
Improving Multi Expression Programming: An
Ascending Trail from Sea-Level Even-3-Parity
Problem to Alpine Even-18-Parity Problem

Mihai Oltean

Department of Computer Science,
Faculty of Mathematics and Computer Science,
Babes Bolyai University, Kogalniceanu 1, 3400 Cluj-Napoca, Romania,
moltean@cs.ubbcluj.ro, www.cs.ubbcluj.ro/~moltean

Multi Expression Programming is a Genetic Programming variant that uses
a linear representation of individuals. A unique feature of Multi Expression
Programming is its ability of storing multiple solutions of a problem in a sin-
gle chromosome. In this chapter, we propose and use several techniques for
improving the search performed by Multi Expression Programming. Some of
the most important improvements are Automatically Defined Functions and
Sub-symbolic node representation. Several experiments with Multi Expres-
sion Programming are performed in this chapter. Numerical results show that
Multi Expression Programming performs very well for the considered test
problems.

10.1 Introduction

Multi Expression Programming (MEP)' [l l , 12, 131 is a new and very effi-
cient technique that may be used for solving difficult real-world problems. A
unique feature of MEP is its ability of storing multiple solutions of a prob-
lem in a single chromosome. As shown in [l l] , this feature does not increase
the complexity of the decoding process when compared to other Genetic Pro-
gramming (GP) [7, 81 variants that store a single solution in a chromosome
(such as Gene Expression Programming (GEP) [5] , Genetic Algorithms for
Deriving Software (GADS) [16], Grammatical Evolution (GE) [14], Cartesian
Genetic Programming (CGP) [lo]).

The MEP technique has been efficiently used for solving symbolic regres-
sion problems [ll] and even-parity problems [13].

MEP source code is available at www.mep.cs.ubbc1uj.ro.

230 Mihai Oltean

Parity problems arise in many practical applications related to the infor-
mation technology, especially when data need to be safely transmitted over
a network. According to [7] the Boolean even-parity functions are the most
difficult Boolean functions to detect via a blind random search. Due to this
reason, the ability of the evolutionary algorithms of performing an efficient
search in the solutions space can be tested using this problem as a benchmark.

In [13], the MEP has been used for solving even-3 and even-4-parity prob-
lems. In this chapter we propose and use several techniques for improving the
search performed by Multi Expression Programming. Some of these techniques
are:

(i) Automatically Defined Functions (ADFs) [7].
(ii) Sub-Symbolic Node Representation [18].

Numerical experiments performed in this chapter include the use of MEP
for solving the even-parity instances from even-3 up to even-18-parity.

MEP without ADFs was able to solve (using a reasonable population and
within a reasonable timeframe) up to even-5-parity problem. When Automati-
cally Defined Functions are employed a considerable improvement is obtained,
allowing us to evolve a solution for up to even-8-parity problem. More improve-
ments are done when a Sub-symbolic node representation was employed.

Results of the numerical experiments are compared to those provided by
Genetic Programming [7, 8, 181. It can be easily seen that Multi Expression
Programming outperforms Genetic Programming with more than one order
of magnitude. Note that a perfect comparison between MEP and GP cannot
be made due to the incompatibility of respective representations.

The chapter is organized as follows. In section 10.2 the Even-Parity prob-
lem is described. The Multi Expression Programming technique is briefly de-
scribed in section 10.3. The metrics used to assess the performance of the MEP
algorithm are described in section 10.4. Several numerical experiments with
MEP for solving the even-3, even-4 and even-5-parity problems are performed
in section 10.5. Automatically Defined Functions for MEP are introduced in
section 10.6. Several numerical experiments with MEP and ADFs are per-
formed in section 10.7. The sub-symbolic node representation and the smooth
operators are introduced in section 10.8. Numerical experiments with MEP
and sub-symbolic node representation are performed in section 10.9. Conclu-
sions and the further work directions are suggested in section 10.10.

10.2 Problem Statement

Our aim is to find a Boolean function that satisfies a set of fitness cases. The
particular function that we want to find is the Boolean even-parity function.
This function has k Boolean arguments and it returns T (True) if an even
number of its arguments are T. Otherwise the even-parity function returns F

10 Improving Multi Expression Programming 231

(False) [7, 181. According to [7] the Boolean even-parity functions appear to
be the most difficult Boolean functions to detect via a blind random search.

In applying a Genetic Programming technique (particularly Multi Expres-
sion Programming) to the even-parity function of k arguments, the terminal
set T consists of the k Boolean arguments do, dl, dz, ... dk-1.

The function set F usually consists of four two-argument primitive Boolean
functions (also called gates [9]): AND, OR, NAND, NOR [7, 81. Using this
set we can obtain a solution for small instances of the even-parity problem.
Genetic Programming with Automatically Defined Functions has obtained
a solution for up to even-11-parity problem using a reasonable population
size. If we extend this set by including other Boolean functions (such as EQ
and XOR) we can obtain solutions for larger instances. For instance, in [18]
Genetic Programming using an extended set of function symbols has been
used for solving up to even-22-parity problems. Note that in this case a parallel
variant of GP was used on a network of computers structured in a client-server
architecture.

