
Evolutionary Synthesis of Synchronous Finite
State Machines

Nadia Nedjah and Luiza de Macedo Mourelle

Department of System Engineering and Computation,
Engineering Faculty,
State University of Rio de Janeiro,
Rua Sh Francisco Xavier, 524, Sala 5022-D,
Maracanl, Rio de Janeiro, Brazil
(nadia I ldmm) 0eng .uerj . br
www.eng.uerj.br

Synchronous finite state machines are very important for digital sequential
designs. Among other important aspects, they represent a powerful way for
synchronising hardware components so that these components may cooperate
adequately in the fulfilment of the main objective of the hardware design. In
this chapter, we propose an evolutionary methodology synthesise finite state
machines. First, we optimally solve the state assignment NP-complete prob-
lem, which is inherent to designing any synchronous finite state machines
using genetic algorithms. This is motivated by the fact that with an optimal
state assignment one can physically implement the state machine in question
using a minimal hardware area and response time. Second, with the optimal
state assignment provided, we propose to use the evolutionary methodology
to yield optimal evolvable hardware that implement the state machine con-
trol component. The evolved hardware requires a minimal hardware area and
introduces a minimal propagation delay of the machine output signals.

5.1 Introduction

Sequential digital systems or simply finite state machines have two main char-
acteristics: there is at least one feedback path from the system output signal
to the system input signals; and there is a memory capability that allows the
system to determine current and future output signal values based on the
previous input and output signal values [15].

104 Nadia Nedjah and Luiza de Macedo Mourelle

Traditionally, the design process of a state machine passes through five
main steps, wherein the second and third steps may be bypassed as shown in
Fig. 5.1:

1. the specification of the sequential system, which should determine the
next states and outputs of every present state of the machine. This is
done using state tables and state diagrams;

2. the state reduction, which should reduce the number of present states
using equivalence and output class grouping;

3. the state assignment, which should assign a distinct combination to every
present state. This may be done using Armstrong-Humphrey heuristics
P51;

4. the minimisation of the control combinational logic using K-maps and
transition maps;

5. finally, the implementation of the state machine, using gates and flip-flops.

Sequential System SpecTiation n
State Reduction 1
State Assqgment Q

Control Logic Minimisation -?
State M a c h Implementation

Fig. 5.1. The structural description of a finite synchronous state machine

In this chapter, we concentrate on the third and forth steps of the design
process, i.e. the state assignment problem and the control logic minimisation.
We present a genetic algorithm designed for finding a state assignment of a

5 Evolutionary Synthesis of Synchronous Finite State Machines 105

given synchronous finite state machine, which attempts to minimise the cost
related to the state transitions. Then, we use genetic programming to evolve
the circuit that controls the machine current and next states.

The remainder of this chapter is organised into seven sections. In Section
5.2, we introduce the problems that face the designer of finite state machine,
which are mainly the state assignment problem and the control logic. We
show that a better assignment improves considerably the cost of the control
logic. In Section 5.3, we give a thourough overview on the principles of evo-
lutionary computations and genetic algorithms and their application to solve
NP-problems. In Section 5.4, we design a genetic algorithm for evolving best
state assignment for a given state machine specification. We describe the ge-
netic operators used as well as the fitness function, which determines whether
a state assignment is better that another and how much. In Section 5.5, we
present results evolved through our genetic algorithm for some well-known
benchmarks. Then we compare the obtained results with those obtained by
another genetic algorithm described in [I] as well as with NOVA, which is uses
well established but non-evolutionary method [16]. In Section 5.6, we briefly
introduce the genetic programming concepts and their applications to engineer
evolvable hardware. Subsequently, we present a genetic programming-based
synthesiser for evolving minimal control logic circuit provided the state as-
signment for the specification of the state machine in question. We describe
the circuit encoding, genetic operators used as well as the fitness function,
which determines whether a control logic design is better than another and
how much. In Section 5.7, we compare the are and time requirements of the
designs evolved through our evolutionary synthesiser for some well-known
benchmarks and compare the obtained results with those obtained using the
traditional method to design state machine, i.e. using Karnaugh maps and
flip-flop transition maps. In Section 5.8, we summarise the ideas presented
throughout the chapter and draw some conclusions.

