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In this chapter, we describe a cooperative transportation to a target position 
with two humanoid robots and introduce a machine learning approach to solv- 
ing the problem. The difficulty of the task lies on the fact that each position 
shifts with the other's while they are moving. Therefore, it is necessary to 
correct the position in a real-time manner. However, it is difficult to generate 
such an action in consideration of the physical formula. We empirically show 
how successful the humanoid robot HOAP-1's cooperate with each other for 
the sake of the transportation as a result of Q-learning. Furthermore, we show 
a result of the experiment that transports an object cooperatively to a target 
position using those robots. 

1.1 Introduction 

In this chapter, we first clarify the practical difficulties we face from the coop- 
erative transportation task with two bodies of humanoid robots. Afterwards, 
we propose a solution to these difficulties and empirically show the effective- 
ness both by simulation and by real robots. 

In recent years, many researches have been conducted upon various aspects 
of humanoid robots [l] [2]. Since humanoid robots have physical features sim- 
ilar to us, it is very important to let them behave intelligently like humans. In 
addition, from the viewpoint of A1 or DAI (Distributed AI), it is rewarding to 
study how cooperatively humanoid robots perform a task just as we humans 
can. However, there have been very few studies on the cooperative behaviors 
of multiple humanoid robots. Thus, in this chapter, we describe the emergence 
of the cooperation between humanoid robots so as to achieve the same goal. 
The target task we have chosen is a cooperative transportation, in which two 
bodies of humanoids have to cooperate with each other to carry and transport 
an object to a certain goal position. 
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As for the transportation task, several researches have been reported on 
the cooperation between a human and a wheel robot [3] [4] and the cooperation 
among multiple wheel robots [5] [6]. However, in most of these studies, the goal 
was to let a robot perform a task instead of a human. 

Research to realize collaboration with a legged robot includes lifting oper- 
ations of an object with two robots [7] and box-pushing with two robots [8]. 
However, few studies have addressed cooperative work using similar legged 
robots. It is presumed that body swinging during walking renders coopera- 
tive work by a legged robot difficult [9]. Therefore, it is more difficult for a 
humanoid robot to carry out a transportation task, because it is capable of 
motions that are more complicated and less stable than a usual legged robot. 

In leader-follower type control [lo] [ll], which is often used for cooperative 
movement, it is essential that a follower robot acquire information such as the 
position and velocity of an object fluctuated by the motion of a leader robot. 
This information is usually obtained by a force sensor or wireless communi- 
cation. Such a method is considered to be effective for a robot with a stable 
center of gravity operating with less information for control. However, much 
information must be processed simultaneously to allow a humanoid robot to 
perform complicated actions, such as transporting an object cooperatively, 
with its difficulty to control caused by its unstable body balance. It would 
be expensive to build a system that carries out optimal operation using this 
information. 

One hurdle in the case where multiple humanoid robots move carrying an 
object cooperatively is the disorder of cooperative motion by body swinging 
during walking. Therefore in this chapter, learning is carried out to acquire be- 
havior to correct a mutual position shift generated by this disorder of motion. 
For this purpose, we use two kinds of methods: (i) Classifier System [12] and 
(ii) Q-learning [13]. We will show that behavior to correct a position shift can 
be acquired based on the simulation results of this study. Moreover, according 
to this result, the applicability to a real robot is investigated. Furthermore, 
cooperative transportation to a target position is conducted. 

This chapter is organized as follows. The next section explains the clarified 
problem difficulties with the cooperative transportation. After that, Section 
1.3 proposes our method to solve the problem. Section 1.4 presents an experi- 
mental result in the simulation and real robots environment. Then Section 1.5 
shows an experimental result of cooperative transportation with real robots. 
Section 1.6 discusses these results and future researches. Finally, a conclusion 
is given in Section 1.7. 

