
Evolving Controllers for Miniature Robots

Michael Botros

Department of Computer and Electrical Engineering,
Faculty of Engineering, McMaster University,
1280 Main St. West, Hamilton, Ontario , Canada L8S 4K1,
botrosmw(9mcmaster.ca

Using traditional path planning and artificial intelligence techniques has re-
stricted the use of mobile robots to limited tasks in previously known envi-
ronments, yet potential applications include dynamic and unstructured en-
vironments. One of the very promising methods of designing controllers for
autonomous and mobile robots is using Evolutionary Computations, a class
of algorithms which mimics the natural evolution process.

In this chapter we present a series of experiments in evolutionary robotics
that used the miniature mobile robot Khepera. Khepera robot is widely used
in evolutionary experiments due to its small size and light weight which sim-
plify the setup of the environments needed for the experiments. The controllers
evolved by the presented experiments include classical and spiking neural net-
works controllers, fuzzy logic controllers and computer program obtained by
Genetic Programming. The tasks performed by the robots through the ex-
periments reflect learning many basic as well as high level behaviors. These
behaviors include: navigating in dynamic environment with static or dynamic
obstacles, seeking and following the light sources present in the environment,
returning home for recharging the battery, and collecting trash objects from
the environment. The chapter also presents an experiment in co-evolution in
which a predator-prey behavior is learned by two robots. The chapter ends
with an experiment that evolves spiking neural networks, a new artificial neu-
ral networks model that accurately models the biological neuron activation.
This experiment presents the use of evolution to obtain a spiking neural net-
work that enables the robot to navigate depending only on vision information.

4.1 Introduction

Khepera is a miniature mobile robot that is widely used in laboratories and
universities in conducting experiments aiming at developing new control algo-

74 Michael Botros

rithms for autonomous robots. It was developed by the Swiss Federal Institute
of Technology and manufactured by K-team [I] [2]. Khepera robot is cylin-
drical in shape with a diameter of 55 mm and a height of 30 mm. Its weight
is about 70 gm. Its small size and weight made it ideal robotic platform for
experiments of control algorithms that could be carried out in small environ-
ments such as a desktop.

The robot is supported by two wheels; each wheel is controlled by a DC
motor that can rotate in both directions. The variation of the velocities of the
two wheels, magnitude and direction, will result in wide variety of resulting
trajectories. For example if the two wheels rotate with equal speeds and in
same direction, the robot will move in straight line, but if the two velocities
are equal in magnitude but different in direction the robot will rotate around
its axis.

Fig. 4.1. Miniature mobile robot Khepera (with permission of K-team).

The robot is equipped with eight infrared sensors. Six of the sensors are
distributed on the front side of the robot while the other two are placed on
its back. The exact position of the sensors is shown in figure (4.2). The same
sensor hardware can act as both ambient light intensity sensor and proximity
sensor.

Each of the eight sensors consists of emitter and receiver parts so that
these sensors can function as proximity sensors or ambient light sensors. To
function as proximity sensors, it emits light and receive the reflected light
intensity. The measured value is the difference between the received light in-
tensity and the ambient light. This reading has range [O, 10231 and it gives
a rough estimate how far the obstacles are. The higher reflected light inten-
sity the closer obstacles are. It should be noted that we cannot find a direct
mapping between the sensor reading and the distance from the obstacle, as
this reading depends on factors other than the distance to the obstacle such
as the color of the obstacle.

To function as ambient light sensors, sensors use only receiver part of the
device to measure the ambient light intensity and return a value that falls in

4 Evolving Controllers for Miniature Robots 75

Fig. 4.2. The position of the eight sensors on the robot (with permission of K-team)

the range of [O, 10231. Again, these measurements depend very strongly on
many factors such as the distance to the light source and its direction.

An interesting feature of the Khepera robot is its autonomy, which includes
autonomy of power and control algorithm. For the purpose of power autonomy,
the robot is equipped with rechargeable batteries that can last for about 45
minutes. For experiments that may require much longer time, the robot can
be connected to a host computer by a lightweight cable to provide it with the
needed electrical power. This is an important feature that allowed long control
experiments (such as developing evolutionary algorithms) to be carried out
without repetitive recharging.

On the other hand, for the control autonomy, the robot's CPU board is
equipped with MC68331 microcontroller with 512K bytes of ROM (system
memory) and 256K bytes of RAM (user memory). This RAM memory can
accommodate reasonable length program codes to provide control autonomy.
The robot can be programmed using Cross-C compiler and the program will
be uploaded to the robot through serial port communication with a host
computer. Also the robot can be remotely controlled by a host computer
where the control commands are sent to the robot through the serial link
connection mentioned above. This mode of operation has an advantage of
using computational power of the host computer.

4.2 Evolutionary Computations and Robotics

The term Evolutionary Computation is used to describe a set of algorithms
that use the idea of evolution in solving complex computational problems such
as our problem of designing a robot controller. It includes algorithms such as
Genetic Algorithms GA, Genetic Programming GP and Evolutionary Strate-
gies. They operate on a population or a group of individuals each representing
a proposed solution of the problem. Then they apply a set of biologically in-

76 Michael Botros

spired operators such as mutation and crossover to obtain a better generation
which is more suited to the problem to be solved.

So what can Evolutionary Computation offer to robotics? First thing it
offers to robotics is an optimization tool. Optimization is a frequent type of
problems solved by Genetic Algorithms due to the embedded competition
between individuals. In applying the Genetic Algorithm for optimization, the
individuals are usually points in the space to be searched for optimum point
and the fitness is the function to be optimized. The reproduction aims at
generating new points from existing ones until the optimum point is found.
Genetic Algorithm offers useful properties for the optimization problem:

It is applicable to continuous, discrete and mixed optimization problems
and it requires no information about the continuity or the differentiabil-
ity of the function to be optimized. It also can be used for problems of
optimization with constraints. The constraints on the parameters to be
optimized can be easily translated to constraints on the genetic operators
to produce individuals inside the search domain defined by the constraints.
Genetic Algorithms are suitable for many practical problems that re-
quire multi-objective functions. Multi-objective optimization can be ac-
complished by designing fitness function that is a weighted sum of required
objectives. Another solution is using Co-evolution where multiple popu-
lations are used instead of single population. Each population is bred to
optimize certain objective while individuals are exchanged between them
(migration).

For example, one of the possible methods for evolving a neural network
controller is to let the evolutionary algorithm choose the optimal weights of the
neural network, so the problem of evolving this controller to perform obstacle
avoidance behavior can be viewed as a problem of optimizing the different
weights. Also this problem is multi-objective optimization because we want
the neural network to achieve different goals such as avoiding the obstacles
while keeping a reasonable velocity and keeping a straight path.

