
Evolvable Fuzzy Hardware for Real-time
Embedded Control in Packet Switching

Ju Hui Li, Meng Hiot Lim, and Qi Cao

School of EEE, Block S1, Nanyang Technological University, Singapore 639798,
(pg01896341 1 emhlim 1 pg04780942) Qntu. edu. sg

In this chapter, we describe a scheme to realize an Evolvable Fuzzy Hardware
(EFH) for real-time Packet Switching problem. The common challenges of
Evolvable hardware (EHW) implementation are issues pertaining to online
adaptation, scalability and termination of evolution [I]. The proposed EFH
addresses these issues effectively. A very interesting advantage of the pro-
posed EFH is that the system performance can be tuned intuitively through
parametric adjustment of the fitness function. This advantage gives the EFH
system a very special property that conventional scheduling methods cannot
fulfill easily. For the hardware implementation of the EFH, real-time fuzzy
inference with high-speed context switching capability is necessary. We ad-
dress this aspect through implementation based on a context independent
reconfigurable fuzz9 inference chip (RFIC).

9.1 Introduction to EHW and EFH

Evolvable hardware (EHW) is a new type of hardware whose architecture can
be evolved to suit the operating environment. In recent years, it has been at-
tracting greater attention from researchers. The idea behind EHW is based on
evolutionary algorithm, a methodology to search the solution space to derive
the appropriate hardware architecture. EHW can be classified into extrinsic
and intrinsic EHW based on the scheme of evolution used. Extrinsic EHW
relies on a simulated evolutionary process independent of the hardware. It
may rely on hardware description languages (HDL), C or other programming
languages to represent the circuit and then rely on an evolutionary algorithm
to evolve the hardware configuration. Only the elite design is downloaded
into the reconfigurable device. Intrinsic evolvability means that the evolution
and evaluation of solutions are carried out at the hardware level of the EHW

206 Ju Hui Li, Meng Hiot Lim, and Qi Cao

system. In principle, intrinsic EHW can modify its own hardware configura-
tion and behavior autonomously. If the environment changes, the behavior or
architecture will also change to maintain an acceptable level of system per-
formance. Currently, there has been great progress made for extrinsic type of
EHW [2, 3, 4, 5, 6, 71.

There are also research works that focused on intrinsic EHW. In some
reported works, the researchers rely on a semi-intrinsic approach. They use
software to realize the evolution part and hardware to carry out evaluation of
the derived architecture. After the evolution process, the best chromosome is
implemented in hardware. This scheme can be called ofline adaptive intrinsic
EHW. Most of the works on intrinsic EHW up to now can be found in [8,9,10].
This type of EHW generally has some advantages over extrinsic EHW. Since
it carries out the evaluation in hardware, the evaluation process is very fast,
and the performance of the elite is not affected by error in the simulation
model. Intrinsic EHW is useful for applications that require online and real-
time system reconfiguration. However, the implementation of intrinsic EHW
still poses significant challenges for such promising areas.

From the perspective of evolution granularity, current EHW can be classi-
fied into three types: transistor level, gate level and function level. Among the
three, the transistor level represents the lowest level of evolution granularity.
This gives the greatest flexibility because transistors are the smallest compo-
nents of any circuit. Gate level EHW means that logic gates are the smallest
configurable components of the EHW [ll, 12, 13, 14, 15, 16, 171. Functional
level EHW carries out the evolution of macro units (adder, multiplier, sine,
cosine, etc.) implemented on a special type of FPGA [2, 18, 191. There are
many functional processing units (FPU) in the FPGA chip. Each FPU can be
configured to perform one of the high-level functions such as addition, subtrac-
tion, multiplication, division, sine and cosine. The functions and connections
of FPUs are configured based on the elite chromosome. Most of the EHW
reported can be categorized into one of these three levels. The limitations of
these forms of EHW imply that evolutions can only be done extrinsically or
in some instances, intrinsically but in an offline adaptive manner.

For the implementation of intrinsic Evolvable and online adaptive EHW,
there are three main open issues that need to be addressed [I]. These issues
are briefly outlined below.
Online adaptation: This means that the system hardware is required to adapt
during the normal operation. Online adaptation is very hard to realize because
the system has to reconfigure the hardware for every chromosome in order to
carry out the evaluation. Some chromosomes may inevitably result in very
poor performance. If these chromosomes are evaluated by reconfiguring the
hardware, they may potentially result in some damages or disastrous outcome.

Scalability refers to the extensibility of the scheme to handle more complex
architecture or configurations. For a typical EHW, the chromosome length
may be hundreds or even thousands of genes for a complicated system. The

9 Evolvable Fuzzy Hardware for Control in Packet Switching 207

search space represented by a chromosome may be very big. Hence the search
by the genetic algorithms (GA) for a good solution in such a big solution
space may take a very long time.

Termination of evolution pertains to criteria or conditions for stopping the
evolution process. For example, one commonly used criterion is the number
of runs. With a GA scheme, there is no guarantee as to the number of runs
required before a desirable solution can be found. This can be a significant
drawback for real-time operation.

