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Multi Expression Programming is a Genetic Programming variant that uses 
a linear representation of individuals. A unique feature of Multi Expression 
Programming is its ability of storing multiple solutions of a problem in a sin- 
gle chromosome. In this chapter, we propose and use several techniques for 
improving the search performed by Multi Expression Programming. Some of 
the most important improvements are Automatically Defined Functions and 
Sub-symbolic node representation. Several experiments with Multi Expres- 
sion Programming are performed in this chapter. Numerical results show that 
Multi Expression Programming performs very well for the considered test 
problems. 

10.1 Introduction 

Multi Expression Programming (MEP)' [ l l ,  12, 131 is a new and very effi- 
cient technique that may be used for solving difficult real-world problems. A 
unique feature of MEP is its ability of storing multiple solutions of a prob- 
lem in a single chromosome. As shown in [ l l ] ,  this feature does not increase 
the complexity of the decoding process when compared to other Genetic Pro- 
gramming (GP) [7, 81 variants that store a single solution in a chromosome 
(such as Gene Expression Programming (GEP) [ 5 ] ,  Genetic Algorithms for 
Deriving Software (GADS) [16], Grammatical Evolution (GE) [14], Cartesian 
Genetic Programming (CGP) [lo]). 

The MEP technique has been efficiently used for solving symbolic regres- 
sion problems [ll] and even-parity problems [13]. 

MEP source code is available at www.mep.cs.ubbc1uj.ro. 
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Parity problems arise in many practical applications related to the infor- 
mation technology, especially when data need to be safely transmitted over 
a network. According to [7] the Boolean even-parity functions are the most 
difficult Boolean functions to detect via a blind random search. Due to this 
reason, the ability of the evolutionary algorithms of performing an efficient 
search in the solutions space can be tested using this problem as a benchmark. 

In [13], the MEP has been used for solving even-3 and even-4-parity prob- 
lems. In this chapter we propose and use several techniques for improving the 
search performed by Multi Expression Programming. Some of these techniques 
are: 

(i) Automatically Defined Functions (ADFs) [7]. 
(ii) Sub-Symbolic Node Representation [18]. 

Numerical experiments performed in this chapter include the use of MEP 
for solving the even-parity instances from even-3 up to even-18-parity. 

MEP without ADFs was able to solve (using a reasonable population and 
within a reasonable timeframe) up to even-5-parity problem. When Automati- 
cally Defined Functions are employed a considerable improvement is obtained, 
allowing us to evolve a solution for up to even-8-parity problem. More improve- 
ments are done when a Sub-symbolic node representation was employed. 

Results of the numerical experiments are compared to those provided by 
Genetic Programming [7, 8, 181. It can be easily seen that Multi Expression 
Programming outperforms Genetic Programming with more than one order 
of magnitude. Note that a perfect comparison between MEP and GP cannot 
be made due to the incompatibility of respective representations. 

The chapter is organized as follows. In section 10.2 the Even-Parity prob- 
lem is described. The Multi Expression Programming technique is briefly de- 
scribed in section 10.3. The metrics used to assess the performance of the MEP 
algorithm are described in section 10.4. Several numerical experiments with 
MEP for solving the even-3, even-4 and even-5-parity problems are performed 
in section 10.5. Automatically Defined Functions for MEP are introduced in 
section 10.6. Several numerical experiments with MEP and ADFs are per- 
formed in section 10.7. The sub-symbolic node representation and the smooth 
operators are introduced in section 10.8. Numerical experiments with MEP 
and sub-symbolic node representation are performed in section 10.9. Conclu- 
sions and the further work directions are suggested in section 10.10. 

10.2 Problem Statement 

Our aim is to find a Boolean function that satisfies a set of fitness cases. The 
particular function that we want to find is the Boolean even-parity function. 
This function has k Boolean arguments and it returns T (True) if an even 
number of its arguments are T. Otherwise the even-parity function returns F 
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(False) [7, 181. According to [7] the Boolean even-parity functions appear to 
be the most difficult Boolean functions to detect via a blind random search. 

In applying a Genetic Programming technique (particularly Multi Expres- 
sion Programming) to the even-parity function of k arguments, the terminal 
set T consists of the k Boolean arguments do, dl, dz, ... dk-1. 