1.2 Problem in cooperative Transportat ion by humanoid 
Robots 

Cooperative transportation by humanoid robots involves solving many dif- 
ficult problems. It is different from the transportation by a single robot, in 
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which another robot motion is negligible. On the other hand, in case of the 
cooperative transportation, one robot's motion has an influence on another 
robot to some extent. Thus, it is necessary to synchronize both robots' mo- 
tions. However, the synchronization is not easily achieved because precise 
motions are not expected by humanoids due to the load weight or the floor 
friction. 

We conducted an experiment assuming tasks to transport a lightweight ob- 
ject all around, aiming to extract specific problems from using two humanoid 
robots: HOAP-1 (manufactured by Fujitsu Automation Limited). Dimensions 
of a HOAP-1 are 223 x 139 x 483 mm (width, depth, and height) with a weight 
of 5.9 kg. It has two arm joints with 4 degrees of freedom each, and two leg 
joints with 6 degrees of freedom each: 20 degrees of freedom in all for right 
and left. 

Actually, when a package is transferred, it seems to be more practical 
for two robots to have a single object. However, unless both robots move 
synchronously in the desirable direction, too much load will be given to the 
arms of robots, which may often cause the mechanical trouble in the arm and 
the shoulder. It is assumed in experiment that the arm movement can cancel 
the position shift, and that the distance and angle that can be cancelled would 
be in the space between two objects. 

We assume the following task situation (see Fig. l .la): Each robot raises 
its platform, on which a brick, i.e., a transportation target, is to be placed. 
However, as a first step, we have removed the target for the sake of simplicity 
(Fig. l .lb). The platform each robot raises is made of foam polystyrene and 
about 80 gram weigh. The size is about 150 mm wide, 150 mm deep and 
200 mm high. This platform is larger than a conventional one because it has 
to bear the weight of the transportation target. A sponge grip is attached 
on each robot arm, so that an object would not slip off the arm during the 
experiment. 

(a) Trunk-based transfer (b) Simplified transportation. 

Fig. 1.1. The target of cooperative transportation. 
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The two robots operate in Master-Slave mode. That is, the Master robot 
transmits data corresponding to each operation created in advance to the Slave 
robot; the two robots start a motion in the same direction simultaneously. The 
created basic motions consist of the following 12 patterns: forward, backward, 
rightward, leftward, half forward, half backward, half rightward, half leftward, 
right turn, left turn, pick up, and put down. These basic motions are combined 
to allow the two robots to transport an object. 

The experiment of several times was conducted using each motion. The 
initial position in this experiment is shown in Fig. 1.2a. The results indicated 
that unintentional motions such as lateral movement (Fig. 1.2b) and back-and- 
forth movement (Fig. 1 . 2 ~ )  by sliding from the normal position, and rotation 
(Fig. 1.2d) occur frequently in basic transportation motions such as forward, 
backward, rightward, and leftward. This is considered mainly to result from 
swinging during walking and the weight of the object. 

(c) Approach (d) Spinning 

Fig. 1.2. Normal positions and different kinds of positional shifts. 

The following three factors can be considered the causes of these shifts in 
motion. 

Swing when the robot moves 
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0 Shift of the center of gravity by having an object 
Initialization error of robot's joint motors 

Especially, in case of humanoid robots, we can think of motor vibration due 
to the body motion as its cause. This may affect the robot's translation or 
direction. In addition, the gravity change resultant from carrying an object 
may possibly cause some errors in the movement. 

When activating a robot, it is necessary to set the initial positions of each 
joint's motors manually. Thus, setting those ini-tial values wrongly may result 
in fatal errors. In order to investigate the error of initial setting, we performed 
experiments in the fundamental mode of motions: forward, backward, right- 
ward and leftward. More precisely, a robot was forced to make five steps in 
each direction so as to measure the final position. In these experiments, the 
initial setting was used twice in each of test patterns, and the experiments 
were repeated 10 time, which means that 20 trials were performed in to-tal 
for each setting. Note that the same robot was used for these experiments. 