The set of fitness cases for this problem consists of the 2k combinations of
the Ic Boolean arguments. The fitness of an MEP chromosome is the sum, over
these 2k fitness cases, of the Hamming distance (error) between the returned
value by the MEP chromosome and the correct value of the Boolean function.
Since the standardized fitness ranges between 0 and 2k, a value closer to zero
is better (the fitness is to be minimized).

10.3 Multi Expression Programming

In this section the Multi Expression Programming (MEP) [ll] paradigm is
briefly described.

10.3.1 Individual Representation

MEP genes are represented by substrings of a variable length. The number
of genes per chromosome is constant and it defines the length of the chromo-
some. Each gene encodes a terminal or a function symbol. A gene encoding a
function includes references towards the function arguments. Function argu-
ments always have indices of lower values than the position of that function
in the chromosome.

This representation is similar to the way in which C and Pascal compilers
translate mathematical expressions into machine code [I].

MEP representation ensures that no cycle arises while the chromosome
is decoded (phenotypically transcripted). According to the representation
scheme the first symbol of the chromosome must be a terminal symbol. In
this way only syntactically correct programs (MEP individuals) are obtained.

232 Mihai Oltean

Example. We employ a representation where the numbers on the left positions
stand for gene labels (or memory addresses). Labels do not belong to the
chromosome, they are provided here only for explanation purposes.

For this example, we use the set of functions F = {+, *) and the set of
terminals T = {a, b, c, d). An example of chromosome using the sets F and
T is given below:

10.3.2 Decoding MEP Chromosome and Fitness Assignment

In this section we described the way in which MEP individuals are translated
into computer programs and the way in which the fitness of these programs
is computed.

This translation is achieved by reading the chromosome top-down. A termi-
nal symbol specifies a simple expression. A function symbol specifies a complex
expression obtained by connecting the operands specified by the argument po-
sitions with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are El = a,
Ez = b, E4 = c and Eg = d. Gene 3 indicates the operation + on the
operands located at positions 1 and 2 of the chromosome. Therefore gene
3 encodes the expression E3 = a + b. Gene 6 indicates the operation + on the
operands located at positions 4 and 5. Therefore gene 6 encodes the expression
E6 = c + d. Gene 7 indicates the operation * on the operands located at
position 3 and 6. Therefore gene 7 encodes the expression E7 = (a + b) * (c+ d),
wherein E7 is the expression encoded by the whole chromosome.

There is neither practical nor theoretical evidence that one of these ex-
pressions is better than the others. Moreover Wolpert and McReady [20, 211
proved that we cannot use the search algorithm's behavior so far for a par-
ticular test function to predict its future behavior on that function. Thus we
cannot choose one of the expressions (let us say expression E7) to store the
output of the chromosome. Even this expression proves to be useful for the
first 10 generations we cannot guarantee that it will be the best option for all
generations.

This is why each MEP chromosome is allowed to encode a number of
expressions equal to the chromosome length. Each of these expressions is con-
sidered as being a potential solution of the problem.

10 Improving Multi Expression Programming 233

The value of these expressions may be computed by reading the chromo-
some top down. Partial results are computed by Dynamic Programming [2]
and are stored in a conventional manner.

As MEP chromosome encodes more than one problem solution, it is in-
teresting to see how the fitness is assigned. Usually the chromosome fitness is
defined as the fitness of the best expression encoded by that chromosome. For
instance, if we want to solve symbolic regression problems the fitness of each
sub-expression Ei may be computed using the formula:

where ok,i is the obtained result by the expression Ei for the fitness case k
and wk is the targeted result for the fitness case k. In this case the fitness
needs to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in chromosome:

When we have to deal with other problems we compute the fitness of
each sub-expression encoded in the MEP chromosome and the fitness of the
entire individual is given by the fitness of the best expression encoded in that
chromosome.

10.3.3 Genetic Operators

Search operators used within MEP algorithm are crossover and mutation.
These operators preserve the chromosome structure. All offspring are syntac-
tically correct expressions.

Crossover

By crossover two parents are selected and recombined. For instance, within
the uniform recombination the offspring genes are taken randomly from one
parent or another.

Example. Let us consider the two parents Cl and C2 given in Table 10.1. The
two offspring O1 and O2 are obtained by uniform recombination as shown in
Table 10.1.

Mutation

Each symbol (terminal, function or function pointer) in the chromosome may
be the target of mutation operator. By mutation some symbols in the chro-
mosome are changed. To preserve the consistency of the chromosome its first
gene must encode a terminal symbol.

234 Mihai Oltean

Table 10.1. MEP uniform recombination.

Parents Offspring

Example. Consider the chromosome C given in Table 10.2. If the boldfaced
symbols are selected for mutation, an offspring 0 is obtained as given in Table
10.2.

