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In this chapter, we evolve robotic controllers for a miniature mobile Khepera 
robot. We are concerned with control tasks for obstacle avoidance, wall fol- 
lowing, and light avoidance. Robotic controllers are evolved through canonical 
GP implementation, linear genome GP system, and hierarchical GP methods 
(Automatically Defined Functions, Module Acquisition, Adaptive Represen- 
tation through Learning). We compare the different evolutionary strategies 
based on their performance in evolution of robotic controllers. Experiments 
are performed on the Khepera GP Simulator for Windows. We develop the 
simulator as a user and developer friendly software to study GP and other 
robot controllers. 

3.1 Introduction 

Evolutionary computation studies how theories of evolution can be used to 
solve computational problems. Various evolutionary computation approaches 
currently exist with different methodologies and applications. We are inter- 
ested in the area of genetic programming which uses evolutionary ideas to 
evolve computer programs. 

robotics focuses on building machines to improve the lives of humans. 
Robots are designed to perform repetitive or dangerous tasks with excellent 
precision and dependability. However, robots require directions and program- 
ming to accomplish their goals. 
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In this chapter, we study the application of genetic programming tech- 
niques to the evolution of control programs for an autonomous miniature 
robot. We also present a software simulator for the Khepera miniature robot 
designed to study genetic programming based robotic controllers. 

3.2 Genetic Programming 

Genetic Programming (GP) was introduced by Koza [9] as an extension to 
genetic algorithms in order to enrich the chromosome representation. Instead 
of fixed-length strings, GP evolves pieces of code written over a specified al- 
phabet consisting of a set of functions and a set of terminals. The chromosome 
encoding can be directly executed by the system or can be compiled or inter- 
preted to produce machine executable code. 

The main problem with genetic programming lies in its scalability. Ge- 
netic programming has been demonstrated to solve a variety of applications 
[ll, 131 but it appears to lose its effectiveness for more complex real-world 
problems [5]. When we solve complex problems, we typically break the task 
into simpler sub-tasks and solve each sub-task. In contrast, regular GP tries 
to compute the entire solution to the problem at once. While this method is 
suitable for smaller problems, it is often not powerful enough to solve diffi- 
cult problems. The problem decomposition technique of breaking down the 
task and solving its sub-tasks (called modularization) seems to be the right 
solution to overcome the complexity threshold of real-world problems. 

Modularization techniques have been developed for GP but have generally 
employed a fixed decomposition structure provided by the experimenter. Hier- 
archical Genetic Programming (HGP) introduces modularization techniques 
to the GP system so that the GP can evolve module solutions to problems 
without human-imposed structure. This automatic modularization technique 
should improve the performance of genetic programming on difficult problems. 

Koza [ll] identifies five techniques that can enable hierarchical problem 
solving to reduce the effort needed to solve a problem: hierarchical decomposi- 
tion, recursive application, identical reuse, parameterized reuse, and abstrac- 
tion. Hierarchical decomposition is the act of breaking a problem into smaller 
sub-problems, solving the sub-problems, and combining their solutions into 
a solution for the problem. Recursive application of hierarchical decomposi- 
tion to a problem is able to recursively break the problem down into small 
sub-problems that would be easy to solve by the system. Identical reuse is 
the process of using previously computed solutions to identical sub-problems, 
while parameterized reuse offers a way of applying the same problem solving 
mechanism to similar sub-problems via parameters. Abstraction deals with 
exclusion of irrelevant data from the problem environment. 

Several hierarchical genetic programming methods have been suggested, 
each with its own advantages and disadvantages. The methods have been 
tested on various problems; however, current research does not adequately 
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explain whether the studied HGP methods can, in general, outperform stan- 
dard GP. In our research, we study the HGP methods: Automatically Defined 
Functions ( ADFs) [I 11, Module Acquisition (MA) [2], Adaptive Representa- 
tion (AR) [25]. 

3.3 Robotic Control 

Programming robots by humans can be a difficult endeavor and is not well 
suitable for complex real-world applications. The area of evolutionary robotics 
deals with automatic generation of control programs for robots using evolu- 
tionary techniques. 

The area of robotic control is often subdivided into three sub-areas: re- 
active, behavior-based, and hybrid [3]. Reactive control uses a simple set of 
condition-action pairs that define how the robot reacts to a stimulus. Brooks 
[6] proposed a multi-layer subsumption architecture where higher-level layers 
can subsume and block lower-level layers from action. Behavior-based archi- 
tecture [14] uses a collection of interacting behaviours that can take input from 
the robot's environment sensors or other behaviours and produce output to 
the robot's effectors or other behaviours. Hybrid control strategies exist that 
offer a compromise between purely-reactive and behavior-based strategies. 

Brooks [7] introduced the idea of using Artificial Life techniques to evolve 
control programs for mobile robots. Although no experimental results were 
presented, Brooks identified genetic programming as a hopeful technique for 
control program evolution. Koza [lo] presented results of using GP to evolve 
emergent wall following behavior for an autonomous mobile robot. The con- 
trol program was based on the subsumption architecture and demonstrated 
that GP can evolve control programs for mobile robots. In [12], Koza and 
Rice demonstrated that genetic programming can automatically create a con- 
trol program to perform a box moving task. The paper also offered a good 
comparison between GP techniques and reinforcement learning techniques in 
accomplishing the task. 

Reynolds [22] has used genetic programming to evolve a controller pro- 
gram for tiny critters in a simulated environment. The critter tasks were to 
manoeuver in a static obstacle environment (obstacle-avoidance) and avoid a 
predator. In this ALife-inspired predator-pray paradigm, the fitness criteria 
was based on the sum of the critter lifetimes. Results showed interesting par- 
tial solutions to the task but failed to show herding behavior such as observed 
in animals. 

Nordin and Banzhaf [16, 19, 17, 20, 181 have experimented with a sim- 
ulated and real Khepera miniature robot to evolve control programs using 
genetic programming. They used the Compiling Genetic Programming Sys- 
tem (CGPS) [15] which worked with a variable length linear genome composed 
of machine code instructions. The system evolved machine code that was di- 
rectly run on the robot without the need of an interpreter. 
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The initial experiments of Nordin and Banzhaf [16, 171 were based on a 
memory-less genetic programming system with reactive control of the robot. 
The system performed a type of symbolic regression to evolve a control pro- 
gram that would provide the robot with 2 motor values from an input of 8 
(or more) sensor values. GP successfully evolved control programs for simple 
control tasks such as: obstacle avoidance, wall following, and light-seeking. 
The work was extended [20, 211 to include memory of previous actions and a 
two-fold system architecture composed of a planning process and a learning 
process. Speed improvements over the memory-less system were observed in 
the memory-based system and the robots exhibited more complex behaviours 
[20]. Summary of the techniques used and tasks studied can be found in [4]. 

