
Evolvable Fuzzy Hardware for Real-time 
Embedded Control in Packet Switching 

Ju Hui Li, Meng Hiot Lim, and Qi Cao 

School of EEE, Block S1, Nanyang Technological University, Singapore 639798, 
(pg01896341 1 emhlim 1 pg04780942) Qntu. edu. sg 

In this chapter, we describe a scheme to realize an Evolvable Fuzzy Hardware 
(EFH) for real-time Packet Switching problem. The common challenges of 
Evolvable hardware (EHW) implementation are issues pertaining to online 
adaptation, scalability and termination of evolution [I]. The proposed EFH 
addresses these issues effectively. A very interesting advantage of the pro- 
posed EFH is that the system performance can be tuned intuitively through 
parametric adjustment of the fitness function. This advantage gives the EFH 
system a very special property that conventional scheduling methods cannot 
fulfill easily. For the hardware implementation of the EFH, real-time fuzzy 
inference with high-speed context switching capability is necessary. We ad- 
dress this aspect through implementation based on a context independent 
reconfigurable fuzz9 inference chip (RFIC). 

9.1 Introduction to EHW and EFH 

Evolvable hardware (EHW) is a new type of hardware whose architecture can 
be evolved to suit the operating environment. In recent years, it has been at- 
tracting greater attention from researchers. The idea behind EHW is based on 
evolutionary algorithm, a methodology to search the solution space to derive 
the appropriate hardware architecture. EHW can be classified into extrinsic 
and intrinsic EHW based on the scheme of evolution used. Extrinsic EHW 
relies on a simulated evolutionary process independent of the hardware. It 
may rely on hardware description languages (HDL), C or other programming 
languages to represent the circuit and then rely on an evolutionary algorithm 
to evolve the hardware configuration. Only the elite design is downloaded 
into the reconfigurable device. Intrinsic evolvability means that the evolution 
and evaluation of solutions are carried out at the hardware level of the EHW 
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system. In principle, intrinsic EHW can modify its own hardware configura- 
tion and behavior autonomously. If the environment changes, the behavior or 
architecture will also change to maintain an acceptable level of system per- 
formance. Currently, there has been great progress made for extrinsic type of 
EHW [2, 3, 4, 5, 6, 71. 

There are also research works that focused on intrinsic EHW. In some 
reported works, the researchers rely on a semi-intrinsic approach. They use 
software to realize the evolution part and hardware to carry out evaluation of 
the derived architecture. After the evolution process, the best chromosome is 
implemented in hardware. This scheme can be called ofline adaptive intrinsic 
EHW. Most of the works on intrinsic EHW up to now can be found in [8,9,10]. 
This type of EHW generally has some advantages over extrinsic EHW. Since 
it carries out the evaluation in hardware, the evaluation process is very fast, 
and the performance of the elite is not affected by error in the simulation 
model. Intrinsic EHW is useful for applications that require online and real- 
time system reconfiguration. However, the implementation of intrinsic EHW 
still poses significant challenges for such promising areas. 

From the perspective of evolution granularity, current EHW can be classi- 
fied into three types: transistor level, gate level and function level. Among the 
three, the transistor level represents the lowest level of evolution granularity. 
This gives the greatest flexibility because transistors are the smallest compo- 
nents of any circuit. Gate level EHW means that logic gates are the smallest 
configurable components of the EHW [ll, 12, 13, 14, 15, 16, 171. Functional 
level EHW carries out the evolution of macro units (adder, multiplier, sine, 
cosine, etc.) implemented on a special type of FPGA [2, 18, 191. There are 
many functional processing units (FPU) in the FPGA chip. Each FPU can be 
configured to perform one of the high-level functions such as addition, subtrac- 
tion, multiplication, division, sine and cosine. The functions and connections 
of FPUs are configured based on the elite chromosome. Most of the EHW 
reported can be categorized into one of these three levels. The limitations of 
these forms of EHW imply that evolutions can only be done extrinsically or 
in some instances, intrinsically but in an offline adaptive manner. 

For the implementation of intrinsic Evolvable and online adaptive EHW, 
there are three main open issues that need to be addressed [I]. These issues 
are briefly outlined below. 
Online adaptation: This means that the system hardware is required to adapt 
during the normal operation. Online adaptation is very hard to realize because 
the system has to reconfigure the hardware for every chromosome in order to 
carry out the evaluation. Some chromosomes may inevitably result in very 
poor performance. If these chromosomes are evaluated by reconfiguring the 
hardware, they may potentially result in some damages or disastrous outcome. 