The function set F usually consists of four two-argument primitive Boolean 
functions (also called gates [9]): AND, OR, NAND, NOR [7, 81. Using this 
set we can obtain a solution for small instances of the even-parity problem. 
Genetic Programming with Automatically Defined Functions has obtained 
a solution for up to even-11-parity problem using a reasonable population 
size. If we extend this set by including other Boolean functions (such as EQ 
and XOR) we can obtain solutions for larger instances. For instance, in [18] 
Genetic Programming using an extended set of function symbols has been 
used for solving up to even-22-parity problems. Note that in this case a parallel 
variant of GP was used on a network of computers structured in a client-server 
architecture. 

The set of fitness cases for this problem consists of the 2k combinations of 
the Ic Boolean arguments. The fitness of an MEP chromosome is the sum, over 
these 2k fitness cases, of the Hamming distance (error) between the returned 
value by the MEP chromosome and the correct value of the Boolean function. 
Since the standardized fitness ranges between 0 and 2k, a value closer to zero 
is better (the fitness is to be minimized). 

10.3 Multi Expression Programming 

In this section the Multi Expression Programming (MEP) [ll] paradigm is 
briefly described. 

10.3.1 Individual Representation 

MEP genes are represented by substrings of a variable length. The number 
of genes per chromosome is constant and it defines the length of the chromo- 
some. Each gene encodes a terminal or a function symbol. A gene encoding a 
function includes references towards the function arguments. Function argu- 
ments always have indices of lower values than the position of that function 
in the chromosome. 

This representation is similar to the way in which C and Pascal compilers 
translate mathematical expressions into machine code [I]. 

MEP representation ensures that no cycle arises while the chromosome 
is decoded (phenotypically transcripted). According to the representation 
scheme the first symbol of the chromosome must be a terminal symbol. In 
this way only syntactically correct programs (MEP individuals) are obtained. 
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Example. We employ a representation where the numbers on the left positions 
stand for gene labels (or memory addresses). Labels do not belong to the 
chromosome, they are provided here only for explanation purposes. 

For this example, we use the set of functions F = {+, *) and the set of 
terminals T = {a, b, c, d). An example of chromosome using the sets F and 
T is given below: 

10.3.2 Decoding MEP Chromosome and Fitness Assignment 

In this section we described the way in which MEP individuals are translated 
into computer programs and the way in which the fitness of these programs 
is computed. 

This translation is achieved by reading the chromosome top-down. A termi- 
nal symbol specifies a simple expression. A function symbol specifies a complex 
expression obtained by connecting the operands specified by the argument po- 
sitions with the current function symbol. 

For instance, genes 1, 2, 4 and 5 in the previous example encode simple 
expressions formed by a single terminal symbol. These expressions are El = a, 
Ez = b, E4 = c and Eg = d. Gene 3 indicates the operation + on the 
operands located at positions 1 and 2 of the chromosome. Therefore gene 
3 encodes the expression E3 = a + b. Gene 6 indicates the operation + on the 
operands located at positions 4 and 5. Therefore gene 6 encodes the expression 
E6 = c + d. Gene 7 indicates the operation * on the operands located at 
position 3 and 6. Therefore gene 7 encodes the expression E7 = (a + b) * (c+ d), 
wherein E7 is the expression encoded by the whole chromosome. 

There is neither practical nor theoretical evidence that one of these ex- 
pressions is better than the others. Moreover Wolpert and McReady [20, 211 
proved that we cannot use the search algorithm's behavior so far for a par- 
ticular test function to predict its future behavior on that function. Thus we 
cannot choose one of the expressions (let us say expression E7) to store the 
output of the chromosome. Even this expression proves to be useful for the 
first 10 generations we cannot guarantee that it will be the best option for all 
generations. 

This is why each MEP chromosome is allowed to encode a number of 
expressions equal to the chromosome length. Each of these expressions is con- 
sidered as being a potential solution of the problem. 
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The value of these expressions may be computed by reading the chromo- 
some top down. Partial results are computed by Dynamic Programming [2] 
and are stored in a conventional manner. 

As MEP chromosome encodes more than one problem solution, it is in- 
teresting to see how the fitness is assigned. Usually the chromosome fitness is 
defined as the fitness of the best expression encoded by that chromosome. For 
instance, if we want to solve symbolic regression problems the fitness of each 
sub-expression Ei may be computed using the formula: 

where ok,i is the obtained result by the expression Ei for the fitness case k 
and wk is the targeted result for the fitness case k. In this case the fitness 
needs to be minimized. 

The fitness of an individual is set to be equal to the lowest fitness of the 
expressions encoded in chromosome: 

When we have to deal with other problems we compute the fitness of 
each sub-expression encoded in the MEP chromosome and the fitness of the 
entire individual is given by the fitness of the best expression encoded in that 
chromosome. 

