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Using traditional path planning and artificial intelligence techniques has re- 
stricted the use of mobile robots to limited tasks in previously known envi- 
ronments, yet potential applications include dynamic and unstructured en- 
vironments. One of the very promising methods of designing controllers for 
autonomous and mobile robots is using Evolutionary Computations, a class 
of algorithms which mimics the natural evolution process. 

In this chapter we present a series of experiments in evolutionary robotics 
that used the miniature mobile robot Khepera. Khepera robot is widely used 
in evolutionary experiments due to its small size and light weight which sim- 
plify the setup of the environments needed for the experiments. The controllers 
evolved by the presented experiments include classical and spiking neural net- 
works controllers, fuzzy logic controllers and computer program obtained by 
Genetic Programming. The tasks performed by the robots through the ex- 
periments reflect learning many basic as well as high level behaviors. These 
behaviors include: navigating in dynamic environment with static or dynamic 
obstacles, seeking and following the light sources present in the environment, 
returning home for recharging the battery, and collecting trash objects from 
the environment. The chapter also presents an experiment in co-evolution in 
which a predator-prey behavior is learned by two robots. The chapter ends 
with an experiment that evolves spiking neural networks, a new artificial neu- 
ral networks model that accurately models the biological neuron activation. 
This experiment presents the use of evolution to obtain a spiking neural net- 
work that enables the robot to navigate depending only on vision information. 

4.1 Introduction 

Khepera is a miniature mobile robot that is widely used in laboratories and 
universities in conducting experiments aiming at developing new control algo- 
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rithms for autonomous robots. It was developed by the Swiss Federal Institute 
of Technology and manufactured by K-team [I] [2]. Khepera robot is cylin- 
drical in shape with a diameter of 55 mm and a height of 30 mm. Its weight 
is about 70 gm. Its small size and weight made it ideal robotic platform for 
experiments of control algorithms that could be carried out in small environ- 
ments such as a desktop. 

The robot is supported by two wheels; each wheel is controlled by a DC 
motor that can rotate in both directions. The variation of the velocities of the 
two wheels, magnitude and direction, will result in wide variety of resulting 
trajectories. For example if the two wheels rotate with equal speeds and in 
same direction, the robot will move in straight line, but if the two velocities 
are equal in magnitude but different in direction the robot will rotate around 
its axis. 

Fig. 4.1. Miniature mobile robot Khepera (with permission of K-team). 

The robot is equipped with eight infrared sensors. Six of the sensors are 
distributed on the front side of the robot while the other two are placed on 
its back. The exact position of the sensors is shown in figure (4.2). The same 
sensor hardware can act as both ambient light intensity sensor and proximity 
sensor. 

Each of the eight sensors consists of emitter and receiver parts so that 
these sensors can function as proximity sensors or ambient light sensors. To 
function as proximity sensors, it emits light and receive the reflected light 
intensity. The measured value is the difference between the received light in- 
tensity and the ambient light. This reading has range [O, 10231 and it gives 
a rough estimate how far the obstacles are. The higher reflected light inten- 
sity the closer obstacles are. It should be noted that we cannot find a direct 
mapping between the sensor reading and the distance from the obstacle, as 
this reading depends on factors other than the distance to the obstacle such 
as the color of the obstacle. 

To function as ambient light sensors, sensors use only receiver part of the 
device to measure the ambient light intensity and return a value that falls in 
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Fig. 4.2. The position of the eight sensors on the robot (with permission of K-team) 

the range of [O, 10231. Again, these measurements depend very strongly on 
many factors such as the distance to the light source and its direction. 

An interesting feature of the Khepera robot is its autonomy, which includes 
autonomy of power and control algorithm. For the purpose of power autonomy, 
the robot is equipped with rechargeable batteries that can last for about 45 
minutes. For experiments that may require much longer time, the robot can 
be connected to a host computer by a lightweight cable to provide it with the 
needed electrical power. This is an important feature that allowed long control 
experiments (such as developing evolutionary algorithms) to be carried out 
without repetitive recharging. 

On the other hand, for the control autonomy, the robot's CPU board is 
equipped with MC68331 microcontroller with 512K bytes of ROM (system 
memory) and 256K bytes of RAM (user memory). This RAM memory can 
accommodate reasonable length program codes to provide control autonomy. 
The robot can be programmed using Cross-C compiler and the program will 
be uploaded to the robot through serial port communication with a host 
computer. Also the robot can be remotely controlled by a host computer 
where the control commands are sent to the robot through the serial link 
connection mentioned above. This mode of operation has an advantage of 
using computational power of the host computer. 

4.2 Evolutionary Computations and Robotics 

The term Evolutionary Computation is used to describe a set of algorithms 
that use the idea of evolution in solving complex computational problems such 
as our problem of designing a robot controller. It includes algorithms such as 
Genetic Algorithms GA, Genetic Programming GP and Evolutionary Strate- 
gies. They operate on a population or a group of individuals each representing 
a proposed solution of the problem. Then they apply a set of biologically in- 
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spired operators such as mutation and crossover to obtain a better generation 
which is more suited to the problem to be solved. 

So what can Evolutionary Computation offer to robotics? First thing it 
offers to robotics is an optimization tool. Optimization is a frequent type of 
problems solved by Genetic Algorithms due to the embedded competition 
between individuals. In applying the Genetic Algorithm for optimization, the 
individuals are usually points in the space to be searched for optimum point 
and the fitness is the function to be optimized. The reproduction aims at 
generating new points from existing ones until the optimum point is found. 
Genetic Algorithm offers useful properties for the optimization problem: 

It is applicable to continuous, discrete and mixed optimization problems 
and it requires no information about the continuity or the differentiabil- 
ity of the function to be optimized. It also can be used for problems of 
optimization with constraints. The constraints on the parameters to be 
optimized can be easily translated to constraints on the genetic operators 
to produce individuals inside the search domain defined by the constraints. 
Genetic Algorithms are suitable for many practical problems that re- 
quire multi-objective functions. Multi-objective optimization can be ac- 
complished by designing fitness function that is a weighted sum of required 
objectives. Another solution is using Co-evolution where multiple popu- 
lations are used instead of single population. Each population is bred to 
optimize certain objective while individuals are exchanged between them 
(migration). 

