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Preface 

Evolutionary algorithms are computer-based solving systems, which use the 
evolutionary computational models as key element in their design and im- 
plementation. A variety of evolutionary algorithms have been proposed. The 
most popular ones are genetic algorithms. They have a conceptual base of 
simulating the evolution of individual structures via the Darwinian natural 
selection process. The process depends on the adherence of the individual 
structures as defined by its environment to the problem pre-determined con- 
straints. Genetic algorithms are well suited to provide an efficient solution of 
hard problems. 

Methods for artificial evolution of active components, such as programs 
and hardware, are rapidly developing branches of adaptive computation and 
adaptive engineering. The evolutionary process can produce, as results, com- 
putational expressions, e.g. algorithms, or machines, e.g. mechanical or elec- 
tronic devices. The evolved components generally present creativity as well as 
inventiveness. Furthermore, they are usually efficient in terms of the specified 
requirements. 

This book is devoted to reporting innovative and significant progress in 
automatic and evolutionary methodology of applied to machine design. The- 
oretical as well as practical chapters are contemplated. 

The content of this book is divided into three main parts. The first part 
consists of four chapters while the second and third part have three chapters. 
In the following, we give a brief description of the main contribution of each 
of these chapters. 

Part I: Evolvable Robots 

In Chapter 1, which is entitled Learning for Cooperative Transportation by 
Autonomous Humanoid Robots, the authors, Yutaka Inoue, Takahiro To- 



VIII Preface 

hge and  Hitoshi Iba, first clarify the practical difficulties we face from the 
cooperative transportation task with two bodies of humanoid robots. After- 
wards, we propose a solution to these difficulties and empirically show the 
effectiveness both by simulation and by real robots. 

In Chapter 2, which is entitled Evolution, Robustness and Adaptation of 
Sidewinding Locomotion of Simulated Snake-like Robot, the authors, namely 
Ivan Tanev, Thomas Ray and  Andrzej Buller, inspired by the effi- 
cient method of locomotion of the rattlesnake, propose an automatic design 
through genetic programming, of the fastest possible sidewinding locomotion 
of simulated limbless, wheelless snake-like robot or snakebot. this work can be 
considered as a step forward towards building real Snakebots that are able to 
perform robustly in difficult environment. 

In Chapter 3, which entitled Evolution of Khepera Robotic Controllers with 
Hierarchical Genetic Programming Techniques, the authors, namely Marcin 
L. Pilat  and  Franz Oppacher, show how to evolve robotic controllers for 
a miniature mobile Khepera robot. They concentrate on control tasks for ob- 
stacle avoidance, wall following, and light avoidance. The robotic controllers 
are evolved through canonical GP implementation, linear genome GP system, 
and hierarchical GP methods (Automatically Defined Functions, Module Ac- 
quisition, Adaptive Representation through Learning). 

In Chapter 4, which entitled Evolving Controllers for Miniature Robots, 
the author, namely Michael Botros, presents a series of experiments in 
evolutionary robotics that used the miniature mobile robot Khepera. Khepera 
robot is widely used in evolutionary experiments due to its small size and 
light weight which simplify the setup of the environments needed for the 
experiments. The controllers evolved in the presented experiments include 
classical and spiking neural networks controllers, fuzzy logic controllers and 
computer program obtained by Genetic Programming. 

Part 11: Evolvable Hardware Synthesis 

In Chapter 5, which is entitled Evolutionary Synthesis of Synchronous Fi- 
nite State Machines, the authors, namely Nadia Nedjah and  Luiza d e  
Macedo Mourelle, propose an evolutionary methodology synthesise finite 
state machines. First, they optimally solve the state assignment NP-complete 
problem, which is inherent to designing any synchronous finite state machines 
using genetic algorithms. This is motivated by the fact that with an optimal 
state assignment one can physically implement the state machine in question 
using a minimal hardware area and response time. Second, with the optimal 
state assignment provided, we propose to use the evolutionary methodology 
to yield optimal evolvable hardware that implement the state machine con- 
trol component. The evolved hardware requires a minimal hardware area and 
introduces a minimal propagation delay of the machine output signals. 
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In Chapter 6, which is entitled Automating the Hierarchical Synthesis of 
MEMS Using Evolutionary Approaches, the authors, namely Zhun Fan, Ji- 
achuan Wang, Kisung Seo, Jianjun Hu,  Ronald Rosenberg, Janis 
Terpenny and  Erik Goodman, first discuss the hierarchy that is involved 
in a typical MEMS design. Then they move on to discuss how evolutionary 
approaches can be used to automate the hierarchical design and synthesis pro- 
cess for MEMS. At the system level, genetic programming, as a strong search 
tool, is used to generate and search in the topologically open-ended design 
space. A multiple-resonator microsystem design is taken as an example to il- 
lustrate the integrated design automation idea using evolutionary approaches 
at multiple levels. 

In Chapter 7, which is entitled An Evolutionary Approach to Multi-FPGAs 
System Synthesis, the authors, namely F. Ferndndez de Veja, J.I. Hi- 
dalgo, J.M. SQnchez and  J. Lanchares, explain in details a methodology 
for Multi-FPGA systems design. They describe a set of techniques based on 
evolutionary algorithms, and we show that they are capable of solving all 
of the design tasks, which are partitioning, placement and routing. Firstly 
a hybrid compact genetic algorithm is used solves the partitioning problem 
and then genetic programming is exploited to evolve a solution for the two 
remaining tasks. 

Part 111: Evolvable Designs 

In Chapter 8, which is entitled Evolutionary Computation and Parallel Pro- 
cessing Applied to the Design of Multilayer Perceptrons, the authors namely, 
Ana  Claudia M. L. Albuquerque, Jorge D. Melo a n d  Adriiio D. 
D6ria Neto, present the use of genetic algorithms in defining the neural net- 
work's architecture and in refining its synaptic weights. A different approach 
of a cooperative parallel genetic algorithm with different evolution behaviors 
is given. Applications on approximation of functions will be illustrated. 

In Chapter 9, which is entitled Evolvable Fuzzy Hardware for Real-time 
Embedded Control in Packet Switching, the authors, namely J u  Hui  Li, 
Meng  Hiot  Lim, Qi  Cao, describe a scheme to implement an Evolvable 
Fuzzy Hardware for real-time Packet Switching Problem. The proposed evolv- 
able fuzzy hardware addresses many issues effectively. For the hardware im- 
plementation of the evolvable fuzzy hardware, real-time fuzzy inference with 
high-speed context switching capability is necessary. This aspect is addressed 
through implementation based on a context independent reconfigurable fuzzy 
inference chip. 

In Chapter 10, which is entitled Improving Multi Expression Programming: 
An Ascending Trail from Sea-Level Even-3-Parity Problem to Alpine Even-18- 
Parity Problem, the author, namely Mihai Oltean, proposes and uses several 
techniques for improving the search performed by Multi Expression Program- 
ming. Some of the most important improvements are Automatically Defined 
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Functions and Sub-symbolic node representation. Several experiments with 
Multi Expression Programming are performed in this chapter. Numerical re- 
sults show that Multi Expression programming performs very well for the 
considered test problems. 

Nadia Nedjah, Ph.D. 
Luiza de Macedo Mourelle, Ph.D. 

Department of System Engineering & Computation 
Faculty of Engineering 

State University of Rio de Janeiro 
(nadia I ldmm) @eng . uer j . br 

http://www.eng.uerj.br 
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In this chapter, we describe a cooperative transportation to a target position 
with two humanoid robots and introduce a machine learning approach to solv- 
ing the problem. The difficulty of the task lies on the fact that each position 
shifts with the other's while they are moving. Therefore, it is necessary to 
correct the position in a real-time manner. However, it is difficult to generate 
such an action in consideration of the physical formula. We empirically show 
how successful the humanoid robot HOAP-1's cooperate with each other for 
the sake of the transportation as a result of Q-learning. Furthermore, we show 
a result of the experiment that transports an object cooperatively to a target 
position using those robots. 

1.1 Introduction 

In this chapter, we first clarify the practical difficulties we face from the coop- 
erative transportation task with two bodies of humanoid robots. Afterwards, 
we propose a solution to these difficulties and empirically show the effective- 
ness both by simulation and by real robots. 

In recent years, many researches have been conducted upon various aspects 
of humanoid robots [l] [2]. Since humanoid robots have physical features sim- 
ilar to us, it is very important to let them behave intelligently like humans. In 
addition, from the viewpoint of A1 or DAI (Distributed AI), it is rewarding to 
study how cooperatively humanoid robots perform a task just as we humans 
can. However, there have been very few studies on the cooperative behaviors 
of multiple humanoid robots. Thus, in this chapter, we describe the emergence 
of the cooperation between humanoid robots so as to achieve the same goal. 
The target task we have chosen is a cooperative transportation, in which two 
bodies of humanoids have to cooperate with each other to carry and transport 
an object to a certain goal position. 
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As for the transportation task, several researches have been reported on 
the cooperation between a human and a wheel robot [3] [4] and the cooperation 
among multiple wheel robots [5] [6]. However, in most of these studies, the goal 
was to let a robot perform a task instead of a human. 

Research to realize collaboration with a legged robot includes lifting oper- 
ations of an object with two robots [7] and box-pushing with two robots [8]. 
However, few studies have addressed cooperative work using similar legged 
robots. It is presumed that body swinging during walking renders coopera- 
tive work by a legged robot difficult [9]. Therefore, it is more difficult for a 
humanoid robot to carry out a transportation task, because it is capable of 
motions that are more complicated and less stable than a usual legged robot. 

In leader-follower type control [lo] [ll], which is often used for cooperative 
movement, it is essential that a follower robot acquire information such as the 
position and velocity of an object fluctuated by the motion of a leader robot. 
This information is usually obtained by a force sensor or wireless communi- 
cation. Such a method is considered to be effective for a robot with a stable 
center of gravity operating with less information for control. However, much 
information must be processed simultaneously to allow a humanoid robot to 
perform complicated actions, such as transporting an object cooperatively, 
with its difficulty to control caused by its unstable body balance. It would 
be expensive to build a system that carries out optimal operation using this 
information. 

One hurdle in the case where multiple humanoid robots move carrying an 
object cooperatively is the disorder of cooperative motion by body swinging 
during walking. Therefore in this chapter, learning is carried out to acquire be- 
havior to correct a mutual position shift generated by this disorder of motion. 
For this purpose, we use two kinds of methods: (i) Classifier System [12] and 
(ii) Q-learning [13]. We will show that behavior to correct a position shift can 
be acquired based on the simulation results of this study. Moreover, according 
to this result, the applicability to a real robot is investigated. Furthermore, 
cooperative transportation to a target position is conducted. 

This chapter is organized as follows. The next section explains the clarified 
problem difficulties with the cooperative transportation. After that, Section 
1.3 proposes our method to solve the problem. Section 1.4 presents an experi- 
mental result in the simulation and real robots environment. Then Section 1.5 
shows an experimental result of cooperative transportation with real robots. 
Section 1.6 discusses these results and future researches. Finally, a conclusion 
is given in Section 1.7. 

1.2 Problem in cooperative Transportat ion by humanoid 
Robots 

Cooperative transportation by humanoid robots involves solving many dif- 
ficult problems. It is different from the transportation by a single robot, in 
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which another robot motion is negligible. On the other hand, in case of the 
cooperative transportation, one robot's motion has an influence on another 
robot to some extent. Thus, it is necessary to synchronize both robots' mo- 
tions. However, the synchronization is not easily achieved because precise 
motions are not expected by humanoids due to the load weight or the floor 
friction. 

We conducted an experiment assuming tasks to transport a lightweight ob- 
ject all around, aiming to extract specific problems from using two humanoid 
robots: HOAP-1 (manufactured by Fujitsu Automation Limited). Dimensions 
of a HOAP-1 are 223 x 139 x 483 mm (width, depth, and height) with a weight 
of 5.9 kg. It has two arm joints with 4 degrees of freedom each, and two leg 
joints with 6 degrees of freedom each: 20 degrees of freedom in all for right 
and left. 

Actually, when a package is transferred, it seems to be more practical 
for two robots to have a single object. However, unless both robots move 
synchronously in the desirable direction, too much load will be given to the 
arms of robots, which may often cause the mechanical trouble in the arm and 
the shoulder. It is assumed in experiment that the arm movement can cancel 
the position shift, and that the distance and angle that can be cancelled would 
be in the space between two objects. 

We assume the following task situation (see Fig. l .la): Each robot raises 
its platform, on which a brick, i.e., a transportation target, is to be placed. 
However, as a first step, we have removed the target for the sake of simplicity 
(Fig. l .lb). The platform each robot raises is made of foam polystyrene and 
about 80 gram weigh. The size is about 150 mm wide, 150 mm deep and 
200 mm high. This platform is larger than a conventional one because it has 
to bear the weight of the transportation target. A sponge grip is attached 
on each robot arm, so that an object would not slip off the arm during the 
experiment. 

(a) Trunk-based transfer (b) Simplified transportation. 

Fig. 1.1. The target of cooperative transportation. 
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The two robots operate in Master-Slave mode. That is, the Master robot 
transmits data corresponding to each operation created in advance to the Slave 
robot; the two robots start a motion in the same direction simultaneously. The 
created basic motions consist of the following 12 patterns: forward, backward, 
rightward, leftward, half forward, half backward, half rightward, half leftward, 
right turn, left turn, pick up, and put down. These basic motions are combined 
to allow the two robots to transport an object. 