Second thing evolutionary computations can offer to robotics is providing
a method of learning rules necessary for the robot to achieve some task. In this
case the controller is mainly a set of rules and we want to choose the optimal
set of rules that serve this task. Programming the rules by hand or testing
different combinations of them is a tedious task. An example of using the
genetic algorithm to learn robots rules is a system built at the Naval Research
Laboratories and is called SAMUEL [3]. It used the method described above
to learn Nomad robot navigation and obstacle avoidance. Rules are not the
only form of controllers that can be designed by evolutionary computations
[4] [5] . In the next sections see how evolutionary computations can be used to
design controllers such as neural networks and fuzzy logic controllers.

4 Evolving Controllers for Miniature Robots 77

4.3 Evolving Neural Network Controllers

Many researchers have found neural network and interesting solution for the
problem of the building behaviors for the Khepera robot. The ability to learn
and the ability to deal with noisy sensors were apparent advantages in favor
of the neural network.

Different approaches exist for designing neural network controllers. One
approach is to use neural networks learning algorithms to train the synaptic
weights. Example of this work can be found in [6]. Another Approach is to
use the Genetic Algorithm as a search or optimization tool to find the best
neural network controller through the evolution process. The leading work
of evolving neural network controller for a real Khepera robot was done by
Floreano and Mondada [7]. They evolved a simple feed forward neural network
that consisted of input and output layers with no hidden layers. The neural
network controller enabled the robot to navigate in the arena while avoiding
obstacles .

We can use the genetic algorithm in different ways to evolve neural net-
works. It can be used to search for the optimal synaptic weights, or to search
for the optimal network architecture along with the synaptic weights. Also,
it can be used to evolve the learning parameters needed to train the neural
network. Examples of these methods are presented in the following subsec-
tions. For example, using the genetic algorithm to search for the suitable
synaptic weights given a predefined architecture is presented in experiments
1 and 3 whose goals are to evolve obstacle avoidance and home seeking be-
haviors respectively. On the other hand, evolving the network architecture
is the method used in experiment 2 to develop a light seeking behavior. Fi-
nally, evolving Hebbian learning rules and the rate of learning is an example
of evolving the learning parameters of the neural network and it is one of
the methods used in experiment 5 to co-evolve predator-prey behavior in two
robots.

4.3.1 Experiment 1: Evolving Obstacle Avoidance Behavior

The goal of this experiment [8] is to evolve a neural network controller for
obstacle avoidance navigation in environments with static or dynamic obsta-
cles. The proposed neural network is a feed forward neural network with input
layer consisting of 8 neurons, hidden layers of 2 neurons and output layer of
2 other neurons. The inputs of the neural network are the eight proximity
sensors that are arranged on the robot as shown in figure (4.2). The input
range of each sensor is [O, 10231. The values of the inputs were scaled to the
range [0, 11 before being applied to the neural network. The Outputs of the
neural network controller are applied to the motors of left and right wheels.
The activation function of the neurons is the sigmoid function which is limited
between [-I, 11, so the output of the neural network had to be properly scaled
before being applied to the motors.

78 Michael Botros

The fitness function used rewarded the individual which moves with a
suitable forward speed and penalize the individual which rotates around itself
or comes close to the obstacle. It has the following formula:

where VL, VR are the velocities of left motor, right motor respectively, S, is the
proximity sensor number i, and C1, C2 are suitable positive scaling factors.
The term VL + VR will maximize the forward speed while term IVL - VRI will
minimize the rotation of the robot which occurs due the difference between
the velocities of left and right wheels. Also, the robot will learn to keep a
suitable distance separating it from the obstacles in order to decrease the
magnitude of the sum of the sensors. The constants Cl, C2 set the relative
importance of each component of the fitness function, for example increasing
C2 will emphasize the importance of avoiding obstacles relative to keeping a
straight path.

The fitness of the individuals is evaluated as follows: each individual was
allowed to perform a 400 time step, in each step it reads the proximity sensors,
calculate the output speeds using its own neural network and apply these
speeds to the motors then it measures the new proximity sensor values and
calculate its fitness function according to the above formula. Individual fitness
is the sum of its fitness function over the 400 time steps. The above algorithm
lasted for 120 generations.

Fig. 4.3. Trajectory of the robot in an environment with moving obstacle.

The result of the experiment showed successful emergence of the desired
behavior. After 80 generations, the robot was able to move in straight tra-
jectories and it learned to keep a suitable distance between its path and the
obstacles or walls. This is clear in the left section of figure (4.4) which shows
the behavior of the robot in an environment with large centered obstacle.
While moving parallel to the wall, the robot moves in a straight path and
maintains certain distance between its path and the wall. Fig. (4.3) shows the
behavior of the best fit individual when a round object of the same size of
the robot is approaching its path. The slides taken from the motion of the
robot shows its turning and avoiding collision with the moving object. Fig.
(4.4) shows the behavior of the robot in an environment with obstacles having

4 Evolving Controllers for Miniature Robots 79

Fig. 4.4. Trajectories of the robot in environments with large obstacles with sharp
corners .

sharp corners which is difficult to detect if the robot is heading towards the
corner. We can see that the robot turns before being close to the corner and
this behavior is repeated twice. It should be also noted in this environment
that distance between the two obstacles is about twice the diameter of the
robot. -

4.3.2 Experiment 2: Evolving Light Seeking Behavior

This experiment was performed by Hiilse et al. [9]. The goal of the experi-
ment is to evolve a neural network controller that enables the robot to seek
the light source available in its arena. The proposed neural network had 16
input neurons and 2 output neurons. The input neurons corresponds to the
8 proximity sensors and the 8 ambient light sensors while the two output
neurons correspond to the two motor speeds.

The evolutionary algorithm used in this experiment allowed the evolution
of the structure of the neural network along with the synaptic weights values.
It can evolve the number of the hidden neurons necessary to connect the input
and output layers along with their recurrent connections.

The evolution experiment was carried in a simulated environment while
the best fit individual was tested in both real and simulated environments.
The results of the experiments showed the emergence of light seeking behavior
in the early generations. The best fit individual was tested in two simulated
environments and in a physical environment. The first simulated environment
contained one light source. The robot was able to move towards the light
source from different starting positions. The second simulated environment
contained more than one light source. The robot moved towards the nearest
light source. The best fit controller was then moved to a real robot and tested
in a physical environment. In similar conditions to the simulated environment,
the robot was able to move to the light source. The environment was slightly
modified to test the controller ability to adapt to changes in the physical

80 Michael Botros

environment. When the light source was moved the robot was still able to
move towards and follow the light source, which shows consistency with the
behavior in the simulated environment. Next, the light source was removed
from the environment, and then the robot started to move in curved or semi
circular trajectories compared to straight trajectories in the presence of the
light source. To test how the behavior is affected by the proximity sensors,
the proximity sensors were removed, in this case the robot was still able to
move to the light source when it existed in the environment, however in its
absence, the robot rotated around its axis. These results show good match
between the behavior in simulated and real environments, they also showed
that the evolved behavior was invariant when the light source was moved but
was affected by removing the connections from the proximity sensors when
there was no light source in the environment [9].

