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The complex device, component, and system design issues involved in inte- 
grated MEMS design call for a structured design methodology that borrows 
from VLSI design. In this chapter, we first discuss the hierarchy that is in- 
volved in a typical MEMS design. Then we move on to discuss how evo- 
lutionary approaches can be used to automate the hierarchical design and 
synthesis process for MEMS. At the system level, genetic programming, as a 
strong search tool, is used to generate and search in the topologically open- 
ended design space. Meanwhile, bond graphs are used to represent the lumped 
parameter models of MEMS that cut across mixed energy domains. The ap- 
proach combining bond graphs and genetic programming can lead to satis- 
factory design candidates of system level models that meet the predefined 
behavioral specifications for designers to tradeoff. Then at the second level, 
namely the physical layout synthesis level, the selection of geometric parame- 
ters for component devices is formulated as a constrained optimization prob- 
lem and addressed using a constrained GA approach. Considerations of feature 
size constraints can be incorporated into this approach very conveniently. A 
multiple-resonator microsystem design is taken as an example to illustrate the 
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integrated design automation idea using evolutionary approaches at multiple 
levels. 

6.1 Introduction 

MicroElectroMechanical Systems (MEMS) is a rapidly expanding technology 
that offers new ways of combining sensing, actuation, signal processing, com- 
puting and communication functions on a miniature scale. Although MEMS is 
a promising technology, it is very surprising that we have only seen a handful 
of successful commercial MEMS products which the market has demanded in 
large quantities, including automotive accelerometers and gyroscopes, pres- 
sure sensors, ink-jet print heads and a few others. Prevalence of design and 
fabrication of MEMS application-specific integrated circuits (ASICS) analo- 
gous to electronic ASICS is still not seen. Due to the complexity and intricacy 
involved in MEMS design, designing MEMS still remains an art in most appli- 
cations, requiring a large amount of investment of human resources, time and 
money. Much of the investment is consumed in the iterative trial-and-error 
design process. Automated design synthesis helps engineers to develop rapid, 
optimal configurations for a given set of performance and constraint guide- 
lines, and thus to shorten typical development cycles for MEMS (with a given 
fabrication technology) by a large factor and to enable design of far more 
complex MEMS than can be handled today. Electronic Design Automation 
(EDA) has achieved great success in both industry and academia. However, 
analogous research in design automation for MEMS seems to lag far behind, 
although considering the close affinity of MEMS and VLSI - MEMS actu- 
ally evolved from microelectronics and inherited the fabrication techniques of 
VLSI - the potential successful applications of design automation of MEMS 
appear to be promising. It turns out that translating the key insights of sil- 
icon evolution success into MEMS technologies is a much more challenging 
task than most people have expected. Major research topics to be addressed 
include: 1) developing a broad base of building blocks in MEMS technologies 
so that huge networks of micro-devices could be assembled into arbitrary ar- 
chitectures with desirable functionalities, 2) abstracting design hierarchies to 
stratify and conquer design complexity, thus making the design more amenable 
to an automated process, 3) improving models of computation and extend- 
ing current synthesis methodologies to facilitate generation of viable design 
candidates and smoother transitions from conceptual and embodied designs 
to process fabrication. 4) combining MEMS component layout extraction and 
lumped-parameter bond graph simulation and design synthesis to provide 
MEMS designers with VLSI-like environments enabling faster design cycles 
and improved design productivity. 

This chapter seeks to partially address the above challenges, especially 
the first two. The proposed hierarchical and evolutionary design framework 
for MEMS aims to eliminate tedious and repetitive design tasks, facilitate 
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hierarchical problem decomposition, and combine the power of multiple evo- 
lutionary computation algorithms working simultaneously to identify better 
product designs and process solutions. In particular, we divide design repre- 
sentations of MEMS design into two levels, the system-level behavioral macro- 
model and the detailed-level physical geometric layout model. At the system 
level, we use a combination of genetic programming and bond graphs to au- 
tomatically generate and search for viable design candidates represented by 
behavioral macromodels satisfying high-level design specifications. At the sec- 
ond detailed (layout) level, multiobjective constrained genetic algorithms are 
used to optimize the geometric parameters that relate the physical device 
model to the behavioral macromodel and meet more detailed design objec- 
t ives. 