The moving distance to front and back, right and left of each experiment 
is shown in Fig. 1.3. The moving distance in two initial setups is expressed 
by a circle and a triangle. As shown in Fig. 1.3a and Fig. 1.3b, when the 
robot moves front-ward or backward, the error occurs to the right incline. 
On the other hand, Fig. 1 . 3 ~  and Fig. 1.3d show that rightward or leftward 
movements resulted in the errors in the frontward incline. From the results, 
it is evident that coincident ini-tial positioning of two robots is very difficult, 
and error occurs in moving distance or in direction. 

Such a position shift can be cancelled, if only slight, by installing a force 
sensor on a wrist and moving arms in the load direction. However, a robot's 
position must be corrected in case of a shift beyond the limitation of an 
arm. Improper correction may cause failure of an arm or a shoulder joint and 
breakage of an object. 

1.3 Approach of Transportation Control 

The practical problem of transporting an object is the possibility that a robot 
falls during movement, due to loss of body balance in connection with a load 
on the arm by a mutual position shift after moving. Therefore, it is important 
to acquire behavior for correcting the position shift generated from movement 
by learning algorithms. 

One of the advantages of using reinforcement learning is its easiness of 
revising the system due to the change of input-output information and its 
possibility to select an appropriate action in response to various information. 

A situation is assumed in which two robots move face to face while main- 
taining the distance within a range to transport an object stably. This motion 
can be divided into two stages: one in which the two robots move simultane- 
ously, and one in which one robot corrects its position. Simultaneous move- 
ment of two robots is controlled by wireless communication. A shift over a 
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(a) Forward 

(c) Rightward 

(b) Backward 

(d) Leftward 

Fig. 1.3. Experimental results of initial setting. 

certain limit of distance or angle in this motion will be corrected by one robot 
according to behavior acquired by learning. 

In order to recognize an object or a state, the Master robot is equipped 
with an active camera, while the Slave robot carries a static one. The active 
camera works with a pan angle of f 90[deg]Cand a tilt angle of f 90[deg]. 
The robots rotate these cameras and recognize their goal so that they can 
transport the target object to the goal. The static camera is used to observe 
the current state of two robots. The obtained information is used as the input 
to the learning system. 

Fig. 1.4 shows the motion overview for conducting a transportation task. In 
the first stage, the Master robot performs a motion programmed in advance; 
simultaneously, it issues directions to perform the same motion to the Slave 
robot. If there is no position shift after movement, the process forwards to the 
next stage; otherwise, the position is corrected with the learning system. We 
have tried to realize a cooperative transportation task by repeating the series 
of this flow. 
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Cooperative moving state 
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Recovery 
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Fig. 1.4. Steps of the cooperative transportation. 

1.4 Learning to Correct Positioning 

1.4.1 Learning Model 

The learning for position correction is carried out with Q-learning and Clas- 
sifier System. 

Q-learning guarantees that the state transition in the environment of a 
Markov decision process converges into the optimal direction [14]. However, 
it requires much time until the optimal behavior obtains a reward in the early 
stage of learning. Thus, it takes time for the convergence of learning. Further- 
more, because all combinations of a state and behavior are evaluated for a 
predetermined Q value, it is difficult to follow environmental change. There- 
fore, learning by a real robot is extremely difficult because of the processing 
time. 

On the other hand, Classifier System can learn a novel classification and 
to maintain the diversity by means of GA, which evolves a rule including # 
(don't care symbol). Thus, it enables the learning with relatively few trials so 
that the evolved robot may adapt the dynamic environment more effectively. 
However, too much generalization might result in the poor performance due 
to the overfitting. 

We use these above two methods for the sake of simulation-based learning 
of the position correction and compare the obtained results. 

