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Summary . An algorithm for filtering information based on the Kolmogorov-
Smirnov correlation-based approach has been implemented and tested on feature 
selection. The only parameter of this algorithm is statistical confidence level that 
two distributions are identical. Empirical comparisons with 4 other state-of-the-art 
features selection algorithms (FCBF, CorrSF, ReliefF and ConnSF) are very encour­
aging. 

1 Introduction 

For large highly dimensional datasets feature ranking and feature selection 
algorithms are usually of the filter type. In the simplest case feature filter is a 
function returning a relevance index J(S\V, C) that estimates, given the data 
£>, how relevant a given feature subset S is for the task C (usually classification 
or approximation of the data). The relevance index J(S\V,C) is calculated 
directly from data, without any reference to the results of programs that are 
used on data with reduced dimensionality. Since the data V and the task C 
are usually fixed and only the subsets S varies an abbreviated form J{S) is 
used. Instead of a simple function (such as correlation or information content) 
an algorithmic procedure, such as building a decision tree or finding nearest 
neighbors, may be used to estimate this index. 

Relevance indices computed for individual features X^ i = 1 . . . N provide 
indices that establish a ranking order J p Q J < J(Xi2) • • • < J(XiN). Those 
features which have the lowest ranks are filtered out. For independent features 
this may be sufficient, but if features are correlated many of them may be 
redundant. For some data distributions the best pair of features may not even 
include a single best feature [14, 2]! Thus ranking does not guarantee that the 
largest subset of important features will be found. Methods that search for 
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the best subset of features may also use filters to evaluate the usefulness of 
subsets of features. 

Although in the case of filter methods there is no direct dependence of 
the relevance index on the adaptive algorithms obviously the thresholds for 
feature rejection may be set either for relevance indices, or by evaluation of 
the feature contributions by the final system. Features are ranked by the filter, 
but how many are finally taken may be determined using adaptive system as 
a wrapper. Evaluation of the adaptive system performance (frequently cross-
validation tests) are done only for a few pre-selected feature sets, but still 
this "filtrapper" approach may be rather costly. What is needed is a simple 
filter method that may be applied to large datasets ranking and removing 
redundant features, parameterized in statistically well-established way. Such 
an approaches is described in this paper. 

In next section a new relevance index based on the Kolmogorov-Smirnov 
(K-S) test to estimate correlation between the distribution of feature values 
and the class labels is introduced. Correlation-based filters are very fast and 
may be competitive to filters based on information theory. Therefore in section 
3 empirical comparisons between K-S filter, Pearson's correlation based filter 
and popular filters based on information gain is made on a number of datasets. 

2 Theoretical framework 

2.1 Correlation-Based Measures 

For feature X with values x and classes C with values c, where X, C are 
treated as random variables, Pearson's linear correlation coefficient is defined 
as [11]: 

= E(XC) - E(X)E{C) = E ^ S i - S i X c j - C j ) 

g(X,C) is equal to ±1 if X and C are linearly dependent and zero if they 
are completely uncorrelated. The simplest test estimating significance of the 
differences in g(X, C) values is based on the probability that two variables are 
correlated [11]: 

V(X ~ C) = erf (\Q(X,C)\y/N/2) , (2) 

where erf is the error function. The feature list ordered by decreasing values of 
the V(X ~ C) may serve as feature ranking. Non-parametric, or Spearman's 
rank correlation coefficients may be useful for ordinal data types. 

An alternative approach is to use x2 statistics, but in both cases for large 
number of samples probability V{X ~ C) is so close to 1 that ranking becomes 
impossible due to the finite numerical accuracy of computations. For example, 
with N = 1000 samples small coefficients g(X, C) « 0.02 lead to probabilities 
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of correlation around 0.5. The g(X, C) or x2 thresholds for the significance of 
a given feature may therefore be taken from a large interval corresponding to 
almost the same probabilities of correlation. 