The experiment of several times was conducted using each motion. The 
initial position in this experiment is shown in Fig. 1.2a. The results indicated 
that unintentional motions such as lateral movement (Fig. 1.2b) and back-and- 
forth movement (Fig. 1 . 2 ~ )  by sliding from the normal position, and rotation 
(Fig. 1.2d) occur frequently in basic transportation motions such as forward, 
backward, rightward, and leftward. This is considered mainly to result from 
swinging during walking and the weight of the object. 

(c) Approach (d) Spinning 

Fig. 1.2. Normal positions and different kinds of positional shifts. 

The following three factors can be considered the causes of these shifts in 
motion. 

Swing when the robot moves 
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0 Shift of the center of gravity by having an object 
Initialization error of robot's joint motors 

Especially, in case of humanoid robots, we can think of motor vibration due 
to the body motion as its cause. This may affect the robot's translation or 
direction. In addition, the gravity change resultant from carrying an object 
may possibly cause some errors in the movement. 

When activating a robot, it is necessary to set the initial positions of each 
joint's motors manually. Thus, setting those ini-tial values wrongly may result 
in fatal errors. In order to investigate the error of initial setting, we performed 
experiments in the fundamental mode of motions: forward, backward, right- 
ward and leftward. More precisely, a robot was forced to make five steps in 
each direction so as to measure the final position. In these experiments, the 
initial setting was used twice in each of test patterns, and the experiments 
were repeated 10 time, which means that 20 trials were performed in to-tal 
for each setting. Note that the same robot was used for these experiments. 

The moving distance to front and back, right and left of each experiment 
is shown in Fig. 1.3. The moving distance in two initial setups is expressed 
by a circle and a triangle. As shown in Fig. 1.3a and Fig. 1.3b, when the 
robot moves front-ward or backward, the error occurs to the right incline. 
On the other hand, Fig. 1 . 3 ~  and Fig. 1.3d show that rightward or leftward 
movements resulted in the errors in the frontward incline. From the results, 
it is evident that coincident ini-tial positioning of two robots is very difficult, 
and error occurs in moving distance or in direction. 

Such a position shift can be cancelled, if only slight, by installing a force 
sensor on a wrist and moving arms in the load direction. However, a robot's 
position must be corrected in case of a shift beyond the limitation of an 
arm. Improper correction may cause failure of an arm or a shoulder joint and 
breakage of an object. 

1.3 Approach of Transportation Control 

The practical problem of transporting an object is the possibility that a robot 
falls during movement, due to loss of body balance in connection with a load 
on the arm by a mutual position shift after moving. Therefore, it is important 
to acquire behavior for correcting the position shift generated from movement 
by learning algorithms. 

One of the advantages of using reinforcement learning is its easiness of 
revising the system due to the change of input-output information and its 
possibility to select an appropriate action in response to various information. 

A situation is assumed in which two robots move face to face while main- 
taining the distance within a range to transport an object stably. This motion 
can be divided into two stages: one in which the two robots move simultane- 
ously, and one in which one robot corrects its position. Simultaneous move- 
ment of two robots is controlled by wireless communication. A shift over a 
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(a) Forward 

(c) Rightward 

(b) Backward 

(d) Leftward 

Fig. 1.3. Experimental results of initial setting. 

certain limit of distance or angle in this motion will be corrected by one robot 
according to behavior acquired by learning. 

In order to recognize an object or a state, the Master robot is equipped 
with an active camera, while the Slave robot carries a static one. The active 
camera works with a pan angle of f 90[deg]Cand a tilt angle of f 90[deg]. 
The robots rotate these cameras and recognize their goal so that they can 
transport the target object to the goal. The static camera is used to observe 
the current state of two robots. The obtained information is used as the input 
to the learning system. 

Fig. 1.4 shows the motion overview for conducting a transportation task. In 
the first stage, the Master robot performs a motion programmed in advance; 
simultaneously, it issues directions to perform the same motion to the Slave 
robot. If there is no position shift after movement, the process forwards to the 
next stage; otherwise, the position is corrected with the learning system. We 
have tried to realize a cooperative transportation task by repeating the series 
of this flow. 
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Fig. 1.4. Steps of the cooperative transportation. 

1.4 Learning to Correct Positioning 

1.4.1 Learning Model 

The learning for position correction is carried out with Q-learning and Clas- 
sifier System. 

Q-learning guarantees that the state transition in the environment of a 
Markov decision process converges into the optimal direction [14]. However, 
it requires much time until the optimal behavior obtains a reward in the early 
stage of learning. Thus, it takes time for the convergence of learning. Further- 
more, because all combinations of a state and behavior are evaluated for a 
predetermined Q value, it is difficult to follow environmental change. There- 
fore, learning by a real robot is extremely difficult because of the processing 
time. 

On the other hand, Classifier System can learn a novel classification and 
to maintain the diversity by means of GA, which evolves a rule including # 
(don't care symbol). Thus, it enables the learning with relatively few trials so 
that the evolved robot may adapt the dynamic environment more effectively. 
However, too much generalization might result in the poor performance due 
to the overfitting. 

We use these above two methods for the sake of simulation-based learning 
of the position correction and compare the obtained results. 

The effective division of states and the selection of actions are very essential 
for the sake of efficient Q-learning and Classifier System. A static camera is 
attached to one robot to obtain information required for learning from the 
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external environment. The external situation is evaluated with images from 
this static camera. Based on the partner robot's position projected on the 
image acquired by the static camera, a state space is arranged as shown in 
Fig. 1.5. It is divided into three states: vertical, horizontal, and angular. Hence, 
the total number of states of the environment is 27. If the vertical, horizontal, 
and angular positions are all centered, the goal will be attained. 

(a) Vertical alignment 

Lcit A!@ CdWv Right ,%I. 

(b) Horizontal tllignnient (c) Angular alignment 

Fig. 1.5. Different states (27-states). 

We assumed six behaviors which a robot can choose among the 12 pat- 
terns mentioned in Section 1.2. They are the especially important motions 
of forward, backward, rightward, leftward, right turn, and left turn. Fig. 1.6 
depicts all these motions. 

I 
(a) Move fomatd, backward, ~~ghtward and leftward (b) Turn nght and left 

Fig. 1.6. Different actions (G-actions). 
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1.4.2 Learning in Simulator 

The learning model stated in the preceding subsection has been realized in 
a simulation environment. This simulator sets a target position at a place of 
constant distance from the front of the partner robot, which is present in a 
plane. A task will be completed if the learning robot reaches the position and 
faces the partner robot. 

The target position here ranges in distance movable in one motion. In 
this experiment, back-and-forth and lateral distances and the rotational angle 
movable in one motion are assumed to be constant. That is, if the movable 
distance in one step is about 10 cm back-and-forth and 5 cm laterally, the 
range of the target point will be 50 cm2. In this range, the goal will be attained 
if the learning robot is in place where it can face the partner robot with one 
rotation motion. 

The Q-learning parameters for the simulation were as follows: the initial 
Q value, Qo, was 0.0, the learning rate a! was 0.01, the reduction ratio y was 
0.8 and the reward was 1.0 for the task achievement. We used the following 
parameters for Classifier Systems and GA: the initial value for a rule is 0.1, 
the tax is 0.001, the bid value is 0.01, the crossover rate is 0.95, the mutation 
ratio is 0.05, and the population size is 1,024. 

A certain noise is added to the motion. This is to establish the learning 
scheme in consideration of uncertain factors, such as translation errors due to 
the motion or different operational characteristics of robots. More precisely, 
5% error is given to a motion at one time as noise. 

1.4.3 Result of Simulator Learning 

Behavior patterns obtained by simulation with the Q-learning approach in the 
early stage and acquired by learning are shown in Figs. 1.7a and 1.7b, respec- 
tively. In the early stage, motions are observed such as walking to the same 
place repeatedly and going to a direction different from the target position. 
Behavior approaching the target position is gradually observed as learning 
progresses; finally, behavior is acquired to move to the target position and 
turn to the front with relatively few motions. 

As can be seen Classifier System simulation by in Figs. 1 . 7 ~  and 1.7d, the 
trajectory divergence occurred at the earlier stage of learning. However, at 
the later generations, the effective actions were acquired so as to face the goal 
correctly. 

Fig. 1.8a plots the success rate of learning for 1,000 steps. Fig. 1.8b gives 
the number of successful motions with generations. Both data were averaged 
over 10 runs. As can be seen, Q-learning is superior. This may be because it 
enables hill-climbing local search. Classifier System's performance goes up and 
down irregularly. However, this is considered to show the superiority in terms 
of the robust learning. As a result of this, numbers of motions are almost the 
same for both methods as the later stage of learning. 
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Fig. 1.7. Results of a simulation with Q-learning and Classifier System. 
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Fig. 1.8. Q-learning vs. Classifier System. 

1.4.4 Experiments with Real Robots 

Following the simulation results described in the previous subsection, we con- 
ducted an experiment with real robots to con-firm their applicability. In this 
experiment, we have used the learning data obtained from Q-learning, because 
Q-learning acquired the relatively more precise behaviors than Classifier Sys- 
tem in the previous simulation. 

For the recovery from the horizontal left (right) slide, a humanoid robot 
was initially shifted leftward (rightward) against the opponent robot by 5.2 
cm. On the other hand, it was initially moved forward (backward) from the 
correct position by 3.2 cm for the recovery from front (back) position. In case 
of the rotation failure, the robot was shifted either leftward or rightward by 
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5.2 cm and rotated toward the opponent by 20 degrees. The images of the 
static camera in each pattern are shown in Fig. 1.9. The actions used for the 
recovery were of six kinds, i.e., half forward, half backward, half rightward, 
half leftward, right turn and left turn. 

Approach 

Inclined to left 

Shifted to right 

Step away 

Fig. 1.9. Type of the experiments. 

For this experiment, robots started from one of the three patterns shown 
in Figs. 1.2b, 1 . 2 ~  and 1.2d, which were classified as the failure of actions 
(see Section 1.2). We employed two HOAP-l's, one of which used the learning 
results, i.e., the acquired Q-table, so as to generate actions for the sake of 
recovery from the failure. Q-learning was conducted by simulation with dif- 
ferent numbers of iterations, i.e., 1,000, 10,000, and 100,000 iterations. The 
learning parameters were the same as in the previous subsection. 
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1.4.5 Experimental results 

Table 1.1 shows the averaged numbers of actions for the sake of recovery 
from the above three failure patterns. In Table 1.1: RL represents the slide 
recovery from the right, LR is the slide recovery from the left, NF stands for 
the distance recovery from the front, FN is defined as the distance recovery 
from the back, RLS and LRS are respectively the angle recovery from the right 
and from the left. The averaged numbers of required actions were measured 
over five runs for each experimental condition, i.e., with different Q-learning 
iterations. 

Table 1.1. Numbers of average movement. 

For slide motion, the robot learned an effective motion after 1,000 time 
steps. This is explained in the following way. A gap usually occurs even when 
a robot corrects a position. However, correcting a slide position requires only 
a simple sequence of actions, as a result of which the gap rarely occurs. 

With 1,000 iterations, more actions were needed to recover from the front 
position to the back. This is because the robot had acquired the wrong habit 
of moving leftward when the opponent robot was approaching (see Fig. 1.10). 
This habit has been corrected with 10,000 iterations, so that much fewer 
actions were required for the purpose of repositioning. 

The recovery from "spinning around" seems to be the most difficult among 
the three patterns. For this task, the movement from the slant to the front (see 
Fig. 1.11) was observed with 10,000 iterations, which resulted in the increase of 
required actions. This action sequence was not observed with 1,000 iterations. 
This is considered that the phenomenon is caused by the difference between 
simulation and a real-world environment. 

1.5 Cooperative Transportation to Target Position 

1.5.1 Experiments with Real robots 

The cooperative transportation task, i.e., two humanoid robots cooperate with 
each other to transport an object to a certain goal, is carried out by using the 
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Fig. 1.10. Behavior of N F  with short-time learning and full learning. 

Fig. 1.11. Behavior of LRS with short-time learning and full learning. 
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obtained Q-learning data shown in the previous section. The transportation 
target is a sphere made of foam polystyrene. Its diameter is about 25 cm and 
63 gram weigh. The goal is positioned in a place about l m  distant from each 
humanoid robot and is marked for the purpose of recognition. 

The Master robot finds its mark using the active camera, and decides the 
transportation path to the destination. The path is derived as follows: 

1. Move the Master robot forward or backward so that it is next to the goal. 
2. Move the Master robot left or right to a position adjacent to the mark. 

In the meantime, if a positional shift occurs, the Slave robot recognizes its 
type and tries to recover from it. Afterward, the Master robot searches for a 
new path again and the transportation is restarted according to the new path. 

1.5.2 Experimental results 

Fig. 1.12 shows the transportation process with some recovery actions. As can 
be seen, two recovery actions were performed in case of side motions. As a 
result, the robots achieved the task successfully. In case of a position shift, 
the path to the goal was slightly changed. This was caused by each other's 
shift and its recovery. In order to reduce this anomaly and re-calculation of 
the path, two robots need to revise their positions simultaneously. 

Moreover, when the goal is seen overlapped with the opponent robot, the 
mark is difficult to recognize. In order to solve this difficulty, two robots should 
rotate cooperatively with the object on the platform or both robots should 
be equipped with active cameras for the recognition. 

