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Synchronous finite state machines are very important for digital sequential 
designs. Among other important aspects, they represent a powerful way for 
synchronising hardware components so that these components may cooperate 
adequately in the fulfilment of the main objective of the hardware design. In 
this chapter, we propose an evolutionary methodology synthesise finite state 
machines. First, we optimally solve the state assignment NP-complete prob- 
lem, which is inherent to designing any synchronous finite state machines 
using genetic algorithms. This is motivated by the fact that with an optimal 
state assignment one can physically implement the state machine in question 
using a minimal hardware area and response time. Second, with the optimal 
state assignment provided, we propose to use the evolutionary methodology 
to yield optimal evolvable hardware that implement the state machine con- 
trol component. The evolved hardware requires a minimal hardware area and 
introduces a minimal propagation delay of the machine output signals. 

5.1 Introduction 

Sequential digital systems or simply finite state machines have two main char- 
acteristics: there is at least one feedback path from the system output signal 
to the system input signals; and there is a memory capability that allows the 
system to determine current and future output signal values based on the 
previous input and output signal values [15]. 
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Traditionally, the design process of a state machine passes through five 
main steps, wherein the second and third steps may be bypassed as shown in 
Fig. 5.1: 

1. the specification of the sequential system, which should determine the 
next states and outputs of every present state of the machine. This is 
done using state tables and state diagrams; 

2. the state reduction, which should reduce the number of present states 
using equivalence and output class grouping; 

3. the state assignment, which should assign a distinct combination to every 
present state. This may be done using Armstrong-Humphrey heuristics 
P51; 

4. the minimisation of the control combinational logic using K-maps and 
transition maps; 

5. finally, the implementation of the state machine, using gates and flip-flops. 

Sequential System SpecTiation n 
State Reduction 1 
State Assqgment Q 

Control Logic Minimisation -? 
State M a c h  Implementation 

Fig. 5.1. The structural description of a finite synchronous state machine 

In this chapter, we concentrate on the third and forth steps of the design 
process, i.e. the state assignment problem and the control logic minimisation. 
We present a genetic algorithm designed for finding a state assignment of a 
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given synchronous finite state machine, which attempts to minimise the cost 
related to the state transitions. Then, we use genetic programming to evolve 
the circuit that controls the machine current and next states. 

The remainder of this chapter is organised into seven sections. In Section 
5.2, we introduce the problems that face the designer of finite state machine, 
which are mainly the state assignment problem and the control logic. We 
show that a better assignment improves considerably the cost of the control 
logic. In Section 5.3, we give a thourough overview on the principles of evo- 
lutionary computations and genetic algorithms and their application to solve 
NP-problems. In Section 5.4, we design a genetic algorithm for evolving best 
state assignment for a given state machine specification. We describe the ge- 
netic operators used as well as the fitness function, which determines whether 
a state assignment is better that another and how much. In Section 5.5, we 
present results evolved through our genetic algorithm for some well-known 
benchmarks. Then we compare the obtained results with those obtained by 
another genetic algorithm described in [I] as well as with NOVA, which is uses 
well established but non-evolutionary method [16]. In Section 5.6, we briefly 
introduce the genetic programming concepts and their applications to engineer 
evolvable hardware. Subsequently, we present a genetic programming-based 
synthesiser for evolving minimal control logic circuit provided the state as- 
signment for the specification of the state machine in question. We describe 
the circuit encoding, genetic operators used as well as the fitness function, 
which determines whether a control logic design is better than another and 
how much. In Section 5.7, we compare the are and time requirements of the 
designs evolved through our evolutionary synthesiser for some well-known 
benchmarks and compare the obtained results with those obtained using the 
traditional method to design state machine, i.e. using Karnaugh maps and 
flip-flop transition maps. In Section 5.8, we summarise the ideas presented 
throughout the chapter and draw some conclusions. 

