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In this chapter we explain in detail a methodology for Multi-FPGA systems 
(MFS) design. MFSs are hardware platforms used for a great variety of appli- 
cations, including dynamically re-configurable hardware applications, digital 
circuit emulation, and numerical computation. There are a lot of MFS not 
only academical, but also commercial implementations. We describe a set of 
techniques based on evolutionary algorithms (EA), and we show that they 
are capable of solving all of the design tasks (partitioning, placement and 
routing). Firstly a hybrid compact genetic algorithm (HcGA) solves the par- 
titioning problem and then genetic programming (GP) is used to obtain a 
solution for the two remaining tasks. 

7.1 Introduction 

Field Programmable Gate Arrays (FPGAs) are integrated devices used on the 
implementation of digital circuits by means of a configuration or programming 
process. There are different manufacturers and several kind of FPGAs are 
available. We will focus on those called island-based FPGAs. This model in- 
cludes three main components: configurable logic blocks, input-output blocks 
and connection blocks (see figure 7.1). Configurable logic blocks (CLBs) are 
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used to implement all the logic circuitry. They are positioned in a matrix way 
in the device, and they have different configuration possibilities. Input-output 
blocks (IOBs) are responsible for connecting the circuit implemented by the 
CLBs with any external system. The third class of components are connec- 
tion blocks (switch-boxes and interconnection lines). They are the elements 
available for the designer to make the internal routing of the circuit. In most 
occasions we need to use some of the CLBs to accomplish the routing [I]. 

When the size of an FPGA is not enough to implement large circuits, 
the designer must think on higher reconfigurable platforms, in other words, 
on the use of Multi-FPGA system (MFS) [2]. These systems can eventually 
include, in addition to several FPGA devices, memories and other hardware 
elements. MFS are used for dynamically re-configurable hardware applica- 
tions [3] [4], digital circuit emulation 151, numerical computation 161, etc [7] [8]. 
The two most widely used topologies are the mesh and crossbar types. Mesh 
MFSs have simple routing methodologies, an easy expandability, FPGAs are 
connected in the nearest-neighbor pattern, and all devices are used for the 
same functionality. Fig. 7.2 (a) represents a mesh-topology MFS. A Crossbar 
MFS model is depicted on figure 7.2 (b). On this style, FPGAs are separated 
into logic and routing chips. Crossbar distributions are normally designed for 
some specific problems, but they usually waste logic and routing resources. 
For these reasons we have focused on mesh topologies. 

Fig. 7.1. General structure of an island-based FPGA 

MFSs design flow has three major tasks: partitioning, placement and rout- 
ing (see figure 7.3). Frequently two of these tasks are tackled together, because 
when accomplishing the partitioning, the placement must be considered or 
vice versa in order to obtain the optimal implementation. In this chapter a 
methodology, based on evolutionary computation, for the automation of the 
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(a) crossbar (b) topologies 

Fig. 7.2. Multi-FPGA Mesh 

whole design flow is explained. There are two separated steps: First, the par- 
titions of the circuit are obtained. During the first stage of the design flow, we 
also assign a partition (portion of the circuit) to each FPGA. The second step 
is devoted to place and route the circuit using the FPGA resources. Two dif- 
ferent evolutionary algorithms are used: a hybrid compact genetic algorithm 
(HcGA) for the partitioning step and the genetic programming (GP) tech- 
nique for the routing and placement step. The experimental results have been 
obtained in the basis of a real board made up of 8 FPGA (see later 7.11). 

Initial Circuit 

I_, 
MFPGA Partitioning and Placement I I Hybrid compact GA 

I CLBs Placement and Routing 
Genetic Programming 1 

Fig. 7.3. MFS Design Flow 
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The rest of the chapter is organized as follows: section 7.2 shows an 
overview about Evolutionary Algorithms, the Compact Genetic Algorithm 
and Genetic Programming. Section 7.3 describes the partitioning method- 
ology, while section 7.4 shows how the design process within the FPGAs - 
including the placement and routing steps- has been performed. Section 7.5 
contains the experimental results and finally we offer our conclusions in section 
7.6. 

7.2 Evolutionary Algorithms 

Several decades ago, some researchers begun to explore how some ideas taken 
from nature could be adapted and harnessed for solving well-know diffi- 
cult problems. Among the concepts borrowed from nature, natural evolution 
demonstrated from the beginning how simple but also brittle ideas can be 
helpful for devising new ways of solving difficult problems. Among the tech- 
niques that arose under the umbrella of natural evolution, Genetic Algorithms 
(GAS) [9], Evolutionary Programming [lo] and Evolution Strategies [ll, 121 
have pioneered, matured and demonstrated its usefulness. More recently, John 
Koza [13] presented Genetic Programming (GP) a new technique that aims 
at automatically developing computer programs. Koza employed Lisp expres- 
sions for evolving programs, and this has favored the use of tree-like data 
structures in GP, although some researchers have sometimes employed differ- 
ent alternatives. Basically, any EA -including GP- can be described by means 
of algorithm 7.1. 

Algorithm 7.1 Evolutionary algorithm 
1. Initialize the population. 
2. Evaluate all of the individuals in the population and assign a fitness value to 

each one. 
3. Select individuals in the population using the selection algorithm. 
4. Apply genetic operations to the selected individuals. 
5. Insert the result of the genetic operations into the new population. 
6. If the population is not fully populated go to step 3. 
7. If the termination criterion is reached, then present the best individual as the 

output. Otherwise, replace the existing population with the new population and 
go to step 3. 