6.2 Hierarchical MEMS Design Methodology 

MEMS holds the promise of being amenable to structured automated design 
due to its similarities with VLSI. However, design and analysis of MEMS is 
much more complicated due to their multi-domain and intrinsically three- 
dimensional nature. In addition, because of limitations of fabrication technol- 
ogy, there are many constraints in design of MEMS. In MEMS, there are a 
number of levels of designs that need to be synthesized [I]. Usually the design 
process starts with basic capture of the schematic of the overall system, and 
then goes on through layout and construction of a 3-D solid model. So the first 
design level is the system level, which includes selection and configuration of 
a repertoire of planar devices or subsystems. The second level is 2-D layout 
of basic structures like beams to form the elementary planar devices. In some 
cases, if the MEMS is basically a result of a surface-micro machining process 
and no significant 3-D features are present, design of this level will end one 
cycle of design. More generally, modeling and analysis of a 3-D solid model 
for MEMS is necessary. However, even if we have obtained an optimized 3-D 
device shape, it is still very difficult to produce a proper mask layout and 
correct fabrication procedures. Automated mask layout and process synthesis 
tools would be very helpful to relieve designers from considering the fabrica- 
tion details and focus on the functional design of the device and system [2]. 
After a "top-down" design path, a " bottom-up" verification process is usually 
followed to guarantee that at each design level the design specifications are 
met exactly as defined in Fig. 6.1. The ultimate goal is to develop tools for 
MEMS design to ensure first-pass success by having a well-defined " top-down" 
design path and "bottom-up" verification path. 
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Fig. 6.1. Hierarchical design of MEMS 

6.3 System-Level Synthesis of MEMS Using Genetic 
Programming and Bond Graphs 

For system-level design, hand calculation is still the most popular method 
in current design practice. This is mainly because no powerful and widely 
accepted synthesis approach exists to automated design of multi-domain sys- 
tems. In addition, most MEMS system-level design is accomplished by mod- 
eling entire microelectromechanical system as single behavioral entities hav- 
ing no lower hierarchical level in design. If there is any change in geometric 
parameters or topology, a whole new model must be created, and this sub- 
stantially lengthens design cycles. Over the past two decades, computational 
design algorithms based on Darwin's principles of evolution have developed 
from academic curiosities into practical and effective tools for scientists and 
engineers. Gero, for example, investigates evolutionary systems as computa- 
tional models of creative design and studies the relationships among genetic 
engineering, style emergence, and complex evolution [3]. Goodman et al. [4] 
studied evolution of engineering artifacts using heterogeneous parallel genetic 
algorithms. Koza has applied genetic programming to evolve analog filter cir- 
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cuits and can optimize the topology and sizing parameters of the evolved 
circuits simultaneously [5]. In this research, we use genetic programming as 
a strong search tool to explore the topologically open-ended design space for 
system-level behavioral models of MEMS. We also use bond graphs as a mod- 
eling tool to unify representations of mixed energy domains of MEMS. We 
call the overall approach the BG/GP approach. 

6.3.1 Bond graphs 

The reason we used bond graphs in research on MEMS synthesis is because 
MEMS are intrinsically multi-domain systems, unlike electronic systems. We 
need a uniform representation of MEMS so that designers can not only shift 
among different hierarchies of design abstractions but also can move around 
design partitions with different physical domains without difficulty. The bond 
graph is a modeling tool that provides a unified approach to the modeling 
and analysis of dynamic systems, especially hybrid multi-domain systems in- 
cluding mechanical, electrical, pneumatic, hydraulic components, etc. It is the 
explicit representation of model topology that makes the bond graphs a good 
candidate for use in open-ended design search. Fig. 6.2 shows an example of 
unique bond graphs representation of a resonator unit in three different ap- 
plication domains. It is also very natural to use bond graphs to represent a 
dynamic system, such as a mechatronic system, with cross-disciplinary phys- 
ical domains and even controller subsystems (Fig.6.3). For notation details 
and methods of system analysis related to the bond graph representation, see 
[6]. Shah [7] identifies the importance of bond graphs for unifying multi-level 
design of multi-domain systems. Tay et al. [8] use bond graphs and GA to 
generate and analyze dynamic system designs automatically. This approach 
adopts a variational design method, which means they make a complete bond 
graph model first, and then change the bond graph topologically using a GA, 
yielding new design alternatives. However, the efficiency of this approach is 
hampered by the weak ability of GA to search in both topology and parameter 
spaces simultaneously. Terpenny and Jiachuan Wang have begun to explore 
combination of bond graphs and evolutionary computation [9]. Campell [lo] 
also uses the idea of both bond graphs and genetic algorithms in his A-Design 
framework. In this research, we use an approach combining genetic program- 
ming and bond graphs to automate the process of design of dynamic systems 
to a significant degree. 