For example, one of the possible methods for evolving a neural network 
controller is to let the evolutionary algorithm choose the optimal weights of the 
neural network, so the problem of evolving this controller to perform obstacle 
avoidance behavior can be viewed as a problem of optimizing the different 
weights. Also this problem is multi-objective optimization because we want 
the neural network to achieve different goals such as avoiding the obstacles 
while keeping a reasonable velocity and keeping a straight path. 

Second thing evolutionary computations can offer to robotics is providing 
a method of learning rules necessary for the robot to achieve some task. In this 
case the controller is mainly a set of rules and we want to choose the optimal 
set of rules that serve this task. Programming the rules by hand or testing 
different combinations of them is a tedious task. An example of using the 
genetic algorithm to learn robots rules is a system built at the Naval Research 
Laboratories and is called SAMUEL [3]. It used the method described above 
to learn Nomad robot navigation and obstacle avoidance. Rules are not the 
only form of controllers that can be designed by evolutionary computations 
[4] [ 5 ] .  In the next sections see how evolutionary computations can be used to 
design controllers such as neural networks and fuzzy logic controllers. 
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4.3 Evolving Neural Network Controllers 

Many researchers have found neural network and interesting solution for the 
problem of the building behaviors for the Khepera robot. The ability to learn 
and the ability to deal with noisy sensors were apparent advantages in favor 
of the neural network. 

Different approaches exist for designing neural network controllers. One 
approach is to use neural networks learning algorithms to train the synaptic 
weights. Example of this work can be found in [6]. Another Approach is to 
use the Genetic Algorithm as a search or optimization tool to find the best 
neural network controller through the evolution process. The leading work 
of evolving neural network controller for a real Khepera robot was done by 
Floreano and Mondada [7]. They evolved a simple feed forward neural network 
that consisted of input and output layers with no hidden layers. The neural 
network controller enabled the robot to navigate in the arena while avoiding 
obstacles . 

We can use the genetic algorithm in different ways to evolve neural net- 
works. It can be used to search for the optimal synaptic weights, or to search 
for the optimal network architecture along with the synaptic weights. Also, 
it can be used to evolve the learning parameters needed to train the neural 
network. Examples of these methods are presented in the following subsec- 
tions. For example, using the genetic algorithm to search for the suitable 
synaptic weights given a predefined architecture is presented in experiments 
1 and 3 whose goals are to evolve obstacle avoidance and home seeking be- 
haviors respectively. On the other hand, evolving the network architecture 
is the method used in experiment 2 to develop a light seeking behavior. Fi- 
nally, evolving Hebbian learning rules and the rate of learning is an example 
of evolving the learning parameters of the neural network and it is one of 
the methods used in experiment 5 to co-evolve predator-prey behavior in two 
robots. 

4.3.1 Experiment 1: Evolving Obstacle Avoidance Behavior 

The goal of this experiment [8] is to evolve a neural network controller for 
obstacle avoidance navigation in environments with static or dynamic obsta- 
cles. The proposed neural network is a feed forward neural network with input 
layer consisting of 8 neurons, hidden layers of 2 neurons and output layer of 
2 other neurons. The inputs of the neural network are the eight proximity 
sensors that are arranged on the robot as shown in figure (4.2). The input 
range of each sensor is [O, 10231. The values of the inputs were scaled to the 
range [0, 11 before being applied to the neural network. The Outputs of the 
neural network controller are applied to the motors of left and right wheels. 
The activation function of the neurons is the sigmoid function which is limited 
between [-I, 11, so the output of the neural network had to be properly scaled 
before being applied to the motors. 
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The fitness function used rewarded the individual which moves with a 
suitable forward speed and penalize the individual which rotates around itself 
or comes close to the obstacle. It has the following formula: 

where VL, VR are the velocities of left motor, right motor respectively, S, is the 
proximity sensor number i, and C1, C2 are suitable positive scaling factors. 
The term VL + VR will maximize the forward speed while term IVL - VRI will 
minimize the rotation of the robot which occurs due the difference between 
the velocities of left and right wheels. Also, the robot will learn to keep a 
suitable distance separating it from the obstacles in order to decrease the 
magnitude of the sum of the sensors. The constants Cl, C2 set the relative 
importance of each component of the fitness function, for example increasing 
C2 will emphasize the importance of avoiding obstacles relative to keeping a 
straight path. 

The fitness of the individuals is evaluated as follows: each individual was 
allowed to perform a 400 time step, in each step it reads the proximity sensors, 
calculate the output speeds using its own neural network and apply these 
speeds to the motors then it measures the new proximity sensor values and 
calculate its fitness function according to the above formula. Individual fitness 
is the sum of its fitness function over the 400 time steps. The above algorithm 
lasted for 120 generations. 

Fig. 4.3. Trajectory of the robot in an environment with moving obstacle. 

The result of the experiment showed successful emergence of the desired 
behavior. After 80 generations, the robot was able to move in straight tra- 
jectories and it learned to keep a suitable distance between its path and the 
obstacles or walls. This is clear in the left section of figure (4.4) which shows 
the behavior of the robot in an environment with large centered obstacle. 
While moving parallel to the wall, the robot moves in a straight path and 
maintains certain distance between its path and the wall. Fig. (4.3) shows the 
behavior of the best fit individual when a round object of the same size of 
the robot is approaching its path. The slides taken from the motion of the 
robot shows its turning and avoiding collision with the moving object. Fig. 
(4.4) shows the behavior of the robot in an environment with obstacles having 
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Fig. 4.4. Trajectories of the robot in environments with large obstacles with sharp 
corners . 

sharp corners which is difficult to detect if the robot is heading towards the 
corner. We can see that the robot turns before being close to the corner and 
this behavior is repeated twice. It should be also noted in this environment 
that distance between the two obstacles is about twice the diameter of the 
robot. - 

4.3.2 Experiment 2: Evolving Light Seeking Behavior 

This experiment was performed by Hiilse et al. [9]. The goal of the experi- 
ment is to evolve a neural network controller that enables the robot to seek 
the light source available in its arena. The proposed neural network had 16 
input neurons and 2 output neurons. The input neurons corresponds to the 
8 proximity sensors and the 8 ambient light sensors while the two output 
neurons correspond to the two motor speeds. 

