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Summary. Several important applications require a time-dependent (on-line) in which ei-
ther the objective function or the problem parameters or both vary with time. Several studies
are available in the literature about the use of genetic algorithms for time dependent fitness
landscape in single-objective optimization problems. But when dynamic multi-objective opti-
mization is concerned, very few studies can be found. Taking inspiration from Artificial Life
(ALife), a strategy is proposed ensuring the approximation of Pareto-optimal set and front
in case of unpredictable parameters changes. It is essentially an ALife-inspired evolutionary
algorithm for variable fitness landscape search. We describe the algorithm and test it on some
test cases.

1 Introduction

Several important applications require a time-dependent (on-line) multiobjective op-
timization in which either the objective function or the problem parameters or both
vary with time. In handling such problems, there exist not many algorithms and cer-
tainly there is a lack of test problems to adequately test a dynamic multi-objective
evolutionary algorithm.

In this paper we refer to (eventually on-line) of time-varying systems, where (i)
the optimal controller is time-dependent (because the system’s properties are time-
dependent), and (ii) several objectives have to be optimized at the same time. In
[6] the authors and K. Deb gave a full formulation of the resulting multiobjective
dynamic nonlinear optimization problem, and they formulated some continuous and
discrete test problems where the time dependent Pareto-optimal solutions are known
analytically.

Optimal design of controllers is a classical field of application for evolutionary
computation and. Once closed loop stability is assured, several additional criteria for
performances improvement can be considered such as maximum overshooting min-
imization, settling time minimization and rise time minimization, in order to design
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stable and powerful controllers. Several examples of such optimization procedure are
available in literature in case of static design problems, that is when the optimization
is to be performed off-line and when the model of the system (the plant or the de-
vice) is not time dependent. Two early examples can be found in [7] where some
controllers (among which an H2/H∞ one) are optimized with an EMO algorithm.
Another classical application of EMO for static controllers optimization consider
fuzzy rule set optimization for fuzzy controllers, some examples can be found in
[8, 9].

When considering dynamic single-objective optimization problems, several stud-
ies are available in the literature [5, 10, 11, 12] about the use of genetic algorithms
for. Major modifications in the operators are required for a prompt reaction to time
dependent changing. Moreover, several non-GA strategies for dynamic optimization
procedure for single objective problems are also proposed in the literature. But when
is concerned, very few studies are available in literature [13, 14, 15].

In [16], the authors introduced artificial-life inspired algorithm for dynamic
single-objective optimization problems. may be defined as a lower bound for AI
following the idea that “the dumbest smart thing you can do is stay alive”. This
funny motto has deep meaning when ALife is considered for computational purposes
[17, 18]. If life and interactions among individuals in a changing environment is it-
self a type of intelligence, it may be exploited for developing searching algorithms.
While classical evolutionary algorithms (GA and ES) consider Darwinian evolution
as a type of intelligence to be exploited [19], the proposed method uses life of indi-
viduals in a population as a basic form of intelligence and exploits this for search in
a dynamic environment.

In this paper, we make an attempt to extend this approach to dynamic multi ob-
jective test cases.

2 Problem Setting and Test Cases Description

A dynamic non-linear multiobjective problem can be defined in the following way

Definition 1. Let t be the time variable, V and W be n-dimensional and M-
dimensional continuous or discrete vector spaces, g and h be two functions defin-
ing inequalities and equalities constraints and f be a function from V× t to W. A
dynamic non-linear multi-criteria (minimum) optimization problem with M objec-
tives is defined as: {

min
v∈V

f = { f1(v, t), . . . , fM(v, t)}
s. t.g(v, t)≤ 0, h(v, t) = 0 .

In problem 1 some variables are available for optimization (v) and some other (the
time t) are imposed parameters being independent from optimization variables; both
objective functions and constraints are parameter-dependent. A more general defini-
tion of the problem can be found in [15].
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Definition 2. We call at time t (SP(t)) and at time t (FP(t)) the set of Pareto-optimal
solutions at time t in design domain and objective domain, respectively.

Unlike in the single-objective optimization problems, here we are dealing with
two different search spaces: decision variable space and objective space. Therefore,
the following are the four possible ways a problem can dynamically change. Type I:
The Pareto-optimal set (optimal decision variables) SP changes, whereas the pareto-
optimal front (optimal objective values) FP does not change. Type II: Both SP and
FP change. Type III: SP does not change, whereas FP changes. Type IV: Both SP

and FP do not change, although the problem can dynamically change.
A straightforward extension of ZDT and DTLZ test problems developed earlier

[20, 21] for two and higher objectives can be considered in order to insert time depen-
dance factors into multiobjective optimization test cases [15]. As it is well known,
ZDT and DTLZ problems provide different difficulties which may be encountered
when considering real-life multiobjective optimization problems: non-concavity, dis-
continuity, deceptiveness, presence of local fronts, etc.