5.2 Synchronous Finite State Machines

Once the specification and the state reduction step have been completed,
the next step consists then of assigning a code to each state present in the
machine. It is clear that if the machine has N distinct states then one needs
N distinct combinations of 0s and 1s. So one needs K flip-flops to store the
machine current state, wherein K is the smallest positive integer such that
2K 2 N. The state assignment problem consists of finding the best assignment
of the flip-flop combinations to the machine states. Since a machine state
is nothing but a counting device, combinational control logic is necessary
to activate the flip-flops in the desired sequence. This is shown in Fig. 5.2,
wherein the feedback signals constitute the machine state, the control logic is
a combinational circuit that computes the state machine output signals (also
called primary output signals) from the state signals (also called current state)

106 Nadia Nedjah and Luiza de Macedo Mourelle

and the input signals (also called primay input signals). It also produces the
signals of new machine state (also called next state).

Fig. 5.2. The structural description of a finite synchronous state machine

The control logic component in a state machine is responsible of generating
the primary output signals as well as the signal that form the next state. It
does so using the primary input signals and the signals that constitute the
current state (see Fig. 5.2). Traditionally, the combinational circuit of the
control logic is obtained using the transition maps of the flip-flops [15]. Given
a state transition function, it is expected that the complexity (area and time)
and so the cost of the control logic will vary for different assignments of
flip-flop combinations to allowed states. Consequently, the designer should
seek the assignment that minimises the complexity and so the cost of the
combinational logic required to control the state transitions.

5.2.1 Example of State Machine

Consider the state machine of one input signal (I), one output signal (0) and
four states whose state transition function is given in tabular form in Table

5 Evolutionary Synthesis of Synchronous Finite State Machines 107

5.1 and assume that we use D-flip-flops to store the machine current state.
Then the state assignment A. = {so = 00, sl - 11, sa = 01, s3 = 10) requires
a control logic that consists of three AND gates, five AND gates and three
OR gates while the assignments A1 = {so = 00,sl = 10,sz - 0 1 , s ~ = 11)
requires a control logic that consists of only two NOT gates, five AND gates
and two OR gates. The schematics of the state machines that encode the state
according to state assignments A. and A1 are given in Fig. 5.3 and Fig. 5.4
respectively.

Table 5.1. Example of state transition function

Present State Next State Output (0)

C L I R R M W M

Fig. 5.3. The machine state schematics for state assignment A0

In Section 5.3, we concentrate on the third step of the design process, i.e.
the state assignment problem. We present a genetic algorithm designed for
finding a state assignment of a given synchronous finite state machine, which
attempts to minimise the cost related to the state transitions. In Section 5.5,
we focus on evolving minimal control logic for state machines, provided the
state assignment.

108 Nadia Nedjah and Luiza de Macedo Mourelle

Fig. 5.4. The machine state schematics for state assignment A1

5.3 Principles of Genetic Algorithms

Evolutionary algorithms are computer-based solving systems, which use the
evolutionary computational models as key element in their design and im-
plementation. A variety of evolutionary algorithms have been proposed. The
most popular ones are genetic algorithms [13]. They have a conceptual base
of simulating the evolution of individual structures via the Darwinian natu-
ral selection process. The process depends on the adherence of the individual
structures as defined by its environment to the problem pre-determined con-
straints. Genetic algorithms are well suited to provide an efficient solution of
NP-hard problems [4].

Genetic algorithms maintain a population of individuals that evolve ac-
cording to selection rules and other genetic operators, such as mutation and
recombination. Each individual receives a measure of fitness. Selection focuses
on individuals, which shows high fitness. Mutation and crossover provide gen-
eral heuristics that simulate the recombination process. Those operators at-
tempt to perturb the characteristics of the parent individuals as to generate
distinct offspring individuals.

Genetic algorithms are implemented through the following generic algo-
rithm described by Algorithm 5.1, wherein parameters ps, f and gn are the
population size, fitness of the expected individual and the number of genera-
tion allowed respectively.

In Algorithm 5.1, function intialPopulation returns a valid random set
of individuals that compose the population of the first generation, function
evaluate returns the fitness of a given population. Function select chooses
according to some criterion that privileges fitter individuals, the individuals
that will be used to generate the population of the next generation and func-
tion reproduction implements the crossover and mutation process to yield the

5 Evolutionary Synthesis of Synchronous Finite State Machines 109

Algorithm 5.1 Genetic Algorithms
input: population size (ps), expected fitness (f), last generation number (gn);
output: fittest individual (fit);
1. generation := 0;
2. population := initialPopulation() ;
3. fitness := evaluate(population) ;
4. do
5. parents := select(pop1ation) ;
6. population := reproduce(parent s) ;
7. fitness := evaluate(popu1ation);
8. generation := generation + 1;
9. fit := fittestIndividual(population);
10. while(f it < f) and (generation < gn);

new population. The main genetic operators will be described in the following
sections.