1.6 Discussion 

We have established a learning system for the cooperative transportation 
by simulation and confirmed its real-world applicability by means of real 
robots. Furthermore, we have conducted cooperative transportation includ- 
ing acquired behavior to correct position using real robots. 

The effective actions were acquired for the sake of recovery from the po- 
sition failure as a result of simulation learning. In a real environment, at the 
earlier stage of learning, we have often observed the unexpected movement 
to a wrong direction by real humanoid robots; which was also the case with 
the simulation. In the middle of learning, the forward movement was more 
often observed from the slant direction. These types of movements, in fact, 
had resulted in the better learning performance by simulation, whereas in a 
real environment they prevented the robot from moving effectively. This is 
considered to be the distinction between simulation and a real-world environ- 
ment. We have confirmed the success of the cooperative transportation by real 
robots, i.e., both robots cooperatively transported an object to a goal while 
revising their position shift effectively. 
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Fig. 1.12. Result of an experiment with real robots. 

In this chapter, the position recovery was carried out by one robot. It is 
more desirable and efficient if both robots can do so. For this purpose, the 
learning of two robots in a real environment is essential. This is also impor- 
tant to nullify the difference between simulation and real-world environment. 
However, it is not easy using Q-learning because of the frequent loss of a goal 
or an opponent in the early state of the learning in a real environment. Thus, 
we can conclude Classifier System is superior to Q-learning for the purpose of 
the cooperative learning in a real-world environment. 

Moreover, we are now developing a methodology of filtering learning result 
by means of camera information from difference devices, for the purpose of 
applying the obtained result in a simulator to a real environment. This method 
is based on the evolutionary computation and probabilistic estimation. 

In order to solve the difficulty with the distinction, learning in the real 
world is essential. For this purpose, we are currently working on the integration 
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of GP and Q-learning in a real robot environment [15]. This method does not 
need a precise simulator, because it is learned with a real robot. In other 
words, the precision requirement is met only if the task is expressed properly. 
As a result of this idea, we can greatly reduce the cost to make the simulator 
highly precise and acquire the optimal program by which a real robot can 
perform well. We especially showed the effectiveness of this approach with 
various types of real robots, e.g. SONY AIBO or HOAP-1. 

1.7 Conclusion 

Specific problems were extracted in an experiment using a practical system in 
an attempt to transport an object cooperatively with two humanoid robots. 
The result proved that both body swinging during movement and the shift in 
the center of gravity, by transporting an object, caused a shift in the position 
after movement. 

We investigated the behavior of fundamental motions to make sure the 
impact of initial positioning on the robot operation. Consequently, it is found 
that position matching of motors is very difficult even using the same robot 
and even in the same motion, there occur errors in moving distance and di- 
rection. 

Therefore, we have proposed a learning method to revise a position shift 
while the cooperative transportation, and established a learning framework 
in a simulation. In addition, the obtained results were verified by using real 
robots in a real environment. 

In order to move towards the target position efficiently, it is necessary to 
perform the real learning by two robots. Therefore, it is important to discuss 
the approach for efficient movement and perform experiment with real robots. 
Since huge time is required for learning in real robots, it is important to reduce 
the time of learning in real environment using learning data in the simulator. 

In our future work, we want to study how robots can more to the target 
in the shortest path when there is an obstacle in the path or how to more in 
an L-shaped path. 
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Inspired by the efficient method of locomotion of the rattlesnake Crotalus 
cerastes, the objective of this work is automatic design through genetic pro- 
gramming, of the fastest possible (sidewinding) locomotion of simulated limb- 
less, wheelless snake-like robot (Snakebot). The realism of simulation is en- 
sured by employing the Open Dynamics Engine (ODE), which facilitates im- 
plementation of all physical forces, resulting from the actuators, joints con- 
strains, frictions, gravity, and collisions. Empirically obtained results demon- 
strate the emergence of sidewinding locomotion from relatively simple motion 
patterns of morphological segments. Robustness of the sidewinding Snakebot, 
considered as ability to retain its velocity when situated in unanticipated en- 
vironment, is illustrated by the ease with which Snakebot overcomes various 
types of obstacles such as a pile of or burial under boxes, rugged terrain and 
small walls. The ability of Snakebot to adapt to partial damage by gradually 
improving its velocity characteristics is discussed. Discovering compensatory 
locomotion traits, Snakebot recovers completely from single damage and re- 
covers a major extent of its original velocity when more significant damage 
is inflicted. Contributing to the better understanding of sidewinding locomo- 
tion, this work could be considered as a step towards building real Snakebots, 
which are able to perform robustly in difficult environment. 
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2.1 Introduction 

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness 
characteristics beyond the capabilities of most wheeled and legged vehicles - 
ability to traverse terrain that would pose problems for traditional wheeled or 
legged robots, and insignificant performance degradation when partial dam- 
age is inflicted. Moreover, due to their modular design, Snakebots may be 
cheaper to build, maintain and repair. Some useful features of Snakebots in- 
clude smaller size of the cross-sectional areas, stability, ability to operate in 
difficult terrain, good traction, high redundancy, and complete sealing of the 
internal mechanisms [3], [4]. Robots with these properties open up several 
critical applications in exploration, reconnaissance, medicine and inspection. 
However, compared to the wheeled and legged vehicles, Snakebots feature (i) 
smaller payload, (ii) more difficult thermal control, (iii) more difficult control 
of locomotion gaits and (iv) inferior speed characteristics. Considering the 
first two drawbacks as beyond the scope of our work, and focusing on the 
drawbacks of control and speed, we intend to address the following challenge: 
how to develop control sequences of Snakebot's actuators, which allow for 
achieving the fastest possible speed of locomotion. 

Although for many tasks, handcrafting the robot locomotion control code 
by applying various theoretical approaches [l] ,[2], [13], [15], [19], [21] can be 
seen as a natural approach, it might not be feasible for developing the con- 
trol code of Snakebot due to its morphological complexity. While the overall 
locomotion gait of Snakebot might emerge from relatively simply defined mo- 
tion patterns of morphological segments of Snakebot, neither the degree of 
optimality of the developed code nor the way to incrementally improve the 
code is evident to the human designer [ l l] .  Thus, an automated mechanism 
for solution evaluation and corresponding rules for incremental optimization 
of the intermediate solution(s) are needed [5], [lo]. The proposed approach of 
employing genetic programming (GP) implies that the code, which governs 
the locomotion of Snakebot is automatically designed by a computer system 
via simulated evolution through selection and survival of the fittest in a way 
similar to the evolution of species in the nature. The use of an automated 
process to design the control code opens the possibility of creating a solution 
that would be better than one designed by a human [9]. 

Out choice of employing GP for designing the control code of snakebot 
is motivated by the commonly accepted recognition that applying traditional 
learning techniques (reinforcement learning, Q-learning, etc.) to redundant 
robotic systems (such as snake-like robots) is difficult and extremely time 
consuming. These learning techniques usually involve many random searches, 
and the number of these random searches increases exponentially with the 
increase of size of the search space. 

Evolving a Snakebot's locomotion (and in general, behavior of any robot) 
could be performed as a first step in the sequence of simulated off-line evolu- 
tion (phylogenetic learning) on the software model, followed by on-line adap- 
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tation (ontogenetic learning) of evolved code on a physical robot situated in 
a real environment [12]. Off-line software simulation facilitates the process of 
Snakebot's controller design because the verification of behavior on physical 
Snakebot is extremely time consuming, costly and often dangerous for Snake- 
bot and surrounding environment. Moreover, in some cases it is appropriate to 
initially model not only the locomotion, but also to co-evolve the most appro- 
priate morphology of the artifact (i.e. number of phenotypic segments; types 
and parameters of joints which link segments; actuators' power; type, amount 
and location of sensors; etc.) 1141, 1161, 1171 and only then (if appropriate) to 
physically implement it as hardware. The software model, used to simulate 
Snakebot should fulfill the basic requirements of being quickly developed, ad- 
equate, and fast running [6]. Typically slow development time of GP stems 
from the highly specific semantics of the main attributes of GP (e.g. represen- 
tation, genetic operations, fitness evaluation) and can be significantly reduced 
through incorporating off-the-shelf software components and open standards 
in software engineering. To address this issue, we developed a GP framework 
based on open XML standard and ensure adequacy and runtime efficiency of 
Snakebot simulation, we applied the Open Dynamic Engine (ODE) freeware 
software library for simulation of rigid body dynamics. 

The objectives of our work are (i) to explore the feasibility of applying GP 
for automatic design of the fastest possible locomotion of realistically simu- 
lated Snakebot and (ii) to investigate the robustness and adaptation of such 
locomotion to unanticipated environmental conditions and degraded abilities 
of Snakebot. Inspired by the fast sidewinding locomotion of the rattlesnake 
Crotalus cerastes, this work is motivated by our desires (i) to better under- 
stand the mechanisms underlying sidewinding locomotion of natural snakes, 
(ii) to explore the phenomenon of emergence of locomotion of complex bodies 
from simply defined motion patterns of the morphological segments compris- 
ing these bodies, (iii) to verify the feasibility of employing ODE for realistic 
software simulation of a Snakebot, and (iv) to investigate the practicality of 
building real Snakebots. 

The remainder of this document is organized as follows. Section 2.2 em- 
phasizes the main features of the GP proposed for evolution of locomotion of 
simulated Snakebot. Section 2.2 presents empirical results of evolving loco- 
motion gaits of Snakebots and discusses the emergence of sidewinding. The 
same section elaborates on robustness and adaptation of sidewinding to unan- 
ticipated environmental conditions and partial damage of Snakebot. Finally, 
Section 2.4 draws a conclusion. 

2.2 Approach 

2.2.1 Representation of Snakebot 

Snakebot is simulated as a set of identical spherical morphological segments ( 
"vertebrae" ), linked together via universal joints. All joints feature identical 
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(finite) angle limits and each joint has two attached actuators ("muscles"). In 
the initial, standstill position of Snakebot the rotation axes of the actuators 
are oriented vertically (vertical actuator) and horizontally (horizontal actu- 
ator) and perform rotation of the joint in the horizontal and vertical planes 
respectively (Fig. 2.1). Considering the representation of Snakebot, the task 
of designing the fastest locomotion can be rephrased as developing temporal 
patterns of desired turning angles of horizontal and vertical actuators of each 
segment, that result in fastest overall locomotion of Snakebot. 

Vertioal 
Bxis 

\ Universal joint 

Horizontal Segment (N Segment Xitl 
axis 

Fig. 2.1. Morphological segments of Snakebot linked via universal joint. Horizontal 
and vertical actuators attached to the joint perform rotation of the segment #if1 
in vertical and horizontal planes respectively 

2.2.2 Algorithmic paradigm 

Genetic Programming 

GP [7] is a domain-independent problem-solving approach in which a popula- 
tion of computer programs (individuals' genotypes) is evolved to solve prob- 
lems. The simulated evolution in GP is based on the Darwinian principle of 
reproduction and survival of the fittest. The fitness of each individual is based 
on the quality with which the phenotype of the simulated individual is per- 
forming in a given environment. The major attributes of GP - function set, 
terminal set, fitness evaluation, genetic representation, and genetic operations 
are elaborated in the remaining of this Section. 

Function set and terminal Set 

In applying GP to evolution of Snakebot, the genotype is associated with two 
algebraic expressions, which represent the temporal patterns of desired turn- 
ing angles of both the horizontal and vertical actuators of each morphological 
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segment. Since locomotion gaits are periodical, we include the trigonometric 
functions sin and cos in the GP function set in addition to the basic algebraic 
functions. The choice of these trigonometric functions reflects our intention 
to verify the hypothesis (first expressed by Petr Miturich in 1920's) that un- 
dulative motion mechanisms could yield efficient gaits of snake-like artifacts 
operating in air, land, or water. Terminal symbols include the variables time, 
index of morphological segment of Snakebot, and two constants: Pi, and ran- 
dom constant within the range [O, 21. The main parameters of the GP are 
summarised in Table 2.1. The rationale of employing automatically defined 
function (ADF) is based on empirical observation that the evolvability of 
straightforward, independent encoding of desired turning angles of both hor- 
izontal and vertical actuators is poor, although it allows GP to adequately 
explore the search space and ultimately, to discover the areas which corre- 
spond to fast locomotion gaits in solution space. We discovered that (i) the 
motion patterns of horizontal and vertical actuators of each segment in fast 
locomotion gaits are highly correlated (e.g. by frequency, direction, etc.) and 
that (ii) discovering and preserving such correlation by GP is associated with 
enormous computational effort. ADF, as a way of introducing modularity and 
reuse of code in GP [8] is employed in our approach to allow GP to explicitly 
evolve the correlation between motion patterns of horizontal and vertical ac- 
tuators as shared fragments in algebraic expressions of desired turning angles 
of actuators. Moreover, the best result was obtained by (i) allowing the use of 
ADF as a terminal symbol in algebraic expression of desired turning angle of 
vertical actuator only, and (ii) by evaluating the value of ADF by equalizing 
it to the value of currently evaluated algebraic expression of desired turning 
angle of horizontal actuator. 