We notice from the algorithm that an evaluation process is performed 
in step 2. Therfore, for evaluating individuals, a fitness function has to be 
implemented. This function is in charge of computing a fitness value for the 
individual under evaluation. The fitness value is proportional to the quality of 
the individual. The selection operation usually takes into account the fitness 
value of individuals, and select with higher probabilities those with larger 



7 Evolutionary Multi-FPGAs System Synthesis 155 

fitness values. Finally, we must point out that crossover and mutation are 
the genetic operations applied to the individuals selected. Crossover operator 
takes a couple of individuals, that act like parents, and exchange some of their 
information, thus creating a couple of new descendant individuals, that share 
information from both parents. On the other hand, the mutation operation, 
randomly mutate some of the information contained in the individual to which 
the operation is applied. Depending on the kind of EA employed, different data 
structures for encoding candidate solutions -individuals- might be employed. 
Typically, individuals are encoded by means of bit or integer strings when 
using GAS, while tree structures are employed for GP. 

7.2.1 The Compact Genetic Algorithms 

In [14] a compact Genetic Algorithm (cGA) has been proposed. It does not 
manage a population of solutions but only mimics its existence and it simulates 
the order-one behavior of a simple GA with uniform crossover. The cGAs' 
authors do not propose it as an alternative algorithm but it can be used to 
quickly estimate the "difficulty" of a problem. A problem is easy if it can 
be solved with a cGA exploiting a low selection rate. The more the selection 
rate must be increased to solve the problem, the more it has to be considered 
difficult. 

The idea on which the cGA is based was primarily inspired by the ran- 
dom walk model, proposed to estimate GA convergence on a class of prob- 
lems in which there is no interaction among the building blocks constitut- 
ing the solution [15]. Other concepts that inspired the cGA were Bit-based 
Simulated Crossover (BC) [16] and Population-Based Incremental Learning 
(PBIL) [17]. The cGA represents the population by means of a vector of 
values pi E [O,l],Qi = 1,. . . ,1, where 1 is the number of alleles needed to 
represent the solutions. Each value pi measures the proportion of individ- 
uals in the simulated population which have a zero (one) in the ith locus of 
their representation. By treating these values as probabilities, new individuals 
can be generated and, based on their fitness, the probability vector updated 
accordingly in order to favour the generation of better individuals. 

The initial probabilities values, pi, are set to 0.5 to represent a randomly 
generated population in which the value for each allele has equal probabil- 
ity. At each iteration, the CGA generates two individuals on the basis of the 
current probability vector and compares their fitness. Lets W be the repre- 
sentation of the individual with better fitness, and L the one of the individual 
whose fitness was worse. The competitor representations are used to update 
the probability vector at step k + 1 in the following way: 
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where n is the dimension of the population simulated, and Wi (Li) is the 
value of the ith allele of W (L). The cGA ends when the values of the proba- 
bility vector are all equal to 0 or 1. At this point the vector p itself represents 
the final solution. Note that the cGA evaluates an individual by considering 
its whole chromosome. At each iteration, some alleles of solution W might not 
belong to the optimal solution of the problem, and the correspondent proba- 
bility values wrongly modified. For example, consider the OneMax problem, 
in which the related fitness function computes the number of bits set to 1 of 
a binary string. Lets a = 10110 and b = 01010 be the two competitors. String 
a clearly is the individual with better fitness. The first and third element of 
the probability vector are thus increased by l l n ,  the fourth and fifth elements 
remain unchanged, while the second element is incorrectly decreased by l l n .  

Algorithm 7.2 Pseudo-code of the CGA for the TSP. 
Program TSP-CGA 
begingroup 

Initialize (P,method) ; 
F-best := INT-MAX; 
count := 0; 
repeat 

S [I] : = Generate (PI ; 
F [I] : = Tour-Lenght (S [I] ) ; 
idx-best := 1; 
for k := 2 to s do 

S [k] : = Generate (PI ; 
F [k] : = Tour-Lenght (S [k] ) ; 
if (F[k] < F[idx-best] ) then idx-best := k; 

end for 
for k := I to s do 

if (F [idx-best] < F [k] ) then Update (P, S [idx-best] , S [ill ; 
end for 
if (F[idx-best] < F-best) then 

count := 0; 
F-best : = F [idx-best] ; 
S-best : = S [idx-best] ; 

else 
Update (P , S-best , S [idx-best] ) ; 
count := count + I; 

end if 
until (Convergence(P) OR count > CONV-LIMIT) 
Output (S-best ,F-best) ; 

end 

In order to represent a given population of n individuals, the cGA updates 
the probability vector by a constant value equal to l l n .  Only loga n bits are 



7 Evolutionary Multi-FPGAs System Synthesis 157 

thus needed to store the finite set of values for each pi. The CGA therefore 
requires loga n * 1 bits with respect to the n * 1 bits needed by a classic GA. 
Larger population dimension can be exploited without significantly increasing 
memory requirements, but only slowing CGA convergence. This peculiarity 
makes the use of CGAs very attractive to solve problems for which the huge 
memory requirements of GAS is a constraint. 