10.3.3 Genetic Operators 

Search operators used within MEP algorithm are crossover and mutation. 
These operators preserve the chromosome structure. All offspring are syntac- 
tically correct expressions. 

Crossover 

By crossover two parents are selected and recombined. For instance, within 
the uniform recombination the offspring genes are taken randomly from one 
parent or another. 

Example. Let us consider the two parents Cl and C2 given in Table 10.1. The 
two offspring O1 and O2 are obtained by uniform recombination as shown in 
Table 10.1. 

Mutation 

Each symbol (terminal, function or function pointer) in the chromosome may 
be the target of mutation operator. By mutation some symbols in the chro- 
mosome are changed. To preserve the consistency of the chromosome its first 
gene must encode a terminal symbol. 
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Table 10.1. MEP uniform recombination. 

Parents Offspring 

Example. Consider the chromosome C given in Table 10.2. If the boldfaced 
symbols are selected for mutation, an offspring 0 is obtained as given in Table 
10.2. 

Table 10.2. MEP mutation. 
c 0 

10.3.4 MEP Algorithm 

Standard MEP algorithm uses steady state [19] as its underlying mechanism. 
MEP algorithm starts by creating a random population of individuals. The fol- 
lowing steps are repeated until a given number of generations is reached. Two 
parents are selected using a selection procedure. The parents are recombined 
in order to obtain two offspring. The offspring are considered for mutation. 
The best offspring replaces the worst individual in the current population if 
the offspring is better than the worst individual. The algorithm returns as its 
answer the best expression evolved along a fixed number of generations. 

10.4 Assessing the Performance of the MEP Algorithm 

For assessing the performance of the MEP algorithm three statistics are of 
high interest: 
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(i) The relationship between the success rate and the number of genes in a 
MEP chromosome, 

(ii)The relationship between the success rate and the size of the population 
used by the MEP algorithm, 

(iiiphe computational effort. 

The success rate is computed using the equation (10.1). 

The number o f successful runs 
Success rate = 

The total number of  runs 
' (10.1) 

Another method used to assess the effectiveness of an algorithm, has been 
suggested by Koza [7]. The method consists of calculating the number of 
chromosomes, which would have to be processed to give a certain probability 
of success. To calculate this figure one must first calculate the cumulative 
probability of success P(M,  i), where M represents the population size, and i 
the generation number. The value R(z) represents the number of independent 
runs required for a probability of success (given by z )  at  generation i. The 
quantity I (M,  z, i )  represents the minimum number of chromosomes which 
must be processed to give a probability of success z, at generation i. The 
formulae are given by the equations (10.2), (10.3) and (10.4). Ns(i) represents 
the number of successful runs at  generation i, and Ntotal, represents the total 
number of runs. Note that when z = 1.0 the formulae (10.3) and (10.4) are 
invalid (all runs successful). In the tables and graphs of this chapter z takes 
the value 0.99. 

log(1 - 2) 
R(z) = ceil { log(1- P(M,  i )  

Another important issue is related to the number of function evaluations 
performed by the considered techniques (MEP and GP in our case). Due to 
its special Multi-Expression ability MEP performs more function evaluations 
than GP (considering the same parameters for both algorithms). But, note 
that 1 function evaluation performed by MEP is not equivalent with 1 function 
evaluation performed by GP. MEP and GP have the same complexity for the 
process of decoding the individuals (that is O(NG), where NG is the number 
of genes). MEP encodes NG solutions in a chromosome whereas GP encodes 
1 solution in a chromosome. Thus, the complexity of performing 1 function 
evaluation is O(1) for MEP and O(NG) for GP. This is why we calculate 
the computational effort for both MEP and GP using the same formula 10.4 
without taking into account the number of genes in a MEP chromosome. 
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10.5 Numerical Experiments 

In this section we perform several experiments with standard MEP for solving 
several instances of the even-parity problem. General parameter settings for 
MEP are given in Table 10.3. 

Table 10.3. General parameters of the MEP algorithm for solving even-parity 
problems. 

Parameter Value 
Number of generations 51 
Mutation probability 0.2 
Crossover type Uniform 
Crossover probability 0.9 
Selection q-tournament (q = 10% of the Population size) 
Function set F = {AND, OR, NAND, NOR) 

For reducing the chromosome length we keep all the terminals on the first 
positions of the MEP chromosomes. We also increased the selection pressure 
by using larger values (usually 10% of the population size) for the tournament 
sample. 