In order to perform online adaptive and intrinsic Evolvable hardware, we
propose a new form of EHW that is referred to as Evolvable Fuzzy Hardware
(EFH). EFH can be viewed as a form of Evolvable fuzzy system (EFS) whereby
the fuzzy inference system is implemented in hardware to deliver real-time in-
ference throughput. Furthermore, the domain knowledge of the fuzzy system
should be able to support online real-time reconfiguration. EFH can overcome
the disadvantages of the other three EHWs described earlier and is amenable
to intrinsic evolution and online adaptation. Earlier in [20], we proposed EFS
for ATM cell scheduling. In that system, the EFS searches for an appropriate
fuzzy rule set to carry out the scheduling task on dynamically changing cell
flows. The evolutionary search process does not cause any interruption in the
system operation. After a good fuzzy rule set is found, the old one is replaced
immediately. From simulation results, it was shown that EFS is capable of
dynamic real-time adaptation to deliver robust performance. To further sup-
port our work, we have also proposed a reconfigurable fuzzy inference chip
(RFIC) whereby the context can be changed or reconfigured online [21]. By
combining the advantages of the EFS and RFIC, we demonstrate in this work
how intrinsic Evolvable and online adaptive EFH can be implemented.

In Section 2, we introduce the real-time Packet Switching problem, an
application for demonstrating the viability of the EFH. In Section 3, we de-
scribe specifically how the implementation challenges of the intrinsic EFH are
addressed. In Section 4, we describe the detailed formulation of the fitness
function adopted in our EFH. In Section 5, we present the simulation results
of applying EFH to solve the real-time problem. Certain desirable properties
of the EFH in dealing with the real-time problem are also discussed in this
section. In Section 6, we outline details on how the EFH can be implemented
from a system's perspective. Finally, we offer some concluding remarks for our
work on EFH.

9.2 Packet Switching

Packet Switching is a backbone of modern communication networks. Because
of the characteristics of the various services supported by the network, the
management of the bandwidth resources is very critical. The multiplexer is
an important component used to administer the sharing of bandwidth among

208 Ju Hui Li, Meng Hiot Lim, and Qi Cao

different cell flows. It is mainly employed to provide a means of sharing high-
speed link for network terminations or network inter-nodes. Time division
scheme is adopted in the multiplexer. The output link can be divided into
different time slots. At anytime, only one input flow is accorded the priority of
sending packets through the output channel. The simplified block architecture
of the multiplexer is as shown in Fig. 9.1. For illustration, we classify the
services into two types, classl and class2. In the block diagram, BUFl and
BUF2 refer to buffers for classl and class2 respectively. MP represents the
time division multiplexing system for transmitting packets through the OUT
channel. The switching control block is a part of the hardware that handles
cell scheduling. When the OUT channel is available, the switching control
block decides on which cell flow to be sent.

For Packet Switching, class1 can be a form of CBR (Constant Bit Rate)
traffic, rt-VBR (real-time Variable Bit Rate) or both. The class2 traffic type
may refer to nrt-VBR (non-real-time Variable Bit Rate), UBR (Unspecified Bit
Rate) or ABR (Available Bit Rate) [22]. While classl type is delay sensitive,
class2 is considered to be not sensitive to delay. These two sources of cell flow
must be multiplexed on the output channel (OUT) by the MP unit through
time division. The capacities of OUT and the input channels are fixed. In
this problem, the QoS (Quality of Service) of the system can be evaluated by
classl cell delay, classz cell loss and the balance between classl cell loss and
class2 cell loss. The ideal case is that classl cell delay and class2 cell loss are
very small and there is also a good balance established between classl cell
loss and class2 cell loss.

The application of EHW in ATM cell scheduling has been reported in
Liu et. a1 [2, 31. In their works, the authors presented schemes of functional
EHW to solve the problem of cell scheduling. The functional EHW system
successfully achieved a circuit that had service performance similar to that
of traditional scheduling schemes. However, the scheme has some significant
limitations, hence not suitable for practical applications. The main limitation
of the system is its inability to evolve intrinsically. Another limitation is that
the system had to rely on an external computation platform to carry out
evolutionary process due to its large search space. Finally, the system faces
the limitation of being trained and tested only on fixed cell flow patterns.
In a practical system, the cell flows can change dramatically. There was no
effective scheme in this system to adjust the system along with the changing
cell flows.

9.3 Solutions for Open Issues

In order to solve the packet scheduling problem, we design the system archi-
tecture, incorporating evolutionary mechanisms as in Fig. 9.2. In this system,
the training buffers TB1 and TB2 are used to store classl and class2 cells
respectively. The size of TB1 and TB2 is at least 2 or 3 times that of BUFl

9 Evolvable Fuzzy Hardware for Control in Packet Switching 209

and BUF2. When either TB1 or TB2 is full, the evolutionary process is trig-
gered. Fitness evaluation is carried out by subjecting each chromosome to the
scheduling model according to the cell flow stored in TB1 and TB2. The pur-
pose of the scheduling model is to emulate the function of the multiplexer as in
Fig. 9.1. After a specified number of cycles and generations, if a chromosome

Switching Control r

Fig. 9.1. Multiplexer scheme

that corresponds to a system rule set is better than the working chromosome,
the working chromosome is replaced immediately. In order to prevent the
search procedure from being trapped in a local region, after a pre-specified
number of generations, the whole evolutionary process is restarted, from the
point where the initial population is generated. This is essentially the start of
a new evolution cycle. Functionally, the scheduling model emulates the packet
switching to derive the cell delay and cell loss parameters. This is achieved
by a multiplexer model within the scheduling model block. The derived pa-
rameters enable the fitness value to be calculated using the fitness function.
Basically, the evolution module evolves the appropriate rule set by interacting
with the scheduling model to evaluate the fitness of each evolved fuzzy rule
set. When evolution is triggered, it works in the background while the MP
unit is in operation. With EFH, the fuzzy inference circuit is a very important
component and it directly affects the speed of the system's response to the
changes in cell flow. Two high-speed fuzzy inference components are required.
One is in the scheduling model and another is the RFIC block performing cell
scheduling control.