To solve problems higher than order-one GAS with both higher selection 
rates and larger population sizes have to be exploited [18]. The cGA selection 
pressure can be increased by modifying the algorithm in the following way: (1) 
generate at each iteration s individuals from the probability vector instead of 
two; (2) choose among the s individuals the one with best fitness and select as 
W its representation; (3) compare W with the other s - 1 representations and 
update the probability vector accordingly. The other parts of the algorithm 
remain unchanged. Such an increase on the selection pressure helps the cGA 
to converge to better solutions since it increases the survival probability of 
higher order building blocks [14]. Algorithm 7.2 shows a pseudocode of the 
cGA for the TSP problem. 

7.2.2 Genetic Programming 

One of the difference between GP and other EAs is that fitness values are to be 
computed by evaluating computer programs. If we consider that individuals 
-programs- are encoded by means of tree like structures (see figure 7.4)) each 
program is made up of internal nodes -functions- and terminals -the leaves of 
the tree. Which functions and terminals are of interest for the problem that 
is to be solved is decided by the researcher, and usually varies largely from 
a problem to another. For instance, if we employ GP for solving a symbolic 
regression problem, we may choose arithmetic functions for the function set, 
while if we apply GP for programming a robot, some primitives that allows 
to move the robot along several directions could make up the function set. 
The terminal set are usually made up of the constant values and parame- 
ters employed by the functions included in the terminal set. Therefore, the 
first concern for GP practitioners is to appropriately define the function and 
terminal sets. This means that even when the solution for the problem to be 
addressed is not known, one must be sure that the solution can be found using 
the functions and terminals selected. 

Genetic operators applied in GP are similar to those employed with any 
other Evolutionary Algorithm. One of the main differences is due to the kind 
of data structures employed. When crossover is applied to a couple of individ- 
uals, two new descendants are obtained by exchanging some randomly chosen 
subtrees from each of the parents (see figure 7.5). On the other hand, mutation 
operator generates a new individual by substituting a randomly chosen sub- 
tree from the parent, by a new one that is also randomly generated (see figure 
7.6). Although other possibilities are available, the previously described ones 
are the simplest and most widely employed versions of the genetic operators. 
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Fig. 7.4. Individuals are encoded by means of trees in Genetic Programming. 

Fig. 7.5. Crossover operation. 

Fig. 7.6. Mutation operation. 
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Once all of the above components are integrated within the GP algorithm 
-that is basically the same described in algorithm 7.1-, it can be applied to 
any optimization problem. In section 7.4 we show how GP has been applied 
for solving the problem of Placement and routing circuits on FPGAs. A wider 
description of Genetic Programming can be found in [19]. 

7.3 MFS partitioning and FPGA assignment 

In this section we present the first stage of the design flow. We describe dif- 
ferent techniques and algorithms presented in several papers. Most of the 
previous approximations do not preserve the structure of the circuit or use a 
difficult encoding. For example Laszewski and M114hlenbein implemented a 
parallel GA which solves the graph partitioning problem with an easy encod- 
ing, but the solutions do not preserve the structure of the circuit, and that is 
a key issue if we want to minimize the delays of the partitioned circuitn [20]. 
Alpert uses a GA for improving another partitioning algorithm with good 
results for bi-partitions [21] . An exception, concerning the structure, is the 
approximation made by Hulin [22]. The approximation used here solves these 
problems. It is adaptable and can be modified for using in other graph parti- 
tioning problems with few changes, it is parallelizable (the method is intrinsi- 
cally parallel, because it uses a genetic algorithm as a tool for optimization), 
and in addition, the evaluation of the fitness function can be parallelized very 
easily. The algorithm also preserves the structure of the circuit and it detects 
those parts of the graph which are independent. 

7.3.1 Methodology 

partitioning deals with the problem of dividing a given circuit into several 
parts, called partitions, in order to be implemented on a MFS. The partitions 
are obtained and each partition is assigned to a different FPGA within the 
board. We use a &FPGA Mesh topology board, so we must bear in mind sev- 
eral constraints related to the board. Some, and usually most important, of 
these constraints are the number of available 110 pins on each FPGA and logic 
capacity. FPGA devices have a much reduced number of pins when compared 
with their logic capacity. In addition we must connect parts of the circuit that 
are placed on non-adjacent FPGAs, and for this task we have to use some of 
the available pins. Partitioning appears in a lot of design automation design 
problems, and most of the research related to MFS partitioning were adapted 
from other VLSI areas [23]. For this specific board we have developed a new 
methodology. We apply the graph theory to describe a given circuit, and then 
a compact genetic algorithm (cGA) with a local search improvement is ap- 
plied with a problem-specific encoding. This algorithm not only preserves the 
original structure of the circuit but also evaluates the 110-pins consumption 
due to direct and indirect connections between FPGAs. The MFS placement 
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or FPGA assignment is done by means of a fuzzy technique. We have used 
the partitioning93 benchmarks [24], described in the Xilinx Netlist Format 
(XNF), a netlist description language [25]. 

7.3.2 Circuit Description 

Some authors use hyper-graphs as the way of representing a circuit, but there 
are also some approximations, which use graphs [26]. We have thus, employed 
an undirected graph representation to describe the circuit. This representation 
permits an efficient encoding of the compact genetic algorithm and a direct 
encoding of the solutions using this code. 