Table 10.2. MEP mutation.
c 0

10.3.4 MEP Algorithm

Standard MEP algorithm uses steady state [19] as its underlying mechanism.
MEP algorithm starts by creating a random population of individuals. The fol-
lowing steps are repeated until a given number of generations is reached. Two
parents are selected using a selection procedure. The parents are recombined
in order to obtain two offspring. The offspring are considered for mutation.
The best offspring replaces the worst individual in the current population if
the offspring is better than the worst individual. The algorithm returns as its
answer the best expression evolved along a fixed number of generations.

10.4 Assessing the Performance of the MEP Algorithm

For assessing the performance of the MEP algorithm three statistics are of
high interest:

10 Improving Multi Expression Programming 235

(i) The relationship between the success rate and the number of genes in a
MEP chromosome,

(ii)The relationship between the success rate and the size of the population
used by the MEP algorithm,

(iiiphe computational effort.

The success rate is computed using the equation (10.1).

The number o f successful runs
Success rate =

The total number of runs
' (10.1)

Another method used to assess the effectiveness of an algorithm, has been
suggested by Koza [7]. The method consists of calculating the number of
chromosomes, which would have to be processed to give a certain probability
of success. To calculate this figure one must first calculate the cumulative
probability of success P(M, i), where M represents the population size, and i
the generation number. The value R(z) represents the number of independent
runs required for a probability of success (given by z) at generation i. The
quantity I (M, z, i) represents the minimum number of chromosomes which
must be processed to give a probability of success z, at generation i. The
formulae are given by the equations (10.2), (10.3) and (10.4). Ns(i) represents
the number of successful runs at generation i, and Ntotal, represents the total
number of runs. Note that when z = 1.0 the formulae (10.3) and (10.4) are
invalid (all runs successful). In the tables and graphs of this chapter z takes
the value 0.99.

log(1 - 2)
R(z) = ceil { log(1- P(M, i)

Another important issue is related to the number of function evaluations
performed by the considered techniques (MEP and GP in our case). Due to
its special Multi-Expression ability MEP performs more function evaluations
than GP (considering the same parameters for both algorithms). But, note
that 1 function evaluation performed by MEP is not equivalent with 1 function
evaluation performed by GP. MEP and GP have the same complexity for the
process of decoding the individuals (that is O(NG), where NG is the number
of genes). MEP encodes NG solutions in a chromosome whereas GP encodes
1 solution in a chromosome. Thus, the complexity of performing 1 function
evaluation is O(1) for MEP and O(NG) for GP. This is why we calculate
the computational effort for both MEP and GP using the same formula 10.4
without taking into account the number of genes in a MEP chromosome.

236 Mihai Oltean

10.5 Numerical Experiments

In this section we perform several experiments with standard MEP for solving
several instances of the even-parity problem. General parameter settings for
MEP are given in Table 10.3.

Table 10.3. General parameters of the MEP algorithm for solving even-parity
problems.

Parameter Value
Number of generations 51
Mutation probability 0.2
Crossover type Uniform
Crossover probability 0.9
Selection q-tournament (q = 10% of the Population size)
Function set F = {AND, OR, NAND, NOR)

For reducing the chromosome length we keep all the terminals on the first
positions of the MEP chromosomes. We also increased the selection pressure
by using larger values (usually 10% of the population size) for the tournament
sample.

Even-3- parity

The even-3-parity problem has three Boolean inputs and one Boolean output.
The number of fitness cases is 23 = 8. The relationship between the success
rate and the number of genes in a chromosome and the population size is
analyzed for this problem.

A population of 100 individuals has been used when the relationship be-
tween the success rate and the chromosome length has been analyzed. Chro-
mosomes of 100 genes have been used for analyzing the relationship between
the success rate and the population size. Other parameters of the MEP algo-
rithm are given in Table 10.3. Results are depicted in Fig. 10.1.

Fig. 10.1 shows that MEP is able to solve very well this problem. A popu-
lation of 240 individuals each having 100 genes (see Fig. 10.1 right side) or a
population of 100 individuals with 200 genes (see Fig. 10.1 left side) is suffi-
cient to yield a 100% probability of success GP used [7] a population of 4000
individuals in order to achieve a 100% probability of success for this problem.

The shortest evolved circuit implementing the even-3-parity problem has
6 gates. One of the evolved circuits is depicted in Fig. 10.2.The minimum
computational effort required to solve this problem is 6840 and it has been
obtained at generation 11 using a population of 40 individuals with 100 genes
each.

10 Improving Multi Expression Programming 237

Number of genes Population size

Fig. 10.1. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 100 runs.

Fig. 10.2. A circuit for the even-3-parity problem.

In this experiment, the relationship between the number of genes in a chro-
mosome and the success rate is analyzed for the even-4-parity problem. A
population of 400 individuals has been used when the relationship between
the success rate and the chromosome length has been analyzed. Chromosomes
having 200 genes have been used for analyzing the relationship between the
success rate and the population size. Other parameters of the MEP algorithm
are given in Table 10.3. Results are depicted in Fig. 10.3.