Information theory is frequently used to define relevance indices. The Shan­
non information, or feature and class entropy, is: 

H(X) = -YfV(xi)logV(xi); H(C) = - ^ P f e ) logPfc) (3) 
i i 

and the joint Shannon entropy is: 

H(X,C) = -YfV(xi,cj)logV(xi,cj) (4) 

Mutual Information (MI) is the basic quantity used for information filtering: 

MI(X, C) = H(X) + H{C) - H(X, C) (5) 

Symmetrical Uncertainty Coefficient (SU) has similar properties to mutual 
information: 

SU(X, C) = 2 
MI(X, C) 

(6) 
_H(X)+H(C) 

If a group of k features X& has already been selected, correlation coeffi­
cient may be used to estimate correlation between this group and the class, 
including inter-correlations between the features. Denoting the average cor­
relation coefficient between these features and classes as rkc = £(Xfc,C) and 
the average between different features as rkk = ^(X^, X&) the relevance of the 
feature subset is defined as: 

JfX C) = c (7) 
^h + (k- l)rkk 

This formula has been used in the Correlation-based Feature Selection (CFS) 
algorithm [6] adding (forward selection) or deleting (backward selection) one 
feature at a time. A definition of predominant correlation proposed by Yu 
and Liu [16] for Fast Correlation-Based Filter (FCBF) includes correlations 
beetwen feature and classes and between pairs of features. The FCBF algo­
rithm does a typical ranking using SU coefficient (eq. 6) to determine class-
feature relevance, setting some threshold value SU > S to decide how many 
features should be taken. In the second part redundant features are removed 
by defining the "predominant features". 

A different type of selection method called ConnSF, based on inconsistency 
measure, has been proposed by Dash et al. [3] and will be used for comparison 
in Sec. 3. Two identical input vectors are inconsistent if they have identical 
class labels (a similar concept is used in rough set theory). Intuitively it is 
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1. set all weights WXi = 0 
2. for j = l to m do begin 
3. randomly select Instance X; 
4. find nearest hit H and nearest miss M; 
5. for i:=l to k do begin 
6. Wxi <- Wxi - D(xi,X, H)/m + D(xi,X, M)/m 
7. end; 
8. end; 

Fig. 1. Sketch of the Relief algorithm. 

clear that inconsistency grows when the number of features is reduced and 
that feature subsets that lead to high inconsistency are not useful. If there are 
n samples in the dataset with identical feature values x^ and n^ among them 
belong to class k then the inconsistency count is defined as n — max^ c&. The 
total inconsistency count for a feature subset is the sum of all inconsistency 
counts for all data vectors. 

A different way to find feature subsets is used in the Relief algorithm ([8] 
and [13]). This algorithm (see Fig. 1) estimates weights of features according 
to how well their values distinguish between data vectors that are near to each 
other. For a randomly selected vector X from a data set S with k features 
Relief searches the dataset for its two nearest neighbors: the nearest hit H 
from the same class and the nearest miss M from another class. For feature x 
and two input vectors X, X' the contribution to the weight Wx is proportional 
to the D(x,X, X') = 1 — 8{X{x),X'{x)) for binary or nominal features, and 
D(x,X,X') = \X(x)—X'(x)\ for continuous features. The process is repeated 
m times, where m is a user defined parameter [8]. Normalization with m in 
calculation of Wx guarantees that all weights are in the [—1,1] interval. In 
our empirical studies (Sec. 3) we have used an extension of this agorithm for 
multiclass problems, called ReliefF [13]. 

2.2 Kolmogorov-Smirnov Correlation-Based Filter Approach 

Equivalence of two random variables may be evaluated using the Kolmogorov-
Smirnov (K-S) test [7]. The K-S test measures the maximum difference be­
tween cummulative distribution of two random variables. If a feature is re­
dundant than the hypothesis that its distribution is equal to already selected 
feature should have high probability, n independent observations of two ran­
dom variables X, X' are given in the training data, where for the K-S test to 
be valid n should be more than 40. The test for X, X' feature redundancy 
proceeds as follows: 

• Discretization of feature values x into k bins [x ,̂ a^+i], i = 1 . . . k is per­
formed. 
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• Frequency fi, f'k of occurrences of feature values in each bin are recorded. 
• Based on the frequency counts cumulative distribution functions Fi and 

F[ are constructed. 
• A (K-S statistics) is the largest absoulte difference between Fi and F/, i.e, 

A = V n T ^ m a x l ^ - F / l for i = 1, 2 , . . . k. (8) 
i 

Probability that the maximum K-S distance Xa is larger than observed may be 
calculated using K-S statistics for each parameter a [9] that has the meaning 
of statistical significance level. When A < Xa then the two distributions are 
equivalent with a significance level, and thus one of the features is redundant. 
Using typical significance values of 0.95 solves the problem of the threshold 
values for redundancy. 

The Kolmogorov-Smirnov Correlation-Based Filter (K-S CBF) algorithm 
is presented below. First, the relevance is determined using the symmetrical 
uncertainty (other relevance criteria may also be used), and then K-S test 
applied to remove redundancy. 