The evolutionary algorithm used in this experiment allowed the evolution 
of the structure of the neural network along with the synaptic weights values. 
It can evolve the number of the hidden neurons necessary to connect the input 
and output layers along with their recurrent connections. 

The evolution experiment was carried in a simulated environment while 
the best fit individual was tested in both real and simulated environments. 
The results of the experiments showed the emergence of light seeking behavior 
in the early generations. The best fit individual was tested in two simulated 
environments and in a physical environment. The first simulated environment 
contained one light source. The robot was able to move towards the light 
source from different starting positions. The second simulated environment 
contained more than one light source. The robot moved towards the nearest 
light source. The best fit controller was then moved to a real robot and tested 
in a physical environment. In similar conditions to the simulated environment, 
the robot was able to move to the light source. The environment was slightly 
modified to test the controller ability to adapt to changes in the physical 
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environment. When the light source was moved the robot was still able to 
move towards and follow the light source, which shows consistency with the 
behavior in the simulated environment. Next, the light source was removed 
from the environment, and then the robot started to move in curved or semi 
circular trajectories compared to straight trajectories in the presence of the 
light source. To test how the behavior is affected by the proximity sensors, 
the proximity sensors were removed, in this case the robot was still able to 
move to the light source when it existed in the environment, however in its 
absence, the robot rotated around its axis. These results show good match 
between the behavior in simulated and real environments, they also showed 
that the evolved behavior was invariant when the light source was moved but 
was affected by removing the connections from the proximity sensors when 
there was no light source in the environment [9]. 

We notice in this experiment that the genetic algorithm allowed the evo- 
lution of the network architecture along with the best synaptic weights . This 
method enables the genetic algorithm to search for the best neural network 
controller in the space of the network architectures. In general, this method 
would lead to better quality solution than the case of predefined network 
architecture. On the other hand, this method requires a variable length chro- 
mosome that encodes the neural network. Also the chromosome is expected 
to be longer than the one that encodes only the synaptic weight which would 
result in longer evolution time. 

4.3.3 Experiment 3: Evolving Recharging and Home Seeking 
Behavior 

This experiment was performed by Floreano and Mondada [lo]. Although 
the experiment evolved an interesting home seeking behavior, the actual goal 
of the experiment was to show that behaviors can be evolved without being 
explicitly included in the fitness function. In this experiment the fitness func- 
tion didn't include a pleasure part to reward the robots when returning to 
home (or the recharging area). However, without recharging, the robot will 
not be able to live longer and achieve a high fitness which was allowed to be 
calculated over a period longer than the battery life time. 

The experiment was conducted in a rectangular environment where one of 
the corners was illuminated with a tower carrying a number of lamps. This 
corner was considered the robot's home or recharging area. In this corner, a 
circular sector of the ground is painted in black such that the robot can detect 
it using an extra ambient light sensor placed under the robot. This sensor is 
active in the entire environment except the recharging area. 

Using the robot actual battery which lasts for 40-45 minutes will cause 
the experiment to last for a very long time. Instead, the robot was equipped 
with a simulated battery that discharges linearly with time in a maximum 
of 20 seconds. The reading of the battery time can be considered a virtual 
battery sensor whose value falls between [O, 11, with 1 indicating that the 
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battery is fully charged. For the robot to detect the light source associated 
with its recharging area, two sensors acted as ambient light sensors beside 
their function as proximity sensors. The two sensors are the ones labeled 2 
and 6 in figure (4.2). 

The neural network controller used was 3 layers neural network with re- 
current connections in the hidden layer The input layer has 8 neurons for 
proximity sensors, 2 neurons for ambient light sensors and 2 other neurons for 
floor brightness and simulated battery sensor. The output layer consisted of 
2 neurons that correspond to the motor speeds. 

lR Sensor 1 , 

Neural Network Controller of 
the home seeking experiment 

Right 
Motor 
4 

Left 
Motor + 

The environment of 
the experiment 

Fig. 4.5. The neural network controller of the home seeking experiment (left). A 
figure of the environment(right). 

The fitness function used in the experiment rewarded the individuals that 
move with large speed and avoid the walls. The fitness function formula is 
given by [lo]:  

fitness = u ( l  - i )  (4.2) 

where u is normalized average speed of the two motors 0 < u < 1,  and i 
is normalized value of the maximum proximity sensor 0 < i < 1. The fitness 
function is calculated and summed over maximum number of 150 time step 
while the battery life lasts for 20 seconds or 50 time steps. Also the fitness 
function is not summed when the robot is in the recharging area. The robot 
should learn to return to the recharging area before its battery life comes 
to an end. Furthermore, it should not stay there for long since no fitness is 
gained there. This behavior is not stated explicitly in the fitness function but 
implicitly implied by the conditions of the experiment. 
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The genetic algorithm lasted for 240 generations. The results of the ex- 
periment showed that in the last generations the behavior of the robot was 
as expected. It returned to home for recharging without spending much time 
there after recharging. The behavior of the best fit individuals was as follows: 
When it was placed in the charging area, it quickly moved away and returned 
only before the the battery life ends by 5 time steps. Outside the recharging 
area, it moved with maximum speed avoiding the walls whenever they are 
encountered. Testing the best fit individuals from different initial positions 
showed that it was able to return for recharging for many times for most of 
the initial positions. 

Also the results of the experiments showed that we can find a direct re- 
lation between the activation level of one of hidden neurons and certain be- 
haviors. Observing the activation level of this hidden node over the robot life 
showed that it had a low activation level when the robot navigated outside 
the recharging area but gradually increased during the journey to the back 
for charging in the last period of the battery life. The activation level reached 
its maximum when the robot is in the charging area. This fact supports the 
assertion that this hidden neuron played a role in the behavior responsible for 
planning the journey back to home before the battery life ends [lo]. 

4.3.4 Experiment 4: Evolving Trash Collection Behavior 

This experiment was performed by Nolfi [ll]. The goal of the experiment is to 
teach the Khepera robot how to clear the arena from trash objects by grasping 
and placing them near the walls of the arena. This complex task requires skills 
such as recognizing the trash object and the walls, grasping and releasing the 
object, and obstacle avoidance. To accomplish this task the Khepera robot is 
provided with a gripper module that is added on the top of the robot (see 
figure 4.6). The gripper can perform two main actions: picking and releasing 
the object. The robot can detect the presence of an object in the gripper by 
using a light barrier sensor placed in the gripper. 