We are interested in the reactive control of a Khepera robot using genetic 
programming techniques. In reactive control experiments, robots learn while 
travelling through the experimental environment. No separate fitness cases 
are used to calculate fitness and thus the robot positions do not need to be 
reset for the purpose of fitness calculation. The reactive control problem is 
difficult since it requires dynamic fitness function evaluation where the indi- 
vidual fitness values depend on the local environment of the robot. However, 
the problem presents a more realistic dynamic learning environment. 

The learning method used in an evolutionary algorithm can greatly influ- 
ence the successfulness of the solution to the problem. Due to their beneficial 
properties, we feel that hierarchical genetic programming methods will 
advantages to the problem of reactive robotic control. 

3.4 Khepera Simulators 

Robotic simulators play an important role in robotic experimentation. Rot 
equipment can be costly and requires proper facilities. Software simulators 
offer the experimenter a test-bed for robotic technologies when a physical 
robot cannot be acquired. Some simulators provide a very accurate model of 
the environment and of interactions in the environment. Such simulators can 
be used as valid substitutions for real robots for testing various robotic tasks. 

Some robotic research on physical robots requires constant supervision 
and periodical rearrangement of the robots within the environment. For such 
research, robotic simulators have an advantage to physical robots. Simulators 
can be left unsupervised and can be programmed to automatically perform 
human actions such as relocation of robots in the simulated environment. This 
can considerably speed up experimentation time and requires less human time. 

The main disadvantage of software simulators is the inexact model of the 
environment. A real physical environment contains noisy data that can greatly 
influence the results of an experiment. One of the goals of using a robotic 
software simulator is to be able to reproduce similar results on the physical 
robot. Thus, the software environment must contain noise comparable to the 
real physical environment. 
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3.4.1 Khepera Robot 

The Khepera robot is a miniature mobile robot created and sold by K-Team 
S.A. (http://www.k-team.com) - a Swiss company specializing in development 
and manufacture of mobile mini-robots. Recently, K-Team has created a new 
Khepera I1 robot with an improved micro-processor, more memory, and a 
wider range of capabilities. Our research is based on the original Khepera 
robot. 

Khepera is circular, with a diameter of 55mm and height of 30mm. The 
robot can sense its environment with 8 built-in infra-red proximity and ambi- 
ent light sensors. Two motors with controllable acceleration are used to move 
the robot in the environment. Fig. 3.1 provides a schematic diagram of the 
robot's sensors and motors. 

Fig. 3.1. Schematic view of the Khepera robot. Sensors are labelled SO to s7 and 
motors are labelled m l  and m2. 

The brain of the Khepera robot is a 16Mhz Motorola 68331 micro-processor 
with 256 KB of RAM and 128-256 KB of reprogrammable ROM memory. The 
ROM contains a simple operating system and communication interface to a 
host computer. The robot can execute its own programming that can be either 
provided through a serial connection or downloaded into the onboard memory. 

The Khepera robot can be equipped with a variety of extension turrets 
that provide it with abilities to perform more complex tasks. Some extension 
turrets are: gripper turret used for object recognition and manipulation, video 
turret for on-board camera ability, and I/O turrets for improved communica- 
tion with the host computer. 
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3.4.2 Khepera Simulator 

The original Khepera Simulator (h t tp :  //diwww. epf 1. ch/lami/team/michel 
/khep-sim) was developed by Olivier Michel at the Microprocessor Systems 
Lab (LAMI) of the Swiss Federal Institute of Technology (EPFL). The latest 
version of the simulator (version 2.0) is available free-of-charge for research 
use and it is written exclusively for the UNIX@ platform. 

Many other software simulators for the Khepera robots are currently avail- 
able. Cyberbotics (http://www.cyberbotics.com) specializes in development 
of 3D simulation software for mobile robots. The software - Webots - supports 
a variety of robots rendered in a 3-dimensional environment. 

3.4.3 Khepera GP Simulator 

The Khepera GP Simulator for windows@ is a software package to simulate 
Khepera robots in their environment. The software is designed to use the 
genetic programming paradigm to automatically generate control programs 
for the robots. Thus, the simulator can be used for testing of GP techniques 
in the domain of robotic control. 

The simulator was created by Marcin L. Pilat in 2001 as a port of the orig- 
inal Khepera Simulator to the windows@ platform. In 2003, the simulator 
was improved and adapted for simulating GP-based tasks on Khepera robots. 
Version 3.0 is available free for educational purposes and can be downloaded 
from the author's website (http:/l www.pilat.org/ khepgpsim). The source 
code is also available and can be modified by researchers for s ecific experi- 
ments. The code was written using ~icrosoft@ Visual C++$ ~icrosof t@ 
Foundation Class (MFC) Library, and Component Object Model (COM). The 
simulator is only available for the windows@ platform. 

The main purpose of the Khepera GP Simulator is to simulate a physical 
Khepera robot in its environment. The simulation includes sensing of the 
environment using the robotic sensors and interacting with the environment 
using the robotic actuators (motors powering the wheels). Noise is added to 
the simulation in order to approximate a noisy environment. Multiple Khepera 
robots can be simulated together thus allowing the study of more complex 
robotic behaviours requiring interaction between the robots (e.g. box-pushing, 
following, collective garbage collection). 

The environment of the robot is modeled as a scalable rectangular working 
area. All items in the environment are treated as objects. There are three 
types of objects - building objects (bricks, corks, boxes), light objects (lamps, 
light boxes), and robot objects. Robot objects are simulated Khepera robots 
placed in the environment. Any object can be manipulated in the environment 
in real-time during a simulation run. 

The Khepera GP Simulator is specifically designed to study GP-based 
robotic controllers but can be easily adapted to non-GP controllers. The con- 
troller dictates the actions of the robot in the environment. The GP controllers 
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included with the simulator modify a population of robotic control programs 
in order to evolve certain tasks (or behaviours). 