The effective division of states and the selection of actions are very essential 
for the sake of efficient Q-learning and Classifier System. A static camera is 
attached to one robot to obtain information required for learning from the 
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external environment. The external situation is evaluated with images from 
this static camera. Based on the partner robot's position projected on the 
image acquired by the static camera, a state space is arranged as shown in 
Fig. 1.5. It is divided into three states: vertical, horizontal, and angular. Hence, 
the total number of states of the environment is 27. If the vertical, horizontal, 
and angular positions are all centered, the goal will be attained. 

(a) Vertical alignment 

Lcit A!@ CdWv Right ,%I. 

(b) Horizontal tllignnient (c) Angular alignment 

Fig. 1.5. Different states (27-states). 

We assumed six behaviors which a robot can choose among the 12 pat- 
terns mentioned in Section 1.2. They are the especially important motions 
of forward, backward, rightward, leftward, right turn, and left turn. Fig. 1.6 
depicts all these motions. 

I 
(a) Move fomatd, backward, ~~ghtward and leftward (b) Turn nght and left 

Fig. 1.6. Different actions (G-actions). 
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1.4.2 Learning in Simulator 

The learning model stated in the preceding subsection has been realized in 
a simulation environment. This simulator sets a target position at a place of 
constant distance from the front of the partner robot, which is present in a 
plane. A task will be completed if the learning robot reaches the position and 
faces the partner robot. 

The target position here ranges in distance movable in one motion. In 
this experiment, back-and-forth and lateral distances and the rotational angle 
movable in one motion are assumed to be constant. That is, if the movable 
distance in one step is about 10 cm back-and-forth and 5 cm laterally, the 
range of the target point will be 50 cm2. In this range, the goal will be attained 
if the learning robot is in place where it can face the partner robot with one 
rotation motion. 

The Q-learning parameters for the simulation were as follows: the initial 
Q value, Qo, was 0.0, the learning rate a! was 0.01, the reduction ratio y was 
0.8 and the reward was 1.0 for the task achievement. We used the following 
parameters for Classifier Systems and GA: the initial value for a rule is 0.1, 
the tax is 0.001, the bid value is 0.01, the crossover rate is 0.95, the mutation 
ratio is 0.05, and the population size is 1,024. 

A certain noise is added to the motion. This is to establish the learning 
scheme in consideration of uncertain factors, such as translation errors due to 
the motion or different operational characteristics of robots. More precisely, 
5% error is given to a motion at one time as noise. 

1.4.3 Result of Simulator Learning 

Behavior patterns obtained by simulation with the Q-learning approach in the 
early stage and acquired by learning are shown in Figs. 1.7a and 1.7b, respec- 
tively. In the early stage, motions are observed such as walking to the same 
place repeatedly and going to a direction different from the target position. 
Behavior approaching the target position is gradually observed as learning 
progresses; finally, behavior is acquired to move to the target position and 
turn to the front with relatively few motions. 

As can be seen Classifier System simulation by in Figs. 1 . 7 ~  and 1.7d, the 
trajectory divergence occurred at the earlier stage of learning. However, at 
the later generations, the effective actions were acquired so as to face the goal 
correctly. 

Fig. 1.8a plots the success rate of learning for 1,000 steps. Fig. 1.8b gives 
the number of successful motions with generations. Both data were averaged 
over 10 runs. As can be seen, Q-learning is superior. This may be because it 
enables hill-climbing local search. Classifier System's performance goes up and 
down irregularly. However, this is considered to show the superiority in terms 
of the robust learning. As a result of this, numbers of motions are almost the 
same for both methods as the later stage of learning. 
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Fig. 1.7. Results of a simulation with Q-learning and Classifier System. 
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Fig. 1.8. Q-learning vs. Classifier System. 

1.4.4 Experiments with Real Robots 

Following the simulation results described in the previous subsection, we con- 
ducted an experiment with real robots to con-firm their applicability. In this 
experiment, we have used the learning data obtained from Q-learning, because 
Q-learning acquired the relatively more precise behaviors than Classifier Sys- 
tem in the previous simulation. 