Table 2.1. Main parameters of GP 

Category Value 

Function set 
Terminal set 
Population size 
Selection 
Elitism 
Mutation 
Fitness 
Trial interval 
Termination criterion 

sin, cos, +, -, *, / 
time, segmentlD, Pi, random constant, ADF 
200 individuals 
Binary tournament, ratio 0.1 
Best 4 individuals 
Random subtree mutation, ratio 0.01 
Velocity of simulated Snakebot during the trial 
180 time steps, each time step account for 50ms of real time 
(Fitness1 2 100) or (Generations 2 30) or 
no improvement of fitness for 16 generations) 
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Fitness evaluation 

The fitness function is based on the velocity of Snakebot, estimated from the 
distance which the center of the mass of Snakebot travels during the trial. 
The real values of the raw fitness, which are usually within the range (0, 
2) are multiplied by a normalizing coefficient in order to deal with integer 
fitness values within the range (0, 200). A normalized fitness of 100 (one of 
the termination criteria shown in Table 2.1) is equivalent to a velocity which 
displaced Snakebot a distance equal to twice its length. The fitness evaluation 
routine is shown in Algorithm 2.1. The implementation of fitness evaluation 
routine is illustrated in 2.2. 

Representation of genotype 

Inspired by its flexibility, and the recently emerged widespread adoption of 
document object model (DOM) and extensible markup language (XML), we 
represent evolved genotypes of simulated Snakebot as DOM-parse trees fea- 
turing equivalent flat XML-text in a way as first implemented in [20]. Our 
approach implies that both (i) the calculation of the desired turning angles 
during fitness evaluation (functions EvalHorisontalAngle and EvalVerticalAn- 
gle, shown in Algorithm 2.2, lines 18 and 20 respectively) and (ii) the genetic 
operations are performed on DOM-parse trees using off-the shelf, platform- 
and language neutral DOM-parsers. The corresponding XML-text represen- 
tation (rather than S-expression) is used as a flat file format, feasible for 
migration of genetic programs among the computational nodes in an eventual 
distributed implementation of the GP. The benefits of using DOM/XML- 
based representations of genetic programs are (i) fast prototyping of GP by 
using standard built-in API of DOM-parsers for traversing and manipulating 
genetic programs, (ii) generic support for the representation of grammar of 
strongly-typed GP using W3C-standardized XML-schema; and (iii) inherent 
Web-compliance of eventual parallel distributed implementation of GP. 

Genetic operations 

Binary tournament selection is employed - a robust, commonly used selection 
mechanism, which has proved to be efficient and simple to code. Crossover 
operation is defined in a strongly typed way in that only the DOM-nodes 
(and corresponding DOM-subtrees) of the same data type (i.e. labeled with 
the same tag) from parents can be swapped. The sub-tree mutation is allowed 
in strongly typed way in that a random node in genetic program is replaced by 
syntactically correct sub-tree. The mutation routine refers to the data type 
of currently altered node and applies randomly chosen rule from the set of 
applicable rewriting rules as defined in the grammar of strongly typed GP. 
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ODE 

We have chosen Open Dynamics Engine (ODE) [18] to provide a realistic sim- 
ulation of physics in applying forces to phenotypic segments of Snakebot, for 
simulation of Snakebot locomotion. ODE is a free, industrial quality software 
library for simulating articulated rigid body dynamics. It is fast, flexible and 
robust, and it has built-in collision detection. The ODE-related parameters of 
simulated Snakebot are summarized in Table 2.2. 

Algorithm 2.1 Fitness evaluation routine 
Step 1. Incorporating the evolved genotype into the actuators' controllers 

of Snakebot; 
Step 2. Simulating the locomotion of Snakebot governed by current actuators' 

controllers; 
Step 3. Estimating the distance, which the center of the mass of Snakebot travels 

during the trial. 

Table 2.2. ODE-related parameters of simulated Snakebot 

Parameter Value 

Number of phenotypic segments in snake 
Model of segment 
Type of joint between segments 
Initial alignment of segments in Snakebot 
Number of actuators per joint 
Orientation of axes of actuators 

Operational mode of actuators 
Max force of actuators 
Actuators stops (angular limits) 
Friction between segments and surface ( p )  
Sampling frequency of simulation 

15 
Sphere, R=0.2 
Universal 
Along Y-axis of the world 
2 
Horizontal - along X-axis and 
Vertical - along Z-axis of the world 
d AMotorEuler 
12 
50 
5 
20 Hz 

2.3 Experimental Results 

This section discusses experimental results verifying the feasibility of apply- 
ing GP for evolution of the fastest possible locomotion gaits of Snakebot for 
various fitness and environmental conditions. In addition, it investigates the 
properties of the fastest locomotion gait, evolved in an unconstrained envi- 
ronment from two perspectives: (i) robustness to various unanticipated en- 
vironmental conditions and (ii) gradual adaptation to degraded mechanical 
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A l g o r i t h m  2.2 Implementation of fitness evaluation routine 
1. function Evaluate(GenH, GenV: TGenotype): real; 
2. // GenH and GenV is  a pair of algebraic expressions, which define the 
3. // turning angle of the horizontal and vertical actuators at the joints 
4. // of simulated Snakebot. GenH and GenV represent the evolved genotype. 
5. const 
6. Timesteps =180; // duration of the trial 
7. SegmentsInSnakebot=l5; // # of phenotypic segments i n  simulated Snakebot 
8. var 
9. t ,  s : integer; 

10. AngleH, AngleV : real; // desired turning angles of actuators 
11. CurrAngleH, CurrAngleV: real; // current turning angles of actuators 
12. InitialPos, FinalPos : 3DVector; // ( X ,  Y,Z) 
13. begin 

[nitialPos:=GetPosOfCenterOfMassOfSnakebot; 
for t:=O t o  Timesteps-1 d o  begin 
for s:=O to SegmentsInSnakebot-1 d o  begin 
// traversing XML/DOM-based GenH using DOM-parser: 
AngleH := EvalHorizontalAngle(GenH,s,t); 
// traversing XML/DOM-based GenV using DOM-parser: 
AngleV := EvalVerticalAngle(GenV,s,t); 
CurrAngleH := GetCurrentAngleH(s); 
CurrAngleV := GetCurrentAngleV(s); 
SetDesiredVelocityH(CurrAng1eH-AngleH,s) ; 
SetDesiredVelocityV(CurrAng1eV-AngleV,~); 
end;  
// detect collisions between the objects (phenotypic segments, 
// ground plane, etc.): 
dSpaceCollide; 
// Obtain new properties (position, orientation, velocity 
// vectors, etc.) of morphological segments of Snakebot as a result 
// of applying all forces: 
dWorldStep; 
end; 

FinalPos := GetPosOfCenterOfMassOfSnakebot; 
r e tu rn  GetDistance(InitialPos, FinalPos)/(TimeSteps); 

36. end;  

abilities of Snakebot. These challenges are considered as relevant for success- 
ful accomplishment of various practical tasks during anticipated exploration, 
reconnaissance, medicine and inspection missions. 

2.3.1 Evolu t ion  o f  fas tes t  locomot ion  g a i t s  

Fig. 2.2 shows the fitness convergence characteristics of 10 independent runs 
of GP and Fig. 2.3 shows a sample snapshots of evolved best-of-run loco- 
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motion gaits when fitness is measured in any direction in an unconstrained 
environment. Despite the fact that fitness is unconstrained and measured as 
velocity in any direction, sidewinding locomotion (defined as locomotion pre- 
dominantly perpendicular to the long axis of Snakebot) emerged in all 10 
independent runs of GP, suggesting that it provides superior speed character- 
istics for Snakebot morphology. The dynamic motions of the sample evolved 
best-of-run Snakebot is illustrated in Fig. 2.4. The normalized algebraic ex- 
pressions of the genotype of sample best-of-run genetic program are shown in 
Equations 2.1 and 2.2. The value of the automatically defined function ADF 
in Equation 2.2, is evaluated by equalizing it to the value of GenH, evaluated 
in Equation 2.1. 

GenH = (sin(((sin(-8))*(segment_id-time))+(3*time)))/(sin(-8)) (2.1) 

GenV = sin(ADF) (2.2) 

0 10 20 30 40 

Generation # 

Fig. 2.2. Fitness convergence characteristics of 10 independent runs of GP for cases 
where fitness is measured as velocity in any direction 

The dynamics of evolved turning angles of actuators in sidewinding loco- 
motion result in characteristic circular motion pattern of segments around the 
center of the mass as shown in Fig. 2.5a. The circular motion pattern of seg- 
ments and the characteristic track on the ground as a series of diagonal lines 
(Fig. 2.5b) suggest that during sidewinding the shape of Snakebot takes the 
form of a rolling helix. Fig. 2.5 demonstrates that the simulated evolution of 
locomotion via GP is able to invent the improvised cylinder of the sidewind- 
ing Snakebot to achieve fast locomotion. By modulating the oscillations of 
the actuators along the snake's body, the diameter of the cross-section of the 
"cylinder" can be tapered towards either the tail or head of the snake, provid- 
ing an efficient way of "steering" the Snakebot (Fig. 2.6). Fig. 2.7 illustrates 
the ability of Snakebot to perform sharp turn with radius similar to its length 
in both clockwise and counterclockwise directions. 

The moving Snakebot straight is wrapped around an imagined cylinder 
taking the form of a rolling helix (a). By modulating the oscillations of the 
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(a) Snapshots 1 (b) Snapshots 2 

Fig. 2.3. Snapshots of sample evolved best-of-run sidewinding locomotion gaits of 
simulated Snakebot viewed from above. The dark trailing circles depict the trajec- 
tory of the center of the mass of Snakebot. Timestamp interval between each of 
these circles is fixed and it is the same (10 time steps) for both snapshots 

Fig. 2.4. Snapshots of sample evolved best-of-run sidewinding locomotion of simu- 
lated Snakebot (left-right top-down). The dark trailing circles depict the trajectory 
of the central segment of Snakebot. Timestamp interval between each of these circles 
is 2 time steps (0.1s) 
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(a) Evolved best-of-run (b) Traces of ground contacts 

Fig. 2.5. Trajectory of the central segment (cs) around the center of mass (cm) of 
Snakebot 

Direction OJ 
"rnt&m" 

(a) Imagined cylinder (b) Imagined cone 

Fig. 2.6. Steering the Snakebot 

actuators along the snake's body, the diameter of the cross-section of the 
"cylinder" can be tapered towards either the tail or head of the snake, provid- 
ing an efficient way of "steering" the Snakebot: (b) illustrates the Snakebot 
turning counterclockwise. The images are idealized: in simulated Snakebot 
(and in snakes in Nature too) the cross sectional areas of the imagined "cylin- 
der" (a) and "cone" (b) are much more similar to ellipses (as shown in Fig. 
2.5a) rather than to perfect circles as depicted in Fig. 2.6 

In order to verify the superiority of velocity characteristics of sidewind- 
ing locomotion for Snakebot morphology we compared the fitness convergence 
characteristics of evolution in unconstrained environment for the following two 
cases: (i) unconstrained fitness measured as velocity in any direction (as dis- 
cussed above and illustrated in Fig. 2.2 and 2.3, and (ii) fitness, measured as 



32 Ivan Tanev, Thomas Ray, and Andrzej Buller 

(a) Clockwise direction (b) Counterclockwise direction 

Fig. 2.7. Snapshots of Snakebot performing sharp turns 

velocity in forward (non-sidewinding) direction only. Fig. 2.8 depicts the fit- 
ness convergence characteristics of 10 independent runs of GP for cases where 
fitness is measured as velocity in forward direction. The results of evolution of 
forward locomotion, shown in Fig. 2.9 indicate that non-sidewinding motion, 
compared to sidewinding, features much inferior velocity characteristics. 

Fig. 2.8. Fitness convergence characteristics of 10 independent runs of GP for cases 
where fitness is measured as velocity in forward direction 

The results of evolution of rectilinear locomotion of simulated Snakebot 
confined in narrow "tunnel" are shown in Fig. 2.10 and Fig. 2.11. The width 
of the tunnel is three times the diameter of the cross-section (which equals to 
the diameter of the segment) of Snakebot. Compared to forward locomotion in 
unconstrained environment (Fig. 2.8), the velocity in this experiment is supe- 
rior, and comparable to the velocity of sidewinding (Fig. 2.2). This, seemingly 
anomalous phenomenon demonstrates the ability of simulated evolution to 
discover a way to utilize the walls of "tunnel" as a source of (i) extra grip 
and (ii) locomotion gaits which are fast yet unbalanced in an unconstrained 
environment. As Fig. 2.11b illustrates, as soon as Snakebot clears the tunnel, 
the gait flattens and velocity (visually estimated as a distance between the 
traces of the center of gravity of Snakebot) drops dramatically. 
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(a) Forward (b) Locomotion gaits 

Fig. 2.9. Snapshots of sample evolved best-of-run forward crawling locomotion gaits 
of simulated Snakebot. Timestamp interval between the traces of the center of the 
mass is the same as for sidewinding locomotion gaits, shown in Fig. 2.3. The distance 
between the traces of center of the mass in both forward and sidewinding locomotion 
gaits comparatively illustrates the achieved velocity in both cases 

0  1 0 2 0 3 0 4 0  
Generation # 

Fig. 2.10. Fitness convergence characteristics of 10 indepenuent, I U I I ~  VL 2 P  when 
simulated Snakebot is confined in narrow "tunnel" 

The final experiment discussed in this section is intended to verify the 
ability of GP to evolve not only periodic locomotion gaits but also standstill 
postures, such as elevation of the head of Snakebot. The best-of-run postures 
(as shown in Fig. 2.12) feature well-balanced, standstill elevation of the head. 
The elevation is approximately 3 diameters of Snakebot's segments, or about 
20% of overall length of creature. 
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(a) Intermediate stage (b) Final stage 

Fig. 2.11. Snapshots of sample evolved best-of-run gaits at the intermediate and 
final stages of the trial when simulated Snakebot is confined in narrow "tunnel" 

(a) Front view (b) Above view 

Fig. 2.12. Snapshots of sample evolved best-of-run standstill postures featuring 
elevated head of Snakebot: front view and view from above 

2.3.2 Robustness of Evolved Sidewinding Locomotion 

Within the scope of our work we consider the robustness of sidewinding loco- 
motion as the ability of the sidewinding Snakebot to retain its velocity when 
situated in a challenging environment. Robustness is qualitatively demon- 
strated by the ease with which the sidewinding Snakebot, initially evolved in 
unconstrained environment overcomes a pile of 80 boxes (Fig. 2.13), burial 
under 80 boxes (Fig. 2.14), rugged terrain with 200 randomly positioned ob- 
stacles with uniform random distribution of size in the range 0.1 to 1 of the 
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diameter of the cross-section of Snakebot (Fig. 2.15) and, finally, walls with 
height equal to the diameter of the cross-section of Snakebot (Fig. 2.16). 