One approach to teach the robot this complex task is to split it into a set of 
simpler tasks or behaviors and design a module that control each behavior then 
designing a coordination method that decides which of these modules will take 
control of the robot based on the current situation. Each behavior could be 
designed by hand, evolved or learned by other learning methods. An example 
of this approach is found in [12] where all the modules are programmed by 
hand except the grasping behavior which was learned using reinforcement 
learning. However, in the experiment that we will present the goal was to 
evolve the entire behavior and to test the hypothesis that different modules 
of the evolved neural network correspond to certain basic behaviors. 

The experiment evolved five different neural network architectures among 
them two with modular structure. All the architectures had 7 input neurons 
and 4 output neurons. The input neurons correspond to the 6 proximity sen- 
sors on the front side of the robot and the barrier light sensor present in the 
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Fig. 4.6. Khepera robot with the additional gripper module (with permission of 
K-team) . 

gripper. The output neurons are the 2 motor speeds and the 2 actions of the 
gripper. The five neural network architectures had the following structures: 

1. The first neural network is a feed forward neural network with no hidden 
layer. 

2. The second neural network is also a feed forward neural network but with 
a hidden layer of 4 neurons. 

3. The third neural network has recurrent connections between two extra 
input and output nodes. 

4. The fourth neural network has a modular structure. It has two modules 
each with its own set of the four output neurons. Each module takes 
control in different predefined situations. The first module takes control 
when the robot is looking for the trash object and grasping it. Its goal is 
recognizing the trash object. The second module takes control when the 
robot is holding the trash object and heading towards the wall. Its goal is 
recognizing the wall and avoiding obstacles while holding the trash object. 

5. The fifth neural network has modular structure too. It consists of two 
modules. Each module has its own four output neurons in addition to 
four selector neurons. The selector neurons compete with each other to 
decide which module will take the control. For example, if at a certain 
time the activation level of the selector neuron of the left motor is higher 
in the first module, then output of neuron corresponding to the left motor 
in the first module will be sent to the left motor. 

The environment used in the evolution process was an arena with walls of 
height 3 cm and it contained 5 trash objects which are cylindrical in shape. 
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The genetic algorithm used population of 100 individuals for each of the five 
architectures and it lasted for 1000 generations. The fitness function essen- 
tially rewarded individuals for the number of the trash objects successfully 
placed outside the arena with less rewards for objects that the robot was only 
successful to pick. Each individual was tested for 15 epochs and its fitness 
valuation was the sum of its fitness function in each epoch. 

The experiment described above was repeated 10 times for every architec- 
ture. The 10 best individuals of each architecture were given the same task 
of clearing the arena from 5 trash objects. The results showed that the fifth 
neural network excelled the others where 7 of its best 10 individuals were able 
to successfully complete the task. Only one or two individuals were able to 
complete the task for the other architectures. 

Considering the hypothesis that modular architecture may contain mod- 
ules that correspond to certain behavior, it was found that the best individual 
of the fifth architecture use both modules for controlling the left motor and 
uses only one module for rest of the outputs. This fact showed that relation 
between modules and basic behaviors could not be proven in this experiment 
[ll]. However, in the experiment of home seeking and battery recharging cer- 
tain hidden neuron was shown to be responsible for detecting low battery and 
returning home for recharging. 

4.3.5 Experiment 5: Co-evolving Predator-Prey Behavior 

By co-evolution we mean evolving two competing populations simultaneously 
such that the fitness evaluation of one is at the expense of the other. The 
co-evolution adds more competition stress to the evolution process which is, 
by nature, characterized by the competition for survival among individuals of 
the same generation. We are now going to present an interesting experiment 
in co-evolution whose goal was evolving a predatory-prey behavior in two 
khepera robots. The predator robot is required to chase the prey robot and 
contact it. 

The experiment was performed by Floreano and Nolfi [13] [14]. In the 
experiment, the predator robot is equipped with a vision module ( see figure 
4.7 ) to recognize the prey robot which was provided with a black perturbation 
that can be easily detected on the white walls of the environment. To provide 
fair competition, the maximum speed of the prey robot is allowed to be twice 
that of the predator robot. 

The environment was a square one of dimension 47 cm. That size was 
chosen such that prey will always be within the detection range of the vision 
module of the predator which can detect objects in range of 5 to 50 cm. 
The evolution experiment was carried in a simulated environment of the same 
details of the actual one. This will help to decrease the time of the evolution 
and to avoid the hardware problems resulting from the twisting of the power 
cables of the two robots. 
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The K213 vision module of the khepera robot is an additional module that 
is connected to the top of the robot. It is cable of providing a linear image 
of 64 pixels that cover a vision angle of 36 degrees. Furthermore, the module 
has a microcontroller that can process the image data and instead of sending 
the 64 bytes of the image to the robot it can detect the least eight pixels in 
intensity and pass them to the robot. 

Fig. 4.7. Khepera robot with the extra K213 vision module (with permission of 
K-team) . 

In the simulated computer environment, the experiment designers divided 
the vision range to 5 sections each representing a simulated photosensor. These 
simulated photosensors act as input for the neural network controller of the 
predator robot. A simulated photosensor is considered active if a pixel of 
minimal intensity is within its range, possibly because of the presence of the 
prey robot in this section. 

The controllers of the two robots are shown in figure (4.8). Each controller 
is recurrent neural network. The predator neural network has extra 5 input 
neurons corresponding to the five photosensors. On the other hand, the two 
outputs of the prey neural network are multiplied by a factor of two before 
being applied to the motors of the robot. 

The genetic algorithm used two competitive populations each of 100 in- 
dividuals and the experiment lasted for 100 generations. As we mentioned 
earlier, the fitness evaluation of each robot is at the expense of the other. The 
predator robot is awarded for decreasing the time needed to contact the prey. 
Its fitness is a normalized version of that time and falls in the range of [0, 
11. The prey robot fitness function is just (1 - predatorfitness). The fitness 
function of each individual, predator or prey, is evaluated through testing it 
against the best individuals of the last 10 generations of the opposite type. 

The experiment used direct encoding to encode the synaptic weights of the 
neural network. Each weight is encoded in 5 bits. The first bit is always used 
to encode the sign while the other four bits differed according to the instance 
of the experiment. We will to summarize each of the three instances of the 
experiments along with its results [13] [14]. 
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Fig. 4.8. The neural network controller of the predator and prey robots. 