For the recovery from the horizontal left (right) slide, a humanoid robot 
was initially shifted leftward (rightward) against the opponent robot by 5.2 
cm. On the other hand, it was initially moved forward (backward) from the 
correct position by 3.2 cm for the recovery from front (back) position. In case 
of the rotation failure, the robot was shifted either leftward or rightward by 
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5.2 cm and rotated toward the opponent by 20 degrees. The images of the 
static camera in each pattern are shown in Fig. 1.9. The actions used for the 
recovery were of six kinds, i.e., half forward, half backward, half rightward, 
half leftward, right turn and left turn. 

Approach 

Inclined to left 

Shifted to right 

Step away 

Fig. 1.9. Type of the experiments. 

For this experiment, robots started from one of the three patterns shown 
in Figs. 1.2b, 1 . 2 ~  and 1.2d, which were classified as the failure of actions 
(see Section 1.2). We employed two HOAP-l's, one of which used the learning 
results, i.e., the acquired Q-table, so as to generate actions for the sake of 
recovery from the failure. Q-learning was conducted by simulation with dif- 
ferent numbers of iterations, i.e., 1,000, 10,000, and 100,000 iterations. The 
learning parameters were the same as in the previous subsection. 
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1.4.5 Experimental results 

Table 1.1 shows the averaged numbers of actions for the sake of recovery 
from the above three failure patterns. In Table 1.1: RL represents the slide 
recovery from the right, LR is the slide recovery from the left, NF stands for 
the distance recovery from the front, FN is defined as the distance recovery 
from the back, RLS and LRS are respectively the angle recovery from the right 
and from the left. The averaged numbers of required actions were measured 
over five runs for each experimental condition, i.e., with different Q-learning 
iterations. 

Table 1.1. Numbers of average movement. 

For slide motion, the robot learned an effective motion after 1,000 time 
steps. This is explained in the following way. A gap usually occurs even when 
a robot corrects a position. However, correcting a slide position requires only 
a simple sequence of actions, as a result of which the gap rarely occurs. 

With 1,000 iterations, more actions were needed to recover from the front 
position to the back. This is because the robot had acquired the wrong habit 
of moving leftward when the opponent robot was approaching (see Fig. 1.10). 
This habit has been corrected with 10,000 iterations, so that much fewer 
actions were required for the purpose of repositioning. 

The recovery from "spinning around" seems to be the most difficult among 
the three patterns. For this task, the movement from the slant to the front (see 
Fig. 1.11) was observed with 10,000 iterations, which resulted in the increase of 
required actions. This action sequence was not observed with 1,000 iterations. 
This is considered that the phenomenon is caused by the difference between 
simulation and a real-world environment. 

1.5 Cooperative Transportation to Target Position 

1.5.1 Experiments with Real robots 

The cooperative transportation task, i.e., two humanoid robots cooperate with 
each other to transport an object to a certain goal, is carried out by using the 
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Fig. 1.10. Behavior of N F  with short-time learning and full learning. 

Fig. 1.11. Behavior of LRS with short-time learning and full learning. 
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obtained Q-learning data shown in the previous section. The transportation 
target is a sphere made of foam polystyrene. Its diameter is about 25 cm and 
63 gram weigh. The goal is positioned in a place about l m  distant from each 
humanoid robot and is marked for the purpose of recognition. 

The Master robot finds its mark using the active camera, and decides the 
transportation path to the destination. The path is derived as follows: 

1. Move the Master robot forward or backward so that it is next to the goal. 
2. Move the Master robot left or right to a position adjacent to the mark. 

In the meantime, if a positional shift occurs, the Slave robot recognizes its 
type and tries to recover from it. Afterward, the Master robot searches for a 
new path again and the transportation is restarted according to the new path. 