During evolution, it is inevitable that poor quality chromosomes i.e., chro-
mosomes that result in poor switching performance, are also evaluated. To
avoid the possibility of detrimental effects on the system performance by these
chromosomes, the scheduling model is incorporated in Fig. 9.2 to emulate the
cell scheduling process. This allows for evaluation of the evolved chromosomes
in the background. After the evolution process, only the final fuzzy rule set

210 Ju Hui Li, Meng Hiot Lim, and Qi Cao

Fig. 9.2. Adaptation framework for EFH

will be configured in the RFIC block. In this way, we address the first major
open issue of the intrinsic EHW.

In order to achieve online adaptation and intrinsic evolution for real-time
control, another issue that can be regarded as a sub-problem of online adapta-
tion and intrinsic evolution, must also be addressed. During evolution, training
data are required. In [2], the EHW system uses the same data for training and
testing. This scheme can work well in applications when the real time data
do not change dramatically. But if the application scenario is significantly
different from the training situation, the system may not perform very well.
This indicates that extensive data samples are necessary for such an evolu-
tion scheme. If the real-time data change dramatically, it is not practical to
incorporate diversely representative real data samples to train the system.
For many real-time control areas, we believe that there is no need to do so.
In fact, we can apply the principle of "locality" to substantiate this belief.
For example, in computer operating system, the design of the cache memory
system is based on this principle. Accordingly in computer operating system,
if a program is accessing a certain part of the memory, then there is a great
likelihood that the program will also access the part of the memory within the
same locality in the next time period. In our EFH, we contend that there is a
very high probability that the data model within a small time window is the
same as the model of data samples in the previous time window. The locality
proposition is valid if we assume that the time window is small enough. For the
CBR flow, since the cell rate is constant [22,23], the cell rate at any particular
time period is the same as that of the preceding time period. For VBR flow,
which can be described by a two-phase burst/silence model [2, 24, 25, 26, 271,
cells can be sent equidistantly during the burst period and no cells are trans-

9 Evolvable Fuzzy Hardware for Control in Packet Switching 211

mitted during the silence period. The cell rate during the burst period can
be approximated based on the principle of "locality". But at the edge of the
burst period and the silence period or vice versa, significant error may occur.
This kind of prediction error can be tolerated if the time window is sufficiently
small. Based on this justification, we can train the system using the previous
data flow to approximate the expected data model of the subsequent time
period. The smaller the time window, the more flexible the EFH adapts to
the cell flow. The best chromosome after an evolution process will be used to
do scheduling in the next time period.

To address the scalability issue, we adopt an evolutionary granularity at
the fuzzy rule level. In the EFH for Packet Switching, a chromosome can be
represented as a string of 25 integers. Each gene of a chromosome represents
a fuzzy rule. For this scheme, the search space is not too big compared to the
search space in [2, 91, in which each chromosome is represented by a string
comprising of hundreds of integers or thousands of bits. The evolution time in
the EFH is thus manageable. The third issue to address is the termination of
evolution. In many EHW systems, the evolution system may require thousands
of generations to get close to an optimal chromosome. The extent of evolution
time may limit the applicability of the system for real-time application. In
[2], in order to get a good functional EHW to do ATM cell scheduling, the
system evolved for 2500 generations with a population size of 400. In [9],
in order to derive a circuit with Gaussian output voltage characteristic, the
Evolvable hardware system has to evolve 10000 generations. The time scale
for evolution in these reported works is not appropriate if used in real-time
intrinsic EHW control system. For comparison, in the proposed EFH, a very
small population size and small number of the generations are important
features of the evolutionary process. In order to prevent the system from
adopting a very poor performing fuzzy rule set, we defined a core rule set
in the system derived based on the analysis of the problem through human
intuition. The core rule set is also used as the startup rule set. If the EFH
system is not able to find a chromosome that is better than the core rule
set within a fixed number of generations, the core rule set is adopted. The
appropriate number of generations for each evolutionary cycle is determined
through experimentation. The objective of the evolution is to get a fuzzy rule
set better than the working chromosome for the cell flow of the following time
period. Even if the derived fuzzy rule set is not optimal, it is deemed to be
sufficient. By adopting this idea, the criterion for the termination of evolution
can be satisfactorily managed.

9.4 Evolution Scheme

To carry out evolution, GA manipulates a population of chromosomes. These
chromosomes are solution representations denoting the application domain
fuzzy rule sets,when decoded. In the rest of this section, we will first introduce

212 Ju Hui Li, Meng Hiot Lim, and Qi Cao

the fuzzy system and its coding scheme. Then we will describe the inference
scheme and the fitness function of this system.

9.4.1 Genetic Coding

A fuzzy system can be formally defined as an application or system, which
employs a fuzzy control algorithm. In general, the fuzzy control algorithm
refers to a set of if-then rules with linguistic values and fuzzy variables. The
values are specified as fuzzy concepts defined by membership functions. Fuzzy
system implicitly means a set of rules and membership functions.