Scalability refers to the extensibility of the scheme to handle more complex 
architecture or configurations. For a typical EHW, the chromosome length 
may be hundreds or even thousands of genes for a complicated system. The 
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search space represented by a chromosome may be very big. Hence the search 
by the genetic algorithms (GA) for a good solution in such a big solution 
space may take a very long time. 

Termination of evolution pertains to criteria or conditions for stopping the 
evolution process. For example, one commonly used criterion is the number 
of runs. With a GA scheme, there is no guarantee as to the number of runs 
required before a desirable solution can be found. This can be a significant 
drawback for real-time operation. 

In order to perform online adaptive and intrinsic Evolvable hardware, we 
propose a new form of EHW that is referred to as Evolvable Fuzzy Hardware 
(EFH). EFH can be viewed as a form of Evolvable fuzzy system (EFS) whereby 
the fuzzy inference system is implemented in hardware to deliver real-time in- 
ference throughput. Furthermore, the domain knowledge of the fuzzy system 
should be able to support online real-time reconfiguration. EFH can overcome 
the disadvantages of the other three EHWs described earlier and is amenable 
to intrinsic evolution and online adaptation. Earlier in [20], we proposed EFS 
for ATM cell scheduling. In that system, the EFS searches for an appropriate 
fuzzy rule set to carry out the scheduling task on dynamically changing cell 
flows. The evolutionary search process does not cause any interruption in the 
system operation. After a good fuzzy rule set is found, the old one is replaced 
immediately. From simulation results, it was shown that EFS is capable of 
dynamic real-time adaptation to deliver robust performance. To further sup- 
port our work, we have also proposed a reconfigurable fuzzy inference chip 
(RFIC) whereby the context can be changed or reconfigured online [21]. By 
combining the advantages of the EFS and RFIC, we demonstrate in this work 
how intrinsic Evolvable and online adaptive EFH can be implemented. 

In Section 2, we introduce the real-time Packet Switching problem, an 
application for demonstrating the viability of the EFH. In Section 3, we de- 
scribe specifically how the implementation challenges of the intrinsic EFH are 
addressed. In Section 4, we describe the detailed formulation of the fitness 
function adopted in our EFH. In Section 5, we present the simulation results 
of applying EFH to solve the real-time problem. Certain desirable properties 
of the EFH in dealing with the real-time problem are also discussed in this 
section. In Section 6, we outline details on how the EFH can be implemented 
from a system's perspective. Finally, we offer some concluding remarks for our 
work on EFH. 

9.2 Packet Switching 

Packet Switching is a backbone of modern communication networks. Because 
of the characteristics of the various services supported by the network, the 
management of the bandwidth resources is very critical. The multiplexer is 
an important component used to administer the sharing of bandwidth among 
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different cell flows. It is mainly employed to provide a means of sharing high- 
speed link for network terminations or network inter-nodes. Time division 
scheme is adopted in the multiplexer. The output link can be divided into 
different time slots. At anytime, only one input flow is accorded the priority of 
sending packets through the output channel. The simplified block architecture 
of the multiplexer is as shown in Fig. 9.1. For illustration, we classify the 
services into two types, classl and class2. In the block diagram, BUFl and 
BUF2 refer to buffers for classl and class2 respectively. MP represents the 
time division multiplexing system for transmitting packets through the OUT 
channel. The switching control block is a part of the hardware that handles 
cell scheduling. When the OUT channel is available, the switching control 
block decides on which cell flow to be sent. 

For Packet Switching, class1 can be a form of CBR (Constant Bit Rate) 
traffic, rt-VBR (real-time Variable Bit Rate) or both. The class2 traffic type 
may refer to nrt-VBR (non-real-time Variable Bit Rate), UBR (Unspecified Bit 
Rate) or ABR (Available Bit Rate) [22]. While classl type is delay sensitive, 
class2 is considered to be not sensitive to delay. These two sources of cell flow 
must be multiplexed on the output channel (OUT) by the MP unit through 
time division. The capacities of OUT and the input channels are fixed. In 
this problem, the QoS (Quality of Service) of the system can be evaluated by 
classl cell delay, classz cell loss and the balance between classl cell loss and 
class2 cell loss. The ideal case is that classl cell delay and class2 cell loss are 
very small and there is also a good balance established between classl cell 
loss and class2 cell loss. 