5.2 Synchronous Finite State Machines 

Once the specification and the state reduction step have been completed, 
the next step consists then of assigning a code to each state present in the 
machine. It is clear that if the machine has N distinct states then one needs 
N distinct combinations of 0s and 1s. So one needs K flip-flops to store the 
machine current state, wherein K is the smallest positive integer such that 
2K 2 N. The state assignment problem consists of finding the best assignment 
of the flip-flop combinations to the machine states. Since a machine state 
is nothing but a counting device, combinational control logic is necessary 
to activate the flip-flops in the desired sequence. This is shown in Fig. 5.2, 
wherein the feedback signals constitute the machine state, the control logic is 
a combinational circuit that computes the state machine output signals (also 
called primary output signals) from the state signals (also called current state) 
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and the input signals (also called primay input signals). It also produces the 
signals of new machine state (also called next state). 

Fig. 5.2. The structural description of a finite synchronous state machine 

The control logic component in a state machine is responsible of generating 
the primary output signals as well as the signal that form the next state. It 
does so using the primary input signals and the signals that constitute the 
current state (see Fig. 5.2). Traditionally, the combinational circuit of the 
control logic is obtained using the transition maps of the flip-flops [15]. Given 
a state transition function, it is expected that the complexity (area and time) 
and so the cost of the control logic will vary for different assignments of 
flip-flop combinations to allowed states. Consequently, the designer should 
seek the assignment that minimises the complexity and so the cost of the 
combinational logic required to control the state transitions. 

5.2.1 Example of State Machine 

Consider the state machine of one input signal (I), one output signal (0) and 
four states whose state transition function is given in tabular form in Table 
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5.1 and assume that we use D-flip-flops to store the machine current state. 
Then the state assignment A. = {so = 00, sl - 11, sa = 01, s3 = 10) requires 
a control logic that consists of three AND gates, five AND gates and three 
OR gates while the assignments A1 = {so = 00,sl = 10,sz - 0 1 , s ~  = 11) 
requires a control logic that consists of only two NOT gates, five AND gates 
and two OR gates. The schematics of the state machines that encode the state 
according to state assignments A. and A1 are given in Fig. 5.3 and Fig. 5.4 
respectively. 

Table 5.1. Example of state transition function 

Present State Next State Output (0) 

C L I R R M W M  

Fig. 5.3. The machine state schematics for state assignment A0 

In Section 5.3, we concentrate on the third step of the design process, i.e. 
the state assignment problem. We present a genetic algorithm designed for 
finding a state assignment of a given synchronous finite state machine, which 
attempts to minimise the cost related to the state transitions. In Section 5.5, 
we focus on evolving minimal control logic for state machines, provided the 
state assignment. 
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Fig. 5.4. The machine state schematics for state assignment A1 

5.3 Principles of Genetic Algorithms 

Evolutionary algorithms are computer-based solving systems, which use the 
evolutionary computational models as key element in their design and im- 
plementation. A variety of evolutionary algorithms have been proposed. The 
most popular ones are genetic algorithms [13]. They have a conceptual base 
of simulating the evolution of individual structures via the Darwinian natu- 
ral selection process. The process depends on the adherence of the individual 
structures as defined by its environment to the problem pre-determined con- 
straints. Genetic algorithms are well suited to provide an efficient solution of 
NP-hard problems [4]. 

Genetic algorithms maintain a population of individuals that evolve ac- 
cording to selection rules and other genetic operators, such as mutation and 
recombination. Each individual receives a measure of fitness. Selection focuses 
on individuals, which shows high fitness. Mutation and crossover provide gen- 
eral heuristics that simulate the recombination process. Those operators at- 
tempt to perturb the characteristics of the parent individuals as to generate 
distinct offspring individuals. 

Genetic algorithms are implemented through the following generic algo- 
rithm described by Algorithm 5.1, wherein parameters ps, f and gn are the 
population size, fitness of the expected individual and the number of genera- 
tion allowed respectively. 