Suppose a fuzzy system has q input variables XI, 2 2 , . . ., x, and single
output control variable y, a typical rule for the fuzzy system will be "if < xl
is Al > and < 2 2 is A2 > . . . and < x, is A, > then < y is D >". Al, A2, . . .,
A, and D are fuzzy concepts or linguistic values. Usually, the development
of a fuzzy system involves specifying a finite set of labels to represent the
linguistic values for describing each of the variables. If the number of labels
for the input variables XI, x2, . . ., x, are &, 52, . . ., J, respectively, then the
number of rules that one can declare will be 51 x & x . . . xQ. We refer to
this as the maximum or exhaustive rule set. An n-rule fuzzy system would
therefore refer to a system with n being less than or equal to & x & X . . . xJ,.
This is refered to as an n-rule constrained fuzzy system or simply an n-rule
fuzzy system [28, 29, 301.

To begin with, we define two symbols for the inputs, cl and c2. The symbol
cl refers to the status of classl cell flow, which is a function of V1 and V,,,.
V1 is the current cell rate of classl cell flow while V,,, is the line capacity.
The symbol c2 refers to the buffer status of BUF2. It is a function of L2 and
L,,,. L2 is the number of empty units in BUF2 while L,,, is the length
of BUF2. For cl and c2, the memberships are characterized by the term set
{VS, S, M, L, VL} as depicted in Fig. 9.3. These are standard triangular
membership functions. The output SEL of the fuzzy switching control block
(see Fig. 9.2) is characterized by the term set {T, F}. Both T and F are
singletons, or fuzzy sets with impluse membership functions as shown in Fig.
9.4. Functionally, a T or true means that the MP unit allocates time slots
to cater for the classl cell flow in BUF1. An output F or false implies that
switching is reverted to cells in BUF2.

Based on the above characterization of the switching network, it is pos-
sible to define the n-rule heuristics to control the switching behavior. With
the fuzzy memberships defined, one can rely on intuitive logic to define the
necessary input-output mappings as shown in Table 9.1. The 25-rule system
serves as the default cell scheduling algorithm on system startup. We refer to
this rule set as the core rule set.

A fuzzy rule set can be represented as a string of integers. For example,
the genetic code for the 25-rule system in Table 9.1 can be described by the
string " 2221122111221112111111111". The allelic code 1 and 2 correspond to
the labels true and false respectively. The position of the gene in the string

9 Evolvable Fuzzy Hardware for Control in Packet Switching 213

vs rvery-smal l
S small
M =medium
L r l a r g e
VL. very-large

Fig. 9.3. Membership functions for cl and c2

Fig. 9.4. Membership functions for T and F

identifies a specific rule in Table 9.1 when interpreted accordingly in a row
wise manner. If the value of a gene is 0, it means that there is no specific fuzzy
rule defined for the corresponding input condition. The core rule set not only
serves as the startup rule set, but also provides a means to benchmark the
performance during the evolution of chromosomes. This scheme guarantees
that the performance of the system is better than or at least comparable to
that of the core rule set.

Table 9.1. A 25-rule fuzzy system for ATM cell scheduling

9.4.2 Inference Scheme

Each entry in Table 9.1 can be interpreted as a statement of the form "if
antecedent1 and antecedent2 then conclusion". The antecedent# represents
the fuzzy conditions for cl or cz, characterized over the term set {VS, S, M ,

214 Ju Hui Li, Meng Hiot Lim, and Qi Cao

L, VL). The conclusion can be T or F. The degree of firing for each fuzzy
rule is taken as the minimum of the degrees of matching between the inputs
cl and c2 and the antecedents. The aggregation is carried out by averaging
the fuzzy conclusions derived from all the rules.

Although we have shown a 25-rule system, for this Evolvable system, the
number of the fuzzy rules can vary between 0 and 25. In order to manage the
evolution time and reduce the search space, we can fix the size of the rule set
to be less than 25 as in [29], so that the evolution time can be managed. This
is because the search space for a reduced rule set is more manageable and
hence the evolution efficiency can be significantly improved.

9.4.3 Fitness Function

According to the specifications of the problem, the capacity of the output
channel is fixed. This implies that no further adjustment on the output ca-
pacity can be made to cater for fluctuations in demand. If the bandwidth is
not big enough to meet the demand of the two cell flows, servicing classl cell
would mean filling up the class2 buffer and eventually resulting in cell loss for
class2. Hence for a specified requirement on the level of cell delay for classl,
a certain expected level of class2 cell loss is inevitable. In other words, the
class2 cell loss is constrained by the desired level of classl cell delay that the
system is trying to achieve.

There is one main consideration in formulating the fitness function for the
EFH. This pertains to the classl average cell delay. From the above discussion,
it is apparent that the level of class2 cell loss is negatively correlated to
the average class1 cell delay. Adjusting class1 cell delay will adversely affect
the class2 cell loss. Based on these justifications, the fitness function can be
described explicitly as in Eq.9.1.

In Eq.9.1, K is a very large numerical constant. It is used to adjust the
range of fitness values such that F is proportional to the fitness measure
of the chromosome. The larger the fitness value, the fitter the chromosome.
AveDelay is the average delay of classl cell units after all the cells in TB1 have
been processed. DelayFactor is a constant used as a reference for scaling the
value of X based on the desired classl cell delay. X is an adjustable coefficient
to denote the desired level of average cell delay for classl cell units stored
in TB1. In general, the system tries to search for a chromosome with mini-
mum IAveDelay - X x DelayFactorl. Both the AveDelay and DelayFactor
in Eq.9.1 can be determined from Eq.9.2 and Eq.9.3 respectively.