The application of EHW in ATM cell scheduling has been reported in 
Liu et. a1 [2, 31. In their works, the authors presented schemes of functional 
EHW to solve the problem of cell scheduling. The functional EHW system 
successfully achieved a circuit that had service performance similar to that 
of traditional scheduling schemes. However, the scheme has some significant 
limitations, hence not suitable for practical applications. The main limitation 
of the system is its inability to evolve intrinsically. Another limitation is that 
the system had to rely on an external computation platform to carry out 
evolutionary process due to its large search space. Finally, the system faces 
the limitation of being trained and tested only on fixed cell flow patterns. 
In a practical system, the cell flows can change dramatically. There was no 
effective scheme in this system to adjust the system along with the changing 
cell flows. 

9.3 Solutions for Open Issues 

In order to solve the packet scheduling problem, we design the system archi- 
tecture, incorporating evolutionary mechanisms as in Fig. 9.2. In this system, 
the training buffers TB1 and TB2 are used to store classl and class2 cells 
respectively. The size of TB1 and TB2 is at  least 2 or 3 times that of BUFl 
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and BUF2. When either TB1 or TB2 is full, the evolutionary process is trig- 
gered. Fitness evaluation is carried out by subjecting each chromosome to the 
scheduling model according to the cell flow stored in TB1 and TB2. The pur- 
pose of the scheduling model is to emulate the function of the multiplexer as in 
Fig. 9.1. After a specified number of cycles and generations, if a chromosome 

Switching Control r 

Fig. 9.1. Multiplexer scheme 

that corresponds to a system rule set is better than the working chromosome, 
the working chromosome is replaced immediately. In order to prevent the 
search procedure from being trapped in a local region, after a pre-specified 
number of generations, the whole evolutionary process is restarted, from the 
point where the initial population is generated. This is essentially the start of 
a new evolution cycle. Functionally, the scheduling model emulates the packet 
switching to derive the cell delay and cell loss parameters. This is achieved 
by a multiplexer model within the scheduling model block. The derived pa- 
rameters enable the fitness value to be calculated using the fitness function. 
Basically, the evolution module evolves the appropriate rule set by interacting 
with the scheduling model to evaluate the fitness of each evolved fuzzy rule 
set. When evolution is triggered, it works in the background while the MP 
unit is in operation. With EFH, the fuzzy inference circuit is a very important 
component and it directly affects the speed of the system's response to the 
changes in cell flow. Two high-speed fuzzy inference components are required. 
One is in the scheduling model and another is the RFIC block performing cell 
scheduling control. 

During evolution, it is inevitable that poor quality chromosomes i.e., chro- 
mosomes that result in poor switching performance, are also evaluated. To 
avoid the possibility of detrimental effects on the system performance by these 
chromosomes, the scheduling model is incorporated in Fig. 9.2 to emulate the 
cell scheduling process. This allows for evaluation of the evolved chromosomes 
in the background. After the evolution process, only the final fuzzy rule set 
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Fig. 9.2. Adaptation framework for EFH 

will be configured in the RFIC block. In this way, we address the first major 
open issue of the intrinsic EHW. 

In order to achieve online adaptation and intrinsic evolution for real-time 
control, another issue that can be regarded as a sub-problem of online adapta- 
tion and intrinsic evolution, must also be addressed. During evolution, training 
data are required. In [2], the EHW system uses the same data for training and 
testing. This scheme can work well in applications when the real time data 
do not change dramatically. But if the application scenario is significantly 
different from the training situation, the system may not perform very well. 
This indicates that extensive data samples are necessary for such an evolu- 
tion scheme. If the real-time data change dramatically, it is not practical to 
incorporate diversely representative real data samples to train the system. 
For many real-time control areas, we believe that there is no need to do so. 
In fact, we can apply the principle of "locality" to substantiate this belief. 
For example, in computer operating system, the design of the cache memory 
system is based on this principle. Accordingly in computer operating system, 
if a program is accessing a certain part of the memory, then there is a great 
likelihood that the program will also access the part of the memory within the 
same locality in the next time period. In our EFH, we contend that there is a 
very high probability that the data model within a small time window is the 
same as the model of data samples in the previous time window. The locality 
proposition is valid if we assume that the time window is small enough. For the 
CBR flow, since the cell rate is constant [22,23], the cell rate at any particular 
time period is the same as that of the preceding time period. For VBR flow, 
which can be described by a two-phase burst/silence model [2, 24, 25, 26, 271, 
cells can be sent equidistantly during the burst period and no cells are trans- 