(a) Initial stage (b) Intermediate stage 

(c) Final stage 

Fig. 2.13. Snapshots illustrating the robustness of sidewinding in clearing a pile of 
boxes: initial, intermediate and final stages of the trial 

(a) Initial stage (b) Intermediate stage 

( c )  Final stage 

Fig. 2.14. Snapshots illustrating the robustness of sidewinding in emerging from 
burial under a stack of boxes: initial, intermediate and final stages of the trial 



36 Ivan Tanev, Thomas Ray, and Andrzej Buller 

(a) Initial stage (b) Intermediate stage 

(c) Final stage 

Fig. 2.15. Snapshots illustrating the robustness of sidewinding in rugged terrain 
area: initial, intermediate and final stages of the trial 

(b) Intermediate stage (a) Initial stage 

(c) Final stage 

Fig. 2.16. Snapshots illustrating the ability of simulated sidewinding Snakebot in 
clearing walls forming a "pen": initial, intermediate and final stages of the trial. 
Height of the walls is equal to the diameter of cross-section of simulated Snakebot 
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2.3.3 Adaptation 

The ability of sidewinding Snakebot to adapt to partial damage to 1, 2, 4 
and 8 (out of 15) segments by gradually improving its velocity by simulated 
evolution via GP is shown in Fig. 2.17. Demonstrated results are averaged 
over 4 independent runs for each case, where GP is initialized with a popula- 
tion comprising 190 randomly created individuals, plus 10 best-of-run genetic 
programs obtained from experiments with evolving sidewinding in an uncon- 
strained environment as elaborated in Section 2.3.1. The damaged segments 
are evenly distributed along the body of Snakebot. Damage inflicted to a 
particular segment implies a complete loss of functionality of both horizontal 
and vertical actuators of the corresponding joint. The results of validating the 
adapted damaged Snakebot against the fixed best-of-run program are shown 
in Fig. 2.17. As Fig. 2.17 illustrates, Snakebot completely recovers from dam- 
age to single segment in 25 generations, attaining its previous velocity, and 
recovers to average of 94% of its previous velocity in the case where 2 (13% 
of total amount of 15) segments are damaged. With 4 (27%) and 8 (53%) 
damaged segments the degree of recovery is 77% (23% degradation) and 64% 
(36% degradation) respectively. Fig. 2.18a shows a snapshot of frontal view of 
sidewinding Snakebot adapted to damage of a single segment. Compared to 
the sidewinding locomotion of Snakebot before the adaptation (Fig. 2.18b), 
the adapted locomotion gait features much higher elevation of the middle part 
of the body. This elevation compensates the complete lack of functionality of 
actuators in the damaged segment. Snapshots of the sidewinding Snakebot 
are shown in Fig. 2.19, before damage to a single segment, immediately af- 
ter damage to the segment, and after having completely 
damage by adaptation. 

0 5 X) I5 20 25 30 35 
Generation # 

recovered from the 

Fig. 2.17. Representation of Fd, the best fitness in evolved population of damaged 
snakebots, and F h  the best fitness of 10 best-of-run healthy sidewinding snakebots 
when sidewinding Snakebot is adapting to damage of 1, 2, 4 and 8 segments 
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(a) After adaptation to damage (b) Before adaptation to damage 

Fig. 2.18. Adaptation of sidewinding Snakebot to damage of a single segment 

(c) Completely recovered 

Fig. 2.19. Adaptation of the sidewinding Snakebot to damage of a single segment 
(shown in dark color): healthy Snakebot, Snakebot immediately after damage to 
segment #7 causing 24% loss of velocity and after having completely recovered 
from the damage through adaptation (c). Notice the shorter distances between the 
traces of the center of the mass (and consequently, slower locomotion) in case (b) 
compared to both (a) and (c). Snapshots (b) and (c) depict the same positions of 
Snakebot as shown in Fig. 2.18b and Fig. 2.18a respectively, viewed from above 
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2.4 Summary 

We presented an approach to automatic design through genetic programming, 
of sidewinding locomotion of simulated limbless, wheelless artifacts. The soft- 
ware model used to simulate Snakebot should fulfill the basic requirements 
of being quickly developed, adequate, and fast running. To address the first 
of these issues, we employed an XML-based GP framework. To address the 
issues of adequacy and runtime efficiency of Snakebot simulation we applied 
the Open Dynamic Engine (ODE) - a freeware software library for simulation 
of rigid body dynamics. The empirically obtained results demonstrate that 
the complex locomotion of sidewinding emerges from relatively simple motion 
patterns of phenotypic segments (vertebrae). The evolved locomotion pattern 
of each segment is such that the segment is rotating in a circle-like trajec- 
tory around the center of the mass of the simulated Snakebot. This suggests 
that evolved sidewinding locomotion can be viewed as a process of rolling of 
the body of the simulated Snakebot in a helix shape, effectively inventing a 
kind of improvised wheel. The efficiency of sidewinding locomotion is much 
superior to locomotion in the forward direction, suggesting that sidewinding 
is the fastest possible locomotion for the simulated limbless wheelless robots 
with the characteristics used in this study (morphology, limits of actuator 
forces, joint type, joint movement limits, etc.). Robustness of the sidewind- 
ing Snakebot, initially evolved in unconstrained environment (considered as 
ability to retain its velocity when situated in unanticipated environment) was 
illustrated by the ease with which Snakebot overcomes various types of ob- 
stacles such as piles of and burial under boxes, rugged terrain and walls. The 
ability of Snakebot to adapt to partial damage by gradually improving its 
velocity characteristics was discussed. Discovering compensatory locomotion 
traits, Snakebot recovers completely from single damage and recovers a major 
extent of its original velocity when more significant damage is inflicted. Con- 
tributing to the better understanding of sidewinding locomotion, this work 
could be considered as a step towards building real limbless, wheelless robots, 
which featuring unique engineering characteristics are able to perform robustly 
in difficult environments. 
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In this chapter, we evolve robotic controllers for a miniature mobile Khepera 
robot. We are concerned with control tasks for obstacle avoidance, wall fol- 
lowing, and light avoidance. Robotic controllers are evolved through canonical 
GP implementation, linear genome GP system, and hierarchical GP methods 
(Automatically Defined Functions, Module Acquisition, Adaptive Represen- 
tation through Learning). We compare the different evolutionary strategies 
based on their performance in evolution of robotic controllers. Experiments 
are performed on the Khepera GP Simulator for Windows. We develop the 
simulator as a user and developer friendly software to study GP and other 
robot controllers. 

3.1 Introduction 

Evolutionary computation studies how theories of evolution can be used to 
solve computational problems. Various evolutionary computation approaches 
currently exist with different methodologies and applications. We are inter- 
ested in the area of genetic programming which uses evolutionary ideas to 
evolve computer programs. 

robotics focuses on building machines to improve the lives of humans. 
Robots are designed to perform repetitive or dangerous tasks with excellent 
precision and dependability. However, robots require directions and program- 
ming to accomplish their goals. 
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In this chapter, we study the application of genetic programming tech- 
niques to the evolution of control programs for an autonomous miniature 
robot. We also present a software simulator for the Khepera miniature robot 
designed to study genetic programming based robotic controllers. 

3.2 Genetic Programming 

Genetic Programming (GP) was introduced by Koza [9] as an extension to 
genetic algorithms in order to enrich the chromosome representation. Instead 
of fixed-length strings, GP evolves pieces of code written over a specified al- 
phabet consisting of a set of functions and a set of terminals. The chromosome 
encoding can be directly executed by the system or can be compiled or inter- 
preted to produce machine executable code. 

The main problem with genetic programming lies in its scalability. Ge- 
netic programming has been demonstrated to solve a variety of applications 
[ll, 131 but it appears to lose its effectiveness for more complex real-world 
problems [5]. When we solve complex problems, we typically break the task 
into simpler sub-tasks and solve each sub-task. In contrast, regular GP tries 
to compute the entire solution to the problem at once. While this method is 
suitable for smaller problems, it is often not powerful enough to solve diffi- 
cult problems. The problem decomposition technique of breaking down the 
task and solving its sub-tasks (called modularization) seems to be the right 
solution to overcome the complexity threshold of real-world problems. 

Modularization techniques have been developed for GP but have generally 
employed a fixed decomposition structure provided by the experimenter. Hier- 
archical Genetic Programming (HGP) introduces modularization techniques 
to the GP system so that the GP can evolve module solutions to problems 
without human-imposed structure. This automatic modularization technique 
should improve the performance of genetic programming on difficult problems. 

Koza [ll] identifies five techniques that can enable hierarchical problem 
solving to reduce the effort needed to solve a problem: hierarchical decomposi- 
tion, recursive application, identical reuse, parameterized reuse, and abstrac- 
tion. Hierarchical decomposition is the act of breaking a problem into smaller 
sub-problems, solving the sub-problems, and combining their solutions into 
a solution for the problem. Recursive application of hierarchical decomposi- 
tion to a problem is able to recursively break the problem down into small 
sub-problems that would be easy to solve by the system. Identical reuse is 
the process of using previously computed solutions to identical sub-problems, 
while parameterized reuse offers a way of applying the same problem solving 
mechanism to similar sub-problems via parameters. Abstraction deals with 
exclusion of irrelevant data from the problem environment. 

Several hierarchical genetic programming methods have been suggested, 
each with its own advantages and disadvantages. The methods have been 
tested on various problems; however, current research does not adequately 
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explain whether the studied HGP methods can, in general, outperform stan- 
dard GP. In our research, we study the HGP methods: Automatically Defined 
Functions ( ADFs) [I 11, Module Acquisition (MA) [2], Adaptive Representa- 
tion (AR) [25]. 

3.3 Robotic Control 

Programming robots by humans can be a difficult endeavor and is not well 
suitable for complex real-world applications. The area of evolutionary robotics 
deals with automatic generation of control programs for robots using evolu- 
tionary techniques. 

The area of robotic control is often subdivided into three sub-areas: re- 
active, behavior-based, and hybrid [3]. Reactive control uses a simple set of 
condition-action pairs that define how the robot reacts to a stimulus. Brooks 
[6] proposed a multi-layer subsumption architecture where higher-level layers 
can subsume and block lower-level layers from action. Behavior-based archi- 
tecture [14] uses a collection of interacting behaviours that can take input from 
the robot's environment sensors or other behaviours and produce output to 
the robot's effectors or other behaviours. Hybrid control strategies exist that 
offer a compromise between purely-reactive and behavior-based strategies. 

Brooks [7] introduced the idea of using Artificial Life techniques to evolve 
control programs for mobile robots. Although no experimental results were 
presented, Brooks identified genetic programming as a hopeful technique for 
control program evolution. Koza [lo] presented results of using GP to evolve 
emergent wall following behavior for an autonomous mobile robot. The con- 
trol program was based on the subsumption architecture and demonstrated 
that GP can evolve control programs for mobile robots. In [12], Koza and 
Rice demonstrated that genetic programming can automatically create a con- 
trol program to perform a box moving task. The paper also offered a good 
comparison between GP techniques and reinforcement learning techniques in 
accomplishing the task. 

Reynolds [22] has used genetic programming to evolve a controller pro- 
gram for tiny critters in a simulated environment. The critter tasks were to 
manoeuver in a static obstacle environment (obstacle-avoidance) and avoid a 
predator. In this ALife-inspired predator-pray paradigm, the fitness criteria 
was based on the sum of the critter lifetimes. Results showed interesting par- 
tial solutions to the task but failed to show herding behavior such as observed 
in animals. 

Nordin and Banzhaf [16, 19, 17, 20, 181 have experimented with a sim- 
ulated and real Khepera miniature robot to evolve control programs using 
genetic programming. They used the Compiling Genetic Programming Sys- 
tem (CGPS) [15] which worked with a variable length linear genome composed 
of machine code instructions. The system evolved machine code that was di- 
rectly run on the robot without the need of an interpreter. 
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The initial experiments of Nordin and Banzhaf [16, 171 were based on a 
memory-less genetic programming system with reactive control of the robot. 
The system performed a type of symbolic regression to evolve a control pro- 
gram that would provide the robot with 2 motor values from an input of 8 
(or more) sensor values. GP successfully evolved control programs for simple 
control tasks such as: obstacle avoidance, wall following, and light-seeking. 
The work was extended [20, 211 to include memory of previous actions and a 
two-fold system architecture composed of a planning process and a learning 
process. Speed improvements over the memory-less system were observed in 
the memory-based system and the robots exhibited more complex behaviours 
[20]. Summary of the techniques used and tasks studied can be found in [4]. 