1
AveDelay = - x EL1 m (i)

7

DelayFactor = p x v

9 Evolvable Fuzzy Hardware for Control in Packet Switching 215

In Eq.9.2, m(i) is the waiting time of the ith cell in TB1 before being sent
out. T is a variable denoting the number of classl cell units in TB1 sent
during evaluation. ELl m(i) is the sum of the cell delay of the cell units in
TB1. In Eq.9.3, p is a constant corresponding to the time required to send a
cell through the output channel. The value of p depends on the bandwidth
capacity of the output channel. The symbol v denotes the size of TB#. With
Eq.9.3, a reference value for the possible delay of classl cell units can be
determined.

9.5 Simulation

In order to demonstrate the viability of the EFH scheme, we carried out simu-
lations of EFH in cell scheduling on two different scenarios. In the simulation,
we assume the capacity of the output channel (OUT) and the input channels
to be 155.52MHz. The two cell flows are as shown in Fig. 9.5.

For scenariol, classl is the CBR cell flow with cell bit rate of 155.52MHz.
class2 is VBR cell flow, also with a cell bit rate of 155.52MHz. The difference is
that the VBR specified has a 2ms ON time period and a 2ms OFF time period.
This scenario is a very extreme case used to test the system's controllability.
In order to simulate the system performance on a more realistic cell flow, we
can adopt scenario2. For scenario2, class1 refers to CBR cell flow with a cell
bit rate of 100MHz. class2 is VBR cell flow with unknown random cell bit
rate. The minimum cell bit rate for VBR is 55.52MHz while the maximum is
155.52MHz. In these two scenarios, since the sum of the CBR and VBR cell
rate is larger than the OUT channel's capacity, cell loss is unavoidable. From

class,

classl

Fig. 9.5. Two classes of cell flows

a practical point of view, the second scenario is more likely compared to the
first scenario.

The simulation results are compared with the results of first-in first-out
(FIFO) and dynamically weighted priority scheduling (DWPS) [24]. FIFO is
a very traditional scheduling method. It schedules the cell flows based on

216 Ju Hui Li, Meng Hiot Lim, and Qi Cao

the arrival time of the packets. FIFO can achieve very good balance between
classl cell loss and class2 loss, but it is very bad in terms of classl cell delay
performance. DWPS is a very good algorithm for cell scheduling. It adjusts
the priority according to the cell flow scenarios. But the adaptation scheme
of DWPS is not very efficient if the cell flow changes dramatically. DWPS
can be described by Eq.9.4. In Eq.9.4, vi is the fixed priority for different cell
flow inputs, a lower value indicates a higher priority. Ti(t) is the waiting time
of the oldest packet in the buffer of the ith channel. Qi is the priority index
associated with each cell. The lower the value, the higher the priority. y is an
emphasis parameter and the recommended value is 0.9.

9.5.1 Simulation Results

For the simulation, the size of BUFl and BUF2 is 100 cells, and the size of
TB1 and TB2 is 300 cells. In the fitness function, X is 0.35. All the simulations
are carried out by using a C++ program. The setting for the parameters of
the evolutionary algorithm is as follows:

0 population size = 10;
elite pool size = 2;
crossover probability = 0.6;

0 mutation probability = 0.05;
number of generation = 9;

0 number of evolutionary cycle = 2.

We simulated each scheduling scheme for cell flows lasting 2 seconds. Fig.
9.6 and 9.7 are the simulation results of FIFO, DWPS and EFH schemes
on scenariol. Fig. 9.8 and 9.9 are simulation results for FIFO, DWPS and
EFH schemes on scenario2. The simulation results demonstrate the viability
of the evolution scheme and that EFH can fulfill the cell scheduling task. For
scenariol, EFH can achieve lower classl cell delay than FIFO and DWPS.
The balance of classl and class2 cell loss by using these three methods is
acceptable. None of the schemes show significant bias towards any of the two
cell flows. For scenario2, the situation is quite different. EFH can still achieve
lower classl cell delay with an acceptable balance between classl cell loss and
class2 cell loss. The class1 cell delay by using DWPS is higher than that of
EFH and the balance between the classl cell loss and the class2 cell loss is
not good. So according to the quality factors as discussed in Section 9.2, EFH
can control the cell scheduling better than FIFO and DWPS when the cell
flow changes dramatically.

9.5.2 Tunability of EFH

One advantageous property of EFH is that the system performance can be ad-
justed very intuitively by decreasing or increasing the value of X in Eq.9.1. The

9 Evolvable Fuzzy Hardware for Control in Packet Switching 217

Cell Average Delay for class, Cell Average Delay for class2

18001

0 1 2 3
simulate time (pS) 06

Fig. 9.6. Cell delay for classl and class2 in scenariol

smaller the value, the smaller the classl cell delay. This property cannot be
achieved conveniently using traditional scheduling methods. As in the above,
the tunability of EFH is demonstrated by simulation results on scenario1 and
scenario2 .