9 Evolvable Fuzzy Hardware for Control in Packet Switching 211 

mitted during the silence period. The cell rate during the burst period can 
be approximated based on the principle of "locality". But at the edge of the 
burst period and the silence period or vice versa, significant error may occur. 
This kind of prediction error can be tolerated if the time window is sufficiently 
small. Based on this justification, we can train the system using the previous 
data flow to approximate the expected data model of the subsequent time 
period. The smaller the time window, the more flexible the EFH adapts to 
the cell flow. The best chromosome after an evolution process will be used to 
do scheduling in the next time period. 

To address the scalability issue, we adopt an evolutionary granularity at 
the fuzzy rule level. In the EFH for Packet Switching, a chromosome can be 
represented as a string of 25 integers. Each gene of a chromosome represents 
a fuzzy rule. For this scheme, the search space is not too big compared to the 
search space in [2, 91, in which each chromosome is represented by a string 
comprising of hundreds of integers or thousands of bits. The evolution time in 
the EFH is thus manageable. The third issue to address is the termination of 
evolution. In many EHW systems, the evolution system may require thousands 
of generations to get close to an optimal chromosome. The extent of evolution 
time may limit the applicability of the system for real-time application. In 
[2], in order to get a good functional EHW to do ATM cell scheduling, the 
system evolved for 2500 generations with a population size of 400. In [9], 
in order to derive a circuit with Gaussian output voltage characteristic, the 
Evolvable hardware system has to evolve 10000 generations. The time scale 
for evolution in these reported works is not appropriate if used in real-time 
intrinsic EHW control system. For comparison, in the proposed EFH, a very 
small population size and small number of the generations are important 
features of the evolutionary process. In order to prevent the system from 
adopting a very poor performing fuzzy rule set, we defined a core rule set 
in the system derived based on the analysis of the problem through human 
intuition. The core rule set is also used as the startup rule set. If the EFH 
system is not able to find a chromosome that is better than the core rule 
set within a fixed number of generations, the core rule set is adopted. The 
appropriate number of generations for each evolutionary cycle is determined 
through experimentation. The objective of the evolution is to get a fuzzy rule 
set better than the working chromosome for the cell flow of the following time 
period. Even if the derived fuzzy rule set is not optimal, it is deemed to be 
sufficient. By adopting this idea, the criterion for the termination of evolution 
can be satisfactorily managed. 

9.4 Evolution Scheme 

To carry out evolution, GA manipulates a population of chromosomes. These 
chromosomes are solution representations denoting the application domain 
fuzzy rule sets,when decoded. In the rest of this section, we will first introduce 
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the fuzzy system and its coding scheme. Then we will describe the inference 
scheme and the fitness function of this system. 

9.4.1 Genetic Coding 

A fuzzy system can be formally defined as an application or system, which 
employs a fuzzy control algorithm. In general, the fuzzy control algorithm 
refers to a set of if-then rules with linguistic values and fuzzy variables. The 
values are specified as fuzzy concepts defined by membership functions. Fuzzy 
system implicitly means a set of rules and membership functions. 

Suppose a fuzzy system has q input variables XI,  2 2 ,  . . ., x, and single 
output control variable y, a typical rule for the fuzzy system will be "if < xl 
is Al > and < 2 2  is A2 > . . . and < x, is A, > then < y is D >". Al, A2, . . ., 
A, and D are fuzzy concepts or linguistic values. Usually, the development 
of a fuzzy system involves specifying a finite set of labels to represent the 
linguistic values for describing each of the variables. If the number of labels 
for the input variables XI,  x2, . . ., x, are &, 52, . . ., J, respectively, then the 
number of rules that one can declare will be 51 x & x . . . xQ. We refer to 
this as the maximum or exhaustive rule set. An n-rule fuzzy system would 
therefore refer to a system with n being less than or equal to & x & X  . . . xJ,. 
This is refered to as an n-rule constrained fuzzy system or simply an n-rule 
fuzzy system [28, 29, 301. 