First instance of the experiment: In this instance the four bits simply 
encoded the value of the synaptic weight which falls in the range of [O, 11. 
The results of this instance of the experiment showed that there was no 
population superior to the other all the time span of the evolution. In the 
first generations the predator was able to chase the prey and contact it. 
After 70 generations, the prey was cable of turning away when the predator 
approached it. After 90 generations, the predator learned better attacking 
methods for chasing the prey. 
Second instance of the experiment: Only two bits were used to encode 
the value of the weight and the other two bits are used to encode four 
different level of uniform noise that would be added to the weights. The 
results of this instance of the experiment showed that the noise level in the 
synaptic weights of the prey was higher than those of the predator which 
suggested that the prey made use of this noise to evolve an unpredictable 
and changing trajectory to confuse the predator robot. 
Third instance of the experiment: The four bits are used to encode the 
learning parameters of the synaptic weights rather than the value of the 
weights. Two bits encoded the Hebbian rules and the other two bits en- 
coded the learning rate. The value of the weight is randomly generated 
between [0, 11 and continuously updated according to the rules. The re- 
sults of this instance of the experiment showed that the average fitness 
of the predator is higher than that of the prey. In terms of the apparent 
behavior, it developed better chasing techniques than that of the first in- 
stance of the experiment. In terms of the synaptic weights, the experiment 
results showed that the synaptic weights were adjusted by the Hebbian 
learning and the resulting motor speed steered the robot towards the prey, 
a property which require fine tuning of the weight values if the encoding 
method of the first instance was used. 
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The results of this experiment are interesting and reflect how the behavior 
of the robot was dependent on the types of the parameters of the controller 
encoded in the gene despite the fact that the controller had the same ar- 
chitecture in the three instances of the experiment. We would expect also 
that different behaviors could have obtained by allowing the evolution of the 
architecture of the neural network along with the weights. 

4.4 Evolving Fuzzy Logic Controllers 

Fuzzy Logic is a mathematical tool that can manipulate human vague concepts 
and linguistic variables. Zadeh in [15] proposed a method to treat human 
knowledge based on the Theory of Approximate Reasoning. He proposed that 
systems with ill defined or with uncertain model can be treated by fuzzy logic. 
These principles were then used to build a controller for the first time in [16]. 

In this section, we will briefly present how the fuzzy controller can be 
applied to the problem of mobile robot navigation and obstacle avoidance. 
The fuzzy controller usually consists of three parts: 

The Fuzzifier 

The first step in any fuzzy control application is to specify the fuzzy sets and 
the corresponding membership functions for each of input or output variables. 
This process is known as fuzzification. If we apply this to the Khepera input 
proximity sensor values, we will find that each sensor has a reading value 
in the range [0,1023]. One of the proposed methods for fuzzification could 
be: " Near" ,"Mediumn, and "Far". Also membership function can have other 
shapes such as the triangular shape or bell shaped. See figure (4.9). 

In our example of the Khepera proximity sensor, the reading 300 may have 
a membership in the fuzzy set "Near" that is equal to 0.75 while the mem- 
bership in the sets "Medium" and "Far" are equal to 0.25 and 0 respectively. 
It is clear here that the crisp value 300 has been assigned a membership value 
for every fuzzy set defined over the range [O, 10231. Also the output variables 
(left motor speed and right motor speed) can be fuzzified in the same sense. 
The fuzzy sets could be "Positive Large", "Positive" , "Zero", "Negative", 
"Negative Large". 

The Fuzzy Rules 

This is the main part of the controller where human knowledge can be repre- 
sented in the form of if-then rules. The rule usually takes the following form: 

If (antecedent part) then (consequent part) 
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Possible membership functions for input sensors 

Possible membership functions for output motor speed 

Fig. 4.9. Possible membership functions for input sensor and output motor speed. 

Where the antecedent part checks the input variables and the consequent 
part sets one or more of the output variables. For our case of Khepera robot 
navigation, one of the rules can be: 

If (left proximity sensor is "Near") then 
(left speed is "Positive Large" ) and (right speed is "Postive") 

This rule tells the robot to turn to right (by moving the left wheel faster 
than the right wheel) if obstacle is found on the left of the robot. If the left 
proximity sensor is near with membership value 0.75, then this rule will have 
firing value equals to 0.75. A group of fuzzy rules resembling the previous one 
are needed for the safe navigation of the robot. 

The Defuzzifier 

The outputs (left and right speeds in our case) need to be crisp values, this 
will be the role of the defuzzifier to convert them form fuzzy sets to crisp 
value. This is done through the fusion of different rules based on their firing 
values. 

Since the performance of the fuzzy logic controllers depends on the param- 
eters of the membership functions and the rules used, then we need to search 
for the best membership functions and the optimal set of rules. This leads 
us to thinking of genetic algorithm to evolve the best fuzzy logic controller 
parameters instead of designing it based on the human experience. 
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4.4.1 Experiment 6: Evolving Corridor Following Behavior 

This experiment was performed by Lee and Cho [17]. The goal of the ex- 
periment was to evolve a fuzzy logic controller that can enable the robot to 
avoid the obstacles and follow the corridors of the environment. The fuzzy 
logic controller had 8 inputs corresponding to the 8 proximity sensors of the 
robots and 2 output neurons that correspond to the motor speeds. The role 
of the genetic algorithm in designing the controller was to evolve the best 
membership functions of the inputs and the outputs along with the necessary 
rules. 

The experiment designers chose to divide the input sensory range [O, 10231 
into four triangular membership functions. The same number and type of the 
membership functions were used for the outputs. The parameters of these 
functions, such as their starting and ending point on the input or output 
range, were binary encoded in the chromosome . Also the chromosome in- 
cluded information about a set of 10 possible rules. 

To encourage the robot to explore the arena and follow the corridors with- 
out colliding with their walls, the fitness function had a positive part that 
is function of the total distance moved and the number of the check points 
in the arena that the robot passed through. It also has negative part that is 
function of the number of collisions. 