The results of the simulation with different values of X for scenariol and
scenario2 are as shown in Fig. 9.10, 9.11, 9.12 and 9.13. In Fig. 9.10 and
9.11, when X is 0.4, the classl cell delay and classl cell loss are very small.
Accordingly, the class2 cell delay and cell loss are significant. If good balance
of classl cell loss and class2 cell loss is desired, a bigger value can be assigned
to A. In Fig. 9.10 and 9.11, both the classl cell loss and class2 cell loss are
moderate when X is 0.6. For situations where QoS for class2 needs to be
significantly emphasized, the value of X can be increased. The larger the value
for A, the better the QoS for classz. For example, it is clear from the plots in
Fig. 9.10 and 9.11 that X=0.8 offers good QoS for classa.

For the simulation results in Fig. 9.12 and 9.13 on scenario2, the same
conclusion can also be derived. In principle, classl cell delay can be adjusted
in the range from 0 to p x v if X is between 0 and 1. This means that classl
cell delay has a very wide range of tunability. It further implies that classl
cell loss and class2 cell loss are also tunable to a wide range. According to the

218 Ju Hui Li, Meng Hiot Lim, and Qi C m

1 o5 Cell Loss for class,

FIFO

DWPS

EFH

1 2
simulate time (pS)

Cell Loss for claw2 .r--

1 2
simulate time (BS)

Fig. 9.7. Cell loss for classl and classa in scenario1

fitness function, the acceptable level of classl cell delay can be decided based
on the value of A. On the other hand, if one can decide on the satisfactory
classl cell delay to be achieved, the value of X can also be approximated.

9.6 Hardware Implement at ion

According to the evolution scheme described by Fig. 9.2 in Section 9.4, the
chromosomes need to be evaluated within a very short time period for each
evolution. If the whole evolution process can be completed within the time it
takes to send one cell packet through the OUT channel, and a good fuzzy rule
set can be found during this time period, the system will enjoy the greatest
flexibility in adapting to the changing environment. On the whole, the perfor-
mance of the system is very much dictated by the quality of the rule set being
applied. Each rule set instance is referred to as a context, and is applicable
to the current scenario of the operating environment. As context changes, the
fuzzy inference circuit is required to accommodate the new context without
incurring significant overhead for setup. This implies that a reconfigurable
high-speed fuzzy inference circuit is very critical in EFH. In order to achieve

9 Evolvable Fuzzy Hardware for Control in Packet Switching 219

Cell Average Delay for class,

600--1
Cell Average Delay for class,

800 I

3
$
3 = 300
8
a

E?
P
200

100

0

DWPS

-

-

-

-,
1 2

simulate time (pS)

700

600

3 =0°
2 -
2 400
8

k+
2 300

200

100

0
0 1 2 3

simulate time (pS) 106

Fig. 9.8. Cell delay for class1 and class2 in scenario2

DWPS

-

-
EFH

FIFO
-

-

-

-

-

2

fast fuzzy inference and at the same time accommodate real-time online con-
text updating, we have proposed a hardware scheme for fuzzy inference called
reconfigurable fuzzy inference chip (RFIC) [21].

The novelty of the RFIC lies in its ability to accommodate an online
context change without interrupting the system operation. The block archi-
tecture of RFIC is as shown in Fig. 9.14. The main component is the FIM
(fuzzy inference map) block. It adopts an implicit inference approach to de-
liver high inference speed for applications with dynamically changing contexts.
The current applicable context is managed by the CMU (context management
unit). It stores the working fuzzy context and generates control signals such
as Ens<,,> and Sel<x,y> for the FIM. AEM (address encoding mechanism)
is the module that generates the address to access the FIM partition blocks
activated by the Ens<,,,> signals. The OAM (output aggregation mechanism)
is the dedicated circuit for fuzzy inference aggregation.

The proposed EFH system for cell scheduling is able to accommodate fuzzy
rule sets of up to 25 fuzzy rules. Hence, the FIM block incorporates 25 PBs
(partition blocks); PB<1,1>, PB<1,2> . . . PB<5,5>. Each PB is a mapping that
accommodates all the input situations with specific outputs. The mapping for
each PB is created based on a software fuzzy inference model. To illustrate

220 Ju Hui Li, Meng Hiot Lim, and Qi Cao

Cell Loss for class,

EFH

, DWPS

1 2
simulate time (pS)

Cell Loss for classz
lo4

20 8
DWPS

1 2
simulate time (pS)

Fig. 9.9. Cell loss for class1 and class2 in scenario2

the basic structure and format of each PB, we can assume that the inputs and
the membership functions are digitized to 5 bits. A sample of the mapping
data for PB<1,1> is presented in Table 9.2 for illustration. The left column of
the table lists the addresses. The whole address string is composed of three
parts, i.e., the digitized values of Inputl, Inputz and Sel<l,l>. The data are
made up of two parts. The most significant bit is the fuzzy conclusion bit
indicating T or F. The other bits represent the degree of firing for the corre-
sponding fuzzy rule. For example, refering to the first memory unit in Table
9.2, where both Inputl and Inputz equal to "OOOOO", the degree of matching
to the membership function VS is "11111". So the corresponding datum in
the location is "0,11111". Its first bit "0" represents the fuzzy conclusion T
and the other bits "11111" is the firing strength.