To begin with, we define two symbols for the inputs, cl and c2. The symbol 
cl refers to the status of classl cell flow, which is a function of V1 and V,,,. 
V1 is the current cell rate of classl cell flow while V,,, is the line capacity. 
The symbol c2 refers to the buffer status of BUF2. It is a function of L2 and 
L,,,. L2 is the number of empty units in BUF2 while L,,, is the length 
of BUF2. For cl and c2, the memberships are characterized by the term set 
{VS, S, M, L, VL} as depicted in Fig. 9.3. These are standard triangular 
membership functions. The output SEL of the fuzzy switching control block 
(see Fig. 9.2) is characterized by the term set {T, F}. Both T and F are 
singletons, or fuzzy sets with impluse membership functions as shown in Fig. 
9.4. Functionally, a T or true means that the MP unit allocates time slots 
to cater for the classl cell flow in BUF1. An output F or false implies that 
switching is reverted to cells in BUF2. 

Based on the above characterization of the switching network, it is pos- 
sible to define the n-rule heuristics to control the switching behavior. With 
the fuzzy memberships defined, one can rely on intuitive logic to define the 
necessary input-output mappings as shown in Table 9.1. The 25-rule system 
serves as the default cell scheduling algorithm on system startup. We refer to 
this rule set as the core rule set. 

A fuzzy rule set can be represented as a string of integers. For example, 
the genetic code for the 25-rule system in Table 9.1 can be described by the 
string " 2221122111221112111111111". The allelic code 1 and 2 correspond to 
the labels true and false respectively. The position of the gene in the string 
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vs rvery-smal l  
S  small 
M =medium 
L r l a r g e  
VL. very-large 

Fig. 9.3. Membership functions for cl and c2 

Fig. 9.4. Membership functions for T and F 

identifies a specific rule in Table 9.1 when interpreted accordingly in a row 
wise manner. If the value of a gene is 0, it means that there is no specific fuzzy 
rule defined for the corresponding input condition. The core rule set not only 
serves as the startup rule set, but also provides a means to benchmark the 
performance during the evolution of chromosomes. This scheme guarantees 
that the performance of the system is better than or at least comparable to 
that of the core rule set. 

Table 9.1. A 25-rule fuzzy system for ATM cell scheduling 

9.4.2 Inference Scheme 

Each entry in Table 9.1 can be interpreted as a statement of the form "if 
antecedent1 and antecedent2 then conclusion". The antecedent# represents 
the fuzzy conditions for cl or cz, characterized over the term set {VS, S, M ,  
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L, VL). The conclusion can be T or F. The degree of firing for each fuzzy 
rule is taken as the minimum of the degrees of matching between the inputs 
cl and c2 and the antecedents. The aggregation is carried out by averaging 
the fuzzy conclusions derived from all the rules. 

Although we have shown a 25-rule system, for this Evolvable system, the 
number of the fuzzy rules can vary between 0 and 25. In order to manage the 
evolution time and reduce the search space, we can fix the size of the rule set 
to be less than 25 as in [29], so that the evolution time can be managed. This 
is because the search space for a reduced rule set is more manageable and 
hence the evolution efficiency can be significantly improved. 

9.4.3 Fitness Function 

According to the specifications of the problem, the capacity of the output 
channel is fixed. This implies that no further adjustment on the output ca- 
pacity can be made to cater for fluctuations in demand. If the bandwidth is 
not big enough to meet the demand of the two cell flows, servicing classl cell 
would mean filling up the class2 buffer and eventually resulting in cell loss for 
class2. Hence for a specified requirement on the level of cell delay for classl, 
a certain expected level of class2 cell loss is inevitable. In other words, the 
class2 cell loss is constrained by the desired level of classl cell delay that the 
system is trying to achieve. 

There is one main consideration in formulating the fitness function for the 
EFH. This pertains to the classl average cell delay. From the above discussion, 
it is apparent that the level of class2 cell loss is negatively correlated to 
the average class1 cell delay. Adjusting class1 cell delay will adversely affect 
the class2 cell loss. Based on these justifications, the fitness function can be 
described explicitly as in Eq.9.1. 