The results of the experiment showed that the best fit individual was 
able to develop basic behaviors of avoiding collision and following walls. The 
performance of this evolved fuzzy logic controller was tested in two other 
simulated environments in which it was observed that the robot developed 
three distinct sub-behaviors which are: passing corridors, wall following and 
obstacle avoiding. The corridor passing behavior is active when the robot is 
moving in a narrow path with obstacles on both sides. The wall following 
behavior become active when the obstacles or walls are sensed on one side of 
the robot while the obstacle avoidance behavior become active when obstacles 
are sensed in front of the robot. A relation could be found between each sub 
behavior and a subset of the fuzzy rules that support this sub behavior. The 
robot switched from one sub behavior to the other depending on the current 
situation till its target was reached [17]. 

4.5 Evolving Controlling Programs 

Genetic programming GP applies the evolution model to computer programs. 
The individuals here are computer programs that represent potential solution 
to required problem. Usually these problems are too complex or time con- 
suming to be programmed by hand. An example of this type of problems is 
writing a program to control a mobile robot to navigate and avoid obstacles 
in a new environment. 
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Now the question that may arise is how to represent computer programs as 
individuals and how to design genetic operators, such as crossover and muta- 
tion, that is applicable to computer programs. Answers of these questions are 
in Koza's suggestion [18] of representing programs as trees that is composed 
of nodes and branches. The nodes are the operators that can take any value 
from certain function set such as {multiplication, addition..). The branches 
are the operands which can be constants, input values or results of another 
node. Fig. (4.10) shows an example of a tree that represents a simple program. 

This tree representation provided a method for performing crossover be- 
tween two individuals. This is preformed by exchanging parts of the two trees 
representing the two individuals. To perform mutation operator we need to 
make sure that the resulting individuals represents a valid computer program. 
For example the mutation operator can take place by changing the operator 
in the node by another operator from the function set or by mutating the 
constants in the operands. 

Tree representation of 
computer program 

Linear representation of 
computer program 

Fig. 4.10. Tree representation of computer programs versus linear representation 

Having this brief overview of the Genetic Programming GP, we are now 
ready to present the following experiment in evolving obstacle avoidance con- 
troller program using Genetic Programming. 

4.5.1 Experiment 7: Evolving Obstacle Avoidance behavior using 
Genetic Programming 

This experiment was performed by Nordin and Banzhaf [19]. The goal of 
the experiment was to evolve a controller program for obstacle avoidance 
navigation using genetic programming. The experiment was carried on a real 
khepera robot in two different environments. The first environment was a 
rectangular arena of size 30 x 40 cm with regular walls while the other is 
larger in size with obstacles in its center and characterized by irregular walls. 
In both cases, the khepera robot was controlled by a computer workstation 
through a serial cable. 
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Motivated by applying genetic programming on real robots and obtaining 
a reasonable behavior in a short time, the experiment designers made two 
choices. First choice was not to use the tree structure we discussed above. 
Instead, the individual programs were represented as a linear sequence of op- 
erations along with their operands.An example of this representation is showed 
in figure (4.10). Second choice was to represent these instructions in the low 
level binary format of the controlling workstation (Sun 4). Using this repre- 
sentation, the crossover operators will be carried by exchanging two segments 
of instructions between two individual programs. The mutation operator was 
restricted to produce only valid machine instructions. 

The population size of the experiment was small and consisted of 50 indi- 
viduals and tournament selection is used when individuals are needed to be 
selected for crossover or mutation. The tournament works as follows: First we 
select n individuals from the population size N and each of the n individuals 
is tested and its fitness is evaluated, then we choose the best fit individual out 
of them for crossover and mutation. 

The results of the experiment showed successful evolution of the obstacle 
avoidance behavior in both of the environments. In the first environment, it 
took the robot 20 minutes to evolve a reasonable obstacle avoidance behavior. 
In the second environment, it took the robot some longer time compared to 
learn the same behavior. This may be because of the complexity of the second 
environment [19]. 

The results of this experiment showed how the choice of some parameters 
of the genetic algorithm such as the encoding and selection methods, in addi- 
tion to the machine format of the programs, helped in evolving the required 
behavior in small amount of time. We could see that a reasonable behavior 
emerged in less than an hour in both environments. 

4.6 Evolving Spiking Neural Network Controllers 

In this section, we are going to introduce a new model of the biological neurons 
that models the dynamical nature of neurons communication. This new model 
is what we call spiking neurons. We will also present an evolution experiment 
that evolved spiking neural network for controlling a robot based on vision 
information only. 

To explain the spiking neuron model, we will need first to have a look at the 
actual way of communication between biological neurons. Biological neurons 
communicate by sending a large number of short pulses each second. These 
short pulses are known as spikes. The classical model of neurons considers 
only the rate of these spikes. The current activation level in the classical 
model corresponds to the current rate of spikes normalized by its maximum 
value. On the other hand, the spiking neuron provides more complex model 
of neuron activation function that depends on the timing between spikes. 
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One widely used model of spiking neuron is the "Integrate and Fire" model. 
In this model, the activation of the neuron is described by its membrane po- 
tential. Each spike received contributes to the membrane potential according 
to two factors: the weight of its synaptic connection and the time elapsed since 
its firing. When the accumulated effect of these spikes cause the membrane 
potential to go above certain threshold, the neuron fires a spike. After firing 
the spike, the neuron becomes unable to fire another spike instantaneously. It 
needs a refractory period q before it sends another spike. This refractory time 
depends on a certain time constant r, of the membrane. 