Fig. 10.3 shows that MEP performs very well on the considered test prob-
lem. A population of 200 individuals each having 180 genes is sufficient for
yielding a success rate of 42% (see Fig. 10.3 left side).

238 Mihai Oltean

Number of genes Population size

Fig. 10.3. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 100 runs.

Knowing that GP used a population of 4000 individuals to achieve a suc-
cess rate of 42% we may infer that MEP needs a population smaller with one
order of magnitude than the population needed by GP to solve the even-4-
parity problem. The shortest evolved circuit implementing the even-4-parity
problem has 9 gates. One of the evolved circuits is depicted in Fig. 10.4.

Fig. 10.4. A circuit for the even-Cparity problem.

The minimum computational effort required to solve this problem is 45,900
and it has been obtained at generation 9 using a population of 300 individuals
with 200 genes each.

10 Improving Multi Expression Programming 239

In this experiment, the behavior of the MEP algorithm for solving the even-
5-parity problem is analyzed. For this problem MEP is run with a population
of 4000 individuals having 600 genes each. In 5 runs (out of 30) MEP was able
to find a perfect solution for this problem, yielding a success rate of 16.66%.

Note that for this problem GP - without Automatically Defined Functions
(ADFs) - was not able to obtain a solution (within 20 runs) with a popula-
tion of 4000 individuals [7]. When the population size was increased to 8000
individuals a solution was obtained by GP after 8 runs [7].

The curve representing the computational effort needed by MEP to solve
the even-5-parity problem is depicted in Fig. 10.5.

0 5 10 15 20 25 30 35 40 45 50
Number of Generations

Fig. 10.5. The computational effort and the cumulative probability of success for
the even-5-parity problem.

The minimum computational effort required to solve this problem is
1,364,000 and it was obtained at generation 11.

10.5.1 Summarized Results

The results obtained by GP and MEP are summarized in Table 10.4.
Table 10.4 shows that MEP outperforms standard GP with more than one

order of magnitude for the even-3 and even-4-parity problems.
We may conclude that MEP significantly outperforms standard GP (with-

out ADFs) for these particular cases of the even-parity problem.

240 Mihai Oltean

Table 10.4. Computational effort required by GP and MEP for solving several
even-parity instances. G P results are taken from [7].

Problem GP MEP
even-bparity 80,000 6,840

10.6 Automatically Defined Functions in MEP

In this section we describe the way in which the Automatically Defined Func-
tions [8] are implemented within the context of Multi Expression Program-
ming.

The necessity of using reusable subroutines is a day-by-day demand of the
software industry. Writing reusable subroutines proved to reduce:

(2) the size of the programs.
(iz)the number of errors in the source code.
(zzz,khe cost associated with the maintenance of the existing software.
(zv)the cost and the time spent for upgrading the existing software.

As noted by Koza [8] function definitions exploit the underlying regularities
and symmetries of a problem by obviating the need to tediously rewrite lines
of essentially similar code. Also, the process of defining and calling a function,
in effect, decomposes the problem into a hierarchy of subproblems.

A function definition is especially efficient when it is repeatedly called with
different instantiations of its arguments. GP with ADFs have shown significant
improvements over the standard GP for most of the considered test problems
[7, 81.

An ADF in MEP has the same structure as a MEP chromosome (i.e. a
string of genes). The ADF is also evolved in the same way as a standard MEP
chromosome. The function symbols used by an ADF are the same as those
used by the standard MEP chromosomes. The terminal symbols used by an
ADF are restricted to the function (ADF) parameters (formal parameters).
For instance, if we define an ADF with two formal parameters po and pl
we may use only these two parameters as terminal symbols within the ADF
structure, even if in the standard MEP chromosome (i.e. the main evolvable
structure) we may use, let say, 20 terminal symbols only.

The set of function symbols of the main MEP structure is enriched with
the Automatically Defined Functions considered in the system.

Example. Let us suppose that we want to evolve a problem using 2 ADFs,
denoted ADFO and ADFl having 2 (po and pl) respectively 3 (po and pl and
p z) arguments. Let us also suppose that the terminal set for the main MEP
chromosome is T = {a , b) and the function set F = {+, -, *, 1). The terminal

10 Improving Multi Expression Programming 241

and function symbols that may appear in ADFs and main MEP chromosome
are given in Table 10.5.

Table 10.5. Parameters, terminal set and the function set for the ADFs and for
the main MEP chromosome.

Parameters Terminal set Function set
ADFO Po, PI T={Po, pl) F={+,-,*,/)
ADFl Po1 P11 P2 T={po, pi, p2) F={+,-,*,I}
MEP chromosome - T={a, b) F={+,-,*,I, ADFO, ADF1)

The ADFO (pol pl) could be defined as follows:

The main MEP chromosome could be the following:

1. a
2. b
3. + 1, 2
4. ADFO 3 , l
5. a
6. ADFl 4, 5, 5
7. * 3, 6

The fitness of a MEP chromosome is computed as described in section
10.3.2. The quality of an ADF is computed in a similar manner. The ADF
is read once and the partial results are stored in an array (by the means
of Dynamic Programming [2]) . The best expression encoded in the ADF is
chosen to represent the ADF.