In Eq.9.1, K is a very large numerical constant. It is used to adjust the 
range of fitness values such that F is proportional to the fitness measure 
of the chromosome. The larger the fitness value, the fitter the chromosome. 
AveDelay is the average delay of classl cell units after all the cells in TB1 have 
been processed. DelayFactor is a constant used as a reference for scaling the 
value of X based on the desired classl cell delay. X is an adjustable coefficient 
to denote the desired level of average cell delay for classl cell units stored 
in TB1. In general, the system tries to search for a chromosome with mini- 
mum IAveDelay - X x DelayFactorl. Both the AveDelay and DelayFactor 
in Eq.9.1 can be determined from Eq.9.2 and Eq.9.3 respectively. 

1 
AveDelay = - x EL1 m ( i )  

7 

DelayFactor = p x v 
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In Eq.9.2, m(i) is the waiting time of the ith cell in TB1 before being sent 
out. T is a variable denoting the number of classl cell units in TB1 sent 
during evaluation. ELl m(i) is the sum of the cell delay of the cell units in 
TB1. In Eq.9.3, p is a constant corresponding to the time required to send a 
cell through the output channel. The value of p depends on the bandwidth 
capacity of the output channel. The symbol v denotes the size of TB#. With 
Eq.9.3, a reference value for the possible delay of classl cell units can be 
determined. 

9.5 Simulation 

In order to demonstrate the viability of the EFH scheme, we carried out simu- 
lations of EFH in cell scheduling on two different scenarios. In the simulation, 
we assume the capacity of the output channel (OUT) and the input channels 
to be 155.52MHz. The two cell flows are as shown in Fig. 9.5. 

For scenariol, classl is the CBR cell flow with cell bit rate of 155.52MHz. 
class2 is VBR cell flow, also with a cell bit rate of 155.52MHz. The difference is 
that the VBR specified has a 2ms ON time period and a 2ms OFF time period. 
This scenario is a very extreme case used to test the system's controllability. 
In order to simulate the system performance on a more realistic cell flow, we 
can adopt scenario2. For scenario2, class1 refers to CBR cell flow with a cell 
bit rate of 100MHz. class2 is VBR cell flow with unknown random cell bit 
rate. The minimum cell bit rate for VBR is 55.52MHz while the maximum is 
155.52MHz. In these two scenarios, since the sum of the CBR and VBR cell 
rate is larger than the OUT channel's capacity, cell loss is unavoidable. From 

class, 

classl 

Fig. 9.5. Two classes of cell flows 

a practical point of view, the second scenario is more likely compared to the 
first scenario. 

The simulation results are compared with the results of first-in first-out 
(FIFO) and dynamically weighted priority scheduling (DWPS) [24]. FIFO is 
a very traditional scheduling method. It schedules the cell flows based on 
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the arrival time of the packets. FIFO can achieve very good balance between 
classl cell loss and class2 loss, but it is very bad in terms of classl cell delay 
performance. DWPS is a very good algorithm for cell scheduling. It adjusts 
the priority according to the cell flow scenarios. But the adaptation scheme 
of DWPS is not very efficient if the cell flow changes dramatically. DWPS 
can be described by Eq.9.4. In Eq.9.4, vi is the fixed priority for different cell 
flow inputs, a lower value indicates a higher priority. Ti(t) is the waiting time 
of the oldest packet in the buffer of the ith channel. Qi is the priority index 
associated with each cell. The lower the value, the higher the priority. y is an 
emphasis parameter and the recommended value is 0.9. 

9.5.1 Simulation Results 

For the simulation, the size of BUFl and BUF2 is 100 cells, and the size of 
TB1 and TB2 is 300 cells. In the fitness function, X is 0.35. All the simulations 
are carried out by using a C++ program. The setting for the parameters of 
the evolutionary algorithm is as follows: 

0 population size = 10; 
elite pool size = 2; 
crossover probability = 0.6; 

0 mutation probability = 0.05; 
number of generation = 9; 

0 number of evolutionary cycle = 2. 

We simulated each scheduling scheme for cell flows lasting 2 seconds. Fig. 
9.6 and 9.7 are the simulation results of FIFO, DWPS and EFH schemes 
on scenariol. Fig. 9.8 and 9.9 are simulation results for FIFO, DWPS and 
EFH schemes on scenario2. The simulation results demonstrate the viability 
of the evolution scheme and that EFH can fulfill the cell scheduling task. For 
scenariol, EFH can achieve lower classl cell delay than FIFO and DWPS. 
The balance of classl and class2 cell loss by using these three methods is 
acceptable. None of the schemes show significant bias towards any of the two 
cell flows. For scenario2, the situation is quite different. EFH can still achieve 
lower classl cell delay with an acceptable balance between classl cell loss and 
class2 cell loss. The class1 cell delay by using DWPS is higher than that of 
EFH and the balance between the classl cell loss and the class2 cell loss is 
not good. So according to the quality factors as discussed in Section 9.2, EFH 
can control the cell scheduling better than FIFO and DWPS when the cell 
flow changes dramatically. 