6.3.2 Combining bond graphs and genetic programming 

The most common form of genetic programming [5] uses trees to represent 
the entities to be evolved. Defining of a proper function set is one of the most 
significant steps in using genetic programming. It may affect both the search 
efficiency and validity of evolved results and is closely related to the selection 
of building blocks for the system being designed. By executing the genotype, 
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Fig. 6.2. Bond graphs representing a mechatronic system with mixed energy do- 
mains and a controller subsystem 

Fig. 6.3. One bond graph represents resonators in different application domains 
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a genetic programming tree that composes of functions in the function set as 
nodes of the tree, an arbitrary representative topology, or phenotype can be 
generated in a developmental manner. In this research, we have an additional 
dimension of flexibility in generating phenotypes, because bond graphs are 
used as modeling representations for multi-domain systems, serving as an 
intermediate representation between the mapping of genotype and phenotype, 
and can be interpreted as systems in different physical domains, chosen as 
appropriate to given circumstances. Fig. 6.4 illustrates the role of bond graphs 
in the mappings from genotypes to phenotypes. [ll] 
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Physical 
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Of The 
Dynamic 

Fig. 6.4. Genotype-phenotype mapping 

6.3.3 Filter topology 

Automated synthesis of an RF MEM device, a micro-mechanical bandpass 
filter, is used as an example in this chapter [12]. Through analyzing two pop- 
ular topologies used in surface micromachining of micro-mechanical filters, 
we found that they are topologically composed of a series of concatenated 
Resonator Units (RUs) and Bridging Units (BUS) or RUs and Coupling Units 
(CUs). Fig. 6.5 and Fig. 6.6 illustrates the layouts and bond graph representa- 
tions of two widely accepted filter topologies I and I1 [12]. Their corresponding 
bond graph representations are also shown. 

6.3.4 Function set 

In this research, a GP function set is presented and listed in Table 6.1. Ex- 
amples of operators, namely insert-CU and insert-RU, are illustrated in Figs 
6.7 and 6.8. Fig. 6.7 explains how the insert-CU function works. A Coupling 
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Fig. 6.5. MEM filter topology I 

Unit (CU) is a subsystem that is composed of a capacitor attached with a 
0-junction in the center and two bonds connecting 1-junctions at the left and 
right ends. After execution of the insert-CU function, an additional modifiable 
site (2) appears at the rightmost newly created bond. As illustrated in Fig. 6.8, 
a resonator unit (RU), composed of one I, R, and C component all attached 
to a 1-junction, is inserted in an original bond with a modifiable site through 
the insert-RU function. After the insert-RU function is executed, a new RU 
is created and one additional modifiable site, namely bond (3), appears in 
the resulting phenotype bond graph, along with the original modifiable site 
bond (1). The newly-added 1-junction also has an additional modifiable site 
(2). As components C, I, and R all have parameters to be evolved, the insert- 
RU function has three corresponding ERC-typed sites, (4), ( 5 ) ,  and (6), for 
numerical evolution of parameters. 

6.3.5 Design embryo 

All individual genetic programming trees create bond graphs from an embryo. 
Selection of the embryo is also an important topic in system design, especially 
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Fig. 6.6. MEM filter topology I1 

for multi-port systems. In our filter design problems, we use the bond graph 
shown in Fig. 6.9 as our embryo. 

Table 6.1. Operators in modular function set 

6.3.6 Fitness function 

Within the frequency range of interest, f,,,, = [f,,,, f,,,], uniformly sam- 
ple 100 points. Here, f,,,, = [O. 1,1000Kl Hz. Compare the magnitudes of the 

Operator Name 
Insert-RU 
Insert-CU 
Insert-BU 
Add-RU 
Insert-JO1 
Insert-CIR 
Insert-CR 

Functionality 
insert a resonator unit 
insert a coupling unit 
insert a bridging unit 
add a resonator unit 
insert a 0-1-junction 
insert a special CIR component 
insert a special CR component 
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Fig. 6.7. Operator to insert Bridging Unit 

Fig. 6.8. Operator to insert Resonator Unit 
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Fig. 6.9. Design Embryo of a Micro-Electro-Mechanical Filter 

frequency response at  target magnitudes, which are 1.0 within the pass fre- 
quency range of [316,1000] Hz, and 0.0 otherwise, between 0.1 and 1000KHz. 

6.3.7 Experimental setup 

Three major code modules were created in this work. The algorithm kernel 
of HFC-GP was a strongly typed version [13] of an open software package 
developed in our research group - lilgp. Parameters for lilgp are shown in the 
tableau 6.2. 