5.3.1 Assignment Encoding

Encoding of individuals is one of the implementation decisions one has to
make in order to use genetic algorithms. It very depends on the nature of the
problem to be solved. There are several representations that have been used
with success [13]: binary encoding which is the most common mainly because
it was used in the first works on genetic algorithms, represents an individual
as a string of bits; permutation encoding mainly used in ordering problem,
encodes an individual as a sequence of integer; value encoding represents an
individual as a sequence of values that are some evaluation of some aspect of
the problem; tree encoding represents an individual as a tree. This encoding is
generally used to represent structured individuals such as computer programs,
mathmatical expressions and circuits.

5.3.2 Individual Reproduction

Besides the parameters which represent the population size, the fitness of the
expected result and the maximal number of generation allowed, the genetic
algorithm has several other parameters, which can be adjust by the user so
that the result is up to his or her expectation. The selection is performed
using some selection probabilities and the recombination, as it is subdivided
into crossover and mutation processes, depends on the kind of crossover and
the mutation rate and degree to be used.

Selection

The selection problem consists of how to select the individuals that should
yield the new population. According to Darwins evolution theory the best ones

110 Nadia Nedjah and Luiza de Macedo Mourelle

should survive longer and create more new offspring. There are many selection
methods [6] , [9]. These methods include roulette wheel selection or fitness
proportionate reproduction and rank selection. In the following, we describe
the idea behind each of these selection methods. In our implementation, we
use fitness proportionate reproduction.

In fitness proportionate reproduction, parents are selected according to
their fitness. The better the fitness the individuals have, the higher their
chances to be selected are. Imagine a roulette wheel where are placed all indi-
viduals of the population, wherein every individual has portion proportionate
to its fitness, as it is shown in Fig. 5.5.

Fig. 5.5. Representation with the roulette wheel selection

Then a marble is thrown into the roulette and selects an individual. It is
clear that individuals with bigger portion in the wheel will be selected more
times. The selection process can be simulated by following steps:

1. first, sum up the fitness of all individuals in the population and let S be
the obtained sum;

2. then generate a random number from the [O, S], and let f be this number;
3. subsequently, go through the individuals of the population, summing up

the fitness of the next one. Let o be this partial sum;
4. if a 2 f , then stop the selection process and choose the current individual

otherwise return to second step.

The fitness proportionate reproduction selection presents some limitations
when the individual fitnesses differ too much from one another. For instance,
if the best individual has a fitness of 95% of the entire roulette wheel then
the other individuals will have very few, if any, chances to be selected. To get
round this limitation, the rank selection method first ranks the individuals
of the population according to their corresponding fitnesses. The individual
with the worst fitness receives rankl and that with the best fitness receives
rankN, which is the number of individuals in the population. The impact
of the ranking process is shown in Fig. 5.6, which represents the roulette

5 Evolutionary Synthesis of Synchronous Finite State Machines 11 1

wheel before and after the ranking process. Rank selction may yield a slower
convergence as the fittest individuals and those that are less fit have much
closer ranks.

(a) before individual ranking

rank 5
rank 4 7?4!

3%

(b) after individual ranking

Fig. 5.6. Representation of the roulette wheel selection before and after ranking
the individuals according to their fitnesses

Reproduct ion

Given the parents populations, the reproduction can proceed using different
schemes [6] , [9]: a total replacement, steady-state replacement and elitism. In
the first scheme, offspring replace their parents in the population of the next
generation. That is only offspring are used to form the population of the next
generation. The steady-state replacement exploits the idea that only few low-
fitness individuals should be discarded in the next generation and should then
be replaced by offspring. Finally, elitism exploits the idea that the best solution
might be the fittest individual of the current population and so transports it
unchanged into the population of the next generation. In our implementation
we use the total replacement reproduction scheme as well as elitism.

112 Nadia Nedjah and Luiza de Macedo Mourelle

Obtaining offspring that share some traits with their corresponding parents
is performed by the crossover function. There are several types of crossover
operators. These will be presented shortly. The newly obtained population can
then suffer some mutation, i.e. some of the individuals of some of the genes.
The crossover type, the number of individuals that should be mutated and
how far these individuals should be altered are set up during the initialisation
process of the genetic algorithm.