We notice in this experiment that the genetic algorithm allowed the evo-
lution of the network architecture along with the best synaptic weights . This
method enables the genetic algorithm to search for the best neural network
controller in the space of the network architectures. In general, this method
would lead to better quality solution than the case of predefined network
architecture. On the other hand, this method requires a variable length chro-
mosome that encodes the neural network. Also the chromosome is expected
to be longer than the one that encodes only the synaptic weight which would
result in longer evolution time.

4.3.3 Experiment 3: Evolving Recharging and Home Seeking
Behavior

This experiment was performed by Floreano and Mondada [lo]. Although
the experiment evolved an interesting home seeking behavior, the actual goal
of the experiment was to show that behaviors can be evolved without being
explicitly included in the fitness function. In this experiment the fitness func-
tion didn't include a pleasure part to reward the robots when returning to
home (or the recharging area). However, without recharging, the robot will
not be able to live longer and achieve a high fitness which was allowed to be
calculated over a period longer than the battery life time.

The experiment was conducted in a rectangular environment where one of
the corners was illuminated with a tower carrying a number of lamps. This
corner was considered the robot's home or recharging area. In this corner, a
circular sector of the ground is painted in black such that the robot can detect
it using an extra ambient light sensor placed under the robot. This sensor is
active in the entire environment except the recharging area.

Using the robot actual battery which lasts for 40-45 minutes will cause
the experiment to last for a very long time. Instead, the robot was equipped
with a simulated battery that discharges linearly with time in a maximum
of 20 seconds. The reading of the battery time can be considered a virtual
battery sensor whose value falls between [O, 11, with 1 indicating that the

4 Evolving Controllers for Miniature Robots 81

battery is fully charged. For the robot to detect the light source associated
with its recharging area, two sensors acted as ambient light sensors beside
their function as proximity sensors. The two sensors are the ones labeled 2
and 6 in figure (4.2).

The neural network controller used was 3 layers neural network with re-
current connections in the hidden layer The input layer has 8 neurons for
proximity sensors, 2 neurons for ambient light sensors and 2 other neurons for
floor brightness and simulated battery sensor. The output layer consisted of
2 neurons that correspond to the motor speeds.

lR Sensor 1 ,

Neural Network Controller of
the home seeking experiment

Right
Motor
4

Left
Motor +

The environment of
the experiment

Fig. 4.5. The neural network controller of the home seeking experiment (left). A
figure of the environment(right).

The fitness function used in the experiment rewarded the individuals that
move with large speed and avoid the walls. The fitness function formula is
given by [lo]:

fitness = u (l - i) (4.2)

where u is normalized average speed of the two motors 0 < u < 1, and i
is normalized value of the maximum proximity sensor 0 < i < 1. The fitness
function is calculated and summed over maximum number of 150 time step
while the battery life lasts for 20 seconds or 50 time steps. Also the fitness
function is not summed when the robot is in the recharging area. The robot
should learn to return to the recharging area before its battery life comes
to an end. Furthermore, it should not stay there for long since no fitness is
gained there. This behavior is not stated explicitly in the fitness function but
implicitly implied by the conditions of the experiment.

82 Michael Botros

The genetic algorithm lasted for 240 generations. The results of the ex-
periment showed that in the last generations the behavior of the robot was
as expected. It returned to home for recharging without spending much time
there after recharging. The behavior of the best fit individuals was as follows:
When it was placed in the charging area, it quickly moved away and returned
only before the the battery life ends by 5 time steps. Outside the recharging
area, it moved with maximum speed avoiding the walls whenever they are
encountered. Testing the best fit individuals from different initial positions
showed that it was able to return for recharging for many times for most of
the initial positions.

Also the results of the experiments showed that we can find a direct re-
lation between the activation level of one of hidden neurons and certain be-
haviors. Observing the activation level of this hidden node over the robot life
showed that it had a low activation level when the robot navigated outside
the recharging area but gradually increased during the journey to the back
for charging in the last period of the battery life. The activation level reached
its maximum when the robot is in the charging area. This fact supports the
assertion that this hidden neuron played a role in the behavior responsible for
planning the journey back to home before the battery life ends [lo].

4.3.4 Experiment 4: Evolving Trash Collection Behavior

This experiment was performed by Nolfi [ll]. The goal of the experiment is to
teach the Khepera robot how to clear the arena from trash objects by grasping
and placing them near the walls of the arena. This complex task requires skills
such as recognizing the trash object and the walls, grasping and releasing the
object, and obstacle avoidance. To accomplish this task the Khepera robot is
provided with a gripper module that is added on the top of the robot (see
figure 4.6). The gripper can perform two main actions: picking and releasing
the object. The robot can detect the presence of an object in the gripper by
using a light barrier sensor placed in the gripper.

One approach to teach the robot this complex task is to split it into a set of
simpler tasks or behaviors and design a module that control each behavior then
designing a coordination method that decides which of these modules will take
control of the robot based on the current situation. Each behavior could be
designed by hand, evolved or learned by other learning methods. An example
of this approach is found in [12] where all the modules are programmed by
hand except the grasping behavior which was learned using reinforcement
learning. However, in the experiment that we will present the goal was to
evolve the entire behavior and to test the hypothesis that different modules
of the evolved neural network correspond to certain basic behaviors.

The experiment evolved five different neural network architectures among
them two with modular structure. All the architectures had 7 input neurons
and 4 output neurons. The input neurons correspond to the 6 proximity sen-
sors on the front side of the robot and the barrier light sensor present in the

4 Evolving Controllers for Miniature Robots 83

Fig. 4.6. Khepera robot with the additional gripper module (with permission of
K-team) .

gripper. The output neurons are the 2 motor speeds and the 2 actions of the
gripper. The five neural network architectures had the following structures:

1. The first neural network is a feed forward neural network with no hidden
layer.

2. The second neural network is also a feed forward neural network but with
a hidden layer of 4 neurons.

3. The third neural network has recurrent connections between two extra
input and output nodes.

4. The fourth neural network has a modular structure. It has two modules
each with its own set of the four output neurons. Each module takes
control in different predefined situations. The first module takes control
when the robot is looking for the trash object and grasping it. Its goal is
recognizing the trash object. The second module takes control when the
robot is holding the trash object and heading towards the wall. Its goal is
recognizing the wall and avoiding obstacles while holding the trash object.

5. The fifth neural network has modular structure too. It consists of two
modules. Each module has its own four output neurons in addition to
four selector neurons. The selector neurons compete with each other to
decide which module will take the control. For example, if at a certain
time the activation level of the selector neuron of the left motor is higher
in the first module, then output of neuron corresponding to the left motor
in the first module will be sent to the left motor.

The environment used in the evolution process was an arena with walls of
height 3 cm and it contained 5 trash objects which are cylindrical in shape.

84 Michael Botros

The genetic algorithm used population of 100 individuals for each of the five
architectures and it lasted for 1000 generations. The fitness function essen-
tially rewarded individuals for the number of the trash objects successfully
placed outside the arena with less rewards for objects that the robot was only
successful to pick. Each individual was tested for 15 epochs and its fitness
valuation was the sum of its fitness function in each epoch.