In Algorithm 5.1, function intialPopulation returns a valid random set 
of individuals that compose the population of the first generation, function 
evaluate returns the fitness of a given population. Function select chooses 
according to some criterion that privileges fitter individuals, the individuals 
that will be used to generate the population of the next generation and func- 
tion reproduction implements the crossover and mutation process to yield the 
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Algorithm 5.1 Genetic Algorithms 
input: population size (ps), expected fitness (f),  last generation number (gn); 
output: fittest individual (fit); 
1. generation := 0; 
2. population := initialPopulation() ; 
3. fitness := evaluate(population) ; 
4. do 
5. parents := select(pop1ation) ; 
6. population := reproduce(parent s) ; 
7. fitness := evaluate(popu1ation); 
8. generation := generation + 1; 
9. fit  := fittestIndividual(population); 
10. while( f it < f )  and (generation < gn); 

new population. The main genetic operators will be described in the following 
sections. 

5.3.1 Assignment Encoding 

Encoding of individuals is one of the implementation decisions one has to 
make in order to use genetic algorithms. It very depends on the nature of the 
problem to be solved. There are several representations that have been used 
with success [13]: binary encoding which is the most common mainly because 
it was used in the first works on genetic algorithms, represents an individual 
as a string of bits; permutation encoding mainly used in ordering problem, 
encodes an individual as a sequence of integer; value encoding represents an 
individual as a sequence of values that are some evaluation of some aspect of 
the problem; tree encoding represents an individual as a tree. This encoding is 
generally used to represent structured individuals such as computer programs, 
mathmatical expressions and circuits. 

5.3.2 Individual Reproduction 

Besides the parameters which represent the population size, the fitness of the 
expected result and the maximal number of generation allowed, the genetic 
algorithm has several other parameters, which can be adjust by the user so 
that the result is up to his or her expectation. The selection is performed 
using some selection probabilities and the recombination, as it is subdivided 
into crossover and mutation processes, depends on the kind of crossover and 
the mutation rate and degree to be used. 

Selection 

The selection problem consists of how to select the individuals that should 
yield the new population. According to Darwins evolution theory the best ones 
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should survive longer and create more new offspring. There are many selection 
methods [6] ,  [9]. These methods include roulette wheel selection or fitness 
proportionate reproduction and rank selection. In the following, we describe 
the idea behind each of these selection methods. In our implementation, we 
use fitness proportionate reproduction. 

In fitness proportionate reproduction, parents are selected according to 
their fitness. The better the fitness the individuals have, the higher their 
chances to be selected are. Imagine a roulette wheel where are placed all indi- 
viduals of the population, wherein every individual has portion proportionate 
to its fitness, as it is shown in Fig. 5.5. 

Fig. 5.5. Representation with the roulette wheel selection 

Then a marble is thrown into the roulette and selects an individual. It  is 
clear that individuals with bigger portion in the wheel will be selected more 
times. The selection process can be simulated by following steps: 

1. first, sum up the fitness of all individuals in the population and let S be 
the obtained sum; 

2. then generate a random number from the [O, S], and let f be this number; 
3. subsequently, go through the individuals of the population, summing up 

the fitness of the next one. Let o be this partial sum; 
4. if a 2 f ,  then stop the selection process and choose the current individual 

otherwise return to second step. 

The fitness proportionate reproduction selection presents some limitations 
when the individual fitnesses differ too much from one another. For instance, 
if the best individual has a fitness of 95% of the entire roulette wheel then 
the other individuals will have very few, if any, chances to be selected. To get 
round this limitation, the rank selection method first ranks the individuals 
of the population according to their corresponding fitnesses. The individual 
with the worst fitness receives rankl and that with the best fitness receives 
rankN, which is the number of individuals in the population. The impact 
of the ranking process is shown in Fig. 5.6, which represents the roulette 
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wheel before and after the ranking process. Rank selction may yield a slower 
convergence as the fittest individuals and those that are less fit have much 
closer ranks. 

(a) before individual ranking 

rank 5 
rank 4 7?4! 