Hidalgo et al. [27] describe a method that uses the edges of a graph to rep- 
resent k-way partitioning solutions. They transform the netlist circuit descrip- 
tion into a graph, and then operate with its spanning tree. A spanning tree 
of a graph is a tree, which has been obtained selecting edges from this graph. 
One of the properties of a spanning tree is that if n edges are suppressed, n - 1 
isolated trees are obtained. As we are treating a k-way partitioning problem, 
k - 1 edges of the spanning tree are selected and eliminated in order to ob- 
tain k partitions of the original circuit. The partitions are represented by the 
deleted edges and a hybrid compact genetic algorithm (HcGA) works under 
this representation to obtain the best partitioning accordingly to the board 
constraints previously explained. Based on the previous statement, a specific 
algorithm to address the partitioning and placement problems in MFS sys- 
tems can be used. The algorithm, which is also adaptable to different boards 
and devices, preserves the main structure of the circuit and, by means of a 
fuzzy technique, evaluates the I 0  pins consumption due to not only direct, 
but also indirect connections between FPGAs within the MFS (an 8-FPGA 
board). 

SYM INS1 CLB 
P I N  A, I 

P I N  K t  
P I N  X, 0 K 

Fig. 7.7. An example of a CLB described in (a)block, (b)XNF,and (c)graph formats. 
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Fig. 7.8. An example of the partitioning process for 4 FPGAs. 

The main objective is to solve the circuit partitioning problem and to 
obtain a set of portions or partitions of the original circuit suitable for the 
implementation over a single FPGA. The partitioning process is targeted to 
a device board which has their devices connected in a 4-way mesh topology 
[2]. So, the method works as follows. First a graph representing the circuit 
netlist description is obtained. Fig. 7.7 shows the equivalence between an XNF 
netlist description of a Configurable Logic Block and a graph. After that a 
spanning tree of that graph is randomly selected, from this tree we select 
k - 1 edges and we eliminate them in order to obtain a k - way partition. 
The partitions are represented by the deleted edges. In Fig. 7.8 we can see 
an example of the partitioning process. Starting from the circuit graph (a), 
we get its spanning tree (b) using the Kruskal algorithm [26]. From it, we 
select the necessary edges and finally we obtain the partitions (c). The figure 
represents an example for four FPGA devices, so we select only 3 edges of the 
tree. Once the partitions have been obtained the graph representation can 
be transformed into a XNF file for each partition and then these files, with 
the necessary additional information, can be implemented on each FPGA (see 
Fig. 7.9). 
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Fig. 7.9. An example of a post-partitioning implementation using 4 FPGAs. 

It is important to note that when accomplishing the transformation we 
should work with the whole graph instead with its spanning tree. This is be- 
cause the information related to connections is included in the graph and the 
spanning tree only works with some of them. It is necessary to determine the 
optimum distribution of the CLBs on the different available FPGAs. An opti- 
mum distribution has a minimal cost and guarantees the internal routability 
of each FPGA. 

1 1 1 1 1 1 1 1  
4 FPGA 2 I 
I A.B.C.I .I .N.0  

I S.T.U 

I 
I 

I I 

1 1 1 1 1 1 1 1  
I FPGA 1 I 

I I D.E.F.K,L 

I I 
I u 

7.3.3 Genetic Representation 

I H,M I I G.P.Q,R I 
I I I I 
I I I I 
1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1  

C .D 

C.H 

K . 0  

K.U 

The evaluation process tell us the goodness of the solutions by means of 
a fitness function. The main task of the HcGA is to solve the partitioning 
while attending some board requirements related to I 0  pins and logic blocks 
(called CLBs on Xilinx's devices). The fitness function guides the search of 
the algorithm, so it must minimize the number of cutting edges (that is the 
connections between FPGAS of the MFS) and in addition, it must distribute 
the blocks uniformly among the FPGAs. So we have a multi-objective genetic 
algorithm problem. This problem is well known and a number of non-genetic 
and genetic algorithms have been implemented for its resolution [28] [29]. One 
of the techniques commonly used is the use of added functions which include 
weighted sum methods, where the user assigns a weight to each objective 
and the total fitness is the sum of all weighted fitness values. Nowadays a 
lot of multi-objective techniques are available for the designer to adapt those 
partitioning problems. 
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In order to design a cGA for Multi-FPGA Partitioning we adopted the 
edge representation previously commented and we consider the frequencies of 
the edges occurring in the simulated population. A vector V of dimension 
equal to the number of nodes minus one was used to store these frequencies. 
Each element vi of V represents the proportion of individuals whose partition 
use the edge ei.  The vector elements vi were initialized to 0.5 to represent 
a randomly generated population in which each edge has equal probability 
to belong to a solution. In Algorithm 7.3 the pseudo code of a cGA to solve 
Multi-FPGA partitioning is shown. 

Algorithm 7.3 Pseudo-code of the cGA for Multi-FPGA Partitioning. 
Program Multi-FPGA-cGA 
begin 
Initialize(V); 
F-best := INT-MAX; 
count := 0; 
repeat 

S [I] : = Generate (V) ; 
F [I] : = Partition(S [I1 ) ; 
idx-best := I; 
fork := 2 to s do 

S [k] : = Generate (V) ; 
F[k] := Partition@ [kl ) ; 
if (FCkl < F[idx-best] ) then idx-best := k; 

end for 
for k := 1 to s do 

if (F [idx-best] < F [k] ) then Update (V, S [idx-best] , S [i] ) ; 
end for 
if (F [idx-best] < F-best) then 

count := 0; 
F-best : = F [idx-best] ; 
S-best : = S [idx-best] ; 

else 
Update(V,S-best , S [idx-best] ) ; 
count := count + I; 

end if 
until (Convergence(V) OR count > CONV-LIMIT) 
Output(S-best,F-best); 

end 

After the initialization phase an individual is generated and its fitness 
value is computed. Then, according to the selection pressure adopted s - 1 in- 
dividuals are generated, evaluated and the best individual is carried out. The 
last is used to update the probability vector V according to Equation 7.1. 
Moreover, the best individual generated in the current iteration (S[idx-best]) 
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is compared with the best individual found until now (S-best) and V is up- 
dated accordingly. The cGA proposed in [14] ends when the values of the 
probability vector are all equal to 0 or 1. Since in our tests such a condition 
was rarely achieved we introduced a supplementary end condition which limits 
the maximum number of generations occurring without an improvement of the 
best solution achieved (see algorithm 7.3). Reached such a limit the execution 
is terminated and the best individual found is returned as final solution. 