The experiment described above was repeated 10 times for every architec-
ture. The 10 best individuals of each architecture were given the same task
of clearing the arena from 5 trash objects. The results showed that the fifth
neural network excelled the others where 7 of its best 10 individuals were able
to successfully complete the task. Only one or two individuals were able to
complete the task for the other architectures.

Considering the hypothesis that modular architecture may contain mod-
ules that correspond to certain behavior, it was found that the best individual
of the fifth architecture use both modules for controlling the left motor and
uses only one module for rest of the outputs. This fact showed that relation
between modules and basic behaviors could not be proven in this experiment
[ll]. However, in the experiment of home seeking and battery recharging cer-
tain hidden neuron was shown to be responsible for detecting low battery and
returning home for recharging.

4.3.5 Experiment 5: Co-evolving Predator-Prey Behavior

By co-evolution we mean evolving two competing populations simultaneously
such that the fitness evaluation of one is at the expense of the other. The
co-evolution adds more competition stress to the evolution process which is,
by nature, characterized by the competition for survival among individuals of
the same generation. We are now going to present an interesting experiment
in co-evolution whose goal was evolving a predatory-prey behavior in two
khepera robots. The predator robot is required to chase the prey robot and
contact it.

The experiment was performed by Floreano and Nolfi [13] [14]. In the
experiment, the predator robot is equipped with a vision module (see figure
4.7) to recognize the prey robot which was provided with a black perturbation
that can be easily detected on the white walls of the environment. To provide
fair competition, the maximum speed of the prey robot is allowed to be twice
that of the predator robot.

The environment was a square one of dimension 47 cm. That size was
chosen such that prey will always be within the detection range of the vision
module of the predator which can detect objects in range of 5 to 50 cm.
The evolution experiment was carried in a simulated environment of the same
details of the actual one. This will help to decrease the time of the evolution
and to avoid the hardware problems resulting from the twisting of the power
cables of the two robots.

4 Evolving Controllers for Miniature Robots 85

The K213 vision module of the khepera robot is an additional module that
is connected to the top of the robot. It is cable of providing a linear image
of 64 pixels that cover a vision angle of 36 degrees. Furthermore, the module
has a microcontroller that can process the image data and instead of sending
the 64 bytes of the image to the robot it can detect the least eight pixels in
intensity and pass them to the robot.

Fig. 4.7. Khepera robot with the extra K213 vision module (with permission of
K-team) .

In the simulated computer environment, the experiment designers divided
the vision range to 5 sections each representing a simulated photosensor. These
simulated photosensors act as input for the neural network controller of the
predator robot. A simulated photosensor is considered active if a pixel of
minimal intensity is within its range, possibly because of the presence of the
prey robot in this section.

The controllers of the two robots are shown in figure (4.8). Each controller
is recurrent neural network. The predator neural network has extra 5 input
neurons corresponding to the five photosensors. On the other hand, the two
outputs of the prey neural network are multiplied by a factor of two before
being applied to the motors of the robot.

The genetic algorithm used two competitive populations each of 100 in-
dividuals and the experiment lasted for 100 generations. As we mentioned
earlier, the fitness evaluation of each robot is at the expense of the other. The
predator robot is awarded for decreasing the time needed to contact the prey.
Its fitness is a normalized version of that time and falls in the range of [0,
11. The prey robot fitness function is just (1 - predatorfitness). The fitness
function of each individual, predator or prey, is evaluated through testing it
against the best individuals of the last 10 generations of the opposite type.

The experiment used direct encoding to encode the synaptic weights of the
neural network. Each weight is encoded in 5 bits. The first bit is always used
to encode the sign while the other four bits differed according to the instance
of the experiment. We will to summarize each of the three instances of the
experiments along with its results [13] [14].

86 Michael Botros

IR
"nso lg

Photo
S e n s o a

Photo
S e n s o s

Predator Neural
Network Controller

Right
Motor

A?-
Motor

Prey Neural
Network Controller

Fig. 4.8. The neural network controller of the predator and prey robots.

First instance of the experiment: In this instance the four bits simply
encoded the value of the synaptic weight which falls in the range of [O, 11.
The results of this instance of the experiment showed that there was no
population superior to the other all the time span of the evolution. In the
first generations the predator was able to chase the prey and contact it.
After 70 generations, the prey was cable of turning away when the predator
approached it. After 90 generations, the predator learned better attacking
methods for chasing the prey.
Second instance of the experiment: Only two bits were used to encode
the value of the weight and the other two bits are used to encode four
different level of uniform noise that would be added to the weights. The
results of this instance of the experiment showed that the noise level in the
synaptic weights of the prey was higher than those of the predator which
suggested that the prey made use of this noise to evolve an unpredictable
and changing trajectory to confuse the predator robot.
Third instance of the experiment: The four bits are used to encode the
learning parameters of the synaptic weights rather than the value of the
weights. Two bits encoded the Hebbian rules and the other two bits en-
coded the learning rate. The value of the weight is randomly generated
between [0, 11 and continuously updated according to the rules. The re-
sults of this instance of the experiment showed that the average fitness
of the predator is higher than that of the prey. In terms of the apparent
behavior, it developed better chasing techniques than that of the first in-
stance of the experiment. In terms of the synaptic weights, the experiment
results showed that the synaptic weights were adjusted by the Hebbian
learning and the resulting motor speed steered the robot towards the prey,
a property which require fine tuning of the weight values if the encoding
method of the first instance was used.

4 Evolving Controllers for Miniature Robots 87

The results of this experiment are interesting and reflect how the behavior
of the robot was dependent on the types of the parameters of the controller
encoded in the gene despite the fact that the controller had the same ar-
chitecture in the three instances of the experiment. We would expect also
that different behaviors could have obtained by allowing the evolution of the
architecture of the neural network along with the weights.

4.4 Evolving Fuzzy Logic Controllers

Fuzzy Logic is a mathematical tool that can manipulate human vague concepts
and linguistic variables. Zadeh in [15] proposed a method to treat human
knowledge based on the Theory of Approximate Reasoning. He proposed that
systems with ill defined or with uncertain model can be treated by fuzzy logic.
These principles were then used to build a controller for the first time in [16].

In this section, we will briefly present how the fuzzy controller can be
applied to the problem of mobile robot navigation and obstacle avoidance.
The fuzzy controller usually consists of three parts:

The Fuzzifier

The first step in any fuzzy control application is to specify the fuzzy sets and
the corresponding membership functions for each of input or output variables.
This process is known as fuzzification. If we apply this to the Khepera input
proximity sensor values, we will find that each sensor has a reading value
in the range [0,1023]. One of the proposed methods for fuzzification could
be: " Near" ,"Mediumn, and "Far". Also membership function can have other
shapes such as the triangular shape or bell shaped. See figure (4.9).