We are interested in the reactive control of a Khepera robot using genetic 
programming techniques. In reactive control experiments, robots learn while 
travelling through the experimental environment. No separate fitness cases 
are used to calculate fitness and thus the robot positions do not need to be 
reset for the purpose of fitness calculation. The reactive control problem is 
difficult since it requires dynamic fitness function evaluation where the indi- 
vidual fitness values depend on the local environment of the robot. However, 
the problem presents a more realistic dynamic learning environment. 

The learning method used in an evolutionary algorithm can greatly influ- 
ence the successfulness of the solution to the problem. Due to their beneficial 
properties, we feel that hierarchical genetic programming methods will 
advantages to the problem of reactive robotic control. 

3.4 Khepera Simulators 

Robotic simulators play an important role in robotic experimentation. Rot 
equipment can be costly and requires proper facilities. Software simulators 
offer the experimenter a test-bed for robotic technologies when a physical 
robot cannot be acquired. Some simulators provide a very accurate model of 
the environment and of interactions in the environment. Such simulators can 
be used as valid substitutions for real robots for testing various robotic tasks. 

Some robotic research on physical robots requires constant supervision 
and periodical rearrangement of the robots within the environment. For such 
research, robotic simulators have an advantage to physical robots. Simulators 
can be left unsupervised and can be programmed to automatically perform 
human actions such as relocation of robots in the simulated environment. This 
can considerably speed up experimentation time and requires less human time. 

The main disadvantage of software simulators is the inexact model of the 
environment. A real physical environment contains noisy data that can greatly 
influence the results of an experiment. One of the goals of using a robotic 
software simulator is to be able to reproduce similar results on the physical 
robot. Thus, the software environment must contain noise comparable to the 
real physical environment. 
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3.4.1 Khepera Robot 

The Khepera robot is a miniature mobile robot created and sold by K-Team 
S.A. (http://www.k-team.com) - a Swiss company specializing in development 
and manufacture of mobile mini-robots. Recently, K-Team has created a new 
Khepera I1 robot with an improved micro-processor, more memory, and a 
wider range of capabilities. Our research is based on the original Khepera 
robot. 

Khepera is circular, with a diameter of 55mm and height of 30mm. The 
robot can sense its environment with 8 built-in infra-red proximity and ambi- 
ent light sensors. Two motors with controllable acceleration are used to move 
the robot in the environment. Fig. 3.1 provides a schematic diagram of the 
robot's sensors and motors. 

Fig. 3.1. Schematic view of the Khepera robot. Sensors are labelled SO to s7 and 
motors are labelled m l  and m2. 

The brain of the Khepera robot is a 16Mhz Motorola 68331 micro-processor 
with 256 KB of RAM and 128-256 KB of reprogrammable ROM memory. The 
ROM contains a simple operating system and communication interface to a 
host computer. The robot can execute its own programming that can be either 
provided through a serial connection or downloaded into the onboard memory. 

The Khepera robot can be equipped with a variety of extension turrets 
that provide it with abilities to perform more complex tasks. Some extension 
turrets are: gripper turret used for object recognition and manipulation, video 
turret for on-board camera ability, and I/O turrets for improved communica- 
tion with the host computer. 



48 Marcin L. Pilat and Franz Oppacher 

3.4.2 Khepera Simulator 

The original Khepera Simulator (h t tp :  //diwww. epf 1. ch/lami/team/michel 
/khep-sim) was developed by Olivier Michel at the Microprocessor Systems 
Lab (LAMI) of the Swiss Federal Institute of Technology (EPFL). The latest 
version of the simulator (version 2.0) is available free-of-charge for research 
use and it is written exclusively for the UNIX@ platform. 

Many other software simulators for the Khepera robots are currently avail- 
able. Cyberbotics (http://www.cyberbotics.com) specializes in development 
of 3D simulation software for mobile robots. The software - Webots - supports 
a variety of robots rendered in a 3-dimensional environment. 

3.4.3 Khepera GP Simulator 

The Khepera GP Simulator for windows@ is a software package to simulate 
Khepera robots in their environment. The software is designed to use the 
genetic programming paradigm to automatically generate control programs 
for the robots. Thus, the simulator can be used for testing of GP techniques 
in the domain of robotic control. 

The simulator was created by Marcin L. Pilat in 2001 as a port of the orig- 
inal Khepera Simulator to the windows@ platform. In 2003, the simulator 
was improved and adapted for simulating GP-based tasks on Khepera robots. 
Version 3.0 is available free for educational purposes and can be downloaded 
from the author's website (http:/l www.pilat.org/ khepgpsim). The source 
code is also available and can be modified by researchers for s ecific experi- 
ments. The code was written using ~icrosoft@ Visual C++$ ~icrosof t@ 
Foundation Class (MFC) Library, and Component Object Model (COM). The 
simulator is only available for the windows@ platform. 

The main purpose of the Khepera GP Simulator is to simulate a physical 
Khepera robot in its environment. The simulation includes sensing of the 
environment using the robotic sensors and interacting with the environment 
using the robotic actuators (motors powering the wheels). Noise is added to 
the simulation in order to approximate a noisy environment. Multiple Khepera 
robots can be simulated together thus allowing the study of more complex 
robotic behaviours requiring interaction between the robots (e.g. box-pushing, 
following, collective garbage collection). 

The environment of the robot is modeled as a scalable rectangular working 
area. All items in the environment are treated as objects. There are three 
types of objects - building objects (bricks, corks, boxes), light objects (lamps, 
light boxes), and robot objects. Robot objects are simulated Khepera robots 
placed in the environment. Any object can be manipulated in the environment 
in real-time during a simulation run. 

The Khepera GP Simulator is specifically designed to study GP-based 
robotic controllers but can be easily adapted to non-GP controllers. The con- 
troller dictates the actions of the robot in the environment. The GP controllers 
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included with the simulator modify a population of robotic control programs 
in order to evolve certain tasks (or behaviours). 

The robotic controller provides a set of motor values to be used by a robot 
during each step of the simulation. The motor values are processed to yield a 
force vector that specifies the direction of the motion and the amount of force 
the robot applies in the world. The force vector is then used to calculate the 
next position and rotation of the robot. Collisions are handled by a simple 
vector-based collision engine with modifiable parameters. 

Each learning task (such as obstacle avoidance, wall following) can be 
evolved with any type of GP controller. The controller type specifies the chro- 
mosome structure and chromosome interactions during evolution. Multiple 
tasks can be evolved by the same GP controller type with different specifi- 
cations of the chromosome structure. A task contains a population of chro- 
mosomes; thus, it can be used to store snapshots of the population during 
evolution. 

Each task contains a fitness function which provides guidelines for the 
evolution of the population of control programs. The fitness function can 
be thought as a formal definition of the learning task. Fitness functions in 
the simulator are dynamic and can be easily modified at runtime. The fit- 
ness function definitions are written using a scripting language - ~icrosof t@ 
~ S c r i ~ t ~ ~ .  This scriptin language is based on ~ a v a ~ ~ a n d  is available free- 
of  charge from Microsoftb Corporation. JScriPtTMProvides the user with a 
rich scripting language to define the fitness function. The language supports 
a variety of pre-defined functions and the ability to create variables. 

The GP controllers in the simulator gather statistical information during 
the run of the evolutionary algorithm. This information is stored in order 
to analyze the performance of an evolutionary run. For each generation, the 
statistics engine stores average and best population fitness, robotic collisions, 
chromosome complexity, and population entropy values. Population entropy 
[23] measures the state of a dynamic system represented by the population 
and can be correlated with the state of population diversity. 

Complexity of the chromosomes in the population is stored using three 
complexity measures: size, structural complexity, and evolutional complexity 
[27]. The size measure specifies the raw size of the chromosomes defined as 
the number of instructions in a linear genome chromosome or the number 
of tree nodes in the tree-based chromosome representation. The structural 
complexity measure includes the sizes of all unique function trees called from 
within an individual. Evaluational complexity of an individual is measured 
recursively and includes sizes of all function trees embedded in the individual. 
This measure approximates the number of computational units required for 
execution of the individual program. 
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3.5 Robotic Controllers 

Our research into robotic controllers builds on research done by Nordin and 
Banzhaf [20] to evolve GP robotic controllers for the Khepera robot. Nordin 
and Banzhaf were able to evolve controllers for various learning tasks (such 
as obstacle avoidance and wall following). In our research, we compare the 
linear genome GP method they have used in their experiments to canonical 
tree-based GP representation and three most popular Hierarchical Genetic 
Programming methods: Automatically Defined Functions, Module Acquisi- 
tion, and Adaptive Representation. 

The GP system in the robotic controller evolves control programs that 
best approximate a desired solution to a pre-defined problem. This procedure 
of inducing a symbolic function to fit a specified set of data is called Symbolic 
Regression [18]. The goal of the system is to approximate the function: 

f (SO, sl, s2, s3, s4, s5, s6, s7) = {ml, m2) (3.1) 

where the function input is the robotic sensor data (SO-s7) and the output is 
the speed of the motors controlling the motion of the robot (ml-m2). The con- 
trol program code of each individual constitutes the body of the function. The 
results are compared using a behaviour-based fitness function that measures 
the accuracy of the approximation by the deviation from desired behavior of 
the robot. 

In our research, we deal with a population of control programs for the 
Khepera robot. A steady-state tournament selection GP algorithm is applied 
to the population in order to evolve control programs that accomplish the 
specified learning tasks. 

The canonical GP implementation uses a tree-based chromosome represen- 
tation [9, 111. The chromosome (originally coded as a LISP S-expression) 
represents a parse-tree that can be easily transformed into machine code. The 
internal nodes of the program tree are chosen from a set of parameterized 
functions with parameters as subtrees. Leaf nodes are chosen from the set of 
parameter-less functions and terminals. The terminal set is usually composed 
of variables and constants. Variables are place holders in the chromosome that 
are filled in with values during execution. Functions perform calculations or 
actions and can optionally have parameters. To generate tree-based chromo- 
somes, we use the function and terminal sets as shown in Table 3.1. 

Program trees of each individual are created in a recursive manner. Three 
methods have been suggested for the creation of the initial random population: 
full, grow, or ramped half-and-half [9]. The full method creates trees with all 
leaf nodes at  equal depth and is the method used in our implementation. The 
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Table 3.1. Contents of the function set and terminal set used by tree-based chro- 
mosome representations. 

Function Set: I~dd, Sub, Mul, Div, AND, OR, XOR, <<, >>, IFLTE 
Terminal Set: ( [SO-s71 (8 proximity sensors), 

( [lo-171 (8 ambient light sensors), 
1 [O-81921 (constants in given range) 

grow method grows trees of variable size and the ramped half-and-half method 
creates a mixture of trees with different heights through either the full or the 
grow method. 

Two genetic operators are used in the tree-based chromosome represen- 
tation: reproduction and crossover. Reproduction copies a chromosome into 
the next generation. Single subtree switching crossover is applied to the two 
fittest individuals in a tournament, with a given probability. We use a crossover 
probability of 0.9 in all tree-based chromosome representation experiments. 

3.5.2 Linear Genome GP 

Nordin [15] provided a linear genome GP system which stores 32-bit instruc- 
tions that can be executed directly on a processor. Nordin claimed the execu- 
tion speed of the Compiling Genetic Programming System (CGPS) is several 
orders of magnitude faster than of an equivalent interpreted tree-based GP 
system [15]. The major disadvantage of the CGPS system is that it is only us- 
able on a processor supporting the specific machine-code instruction set used. 
To be used on a processor with a different instruction set, the system needs to 
be either rewritten or interpreted. The CGPS was later called the Automatic 
Induction of Machine code by Genetic Programming (AIMGP) system [21]. 

The linear genome method was applied by Nordin and Banzhaf [18] to 
evolve a robotic controller for Khepera robots. The structure of our linear 
genome GP controller closely resembles the controller used by Nordin and 
Banzhaf. We represent each instruction as a text string and process it through 
a genome interpreter prior to evaluation. This encoding improves the read- 
ability of the program code compared to the binary approach of Nordin and 
Banzhaf but suffers a loss in performance due to processing of the string based 
instructions. However, the performance of the string-based representation is 
sufficient for the purpose of our research. 

In the linear genome GP system, each individual is composed of a series 
of instructions (genes). The instructions are of the following format: 

resvar = varl op (var2lconst) (3.2) 

where resvar is the result variable and op is a binary operator working on 
either two variables (varl and var2) or a variable and a constant (varl and 
const). 
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Each individual is randomly assigned a height (number of instructions) 
from 1 to the maximum specified height. For each part of an instruction, a 
value is selected randomly from a set of primitive values. Table 3.2 provides 
primitive value sets of the instruction parts used in our linear genome exper- 
iments. 

Table 3.2. Primitive values of instruction parts in the linear genome GP method. 