Even-3- parity 

The even-3-parity problem has three Boolean inputs and one Boolean output. 
The number of fitness cases is 23 = 8. The relationship between the success 
rate and the number of genes in a chromosome and the population size is 
analyzed for this problem. 

A population of 100 individuals has been used when the relationship be- 
tween the success rate and the chromosome length has been analyzed. Chro- 
mosomes of 100 genes have been used for analyzing the relationship between 
the success rate and the population size. Other parameters of the MEP algo- 
rithm are given in Table 10.3. Results are depicted in Fig. 10.1. 

Fig. 10.1 shows that MEP is able to solve very well this problem. A popu- 
lation of 240 individuals each having 100 genes (see Fig. 10.1 right side) or a 
population of 100 individuals with 200 genes (see Fig. 10.1 left side) is suffi- 
cient to yield a 100% probability of success GP used [7] a population of 4000 
individuals in order to achieve a 100% probability of success for this problem. 

The shortest evolved circuit implementing the even-3-parity problem has 
6 gates. One of the evolved circuits is depicted in Fig. 10.2.The minimum 
computational effort required to solve this problem is 6840 and it has been 
obtained at generation 11 using a population of 40 individuals with 100 genes 
each. 



10 Improving Multi Expression Programming 237 

Number of genes Population size 

Fig. 10.1. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 100 runs. 

Fig. 10.2. A circuit for the even-3-parity problem. 

In this experiment, the relationship between the number of genes in a chro- 
mosome and the success rate is analyzed for the even-4-parity problem. A 
population of 400 individuals has been used when the relationship between 
the success rate and the chromosome length has been analyzed. Chromosomes 
having 200 genes have been used for analyzing the relationship between the 
success rate and the population size. Other parameters of the MEP algorithm 
are given in Table 10.3. Results are depicted in Fig. 10.3. 

Fig. 10.3 shows that MEP performs very well on the considered test prob- 
lem. A population of 200 individuals each having 180 genes is sufficient for 
yielding a success rate of 42% (see Fig. 10.3 left side). 
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Number of genes Population size 

Fig. 10.3. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 100 runs. 

Knowing that GP used a population of 4000 individuals to achieve a suc- 
cess rate of 42% we may infer that MEP needs a population smaller with one 
order of magnitude than the population needed by GP to solve the even-4- 
parity problem. The shortest evolved circuit implementing the even-4-parity 
problem has 9 gates. One of the evolved circuits is depicted in Fig. 10.4. 

Fig. 10.4. A circuit for the even-Cparity problem. 

The minimum computational effort required to solve this problem is 45,900 
and it has been obtained at generation 9 using a population of 300 individuals 
with 200 genes each. 
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In this experiment, the behavior of the MEP algorithm for solving the even- 
5-parity problem is analyzed. For this problem MEP is run with a population 
of 4000 individuals having 600 genes each. In 5 runs (out of 30) MEP was able 
to find a perfect solution for this problem, yielding a success rate of 16.66%. 

Note that for this problem GP - without Automatically Defined Functions 
(ADFs) - was not able to obtain a solution (within 20 runs) with a popula- 
tion of 4000 individuals [7]. When the population size was increased to 8000 
individuals a solution was obtained by GP after 8 runs [7]. 

The curve representing the computational effort needed by MEP to solve 
the even-5-parity problem is depicted in Fig. 10.5. 

0 5 10 15 20 25 30 35 40 45 50 
Number of Generations 

Fig. 10.5. The computational effort and the cumulative probability of success for 
the even-5-parity problem. 

The minimum computational effort required to solve this problem is 
1,364,000 and it was obtained at generation 11. 

10.5.1 Summarized Results 

The results obtained by GP and MEP are summarized in Table 10.4. 
Table 10.4 shows that MEP outperforms standard GP with more than one 

order of magnitude for the even-3 and even-4-parity problems. 
We may conclude that MEP significantly outperforms standard GP (with- 

out ADFs) for these particular cases of the even-parity problem. 
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Table 10.4. Computational effort required by GP and MEP for solving several 
even-parity instances. G P  results are taken from [7]. 

Problem GP MEP 
even-bparity 80,000 6,840 

10.6 Automatically Defined Functions in MEP 

In this section we describe the way in which the Automatically Defined Func- 
tions [8] are implemented within the context of Multi Expression Program- 
ming. 

The necessity of using reusable subroutines is a day-by-day demand of the 
software industry. Writing reusable subroutines proved to reduce: 

(2) the size of the programs. 
(iz)the number of errors in the source code. 
(zzz,khe cost associated with the maintenance of the existing software. 
(zv)the cost and the time spent for upgrading the existing software. 