The robotic controller provides a set of motor values to be used by a robot 
during each step of the simulation. The motor values are processed to yield a 
force vector that specifies the direction of the motion and the amount of force 
the robot applies in the world. The force vector is then used to calculate the 
next position and rotation of the robot. Collisions are handled by a simple 
vector-based collision engine with modifiable parameters. 

Each learning task (such as obstacle avoidance, wall following) can be 
evolved with any type of GP controller. The controller type specifies the chro- 
mosome structure and chromosome interactions during evolution. Multiple 
tasks can be evolved by the same GP controller type with different specifi- 
cations of the chromosome structure. A task contains a population of chro- 
mosomes; thus, it can be used to store snapshots of the population during 
evolution. 

Each task contains a fitness function which provides guidelines for the 
evolution of the population of control programs. The fitness function can 
be thought as a formal definition of the learning task. Fitness functions in 
the simulator are dynamic and can be easily modified at runtime. The fit- 
ness function definitions are written using a scripting language - ~icrosof t@ 
~ S c r i ~ t ~ ~ .  This scriptin language is based on ~ a v a ~ ~ a n d  is available free- 
of  charge from Microsoftb Corporation. JScriPtTMProvides the user with a 
rich scripting language to define the fitness function. The language supports 
a variety of pre-defined functions and the ability to create variables. 

The GP controllers in the simulator gather statistical information during 
the run of the evolutionary algorithm. This information is stored in order 
to analyze the performance of an evolutionary run. For each generation, the 
statistics engine stores average and best population fitness, robotic collisions, 
chromosome complexity, and population entropy values. Population entropy 
[23] measures the state of a dynamic system represented by the population 
and can be correlated with the state of population diversity. 

Complexity of the chromosomes in the population is stored using three 
complexity measures: size, structural complexity, and evolutional complexity 
[27]. The size measure specifies the raw size of the chromosomes defined as 
the number of instructions in a linear genome chromosome or the number 
of tree nodes in the tree-based chromosome representation. The structural 
complexity measure includes the sizes of all unique function trees called from 
within an individual. Evaluational complexity of an individual is measured 
recursively and includes sizes of all function trees embedded in the individual. 
This measure approximates the number of computational units required for 
execution of the individual program. 
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3.5 Robotic Controllers 

Our research into robotic controllers builds on research done by Nordin and 
Banzhaf [20] to evolve GP robotic controllers for the Khepera robot. Nordin 
and Banzhaf were able to evolve controllers for various learning tasks (such 
as obstacle avoidance and wall following). In our research, we compare the 
linear genome GP method they have used in their experiments to canonical 
tree-based GP representation and three most popular Hierarchical Genetic 
Programming methods: Automatically Defined Functions, Module Acquisi- 
tion, and Adaptive Representation. 

The GP system in the robotic controller evolves control programs that 
best approximate a desired solution to a pre-defined problem. This procedure 
of inducing a symbolic function to fit a specified set of data is called Symbolic 
Regression [18]. The goal of the system is to approximate the function: 

f (SO, sl, s2, s3, s4, s5, s6, s7) = {ml, m2) (3.1) 

where the function input is the robotic sensor data (SO-s7) and the output is 
the speed of the motors controlling the motion of the robot (ml-m2). The con- 
trol program code of each individual constitutes the body of the function. The 
results are compared using a behaviour-based fitness function that measures 
the accuracy of the approximation by the deviation from desired behavior of 
the robot. 

In our research, we deal with a population of control programs for the 
Khepera robot. A steady-state tournament selection GP algorithm is applied 
to the population in order to evolve control programs that accomplish the 
specified learning tasks. 

The canonical GP implementation uses a tree-based chromosome represen- 
tation [9, 111. The chromosome (originally coded as a LISP S-expression) 
represents a parse-tree that can be easily transformed into machine code. The 
internal nodes of the program tree are chosen from a set of parameterized 
functions with parameters as subtrees. Leaf nodes are chosen from the set of 
parameter-less functions and terminals. The terminal set is usually composed 
of variables and constants. Variables are place holders in the chromosome that 
are filled in with values during execution. Functions perform calculations or 
actions and can optionally have parameters. To generate tree-based chromo- 
somes, we use the function and terminal sets as shown in Table 3.1. 

Program trees of each individual are created in a recursive manner. Three 
methods have been suggested for the creation of the initial random population: 
full, grow, or ramped half-and-half [9]. The full method creates trees with all 
leaf nodes at  equal depth and is the method used in our implementation. The 
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Table 3.1. Contents of the function set and terminal set used by tree-based chro- 
mosome representations. 

Function Set: I~dd, Sub, Mul, Div, AND, OR, XOR, <<, >>, IFLTE 
Terminal Set: ( [SO-s71 (8 proximity sensors), 

( [lo-171 (8 ambient light sensors), 
1 [O-81921 (constants in given range) 

grow method grows trees of variable size and the ramped half-and-half method 
creates a mixture of trees with different heights through either the full or the 
grow method. 

Two genetic operators are used in the tree-based chromosome represen- 
tation: reproduction and crossover. Reproduction copies a chromosome into 
the next generation. Single subtree switching crossover is applied to the two 
fittest individuals in a tournament, with a given probability. We use a crossover 
probability of 0.9 in all tree-based chromosome representation experiments. 

3.5.2 Linear Genome GP 

Nordin [15] provided a linear genome GP system which stores 32-bit instruc- 
tions that can be executed directly on a processor. Nordin claimed the execu- 
tion speed of the Compiling Genetic Programming System (CGPS) is several 
orders of magnitude faster than of an equivalent interpreted tree-based GP 
system [15]. The major disadvantage of the CGPS system is that it is only us- 
able on a processor supporting the specific machine-code instruction set used. 
To be used on a processor with a different instruction set, the system needs to 
be either rewritten or interpreted. The CGPS was later called the Automatic 
Induction of Machine code by Genetic Programming (AIMGP) system [21]. 