9.5.2 Tunability of EFH 

One advantageous property of EFH is that the system performance can be ad- 
justed very intuitively by decreasing or increasing the value of X in Eq.9.1. The 
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Cell Average Delay for class, Cell Average Delay for class2 

18001 

0 1 2 3 
simulate time (pS) 06 

Fig. 9.6. Cell delay for classl and class2 in scenariol 

smaller the value, the smaller the classl cell delay. This property cannot be 
achieved conveniently using traditional scheduling methods. As in the above, 
the tunability of EFH is demonstrated by simulation results on scenario1 and 
scenario2 . 

The results of the simulation with different values of X for scenariol and 
scenario2 are as shown in Fig. 9.10, 9.11, 9.12 and 9.13. In Fig. 9.10 and 
9.11, when X is 0.4, the classl cell delay and classl cell loss are very small. 
Accordingly, the class2 cell delay and cell loss are significant. If good balance 
of classl cell loss and class2 cell loss is desired, a bigger value can be assigned 
to A. In Fig. 9.10 and 9.11, both the classl cell loss and class2 cell loss are 
moderate when X is 0.6. For situations where QoS for class2 needs to be 
significantly emphasized, the value of X can be increased. The larger the value 
for A, the better the QoS for classz. For example, it is clear from the plots in 
Fig. 9.10 and 9.11 that X=0.8 offers good QoS for classa. 

For the simulation results in Fig. 9.12 and 9.13 on scenario2, the same 
conclusion can also be derived. In principle, classl cell delay can be adjusted 
in the range from 0 to p x v if X is between 0 and 1. This means that classl 
cell delay has a very wide range of tunability. It further implies that classl 
cell loss and class2 cell loss are also tunable to a wide range. According to the 
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1 o5 Cell Loss for class, 

FIFO 

DWPS 

EFH 

1 2 
simulate time (pS) 

Cell Loss for claw2 .r-- 

1 2 
simulate time (BS) 

Fig. 9.7. Cell loss for classl and classa in scenario1 

fitness function, the acceptable level of classl cell delay can be decided based 
on the value of A. On the other hand, if one can decide on the satisfactory 
classl cell delay to be achieved, the value of X can also be approximated. 

9.6 Hardware Implement at ion 

According to the evolution scheme described by Fig. 9.2 in Section 9.4, the 
chromosomes need to be evaluated within a very short time period for each 
evolution. If the whole evolution process can be completed within the time it 
takes to send one cell packet through the OUT channel, and a good fuzzy rule 
set can be found during this time period, the system will enjoy the greatest 
flexibility in adapting to the changing environment. On the whole, the perfor- 
mance of the system is very much dictated by the quality of the rule set being 
applied. Each rule set instance is referred to as a context, and is applicable 
to the current scenario of the operating environment. As context changes, the 
fuzzy inference circuit is required to accommodate the new context without 
incurring significant overhead for setup. This implies that a reconfigurable 
high-speed fuzzy inference circuit is very critical in EFH. In order to achieve 
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fast fuzzy inference and at the same time accommodate real-time online con- 
text updating, we have proposed a hardware scheme for fuzzy inference called 
reconfigurable fuzzy inference chip (RFIC) [21]. 

The novelty of the RFIC lies in its ability to accommodate an online 
context change without interrupting the system operation. The block archi- 
tecture of RFIC is as shown in Fig. 9.14. The main component is the FIM 
(fuzzy inference map) block. It adopts an implicit inference approach to de- 
liver high inference speed for applications with dynamically changing contexts. 
The current applicable context is managed by the CMU (context management 
unit). It stores the working fuzzy context and generates control signals such 
as Ens<,,> and Sel<x,y> for the FIM. AEM (address encoding mechanism) 
is the module that generates the address to access the FIM partition blocks 
activated by the Ens<,,,> signals. The OAM (output aggregation mechanism) 
is the dedicated circuit for fuzzy inference aggregation. 