Part IPrimitive Value Set 
I 

intermediate variables (a - f )  

light sensor values (10 - 17) 
intermediate values (a - f )  
add (+), subtract (-), multiply (*), left shift (SHL) 
lright shift (SHR), XOR (^), OR ( I), AND (t) 

const linteger value in range: 0-8191 

The linear genome GP method employs three genetic operators: repro- 
duction, crossover and mutation. The crossover operator uses a simple vari- 
able length 2-point crossover applied to the list of instructions (genes) of two 
fittest individuals of a tournament. Genes are treated as atomic units by the 
crossover operator and are not modified internally. Simulated bit-wise muta- 
tion modifies the contents of a gene. Crossover probability of 0.9 and mutation 
probability of 0.05 are used in the linear genome experiments. 

3.5.3 Automatically Defined Functions HGP 

Koza's Automatically Defined Functions (ADFs) [ll] method is the oldest and 
most widely used HGP method. The method automatically evolves function 
definitions while evolving the main GP program that is capable of calling the 
functions. The ADF HGP method implemented in our research is based on 
the ADF method proposed by Koza. 

The ADF method has been demonstrated to be advantageous in solving 
more complex versions of problems than possible by standard GP (e.g. 6- 
parity problem) [ll]. The major disadvantage to the method is that the user 
must specify the structure of the ADF chromosomes (number of functions and 
arguments) and the function and terminal sets required by each function. In 
a true automatic HGP system, this type of information should be evolved by 
the GP rather than provided by the user. Taking the downside of ADFs into 
consideration, current research is centered around operations that automati- 
cally modify the structure of the ADF chromosome and the number of ADFs 
PI. 

The method is an extension of the tree-based GP method and shares its 
basic structure. An ADF chromosome consists of two distinct parts: the func- 
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tion defining branch, and the result producing branch. The function defining 
part is composed of one or more ADF definition branches which describe the 
structure of each ADF. The result producing branch contains the code of the 
resulting program. This code can call any function defined in the function 
defining branch of the same chromosome. Invariant nodes are fixed structural 
nodes and are present in every ADF chromosome. Non-invariant nodes define 
the bodies of the ADF definitions and the result producing branch and are 
modified during evolution. 

All ADFs defined in an individual are available locally to the program tree 
of the same individual. The number of ADFs present in each chromosome and 
the number of arguments for each ADF are specified as parameters. We use 
chromosomes with one, two, and three ADF definitions and two function argu- 
ments. Zero or multiple ADFs can be called from within the result producing 
branch. Some recursive ADF implementations allow calling of ADFs from 
within other ADFs. This leads to problems with circular evocation of ADFs 
and requires extra protection. Due to the increase of implementation complex- 
ity, we do not allow ADF calls inside ADF definitions in our implementation. 

The result producing branch is built using a standard terminal set and 
standard function set (shown in Table 3.1) augmented with the ADFs con- 
tained in the same chromosome. Separate terminal and function sets are 
used by the function defining branches to define the ADFs. The ADF branch 
function set is identical to that of the tree-based chromosome representation 
whereas the ADF terminal set is composed of ADF argument variables and 
constants. 

Tree-based reproduction and crossover genetic operators are used in the 
ADF chromosomes. The crossover operator can only swap non-invariant nodes 
of the same type using branch typing [ll]. 

3.5.4 Module Acquisition HGP 

The Module Acquisition (MA) method of Angeline and Pollack [2] employs 
two new operators of compression and expansion to modularize the program 
code into subroutines. The subroutines contained in the subroutine collection 
are frozen in time and cannot be modified during evolution of the program 
trees. The Module Acquisition method automatically generates a hierarchi- 
cal module structure [I]; however, no clear advantages of the method have 
yet been provided. Kinnear has compared MA to ADFs on the even-4-parity 
problem [8] and concluded that the method does not offer improvement in 
space or time over the ADF method. 

The chromosome structure is identical to that of the original tree-based 
chromosomes with standard tree-based function and terminal sets. Modules 
(subroutines) are created locally for each chromosome from subtrees of the 
program tree and propagate through the population solely by reproduction 
and crossover. Module nesting is allowed inside program trees of other mod- 
ules; however, by the nature of their creation, modules are not recursive. 
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The Module Acquisition method employs four genetic operators: repro- 
duction, crossover, and two mutation operators of compression and expansion. 
The reproduction and crossover operators perform as for tree-based chromo- 
somes. The compression operator creates a new subroutine from a randomly 
selected subtree of an individual in the population using depth compression 
[I]. We use a maximum depth value from range 2-5. Branches beyond the 
maximum depth are used as parameters to the new subroutine. 

Since the compression operator lowers the diversity of the population by 
removing subtrees, an expansion operator is also provided to counteract the 
negative effects. The expansion operator reverses the process of the compres- 
sion operator by substituting the original subtree for a subroutine call in the 
chromosome tree. The subroutine is removed from the module list of the chro- 
mosome if it is no longer used. 

The special mutation operators are applied after the standard tree-based 
reproduction and crossover operators. We set the probability of compression 
to 0.1 and probability of expansion to 0.01. 

3.5.5 Adaptive Representation HGP 

Rosca and Ballard proposed the Adaptive Representation method to dynami- 
cally extend the function set with identified building blocks [25]. The method 
uses standard tree-based representation and searches for blocks of code (de- 
fined as subtrees of a given maximum height). Blocks are parameterized into 
functions by substituting each occurrence of a terminal by a variable. Unlike 
in the ADF HGP approach, the functions are discovered automatically and 
without human-imposed structure. The method differs from the MA HGP 
approach by the algorithms used in function discovery and management of 
the function library. Our implementation of the AR method is based on the 
improved Adaptive Representation through Learning (ARL) algorithm [26]. 

The method works by incrementally checking the population for fit build- 
ing blocks. Block fitness is dependant on the performance of the individual 
where the block resides (and, thus, the block) or the performance of a part of 
the individual (e.g. using a block fitness function). Evolution is done in epochs 
which are defined as sequences of consecutive generations where no fit build- 
ing blocks are discovered. At the end of each epoch (i.e. after a discovery of 
a candidate building block) a proportion of the population (constituting the 
lowest performing individuals) is replaced by individuals that are randomly 
generated from the new extended function set. Rosca and Ballard provide the- 
oretical discussion on the usefulness of their approach in improving the speed 
of evolution over standard GP [25]. It is unclear, however, how to discover 
candidate building blocks without additional domain knowledge. 

The structure of the ARL chromosome program trees is identical to that of 
the tree-based GP method. The function set is dynamically extended by the 
evolutionary algorithm through creation of new functions. Nesting of functions 



3 Evolution of Khepera Robotic Controllers 55 

is allowed; however, recursive function calls are not possible due to the function 
creation method. 

The main advantage of the ARL algorithm is the automatic discovery 
of useful subroutines through the concepts of differential fitness and block 
activation [24]. Differential fitness is defined as the difference in fitness between 
an individual and its least fit parent. Rosca states that large differential fitness 
can be the result of useful combinations of blocks of code in the individual [24]. 
Block activation is defined as the number of times a block of code is executed 
during evaluations of the individual. Rosca states that only blocks with high 
block activation values should be considered candidate blocks. We do not 
implement the concept of block activation because of the large performance 
overhead on the system. 

In our implementation of the ARL algorithm, we select the most promising 
individual (based on differential fitness) from the set of promising individuals 
discovered during the last generation. Candidate blocks of small height (tree 
height of 3) are chosen from the most promising individual. The blocks are 
generalized into subroutines which extend the function set. 

Rosca [24] computes subroutine utility which is analogous to schema fitness 
for subroutines. The utility is defined as the accumulation of rewards for a 
subroutine over a fixed time window and is calculated by a special utility 
function. Using subroutine utility, low performing subroutines are removed 
from the function set. We implement a simpler measure of subroutine utility 
by assigning to each subroutine an integer utility value denoting the number 
of generations until an unused subroutine is removed from the function set. 
Utility value of each unused subroutine is decremented each generation until 
it reaches 0 and the subroutine is removed from the population. 

The run of the ARL algorithm is divided into epochs which were defined 
as sequences of consecutive generations in which no new candidate building 
blocks are discovered [25]. The ARL algorithm provides a concrete definition 
of epoch creation using population entropy [23] which provides a measure 
of the state of a dynamic system represented by the population. Rosca [23] 
compares the population-based dynamic system to a physical or informational 
system with similar behavior. 

In our implementation, entropy is measured by grouping individuals of the 
population into a set of classes based on their behavior (phenotype). Shannon's 
formula is then used to calculate the entropy: 

where pk is the proportion of the population P grouped into partition k. En- 
tropy is usually computed based on raw individual fitness; however, we could 
not use raw fitness because of the dynamic nature of our fitness calculation. 
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We compute a standardized fitness measure through an average of three 
fixed test cases. Each test case provides resulting robotic motor values from 
individual evaluation on a fixed set of input sensors. We then partition the 
individuals into 20 categories based on their standardized fitness measures. 
The population entropy value is calculated by applying Shannon's formula on 
the partition categories. 

The measure of population entropy is important since it correlates to the 
state of diversity in the population during a GP run. Drops in population 
entropy signify drops in population diversity. The ARL method tries to coun- 
teract the drops in population entropy by creation of new individuals. The 
start of a new epoch is decided using a static entropy threshold of 1.5. New 
epoch begins and subroutines are discovered when the entropy value of the 
population falls below the threshold. 

After the discovery of new subroutines, the function set is extended by 
the new functions. The ARL method generates random individuals using the 
new function set. The new individuals replace a fixed proportion of the worst 
performing individuals in the population. We use a replacement fraction of 
0.2 in our experiments. Genetic operators of reproduction and crossover are 
similar as for the tree-based method. 

3.6 Results 

3.6.1 Obstacle Avoidance 

The task of obstacle avoidance is important for many real-world robotic appli- 
cations. Robotic exploratory behavior requires some degree of obstacle avoid- 
ance to detect and manoeuver around obstacles in the environment. We define 
obstacle avoidance as robotic behavior steering the robot away from obstacles 
in the testing environment. For the Khepera robot, this task is equivalent to 
minimizing the values of the proximity sensors while moving in the environ- 
ment. 

We select a fitness function based on the work of Banzhaf et al. [4]. The 
function is composed of two opposite parts: pain and pleasure. The pleasure 
part is computed from motor values and encourages the robot to move in 
the environment using straight motion. The pain part is composed of sensor 
values and punishes the robot for object proximity. The fitness function can 
be expressed as an equation: 

where ml and m2 are motor values and so to s7 are proximity sensor values. 
The value of a! is set to 10 and value of P to 1. Parameter values were chosen 
based on tuning experiments. 
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Various robotic behaviours are observed while learning the obstacle avoid- 
ance task. We subdivide the learned behaviours into groups based on the 
complexity and success rate of each behavior. The simplest (Type 1) be- 
haviours are solely based on the blind movement of the robot (straight, 
backup, curved). The second level (Type 2) of behaviour (circling, bouncing, 
forward-backup) includes behaviours with noticeable use of sensor data. The 
highest level (Type 3) of behaviour is called sniffing and demonstrates obsta- 
cle detection and avoidance. The perfect sniffing behaviour involves obstacle 
sniffing and straight motion behaviours that combine into smooth obstacle 
avoidance motion around the entire testing environment. Summary of the 
observed behaviours is provided in Fig. 3.2. 

straight curved backup 

circling bouncing sniffing 

Fig. 3.2. Summary of behaviours learned during experimentation with the Khepera 
robot. 

In our analysis of method performance, we examine population entropy 
stability, average chromosome complexity stability, and average generation of 
initial behaviour occurrence. Entropy and complexity stability is defined as a 
gradual change of the measured values over time without large abrupt value 
changes. 

For the obstacle avoidance task, the representation method with the most 
stable entropy values is the ARL method. The linear genome and ADF meth- 
ods also provide long, stable entropy values but with larger variations. The MA 
and tree-based representations provide the worst stability with large drops of 
entropy values. Most stability in the average chromosome size values is seen 
with the linear genome method. Among the HGP methods, the most stable 
complexity measures are seen with the ARL method and least stable with the 
MA method. 

Type 2 and 3 behaviours are analyzed to calculate average generation 
values of first occurrence of the behaviours. We do not take into consideration 
Type 1 behaviours since they are not directly applicable to the studied task. 
Summary of the results of our behaviour calculation can be found in Fig. 
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3.3. The method with best (smallest) values is the ARL HGP method and 
with worst (largest) values is the linear genome GP method. Overall, the 
HGP methods perform comparable to the tree-based GP method. Trace run 
of perfect evolved obstacle avoidance behaviour is shown in Fig. 3.4. 

Obstacle Avoidance - Initial Behaviour Occurrence 

-1 

1 Linear Tree ADF MA ARL 

Fig. 3.3. Graphs of minimum, maximum, and average generations of first detection 
of Type 2 and 3 obstacle avoidance behaviour for each chromosome representation 
method. 

Fig. 3.4. Trace runs of perfect evolved obstacle avoidance behaviour in various 
testing environments. 
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3.6.2 Wall Following 

The task of wall following allows the robot to perform more difficult and inter- 
esting behaviours such as maze navigation. The purpose of the wall following 
task is to teach the robot to walk around the boundaries of obstacles with a 
certain desirable distance away from the obstacles. The learned task should 
include some obstacle avoidance behaviour; however, that is not the main 
requirement of the experiments. 