Crossover

There are many ways on how to perform crossover and these may depend
on the individual encoding used [13]. We present some of these techniques
crossover techniques. Single-point crossover consists of choosing randomly one
crossover point then, the part of the individual from the beginning of the off-
spring till the crossover point is copied from one parent, the rest is copied from
the second parent as depicted in Fig. 5.7(a). Double-point crossover consists
of selecting randomly two crossover points, the part of the individual from
beginning of offspring to the first crossover point is copied from one parent,
the part from the first to the second crossover point is copied from the second
parent and the rest is copied from the first parent as depicted in Fig. 5.7(b).
Uniform crossover copies parts randomly from the first or from the second
parent. Finally, arithmetic crossover consists of applying some arithmetic op-
eration to yield a new offspring.

The single-point and double-point crossover may use randomly selected
crossover points to allow variation in the generated offspring and to contribute
in the avoidance of premature convergence on a local optimum [5]. In our
implementation, we tested all four-crossover strategies.

Mutation

Mutation consists of altering some genes of some individuals of the population
obtained after crossover. The number of individuals that should be mutated
is given by the parameter mutation rate while the parameter mutation degree
states how many genes of a selected individual should be changed. The muta-
tion parameters have to be chosen carefully as if mutation occurs very often
then the genetic algorithm would in fact change to random search [5]. When
either of the mutation rate or mutation degree is null, the population is then
kept unchanged, i.e. the population obtained from the crossover procedure
represents actually the next generation population.

The essence of the mutation process depends on the encoding type used.
When binary encoding is used, the mutation is nothing but a bit inversion of
those bit genes that were randomised. When permutation encoding is used,
the mutation is reduced to a permutation of some randomly selected integer
genes. When value encoding is used, a very small value is added or subtracted
from the randomised genes. When tree encoding is used, a content of a tree
node is altered.

5 Evolutionary Synthesis of Synchronous Finite State Machines 113

(a) single-point crossover

(b) double-point crossover

(c) uniform crossover

(d) arthmetic crossover

Fig. 5.7. Different types of crossover

5.4 Application to the State Assignment Problem

The identification of a good state assignment has been thoroughly studied
over the years. In particular, Armstrong [2] and Humphrey [ll] have pointed
out that an assignment is good if it respects two rules, which consist of the
following:

two or more states that have the same next state should be given adjacent
assignments;

114 Nadia Nedjah and Luiza de Macedo Mourelle

two or more states that are the next states of the same state should be given
adjacent assignment. State adjacency means that the states appear next to
each other in the mapped representation. In other terms, the combination
assigned to the states should differ in only one position;
the first rule should be given more important the second. For instance,
state codes 0101 and 1101 are adjacent while state codes 1100 and 1111
are not adjacent.

Now we concentrate on the assignment encoding, genetic operators as well
as the fitness function, which given two different assignment allows one to
decide which is fitter.

5.4.1 State Assignment Encoding

In this case, an individual represents a state assignment. We use the integer
encoding. Each chromosome consists of an array of N entries, wherein entry
i is the code assigned to ith. machine state. For instance, the chromosome in
Fig. 5.5 represents a possible assignment for a machine with 6 states.

Fig. 5.8. Example of state assignment encoding

Note that if the considered machine has stores its state in K flip-flops,
then the state codes can be only chosen from the integer interval [0, 2K - 11.
Otherwise, the code is not considered valid as it can be kept in the machine
memory.

5.4.2 Genetic Operators for State Assignments

As state assignments are represented using integer encoding, we could use
single-point, double-point and uniform crossovers (see Section 5.3 for details).
The mutation is implemented by altering a state code by another valid state.
Note that when mutation occurs, a code might be used to represent two or
more distinct states. Such a state assignment is not possible. In order to
discourage the selection of such assignment, we apply a penalty every time a
code is used more than once within the considered assignment. This will be
further discussed in next section.

5.4.3 State Assinment Fitness Evaluation

This step of the genetic algorithm allows us to classify the individuals of a
population so that fitter individuals are selected more often to contribute in

5 Evolutionary Synthesis of Synchronous Finite State Machines 115

the constitution of a new population. The fitness evaluation of state assign-
ments is performed with respect to two rules of Armstrong [2] and Humphrey
[l 11 :

0 how much a given state assignment adheres to the first rule, i.e. how many
states in the assignment, which have the same next state, have no adjacent
state codes;
how much a given state in the assignment adheres to the second rule, i.e.
how many states in the assignment, which are the next states of the same
state, have no adjacent state codes.