When solving dynamically changed problems, such difficulties may transform
themselves from one of the above features to another with random sudden jumps
or with a gradual change. A generic test problem for such a dynamic situation is
presented in the following equation:

min
x

( f1(x), f2(x)) = ( f 1(xI),g(xII) ·h(xIII , f1,g)) (1)

where xI ,xII and xIII are subsets of design variables set x. In the above test problem,
there are three functions f1,g, and h. In the original paper, the following functions
were suggested:

f1(xI) = x1, g(xII) = ∑
xi∈xII

x2
i , h( f1,g) = 1−

(
f1

g

)2

. (2)

Each of them can change dynamically or in combination. In dynamic multi-objective
test cases the functions f1,g and h are re-defined in terms of three new time depen-
dent functions F,G and H.

In this paper we consider only one test case the FDA1 (see [22]):

Definition 3 (FDA1). Type I, convex POFs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 1(xI) = x1,

g(xII) = 1+ ∑
xi∈xII

(xi−G(t))2,

h( f1,g) = 1−
√

f1
g ,

G(t) = sin(0.5πt), t = 1
nt
� τ
τT
�,

xI = (x1) ∈ [0,1], xII = (x2, . . . ,xn) ∈ [−1,1] .

(3)

Here, τ is the generation counter, τT is the number of generation for which t remains
fixed, and nt is the number of distinct steps in t. The suggested number of variables
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Fig. 1. SP(t) for FDA1, first two decision variables, 24 time steps

Fig. 2. FP(t) for FDA1, 24 time steps

is n = 20,τT = 5, and nT = 10. In this problem the Pareto optimal front does not
change, while the optimal set (in search space) suddenly change over time every τT

iterations (as shown in Fig. 2 and Fig. 1 respectively). The task of a dynamic MOEA
would be to find the same Pareto-optimal front f2 = 1−√ f1 every time there is a
change in t.
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3 Outline of the ALife-Inspired Algorithm
for Dynamic Multiobjective Optimization Problems

GAs are based on the simulation of nature evolution and the exploitation of Dar-
winian natural selection operators; they consider coded strings as genotypes of indi-
viduals. For this reason they may be defined a low level evolution imitation, where
artificial operators are considered imitating natural operators on genes. On the con-
trary, the proposed algorithm is based on a population level evolution: coded strings
are considered as individuals interacting in a population, and artificial operators im-
itate interactions between individuals (like meeting, fight and reproduction). In this
approach there is no a priori selection; each individual has the same probability of
meeting another individual. In some cases, they will procreate two sons, which are
added to the population without eliminating the parent. In other cases, they will fight
and the stronger (i.e., the one that dominates in Pareto sense the other) will kill the
other one. Moreover, individuals which do not encounter anybody else can reproduce
in asexual way; hence a new individual (a mutation of his parent) is inserted in the
population. As a consequence of all these operators, the population size is variable.

The aim of the algorithm we propose is not to definitively converge, but to be
able to “sense” the changing of the Pareto optimal set or front and then automatically
follow it.

The general behaviour of the algorithm is depicted in Fig. 3. Each time an indi-
vidual is considered, he can meet or not another individual according to a probability

Fig. 3. Principle flowchart of the algorithm
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pm. If he meets someone else, either reproduction or competition can occur. Other-
wise can take place or nothing happens. The meeting probability pm is defined in
terms of the actual size Ni of the population at iteration i and the maximum size Nmax

(fixed a priori) in the following way:

pm =
Ni

Nmax
(4)

Thus for each individual a value r in [0,1] is randomly chosen. If r > pm meeting
occurs, no meeting otherwise. In this way, when the maximum individual number is
approached the meeting probability is very high and viceversa. Consequences of this
will be clearer later on.

When the meeting probability is satisfied a new individual is randomly selected
for meeting with the current individual. When two individuals meet either bisexual
reproduction or fight can occur; the probability for bisexual reproduction pbr is the
following:

pbr = 1− pm (5)

Two new individuals are then added to the population, (for further details on bisexual
reproduction see the dedicated paragraph below). If bisexual reproduction does not
occur, fight is performed between the two selected individuals; the better kills the
other one. This operator thus reduces the population size by one.

If meeting does not occur either asexual reproduction or nothing happens. Asex-
ual reproduction, which is performed with probability par (equal to pbr), adds a new
individual to the population. More details on the operators can be found in [16].

In the actual implementation of the algorithm the bisexual reproductions is the
standard random crossover operation. Thus the fight operator is the only one that
involves the evaluation of the objective functions. When fight occurs, all the objective
functions f j are evaluated for both the individuals. The dominating individual in
Pareto sense1 survives, while the dominated one dies and is eliminated from the
population. If nobody dominates the other, the algorithm eliminates the individual
with a greater number of individual in a given neighborhood. This happens in order
to preserve diversity among individuals.