The genetic operators (crossover and mutation) used in conjunction with
the standard MEP chromosomes may be used for the ADFs too. The prob-
abilities for applying genetic operators are the same for MEP chromosomes
and for the Automatically Defined Functions. The crossover operator may
be applied only between structures of the same type (that is ADFs having
the same parameters or main MEP chromosomes) in order to preserve the
chromosome consistency.

10.7 Numerical Experiments with MEP and ADFs

In this section, several numerical experiments with Multi Expression Program-
ming and Automatically Defined Functions are performed. The experiments

242 Mihai Oltean

performed in this section show that the ADF mechanism greatly improves the
quality of the search, allowing us to perform a detailed analysis up to the even-
8-parity problem. General parameters for Multi Expression Programming are
given in Table 10.6.

Table 10.6. The general parameters of MEP with ADFs for solving even-parity
problems.

Parameter Value
Number of generations 51
Mutation 0.02
Crossover type Uniform
Selection q-tournament (q = 10% of the Population Size)
Function set F = {AND, OR, NAND, NOR)

All terminals are kept on the first positions of the MEP chromosomes. The
tournament size is set to 10% of the population size).

In this experiment the relationship between the success rate, the population
size and the chromosome length for the even-$-parity problem is analyzed.

A population of 200 individuals is used when the relationship between the
success rate and the chromosome length is analyzed. Chromosomes having 200
genes is used for analyzing the relationship between the success rate and the
population size. Two Automatically Defined Functions taking two and three
arguments are used in conjunction with Multi Expression Programming. The
number of genes in ADFs was set to 50. Other parameters are given in Table
10.6. Results are depicted in Fig. 10.6.

The success rate of MEP is 100% when the population size is 200. By
contrast, Genetic Programming uses a population of 4000 individuals to obtain
the same success rate (100%) [7].

We also computed the effort needed to solve this problem. For this purpose
we use a population of 60 MEP individuals having 200 genes each. The number
of individuals that needs to be processed in order to obtain a solution with
99% probability is 7,440. This number was obtained at generation 43.

For this experiment we use a population with 400 individuals. Each individual
has 200 genes. Three Automatically Defined Functions taking two, three and
four arguments are used. The number of genes in each ADF is 50. Other MEP
parameters are given in Table 10.6.

10 Improving Multi Expression Programming 243

Number of genes
20 40 60 80 100120140160180200

Population size

Fig. 10.6. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 100 runs.

The cumulative probability of success and the computational effort needed
for solving this problem are depicted in Fig. 10.7.

0 5 10 15 20 25 30 35 40 45 50
Number of Generations

Fig. 10.7. The computational effort and the cumulative probability of success for
the even-5-parity problem. Results are averaged over 100 runs.

244 Mihai Oltean

The I (M, i, z) curve reaches a minimum value at generation 15. Process-
ing a number of 36,000 individuals is sufficient to yield a solution with 99%
probability.

As a comparison, GP with ADFs requires 152,000 individuals to be pro-
cessed in order to obtain a solution with 99% probability [8].

For this problem we use a population with 800 individuals. Each individual has
300 genes. Three ADFs taking two, three and four arguments are used. The
number of genes in each ADF is 50. Other parameters of the MEP algorithm
are given in Table 10.6. Results are presented in Fig. 10.8.

0 5 10 15 20 25 30 35 40 45 50
Number of Generations

Fig. 10.8. The computational effort and the cumulative probability of success for
the even-6-parity problem. Results are averaged over 50 runs.

The I (M , i, z) curve reaches a minimum value at generation 9. Processing
a number of 93,600 individuals is sufficient to yield a solution to with 99%
probability.

For this experiment we use a population with 1000 individuals. Each indi-
vidual has 400 genes. Three ADFs taking two, three and four arguments are

10 Improving Multi Expression Programming 245

Number of Generations

Fig. 10.9. The computational effort and the cumulative probability of success for
the even-7-parity problem. Results are averaged over 50 runs.

used. The number of genes in each ADF is 100. Other parameters are given
in Table 10.6. Results are given in Fig. 10.9.

Fig. 10.9 shows that the I (M , i, z) curve reaches a minimum value at
generation 20. Processing a number of 160,000 individuals is sufficient to yield
a solution to with 99% probability. The cumulative probability of success is
60% at generation 50.

This case of the even-parity is the most difficult problem analyzed in this
section. A population of 1000 individuals is used in this case. Each individual
has 400 genes. Three ADFs taking two, three and four arguments are used.
The number of genes in each ADF is 100. Other parameters are given in
Table 10.6. Due to the increased computational time we performed only five
runs which are not sufficient for computing a statistic (i.e. the success rate or
the computational effort). A perfect solution (satisfying all fitness cases) was
obtained in the fourth run.