The cGA (and also the HcGA) uses the encoding presented in section 7.3.2 
which directly represents solutions to the partitioning problem. As we have 
said, the code is based on the edges of a spanning tree. We have seen above 
how the partition is obtained by the elimination of some edges. A number 
is assigned to every edge of the tree. Consequently, for a k-way partitioning 
problem a chromosome will have k-1 genes, and the value of these genes can 
be any of the order values of the edges. For example, chromosome (3 14 26 
32 56 74 89) for a 8-way partitioning, represents a solution obtained after the 
suppression of edge numbers 3, 14, 26, 32, 56, 74, and 89 from a spanning 
tree. So the alphabet of the algorithm is: 0 = ( 0 , l . .  . , n - 1) where n is the 
number of vertexes of the target graph (circuit), because the spanning tree 
has n - 1 edges. 

7.3.4 Hybrid Compact Genetic Algorithm 

A Hybrid cGA (HcGA) uses non-evolutionary algorithms for local search, 
that is, to improve good solutions found by the cGA. When designing a cGA 
for MFS partitioning, a vector (V), with the same dimension as the num- 
ber of nodes minus one, stores the frequencies of the edges occurring in the 
simulated population. Each element vi of V represents the proportion of in- 
dividuals whose partition use the edge ei. Following the original cGA, the 
vector elements vi were initialised to 0.5 to represent a randomly generated 
population in which each edge has equal probability to belong to a solution 
[14]. Sometimes it is necessary to increase the selection pressure rate Ps, (the 
number of individuals generated on each iteration) to reach to good results 
with a Compact Genetic Algorithm. A value for Ps near to 4 has shown to 
be a good value for MFS partitioning. It is not to be recommended a large 
increasing of this value, because the computation time will grow drastically. 
Additionally, for some problems we need a complement to cGA in order to 
solve them properly. We can combine heuristics techniques with local search 
algorithms to obtain this additional tool called hybrid algorithms. We have 
implemented a cGA with local search. 

In [30] a compact genetic algorithm for MFSs partitioning was presented, 
and in [31] a Hybrid cGA was explained. Authors combine a cGA with the Lin- 
Kernighan (LK) local search algorithm, to solve Traveling Salesman Problems 
(see Algorithm 7.2). The cGA part explores the most interesting areas of 
the search space and LK task is the fine-tuning of those solutions obtained 
by cGA. Following this structure, but changing the local search method, we 
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can implement a hybrid cGA for MFS partitioning. Ideally, a local search 
algorithm must try to perform the search process as exhaustively as possible. 
Unfortunately, in our problem this also implies an unacceptable amount of 
computation. Therefore, we have employed a local search heuristic each certain 
number (n) of iterations and we need to study the value of n to keep the 
algorithm search in good working order. After empirically studying the local 
search frequency, we have obtained that n must be assigned a value between 
20 and 60, with an optimal value (that depends on the circuit benchmark) 
near to 50. So for our experiments we fixed the local search frequency n to 
50 iterations, i.e. we develop a local search process every 50 iterations of the 
cGA. 

Now it is necessary to define a new concept, neighbouring. We have men- 
tioned that a chromosome has k - 1 genes for a k-way partitioning, and the 
value of these genes are the edges that are removed from the spanning tree 
representing the circuit when looking for a solution. 

Definition. 

solution A is a neighbour solution of B (and B is a neighbour solution of A) 
if the difference between their chromosomes is just one gene. 

Our local search heuristic explores only one neighbour solution for each 
gene, that is k-1 neighbouring solutions of the best solution every n iterations. 
The local search process works as Algortihm 7.4 explain [32]. 

Although only a very small part of the solution neighbourhood space is 
explored, the performance of the algorithm improves significantly (in terms of 
quality of solutions) without degrading drastically its total computation time. 
In order to clarify the explanation about the proposed local search method we 
can see an example. Let us suppose a graph with 12 nodes and its spanning 
tree, for a 5-way partitioning problem (i.e. we want to divide the circuit into 
five parts). As we have explained, we will use individuals with 4 genes. Let us 
also suppose a local search frequency (n) of 50 and that after 50 iterations we 
have reached to a best solution represented by: 

The circuit graph has 12 nodes, so its spanning tree is formed by 11 edges. 
The whole set of possible edges to obtain a partitioning solution is called E: 

In order to generate TS1 we need to know the available edges ALS for random 
selection, as we have said, we eliminate the edges within BS from E to obtain 
ALS: 

ALS = {0,1,2,5,8,9,10) (7.4) 
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Algorithm 7.4 Local search algorithm for MFS ~artitionine: HcGA. 
- - 