As noted by Koza [8] function definitions exploit the underlying regularities 
and symmetries of a problem by obviating the need to tediously rewrite lines 
of essentially similar code. Also, the process of defining and calling a function, 
in effect, decomposes the problem into a hierarchy of subproblems. 

A function definition is especially efficient when it is repeatedly called with 
different instantiations of its arguments. GP with ADFs have shown significant 
improvements over the standard GP for most of the considered test problems 
[7, 81. 

An ADF in MEP has the same structure as a MEP chromosome (i.e. a 
string of genes). The ADF is also evolved in the same way as a standard MEP 
chromosome. The function symbols used by an ADF are the same as those 
used by the standard MEP chromosomes. The terminal symbols used by an 
ADF are restricted to the function (ADF) parameters (formal parameters). 
For instance, if we define an ADF with two formal parameters po and pl 
we may use only these two parameters as terminal symbols within the ADF 
structure, even if in the standard MEP chromosome (i.e. the main evolvable 
structure) we may use, let say, 20 terminal symbols only. 

The set of function symbols of the main MEP structure is enriched with 
the Automatically Defined Functions considered in the system. 

Example. Let us suppose that we want to evolve a problem using 2 ADFs, 
denoted ADFO and ADFl having 2 (po and pl) respectively 3 (po and pl and 
p z )  arguments. Let us also suppose that the terminal set for the main MEP 
chromosome is T = {a ,  b) and the function set F = {+, -, *, 1). The terminal 
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and function symbols that may appear in ADFs and main MEP chromosome 
are given in Table 10.5. 

Table 10.5. Parameters, terminal set and the function set for the ADFs and for 
the main MEP chromosome. 

Parameters Terminal set Function set 
ADFO Po, PI T={Po, pl) F={+,-,*,/) 
ADFl Po1 P11 P2 T={po, pi, p2) F={+,-,*,I} 
MEP chromosome - T={a, b )  F={+,-,*,I, ADFO, ADF1) 

The ADFO (pol pl) could be defined as follows: 

The main MEP chromosome could be the following: 

1. a 
2. b 
3. + 1, 2 
4. ADFO 3 , l  
5. a 
6. ADFl 4, 5, 5 
7. * 3, 6 

The fitness of a MEP chromosome is computed as described in section 
10.3.2. The quality of an ADF is computed in a similar manner. The ADF 
is read once and the partial results are stored in an array (by the means 
of Dynamic Programming [ 2 ] ) .  The best expression encoded in the ADF is 
chosen to represent the ADF. 

The genetic operators (crossover and mutation) used in conjunction with 
the standard MEP chromosomes may be used for the ADFs too. The prob- 
abilities for applying genetic operators are the same for MEP chromosomes 
and for the Automatically Defined Functions. The crossover operator may 
be applied only between structures of the same type (that is ADFs having 
the same parameters or main MEP chromosomes) in order to preserve the 
chromosome consistency. 

10.7 Numerical Experiments with MEP and ADFs 

In this section, several numerical experiments with Multi Expression Program- 
ming and Automatically Defined Functions are performed. The experiments 
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performed in this section show that the ADF mechanism greatly improves the 
quality of the search, allowing us to perform a detailed analysis up to the even- 
8-parity problem. General parameters for Multi Expression Programming are 
given in Table 10.6. 

Table 10.6. The general parameters of MEP with ADFs for solving even-parity 
problems. 

Parameter Value 
Number of generations 51 
Mutation 0.02 
Crossover type Uniform 
Selection q-tournament (q = 10% of the Population Size) 
Function set F = {AND, OR, NAND, NOR) 

All terminals are kept on the first positions of the MEP chromosomes. The 
tournament size is set to 10% of the population size). 

In this experiment the relationship between the success rate, the population 
size and the chromosome length for the even-$-parity problem is analyzed. 

A population of 200 individuals is used when the relationship between the 
success rate and the chromosome length is analyzed. Chromosomes having 200 
genes is used for analyzing the relationship between the success rate and the 
population size. Two Automatically Defined Functions taking two and three 
arguments are used in conjunction with Multi Expression Programming. The 
number of genes in ADFs was set to 50. Other parameters are given in Table 
10.6. Results are depicted in Fig. 10.6. 

The success rate of MEP is 100% when the population size is 200. By 
contrast, Genetic Programming uses a population of 4000 individuals to obtain 
the same success rate (100%) [7]. 