The probabilistic routing strategy leads to the population size N behavior shown
in Fig. 4. As can be seen it oscillates around a probabilistic computable value satis-
fying the following logistic formula:

Ni+1 = Ni

(
1−2

Ni

Nmax

)
+

1
Nmax

; (6)

where i is the iteration index. Two limit behaviors correspond to N ∼ Nmax ⇒ pm ∼
1 and N ∼ 0 ⇒ pm ∼ 0. In the former case meeting and fight always occurs and
population size reduces. In the latter meeting never occurs and asexual reproduction

1 Let v1,v be two candidate solutions (individuals). Then v1 is said to dominate v2 in the
Pareto sense if and only if the following conditions hold: (i) fi(v1) ≤ fi(v2) for all i ∈
{1,2, . . . ,M}, (ii) f j(v1) < f j(v2) for at least one j ∈ {1,2, . . . ,M}.
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Fig. 4. Population size story compared with the computed analytical mean value

always adds one individual; consequently population size increase by one at each
iteration.

The proposed strategy is supposed to run for an indeterminate time following sys-
tem changing, without definitely converging towards a final optimum unless a static
system is considered. For test problems a fictitious maximum iteration or generation
number is imposed but it only has an obvious practical meaning. The algorithm is
extremely flexible because probability threshold values are updated at each iteration.

4 Application of the ALife-Inspired Algorithm to Test Case FDA1

For the sake of clarity, we consider a problem with a two dimensional input space
(X1,X2) and two objective functions ( f1, f2). In this way we can easily plot the prob-
lem in both domains. Moreover we consider only two changes of the Pareto optimal
set.

Since the population size is not fixed and the algorithm proceeds individual by
individual, it is not properly correct to speak of “epochs”. However we will use this
term to signify the application of the algorithm a number of times (iterations) equal
to the average size of the population.

The starting population is uniformly distributed in the search space (Fig. 5), while
the analytical optimal set is the straight line x2 = 0 (dotted line in Fig. 6). After 45
epochs (Figs. 7, 8), there is a good approximation of the Pareto-optimal set and front.
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Fig. 5. Starting population in search space

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Fig. 6. Starting Population in objective space
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Fig. 7. Population in search space at epoch 45

As it is well known a good approximation of Pareto-optimal front (and set) requires
the solution to be (i) close to the exact front (and set), and (ii) as distributed as possi-
ble on the front (and set); this two requirements are usually clashing in multiobjective
evolutionary algorithms. Due to the absence of selection pressure (there is no fitness
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Fig. 8. Population in objective space at epoch 45
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Fig. 9. Epoch 46: Sudden change of the optimal front in search space; now it becomes the
straight (dotted) line x2 = 1

based selection in the proposed algorithm) the population covers the entire front and
set. Moreover the absence of fitness based selection is one of the main differences
between the proposed algorithm and the evolution based multiobjective optimization
algorithms. During the 46th epoch there is a sudden change of the Pareto-optimal
set; now it is the straight line x2 = 1. Consequently there is a big approximation error
both in search and objective space (Figs. 9, 10). Finally after 100 epochs the popula-
tion is again a good approximation of Pareto-optimal set and front (Figs. 11, 12). As
evident the absence of fitness based selection is a drawback when speed of reaction
to time-dependent changes is concerned.

The main drawback of this algorithm is that, in general, it converges slowly (in
term of number of epochs). Moreover the converge velocity strongly depends on
the distribution of the population in search space. In fact after the sudden change
(epoch 46), the convergence to the new optimal set is much more slower than the
previous one. Slowness of ALife algorithm is a known problem. For single-objective
optimization problem there is a speed-up by introducing crossover operators that
privilege the better parent (see [16]). However this kind of operators cannot be easily
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Fig. 10. Population in objective space at epoch 46
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Fig. 11. Population in search space at epoch 100
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Fig. 12. Population in objective space at epoch 100
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introduced in the Multiobjective algorithm, because we have to keep the diversity
among the individuals (both in search and objective space).

On the other side, this algorithm has two main advantages. The first is that it
is able to automatically follow the changes a dynamic Multiobjective optimization
problem, without any external help.

The second one is that the evaluation of the objective function (being usually a
computationally expensive task or requiring a measure on the system) is needed only
when the meeting probability is satisfied and not at each iteration, as it is required
for fitness based selection in an evolution based algorithm.

5 Conclusion

In this paper we introduced an ALife-inspired evolutionary algorithm for dynamical
multiobjective optimization problems. Although not flawless, this algorithm is sim-
ple to implement and able to detect the change of objectives or constraints of the
problem, and then to follow the Pareto-optimal set and fronts.

Our work is only at a preliminary state. Further developments may be concerned
with the following considerations.

On one side, the convergence to the optimal front and set could be fastened (in
terms of number of iteration) by exploiting the information about Pareto optimality.
For example the worst individuals in Pareto sense could be automatically eliminated
(without having to fight). Or, on the other side, the Pareto optimal individuals could
gain some advantages (re-introducing in this way a kind of selection pressure).

On the other side, the number of objective function evaluation could be decreased
by changing the probability route leading to a fight (the only operator that requires
objective evaluation). The corresponding increasing of population size (fight is also
the only operator that decrease population size) may be balanced by introducing,
for example, a kind of spontaneous decay (as in ant systems) – i.e. the automatic
elimination of the individuals that lived for more than a given iteration threshold.
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