CMU stores the current application context and generates Ens<,,,> and
Sel<,,,> signals. For the application described, the size of the context register
required is 50 bits. Each two-bit datum in the register represents a fuzzy
rule. The position of each two-bit datum in the 50-bit string identifies the
specific rule of the context. A "01" means the fuzzy conclusion is T and "10"
indicates the fuzzy conclusion is F. A "00" means that there is no fuzzy rule
for the corresponding input situation. Each Ens<,,,> signal can be generated

9 Evolvable Fuzzy Hardware for Control in Packet Switching 221

Cell Average Delay for class,

600 7
Cell Average Delay for classz

1000 -,

Fig. 9.10. Cell delay for scenario1

by applying the logical OR operation to the corresponding two bits. A value
of "1" for Ena<x,y> indicates that PB,,,,, is enabled, which otherwise is
disabled. Sel<x,y> also depends on the specific two bits and is connected to
PB<,,,> separately. A "01" generates a "0" for Sel<,,,> and "10" produces a
"1". The circuit for OAM is as shown in Fig. 9.15. It is made up of Ave-2 blocks
and Ave-3 block. In this circuit, the most significant bit of each datum shown
in Table 9.2 involve in the aggregration operation is a sign bit. The output
has 5 more bits than the input data in order to preserve calculation precision.
The control output is derived from the sign bit, i.e, the most significant bit
of the OAM output. A positive value indicates that the inference conclusion
is T and a negative means the conclusion is F.

9.7 Conclusions

There are several challenges to the application of Evolvable hardware for solv-
ing time critical problems. We highlighted three issues, namely online adapta-
tion, scalability as well as termination of evolution. To realize EHW capable of
intrinsic online evolution, these issues have to be considered. In this chapter,

222 Ju Hui Li, Meng Hiot Lim, and Qi Cao

1 o5 Cell Loss for class,

1 2
simulate time (pS) simulate time (pS) , 06

Fig. 9.11. Cell loss for scenario1

Table 9.2. FIM content in PB<l,l>

Address Data
ooooo,ooooo,o 0,111 11
00000,00000,1 1,11111

9 Evolvable Fuzzy Hardware for Control in Packet Switching 223

Cell Average Delay for clas.~, Cell Average Delay for c l a ~ s ~

simulate time (pS)

Fig. 9.12. Cell delay for scenario2

we proposed the EFH scheme, a form of EHW whereby the fuzzy inference
scheme is carried out in hardware to achieve real-time operation. The scheme
allows for updating of online context and domain rules and further incorporat-
ing mechanisms to evolve a context appropriate for the application scenario.
In order to demonstrate the viability of our proposed EFH, we simulated the
control performance of the EFH in cell scheduling and compared the results
with some traditional scheduling methods. From the simulation results, it can
be seen that the EFH is capable of dealing with changing cell flows much bet-
ter than the traditional methods. Another significant advantage of the EFH is
tunability. This was also analyzed based on the simulation results. Based on
analysis of the simulation results, the EFH possesses significant advantages
over conventional scheduling methods. To implement the EFH, we described
the hardware implementation based on a context switchable RFIC to achieve
real-time high-speed fuzzy inferencing and high-speed context updating. By
combining this hardware scheme and the evolution scheme, an online adaptive
and intrinsic Evolvable EFH can be potentially realized using system-on-chip
technology. Although we demonstrated the application of EFH on Packet
Switching, the application of EFH is not limited to this. Some real-time con-
trol problems such as packet control in parallel computer, token control in

224 Ju Hui Li, Meng Hiot Lim, and Qi Cao

1 2
simulate time (NS) simulate time (CIS)

Fig. 9.13. Cell loss for scenario2

CMU

Fig. 9.14. Block architecture of RFIC

9 Evolvable Fuzzy Hardware for Control in Packet Switching 225

Fig. 9.15. The hardware architecture of OAM

da ta flow machine, cell flow control in future communication networks are
potentially suitable application areas.

References

X. Yao and T. Higuchi, "Promises and Challenges of Evolvable Hardware",
IEEE Trans on Syst., Man and Cybern., Part C, Applications and Reviews,
vo1.29, no.1, pp: 87-97, Feb. 1999.
W.X. Liu, M. Murakawa and T. Higuchi, "ATM Cell Scheduling by Function
Level Evolvable Hardware", LNCS 1259 (ICES1996): pp. 180-192
W.X. Liu, M. Murakawa and T. Higuchi, "Evolvable Hardware for On-line Adap-
tive T r d c Control in ATM Networks", Genetic Programming 1997, Proc. of the
Second Annual Conference, pp.504-509, Morgan Kaufmann Publishers, 1997.
T.G.W. Gordon and P.J. Bentley, "On Evolvable Hardware", In Ovaska, S. and
Sztandera, L. (Ed.) Soft Computing in Industrial Electronics. Physica-Verlag,
Heidelberg, Germany, 2002, pp. 279-323
H. D. Garis, "Evolvable Hardware: Principles and Practice",
http://www.cs.usu.edu/Ndegaris/papers/CACM-E-Hard.html
M. Iwata, I. Kajitani, H. Yamada, H. Iba and T. Higuchi, "A pattern recognition
system using Evolvable hardware1', in Proc. Int. Conf. Parallel Probl. Solving
Nature (PPSN196).

226 Ju Hui Li, Meng Hiot Lim, and Qi Cao

7. E. Sanchez, Towards Evolvable hardware: the evolutionary engineering approach,
Berlin; New York: Springer, c1996.

8. K.C. Tan, C.M. Chew, K.K. Tan, L.F Wang and Y.J. Chen, "Autonomous Robot
Navigation via Intrinsic Evolution", Proc. of the 2002 Congress on Evolutionary
Computation, 2002 (CEC'02). vo1.2, 2002 pp.1272-1277

9. J . Langeheine, K. Meier and J. Schemmel, "Intrinsic Evolution of Quasi DC
Solutions for Transistor Level Analog Electronic Circuits Using a CMOS FPTA
Chip". Proc. NASA/DoD Conference on Evolvable Hardware, 2002, pp.75-84

10. F.H. Bennett, J.R. Koza, M.A. Keane, J. Yu, W. Mydlowee and 0. Stiffelman,
"Evolution by Means of Genetic Programming of Analog Circuits that Perform
Digital Functions", Proc. of the Genetic and Evolutionary Computation Con-
ference, July 13-17, 1999, Orlando, Florida.