In our example of the Khepera proximity sensor, the reading 300 may have
a membership in the fuzzy set "Near" that is equal to 0.75 while the mem-
bership in the sets "Medium" and "Far" are equal to 0.25 and 0 respectively.
It is clear here that the crisp value 300 has been assigned a membership value
for every fuzzy set defined over the range [O, 10231. Also the output variables
(left motor speed and right motor speed) can be fuzzified in the same sense.
The fuzzy sets could be "Positive Large", "Positive" , "Zero", "Negative",
"Negative Large".

The Fuzzy Rules

This is the main part of the controller where human knowledge can be repre-
sented in the form of if-then rules. The rule usually takes the following form:

If (antecedent part) then (consequent part)

88 Michael Botros

Possible membership functions for input sensors

Possible membership functions for output motor speed

Fig. 4.9. Possible membership functions for input sensor and output motor speed.

Where the antecedent part checks the input variables and the consequent
part sets one or more of the output variables. For our case of Khepera robot
navigation, one of the rules can be:

If (left proximity sensor is "Near") then
(left speed is "Positive Large") and (right speed is "Postive")

This rule tells the robot to turn to right (by moving the left wheel faster
than the right wheel) if obstacle is found on the left of the robot. If the left
proximity sensor is near with membership value 0.75, then this rule will have
firing value equals to 0.75. A group of fuzzy rules resembling the previous one
are needed for the safe navigation of the robot.

The Defuzzifier

The outputs (left and right speeds in our case) need to be crisp values, this
will be the role of the defuzzifier to convert them form fuzzy sets to crisp
value. This is done through the fusion of different rules based on their firing
values.

Since the performance of the fuzzy logic controllers depends on the param-
eters of the membership functions and the rules used, then we need to search
for the best membership functions and the optimal set of rules. This leads
us to thinking of genetic algorithm to evolve the best fuzzy logic controller
parameters instead of designing it based on the human experience.

4 Evolving Controllers for Miniature Robots 89

4.4.1 Experiment 6: Evolving Corridor Following Behavior

This experiment was performed by Lee and Cho [17]. The goal of the ex-
periment was to evolve a fuzzy logic controller that can enable the robot to
avoid the obstacles and follow the corridors of the environment. The fuzzy
logic controller had 8 inputs corresponding to the 8 proximity sensors of the
robots and 2 output neurons that correspond to the motor speeds. The role
of the genetic algorithm in designing the controller was to evolve the best
membership functions of the inputs and the outputs along with the necessary
rules.

The experiment designers chose to divide the input sensory range [O, 10231
into four triangular membership functions. The same number and type of the
membership functions were used for the outputs. The parameters of these
functions, such as their starting and ending point on the input or output
range, were binary encoded in the chromosome . Also the chromosome in-
cluded information about a set of 10 possible rules.

To encourage the robot to explore the arena and follow the corridors with-
out colliding with their walls, the fitness function had a positive part that
is function of the total distance moved and the number of the check points
in the arena that the robot passed through. It also has negative part that is
function of the number of collisions.

The results of the experiment showed that the best fit individual was
able to develop basic behaviors of avoiding collision and following walls. The
performance of this evolved fuzzy logic controller was tested in two other
simulated environments in which it was observed that the robot developed
three distinct sub-behaviors which are: passing corridors, wall following and
obstacle avoiding. The corridor passing behavior is active when the robot is
moving in a narrow path with obstacles on both sides. The wall following
behavior become active when the obstacles or walls are sensed on one side of
the robot while the obstacle avoidance behavior become active when obstacles
are sensed in front of the robot. A relation could be found between each sub
behavior and a subset of the fuzzy rules that support this sub behavior. The
robot switched from one sub behavior to the other depending on the current
situation till its target was reached [17].

4.5 Evolving Controlling Programs

Genetic programming GP applies the evolution model to computer programs.
The individuals here are computer programs that represent potential solution
to required problem. Usually these problems are too complex or time con-
suming to be programmed by hand. An example of this type of problems is
writing a program to control a mobile robot to navigate and avoid obstacles
in a new environment.

90 Michael Botros

Now the question that may arise is how to represent computer programs as
individuals and how to design genetic operators, such as crossover and muta-
tion, that is applicable to computer programs. Answers of these questions are
in Koza's suggestion [18] of representing programs as trees that is composed
of nodes and branches. The nodes are the operators that can take any value
from certain function set such as {multiplication, addition..). The branches
are the operands which can be constants, input values or results of another
node. Fig. (4.10) shows an example of a tree that represents a simple program.

This tree representation provided a method for performing crossover be-
tween two individuals. This is preformed by exchanging parts of the two trees
representing the two individuals. To perform mutation operator we need to
make sure that the resulting individuals represents a valid computer program.
For example the mutation operator can take place by changing the operator
in the node by another operator from the function set or by mutating the
constants in the operands.

Tree representation of
computer program

Linear representation of
computer program

Fig. 4.10. Tree representation of computer programs versus linear representation

Having this brief overview of the Genetic Programming GP, we are now
ready to present the following experiment in evolving obstacle avoidance con-
troller program using Genetic Programming.

4.5.1 Experiment 7: Evolving Obstacle Avoidance behavior using
Genetic Programming

This experiment was performed by Nordin and Banzhaf [19]. The goal of
the experiment was to evolve a controller program for obstacle avoidance
navigation using genetic programming. The experiment was carried on a real
khepera robot in two different environments. The first environment was a
rectangular arena of size 30 x 40 cm with regular walls while the other is
larger in size with obstacles in its center and characterized by irregular walls.
In both cases, the khepera robot was controlled by a computer workstation
through a serial cable.

4 Evolving Controllers for Miniature Robots 91

Motivated by applying genetic programming on real robots and obtaining
a reasonable behavior in a short time, the experiment designers made two
choices. First choice was not to use the tree structure we discussed above.
Instead, the individual programs were represented as a linear sequence of op-
erations along with their operands.An example of this representation is showed
in figure (4.10). Second choice was to represent these instructions in the low
level binary format of the controlling workstation (Sun 4). Using this repre-
sentation, the crossover operators will be carried by exchanging two segments
of instructions between two individual programs. The mutation operator was
restricted to produce only valid machine instructions.

The population size of the experiment was small and consisted of 50 indi-
viduals and tournament selection is used when individuals are needed to be
selected for crossover or mutation. The tournament works as follows: First we
select n individuals from the population size N and each of the n individuals
is tested and its fitness is evaluated, then we choose the best fit individual out
of them for crossover and mutation.

The results of the experiment showed successful evolution of the obstacle
avoidance behavior in both of the environments. In the first environment, it
took the robot 20 minutes to evolve a reasonable obstacle avoidance behavior.
In the second environment, it took the robot some longer time compared to
learn the same behavior. This may be because of the complexity of the second
environment [19].

The results of this experiment showed how the choice of some parameters
of the genetic algorithm such as the encoding and selection methods, in addi-
tion to the machine format of the programs, helped in evolving the required
behavior in small amount of time. We could see that a reasonable behavior
emerged in less than an hour in both environments.