At any time t ,  the effect of a spike on the neuron potential is a function 
of the time difference between the current time t and the firing time of the 
spike tfiring. This function ~ ( t  - tfiring) can be modeled by a pulse shaped 
function as shown in figure (4.11). In the figure, the period A of zero effect 
corresponds to the time required by spike to reach the neuron. One of the 
suggested expressions for ~ ( t  - tfiring) is given by [20], [21]: 

where s = t - tfcing represents the time elapsed since the firing of the 
spike, T~ is the synapse time constant. Also we can model the refractory period 
q(s)  by a negative decaying exponential where the potential of the neuron is 
set after emitting the spike to a very low negative voltage to prevent emitting 
another spike immediately. One of the suggested expressions is given by [20], 
[2 11 : 

I Effect of a spike on the neuron 

Fig. 4.11. The effect of a spike on the neuron ~ ( s )  

Now, we can write the the mathematical model of the spiking neuron the 
gives the potential of neuron i as result of addition of to quantities. The 
first is due to the effect of received spikes and can be written as the sum 
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Fig. 4.12. Refractory period function q(s)  

of the incoming spikes e j ( s j )  from other neurons, labeled by index j ,  with 
each spike effect multiplied by the weight of its synaptic connection w;. The 
second quantity is due to the spikes emitted by neuron i itself and can be 
written as sum of all refractory functions resulting form the emitted spikes. 
A mathematical formula of what we have just described can be given by [22]: 

j All rec ieved spikes  All emi t t ed  spikes  

The above equation describes the model of the activation of the neuron, 
represented by its membrane voltage, which takes into the consideration the 
timing of the emitted and received spikes in contributing to the membrane 
potential. A question might arise here asking why we would be interested in 
more complex model for neural network to employ is robot controllers. The 
answer is that model should be better at detecting the time varying relation 
between the sensors and motors due to its dynamic nature [22]. In the rest of 
this section, we will see how to employ that new model in controlling Khep- 
era robot and mapping the vision information into motor speeds to develop 
obstacle avoidance navigation that depends only on the vision information. 

4.6.1 Experiment 8: Evolving Vision Based Navigation 

This experiment was performed by Floreano and Mattiussi [22]. In the exper- 
iment, the robot was placed in a rectangular arena whose walls are covered 
with vertical white and black strips with variable width. The Khepera robot 
is provided with K213 vision module similar to the one described in the co- 
evolution experiment in section 3.5. The goal of the evolved controller is to 
use the information available from the vision module to enable the robot to 
navigate without colliding with the walls. 

The vision module provides a linear image consisting of 64 pixels that 
cover an angle of 36 degrees. Only 16 equally spaced photoreceptors are used 
as inputs to the spiking neural network. The values of photoreceptors readings 
are filtered to obtain information about the contrast, scaled to the range of 
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[O, 11 and then sent to the spiking neural network. There are extra 2 input 
neuron in the network whose input is the difference between the actual and 
the desired motor speeds. Again this difference is scaled to the rage of [0, 11 
before being sent to the spiking neural network. The network contained four 
output neurons, two for each motor speed. The two neurons set the forward 
and backward speed for each motor. The actual speed sent to the motor is 
their algebraic sum. In addition to the 18 input neurons and the 4 output 
neurons the network contained 10 neurons that are connected to the input 
and output neurons. 

The input vision photoreceptors and the output motor speed are interfaced 
to the spiking neural network as follows. The 16 scaled inputs of photorecep- 
tors are used to set the probability to emit a spike by the corresponding input 
neurons. Also, the firing rates of the 4 output neurons are mapped to the 
motor speeds. This explains the reason of using two neurons for each motor 
speed since that firing rate of the output neurons can not take negative val- 
ues. The cycle of reading the photoreceptors and updating the motor speed 
goes in the following order. Every 100 ms, the input photoreceptors are read, 
filtered, scaled and used to set the probability of emitting a spike by the input 
neurons. During the 100 ms cycle, the activation level of each neuron, except 
input neurons, is updated every 1 ms according to the model of equation (4.5) 
and the neurons are allowed to emit spikes if their activation level exceeds the 
threshold. At the end of the 100 ms cycle, the spiking rate of the output neu- 
rons, calculated over the last 20 ms period of the cycle, is used to update the 
motor speeds. 

The genetic algorithm is used to obtain the best synaptic weights connect- 
ing the spiking neurons. The population consisted of 60 individuals and the 
experiment lasted for 30 generations. Each individual is tested in 400 cycle, in 
which its fitness is the sum of its motor speeds if they are both positive and 
zero otherwise. This fitness function will reward the individuals that move 
forward while offering no reward to individuals that rotate (due to difference 
in the sign of the speeds) or move backward (when both speeds are negative). 
The fitness evaluation of the individual is the average of its fitness over the 
400 cycles. 

The results of the experiment showed that the best individual was able to 
move in curved trajectories of large radii but without colliding with the sur- 
rounding walls. The experiment was repeated using a classical neural network 
with sigmoid activation function and with same architecture. However, the 
fitness of its individuals didn't increase with time and its individual neural 
network controllers were not able to map the vision information into motor 
speed that secure a safe navigation without colliding with the surrounding 
walls [22]. 
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4.7 Comment on different approaches of evolutionary 
robotics 

We presented different approaches for evolving controllers such as neural net- 
works, fuzzy logic and spiking neural networks. Each approach has appealing 
advantages as one form of controller for mobile and autonomous robots. It 
may also include some difficulties or limitations when being evolved. We try 
in this section to shed some light on the attractive features of these different 
approaches and some issues that need to be considered when combined with 
evolutionary computations. 

As a general approach, fuzzy logic provides a tool for dealing with sys- 
tems with uncertain models which suits the dynamic and possibly unknown 
environments encountered by mobile robots. It has the advantages of imple- 
menting human knowledge. It simulates the human method of reasoning by 
using linguistic variables and knowledge that is represented by its rule base. 
For example, the human experience in walking or navigation while avoiding 
possible obstacles can be moved to the robot brain through using a fuzzy 
controller whose rules are based on this experience. 

Another useful feature of fuzzy logic that is interesting in the field of 
robotics is its ability to combine different rules outputs in the defuzzifica- 
tion process. This ability can be further used in behavior coordination. In 
this approach different controllers are designed independently, possibly by 
fuzzy logic, neural networks or even designed by human programmers. Every 
controller implements a certain behavior or task. A simple example is two 
controllers for obstacle avoidance and goal seeking. Our problem in behavior 
coordination is to combine results from different behaviors in one command 
to send to the effectors or motors. The fuzzy approach for this problem works 
by providing a number of rules that assigns weights for fusing the different 
outputs from the controllers based on the current situation. In our example, a 
typical rule will favor the output of obstacle avoidance behavior when a near 
obstacle is detected. This method provides a way of combining the outputs of 
many behaviors each control cycle unlike behavior arbitration methods that 
choose one active behavior each time based on fixed or dynamic priorities. As 
we mentioned, these rules can be based on human experience. Further more, 
genetic algorithm can be employed to evolve the best set of rules for behavior 
coordination. In fact, this was the approach used by Tunstel et al. in [23] to 
evolve fuzzy behavior arbitration for planetary microrovers. 