In order to efficiently compute the fitness of a given state assignment,
we use an N x N adjacency matrix, wherein N is the number of the machine
states. The triangular bottom part of the matrix holds the expected adjacency
of the states with respect o the first rule while the triangular top part of it
holds the expected adjacency of the states with respect to the second rule.
The matrix entries are calculated as in Equation 5.1, wherein AM stands for
the adjacency matrix, functions next(u) and prev(a) yield the set of states
that are next and previous to state a respectively. For instance, for the state
machine in Table 5.2, we get the 4 x 4 adjacency matrix in Fig. 5.9.

Fig. 5.9. Adjacency matrix for the machine state specified in Table 5.1

Using the adjacency matrix AM, the fitness function applies a penalty
of 2, respectively 1, every time the first rule, respectively the second rule, is
broken. Equation 5.2 states the details of the fitness function applied to a state
assignment a, wherein function na(q,p) returns 0 if the codes representing
states q and p are adjacent and 1 otherwise. Note that state assignments that
encode two distincts states using the same codes are penalised. Note that +
represents the penalty.

116 Nadia Nedjah and Luiza de Macedo Mourelle

For instance, considering the state machine whose state transition function
is described in Table 5.1, the state assignment {so e 00, sl E 10, s2 - 01,
SQ E 11) has a fitness of 5 as the codes of states so and s3 are not adjacent
but AM - 0,3 = 1 and = 1 and the codes of states sl and s2 are not
adjacent but AMll2 = 2 while the assignments {so - 00, sl - 11, sz - 01,
s3 -- 10) has a fitness of 3 as the codes of states so and sl are not adjacent
but AMojl = 1 and AMl,o = 1.

The objective of the genetic algorithm is to find the assignment that min-
imise the fitness function as described in Equation 5.2. Assignments with
fitness 0 satisfy all the adjacency constraints. Such an assignment does not
always exist.

5.5 Comparative Results

In this section, we compare the assignment evolved by our genetic algorithm
to those yield by another genetic algorithm [5] and to those obtained using the
non-evolutionary assignment system called NOVA [16]. The examples are well-
known benchmarks for testing synchronous finite state machines [3]. Table 5.2
shows the best state assignment generated by the compared systems. The size
column shows the total number of states/transitions of the machine.

Table 5.3 gives the fitness of the best state assignment produced by our
genetic algorithm, the genetic algorithm from [I] and the two versions of
NOVA system [16]. The #AdjRes stands for the number of expected adjacency
restrictions. Each adjacency according to rule 1 is counted twice and that with
respect to rule 2 is counted just once. For instance, in the case of the Shi ftreg
state machine, all 24 expected restrictions were fulfilled in the state assignment
yielded by the compared systems. However, the state assignment obtained the
first version of the NOVA system does not fulfil 8 of the expected adjacency
restrictions of the state machine.

The chart of Fig. 5.10 compares graphically the degree of fulfilment of the
adjacency restrictions expected in the state machines used as benchmarks.
The chart shows clearly that our genetic algorithm always evolves a better
state assignment.

5.6 Evolvable Hardware for the Control Logic

Genetic programming [lo], [12] is way of producing a program using ge-
netic evolution. The individuals within the evolutionary process are programs.

5 Evolutionary Synthesis of Synchronous Finite State Machines 117

Table 5.2. Best state assignment yield by the compared systems for the benchmarks

FSM System State Assignment

Shiftreg GA [I] [0,2,5,7,4,6,1,3]
8/16 NOVAl [0,4,2,6,3,7,1,5]

NOVA2 [0,2,4,6,1,3,5,7]
Our GA [5,7,4,6,1,3,0,2]

Lion9 GA [l] [0,4,12,13,15,1,3,7,5]
9/25 NOVAl [2,0,4,6,7,5,3,1,11]

NOVA2 [0,4,12,14,6,11,15,13,7]
Our GA [10,8,12,9,13,15,7,3,11]

Trainll GA [I] [0,8,2,9,13,12,4,7,5,3,1]
11/25 NOVAl [0,8,2,9,1,10,4,6,5,3,7]

NOVA2 [0,13,11,5,4,7,6,10,14,15,12]
Our GA [2,6,1,4,0,14,10,9,8,11,3]

Bbarra GA [l] [0,6,2,14,4,5,13,7,3,1]
10160 NOVAl [4,0,2,3,1,13,12,7,6,5]

NOVA2 [9,0,2,13,3,8,15,5,4,1]
Our GA [3,0,8,12,1,9,13,11,10,2]

Dk14 GA [I] [0,4,2,1,5,7,3]
7/56 NOVAl [5,7,1,4,3,2,0]

NOVA2 [7,2,6,3,0,5,4]
Our GA [3,7,1,0,5,6,2]

Bbsse GA [I] [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1]
16/56 NOVAl [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14]