Table 6.2. Parameter settings for genetic programming 

Parameter 
population size 
initial population 
initial depth 
maximum depth 
maximum nodes 
selection method 
crossover rate 
mutation rate 

Setting 
500 in each of thirteen subpopulations 
half and half 
4-6 
50 
5000 
tournament with size 7 
0.9 
0.3 
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A bond graph class was implemented in C++. The fitness evaluation pack- 
age is C++ code converted from Matlab code, with hand-coded functions used 
to interface with the other modules of the project. The commercial software 
package 2OSim was used to verify the dynamic characteristics of the evolved 
design. The GP program obtains satisfactory results on a Pentium-IV lGHz 
in 1000 1250 minutes. 

6.3.8 Experimental result 

Experimental results show the strong topological search capability of genetic 
programming and feasibility of our BG/GP approach for finding realizable 
designs for micro-mechanical filters [14]. In Fig. 6.11, K is the number of res- 
onator units appearing in the best design of the generation on the horizontal 
axis. As fitness improves, the number of resonator units, K, grows - unsurpris- 
ing because a higher-order system with more resonator units has the potential 
of better system performance than its low-order counterpart. The plot of cor- 
responding system frequency responses at generations 27, 52, 117 and 183 are 
shown in Fig. 6.10. A layout of a design candidate with four resonators and 
three coupling units as well as its bond graph representation is shown below in 
Fig. 6.12. Notice that the geometry of resonators may not show the real sizes 
and shapes of a physical resonator and the layout figure only serves as a topo- 
logical illustration. Using the BG/GP approach, it is also possible to explore 
novel topologies of MEM filter design. In this case, we may not necessarily use 
a strictly realizable function set. Instead, a semi-realizable function set may 
be used to relax the topological constraints, with the purpose of finding new 
topologies not realized before but still realizable after careful design. Fig. 6.13 
gives an example of a novel topology for a MEM filter design. An attempt 
to fabricate this kind of topology is being carried out in a university research 
setting. 

6.4 Second-Level Physical Layout Synthesis Formatting 
the Headings 

Layout synthesis automatically generates valid or optimized geometric siz- 
ing parameters for cell components, which in most cases are commonly used 
micromechanical devices with fixed topologies, according to engineering de- 
sign objectives. In this research, the cell component is a resonator device in 
MEMS domain. The design objectives come from either high-level specifica- 
tions such as behavioral model parameters that need to be satisfied, or from 
layout-level objectives such as minimum areas occupied. Our approach is to 
model the design problem as a formal constrained optimization problem, and 
then solve it with powerful optimization techniques, resulting in a tool that 
automates the design synthesis of MEMS structures. Two categories of op- 
timization techniques are used: one category includes stochastic algorithms 
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Responses of Design Candidates 

Frequency 

Fig. 6.10. Frequency responses of a sampling of design candidates, which evolved 
topologies with larger numbers, K, of resonators as the evolution progressed. All 
results are from one genetic programming run of the BG/GP approach 

such as genetic algorithms, and the other category includes deterministic al- 
gorithms such as nonlinear programming. For both categories, the process of 
solving the optimization problem involves determining the design variables, 
the design constraints, and the design objective. We decided to use 14 design 
variables for an example cell component, a folded-flexure comb-drive microres- 
onator fabricated in a polysilicon surface microstructural process (Fig. 6.14) 
in this research. Design variables and their constraints are listed as follows 
(Fig. 6.15) [15]: 

It is noted that the first 13 design variables have units of pm. The four- 
teenth design variable has units of volts. In addition, we assume t = w, = g 
= d. in our design for simplicity. Some design variables are predefined: they 
are wb, = 11 , w,, = 14 , 6 = 4 , N = 10 . The constraints for the design 
variables are listed below. 
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Fitness Improvement Curve for Band Pass Micromechanical Filter 

Number of Generation 

Fig. 6.11. Fitness improvement curve 

10 I LC, 6 700,8L LC < 4 0 0 , 2 6  w, i 2 0 , 2  6 L,, 1 4 0 0  (6.3) 

also a number of design constraints for the microresonator cell compo- 
nent, including both geometric constraints and functional constraints. In this 
chapter, without loss of generality, we consider the following constraints: 

Among them, the first three are linear constraints, and the fourth is a non- 
linear constraint because the term xdisp is highly nonlinear. xdisp = QFe,x/Kx, 
where Fe,, = 1 . 1 2 ~ ~ N V ~ t l ~  , 

Suppose that in the system-level synthesis, we get a set of behavioral 
parameters for the cell component of a microresonator as 
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Fig. 6.12. Layout and bond graph representation of a design candidate from the 
experiment, with four resonator units coupled with three coupling units 