4.6 Evolving Spiking Neural Network Controllers

In this section, we are going to introduce a new model of the biological neurons
that models the dynamical nature of neurons communication. This new model
is what we call spiking neurons. We will also present an evolution experiment
that evolved spiking neural network for controlling a robot based on vision
information only.

To explain the spiking neuron model, we will need first to have a look at the
actual way of communication between biological neurons. Biological neurons
communicate by sending a large number of short pulses each second. These
short pulses are known as spikes. The classical model of neurons considers
only the rate of these spikes. The current activation level in the classical
model corresponds to the current rate of spikes normalized by its maximum
value. On the other hand, the spiking neuron provides more complex model
of neuron activation function that depends on the timing between spikes.

92 Michael Botros

One widely used model of spiking neuron is the "Integrate and Fire" model.
In this model, the activation of the neuron is described by its membrane po-
tential. Each spike received contributes to the membrane potential according
to two factors: the weight of its synaptic connection and the time elapsed since
its firing. When the accumulated effect of these spikes cause the membrane
potential to go above certain threshold, the neuron fires a spike. After firing
the spike, the neuron becomes unable to fire another spike instantaneously. It
needs a refractory period q before it sends another spike. This refractory time
depends on a certain time constant r, of the membrane.

At any time t , the effect of a spike on the neuron potential is a function
of the time difference between the current time t and the firing time of the
spike tfiring. This function ~ (t - tfiring) can be modeled by a pulse shaped
function as shown in figure (4.11). In the figure, the period A of zero effect
corresponds to the time required by spike to reach the neuron. One of the
suggested expressions for ~ (t - tfiring) is given by [20], [21]:

where s = t - tfcing represents the time elapsed since the firing of the
spike, T~ is the synapse time constant. Also we can model the refractory period
q(s) by a negative decaying exponential where the potential of the neuron is
set after emitting the spike to a very low negative voltage to prevent emitting
another spike immediately. One of the suggested expressions is given by [20],
[2 11 :

I Effect of a spike on the neuron

Fig. 4.11. The effect of a spike on the neuron ~ (s)

Now, we can write the the mathematical model of the spiking neuron the
gives the potential of neuron i as result of addition of to quantities. The
first is due to the effect of received spikes and can be written as the sum

4 Evolving Controllers for Miniature Robots 93

0 5 t - tsling 10 (ms) 15 20

Fig. 4.12. Refractory period function q(s)

of the incoming spikes e j (s j) from other neurons, labeled by index j , with
each spike effect multiplied by the weight of its synaptic connection w;. The
second quantity is due to the spikes emitted by neuron i itself and can be
written as sum of all refractory functions resulting form the emitted spikes.
A mathematical formula of what we have just described can be given by [22]:

j All rec ieved spikes All emi t t ed spikes

The above equation describes the model of the activation of the neuron,
represented by its membrane voltage, which takes into the consideration the
timing of the emitted and received spikes in contributing to the membrane
potential. A question might arise here asking why we would be interested in
more complex model for neural network to employ is robot controllers. The
answer is that model should be better at detecting the time varying relation
between the sensors and motors due to its dynamic nature [22]. In the rest of
this section, we will see how to employ that new model in controlling Khep-
era robot and mapping the vision information into motor speeds to develop
obstacle avoidance navigation that depends only on the vision information.

4.6.1 Experiment 8: Evolving Vision Based Navigation

This experiment was performed by Floreano and Mattiussi [22]. In the exper-
iment, the robot was placed in a rectangular arena whose walls are covered
with vertical white and black strips with variable width. The Khepera robot
is provided with K213 vision module similar to the one described in the co-
evolution experiment in section 3.5. The goal of the evolved controller is to
use the information available from the vision module to enable the robot to
navigate without colliding with the walls.

The vision module provides a linear image consisting of 64 pixels that
cover an angle of 36 degrees. Only 16 equally spaced photoreceptors are used
as inputs to the spiking neural network. The values of photoreceptors readings
are filtered to obtain information about the contrast, scaled to the range of

94 Michael Botros

[O, 11 and then sent to the spiking neural network. There are extra 2 input
neuron in the network whose input is the difference between the actual and
the desired motor speeds. Again this difference is scaled to the rage of [0, 11
before being sent to the spiking neural network. The network contained four
output neurons, two for each motor speed. The two neurons set the forward
and backward speed for each motor. The actual speed sent to the motor is
their algebraic sum. In addition to the 18 input neurons and the 4 output
neurons the network contained 10 neurons that are connected to the input
and output neurons.

The input vision photoreceptors and the output motor speed are interfaced
to the spiking neural network as follows. The 16 scaled inputs of photorecep-
tors are used to set the probability to emit a spike by the corresponding input
neurons. Also, the firing rates of the 4 output neurons are mapped to the
motor speeds. This explains the reason of using two neurons for each motor
speed since that firing rate of the output neurons can not take negative val-
ues. The cycle of reading the photoreceptors and updating the motor speed
goes in the following order. Every 100 ms, the input photoreceptors are read,
filtered, scaled and used to set the probability of emitting a spike by the input
neurons. During the 100 ms cycle, the activation level of each neuron, except
input neurons, is updated every 1 ms according to the model of equation (4.5)
and the neurons are allowed to emit spikes if their activation level exceeds the
threshold. At the end of the 100 ms cycle, the spiking rate of the output neu-
rons, calculated over the last 20 ms period of the cycle, is used to update the
motor speeds.

The genetic algorithm is used to obtain the best synaptic weights connect-
ing the spiking neurons. The population consisted of 60 individuals and the
experiment lasted for 30 generations. Each individual is tested in 400 cycle, in
which its fitness is the sum of its motor speeds if they are both positive and
zero otherwise. This fitness function will reward the individuals that move
forward while offering no reward to individuals that rotate (due to difference
in the sign of the speeds) or move backward (when both speeds are negative).
The fitness evaluation of the individual is the average of its fitness over the
400 cycles.

The results of the experiment showed that the best individual was able to
move in curved trajectories of large radii but without colliding with the sur-
rounding walls. The experiment was repeated using a classical neural network
with sigmoid activation function and with same architecture. However, the
fitness of its individuals didn't increase with time and its individual neural
network controllers were not able to map the vision information into motor
speed that secure a safe navigation without colliding with the surrounding
walls [22].

4 Evolving Controllers for Miniature Robots 95

4.7 Comment on different approaches of evolutionary
robotics

We presented different approaches for evolving controllers such as neural net-
works, fuzzy logic and spiking neural networks. Each approach has appealing
advantages as one form of controller for mobile and autonomous robots. It
may also include some difficulties or limitations when being evolved. We try
in this section to shed some light on the attractive features of these different
approaches and some issues that need to be considered when combined with
evolutionary computations.

As a general approach, fuzzy logic provides a tool for dealing with sys-
tems with uncertain models which suits the dynamic and possibly unknown
environments encountered by mobile robots. It has the advantages of imple-
menting human knowledge. It simulates the human method of reasoning by
using linguistic variables and knowledge that is represented by its rule base.
For example, the human experience in walking or navigation while avoiding
possible obstacles can be moved to the robot brain through using a fuzzy
controller whose rules are based on this experience.