Algor i thm K-S R B F : 
Relevance analysis 
1. Calculate the SU(X, C) relevance indices and create an ordered list S of 
features according to the decreasing value of their relevance. 
R e d u n d a n c y analysis 
2. Take as the feature X the first feature from the S list 
3. Find and remove all features for which X is approximately equivalent 
according to the K-S test 
4. Set the next remaining feature in the list as X and repeat step 3 for all 
features that follow it in the S list. 

Fig. 2. A two-step Kolmogorov-Smirnov Correlation Based Fiter (K-S CBF) algo­
rithm. 

3 Empirical Studies 

To evaluate the performance of the K-S CBF algorithm both artificial and 
real datasets have been used with a number of classification methods. Two 
artificial datasets, Gauss4, and Gauss8, have been used in our previous study 
[4]. Gauss4 is based on sampling from 4 Gaussian functions with unit dis­
persion in 4 dimensions, each cluster representing a separate class. The first 
function is centered at (0,0,0,0), the next at (1,1/2,1/3,1/4), (2,1,2/3,1/2), 
and (3,3/2,3,3/4), respectively. The dataset contains 4000 vectors, 1000 per 
each class. In this case the ideal ranking should give the following order: 
X\ > X2 > X% > -X4. 

Gauss8 used here is an extension of Gauss4, adding 4 additional features 
that are approximately linearly dependent X^+4 = 2Xi + e, where e is a 
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uniform noise with a unit variance. In this case the ideal ranking should give 
the following order: X1 > Xb > X2 > X6 > X3 > X7 > X4 > X8 and 
the selection should reject all 4 linearly dependent features as redundant. K-S 
CBF algorithm and ConnSF [3] algorithm had no problem with this task, 
but FCBF [16] selected only 3 features, CorrSF [6] selected only first two and 
ReliefF [13] left only feature 1 and 5, giving them weight 0.154 (for features 
2 and 6 the weight was 0.060, dropping to 0.024 for feature 3, 6 and to 0.017 
for features 4, 8. 

Title 

Features 
NBC 
INN 
C4.5 
SVM 
Average 

Selected features 
Full set 

1 to 8 
82.13 
73.42 
78.30 
81.88 
79.91 

FCBF 

1+2+3 
81.57 
73.90 
79.12 
81.70 
79.09 

CorrSF 

1+2+5 
80.25 
71.10 
78.95 
80.90 
78.83 

ReliefF 

1+5 
76.95 
68.12 
76.15 
76.95 
75.34 

ConnSF 

1 to 4 
82.13 
73.42 
78.70 
81.73 
80.40 

K-S CBF 

Ito 4 
82.13 
73.42 
78.70 
81.73 
80.40 

Table 1. Accuracy of 4 classifiers on selected subsets of features for the Gauss8 
dataset. 

In Table 3 results of Naive Bayes Classifier (NBC) (Weka implementation, 
[15]), the nearest neighbor algorithm (INN) with Euclidean distance function, 
C4.5 tree [12] and the Support Vector Machine with a linear kernel are given 
(Weka and SVM, Ghostminer 3.0 implementation4). 

Title 
Hypothyroid 
Lung-cancer 
Promoters 
Splice 

Features 
21 
58 
59 
62 

Instances 
3772 

32 
106 

3190 

Classes 
3 
3 
2 
3 

Table 2. Summary of the datasets used in empirical studies. 

For the initial comparison on real data several datasets from the UCI Ma­
chine Learning Repository [10] and the UCI KDD Archive [1] were used. A 
summary of all datasets is presented in Table 3. For each data set all five fea­
ture selection algorithms are compared (FCBF [16], CorrSF [6], ReliefF [13], 
ConnSF [3], and K-S CBF) and the number of features selected by each al­
gorithm is given. For data sets containing features with continuous values the 
MDLP discretization algorithm has been applied5 [5]. 5 neighbors and 30 in­
stances were used for ReliefF, as suggested by Robnik-Sikonia and Kononenko 

http://www.fqspl.com.pl/ghostminer/ 
5available from www.public.asu.edu/^huanliu/ 
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[13]. For CorrSF and ConnSF forward search strategy has been used, and for 
FCBF, ReliefF, and the K-S CBF forward search strategy based on ranking. 