The linear genome method was applied by Nordin and Banzhaf [18] to 
evolve a robotic controller for Khepera robots. The structure of our linear 
genome GP controller closely resembles the controller used by Nordin and 
Banzhaf. We represent each instruction as a text string and process it through 
a genome interpreter prior to evaluation. This encoding improves the read- 
ability of the program code compared to the binary approach of Nordin and 
Banzhaf but suffers a loss in performance due to processing of the string based 
instructions. However, the performance of the string-based representation is 
sufficient for the purpose of our research. 

In the linear genome GP system, each individual is composed of a series 
of instructions (genes). The instructions are of the following format: 

resvar = varl op (var2lconst) (3.2) 

where resvar is the result variable and op is a binary operator working on 
either two variables (varl and var2) or a variable and a constant (varl and 
const). 
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Each individual is randomly assigned a height (number of instructions) 
from 1 to the maximum specified height. For each part of an instruction, a 
value is selected randomly from a set of primitive values. Table 3.2 provides 
primitive value sets of the instruction parts used in our linear genome exper- 
iments. 

Table 3.2. Primitive values of instruction parts in the linear genome GP method. 

Part IPrimitive Value Set 
I 

intermediate variables (a - f )  

light sensor values (10 - 17) 
intermediate values (a - f )  
add (+), subtract (-), multiply (*), left shift (SHL) 
lright shift (SHR), XOR (^), OR ( I), AND (t) 

const linteger value in range: 0-8191 

The linear genome GP method employs three genetic operators: repro- 
duction, crossover and mutation. The crossover operator uses a simple vari- 
able length 2-point crossover applied to the list of instructions (genes) of two 
fittest individuals of a tournament. Genes are treated as atomic units by the 
crossover operator and are not modified internally. Simulated bit-wise muta- 
tion modifies the contents of a gene. Crossover probability of 0.9 and mutation 
probability of 0.05 are used in the linear genome experiments. 

3.5.3 Automatically Defined Functions HGP 

Koza's Automatically Defined Functions (ADFs) [ll] method is the oldest and 
most widely used HGP method. The method automatically evolves function 
definitions while evolving the main GP program that is capable of calling the 
functions. The ADF HGP method implemented in our research is based on 
the ADF method proposed by Koza. 

The ADF method has been demonstrated to be advantageous in solving 
more complex versions of problems than possible by standard GP (e.g. 6- 
parity problem) [ll]. The major disadvantage to the method is that the user 
must specify the structure of the ADF chromosomes (number of functions and 
arguments) and the function and terminal sets required by each function. In 
a true automatic HGP system, this type of information should be evolved by 
the GP rather than provided by the user. Taking the downside of ADFs into 
consideration, current research is centered around operations that automati- 
cally modify the structure of the ADF chromosome and the number of ADFs 
PI. 

The method is an extension of the tree-based GP method and shares its 
basic structure. An ADF chromosome consists of two distinct parts: the func- 
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tion defining branch, and the result producing branch. The function defining 
part is composed of one or more ADF definition branches which describe the 
structure of each ADF. The result producing branch contains the code of the 
resulting program. This code can call any function defined in the function 
defining branch of the same chromosome. Invariant nodes are fixed structural 
nodes and are present in every ADF chromosome. Non-invariant nodes define 
the bodies of the ADF definitions and the result producing branch and are 
modified during evolution. 

All ADFs defined in an individual are available locally to the program tree 
of the same individual. The number of ADFs present in each chromosome and 
the number of arguments for each ADF are specified as parameters. We use 
chromosomes with one, two, and three ADF definitions and two function argu- 
ments. Zero or multiple ADFs can be called from within the result producing 
branch. Some recursive ADF implementations allow calling of ADFs from 
within other ADFs. This leads to problems with circular evocation of ADFs 
and requires extra protection. Due to the increase of implementation complex- 
ity, we do not allow ADF calls inside ADF definitions in our implementation. 

The result producing branch is built using a standard terminal set and 
standard function set (shown in Table 3.1) augmented with the ADFs con- 
tained in the same chromosome. Separate terminal and function sets are 
used by the function defining branches to define the ADFs. The ADF branch 
function set is identical to that of the tree-based chromosome representation 
whereas the ADF terminal set is composed of ADF argument variables and 
constants. 

Tree-based reproduction and crossover genetic operators are used in the 
ADF chromosomes. The crossover operator can only swap non-invariant nodes 
of the same type using branch typing [ll]. 

3.5.4 Module Acquisition HGP 

The Module Acquisition (MA) method of Angeline and Pollack [2] employs 
two new operators of compression and expansion to modularize the program 
code into subroutines. The subroutines contained in the subroutine collection 
are frozen in time and cannot be modified during evolution of the program 
trees. The Module Acquisition method automatically generates a hierarchi- 
cal module structure [I]; however, no clear advantages of the method have 
yet been provided. Kinnear has compared MA to ADFs on the even-4-parity 
problem [8] and concluded that the method does not offer improvement in 
space or time over the ADF method. 

The chromosome structure is identical to that of the original tree-based 
chromosomes with standard tree-based function and terminal sets. Modules 
(subroutines) are created locally for each chromosome from subtrees of the 
program tree and propagate through the population solely by reproduction 
and crossover. Module nesting is allowed inside program trees of other mod- 
ules; however, by the nature of their creation, modules are not recursive. 
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The Module Acquisition method employs four genetic operators: repro- 
duction, crossover, and two mutation operators of compression and expansion. 
The reproduction and crossover operators perform as for tree-based chromo- 
somes. The compression operator creates a new subroutine from a randomly 
selected subtree of an individual in the population using depth compression 
[I]. We use a maximum depth value from range 2-5. Branches beyond the 
maximum depth are used as parameters to the new subroutine. 

Since the compression operator lowers the diversity of the population by 
removing subtrees, an expansion operator is also provided to counteract the 
negative effects. The expansion operator reverses the process of the compres- 
sion operator by substituting the original subtree for a subroutine call in the 
chromosome tree. The subroutine is removed from the module list of the chro- 
mosome if it is no longer used. 

The special mutation operators are applied after the standard tree-based 
reproduction and crossover operators. We set the probability of compression 
to 0.1 and probability of expansion to 0.01. 