1. Every n iterations, we obtain the best solution up to that time (BS).To obtain 
BS: 
a) first we explore the compact GA probability vector and select the k-1 most 

used genes (edges) to form MBS (vector best individual). 
b) The best individual generated up to now (GBS) (similar to elitism) is also 

stored. 
c) The best individual between MBS and GBS (i.e. which of them has the 

best fitness value) will be BS. 
2. the first random neighbour solution (TSI) to BS is generated substituting the 

first gene (edge) of the chromosome by a random one, not present in BS. 
3. Calculate the fitness value of BS (FVBS) and the fitness value of TSI (FVTSI) 
4. Compare If FVTSl is better than FVBS, if so TS1 is dropped to BS and the 

initial BS is eliminated, otherwise TS1 is eliminated 
5 .  Repeat the same process using the new BS and with the second gene, to generate 

TS2 
6. If the fitness value of TS2 (FVTS2) is better than the present FVBS then TS2 

will be our new BS or, if FVTS2 is worst than FVBS, there will be no change 
in BS. 

7. Repeat last step for the rest of the genes until1 the end of the chromosome (that 
is, k-1 times for a k-way partitioning). 

Now we randomly select an edge (suppose 0) to build TSlsubstituting it by 
the first gene in BS: 

T S l  = (0,4,6,7) (7.5) 

The third step is the evaluation of TS1 (suppose FVTSl  = 12) and 
comparing (suppose a minimization problem) with FVBS (suppose F V B S  = 

25). As FVTSl is better than FVBS, TS1 will be our new BS and the original 
BS is eliminated. Those changes also affect to ALS because our new ALS is: 

ALS = {1,2,3,5,8,9,10) (7.6) 

Table 7.1 represents the rest of the local search process for this example. 

7.4 Placement and Routing on FPGAs 

Once the first step has been carried out, we have several partitions. Each 
partition - that is in charge of a small circuit - have to be implemented in- 
dependently in a different FPGA. Finally, all the FPGAs will be connected 
together, thus obtaining the global circuit. Even when much research has 
been done on the automatic generation of digital and analogue circuits, we 
will review now some proposals that are related with the idea of applying 
evolutionary algorithms to the problem we are addressing, and with the way 
circuits are encoded. 



7 Evolutionary Multi-FPGAs System Synthesis 167 

Table 7.1. Local Search example 

i ALS BS FV Random gene TS FV New Bs 

1 0,1,2,5,8,9,10 3,4,6,7 25 0 0,4,6,7 12 0,4,6,7 
2 1,2,3,5,8,9,10 0,4,6,7 12 1 0,1,6,7 37 0,1,6,7 
3 1,2,3,5,8,9,10 0,4,6,7 12 9 0,4,9,7 10 0,4,9,7 
4 1,2,3,5,6,8,10 094,977 10 8 0,4,8,9 11 0,4,9,7 

Pre-Local Search Best Solution: 3,4,6,7 
Post-Local Search Best Solution: 0,4,9,7 

A given circuit, with wires, gates and connections, can be considered as 
a graph. Several papers have dealt with the problem of encoding graphs, 
i.e. circuits, when working with GA and GP [33]. Sometimes new techniques 
have been developed to do so. For instance, Cartesian Genetic Programming 
[34] is a variation of GP which was developed for representing graphs, and 
shows some similarities to other graph based forms of genetic programming. 
Miller et al's aim is to find complete circuits capable of implementing a given 
boolean function. Nevertheless, we are more interested in physical layout. Our 
optimisation problem begins with a given circuit description, and the goal is 
to find out how to place components and wires in FPGAs. Meanwhile we have 
also developed a new methodology for representing circuits by means of GP 
with individuals represented as trees. 

Other researchers have also applied Evolutionary Algorithm for evolving 
analogue circuits [33]. Even Koza have employed Genetic Programming for 
designing and discovering analogue circuits [35], which have eventually been 
patented. Thompson's research scope is the physical design and implemen- 
tation of circuits in FPGAs [36]. However, all of them work with analogue 
circuits, while we are addressing digital ones. Another difference is the kind 
of evolutionary algorithm employed for solving each problem. Thompson uses 
GAS while we are using GP (Koza uses GP but not for solving the kind of 
problem we address here). 

There are also other researchers that have addressed problems employing 
reconfigurable hardware and Genetic Programming. For instance, in [37] au- 
thors describe how trees can be implemented and evaluated on FPGAs. But 
our aim is not to implement a Genetic Programming tool on an FPGA but 
using GP for physically placing and routing circuits. Therefore, in this second 
step, we take each of the partitions as the input of the problem, and the goal 
is to place components and establish connections among them in a different 
FPGA. Our proposal now is to use Genetic Programming (GP) for solving 
this task. The main reason behind this choice is the similarity between data 
structures that GP uses -trees- and the way of describing circuits -graphs. 
A tree is more convenient than a fix-sized string for describing graphs of any 
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length. In the following sections we describe how graphs are encoded by means 
of trees. 

7.4.1 Circuits encoding using trees 

As described in section 7.3, the output for the partitioning algorithm is a set 
of partitions, and a description of the way they must be connected. Each of the 
partition includes a circuit that must be implemented in a separate FPGA. 
Therefore, the main goal for this step is to implement a partition (circuit) 
into an FPGA. Each of the circuit component has to be implemented into 
a CLB, and after that previous step, all the CLBs have to be connected 
according to the circuit's topology. Given that we use tree-based GP in this 
stage of the methodology, we need a mapping between a graph -circuit- and 
a tree. Circuits have to be encoded as trees, and any of the trees that GP 
will generate, should also have an equivalent circuit; the fitness function will 
later decide if the circuit is correct or not, and its resemblance degree with 
the correct circuit. 