3% 

(b) after individual ranking 

Fig. 5.6. Representation of the roulette wheel selection before and after ranking 
the individuals according to their fitnesses 

Reproduct ion 

Given the parents populations, the reproduction can proceed using different 
schemes [6] ,  [9]: a total replacement, steady-state replacement and elitism. In 
the first scheme, offspring replace their parents in the population of the next 
generation. That is only offspring are used to form the population of the next 
generation. The steady-state replacement exploits the idea that only few low- 
fitness individuals should be discarded in the next generation and should then 
be replaced by offspring. Finally, elitism exploits the idea that the best solution 
might be the fittest individual of the current population and so transports it 
unchanged into the population of the next generation. In our implementation 
we use the total replacement reproduction scheme as well as elitism. 
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Obtaining offspring that share some traits with their corresponding parents 
is performed by the crossover function. There are several types of crossover 
operators. These will be presented shortly. The newly obtained population can 
then suffer some mutation, i.e. some of the individuals of some of the genes. 
The crossover type, the number of individuals that should be mutated and 
how far these individuals should be altered are set up during the initialisation 
process of the genetic algorithm. 

Crossover 

There are many ways on how to perform crossover and these may depend 
on the individual encoding used [13]. We present some of these techniques 
crossover techniques. Single-point crossover consists of choosing randomly one 
crossover point then, the part of the individual from the beginning of the off- 
spring till the crossover point is copied from one parent, the rest is copied from 
the second parent as depicted in Fig. 5.7(a). Double-point crossover consists 
of selecting randomly two crossover points, the part of the individual from 
beginning of offspring to the first crossover point is copied from one parent, 
the part from the first to the second crossover point is copied from the second 
parent and the rest is copied from the first parent as depicted in Fig. 5.7(b). 
Uniform crossover copies parts randomly from the first or from the second 
parent. Finally, arithmetic crossover consists of applying some arithmetic op- 
eration to yield a new offspring. 

The single-point and double-point crossover may use randomly selected 
crossover points to allow variation in the generated offspring and to contribute 
in the avoidance of premature convergence on a local optimum [5]. In our 
implementation, we tested all four-crossover strategies. 

Mutation 

Mutation consists of altering some genes of some individuals of the population 
obtained after crossover. The number of individuals that should be mutated 
is given by the parameter mutation rate while the parameter mutation degree 
states how many genes of a selected individual should be changed. The muta- 
tion parameters have to be chosen carefully as if mutation occurs very often 
then the genetic algorithm would in fact change to random search [5]. When 
either of the mutation rate or mutation degree is null, the population is then 
kept unchanged, i.e. the population obtained from the crossover procedure 
represents actually the next generation population. 

The essence of the mutation process depends on the encoding type used. 
When binary encoding is used, the mutation is nothing but a bit inversion of 
those bit genes that were randomised. When permutation encoding is used, 
the mutation is reduced to a permutation of some randomly selected integer 
genes. When value encoding is used, a very small value is added or subtracted 
from the randomised genes. When tree encoding is used, a content of a tree 
node is altered. 
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(a) single-point crossover 

(b) double-point crossover 

(c) uniform crossover 

(d) arthmetic crossover 

Fig. 5.7. Different types of crossover 

5.4 Application to the State Assignment Problem 

The identification of a good state assignment has been thoroughly studied 
over the years. In particular, Armstrong [2] and Humphrey [ll] have pointed 
out that an assignment is good if it respects two rules, which consist of the 
following: 

two or more states that have the same next state should be given adjacent 
assignments; 
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two or more states that are the next states of the same state should be given 
adjacent assignment. State adjacency means that the states appear next to 
each other in the mapped representation. In other terms, the combination 
assigned to the states should differ in only one position; 
the first rule should be given more important the second. For instance, 
state codes 0101 and 1101 are adjacent while state codes 1100 and 1111 
are not adjacent. 

Now we concentrate on the assignment encoding, genetic operators as well 
as the fitness function, which given two different assignment allows one to 
decide which is fitter. 

5.4.1 State Assignment Encoding 

In this case, an individual represents a state assignment. We use the integer 
encoding. Each chromosome consists of an array of N entries, wherein entry 
i is the code assigned to ith. machine state. For instance, the chromosome in 
Fig. 5.5 represents a possible assignment for a machine with 6 states. 

Fig. 5.8. Example of state assignment encoding 

Note that if the considered machine has stores its state in K flip-flops, 
then the state codes can be only chosen from the integer interval [0, 2K - 11. 
Otherwise, the code is not considered valid as it can be kept in the machine 
memory. 