3.5.5 Adaptive Representation HGP 

Rosca and Ballard proposed the Adaptive Representation method to dynami- 
cally extend the function set with identified building blocks [25]. The method 
uses standard tree-based representation and searches for blocks of code (de- 
fined as subtrees of a given maximum height). Blocks are parameterized into 
functions by substituting each occurrence of a terminal by a variable. Unlike 
in the ADF HGP approach, the functions are discovered automatically and 
without human-imposed structure. The method differs from the MA HGP 
approach by the algorithms used in function discovery and management of 
the function library. Our implementation of the AR method is based on the 
improved Adaptive Representation through Learning (ARL) algorithm [26]. 

The method works by incrementally checking the population for fit build- 
ing blocks. Block fitness is dependant on the performance of the individual 
where the block resides (and, thus, the block) or the performance of a part of 
the individual (e.g. using a block fitness function). Evolution is done in epochs 
which are defined as sequences of consecutive generations where no fit build- 
ing blocks are discovered. At the end of each epoch (i.e. after a discovery of 
a candidate building block) a proportion of the population (constituting the 
lowest performing individuals) is replaced by individuals that are randomly 
generated from the new extended function set. Rosca and Ballard provide the- 
oretical discussion on the usefulness of their approach in improving the speed 
of evolution over standard GP [25]. It is unclear, however, how to discover 
candidate building blocks without additional domain knowledge. 

The structure of the ARL chromosome program trees is identical to that of 
the tree-based GP method. The function set is dynamically extended by the 
evolutionary algorithm through creation of new functions. Nesting of functions 
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is allowed; however, recursive function calls are not possible due to the function 
creation method. 

The main advantage of the ARL algorithm is the automatic discovery 
of useful subroutines through the concepts of differential fitness and block 
activation [24]. Differential fitness is defined as the difference in fitness between 
an individual and its least fit parent. Rosca states that large differential fitness 
can be the result of useful combinations of blocks of code in the individual [24]. 
Block activation is defined as the number of times a block of code is executed 
during evaluations of the individual. Rosca states that only blocks with high 
block activation values should be considered candidate blocks. We do not 
implement the concept of block activation because of the large performance 
overhead on the system. 

In our implementation of the ARL algorithm, we select the most promising 
individual (based on differential fitness) from the set of promising individuals 
discovered during the last generation. Candidate blocks of small height (tree 
height of 3) are chosen from the most promising individual. The blocks are 
generalized into subroutines which extend the function set. 

Rosca [24] computes subroutine utility which is analogous to schema fitness 
for subroutines. The utility is defined as the accumulation of rewards for a 
subroutine over a fixed time window and is calculated by a special utility 
function. Using subroutine utility, low performing subroutines are removed 
from the function set. We implement a simpler measure of subroutine utility 
by assigning to each subroutine an integer utility value denoting the number 
of generations until an unused subroutine is removed from the function set. 
Utility value of each unused subroutine is decremented each generation until 
it reaches 0 and the subroutine is removed from the population. 

The run of the ARL algorithm is divided into epochs which were defined 
as sequences of consecutive generations in which no new candidate building 
blocks are discovered [25]. The ARL algorithm provides a concrete definition 
of epoch creation using population entropy [23] which provides a measure 
of the state of a dynamic system represented by the population. Rosca [23] 
compares the population-based dynamic system to a physical or informational 
system with similar behavior. 

In our implementation, entropy is measured by grouping individuals of the 
population into a set of classes based on their behavior (phenotype). Shannon's 
formula is then used to calculate the entropy: 

where pk is the proportion of the population P grouped into partition k. En- 
tropy is usually computed based on raw individual fitness; however, we could 
not use raw fitness because of the dynamic nature of our fitness calculation. 
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We compute a standardized fitness measure through an average of three 
fixed test cases. Each test case provides resulting robotic motor values from 
individual evaluation on a fixed set of input sensors. We then partition the 
individuals into 20 categories based on their standardized fitness measures. 
The population entropy value is calculated by applying Shannon's formula on 
the partition categories. 

The measure of population entropy is important since it correlates to the 
state of diversity in the population during a GP run. Drops in population 
entropy signify drops in population diversity. The ARL method tries to coun- 
teract the drops in population entropy by creation of new individuals. The 
start of a new epoch is decided using a static entropy threshold of 1.5. New 
epoch begins and subroutines are discovered when the entropy value of the 
population falls below the threshold. 

After the discovery of new subroutines, the function set is extended by 
the new functions. The ARL method generates random individuals using the 
new function set. The new individuals replace a fixed proportion of the worst 
performing individuals in the population. We use a replacement fraction of 
0.2 in our experiments. Genetic operators of reproduction and crossover are 
similar as for the tree-based method. 

3.6 Results 

3.6.1 Obstacle Avoidance 

The task of obstacle avoidance is important for many real-world robotic appli- 
cations. Robotic exploratory behavior requires some degree of obstacle avoid- 
ance to detect and manoeuver around obstacles in the environment. We define 
obstacle avoidance as robotic behavior steering the robot away from obstacles 
in the testing environment. For the Khepera robot, this task is equivalent to 
minimizing the values of the proximity sensors while moving in the environ- 
ment. 

We select a fitness function based on the work of Banzhaf et al. [4]. The 
function is composed of two opposite parts: pain and pleasure. The pleasure 
part is computed from motor values and encourages the robot to move in 
the environment using straight motion. The pain part is composed of sensor 
values and punishes the robot for object proximity. The fitness function can 
be expressed as an equation: 

where ml and m2 are motor values and so to s7 are proximity sensor values. 
The value of a! is set to 10 and value of P to 1. Parameter values were chosen 
based on tuning experiments. 
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Various robotic behaviours are observed while learning the obstacle avoid- 
ance task. We subdivide the learned behaviours into groups based on the 
complexity and success rate of each behavior. The simplest (Type 1) be- 
haviours are solely based on the blind movement of the robot (straight, 
backup, curved). The second level (Type 2) of behaviour (circling, bouncing, 
forward-backup) includes behaviours with noticeable use of sensor data. The 
highest level (Type 3) of behaviour is called sniffing and demonstrates obsta- 
cle detection and avoidance. The perfect sniffing behaviour involves obstacle 
sniffing and straight motion behaviours that combine into smooth obstacle 
avoidance motion around the entire testing environment. Summary of the 
observed behaviours is provided in Fig. 3.2. 

straight curved backup 

circling bouncing sniffing 

Fig. 3.2. Summary of behaviours learned during experimentation with the Khepera 
robot. 