NOVA2 [2,3,6,15,1,13,7,8,12,4,9,0,5,10,11,14]
Our GA [15,14,9,12,1,4,3,7,6,10,2,11,13,0,5,8]

Donfile GA [I] [0,12,9,1,6,7,2,14,11,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3]
24/96 NOVAl [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1]

NOVA2 [6,30,11,28,25,19,0,26,1,2,14,10,31,24,27,15,1~,~,~9,~~,~~,9,~,3]
Our GA [2,18,17,1,29,21,6,22,7,0,4,20,19,3,23,16,9,8,~3,5,~~,~8,~5,~~]

Table 5.3. Fitness of best assignments yield by the compared systems

State machine #AdjRes Our GA GA [5] NOVA^ NOVA:!

S hiftreg 24 0 0 8 0
Lion9 69 2 1 27 25 30
Train11 57 18 19 23 28
Bbara 225 127 130 135 149
Dk14 137 68 75 72 76
Bbsse 305 203 215 220 220
Donfile 408 241 267 326 291

118 Nadia Nedjah and Luiza de Macedo Mourelle

* 1,20
r Ed Our GA 0 GA [2] NOVA1 NOVA2

Shifrreg Lion9 Train11 Bbaru DkI4 Bbsse DonJile
benchmarks

Fig. 5.10. Graphical comparison of the degree of fulfilment of rule 1 and 2 reached
by the systems

The main goal of genetic programming is to provide a domain-independent
problem-solving method that automatically yields computer programs from
expected input/output behaviours. Exploiting genetic programming, we au-
tomatically generate novel control logic circuits that are mznzmal with respect
to area and time requirements.

A circuit design may be specified using register-transfer level equations.
Each instruction in the specification is an output signal assignment. A signal
is assigned the result of an expression wherein the operators are those that
represent basic gates in CMOS technology of VLSI circuit implementation and
the operands are the input signals of the design. The allowed operators are
shown in Table 5.4. Note that all gates introduce a minimal propagation delay
as the number of input signal is minimal, which is 2.

Table 5.4. Gate name, symbol, gate-equivalent and propagation delay

Name Symbol Gate Code Gate Equiv. Delay

NOT -p 0 1 0.0625

AND I 2 0.209
OR 2 2 0.216

XOR 3 3 0.212
NAND Cf 4 1 0.13

NOR * 5 I 0.156
XNOR * 6 3 0.211

5 Evolutionary Synthesis of Synchronous Finite State Machines 119

5.6.1 Circuit Encoding

We encode circuit designs using a matrix of cells that may be interconnected.
A cell may or may not be involved in the circuit schematics. A cell consists of
two inputs or three in the case of a MUX, a logical gate and a single output.
A cell may draw its input signals from the output signals of gates of previous
rows. The gates include in the first row draw their inputs from the circuit
global input signal or their complements. The circuit global output signals
are the output signals of the gates in the last raw of the matrix. An example
of chromosome with respect to this encoding is given in Table 5.5. It represents
the circuit of Fig. 5.11. Note that the input signals are numbered 0 to 3, their
negated signals are numbered 4 to 7 and the output signals are numbered 16
to 19. If the circuit has n outputs with n < 4, then the signals numbered 16
to n are the actual output signals of the circuit.

Table 5.5. Chromosome for the circuit of Fig. 5.11

Fig. 5.11. Encoded circuit schematics

5.6.2 Circuit Reproduction

Crossover recombines two randomly selected circuits into two fresh offsprings.
It may be single-point or double-point or uniform crossover as explained ear-
lier. Crossover of circuit specification is implemented using a variable four-
point crossover as described in Fig. 5.12.

120 Nadia Nedjah and Luiza de Macedo Mourelle

I-; I

j ;;;;;i;t;iii:;;il:ijj;i;;3;i;ii;i I I
I,.::...
I I I

L L + 1 I
I.:.:... 171 - :

. ' . ' . : I 1::::::: (
I I j i;iii$ --- ---- 4 ---- rrrr I
I.:.:.:. I ;;;:;;;I 1:;;;::; j . . I :::::::I

1 * - - . I
; ;::::::I I:.:.:.:
I :;:;:::I

. . . I I I;:;;;;; I I I
t ;:;:::,I . :I 1::::::: , ; t I

Fig. 5.12. Four-point crossover of circuit schematics

One of the important and complicated operators for genetic programming
is the mutation. It consists of changing a gene of a selected individual. Here,
a gene is the expression tree on the left hand side of a signal assignment
symbol. Altering an expression can be done in two different ways depending
the node that was randomised and so must be mutated. A node represents
either an operand or operator. In the former case, the operand, which is a
bit in the input signal, is substituted with either another input signal or
simple expression that includes a single operator as depicted in Fig. 5.13 -
top part. The decision is random. In the case of mutating an operand node
to an operator node, we proceed as Fig. 5.13 - bottom part. The randomised
operator node may be mutated to an operator node or to an operator of
smaller (AND to NOT), the same (AND to XOR) or bigger arity (AND to MUX).
In the last case, a new operand is randomised to fill in the new operand.