Another useful feature of fuzzy logic that is interesting in the field of
robotics is its ability to combine different rules outputs in the defuzzifica-
tion process. This ability can be further used in behavior coordination. In
this approach different controllers are designed independently, possibly by
fuzzy logic, neural networks or even designed by human programmers. Every
controller implements a certain behavior or task. A simple example is two
controllers for obstacle avoidance and goal seeking. Our problem in behavior
coordination is to combine results from different behaviors in one command
to send to the effectors or motors. The fuzzy approach for this problem works
by providing a number of rules that assigns weights for fusing the different
outputs from the controllers based on the current situation. In our example, a
typical rule will favor the output of obstacle avoidance behavior when a near
obstacle is detected. This method provides a way of combining the outputs of
many behaviors each control cycle unlike behavior arbitration methods that
choose one active behavior each time based on fixed or dynamic priorities. As
we mentioned, these rules can be based on human experience. Further more,
genetic algorithm can be employed to evolve the best set of rules for behavior
coordination. In fact, this was the approach used by Tunstel et al. in [23] to
evolve fuzzy behavior arbitration for planetary microrovers.

On the other hand, fuzzy logic approach lacks a standard method for cre-
ating the rules based on the human experience. Also the time taken in compu-
tations especially in the defuzzification process may affect the real time per-
formance of the controller and the the robot if not performed using dedicated
processors [24]. Another issue that needs to be considered when designing
fuzzy logic controller for a robot is the design of the membership functions.
In some experiments, redesigning the membership functions led to avoiding
oscillations in the robot behavior [25].

96 Michael Botros

Evolutionary computation appears to be a good solution to the problem of
automatic design of the fuzzy logic controller. However there are some issues
that the controller designer should consider when evolving the fuzzy logic
controller. One of these issues is deciding what to evolve, whether it is the
membership function parameters, the rules or both of them. Evolving both
rules and membership functions has the advantage of decreasing chances of
errors due to miss choices made in the early stages of the design, however
the evolution process will search in a larger space for the best set of rules and
best parameters for the membership functions. It should be noted that even by
evolving the rules and the membership parameters, this can not eliminate the
designer choice of the type of membership function (triangular or trapezoidal
... etc). Evolving the fuzzy behavior coordination module mentioned earlier
is an example of evolving the fuzzy rules while the experiment in section
four of this chapter is an example of evolving the fuzzy rules along with the
membership functions.

Another issue to be considered in evolving fuzzy logic controller is the
number of rules. The number of rules can affect the speed and performance
of the robot and the choice of the genetic algorithm as well. Small number
of rules will decrease the computations in the fuzzy logic controllers but on
the other hand this small number may not cover all the possible situations or
sensors combinations encountered by the robot. Evolving controller with fixed
number of rules or fixed maximum number of rules will lead to using fixed
length chromosome. The other approach of using population of individuals
with different number of rules requires variable length chromosomes and pos-
sible modification of the genetic operator. Messy genetic algorithm [27] can be
a potential evolutionary algorithm for evolving the fuzzy logic controller with
variable number of rules. It has a modified version of the traditional crossover
genetic operator called cut and slice operator that can deal with the variation
of the genetic material length. In fact, it was used by Hoffman and Pfister in
[26] to evolve the rules for fuzzy logic controllers to enable a mobile robot to
reach its target while avoiding the obstacles.

Another approach of evolutionary robotics that we presented is evolving
neural networks. Artificial neural networks offer many characteristics that
make them suitable for the problem of controlling autonomous robots. First,
the noise present in the sensor readings, whether they are sonar sensors or
infrared sensors, makes the neural networks suitable controllers due to their
known tolerance to noise. Moreover, if one of the sensors was not functioning,
the output of the neural network could still be acceptable [7]. Second, the
neural networks are able to learn and they could be trained. The weights and
the thresholds and other parameters of the neural network could be adjusted
to produce different behaviors even for the same network architecture. Also,
neural networks can select the sensors that are suitable for a given behavior
by adjusting the weight corresponding to each sensor or input.

As in the case of fuzzy logic, the genetic algorithm can offer an auto-
matic way for designing neural network controller by evolving the synaptic

4 Evolving Controllers for Miniature Robots 97

weights or the network architecture or both of them. Neural networks have
many existing learning algorithms, but the genetic algorithms offers potential
advantage of the parallel search by using a population of individuals. An issue
to be considered in evolving neural networks that may affect the genetic al-
gorithm is the size of the parameter to be evolved. Large networks with large
number of synaptic weights may require a long chromosome. In this case the
real encoding of these parameters could be considered instead of the binary
encoding.

Compared to fuzzy logic, the learning of the neural network which is stored
as synaptic weights can not be acquired by human reasoning [24]. For exam-
ple, in the experiment of trash collection no direct relation was found between
modules of the neural network and the certain behavior of the robot, some-
times by observing the activation level of some neurons and certain behaviors
of the robot we could find a correlation as in the experiment of home seeking
but this is not the general case. On the other hand, the knowledge represented
by the rules of the fuzzy logic controller can be acquired by human reason-
ing. For example, we could read on of the evolved rules in the experiment of
evolving fuzzy logic controller and understand what it implies. Another point
is that we can not easily implement high level behavior using neural networks
as we can do using fuzzy logic. Although many relatively complex behaviors
have be evolved using neural networks, such as trash collection, implementing
a high level reasoning and selection or coordination between behaviors would
require a method that mimics human reasoning.

We have also presented in this chapter a relatively new approach in evo-
lutionary robotics which is evolving behaviors using spiking neural networks.
The dynamic model of the spiking neural network suits the time changing
relation between the sensors and the motors [22]. On the other hand, the com-
plexity of the model and the need of the interface between the sensors of the
robot and input of the spiking neural network have limited the experiments of
evolutionary robotics that use it compared to other widely used approaches as
artificial neural networks or fuzzy logic. Analog Very Large Scale Integrated
Circuits (VLSI) can implement spiking neural networks using circuits with
very small area and power consumption, which is an advantage over other
approaches. In [28], an analog VLSI circuit that implemented spiking neural
networks was used for controlling a robotic leg.

To summarize, each approach of evolutionary robotics is characterized by
some potential advantages that makes it a suitable solution for the problem
of controlling mobile robots. Also each approach has some limitations or dif-
ficulties when being evolved. Choosing which approach is a trade off between
the advantages and the limitations.

98 Michael Botros

4.8 Summary

In the previous sections we have seen how the evolutionary computations algo-
rithms were successfully used to evolve many types of controllers for Khepera
robot. It was used to evolve neural network synaptic weights in the obstacle
avoidance behavior of experiment 1 and the battery recharging behavior of ex-
periment 3. We have also seen how it can evolve the architecture of the neural
network along with the synaptic weights as in the experiment of evolving light
seeking behavior. Alternatively, it can evolve the learning rules and learning
rate necessary for training the neural network synaptic weights. Other types
of controllers were successfully evolved too, such as fuzzy logic controllers and
computer programs.