Dataset 

Hypothyroid 
Lung-cancer 
Splice 
Promoters 
Average 

Selected features 
Full set 

21 
58 
62 
59 
50 

FCBF 

5 
6 
22 
6 

9.8 

CorrSF 

1 
11 
6 
4 

5.5 

ReliefF 

11 
8 
19 
4 

10.5 

ConnSF 

6 
4 
10 
4 
6 

K-S CBF 

6 
3 
14 
5 
7 

Table 3. The number of selected features for each algorithm; bold face - lowest 
number, italics - highest number. 

The overall balanced accuracy (accuracy for each class, averaged over all 
classes) obtained from 10-fold cross-validation calculations is reported. For 
datasets with significant differences between samples from different classes 
balanced accuracy is a more sensitive measure than the overall accuracy. Re­
sults of these calculations are collected in Table 3. 

4 Conclusion 

A new algorithm, K-S CBF, for finding non-redundant feature subsets based 
on the Kolmogorov-Smirnov test has been introduced. It has only one parame­
ter, statistical significance or the probability that the hypothesis that distrib­
utions of two features is equivalent is true. Our initial tests are encouraging: 
on the artificial data perfect ranking has been recreated and redundant fea­
tures rejected, while on the real data, with rather modest number of features 
selected results are frequently the best, or close to the best, comparing with 
four state-of-the-art feature selection algorithms. The new algorithm seems to 
work especially well with the linear SVM classifier. Computational demands 
of K-S CBF algorithm are similar to other correlation-based filters and much 
lower than ReliefF. 

It is obvious that sometimes statistical significance at 0.05 level selected 
for our tests is not optimal and for the lung cancer data too few features have 
been selected, leading to a large decrease of accuracy. This parameter may be 
optimized in crossvalidation tests on the training set, but the method guar­
antees that each time only non-redundant subset of features will be selected. 
Various variants of the Kolmogorov-Smirnov test exist [11] and the algorithm 
may be used with other indices for relevance indication. These possibilities 
remain to be explored. Further tests on much larger bioinformatics data will 
be reported soon. 

Acknowledgement. This work was financed by the Polish Committee for Scientific 
Research (KBN) grant (2005-2007). 
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Method C 4.5 tree 

Dataset Full set 

Hypothyroid 99.91 
Lung-cancer 4^-43 
Splice 94.35 
Promoters 81.13 
Average 81.21 

FCBF 

66.94 
63.87 
94.05 
85.84 
77.68 

CorrSF 

85.92 
67.21 
93.39 
83.96 
82.62 

ReliefF 

98.94 
63.87 
94.80 
65.09 
80.68 

ConnSF 

93.45 
63.22 
93.63 
84.90 
83.80 

K-S CBF 

98.68 
64.76 
94.05 
81.13 
84.66 

Method Naive Bayes 

Dataset Full set 

Hypothyroid 83.20 
Lung-cancer 47.92 
Splice 94.88 
Promoters 90.56 
Average 79.14 

FCBF 

66.94 
50.57 
96.03 
95.28 
73.21 

CorrSF 

58.48 
73.48 
93.31 
93.39 
79.67 

ReliefF 

70.28 
50.57 
95.54 
61.32 
69.43 

ConnSF 

67.14 
65.68 
94.17 
93.39 
80.10 

K-S CBF 

85.83 
4L74 
94.75 
87.35 
77.42 

Method 1 Nearest Neighbor 

Dataset Full set 

Hypothyroid 61.60 
Lung-cancer 39.94 
Splice 80.08 
Promoters 85.85 
Average 66.49 

FCBF 

83.89 
36.01 
84.45 
92.45 
74.28 

CorrSF 

71.72 
66.84 
87.68 
86.79 
78.26 

ReliefF 

78.92 
53.13 
84.04 
59.43 
69.01 

ConnSF 

86.94 
65.41 
86.77 
81.13 
80.06 

K-S CBF 

83.93 
45.70 
83.82 
85.85 
74.83 

[Method | SVM 

Dataset Full set 

Hypothyroid 52.65 
Lung-cancer 41-37 
Splice 92.81 
Promoters 93.40 
Average 70.06 

FCBF 

45.49 
55.41 
95.73 
91.50 
72.03 

CorrSF 

44-07 
66.07 
93.75 
77.36 
70.31 

ReliefF 

51.24 
61.60 
95.75 
58.49 
66.77 

ConnSF 

45.13 
59.37 
90.08 
87.33 
70.48 

K-S CBF 

84.31 
47.35 
95.11 
93.11 
80.04 

Table 4. Balanced accuracy for the 4 classification methods on features selected by 
each algorithm; bold face - best results, italics - worst. 
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