5.6.3 Circuit Evaluation

Another important aspect of genetic programming is to provide a way to eval-
uate the adherence of evolved computer programs to the imposed constraints.
In our case, these constraints are of three kinds:

0 First of all, the evolved specification must obey the input/output be-
haviour, which is given in a tabular form of expected results given the
inputs. This is the truth table of the expected circuit.

5 Evolutionary Synthesis of Synchronous Finite State Machines 121

Fig. 5.13. Operand node mutation for circuit specification

a Second, the circuit must have a reduced size. This constraint allows us to
yield compact digital circuits.

a Thirdly, the circuit must also reduce the signal propagation delay. This
allows us to reduce the response time and so discover efficient circuits.
In order to take into account both area and response time, we evaluate
circuits using the weighted sum approach.

We estimate the necessary area for a given circuit using the concept of gate
equivalent. This is the basic unit of measure for digital circuit complexity [7].
It is based upon the number of logic gates that should be interconnected to
perform the same input/output behaviour. This measure is more accurate
that the simple number of gates [7], [15].

When the input to an electronic gate changes, there is a finite time de-
lay before the change in input is seen at the output terminal. This is called
the propagation delay of the gate and it differs from one gate to another.
Of primary concern is the path from input to output with the highest total
propagation delay. We estimate the performance of a given circuit using the
worst-case delay path. The number of gate equivalent and an average propa-

122 Nadia Nedjah and Luiza de Macedo Mourelle

gation delay for each kind of gate are given in Table 5.4. The data were taken
form [6].

Let C be a digital circuit that uses a subset (or the complete set) of the
gates given in Table 5.4. Let Gates(C) be a function that returns the set of
all gates of circuit C and Levels(C) be a function that returns the set of all
the gates of C grouped by level. Notice that the number of levels of a circuit
coincides with the cardinality of the set expected from function Levels. On
the other hand, let Val(X) be the Boolean value that the considered circuit
C propagates for the input Boolean vector X assuming that the size of X
coincides with the number of input signal required for circuit C. The fitness
function, which allows us to determine how much an evolved circuit adheres
to the specified constraints, is given as follows, wherein X represents the input
values of the input signals while Y represents the expected output values of
the output signals of circuit C, n denotes the number of output signals that
circuit C has, function Delay returns the propagation delay of a given gate as
shown in Table 5.4 and 0 1 and 0 2 are the weighting coefficients [8] that allow
us to consider both area and response time to evaluate the performance of
an evolved circuit, with 01 + 0 2 = 1. Note that for each output signal error,
the fitness function of Equation 5.3 sums up a penalty $I. For implementation
issue, we minimize the fitness function below for different values of 01 and
0,.

5.7 Comparative Results

In this section, we compare the evolved circuits to those obtained using the
traditional methods, i.e. transition and Karnaugh maps. This is done for three
different state machines that are generally used as benchmarks. These state
machines are commonly called shiftreg, lion9 and trainll . The detailed de-
scriptions of these state machines can be found in [3]. The state assignments
used are the best ones found so far. They also are the result of an evolutionary
computation [14]. Theses state assignment are given in Table 5.2.

For each of these state machines, we evolved a minimal circuit that im-
plements the required behaviour and compared it to the one engineered using
the traditional method. Table 5.6 shows the details of this comparison. The
schematics of the evolved circuit of state machines shi ftreg are given in Fig.
5.14 and Fig. 5.15.

5 Evolutionary Synthesis of Synchronous Finite State Machines 123

Table 5.6. Comparison of the traditional method vs. genetic programming

State machine Number of gate-Equivalent Response time

Traditional GP Traditional GP

Shiftreg 30 12 0.85 0.423
Lion9 102 33 2.513 0.9185
Train1 1 153 39 2.945 0.8665

Fig. 5.14. First evolved control logic for state machine shi ftreg

Fig. 5.15. Second evolved control logic for state machine shiftreg

124 Nadia Nedjah and Luiza de Macedo Mourelle

The lookup table-based implementations of the shi ftreg state machine for
both control logics (i.e. of Fig. 5.14 and Fig. 5.15) exploits two 2-input, one
3-input and one 4-input lookup tables. The schematics are given in Fig. 5.10.