11. T. Higuchi, M. Iwata, I. Kajitani, M. Murakawa, S. Yoshizawa and T. Furuya,
"Hardware Evolution at Gate and Function Levels," Proc. Biologically Inspired
Autonomous Systems: Computation, Cognition and Action, Durham, North Car-
olina, March, 1996.

12. D. Keymeulen, K. Konada, M. Iwata, Y. Kuniyoshi and T. Higuchi, "Robot
Learning using Gate-Level Evolvable Hardware", In A. Birk and J. Demiris,
(ed.), Proc. of the Sixth European Workshop on Learning Robots, Lecture Notes
in Artificial Intelligence, Springer-Verlag, 1998.

13. M. Iwata, I. Kajitani, Y. Liu, N. Kajihara and T. Higuchi, "Implementation of
a Gate-Level Evolvable Hardware Chip", LNCS 2210 (ICES2001), pp. 38-49,
Springer Verlag, 2001.

14. D. Keymeulen, M. Durantez, K. Konaka, Y. Kuniyoshi and T. Higuchi, "An Evo-
lutionary Robot Navigation System using a Gate-Level Evolvable Hardware",
LNCS 1259 (ICES1996), pp.195-209, Springer Verlag, 1996.

15. I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauchi, T.
Inuo, N. Kajihara, M. Iwata, D. Keymeulen and T. Higuchi, "A gate-level EHW
chip: Implementing GA operations and reconfigurable hardware on a single LSI" ,
Evolvable Systems: From Biology to Hardware (ICES1998), LNCS 1478, pp.1-12,
Springer Verlag, 1998.

16. H. Iba, M. Iwata and T. Higuchi, "Gate-Level Evolvable Hardware: Empirical
Study and Application", In D. Dasgupta and Z. Michalewicz, editors, Evolu-
tionary Algorithms in Engineering Applications, pp.260-275, Springer-Verlag,
Berline,1997.

17. H. Iba, M. Iwata and T. Higuchi, "Machine Learning Approach to Gate-
Level Evolvable Hardware", Evolvable Systems: From Biology to Hardware
(ICES1996), LNCS 1259, pp.327-343, Springer-Verlag, 1997.

18. T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu and M. Salami, "Evolv-
able Hardware a t Function Level", Proc. of 1997 IEEE Int. Conf. on Evolution-
ary Computation (ICEC97), pp. 187-192, 1997.

19. M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata and T. Higuchi,
"Hardware Evolution a t Function Level", Parallel Problem Solving from Nature-
PPSN IV, LNCS 1141, pp.62-71, Springer-Verlag, 1996.

20. J.H. Li and M.H. Lim, "Evolvable fuzzy system for ATM cell scheduling", Proc.
of 5th k t . Conf. Evolvable Syst.: From Biology to Hardware (ICES 2003) LNCS
2606, pp. 208-217, Springer-Verlag, 2003.

21. Q. Cao, M.H. Lim and J.H. Li, "A context switchable fuzzy inference chip,"
submitted to IEEE Trans. on Fuzzy Syst..

9 Evolvable Fuzzy Hardware for Control in Packet Switching 227

22. ATM Forum, "ATM Traffic Management Specification 4.0n, April 1996,
ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.pdf

23. R. Jain, "Congestion Control and Traffic Management in ATM Networks: Recent
Advances and A Survey," Computer Networks and ISDN Systems, vo1.28, no.13,
October 1996, pp. 1723-1738.

24. T. Lizambri, F. Duran and S. Wakid, "Priority Scheduling and Buffer Manage-
ment for ATM Traffic Shaping", Proc. of 7th IEEE Workshop on Future Trends
of Distributed Computing Systems, FTDCS'99, pp.36-43, Dec.20-22, 1999, Cape
Town, South Africa.

25. E.P. Rathgeb, "Modeling and Performance Comparison of Policing Mechanisms
for ATM Networks", IEEE J. Select. Areas Commun., vo1.9, no.3, April 1991.

26. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson and J.D. Robbins, "Perfor-
mance models of statistical multiplexing in packet video communications," IEEE
Trans. Commun., vo1.36, no.7, pp.834-844, July 1988.

27. R. Guerin, H. Ahmadi, M. Naghshineh, "Equivalent Capacity and Its Applica-
tion to Bandwidth Allocation in High-speed Networks," IEEE J. Select. Areas
Commun., vo1.9, no.7, pp968-981, Sept. 1991.

28. M.H. Lim, S. Rahardja and B.H. Gwee, "A GA paradigm for learning fuzzy
rules", Fuzzy Sets and Systems 82(1996), pp.177-186.

29. M.H. Lim and W.L. Ng, "Iterative Genetic Algorithm for Learning Efficient
fuzzy rule Set", to appear in AIEDAM, 2004.

30. B. Kosko, Neural Networks and fizzy Systems, Prentice Hall, Englewood Cliffs,
NJ, 1992.