We also computed the effort needed to solve this problem. For this purpose 
we use a population of 60 MEP individuals having 200 genes each. The number 
of individuals that needs to be processed in order to obtain a solution with 
99% probability is 7,440. This number was obtained at generation 43. 

For this experiment we use a population with 400 individuals. Each individual 
has 200 genes. Three Automatically Defined Functions taking two, three and 
four arguments are used. The number of genes in each ADF is 50. Other MEP 
parameters are given in Table 10.6. 
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20 40 60 80 100120140160180200 

Population size 

Fig. 10.6. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 100 runs. 

The cumulative probability of success and the computational effort needed 
for solving this problem are depicted in Fig. 10.7. 

0 5 10 15 20 25 30 35 40 45 50 
Number of Generations 

Fig. 10.7. The computational effort and the cumulative probability of success for 
the even-5-parity problem. Results are averaged over 100 runs. 
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The I (M,  i, z )  curve reaches a minimum value at generation 15. Process- 
ing a number of 36,000 individuals is sufficient to yield a solution with 99% 
probability. 

As a comparison, GP with ADFs requires 152,000 individuals to be pro- 
cessed in order to obtain a solution with 99% probability [8]. 

For this problem we use a population with 800 individuals. Each individual has 
300 genes. Three ADFs taking two, three and four arguments are used. The 
number of genes in each ADF is 50. Other parameters of the MEP algorithm 
are given in Table 10.6. Results are presented in Fig. 10.8. 

0 5 10 15 20 25 30 35 40 45 50 
Number of Generations 

Fig. 10.8. The computational effort and the cumulative probability of success for 
the even-6-parity problem. Results are averaged over 50 runs. 

The I ( M ,  i, z )  curve reaches a minimum value at generation 9. Processing 
a number of 93,600 individuals is sufficient to yield a solution to with 99% 
probability. 

For this experiment we use a population with 1000 individuals. Each indi- 
vidual has 400 genes. Three ADFs taking two, three and four arguments are 
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Number of Generations 

Fig. 10.9. The computational effort and the cumulative probability of success for 
the even-7-parity problem. Results are averaged over 50 runs. 

used. The number of genes in each ADF is 100. Other parameters are given 
in Table 10.6. Results are given in Fig. 10.9. 

Fig. 10.9 shows that the I ( M ,  i, z )  curve reaches a minimum value at 
generation 20. Processing a number of 160,000 individuals is sufficient to yield 
a solution to with 99% probability. The cumulative probability of success is 
60% at generation 50. 

This case of the even-parity is the most difficult problem analyzed in this 
section. A population of 1000 individuals is used in this case. Each individual 
has 400 genes. Three ADFs taking two, three and four arguments are used. 
The number of genes in each ADF is 100. Other parameters are given in 
Table 10.6. Due to the increased computational time we performed only five 
runs which are not sufficient for computing a statistic (i.e. the success rate or 
the computational effort). A perfect solution (satisfying all fitness cases) was 
obtained in the fourth run. 

10.7.1 Summarized Results 

The results obtained by GP and MEP with Automatically Defined Functions 
are summarized in Table 10.7. 
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Table 10.7. Computational effort required by GP with ADFs and MEP with ADFs 
for solving several even-parity instances. GP results are taken from [8]. 

Problem GP with ADFs MEP with ADFs 
even-4-parity 80,000 7,440 

Table 10.7 shows that MEP with ADFs outperforms GP with ADFs with 
more than one order of magnitude for the even-4, even-5, even-6, and even-7- 
parity problems. 

10.8 Sub-Symbolic Node Representation 

The Sub-Symbolic Node Representation [15, 181 in order to allow GP to per- 
form small moves in the search space. It is widely known that a single point 
mutation, that can be applied to a MEP chromosome under the standard rep- 
resentation, may nevertheless result in a significant change in behavior of the 
MEP program. For instance, consider the gene AND 1 7, where the expressions 
encoded in positions 1 and 7 are Boolean expressions. If the operator AND is 
replaced with NAND, the return value of that subtree will be changed for all 
fitness cases. Instead of such a radical change we want a smoother mechanism 
that produced a more refined result (that is a mechanism that changes the 
results produced by only a subset of the training set). 

A Boolean function of arity n can be represented as a truth table (bit- 
string) of length 2n, specifying its return values on each of the 2n input com- 
binations. Thus, AND may be represented as 1000, OR as 1110, XOR as 0110. 
This representation is referred [15, 181 as sub-symbolic because function nodes 
are now seen as collection of entities rather than atomic units. 