5.4.2 Genetic Operators for State Assignments 

As state assignments are represented using integer encoding, we could use 
single-point, double-point and uniform crossovers (see Section 5.3 for details). 
The mutation is implemented by altering a state code by another valid state. 
Note that when mutation occurs, a code might be used to represent two or 
more distinct states. Such a state assignment is not possible. In order to 
discourage the selection of such assignment, we apply a penalty every time a 
code is used more than once within the considered assignment. This will be 
further discussed in next section. 

5.4.3 State Assinment Fitness Evaluation 

This step of the genetic algorithm allows us to classify the individuals of a 
population so that fitter individuals are selected more often to contribute in 



5 Evolutionary Synthesis of Synchronous Finite State Machines 115 

the constitution of a new population. The fitness evaluation of state assign- 
ments is performed with respect to two rules of Armstrong [2] and Humphrey 
[l 11 : 

0 how much a given state assignment adheres to the first rule, i.e. how many 
states in the assignment, which have the same next state, have no adjacent 
state codes; 
how much a given state in the assignment adheres to the second rule, i.e. 
how many states in the assignment, which are the next states of the same 
state, have no adjacent state codes. 

In order to efficiently compute the fitness of a given state assignment, 
we use an N x N adjacency matrix, wherein N is the number of the machine 
states. The triangular bottom part of the matrix holds the expected adjacency 
of the states with respect o the first rule while the triangular top part of it 
holds the expected adjacency of the states with respect to the second rule. 
The matrix entries are calculated as in Equation 5.1, wherein AM stands for 
the adjacency matrix, functions next(u) and prev(a) yield the set of states 
that are next and previous to state a respectively. For instance, for the state 
machine in Table 5.2, we get the 4 x 4 adjacency matrix in Fig. 5.9. 

Fig. 5.9. Adjacency matrix for the machine state specified in Table 5.1 

Using the adjacency matrix AM, the fitness function applies a penalty 
of 2, respectively 1, every time the first rule, respectively the second rule, is 
broken. Equation 5.2 states the details of the fitness function applied to a state 
assignment a, wherein function na(q,p) returns 0 if the codes representing 
states q and p are adjacent and 1 otherwise. Note that state assignments that 
encode two distincts states using the same codes are penalised. Note that + 
represents the penalty. 



116 Nadia Nedjah and Luiza de Macedo Mourelle 

For instance, considering the state machine whose state transition function 
is described in Table 5.1, the state assignment {so e 00, sl E 10, s2 - 01, 
SQ E 11) has a fitness of 5 as the codes of states so and s3 are not adjacent 
but AM - 0,3 = 1 and = 1 and the codes of states sl and s2 are not 
adjacent but AMll2 = 2 while the assignments {so - 00, sl - 11, sz - 01, 
s3 -- 10) has a fitness of 3 as the codes of states so and sl are not adjacent 
but AMojl = 1 and AMl,o = 1. 

The objective of the genetic algorithm is to find the assignment that min- 
imise the fitness function as described in Equation 5.2. Assignments with 
fitness 0 satisfy all the adjacency constraints. Such an assignment does not 
always exist. 

5.5 Comparative Results 

In this section, we compare the assignment evolved by our genetic algorithm 
to those yield by another genetic algorithm [5] and to those obtained using the 
non-evolutionary assignment system called NOVA [16]. The examples are well- 
known benchmarks for testing synchronous finite state machines [3]. Table 5.2 
shows the best state assignment generated by the compared systems. The size 
column shows the total number of states/transitions of the machine. 

Table 5.3 gives the fitness of the best state assignment produced by our 
genetic algorithm, the genetic algorithm from [I] and the two versions of 
NOVA system [16]. The #AdjRes stands for the number of expected adjacency 
restrictions. Each adjacency according to rule 1 is counted twice and that with 
respect to rule 2 is counted just once. For instance, in the case of the Shi ftreg 
state machine, all 24 expected restrictions were fulfilled in the state assignment 
yielded by the compared systems. However, the state assignment obtained the 
first version of the NOVA system does not fulfil 8 of the expected adjacency 
restrictions of the state machine. 