Considering that any of the components of a circuit is simple enough to be 
implemented employing a CLB from the FPGA, we might describe a circuit 
employing black boxes, such as is depicted by means of an example in figure 
7.10. This means that we only have to connect CLBs from the FPG A according 
to the interconnection model that a given circuit implements, and then we can 
configure each of the CLB with the function that each component performs 
in the circuit. We want to perform this task by using GP. This means that 
circuits must be described by means of trees -individuals in GP. To do it, we 
can firstly label each component from the circuit with a number, and then 
assign components' labels to the ends of wires connected to them (see figure 
7.10). 

Fig. 7.10. Representing a circuit with black boxes. 

We may now describe all the wires by means of a tree by connecting each 
of the wires as a branch of the tree and keeping them all together in the same 
tree. By labeling both extremes of branches, we will have all the information 
required to reconstructing the circuits. Any given tree, randomly generated, 
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will always correspond to a particular graph, regardless of the usefulness of 
the associated circuit (see figure 7.8). In this proposal, each node from the tree 
is representing a connection, and each branch is representing a wire. The next 
stage is to encode the path of wires into an FPGA. Each branch of the tree 
will encode a wire from the circuit: internal nodes specify switch connections 
that are traversed by the wire, while the first and last nodes of the branch are 
employed to connect the wire to an adjacent CLB -by specifying which of the 
CLB is employed and to which pin is the wire connected. 

Each of the branches will include as many internal nodes as required for 
describing all of the switch connections required for the wire (see figure 7.8). 
Sometimes, branches will not include any internal nodes. This may happen 
when an input/output connection is directly attached to any of the CLB from 
the surrounding area of the FPGA. Only two nodes are required in the branch: 
the first one specify which IOB is employed, while the second one select the 
CLB to which it is connected and the wire employed. 

Each internal node requires some extra information: if the node corre- 
sponds to a CLB we need to know information about the position of the CLB 
in the FPGA, the number of pin to which one of the ends of the wire is con- 
nected, and which of the wires of the wire block we are using; if the node 
represents a switch connection, we need information about that connection 
(figures 7.11 and 7.12 graphically depicts how a tree describes a circuit, and 
the way each branch maps a connection). 

It may well happen that when placing a wire into an FPGA, some of 
the required connections specified in the branch can not be made, because, 
for instance, a switch block connection has been previously used for routing 
another wire segment. In this case the circuit is not valid, in the sense that 
not all the connections can be placed into a physical circuit, and the function 
in charge of analyzing the tree will apply a high penalty to that individual 
from the population. 

In order for the whole circuit to be represented by means of a tree, we 
will use a binary tree, whose left most branch will correspond to one of its 
connections, and the left branch will consist of another subtree constructed 
recursively in the same way (left-branch is a connection and right-branch a 
subtree). The last and deepest right branch will be the last circuit connection. 
Given that all internal nodes are binary ones we can use only a kind of function 
with two descendants. In the following subsection we describe the GP sets 
required. 

7.4.2 GP sets 

When solving a problem by means of GP one of the first things to do once 
the problem has been analyzed is to build both the function and terminal 
sets. The function set for our problem contains only one element: F={SW), 
Similarly, the terminal set contains only one element T={CLB). But SW and 
CLB may be interpreted differently depending on the position of the node 
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Fig. 7.11. Making connections in the FPGA according to nodes 

within a tree. Sometimes a terminal node corresponds to an IOB connection, 
while sometimes it corresponds to a CLB connection in the FPGA (see figure 
7.8. Similarly, an internal node - SW node- sometimes corresponds to a CLB 
connection (the first node in the branch), while others affects switch connec- 
tions in the FPGA (internal node in a branch, see figure 7.9). Each of the 
nodes in the tree will thus contain different information: 

0 If we are dealing with a terminal node, it will include information about 
the position of CLBs, the number of pins selected, the number of wires to 
which it is connected, and the direction we are taking when placing the 
wire. 

0 If we are instead in a function node, it will have information about the 
direction we are taking. This information enables us to establish the switch 
connection, or in the case of the first node of the branch, the number of 
the pin where the connection ends. 

We can notice in figure 7.8, that wires with IOBs at  one of their ends are 
shorter -only needs a couple of nodes- than those that have CLBs at both 
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Fig. 7.12. Encoding circuits by means of binary trees. Each branch of the tree 
describes a connection from the circuit. Dotted lines indicates a number of internal 
nodes in the branch 

ends -they require internal nodes for expressing switch connections-. Wires 
expressed in the latest position of trees have less space to grow, and so we 
decided to place IOB wires in that position, thus leaving the first parts of the 
trees for long wires joining CLBs. 