10.7.1 Summarized Results

The results obtained by GP and MEP with Automatically Defined Functions
are summarized in Table 10.7.

246 Mihai Oltean

Table 10.7. Computational effort required by GP with ADFs and MEP with ADFs
for solving several even-parity instances. GP results are taken from [8].

Problem GP with ADFs MEP with ADFs
even-4-parity 80,000 7,440

Table 10.7 shows that MEP with ADFs outperforms GP with ADFs with
more than one order of magnitude for the even-4, even-5, even-6, and even-7-
parity problems.

10.8 Sub-Symbolic Node Representation

The Sub-Symbolic Node Representation [15, 181 in order to allow GP to per-
form small moves in the search space. It is widely known that a single point
mutation, that can be applied to a MEP chromosome under the standard rep-
resentation, may nevertheless result in a significant change in behavior of the
MEP program. For instance, consider the gene AND 1 7, where the expressions
encoded in positions 1 and 7 are Boolean expressions. If the operator AND is
replaced with NAND, the return value of that subtree will be changed for all
fitness cases. Instead of such a radical change we want a smoother mechanism
that produced a more refined result (that is a mechanism that changes the
results produced by only a subset of the training set).

A Boolean function of arity n can be represented as a truth table (bit-
string) of length 2n, specifying its return values on each of the 2n input com-
binations. Thus, AND may be represented as 1000, OR as 1110, XOR as 0110.
This representation is referred [15, 181 as sub-symbolic because function nodes
are now seen as collection of entities rather than atomic units.

One feature of the Sub-Symbolic representation of Boolean function nodes
is that, in contrast with the reduced function set normally used in Boolean
classification tasks, it is unbiased, since it incorporates all 2n nodes of arity n
into its function set. Some of these may be superfluous (e.g. always-ON and
always-OFF).

Our principal reason for including all Boolean functions of a given arity in
our set is simplicity [18]. IF we want to reduce this set we have to put some
constrains in the smooth operators (described in the next section). Note that
the EQ and XOR functions are necessarily included in the arity 2 functions sets
and that these will probably enhance the performance on the parity problems.
On the other hand, the function set is much larger than normal leading to a
significantly larger search space.

10 Improving Multi Expression Programming 247

10.8.1 Smooth MEP Operators

In this section two new MEP operators are proposed. These operators are
similar to the standard MEP operators but they can work with the sub-
symbolic node representation.

Smooth Uniform Crossover

By crossover two parents are selected and are recombined. For instance, within
the uniform recombination the offspring genes are taken randomly from one
parent or another. The function parts, which are now binary strings of length
4, are recombined using the uniform crossover from the binary encoding [4].

Example. Let us consider the two parents Cl and C2 given in Table 10.8. The
two offspring 01 and 0 2 are obtained by uniform recombination as shown in
Table 10.8.

Table 10.8. MEP smooth uniform crossover.

Parents Offspring
C1 c'2 01 0'2

Smooth Mutation

Each symbol (terminal, function reference and bit encoding the function sym-
bol) in the chromosome may be target of mutation operator. Each binary
position encoding the function symbol in a gene is affected by the smooth
mutation operator with the same probability as all other symbols in a chro-
mosome. To preserve chromosome consistency its first gene must encode a
terminal symbol.

Example. Consider the chromosome C given in Table 10.9. If the boldfaced
symbols are selected for mutation an offspring 0 is obtained as shown in Table
10.9.

248 Mihai Oltean

Table 10.9. MEP smooth mutation.

10.9 Numerical Experiments with MEP and
Sub-Symbolic Representation

The use of Sub-symbolic representation greatly improved the performance
of MEP algorithm. Due to this reason we begin our experiments with the
even-11-parity problem.

In [18] a parallel version of GP was used to solve the even-parity problem
using a sub-symbolic representation. The parallel GP program was run on a
client-server architecture with 50 processors. In [18] the authors performed a
single run for all instances larger than the even-12-parity problem. More than
that, a special technique called sub-machine code GP [17] was used in order
to speed-up the GP program. The technique sub-machine code GP make use
of processor's ability to perform some operations (such as AND) in parallel
for all bits.

Due to the simplicity and efficiency of the MEP algorithm we performed
multiple runs (at least 10) for each experiment. This allows us to compute
the statistics described in section 10.4. Note that MEP was run on a single
processor (at 850 MHz) architecture.

General parameter settings used by MEP in all the experiments performed
in this section are given in Table 10.10.

Table 10.10. MEP parameters for solving even-parity problems using a sub-
symbolic representation of operators.

Parameter Value
Mutation probability 0.02
Crossover type Uniform
Crossover probability 0.9
Selection binary tournament
Function set 16 Boolean functions

10 Improving Multi Expression Programming 249

The even-11-parity problem has 11 Boolean inputs and one Boolean output.
The number of fitness cases is 2'' = 2048.

The relationship between the success rate and the number of genes in a
chromosome and the population size is analyzed for this problem.