One feature of the Sub-Symbolic representation of Boolean function nodes 
is that, in contrast with the reduced function set normally used in Boolean 
classification tasks, it is unbiased, since it incorporates all 2n nodes of arity n 
into its function set. Some of these may be superfluous (e.g. always-ON and 
always-OFF). 

Our principal reason for including all Boolean functions of a given arity in 
our set is simplicity [18]. IF we want to reduce this set we have to put some 
constrains in the smooth operators (described in the next section). Note that 
the EQ and XOR functions are necessarily included in the arity 2 functions sets 
and that these will probably enhance the performance on the parity problems. 
On the other hand, the function set is much larger than normal leading to a 
significantly larger search space. 
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10.8.1 Smooth MEP Operators 

In this section two new MEP operators are proposed. These operators are 
similar to the standard MEP operators but they can work with the sub- 
symbolic node representation. 

Smooth Uniform Crossover 

By crossover two parents are selected and are recombined. For instance, within 
the uniform recombination the offspring genes are taken randomly from one 
parent or another. The function parts, which are now binary strings of length 
4, are recombined using the uniform crossover from the binary encoding [4]. 

Example. Let us consider the two parents Cl and C2 given in Table 10.8. The 
two offspring 01 and 0 2  are obtained by uniform recombination as shown in 
Table 10.8. 

Table 10.8. MEP smooth uniform crossover. 

Parents Offspring 
C1 c'2 01 0'2 

Smooth Mutation 

Each symbol (terminal, function reference and bit encoding the function sym- 
bol) in the chromosome may be target of mutation operator. Each binary 
position encoding the function symbol in a gene is affected by the smooth 
mutation operator with the same probability as all other symbols in a chro- 
mosome. To preserve chromosome consistency its first gene must encode a 
terminal symbol. 

Example. Consider the chromosome C given in Table 10.9. If the boldfaced 
symbols are selected for mutation an offspring 0 is obtained as shown in Table 
10.9. 
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Table 10.9. MEP smooth mutation. 

10.9 Numerical Experiments with MEP and 
Sub-Symbolic Representation 

The use of Sub-symbolic representation greatly improved the performance 
of MEP algorithm. Due to this reason we begin our experiments with the 
even-11-parity problem. 

In [18] a parallel version of GP was used to solve the even-parity problem 
using a sub-symbolic representation. The parallel GP program was run on a 
client-server architecture with 50 processors. In [18] the authors performed a 
single run for all instances larger than the even-12-parity problem. More than 
that, a special technique called sub-machine code GP [17] was used in order 
to speed-up the GP program. The technique sub-machine code GP make use 
of processor's ability to perform some operations (such as AND) in parallel 
for all bits. 

Due to the simplicity and efficiency of the MEP algorithm we performed 
multiple runs (at least 10) for each experiment. This allows us to compute 
the statistics described in section 10.4. Note that MEP was run on a single 
processor (at 850 MHz) architecture. 

General parameter settings used by MEP in all the experiments performed 
in this section are given in Table 10.10. 

Table 10.10. MEP parameters for solving even-parity problems using a sub- 
symbolic representation of operators. 

Parameter Value 
Mutation probability 0.02 
Crossover type Uniform 
Crossover probability 0.9 
Selection binary tournament 
Function set 16 Boolean functions 
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The even-11-parity problem has 11 Boolean inputs and one Boolean output. 
The number of fitness cases is 2'' = 2048. 

The relationship between the success rate and the number of genes in a 
chromosome and the population size is analyzed for this problem. 

A population of 50 individuals is used when the relationship between the 
success rate and the chromosome length is analyzed. Chromosomes with 300 
genes are used for analyzing the relationship between the success rate and the 
population size. The number of generations was set to 100. Other parameters 
of the MEP algorithm are given in Table 10.11. Results are depicted in Fig. 

Number of genes Population size 

Fig. 10.10. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 50 runs. 

Fig. 10.10 show that MEP is able to solve very well this problem. A pop- 
ulation of 70 individuals having 300 genes each(see Fig. 10.10 right side) is 
sufficient to yield a 100% probability of success. The success rate increases as 
long as the number of genes in a MEP chromosome increases (see Fig. 10.10). 

The number of fitness cases for the even-12-parity problem is 4096. For solving 
this problem with MEP we use a population of 25 individuals having 500 genes 
each. Other MEP parameters are given in Table 10.10. The program was run 
for 100 generations. Results over 100 independent runs are presented in Fig. 
10.11. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 7,420. This number 
is obtained at  generation 99. 
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Number of Generations 

Fig. 10.11. The computational effort and the cumulative probability of success for 
the even-12-parity problem. Results are averaged over 100 runs. 