7.4.3 Evaluating Individuals 

In order for GP to work, individuals from the population have to be evaluated 
and reproduced employing the GP algorithm. For evaluating an individual we 
must convert the genotype (tree structure) to the phenotype (circuit in the 
FPGA), and then compare it to the circuit provided by the partitioning algo- 
rithm. We developed an FPGA simulator for this task. This software allows us 
to simulate any circuit and checks its resemblance to other circuit. Therefore, 
this software tool is in charge of taking an individual from the population and 
evaluating every branch from the tree, in a sequential way, establishing the 
connections that each branch specifies. Circuits are thus mapped by visiting 
each of the useful nodes of the trees and making connections on the virtual 
FPGA, thus obtaining phenotype. Each time a connection is made, the po- 
sition into the FPGA must be brought up to date, in order to be capable of 
making new connections when evaluating the remaining nodes. If we evaluate 
each branch, beginning with the terminal node, thus establishing the first end 
of the wire, we could continue evaluating nodes of the branch from the bottom 
to the top. Nevertheless, we must be aware that there are several terminals 
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related to each branch, because each function node has two different descen- 
dants. We must decide which of the terminals will be taken as the beginning 
of the wire, and then drive the evaluation to the top of the branch. We have 
decided to use the terminal that is reached when going down through the 
branch using always the left descendant, and evaluate all the nodes traversed 
from the root of the branch to that terminal (see figure 7.13). 

Fig. 7.13. Evaluating a branch of the tree-corresponding to a connection of the 
circuit. Evaluation order is specified with numbers labelling nodes. 

In one sense there is a waste of resources when having so many unused 
nodes. Nevertheless they represent new possibilities that can show up after a 
crossover operation (in nature, there always exist recessive genes, which from 
time to time appear in descendants). These nodes are hidden, in the sense 
that they do not take part in the construction of the circuit and may appear 
in new individuals after some generations. If they are useful in solving the 
problem, they will remain in descendants in the form of nodes that express 
connections. The fitness function is computed as the difference between the 
circuit provided and the circuit described by the individual. 

7.5 Experimental Results 

7.5.1 partitioning and Placement onto the FPGAs 

The algorithm has been implemented in C and run on a Pentium 3, 866 MHz 
with Linux Red Hat 7.3. We have used the MCNC partitioning benchmarks in 
XNF format. We have supposed that each block of the circuits uses one CLB. 
We use the Xilinx's 4010 FPGA. 7.2 contains the experimental results. It has 
five columns which express: the name of the test circuit (Circuit), its number of 
CLBs (CLB), the number of connections between CLBs (Edges), the number 
of CLBs used on each FPGA (Distribution) and the CPU time in seconds 
necessary to obtain a solution for 100 generations of a GA with a population 
of 501 individuals (T(sec)). There are some unbalanced distributions, because 
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we need to use some resources to pass the nets from one device to another. 
In addition our fitness function has been developed to achieve two objectives, 
so that the GA works. To cap it all, the algorithm succeeds in solving the 
partitioning problem with board constraints. 

Fig. 7.14 shows a picture of the board. This card consists of 8 FPGAs 
of the 4010 family from Xilinx [38] although, these can be replaced by other 
devices of greater capacity and benefits, just adapting the connections. The 
FPGAs are connected according to a mesh topology, in other words, they 
directly connect their next neighbours. The figure shows, in addition to the 
FPGAs, the electrical power supply and lines for programming them (DIN, 
DONE, CCLK, INIT, PROGRAM), which allows the configuration by means 
of an XChequer cable from Xilinx. The cable transmits the configuration data 
to all FPGAs within the board, the transmission frequency is 921 kHz. The 
speed depends on the used computer, in our case with a PC, a Baud Rate of 
115200 can be reached. The power supply used is an ATX computer source. 
This allows us to have the voltages necessary to feed not only the FPGAS, 
but also the programming cables such as the XChequer. The MFS board also 
incorporates some jumper pins, for programming and isolation of a group of 
FPGA within the board. There are also six connectors for expansion of the 
board using other similar card. 

Fig. 7.14. Multi-FPGA board designed for testing the methodology 
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Table 7.2. Experimental Results for Partitioning and Placement for the 8 -Xilinx 
4010 Board 

Circuit CLB Edges Distribution T(sec) 

7.5.2 Inter-FPGA Placement and Routing 

Several experiments with different sizes and complexities have been performed 
for testing the placement and routing process . Fig. 7.15 graphically depicts 
one of the circuits employed in the series of test of increasing complexity that 
has been used for validating the methodology (a larger set of experiments and 
results can be found in [39]). The main parameters employed were the fol- 
lowing: Number of generations = 500, Population size: 200, Maximum depth: 
30, Steady State Tournament size: 10. Crossover probability=98%, Mutation 
probability=2%, Creation type: Ramp Half/Half, and elitism. 

Fig. 7.15. One of the circuits employed for testing the methodology 

Fig. 7.16 shows some of the solutions that were obtained with GP- for the 
circuit described above. A very important fact is that each of the solutions 
that GP found possesses different features, such as area of the FPGA used, 
position of the input/output terminals. This means that the methodology 
could easily be adapted for managing typical constraints in FPGA placement 
and routing. More solutions found for this and other circuits are described in 
[39] and [40]. The time required for finding the solution was of some minutes in 
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a 2Ghz Pentium processor. So, the methodology can be successfully employed 
for routing circuits of larger complexity. 

Fig. 7.16. Different solutions obtained by means of GP 

7.6 Summary 

In this chapter a methodology for circuit design using Multi-FPGA Systems 
has been presented. We have used evolutionary computation for all the steps 
of the process. Firstly, an Hybrid compact genetic algorithm was applied on 
achieving partitioning and placement for inter-FPG A systems and, for the 
Intra-FPGA tasks Genetic programming was used. This method can be ap- 
plied for different boards and solves the whole design flow process. 
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