The chart of Fig. 5.10 compares graphically the degree of fulfilment of the 
adjacency restrictions expected in the state machines used as benchmarks. 
The chart shows clearly that our genetic algorithm always evolves a better 
state assignment. 

5.6 Evolvable Hardware for the Control Logic 

Genetic programming [lo], [12] is way of producing a program using ge- 
netic evolution. The individuals within the evolutionary process are programs. 
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Table 5.2. Best state assignment yield by the compared systems for the benchmarks 

FSM System State Assignment 

Shiftreg GA [I] [0,2,5,7,4,6,1,3] 
8/16 NOVAl [0,4,2,6,3,7,1,5] 

NOVA2 [0,2,4,6,1,3,5,7] 
Our GA [5,7,4,6,1,3,0,2] 

Lion9 GA [l] [0,4,12,13,15,1,3,7,5] 
9/25 NOVAl [2,0,4,6,7,5,3,1,11] 

NOVA2 [0,4,12,14,6,11,15,13,7] 
Our GA [10,8,12,9,13,15,7,3,11] 

Trainll GA [I] [0,8,2,9,13,12,4,7,5,3,1] 
11/25 NOVAl [0,8,2,9,1,10,4,6,5,3,7] 

NOVA2 [0,13,11,5,4,7,6,10,14,15,12] 
Our GA [2,6,1,4,0,14,10,9,8,11,3] 

Bbarra GA [l] [0,6,2,14,4,5,13,7,3,1] 
10160 NOVAl [4,0,2,3,1,13,12,7,6,5] 

NOVA2 [9,0,2,13,3,8,15,5,4,1] 
Our GA [3,0,8,12,1,9,13,11,10,2] 

Dk14 GA [I] [0,4,2,1,5,7,3] 
7/56 NOVAl [5,7,1,4,3,2,0] 

NOVA2 [7,2,6,3,0,5,4] 
Our GA [3,7,1,0,5,6,2] 

Bbsse GA [I] [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1] 
16/56 NOVAl [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14] 

NOVA2 [2,3,6,15,1,13,7,8,12,4,9,0,5,10,11,14] 
Our GA [15,14,9,12,1,4,3,7,6,10,2,11,13,0,5,8] 

Donfile GA [I] [0,12,9,1,6,7,2,14,11,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3] 
24/96 NOVAl [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1] 

NOVA2 [6,30,11,28,25,19,0,26,1,2,14,10,31,24,27,15,1~,~,~9,~~,~~,9,~,3] 
Our GA [2,18,17,1,29,21,6,22,7,0,4,20,19,3,23,16,9,8,~3,5,~~,~8,~5,~~] 

Table 5.3. Fitness of best assignments yield by the compared systems 

State machine #AdjRes Our GA GA [5]  NOVA^ NOVA:! 

S hiftreg 24 0 0 8 0 
Lion9 69 2 1 27 25 30 
Train11 57 18 19 23 28 
Bbara 225 127 130 135 149 
Dk14 137 68 75 72 76 
Bbsse 305 203 215 220 220 
Donfile 408 241 267 326 291 
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* 1,20 
r Ed Our GA 0 GA [2] NOVA1 NOVA2 

Shifrreg Lion9 Train11 Bbaru DkI4 Bbsse DonJile 
benchmarks 

Fig. 5.10. Graphical comparison of the degree of fulfilment of rule 1 and 2 reached 
by the systems 

The main goal of genetic programming is to provide a domain-independent 
problem-solving method that automatically yields computer programs from 
expected input/output behaviours. Exploiting genetic programming, we au- 
tomatically generate novel control logic circuits that are mznzmal with respect 
to area and time requirements. 

A circuit design may be specified using register-transfer level equations. 
Each instruction in the specification is an output signal assignment. A signal 
is assigned the result of an expression wherein the operators are those that 
represent basic gates in CMOS technology of VLSI circuit implementation and 
the operands are the input signals of the design. The allowed operators are 
shown in Table 5.4. Note that all gates introduce a minimal propagation delay 
as the number of input signal is minimal, which is 2. 