By contrast, Genetic Programming with a population of 100 individuals 
requires 98,800 individuals to be processed in order to obtain a solution with 
99% probability [18]. Thus, GP requires at least 13.6 times more individuals 
to be processed than MEP for solving this problem. 

Even- 13-parity 

The number of fitness cases for this problem is 8192. We use the same MEP 
parameters as for the even-12-parity problem. The relationship between the 
number of generations and the cumulative probability of success is depicted 
in Fig. 10.12. The number of individuals to be processed in order to obtain a 
solution with 99% probability is computed for this problem, too. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 2,325. This number 
is obtained at generation 93. 

Even- 14-parity 

The number of fitness cases for the even-14-parity problem is 16384. For solv- 
ing this problem with MEP we use a population of 40 individuals having 500 
genes each. Other MEP parameters are given in Table 10.10. The program 
was run for 100 generations. Results over 100 independent runs are presented 
in Fig. 10.13. 
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Fig. 10.12. The computational effort and the cumulative probability of success for 
the even-13-parity problem. Results are averaged over 100 runs. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 7,210. This number 
is obtained at generation 89. 

The number of fitness cases for the even-15-parity problem is 32768. For solv- 
ing this problem with MEP we use a population of 100 individuals having 700 
genes each. Other MEP parameters are given in Table 10.10. The program 
was run for 100 generations. Results over 100 independent runs are presented 
in Fig. 10.14. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 29,700. This number 
is obtained at  generation 99. 

Even- 16-parity 

The number of fitness cases for the even-16-parity problem is 65536. For solv- 
ing this problem with MEP we use a population of 100 individuals having 700 
genes each. Other MEP parameters are given in Table 10.10. The program 
was run for 250 generations. Results over 100 independent runs are presented 
in Fig. 10.15. 
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Fig. 10.13. The computational effort and the cumulative probability of success for 
the even-14-parity problem. Results are averaged over 100 runs. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 28,000. This number 
is obtained at generation 140. 

For this problem we performed 10 independent runs using the same parameters 
as those used for the problem even-16-parity. In all runs we obtained a perfect 
solution. The average number of generations required to obtain a solution is 
131. 

For this problem we performed 6 independent runs using the same parameters 
as those used for the problem even-16-parity. In 4 runs we obtained a perfect 
solution. The average number of generations required to obtain a solution is 
168. 

10.9.1 Summarized Results 

The results obtained by MEP with Sub-symbolic node representation are 
summarized in Table 10.11. 
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Fig. 10.14. The computational effort and the cumulative probability of success for 
the even-15-parity problem. Results are averaged over 100 runs. 

Table 10.11. Computational effort required by GP and MEP with Sub-symbolic 
node representation for solving several even-parity instances. GP results are taken 
from [18]. 

Problem GP with Sub- MEP with Sub- 
Symbolic node repre- Symbolic node repre- 
sentation sentat ion 

even-12-parity 98,800 7,420 
even-lbparity - 2,325 
even-14-parity - 7,210 
even-15-parity - 29,700 
even-16-parity - 28,000 

Table 10.10 shows that MEP is able to solve the considered instances of the 
parity problem very well. The cells corresponding to GP are empty because 
GP was run only once for the considered examples. 

10.10 Conclusions and Further Work 

In this chapter, MEP technique has been used for solving even-parity prob- 
lems. Two mechanisms for improving the MEP technique have been proposed 
and tested: Automatically Defined Functions and Sub-symbolic node repre- 
sentation. 
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Fig. 10.15. The computational effort and the cumulative probability of success for 
the even-16-parity problem. Results are averaged over 100 runs. 

Tables 10.4, 10.9 and 10.10 show that MEP outperforms GP when the 
success rate and the number of individuals to be processed is considered. As 
we said it before this statistics should be interpreted carefully since there are 
significant differences between GP and MEP representations and a perfect 
comparison between these two techniques cannot be made. 

Further research will be focused on developing a Hierarchically Automat- 
ically Defined Functions [8] system within the context of Multi Expression 
Programming. In this system any function is allowed to call any other func- 
tion already defined within the system. 

Further efforts will be dedicated for implementing a parallel version of 
MEP (similar to that used in [18] for GP). Using this implementation we will 
be able to solve other large scale problems including higher versions of the 
even-parity problem. 
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