The proposed EFH system for cell scheduling is able to accommodate fuzzy 
rule sets of up to 25 fuzzy rules. Hence, the FIM block incorporates 25 PBs 
(partition blocks); PB<1,1>, PB<1,2> . . . PB<5,5>. Each PB is a mapping that 
accommodates all the input situations with specific outputs. The mapping for 
each PB is created based on a software fuzzy inference model. To illustrate 
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the basic structure and format of each PB, we can assume that the inputs and 
the membership functions are digitized to 5 bits. A sample of the mapping 
data for PB<1,1> is presented in Table 9.2 for illustration. The left column of 
the table lists the addresses. The whole address string is composed of three 
parts, i.e., the digitized values of Inputl, Inputz and Sel<l,l>. The data are 
made up of two parts. The most significant bit is the fuzzy conclusion bit 
indicating T or F. The other bits represent the degree of firing for the corre- 
sponding fuzzy rule. For example, refering to the first memory unit in Table 
9.2, where both Inputl and Inputz equal to "OOOOO", the degree of matching 
to the membership function VS is "11111". So the corresponding datum in 
the location is "0,11111". Its first bit "0" represents the fuzzy conclusion T 
and the other bits "11111" is the firing strength. 

CMU stores the current application context and generates Ens<,,,> and 
Sel<,,,> signals. For the application described, the size of the context register 
required is 50 bits. Each two-bit datum in the register represents a fuzzy 
rule. The position of each two-bit datum in the 50-bit string identifies the 
specific rule of the context. A "01" means the fuzzy conclusion is T and "10" 
indicates the fuzzy conclusion is F. A "00" means that there is no fuzzy rule 
for the corresponding input situation. Each Ens<,,,> signal can be generated 
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by applying the logical OR operation to the corresponding two bits. A value 
of "1" for Ena<x,y> indicates that PB,,,,, is enabled, which otherwise is 
disabled. Sel<x,y> also depends on the specific two bits and is connected to 
PB<,,,> separately. A "01" generates a "0" for Sel<,,,> and "10" produces a 
"1". The circuit for OAM is as shown in Fig. 9.15. It is made up of Ave-2 blocks 
and Ave-3 block. In this circuit, the most significant bit of each datum shown 
in Table 9.2 involve in the aggregration operation is a sign bit. The output 
has 5 more bits than the input data in order to preserve calculation precision. 
The control output is derived from the sign bit, i.e, the most significant bit 
of the OAM output. A positive value indicates that the inference conclusion 
is T and a negative means the conclusion is F. 

9.7 Conclusions 

There are several challenges to the application of Evolvable hardware for solv- 
ing time critical problems. We highlighted three issues, namely online adapta- 
tion, scalability as well as termination of evolution. To realize EHW capable of 
intrinsic online evolution, these issues have to be considered. In this chapter, 
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Table 9.2. FIM content in PB<l,l> 

Address Data 
ooooo,ooooo,o 0,111 11 
00000,00000,1 1,11111 
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we proposed the EFH scheme, a form of EHW whereby the fuzzy inference 
scheme is carried out in hardware to achieve real-time operation. The scheme 
allows for updating of online context and domain rules and further incorporat- 
ing mechanisms to evolve a context appropriate for the application scenario. 
In order to demonstrate the viability of our proposed EFH, we simulated the 
control performance of the EFH in cell scheduling and compared the results 
with some traditional scheduling methods. From the simulation results, it can 
be seen that the EFH is capable of dealing with changing cell flows much bet- 
ter than the traditional methods. Another significant advantage of the EFH is 
tunability. This was also analyzed based on the simulation results. Based on 
analysis of the simulation results, the EFH possesses significant advantages 
over conventional scheduling methods. To implement the EFH, we described 
the hardware implementation based on a context switchable RFIC to achieve 
real-time high-speed fuzzy inferencing and high-speed context updating. By 
combining this hardware scheme and the evolution scheme, an online adaptive 
and intrinsic Evolvable EFH can be potentially realized using system-on-chip 
technology. Although we demonstrated the application of EFH on Packet 
Switching, the application of EFH is not limited to this. Some real-time con- 
trol problems such as packet control in parallel computer, token control in 
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Fig. 9.15. The hardware architecture of OAM 

da ta  flow machine, cell flow control in future communication networks are 
potentially suitable application areas. 
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