Then we have three additional equation constraints.Equations to relate the 
design variables and the three behavioral model parameters are as follows: 

where cr = ( w ~ / I v ~ ) ~ ,  MS = PA,, Mt = pAt, Mh = pAb, and 
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Fig. 6.13. A novel topology of MEM filter and its bond graph representation 

Fig. 6.14. A folded-flexure comb-drive microresonator fabricat 
surface microstructural process a) Layout b) Cross-section A-A' 

polysilicon 
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Fig. 6.15. Major design variables for microresonators 

As an alternative, we can also put reformulations of these three constraint 
equations into our design objectives, expressing them as differences to be 
minimized. In that case, we actually deal with a multi-objective constrained 
optimization problem.We take the objective function with the following nor- 
malized Sum of Squared Error (SSE) format: 

Finally, it is important to note the role of feature size in VLSI and MEMS 
design. Feature size, which is often represented as X , means the minimum 
size a particular design can achieve, based on specific fabrication procedures. 
In addition, the actual sizes of geometric shapes should be integer multiples 
of the feature size A, such as A, 2X , 5X , 10X etc. In this research, we set X = 
0.09pm . 

While it is very difficult for many numerical optimization approaches (for 
example, gradient-based approaches) to include considerations of feature size 
constraints [15], it is quite convenient for genetic algorithms to do so. We 
need to modify the objective function only slightly, mapping real values of 
design variables to integer multiples of the feature size X before using them 
in formulations of constraints and objectives. No modifications to the genetic 
algorithm are needed. 
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6.4.1 Solving the constrained optimization problem using GA 

In trying to solve constrained optimization problems using genetic algorithms 
or classical deterministic optimization methods, penalty function methods 
have been the most popular approach, because of their simplicity and ease 
of implementation. In this chapter, we use a special constrained GA that 
exploits pair-wise comparisons in a tournament selection operator to devise 
a penalty function approach that does not require any penalty parameter. 
Careful comparisons among feasible and infeasible solutions are made so as 
to provide a search direction towards the feasible region. Once sufficient fea- 
sible solutions are found, a niching method (along with a controlled mutation 
operator) is used to maintain diversity among feasible solutions. This allows 
a real-parameter GA's crossover operator to continuously find better feasible 
solutions, gradually leading the search nearer to the true optimum solution 
[16]. The parameters for setting the constrained GA are listed in Table 6.3. 

Table 6.3. The parameters for setting the constrained GA 

total number of generations 
crossover probability 
mutation probability 0.15 

Parameter 
variable boundaries 
population size 

Setting 
rigid 
500 

In nine runs of the genetic algorithm using different random seeds, we 
obtained the sizing parameters and values of the objective function NSSE (to 
be minimized) listed in Table 6.4. 

It can be seen that during the nine runs using different seeds, the con- 
strained GA performs very steadily. Almost all runs achieved NSSE within 
the range of 1.OE-06. The biggest NSSE is 1.4E-05. However, the normalized 
squared sum of errors of 1.4E-05 is still considered very good result. It also 
appears that there are many alternatives and rather different ways in which 
parameters can be set and still produce behavior rather close to that desired. 

niching parameter 
exponent(n for SBX) 
exponent (n for mutation) 

6.5 Summary 

0.9 
2.0 
50.0 

This chapter has suggested a design methodology for automatically synthesiz- 
ing hierarchical designs for MEMS. While there has been much research using 
evolutionary computation techniques to synthesize MEMS [2] [17], this is the 
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Table 6.4. Layout parameters obtained in nine GA runs(different random seeds) 

first work reported to seek to automate the hierarchical MEMS synthesis pro- 
cess in an integrated framework. Our first step is to synthesize system-level 
behavioral models using a combination of genetic programming and bond 
graphs. Then as the second step, we use a constrained genetic algorithm to 
automatically optimize the geometric sizing parameters for the cell compo- 
nents. An example of MEM filter design with coupling of multiple microres- 
onators is used to illustrate the approach. Extension of this work can lead to a 
composable design and synthesis environment for micromechatronic systems 
[18]. In addition, target cascading in optimal system design needs to be in- 
vestigated in depth to propagate the desirable top-level design specifications 
to appropriate specifications for the various subsystems and components in a 
consistent and efficient manner [19] [20]. More work is underway to improve 
the efficiency of genetic programming to explore topologically open-ended de- 
sign spaces, and the robustness of the constrained genetic algorithm to solve 
real-world constrained optimization problems. 
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