In our analysis of method performance, we examine population entropy 
stability, average chromosome complexity stability, and average generation of 
initial behaviour occurrence. Entropy and complexity stability is defined as a 
gradual change of the measured values over time without large abrupt value 
changes. 

For the obstacle avoidance task, the representation method with the most 
stable entropy values is the ARL method. The linear genome and ADF meth- 
ods also provide long, stable entropy values but with larger variations. The MA 
and tree-based representations provide the worst stability with large drops of 
entropy values. Most stability in the average chromosome size values is seen 
with the linear genome method. Among the HGP methods, the most stable 
complexity measures are seen with the ARL method and least stable with the 
MA method. 

Type 2 and 3 behaviours are analyzed to calculate average generation 
values of first occurrence of the behaviours. We do not take into consideration 
Type 1 behaviours since they are not directly applicable to the studied task. 
Summary of the results of our behaviour calculation can be found in Fig. 
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3.3. The method with best (smallest) values is the ARL HGP method and 
with worst (largest) values is the linear genome GP method. Overall, the 
HGP methods perform comparable to the tree-based GP method. Trace run 
of perfect evolved obstacle avoidance behaviour is shown in Fig. 3.4. 

Obstacle Avoidance - Initial Behaviour Occurrence 

-1 

1 Linear Tree ADF MA ARL 

Fig. 3.3. Graphs of minimum, maximum, and average generations of first detection 
of Type 2 and 3 obstacle avoidance behaviour for each chromosome representation 
method. 

Fig. 3.4. Trace runs of perfect evolved obstacle avoidance behaviour in various 
testing environments. 
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3.6.2 Wall Following 

The task of wall following allows the robot to perform more difficult and inter- 
esting behaviours such as maze navigation. The purpose of the wall following 
task is to teach the robot to walk around the boundaries of obstacles with a 
certain desirable distance away from the obstacles. The learned task should 
include some obstacle avoidance behaviour; however, that is not the main 
requirement of the experiments. 

The wall following fitness function is composed of a sensor part and a motor 
part. The sensor part computes a sensor value from a subset of the robotic 
sensor values. The motor part is calculated by computing an absolute motor 
sum minus the absolute value of the difference. The fitness function is provided 
in Fig. 3.1. In our experiments, we set the values for the free parameters of 
the fitness function as follows: Viai = 1, o = 100, p = 1. Parameter values and 
fitness function definition were chosen based on tuning experiments. 

Algorithm 3.1 Wall Following Fitness Function 
input: Left = a0 . s o  + a1 . sl + a2 . sz, 

Right = a5 . s5 + a4 . s4 + a3 .s3,  

MotorPart = lmll + lmzl - Iml - mzl; 
output: Fitness; 
1. if (Right i 1023) 
2. RightSensorPart = 1000 - Right; 
3. else if (Right i 20) 
4. RightSensorPart = (1000/20) * Right; 
5 .  else 
6. RightSensorPart = 1000; 
7. if (Left i 1023) 
8. LeftSensorPart = 1000 - Left; 
9. else if (Left i 20) 
10. LeftSensorPart = (1000/20) * left; 
11. else 
12. LeftSensorPart = 1000; 
13. Fitness = a. MotorPart + ,& (RightSensorPart + LeftSensorPart); 

Only six sensors (so - s5)  are used in calculating the sensor part of the fit- 
ness calculation. The sensors represent the side and front sensors of the robot. 
The calculated sensor part value acts as either pleasure or pain depending on 
the sensor values. The robot is punished when it is either too far away from 
a wall or too close to it. The training environment consists of a long, straight 
stretch of corridor and curved environment boundaries. 

Summary of observed behaviours is provided in Fig. 3.2. We partition 
the behaviours into categories based on their relative performance and suc- 
cess. The Type 1 category is of poor wall following behaviour and consists of 
simple wall-bouncing and circling behaviours. The Type 2 category of good 
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wall following behaviour contains wall-sniffing and some maze following. The 
best behaviour category, Type 3, consists of perfect maze following behaviour 
without wall touching. 

The most stable entropy is noticed in experiments using the ARL HGP 
method. The least stable entropy is observed using the ADF method and 
includes a large initial drop of entropy values to a low, stable level. Good 
stability of average size values is seen in the linear genome GP and ARL HGP 
methods. The largest drops in average chromosome size are noticed with the 
MA method. 

We calculate average generation values of first occurrence of Type 2 and 
3 behaviours. Type 1 category bahaviour is not directly applicable to the 
studied task. Summary of our behaviour calculation can be found in Fig. 3.5. 
The ARL method produces the best average results with smallest deviation 
whereas the worst performance is seen using the MA method. Trace run of 
perfect evolved maze-following behaviour is shown in Fig. 3.6. 

Wall Following - Initial Behaviour Occurrence 

300 - .......................................................................................................... 

n 

Linear Tree ADF MA ARL 

Fig. 3.5. Graphs of minimum, maximum, and average generations of first detec- 
tion of Type 2 and 3 wall following behaviour for each chromosome representation 
method. 

3.6.3 Light Avoidance 

The light avoidance task is similar to the obstacle avoidance task but relies 
on the ambient light sensors of the robot instead of the proximity sensors. 
The source of light in the training and testing environments is composed of 
overhead lamps that cannot be touched by the robot. The robot must learn 
to stay inside an unlit section of the world environment while moving as much 
as possible. 

The fitness function for light avoidance is derived from the fitness func- 
tion for the obstacle avoidance task. The function contains a pleasure part 
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Fig. 3.6. Trace run of perfect evolved maze-following behaviour. 

computed from the motor values of the robot and a pain part computed from 
the light sensors. Proximity sensors are not part of the fitness evaluation. A 
formal definition of the function is given as: 

7 

Fitness = a(Jml1 + lmzl - Iml - ma)) - P(4000 - 1,) (3.5) 
2=0 

where ml and ma are motor values and lo to l7 are ambient light sensor 
values. We set a default value of 10 for a and default value of 1 for ,B in 
our experiments. Because of the definition of light sensor values (with 0 as 
maximum light and 500 as minimum), we subtract the sensor sum from 4000 
(8 sensors of 500 value each) to make the fitness function behave similar to the 
fitness function for obstacle avoidance. Parameter values were chosen based 
on tuning experiments. 

