablesX = (X1, X2, . . . , Xn). If

pα (x1, x2, . . . , xn) =
n∏
i=1

H(−1) ((1 − α)H (Xi) + α, pi) (24)

then
H(pα (X)) = (1 − α)H (X) + nα (25)

Proof 3 The lemma follows from theorem 3 and the linearity of the LEM-mutation.
We rewrite the right term of (25)

(1 − α)H (X) + nα = (1 − α)
n∑
i=1

H (Xi) + nα

=
n∑
i=1

((1 − α)H (Xi) + α)

=
n∑
i=1

Hα (Xi)

From (22) and (24) follows that pα (x1, x2, . . . , xn) is the distribution of inde-
pendence with univariate probabilities pα (xi). Therefore, the left term of (25) is
given by

Hα (X) =
n∑
i=1

Hα (Xi)

This completes the proof. ��
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Closely related to the above theorem is the following general result.

Theorem 7 Let p (x) be any joint probability mass of a set of random variables
X = (X1, X2, . . . , Xn), then

Hα (X) ≤
n∑
i=1

H (Xi)α

with equality if and only if the variables are independent.

Proof 4 The proof follows immediately from theorem 3 and the linearity of LEM.

6.4 Testing the UMDA with LEM

On the basis of theorem 6 we can add LEM-mutation to the UMDA [22], which is a
FDA with full factorization. The mutation operation is inserted before the sampling
step, i.e. the distribution of the selected set is mutated.

Mutation is a powerful mechanism that does not only makes the optimization
algorithm more robust and effective, but also might reduce its population size re-
quirements. The search using mutation takes more time and less population size than
without it. With regard to the number of function evaluations these are conflicting
factors. We just illustrate this issue with an example.

We run the UMDA with the OneMax function, which outputs the number of vari-
ables set to one in its input. The UMDA solves this function (with high probability)
if the population size is close to the problem size [22]. For the experiment we have
chosen a population size that is half the problem size (N = 30, n = 60), which
implies a dramatic reduction of the success rate. Figure 9 shows the success rate and
the number of function evaluations as a function of α. Note that for α = 0 (no mu-
tation), the success rate is ≈ 18% (out from 100 runs). However, for α ∈ [0.06, 0.2]
the success rate is above 90%.

Note that for α ∈ [0.08, 0.12], the number of functions evaluations reaches the
minimum. This value is less than the minimum population size (N ≈ 55) that is
needed to have a success rate above 90% without mutation. This value is shown as a
threshold dot line in the figure. We conclude that the gain due to the population size
is not eliminated by the increment in the convergence time.

In summary, with small populations and low or high mutation rates the algorithm
performs badly. However, there exists a window [αmin, αmax] where the success
rate is high, that might contain another window where the algorithm reaches the
minimum possible number of functions evaluations.

7 Conclusions

This chapter has highlighted several important issues regarding the relation between
the concept of entropy and EDAs.
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Fig. 9. UMDA and the Onemax function. Success rate and number of function evaluations vs.
the mutation intensity α. Setting N = 30, n = 60

We have introduced a tool to investigate the levels of interactions of the variables
under Boltzmann selection: the Boltzmann mutual information curves. It constitutes
the corner stone of a method for analysing the complexity of functions for EDAs.

Closely related to the analysis method, is our approach to the design of single
and random classes of benchmark functions. We are confident that the use of random
classes of Boltzmann functions improves our ability to test EDA algorithms in a
more scientific way giving to the benchmark approach a sound theoretical basis. The
point is that our method offers an explicit control of the dependencies presented in
the functions.

We have used the maximum entropy principle as a key element of the design
method and also to build low cost approximations of search distributions that obey a
given collection of constraints. We believe that the building of low cost distributions
may have tremendous impact on real-world applications of EDAs, so it deserves the
special attention of the research community.

Finally, a short introduction to a new scheme of mutation, which is based on the
concept of entropy was presented. The linear entropic mutation is a natural opera-
tor for EDAs because it mutates distributions instead of single individuals. From a
theoretical point of view it opens new exciting directions of research toward a better
understanding of the complex dynamics describing the golden equilibrium between
exploration and exploitation.
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