1.5.2 Experimental results 

Fig. 1.12 shows the transportation process with some recovery actions. As can 
be seen, two recovery actions were performed in case of side motions. As a 
result, the robots achieved the task successfully. In case of a position shift, 
the path to the goal was slightly changed. This was caused by each other's 
shift and its recovery. In order to reduce this anomaly and re-calculation of 
the path, two robots need to revise their positions simultaneously. 

Moreover, when the goal is seen overlapped with the opponent robot, the 
mark is difficult to recognize. In order to solve this difficulty, two robots should 
rotate cooperatively with the object on the platform or both robots should 
be equipped with active cameras for the recognition. 

1.6 Discussion 

We have established a learning system for the cooperative transportation 
by simulation and confirmed its real-world applicability by means of real 
robots. Furthermore, we have conducted cooperative transportation includ- 
ing acquired behavior to correct position using real robots. 

The effective actions were acquired for the sake of recovery from the po- 
sition failure as a result of simulation learning. In a real environment, at the 
earlier stage of learning, we have often observed the unexpected movement 
to a wrong direction by real humanoid robots; which was also the case with 
the simulation. In the middle of learning, the forward movement was more 
often observed from the slant direction. These types of movements, in fact, 
had resulted in the better learning performance by simulation, whereas in a 
real environment they prevented the robot from moving effectively. This is 
considered to be the distinction between simulation and a real-world environ- 
ment. We have confirmed the success of the cooperative transportation by real 
robots, i.e., both robots cooperatively transported an object to a goal while 
revising their position shift effectively. 
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Fig. 1.12. Result of an experiment with real robots. 

In this chapter, the position recovery was carried out by one robot. It is 
more desirable and efficient if both robots can do so. For this purpose, the 
learning of two robots in a real environment is essential. This is also impor- 
tant to nullify the difference between simulation and real-world environment. 
However, it is not easy using Q-learning because of the frequent loss of a goal 
or an opponent in the early state of the learning in a real environment. Thus, 
we can conclude Classifier System is superior to Q-learning for the purpose of 
the cooperative learning in a real-world environment. 

Moreover, we are now developing a methodology of filtering learning result 
by means of camera information from difference devices, for the purpose of 
applying the obtained result in a simulator to a real environment. This method 
is based on the evolutionary computation and probabilistic estimation. 

In order to solve the difficulty with the distinction, learning in the real 
world is essential. For this purpose, we are currently working on the integration 
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of GP and Q-learning in a real robot environment [15]. This method does not 
need a precise simulator, because it is learned with a real robot. In other 
words, the precision requirement is met only if the task is expressed properly. 
As a result of this idea, we can greatly reduce the cost to make the simulator 
highly precise and acquire the optimal program by which a real robot can 
perform well. We especially showed the effectiveness of this approach with 
various types of real robots, e.g. SONY AIBO or HOAP-1. 

1.7 Conclusion 

Specific problems were extracted in an experiment using a practical system in 
an attempt to transport an object cooperatively with two humanoid robots. 
The result proved that both body swinging during movement and the shift in 
the center of gravity, by transporting an object, caused a shift in the position 
after movement. 

We investigated the behavior of fundamental motions to make sure the 
impact of initial positioning on the robot operation. Consequently, it is found 
that position matching of motors is very difficult even using the same robot 
and even in the same motion, there occur errors in moving distance and di- 
rection. 

Therefore, we have proposed a learning method to revise a position shift 
while the cooperative transportation, and established a learning framework 
in a simulation. In addition, the obtained results were verified by using real 
robots in a real environment. 

In order to move towards the target position efficiently, it is necessary to 
perform the real learning by two robots. Therefore, it is important to discuss 
the approach for efficient movement and perform experiment with real robots. 
Since huge time is required for learning in real robots, it is important to reduce 
the time of learning in real environment using learning data in the simulator. 

In our future work, we want to study how robots can more to the target 
in the shortest path when there is an obstacle in the path or how to more in 
an L-shaped path. 
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