The training environment is composed of a rectangle of darkness sur- 
rounded by lights and a circular light island in the middle of the darkness 
area. The testing environment contains a similar dark rectangular area with- 
out the middle island. 

We subdivide the learned behaviours of the robots into two categories. 
The Type 2 category of behaviour consists of circular, oval or uneven robot 
maneuvers with low degree of light detection and avoidance. Type 3 behaviour 
classifies definite light detection and avoidance behaviours. Perfect behaviour 
usually consists of travelling around the boundary of the dark area in the 
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testing environment. Summary of possible behaviours can be found in Fig. 
3.2 with the substitution of light boundaries for obstacle boundaries. 

The most stable entropy is noticed with the linear genome method and the 
least stable with the ADF method. Most stable average size values are noticed 
using the ARL method. The linear genome and tree-based representations also 
provide quite stable average size behaviour. The worst average size stability 
is seen with the MA representation method. 

Results with Type 2 and 3 light avoidance behaviour are processed to cal- 
culate average generation values of first occurrence of the behaviour. Summary 
of our behaviour calculation results can be found in Fig. 3.7. The best (lowest) 
values are from experiments using the ARL method while the worst (highest) 
values are from linear genome experiments. The HGP methods perform com- 
parable to or better than the tree-based method. Trace runs of perfect evolved 
light avoidance behaviour are shown in Fig. 3.8. 

I Light Avoidance - Initial Behaviour Occurrence 

Linear Tree ADF MA ARL 

Fig. 3.7. Graphs of minimum, maximum, and average generations of first detection 
of Type 2 and 3 light avoidance behaviour for each chromosome representation 
method. 

3.7 Summary 

Our research deals with evolution of robotic controllers for the Khepera robot. 
We are interested in the population of individuals making up the robotic 
controller. The reactive robotic control problem provides a challenge to the 
genetic programming paradigm. With the lack of test cases for fitness function 
evaluation, the fitness of an individual can differ greatly depending on the 
immediate neighbourhood of the robot. The definition of the fitness function 
can influence the population contents and thus the resulting behaviours. 
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Fig. 3.8. Trace runs of perfect evolved light avoidance behaviour in different testing 
environments. 

Robotic controllers often over-adapt to the training environment. This 
problem of overfitting is a common problem in genetic programming. A choice 
of proper training environment for a particular task is thus very important. 
From our obstacle avoidance and wall following task learning experiments, we 
notice that sharp corners of the environment form an area of difficulty for the 
robotic controller. This is probably caused by a corner fitting between the 
fields of view of the proximity sensors. 

The population entropy value is an important indicator of population di- 
versity in our experiments. Good trained behaviour is found in populations 
with relatively high entropy value (above 0.6). Low entropy value signifies 
convergence in the population which usually accompanies a convergence to a 
low average chromosome size. Populations of individuals with low chromosome 
size do not contain enough information to successfully search for a good so- 
lution. No special measures are taken to prevent bloating in our experiments; 
however, a maximum tree height (or maximum number of instructions for the 
linear genome method) is specified for each chromosome. 

We examine three HGP learning methods: Automatically Defined Func- 
tions (ADF), Module Acquisition (MA), and Adaptive Representation through 
Learning (ARL) and two GP methods: tree-based and linear genome. Robotic 
controllers using each method are able to evolve some degree of proper be- 
haviour for each learning task. Summary of method performance is available 
in Table 3.3. We treat the treebased method as a basis for evaluating the per- 
formance of the linear genome and HGP methods. We define the behaviour 
of the tree-based method as average. Sample plots of population entropy and 
chromosome complexity observed in tree-based experiments are provided in 
Fig. 3.9. 

The best entropy and best average size stability is seen with experiments 
using the ARL method (see Fig. 3.10). The worst entropy behaviour is seen 
mainly with the ADF method (as shown in Fig. 3.11) but also with the MA 
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Table 3.3. Summary of results from our experiments for each of the studied meth- 
ods. Behavioural performance is based on first occurrence of good evolved behaviour. 
Methods are compared based on relative performance. 

Method lEntropy StabilitylSize Stabilitj 

Tree GP average average 
ADF HGP average 
MA HGP average 

Behavioural Performance 

poor 
average 
average 
average - 

ARL HGP 1 excellent I excellent I - 
excellent 

Fig. 3.9. Graphs of entropy and average size vs. the number of generations in a 
sample run using the tree-based method. 

and tree-based methods. The worst average size behaviour is noticed with the 
MA method for all the studied tasks (see Fig. 3.12). 

Fig. 3.10. Graphs of entropy, average size, average SC and average EC vs. the 
number of generations using the ARL method. 

Throughout most of our experiments, the linear genome method enforces 
a stable level of entropy and average chromosome size (as seen in sample 
plot of Fig. 3.13). This behaviour is probably due to the different crossover 
operator in the linear genome method than in the tree-based methods and 
by the additional mutation operator. Because of the stable entropy levels, 



3 Evolution of Khepera Robotic Controllers 65 

Fig. 3.11. Graphs of entropy, average size and average EC vs. the number of gen- 
erations in a sample run using the ADF method. 

Fig. 3.12. Graphs of entropy, average size, average SC and average EC vs. the 
number of generations in a sample run using the MA method. 

populations of 50 individuals are enough to provide stable behaviour for many 
generations. 

Population Entropy- hear genome 

2.5 j..-" .- ................................................. 

c h r o m m s  Conplexny. linear genome I 

Fig. 3.13. Graphs of entropy, average size, average SC and average EC vs. the 
number of generations using the linear genome method. 

With the tree-based chromosome representations, entropy value stability 
depends on the definition and parameter values of the fitness function. Ten- 
dency toward smaller program sizes is seen with the half-and-half chromosome 
creation method or the full method with small sized populations. To keep pro- 
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gram sizes and entropy at high values for reasonable time, we need to evolve 
populations of 100 or more individuals (with the exception of the ARL method 
discussed below). 

The average generation values of initial good behaviour occurrence are 
usually highest with the linear genome method. However, the methods are 
based on different population sizes and individual sizes so it is difficult to 
draw conclusions from the raw results. With our implementation of the linear 
genome method (through a genome interpreter) the evolution time is similar 
to the time using the tree-based representation (with equivalent population 
size and tree size settings). The main difference between the methods is the 
contents of the function sets. 