A population of 50 individuals is used when the relationship between the
success rate and the chromosome length is analyzed. Chromosomes with 300
genes are used for analyzing the relationship between the success rate and the
population size. The number of generations was set to 100. Other parameters
of the MEP algorithm are given in Table 10.11. Results are depicted in Fig.

Number of genes Population size

Fig. 10.10. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 50 runs.

Fig. 10.10 show that MEP is able to solve very well this problem. A pop-
ulation of 70 individuals having 300 genes each(see Fig. 10.10 right side) is
sufficient to yield a 100% probability of success. The success rate increases as
long as the number of genes in a MEP chromosome increases (see Fig. 10.10).

The number of fitness cases for the even-12-parity problem is 4096. For solving
this problem with MEP we use a population of 25 individuals having 500 genes
each. Other MEP parameters are given in Table 10.10. The program was run
for 100 generations. Results over 100 independent runs are presented in Fig.
10.11.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 7,420. This number
is obtained at generation 99.

250 Mihai Oltean

Number of Generations

Fig. 10.11. The computational effort and the cumulative probability of success for
the even-12-parity problem. Results are averaged over 100 runs.

By contrast, Genetic Programming with a population of 100 individuals
requires 98,800 individuals to be processed in order to obtain a solution with
99% probability [18]. Thus, GP requires at least 13.6 times more individuals
to be processed than MEP for solving this problem.

Even- 13-parity

The number of fitness cases for this problem is 8192. We use the same MEP
parameters as for the even-12-parity problem. The relationship between the
number of generations and the cumulative probability of success is depicted
in Fig. 10.12. The number of individuals to be processed in order to obtain a
solution with 99% probability is computed for this problem, too.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 2,325. This number
is obtained at generation 93.

Even- 14-parity

The number of fitness cases for the even-14-parity problem is 16384. For solv-
ing this problem with MEP we use a population of 40 individuals having 500
genes each. Other MEP parameters are given in Table 10.10. The program
was run for 100 generations. Results over 100 independent runs are presented
in Fig. 10.13.

10 Improving Multi Expression Programming 251

Fig. 10.12. The computational effort and the cumulative probability of success for
the even-13-parity problem. Results are averaged over 100 runs.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 7,210. This number
is obtained at generation 89.

The number of fitness cases for the even-15-parity problem is 32768. For solv-
ing this problem with MEP we use a population of 100 individuals having 700
genes each. Other MEP parameters are given in Table 10.10. The program
was run for 100 generations. Results over 100 independent runs are presented
in Fig. 10.14.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 29,700. This number
is obtained at generation 99.

Even- 16-parity

The number of fitness cases for the even-16-parity problem is 65536. For solv-
ing this problem with MEP we use a population of 100 individuals having 700
genes each. Other MEP parameters are given in Table 10.10. The program
was run for 250 generations. Results over 100 independent runs are presented
in Fig. 10.15.

252 Mihai Oltean

30 40 50 60 70 80 90 100
Number of Generations

Fig. 10.13. The computational effort and the cumulative probability of success for
the even-14-parity problem. Results are averaged over 100 runs.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 28,000. This number
is obtained at generation 140.

For this problem we performed 10 independent runs using the same parameters
as those used for the problem even-16-parity. In all runs we obtained a perfect
solution. The average number of generations required to obtain a solution is
131.

For this problem we performed 6 independent runs using the same parameters
as those used for the problem even-16-parity. In 4 runs we obtained a perfect
solution. The average number of generations required to obtain a solution is
168.

10.9.1 Summarized Results

The results obtained by MEP with Sub-symbolic node representation are
summarized in Table 10.11.

10 Improving Multi Expression Programming 253

Fig. 10.14. The computational effort and the cumulative probability of success for
the even-15-parity problem. Results are averaged over 100 runs.

Table 10.11. Computational effort required by GP and MEP with Sub-symbolic
node representation for solving several even-parity instances. GP results are taken
from [18].

Problem GP with Sub- MEP with Sub-
Symbolic node repre- Symbolic node repre-
sentation sentat ion

even-12-parity 98,800 7,420
even-lbparity - 2,325
even-14-parity - 7,210
even-15-parity - 29,700
even-16-parity - 28,000

Table 10.10 shows that MEP is able to solve the considered instances of the
parity problem very well. The cells corresponding to GP are empty because
GP was run only once for the considered examples.

10.10 Conclusions and Further Work

In this chapter, MEP technique has been used for solving even-parity prob-
lems. Two mechanisms for improving the MEP technique have been proposed
and tested: Automatically Defined Functions and Sub-symbolic node repre-
sentation.

254 Mihai Oltean

60 80 100 120 140 160 180 200 220 240
Number of Generations

Fig. 10.15. The computational effort and the cumulative probability of success for
the even-16-parity problem. Results are averaged over 100 runs.

Tables 10.4, 10.9 and 10.10 show that MEP outperforms GP when the
success rate and the number of individuals to be processed is considered. As
we said it before this statistics should be interpreted carefully since there are
significant differences between GP and MEP representations and a perfect
comparison between these two techniques cannot be made.