Many other experiments are conducted using evolutionary computations
on different robotic platforms recently. In fact, evolutionary computation is a
very promising approach for designing controllers for mobile robots.

Acknowledgement

The author would like to thank S. Mercorious and S. Kirolos for their
support all over the past years.

References

1. K-Team, "Khepera User Manual," Lasuanne, Switzerland, 1999.
2. F. Mondada, F. Franz and I. Paolo, "Mobile Robot Miniaturisation: A Tool

for Investigation in Control Algorithm," Proceedings of the Third International
Symposium on Experimental Robotics, Kyoto, Japan, 1993.

3. A. Schultz and J. Grefenstette, "Using a Genetic Algorithm to Learn Behaviors
for Autonomous Vehicles," Naval Research Laboratory, Washington, Dc, 1992.

4. J. Meyer, P. Husbands and I. Harvey, "Evolutionary Robotics: a Survey of Ap-
plications and Problems," In Evolutionary Robotics : First European Workshop,
Evorobot798, P. Husbands and J. Meyer (editors), Springer Verlag 1998.

5. I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi, "Evolutionary
Robotics: the Sussex Approach," In Robotics and Autonomous Systems, Vol.
20, pp. 205-224, 1997.

6. A. Loffler, J. Klahold and U. Ruckert, "The Mini-Robot Khepera as a Forag-
ing Animate: Synthesis and Analysis of Behavior," In Proceedings of the Fifth
International Heinz Nixdorf Symposium: Autonomous Minirobots for Research
and Edutainment (AMiRE), Vol. 97, pp. 93-130, 2001.

7. D. Floreano and F. Mondada, "Automatic Creation of An Autonomous Agent:
Genetic Evolution of a Neural Network Driven Robot," From Animals to An-
imats:3, Proceedings of the Conference on Simulation of Adaptive Behavior,
edited by D. Cliff, P. Husbands and S. Wilson, MIT Press, 1994.

8. M. Botros "Evovlving Neural Network Based Controllers for Autonomous
Robots Using Genetic Algorithms," Master Thesis, Cairo University, Egypt,
2003.

4 Evolving Controllers for Miniature Robots 99

9. M. Hulse, B. Lara, F. Pasemann and U. Steinmetz, "Evolving Neural Behaviour
Control for Autonomous Robots," Max-Planck Institute for Mathematics in the
Sciences, Leipzig, Germany, 2001.

10. D. Floreano and F. Mondada, "Evolution of Homing Navigation in a Real Mobile
Robot," IEEE Transactions on Systems, Man, and Cybernetics (B), Vol. 2, pp.
396-407, 1996.

11. S. Nolfi, "Using Emergent Modularity to Develop Control Systems for Mobile
Robots," Journal of Adaptive Behavior, Vol. 5, pp. 343-363, 1997.

12. C. Scheier and R. Pfeifer, "Classification as Sensory-Motor Coordination," Ad-
vances in Artificial Life: Proceedings of the Third European Conference on Ar-
tificial Life, edited by F. Moran, A.Moreno, J. Merelo and P. Chacon, Springer
Verlag, 1995.

13. D. Floreano and S. Nolfi, "God Save the Red Queen! Competetion in Co-
evolutionary Robotics," Genetic Programming 1997: Proceedings of the Second
Annual Conference, Stanford University, edited by J. Koza, K. Deb, M. Dorigo,
D. Fogel, M. Garzon, H. Iba, and R. Riolo, pp. 398-406, 1997.

14. D. Floreano and S. Nolfi, "Adaptive Behavior in Competing Co-Evolving
Species," Fourth European Conference on Artificial Life, MIT press, Cambridge
MA, editted by P. Husbands and I. Harvey, pp. 378-387, 1997.

15. Zadeh, L., "Outline of a New Approach to the Analysis of Complex Systems
and Decision Process," IEEE Transaction Systems, Man and Cybernetics, Vol.
3, pp 28-40, 1973.

16. E. Mamdani and S. Assilian, "An Experiment in Linguistic Synthesis with Fuzzy
Logic Controller," Journal of Man-Machine Studies, Vol. 7, pp. 1-7, 1975.

17. S. Lee and S. Cho, "Emergent Behaviors of a Fuzzy Sensory-Motor Controller
Evolved by Genetic Algorithm," IEEE Transaction Systems Man and Cyber-
netics (B), Vol. 31, No. 6, pp. 919-929, 2001.

18. J. Koza, "Genetic Programming," MIT Press, Cambridge MA, 1992.
19. P. Nordin and W. Banzhaf, 'LGenetic Programming Controlling a Miniature

Robot," Working Notes for the AAAI Symposium on Genetic Programming,
MIT, Cambridge MA, 1995.

20. W. Gerstner and W. Kistler, "Spiking Neuron Models," Cambridge University
Press, 2002.

21. W. Gerstner, J. van Hemmen, and J. Cowan, LLWhat Matters in Neuronal Lock-
ing?," Neural Computation, Vol. 8, pp. 1653-1676, 1996.

22. D. Floreano and C. Mattiussi, "Evolution of Spiking Neural Controllers for
Autonomous Vision-Based Robots," Evolutionary Robotics. From Intelligent
Robotics to Artificial Life, Springer Verlag, Tokyo, 2001.

23. E. Tunstel, H. Danny, and M. Jamshidi, " Behavior Hierarchy for Autonomous
Mobile Robots: Fuzzy-behavior modulation and evolution," International Jour-
nal of Intelligent Automation and Soft Computing, Special Issue: Autonomous
Control Engineering a t NASA ACE Center, Vol. 3, pp. 37-49, 1997.

24. J. Godjevac, "Comparative Study of Fuzzy Control, Neural Network Control
and Neuro-Fuzzy Control", In Fuzzy Set Theory and Advanced Mathematical
Applications,D. Ruan Ed., Kluwer Academic, Chapter 12, pp. 291-322, 1995.

25. S. Marapane, M. Trivedi, N. Lassiter and M. Holder, "Motion Control of Coop-
erative Robotic Teams through Visual Observation and Fuzzy Logic Control,"
Proceedings of IEEE International Conference on Robotics and Automation,
Vol. 2, pp. 1738-1743, 1996.

100 Michael Botros

26. F. Hoffmann and G. Pfister, "Evolutionary Design of a Fuzzy Knowledge Base
for a Mobile Robot," International Journal of Approximate Reasoning, Vol. 17,
pp. 447-469, 1997.

27. D. Goldberg, B. Krob and K. Deb, "Messy Gentic Algorithms Motivations,
Analysis and First Results," Complex Systems, Vol. 3, pp. 493-530, 1989.

28. M. A. Lewis, M. Hartmann, R. Etienne-Cummings, and A. Cohen, "Biomorphic
Control of a Running Robot Leg using a Custom aVLSI CPG Chip," Neuro-
computing, Vol. 38-40, pp. 1409-1421, June 2001.