The ADF method uses a predefined, constant function set containing one 
or more ADFs. Function call acquisition occurs only through crossover with 
individuals of the population. The ADFs inside individuals showing proper 
evolved behaviour are usually quite large and complex with no noticeable 
patterns. It is possible that in our experiments the ADFs only provide few 
extra tree levels of instructions. The ADF method runs provided performance 
that was usually below that of the tree-based method and sometimes the worst 
of all HGP methods. Fig. 3.14 shows the code of a sample ADF program taken 
from a population with learned light avoidance behaviour. 

The slowest method of function creation is the MA method. Most of the 
individuals in the population with proper evolved behaviour do not contain 
any of the functions in the module set. The creation of functions produces 
program size loss which in turn often lowers the entropy of the population. 
The behavioural performance of the MA method is usually worse than that 
of the tree-based method. Since similar experimental settings are used for the 
two methods, we can deduce that the function creation of our MA method 
disrupted the task learning instead of helping it. Fig. 3.15 shows the code of 
a sample MA program taken from a population with learned wall following 
behaviour. 

The ARL method displays the most stable entropy and average chromo- 
some size behaviour in most experiments. This stable behaviour is observed 
only with function creation, thus we think that the function creation and new 
individual creation processes are responsible for the stability. The method also 
achieves the best time and smallest deviation to reach good evolved behaviour 
in most experiments. 

The number of functions created by the ARL algorithm depend on each 
run but do not grow monotonically as first expected. The function set grows 
and shrinks throughout the runs of the algorithm. The functions usually con- 
tain simple arithmetic operators working on function parameters. Many of 
the functions from populations with proper evolved behaviour contain divi- 
sion and addition operators that seem to calculate some form of ratio of the 
function parameters. Since such ratios can be helpful in all of our studied 
tasks, we think that some of the evolved functions are of benefit to the indi- 
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Fig. 3.14. Code of a sample ADF program from population showing light avoid- 
ance behaviour. ADF function definition shows characteristic large size and complex 
format. 

viduals. Code of a sample ARL program taken from a population with learned 
obstacle avoidance behaviour can be found in Fig. 3.16. 

Algorithms and strategies of solving problems can usually be improved to 
yield better solutions. Our research enables us to indicate areas of possible 
improvement to the studied genetic programming algorithms for the domain 
of robotic control. We feel that population diversity (entropy) stability, chro- 
mosome size stability, and proper fitness evaluation are the most important 
attributes of a well functioning genetic programming robotic controller train- 
ing system. Entropy and chromosome size values should be relatively stable so 
that they remain at  reasonable levels for a reasonable number of generations. 
Stability of those values depends on the definition of the fitness function and 
on the controller settings. 

Modification of fitness function parameters leads to strong statistical and 
behaviour changes in the evolving population. Definition of the fitness function 
is thus a very important aspect for evolution of correct solutions. We choose 
the fitness function definitions and parameter values that produce the best 
performance in trial runs. However, more testing of fitness functions and their 
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Fig. 3.15. Code of a sample MA program from population showing wall following 
behaviour. 

values 
+ 
so 
9 

Fig. 3.16. Code of a sample ARL program from population showing obstacle avoid- 
ance behaviour. Characteristic ARL functions are visible. 
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parameters should be done to identify the optimal settings for each learning 
task. 

The ADF method builds ADFs of initial size equivalent to the main pro- 
gram body. We feel that smaller building blocks (functions) are more useful 
for robotic controllers. The sizes of the ADFs do not decrease well enough be- 
fore the population prematurely converges. We think that it would be best to 
specify a smaller initial and maximum size of the ADFs so that the functions 
require less time to find optimal configurations. 

We feel that the poor performance of the MA method is due to the creation 
of modules which lowers the average program tree size. Since no mechanism 
exists to counteract this loss of program size and accompanying loss of en- 
tropy, the population often converges prematurely to suboptimal solutions. 
We propose that the probability-based compression and expansion operator 
invocation of the MA method be replaced by a need-based operator invoca- 
tion (similar to that found in the ARL method). This new operator invocation 
should lead to better performance through adjustments of operator frequen- 
cies based on population needs. 

The ARL method contains a mechanism to neutralize the bad effects of 
function creation. Thus, the method exhibits very stable entropy and average 
size behaviours while quickly evolving high performing robotic controllers. The 
creation of random individuals using the enriched function set at the start of 
a new epoch provides the genetic algorithm with fresh search material. The 
functions found in the adaptive representation step of the algorithm are small 
and seem better building blocks than the functions in the ADF method. We 
feel that best performance can be achieved by some kind of a dynamically 
evolving entropy threshold calculation. 

Influx of random individuals to the population during evolution can lead 
to problems. Too many new random individuals can destabilize good solu- 
tions present in individuals of the previous population. We think that a low 
replacement fraction used with elitism of best individuals should produce the 
optimal evolutionary balance. Elitist individuals would always be copied into 
a new population and would ensure that the fittest individuals are not lost 
between generations. 

Variation in the population can also be achieved by using a mutation 
operator for the tree-based representation methods. The mutation operator 
can quickly add subtle variety to the population. The crossover operator can 
perform similar mutations but with a lower probability of success based on 
the size and structure of the program tree. 

Future work with the Khepera GP Simulator involves formulation of a 
proper physics model to study object interaction tasks. Modification of the 
simulation engine for multi-threaded robot simulations would enable proper 
real-time multi-robot simulation. With the use of a real Khepera robot, we 
hope to add serial Khepera interface to the simulator and validate the cor- 
rectness of our Khepera simulation engine. 
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In this work, we evolve reactive, memoryless robotic controllers. Our re- 
sults indicate tha t  the  controllers can be trained to  exhibit some level of 
proper behaviour for the studied tasks. The extension t o  this research would 
be t o  study memory-based robotic controllers that  can store previous actions 
and use them t o  decide future behaviour. Such controllers using the linear 
genome method have been shown in [20] to  successfully and quickly evolve 
more complex behaviours than a memoryless controller. 

We would also like to  use a real Khepera robot to  verify our results. Phys- 
ical robots train in a noisy and sometimes unpredictable environment and 
would provide a real world test case for our research. Because of the  reactive 
learning system, the simulator and robotic controllers can be easily modified 
t o  perform experiments with a real Khepera robot. 
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