Further research will be focused on developing a Hierarchically Automat-
ically Defined Functions [8] system within the context of Multi Expression
Programming. In this system any function is allowed to call any other func-
tion already defined within the system.

Further efforts will be dedicated for implementing a parallel version of
MEP (similar to that used in [18] for GP). Using this implementation we will
be able to solve other large scale problems including higher versions of the
even-parity problem.

Acknowledgments

The author is grateful to anonymous referees for their constructive comments
and criticism of earlier versions of this chapter. The title of the chapter is
adapted from [6] .

10 Improving Multi Expression Programming 255

References

1. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1986.

2. R. Bellman, Dynamic Programming, Princeton University Press, New Jersey,
1957.

3. M. Brameier, W. Banzhaf, A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining, IEEE Transactions on Evolutionary
Computation, 5, 17-26, 2001.

4. D. Dumitrescu, B. Lazzerini, L. Jain, A. Dumitrescu, Evolutionary Computa-
tion, CRC Press, Boca Raton, FL, 2000.

5. C. Ferreira, Gene Expression Programming: a New Adaptive Algorithm for Solv-
ing Problems. Complex Systems, Vol. 13, Nr. 2, pp. 87-129, 2001.

6. A. S. Fraenkel, Scenic trails ascending from sea-level Nim to alpine chess, Games
of No Chance, MSRI Workshop on Combinatorial Games, July, 1994, Berkeley,
CA, MSRI Publications, R. J. Nowakowski (Editor), Vol. 29, Cambridge Uni-
versity Press, Cambridge, pp. 13-42, 1996.

7. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, 1992.

8. J. R. Koza, Genetic Programming 11: Automatic Discovery of Reusable Pro-
grams, MIT Press, Cambridge, MA, 1994.

9. J. Miller, D. Job and V. Vassilev, Principles in the Evolutionary Design of
Digital Circuits - Part I, Genetic Programming and Evolvable Machines, Vol. 1,
pp. 7 - 35, Kluwer Academic Publishers, 2000.

10. J.F. Miller and P. Thomson, Cartesian Genetic Programming. The 3rd Interna-
tional Conference on Genetic Programming (EuroGP2000), R. Poli, J.F. Miller,
W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. Fogarty (Editors),
LNCS 1802, Springer-Verlag, Berlin, pp. 15-17, 2000.

11. M. Oltean and D. Dumitrescu, Multi Expression Programming, technical re-
port, UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania, available
at www.mep.cs.ubbcluj.ro, 2002.

12. M. Oltean and C. Grogan, Evolving Evolutionary Algorithms using Multi Ex-
pression Programming, The 7th European Conference on Artificial Life, Dort-
mund, W. Banzhaf (et. al), (Editors), LNCS 2801, pp. 651-658, Springer-Verlag,
Berlin, 2003.

13. M. Oltean, Solving Even-parity problems with Multi Expression Programming,
The 5th International Workshop on Frontiers in Evolutionary Algorithm, K.
Chen (et. al), (Editors) Research Park Triangle, North Carolina, pp. 315-318,
2003.

14. M. O'Neill and C. Ryan, Grammatical Evolution: A Steady State approach,
The Second International Workshop on Frontiers in Evolutionary Algorithms,
pp. 419-423, 1998.

15. J. Page, R. Poli and W. B. Langdon, Smooth Uniform Crossover with Smooth
Point Mutation in Genetic Programming: A Preliminary Study. Genetic Pro-
gramming, Proceedings of EuroGP'99, R. Poli, P. Nordin, W. B. Langdon and
T. C. Fogarty, (Editors), LNCS 1598, pp. 39-49, Springer-Verlag, Berlin, 1999.

16. N.R. Patterson, Genetic Programming with Context-Sensitive Grammars, PhD
thesis, University of St. Andrews, Scotland, 2003.

256 Mihai Oltean

17. R. Poli and W. B. Langdon, Sub-machine Code Genetic Programming, Advances
in Genetic Programming 3, L. Spector, W. B. Langdon, U-M 07Reilly and P.
Angeline, (Editors), pp. 301-323, MIT Press, Cambridge, MA, 1999.

18. R. Poli and J. Page, Solving High-Order Boolean Parity Problems with Smooth
Uniform Crossover, Sub-Machine Code GP and Demes, Journal of Genetic Pro-
gramming and Evolvable Machines, Kluwer, pp. 1-21, 2000.

19. G. Syswerda, Uniform Crossover in Genetic Algorithms, in Proceedings of the
3'd International Conference on Genetic Algorithms, J.D. Schaffer (Editor),
Morgan Kaufmann Publishers, CA, 2-9, 1989.

20. D.H. Wolpert and W.G. McReady, No Free Lunch Theorems for Optimization,
IEEE Transaction on Evolutionary Computation, Vol. 1, pp 67-82, 1997.

21. D.H. Wolpert and W.G. McReady, No Free Lunch Theorems for Search, Tech-
nical Report, SFI-TR-05-010, Santa Fe Institute, 1995.