Table 5.4. Gate name, symbol, gate-equivalent and propagation delay 

Name Symbol Gate Code Gate Equiv. Delay 

NOT -p 0 1 0.0625 

AND I 2 0.209 
OR 2 2 0.216 

XOR 3 3 0.212 
NAND Cf 4 1 0.13 

NOR * 5 I 0.156 
XNOR * 6 3 0.211 
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5.6.1 Circuit Encoding 

We encode circuit designs using a matrix of cells that may be interconnected. 
A cell may or may not be involved in the circuit schematics. A cell consists of 
two inputs or three in the case of a MUX, a logical gate and a single output. 
A cell may draw its input signals from the output signals of gates of previous 
rows. The gates include in the first row draw their inputs from the circuit 
global input signal or their complements. The circuit global output signals 
are the output signals of the gates in the last raw of the matrix. An example 
of chromosome with respect to this encoding is given in Table 5.5. It represents 
the circuit of Fig. 5.11. Note that the input signals are numbered 0 to 3, their 
negated signals are numbered 4 to 7 and the output signals are numbered 16 
to 19. If the circuit has n outputs with n < 4, then the signals numbered 16 
to n are the actual output signals of the circuit. 

Table 5.5. Chromosome for the circuit of Fig. 5.11 

Fig. 5.11. Encoded circuit schematics 

5.6.2 Circuit Reproduction 

Crossover recombines two randomly selected circuits into two fresh offsprings. 
It may be single-point or double-point or uniform crossover as explained ear- 
lier. Crossover of circuit specification is implemented using a variable four- 
point crossover as described in Fig. 5.12. 
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Fig. 5.12. Four-point crossover of circuit schematics 

One of the important and complicated operators for genetic programming 
is the mutation. It consists of changing a gene of a selected individual. Here, 
a gene is the expression tree on the left hand side of a signal assignment 
symbol. Altering an expression can be done in two different ways depending 
the node that was randomised and so must be mutated. A node represents 
either an operand or operator. In the former case, the operand, which is a 
bit in the input signal, is substituted with either another input signal or 
simple expression that includes a single operator as depicted in Fig. 5.13 - 
top part. The decision is random. In the case of mutating an operand node 
to an operator node, we proceed as Fig. 5.13 - bottom part. The randomised 
operator node may be mutated to an operator node or to an operator of 
smaller (AND to NOT), the same (AND to XOR) or bigger arity (AND to MUX). 
In the last case, a new operand is randomised to fill in the new operand. 

5.6.3 Circuit Evaluation 

Another important aspect of genetic programming is to provide a way to eval- 
uate the adherence of evolved computer programs to the imposed constraints. 
In our case, these constraints are of three kinds: 

0 First of all, the evolved specification must obey the input/output be- 
haviour, which is given in a tabular form of expected results given the 
inputs. This is the truth table of the expected circuit. 
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Fig. 5.13. Operand node mutation for circuit specification 

a Second, the circuit must have a reduced size. This constraint allows us to 
yield compact digital circuits. 

a Thirdly, the circuit must also reduce the signal propagation delay. This 
allows us to reduce the response time and so discover efficient circuits. 
In order to take into account both area and response time, we evaluate 
circuits using the weighted sum approach. 

We estimate the necessary area for a given circuit using the concept of gate 
equivalent. This is the basic unit of measure for digital circuit complexity [7]. 
It  is based upon the number of logic gates that should be interconnected to 
perform the same input/output behaviour. This measure is more accurate 
that the simple number of gates [7], [15]. 

When the input to an electronic gate changes, there is a finite time de- 
lay before the change in input is seen at the output terminal. This is called 
the propagation delay of the gate and it differs from one gate to another. 
Of primary concern is the path from input to output with the highest total 
propagation delay. We estimate the performance of a given circuit using the 
worst-case delay path. The number of gate equivalent and an average propa- 
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gation delay for each kind of gate are given in Table 5.4. The data were taken 
form [6]. 