Fig. 5.16. Lookup table-based evolved architeture of shi ftreg

The lookup table-based implementation of the shi ftreg state machine as
synthesised by the xilinxTM [17] uses four Zinput, one 3-input and one 4-
input lookup tables. The schematics are given in Fig. 5.16.

Fig. 5.17. Lookup table-based architeture of shiftreg as synthesised by Xilinx TM

5 Evolutionary Synthesis of Synchronous Finite State Machines 125

Fig. 5.18 and Fig. 5.19 show the evolved circuits for state machines lion9
and train11 respectively. It is clear that the evolved circuits are much better
that those yield by the traditional methods in both terms hardware area and
signal propagation delay.

Fig. 5.18. The evolved control logic for state machine lion9

5.8 Summary

In this chapter, is divided into two main parts. In the first part, we exploited
evolutionary computation to solve the NP-complete problem of state encod-
ing in the design process of asynchronous finite state machines. We compared
the state assignment evolved by our genetic algorithm for machine of differ-
ent sizes evolved to existing systems. Our genetic algorithm always obtains
better assignments. In the second part, we exploited genetic programming to
synthesise the control logic used in asynchronous finite state machines. We
compared the circuits evolved by our genetic programming-based synthesiser
with that that would use the traditional method, i.e. using Karnaugh maps
and transition maps. The state machine used as benchmarks are well known

126 Nadia Nedjah and Luiza de Macedo Mourelle

Fig. 5.19. The evolved control logic for state machine train11

and of different sizes. Our evolutionary synthesiser always obtains better con-
trol logic both in terms of hardware area required to implement the circuit
and response time.

References

1. Amaral, J.N., Tumer, K. and Gosh, J., Designing genetic algorithms for the State
Assignment problem, IEEE Transactions on Systems Man and Cybernetics, vol.,
no. 1999.

2. Armstrong, D.B., A programmed algorithm for assigning internal codes to se-
quential machines, IRE Transactions on Electronic Computers, EC l l , no. 4,
pp. 466-472, August 1962.

3. Collaborative Benchmarking Laboratory, North Carolina State University,
http://www.cbl.ncsu.edu/pub/ Benchmark-dirs/LGSynth89/fsmexamples,
November 27th. 2003.

5 Evolutionary Synthesis of Synchronous Finite State Machines 127

4. DeJong, K. and Spears, W.M., Using genetic algorithms to solve NP-complete
problems, Proceedings of the Third International Conference on Genetic Algo-
rithms, pp. 124-132, Morgan Kaufrnann, 1989.

5. DeJong, K. and Spears, W.M., An analysis of the interacting roles of the popu-
lation size and crossover type in genetic algorithms, In Parallel problem solving
from nature, pp. 38-47, Springer-Verlag, 1990.

6. Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1991.

7. Ercegovac, M. D., Lang, T. and Moreno, J.H., Introduction to digital systems,
John Wiley, 1999.

8. Fonseca, C.M. and Fleming, P.J., An overview of evolutionary algorithms in
multi-objective optimization, Evolutionary Computation, 3(1):1-16.

9. Goldberg, D. E., Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley, Massachusetts, Reading, MA, 1989.

10. Haupt, R.L. and Haupt, S.E., Practical genetic algorithms, John Wiley and
Sons, 1998.

11. Humphrey, W.S., Switching circuits with computer applications, New York:
McGraw-Hill, 1958.

12. Koza, J.R., Genetic Programming. MIT Press, 1992.
13. Michalewics, Z., Genetic algorithms + data structures = evolution program,

Springer-Verlag, USA, third edition, 1996.
14. Nedjah, N. and Mourelle, L.M, Evolutionary state assignment for synchronous

finite state machine, Proceedings of International Conference on Computational
Science, Lecture Notes in Computer Science, Springer-Verlag, 2004.

15. Rhyne, V.T., Fundmentals of digital systems design, Computer Applications in
Electrical Engineering Series, Prentice-Hall, 1973.

16. Villa, T, and Sangiovanni-Vincentelli, A. Nova: state assignment of finite state
machine for optimal two-level logic implementation, IEEE Transactions on
Computer-Aided Design, vol. 9, pp. 905-924, September 1990.

17. Xilinx, Project Manager, ISE 6.li, http: //www. xl inx . corn.