On the other hand, fuzzy logic approach lacks a standard method for cre- 
ating the rules based on the human experience. Also the time taken in compu- 
tations especially in the defuzzification process may affect the real time per- 
formance of the controller and the the robot if not performed using dedicated 
processors [24]. Another issue that needs to be considered when designing 
fuzzy logic controller for a robot is the design of the membership functions. 
In some experiments, redesigning the membership functions led to avoiding 
oscillations in the robot behavior [25]. 
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Evolutionary computation appears to be a good solution to the problem of 
automatic design of the fuzzy logic controller. However there are some issues 
that the controller designer should consider when evolving the fuzzy logic 
controller. One of these issues is deciding what to evolve, whether it is the 
membership function parameters, the rules or both of them. Evolving both 
rules and membership functions has the advantage of decreasing chances of 
errors due to miss choices made in the early stages of the design, however 
the evolution process will search in a larger space for the best set of rules and 
best parameters for the membership functions. It should be noted that even by 
evolving the rules and the membership parameters, this can not eliminate the 
designer choice of the type of membership function (triangular or trapezoidal 
... etc). Evolving the fuzzy behavior coordination module mentioned earlier 
is an example of evolving the fuzzy rules while the experiment in section 
four of this chapter is an example of evolving the fuzzy rules along with the 
membership functions. 

Another issue to be considered in evolving fuzzy logic controller is the 
number of rules. The number of rules can affect the speed and performance 
of the robot and the choice of the genetic algorithm as well. Small number 
of rules will decrease the computations in the fuzzy logic controllers but on 
the other hand this small number may not cover all the possible situations or 
sensors combinations encountered by the robot. Evolving controller with fixed 
number of rules or fixed maximum number of rules will lead to using fixed 
length chromosome. The other approach of using population of individuals 
with different number of rules requires variable length chromosomes and pos- 
sible modification of the genetic operator. Messy genetic algorithm [27] can be 
a potential evolutionary algorithm for evolving the fuzzy logic controller with 
variable number of rules. It has a modified version of the traditional crossover 
genetic operator called cut and slice operator that can deal with the variation 
of the genetic material length. In fact, it was used by Hoffman and Pfister in 
[26] to evolve the rules for fuzzy logic controllers to enable a mobile robot to 
reach its target while avoiding the obstacles. 

Another approach of evolutionary robotics that we presented is evolving 
neural networks. Artificial neural networks offer many characteristics that 
make them suitable for the problem of controlling autonomous robots. First, 
the noise present in the sensor readings, whether they are sonar sensors or 
infrared sensors, makes the neural networks suitable controllers due to their 
known tolerance to noise. Moreover, if one of the sensors was not functioning, 
the output of the neural network could still be acceptable [7]. Second, the 
neural networks are able to learn and they could be trained. The weights and 
the thresholds and other parameters of the neural network could be adjusted 
to produce different behaviors even for the same network architecture. Also, 
neural networks can select the sensors that are suitable for a given behavior 
by adjusting the weight corresponding to each sensor or input. 

As in the case of fuzzy logic, the genetic algorithm can offer an auto- 
matic way for designing neural network controller by evolving the synaptic 
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weights or the network architecture or both of them. Neural networks have 
many existing learning algorithms, but the genetic algorithms offers potential 
advantage of the parallel search by using a population of individuals. An issue 
to be considered in evolving neural networks that may affect the genetic al- 
gorithm is the size of the parameter to be evolved. Large networks with large 
number of synaptic weights may require a long chromosome. In this case the 
real encoding of these parameters could be considered instead of the binary 
encoding. 

Compared to fuzzy logic, the learning of the neural network which is stored 
as synaptic weights can not be acquired by human reasoning [24]. For exam- 
ple, in the experiment of trash collection no direct relation was found between 
modules of the neural network and the certain behavior of the robot, some- 
times by observing the activation level of some neurons and certain behaviors 
of the robot we could find a correlation as in the experiment of home seeking 
but this is not the general case. On the other hand, the knowledge represented 
by the rules of the fuzzy logic controller can be acquired by human reason- 
ing. For example, we could read on of the evolved rules in the experiment of 
evolving fuzzy logic controller and understand what it implies. Another point 
is that we can not easily implement high level behavior using neural networks 
as we can do using fuzzy logic. Although many relatively complex behaviors 
have be evolved using neural networks, such as trash collection, implementing 
a high level reasoning and selection or coordination between behaviors would 
require a method that mimics human reasoning. 

We have also presented in this chapter a relatively new approach in evo- 
lutionary robotics which is evolving behaviors using spiking neural networks. 
The dynamic model of the spiking neural network suits the time changing 
relation between the sensors and the motors [22]. On the other hand, the com- 
plexity of the model and the need of the interface between the sensors of the 
robot and input of the spiking neural network have limited the experiments of 
evolutionary robotics that use it compared to other widely used approaches as 
artificial neural networks or fuzzy logic. Analog Very Large Scale Integrated 
Circuits (VLSI) can implement spiking neural networks using circuits with 
very small area and power consumption, which is an advantage over other 
approaches. In [28], an analog VLSI circuit that implemented spiking neural 
networks was used for controlling a robotic leg. 

To summarize, each approach of evolutionary robotics is characterized by 
some potential advantages that makes it a suitable solution for the problem 
of controlling mobile robots. Also each approach has some limitations or dif- 
ficulties when being evolved. Choosing which approach is a trade off between 
the advantages and the limitations. 



98 Michael Botros 

4.8 Summary 

In the previous sections we have seen how the evolutionary computations algo- 
rithms were successfully used to  evolve many types of controllers for Khepera 
robot. It was used to  evolve neural network synaptic weights in the  obstacle 
avoidance behavior of experiment 1 and the battery recharging behavior of ex- 
periment 3. We have also seen how it can evolve the  architecture of the  neural 
network along with the  synaptic weights as in the experiment of evolving light 
seeking behavior. Alternatively, it can evolve the learning rules and learning 
rate necessary for training the neural network synaptic weights. Other types 
of controllers were successfully evolved too, such as fuzzy logic controllers and 
computer programs. 

Many other experiments are conducted using evolutionary computations 
on different robotic platforms recently. In fact, evolutionary computation is a 
very promising approach for designing controllers for mobile robots. 
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