Let C be a digital circuit that uses a subset (or the complete set) of the 
gates given in Table 5.4. Let Gates(C) be a function that returns the set of 
all gates of circuit C and Levels(C) be a function that returns the set of all 
the gates of C grouped by level. Notice that the number of levels of a circuit 
coincides with the cardinality of the set expected from function Levels. On 
the other hand, let Val(X) be the Boolean value that the considered circuit 
C propagates for the input Boolean vector X assuming that the size of X 
coincides with the number of input signal required for circuit C. The fitness 
function, which allows us to determine how much an evolved circuit adheres 
to the specified constraints, is given as follows, wherein X represents the input 
values of the input signals while Y represents the expected output values of 
the output signals of circuit C, n denotes the number of output signals that 
circuit C has, function Delay returns the propagation delay of a given gate as 
shown in Table 5.4 and 0 1  and 0 2  are the weighting coefficients [8] that allow 
us to consider both area and response time to evaluate the performance of 
an evolved circuit, with 01 + 0 2  = 1. Note that for each output signal error, 
the fitness function of Equation 5.3 sums up a penalty $I. For implementation 
issue, we minimize the fitness function below for different values of 01 and 
0,. 

5.7 Comparative Results 

In this section, we compare the evolved circuits to those obtained using the 
traditional methods, i.e. transition and Karnaugh maps. This is done for three 
different state machines that are generally used as benchmarks. These state 
machines are commonly called shiftreg, lion9 and trainll .  The detailed de- 
scriptions of these state machines can be found in [3]. The state assignments 
used are the best ones found so far. They also are the result of an evolutionary 
computation [14]. Theses state assignment are given in Table 5.2. 

For each of these state machines, we evolved a minimal circuit that im- 
plements the required behaviour and compared it to the one engineered using 
the traditional method. Table 5.6 shows the details of this comparison. The 
schematics of the evolved circuit of state machines shi ftreg are given in Fig. 
5.14 and Fig. 5.15. 
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Table 5.6. Comparison of the traditional method vs. genetic programming 

State machine Number of gate-Equivalent Response time 

Traditional GP Traditional GP 

Shiftreg 30 12 0.85 0.423 
Lion9 102 33 2.513 0.9185 
Train1 1 153 39 2.945 0.8665 

Fig. 5.14. First evolved control logic for state machine shi ftreg 

Fig. 5.15. Second evolved control logic for state machine shiftreg 
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The lookup table-based implementations of the shi ftreg state machine for 
both control logics (i.e. of Fig. 5.14 and Fig. 5.15) exploits two 2-input, one 
3-input and one 4-input lookup tables. The schematics are given in Fig. 5.10. 

Fig. 5.16. Lookup table-based evolved architeture of shi ftreg 

The lookup table-based implementation of the shi ftreg state machine as 
synthesised by the xilinxTM [17] uses four Zinput, one 3-input and one 4- 
input lookup tables. The schematics are given in Fig. 5.16. 

Fig. 5.17. Lookup table-based architeture of shiftreg as synthesised by Xilinx TM 
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Fig. 5.18 and Fig. 5.19 show the evolved circuits for state machines lion9 
and train11 respectively. It is clear that the evolved circuits are much better 
that those yield by the traditional methods in both terms hardware area and 
signal propagation delay. 

Fig. 5.18. The evolved control logic for state machine lion9 

5.8 Summary 

In this chapter, is divided into two main parts. In the first part, we exploited 
evolutionary computation to solve the NP-complete problem of state encod- 
ing in the design process of asynchronous finite state machines. We compared 
the state assignment evolved by our genetic algorithm for machine of differ- 
ent sizes evolved to existing systems. Our genetic algorithm always obtains 
better assignments. In the second part, we exploited genetic programming to 
synthesise the control logic used in asynchronous finite state machines. We 
compared the circuits evolved by our genetic programming-based synthesiser 
with that that would use the traditional method, i.e. using Karnaugh maps 
and transition maps. The state machine used as benchmarks are well known 
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Fig. 5.19. The evolved control logic for state machine train11 

and of different sizes. Our evolutionary synthesiser always obtains better con- 
trol logic both in terms of hardware area required to  implement the  circuit 
and response time. 
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