The wall following fitness function is composed of a sensor part and a motor 
part. The sensor part computes a sensor value from a subset of the robotic 
sensor values. The motor part is calculated by computing an absolute motor 
sum minus the absolute value of the difference. The fitness function is provided 
in Fig. 3.1. In our experiments, we set the values for the free parameters of 
the fitness function as follows: Viai = 1, o = 100, p = 1. Parameter values and 
fitness function definition were chosen based on tuning experiments. 

Algorithm 3.1 Wall Following Fitness Function 
input: Left = a0 . s o  + a1 . sl + a2 . sz, 

Right = a5 . s5 + a4 . s4 + a3 .s3,  

MotorPart = lmll + lmzl - Iml - mzl; 
output: Fitness; 
1. if (Right i 1023) 
2. RightSensorPart = 1000 - Right; 
3. else if (Right i 20) 
4. RightSensorPart = (1000/20) * Right; 
5 .  else 
6. RightSensorPart = 1000; 
7. if (Left i 1023) 
8. LeftSensorPart = 1000 - Left; 
9. else if (Left i 20) 
10. LeftSensorPart = (1000/20) * left; 
11. else 
12. LeftSensorPart = 1000; 
13. Fitness = a. MotorPart + ,& (RightSensorPart + LeftSensorPart); 

Only six sensors (so - s5)  are used in calculating the sensor part of the fit- 
ness calculation. The sensors represent the side and front sensors of the robot. 
The calculated sensor part value acts as either pleasure or pain depending on 
the sensor values. The robot is punished when it is either too far away from 
a wall or too close to it. The training environment consists of a long, straight 
stretch of corridor and curved environment boundaries. 

Summary of observed behaviours is provided in Fig. 3.2. We partition 
the behaviours into categories based on their relative performance and suc- 
cess. The Type 1 category is of poor wall following behaviour and consists of 
simple wall-bouncing and circling behaviours. The Type 2 category of good 
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wall following behaviour contains wall-sniffing and some maze following. The 
best behaviour category, Type 3, consists of perfect maze following behaviour 
without wall touching. 

The most stable entropy is noticed in experiments using the ARL HGP 
method. The least stable entropy is observed using the ADF method and 
includes a large initial drop of entropy values to a low, stable level. Good 
stability of average size values is seen in the linear genome GP and ARL HGP 
methods. The largest drops in average chromosome size are noticed with the 
MA method. 

We calculate average generation values of first occurrence of Type 2 and 
3 behaviours. Type 1 category bahaviour is not directly applicable to the 
studied task. Summary of our behaviour calculation can be found in Fig. 3.5. 
The ARL method produces the best average results with smallest deviation 
whereas the worst performance is seen using the MA method. Trace run of 
perfect evolved maze-following behaviour is shown in Fig. 3.6. 

Wall Following - Initial Behaviour Occurrence 

300 - .......................................................................................................... 

n 

Linear Tree ADF MA ARL 

Fig. 3.5. Graphs of minimum, maximum, and average generations of first detec- 
tion of Type 2 and 3 wall following behaviour for each chromosome representation 
method. 

3.6.3 Light Avoidance 

The light avoidance task is similar to the obstacle avoidance task but relies 
on the ambient light sensors of the robot instead of the proximity sensors. 
The source of light in the training and testing environments is composed of 
overhead lamps that cannot be touched by the robot. The robot must learn 
to stay inside an unlit section of the world environment while moving as much 
as possible. 

The fitness function for light avoidance is derived from the fitness func- 
tion for the obstacle avoidance task. The function contains a pleasure part 
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Fig. 3.6. Trace run of perfect evolved maze-following behaviour. 

computed from the motor values of the robot and a pain part computed from 
the light sensors. Proximity sensors are not part of the fitness evaluation. A 
formal definition of the function is given as: 

7 

Fitness = a(Jml1 + lmzl - Iml - ma)) - P(4000 - 1,) (3.5) 
2=0 

where ml and ma are motor values and lo to l7 are ambient light sensor 
values. We set a default value of 10 for a and default value of 1 for ,B in 
our experiments. Because of the definition of light sensor values (with 0 as 
maximum light and 500 as minimum), we subtract the sensor sum from 4000 
(8 sensors of 500 value each) to make the fitness function behave similar to the 
fitness function for obstacle avoidance. Parameter values were chosen based 
on tuning experiments. 

The training environment is composed of a rectangle of darkness sur- 
rounded by lights and a circular light island in the middle of the darkness 
area. The testing environment contains a similar dark rectangular area with- 
out the middle island. 

We subdivide the learned behaviours of the robots into two categories. 
The Type 2 category of behaviour consists of circular, oval or uneven robot 
maneuvers with low degree of light detection and avoidance. Type 3 behaviour 
classifies definite light detection and avoidance behaviours. Perfect behaviour 
usually consists of travelling around the boundary of the dark area in the 
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testing environment. Summary of possible behaviours can be found in Fig. 
3.2 with the substitution of light boundaries for obstacle boundaries. 

The most stable entropy is noticed with the linear genome method and the 
least stable with the ADF method. Most stable average size values are noticed 
using the ARL method. The linear genome and tree-based representations also 
provide quite stable average size behaviour. The worst average size stability 
is seen with the MA representation method. 

Results with Type 2 and 3 light avoidance behaviour are processed to cal- 
culate average generation values of first occurrence of the behaviour. Summary 
of our behaviour calculation results can be found in Fig. 3.7. The best (lowest) 
values are from experiments using the ARL method while the worst (highest) 
values are from linear genome experiments. The HGP methods perform com- 
parable to or better than the tree-based method. Trace runs of perfect evolved 
light avoidance behaviour are shown in Fig. 3.8. 

I Light Avoidance - Initial Behaviour Occurrence 

Linear Tree ADF MA ARL 

Fig. 3.7. Graphs of minimum, maximum, and average generations of first detection 
of Type 2 and 3 light avoidance behaviour for each chromosome representation 
method. 

3.7 Summary 

Our research deals with evolution of robotic controllers for the Khepera robot. 
We are interested in the population of individuals making up the robotic 
controller. The reactive robotic control problem provides a challenge to the 
genetic programming paradigm. With the lack of test cases for fitness function 
evaluation, the fitness of an individual can differ greatly depending on the 
immediate neighbourhood of the robot. The definition of the fitness function 
can influence the population contents and thus the resulting behaviours. 
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Fig. 3.8. Trace runs of perfect evolved light avoidance behaviour in different testing 
environments. 

Robotic controllers often over-adapt to the training environment. This 
problem of overfitting is a common problem in genetic programming. A choice 
of proper training environment for a particular task is thus very important. 
From our obstacle avoidance and wall following task learning experiments, we 
notice that sharp corners of the environment form an area of difficulty for the 
robotic controller. This is probably caused by a corner fitting between the 
fields of view of the proximity sensors. 

The population entropy value is an important indicator of population di- 
versity in our experiments. Good trained behaviour is found in populations 
with relatively high entropy value (above 0.6). Low entropy value signifies 
convergence in the population which usually accompanies a convergence to a 
low average chromosome size. Populations of individuals with low chromosome 
size do not contain enough information to successfully search for a good so- 
lution. No special measures are taken to prevent bloating in our experiments; 
however, a maximum tree height (or maximum number of instructions for the 
linear genome method) is specified for each chromosome. 

We examine three HGP learning methods: Automatically Defined Func- 
tions (ADF), Module Acquisition (MA), and Adaptive Representation through 
Learning (ARL) and two GP methods: tree-based and linear genome. Robotic 
controllers using each method are able to evolve some degree of proper be- 
haviour for each learning task. Summary of method performance is available 
in Table 3.3. We treat the treebased method as a basis for evaluating the per- 
formance of the linear genome and HGP methods. We define the behaviour 
of the tree-based method as average. Sample plots of population entropy and 
chromosome complexity observed in tree-based experiments are provided in 
Fig. 3.9. 

The best entropy and best average size stability is seen with experiments 
using the ARL method (see Fig. 3.10). The worst entropy behaviour is seen 
mainly with the ADF method (as shown in Fig. 3.11) but also with the MA 
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Table 3.3. Summary of results from our experiments for each of the studied meth- 
ods. Behavioural performance is based on first occurrence of good evolved behaviour. 
Methods are compared based on relative performance. 

Method lEntropy StabilitylSize Stabilitj 

Tree GP average average 
ADF HGP average 
MA HGP average 

Behavioural Performance 

poor 
average 
average 
average - 

ARL HGP 1 excellent I excellent I - 
excellent 

Fig. 3.9. Graphs of entropy and average size vs. the number of generations in a 
sample run using the tree-based method. 

and tree-based methods. The worst average size behaviour is noticed with the 
MA method for all the studied tasks (see Fig. 3.12). 

Fig. 3.10. Graphs of entropy, average size, average SC and average EC vs. the 
number of generations using the ARL method. 

Throughout most of our experiments, the linear genome method enforces 
a stable level of entropy and average chromosome size (as seen in sample 
plot of Fig. 3.13). This behaviour is probably due to the different crossover 
operator in the linear genome method than in the tree-based methods and 
by the additional mutation operator. Because of the stable entropy levels, 
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Fig. 3.11. Graphs of entropy, average size and average EC vs. the number of gen- 
erations in a sample run using the ADF method. 

Fig. 3.12. Graphs of entropy, average size, average SC and average EC vs. the 
number of generations in a sample run using the MA method. 

populations of 50 individuals are enough to provide stable behaviour for many 
generations. 

Population Entropy- hear genome 

2.5 j..-" .- ................................................. 

c h r o m m s  Conplexny. linear genome I 

Fig. 3.13. Graphs of entropy, average size, average SC and average EC vs. the 
number of generations using the linear genome method. 

With the tree-based chromosome representations, entropy value stability 
depends on the definition and parameter values of the fitness function. Ten- 
dency toward smaller program sizes is seen with the half-and-half chromosome 
creation method or the full method with small sized populations. To keep pro- 
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gram sizes and entropy at high values for reasonable time, we need to evolve 
populations of 100 or more individuals (with the exception of the ARL method 
discussed below). 

The average generation values of initial good behaviour occurrence are 
usually highest with the linear genome method. However, the methods are 
based on different population sizes and individual sizes so it is difficult to 
draw conclusions from the raw results. With our implementation of the linear 
genome method (through a genome interpreter) the evolution time is similar 
to the time using the tree-based representation (with equivalent population 
size and tree size settings). The main difference between the methods is the 
contents of the function sets. 

The ADF method uses a predefined, constant function set containing one 
or more ADFs. Function call acquisition occurs only through crossover with 
individuals of the population. The ADFs inside individuals showing proper 
evolved behaviour are usually quite large and complex with no noticeable 
patterns. It is possible that in our experiments the ADFs only provide few 
extra tree levels of instructions. The ADF method runs provided performance 
that was usually below that of the tree-based method and sometimes the worst 
of all HGP methods. Fig. 3.14 shows the code of a sample ADF program taken 
from a population with learned light avoidance behaviour. 

The slowest method of function creation is the MA method. Most of the 
individuals in the population with proper evolved behaviour do not contain 
any of the functions in the module set. The creation of functions produces 
program size loss which in turn often lowers the entropy of the population. 
The behavioural performance of the MA method is usually worse than that 
of the tree-based method. Since similar experimental settings are used for the 
two methods, we can deduce that the function creation of our MA method 
disrupted the task learning instead of helping it. Fig. 3.15 shows the code of 
a sample MA program taken from a population with learned wall following 
behaviour. 

The ARL method displays the most stable entropy and average chromo- 
some size behaviour in most experiments. This stable behaviour is observed 
only with function creation, thus we think that the function creation and new 
individual creation processes are responsible for the stability. The method also 
achieves the best time and smallest deviation to reach good evolved behaviour 
in most experiments. 

The number of functions created by the ARL algorithm depend on each 
run but do not grow monotonically as first expected. The function set grows 
and shrinks throughout the runs of the algorithm. The functions usually con- 
tain simple arithmetic operators working on function parameters. Many of 
the functions from populations with proper evolved behaviour contain divi- 
sion and addition operators that seem to calculate some form of ratio of the 
function parameters. Since such ratios can be helpful in all of our studied 
tasks, we think that some of the evolved functions are of benefit to the indi- 
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Fig. 3.14. Code of a sample ADF program from population showing light avoid- 
ance behaviour. ADF function definition shows characteristic large size and complex 
format. 

viduals. Code of a sample ARL program taken from a population with learned 
obstacle avoidance behaviour can be found in Fig. 3.16. 

Algorithms and strategies of solving problems can usually be improved to 
yield better solutions. Our research enables us to indicate areas of possible 
improvement to the studied genetic programming algorithms for the domain 
of robotic control. We feel that population diversity (entropy) stability, chro- 
mosome size stability, and proper fitness evaluation are the most important 
attributes of a well functioning genetic programming robotic controller train- 
ing system. Entropy and chromosome size values should be relatively stable so 
that they remain at  reasonable levels for a reasonable number of generations. 
Stability of those values depends on the definition of the fitness function and 
on the controller settings. 

Modification of fitness function parameters leads to strong statistical and 
behaviour changes in the evolving population. Definition of the fitness function 
is thus a very important aspect for evolution of correct solutions. We choose 
the fitness function definitions and parameter values that produce the best 
performance in trial runs. However, more testing of fitness functions and their 
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Fig. 3.15. Code of a sample MA program from population showing wall following 
behaviour. 

values 
+ 
so 
9 

Fig. 3.16. Code of a sample ARL program from population showing obstacle avoid- 
ance behaviour. Characteristic ARL functions are visible. 
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parameters should be done to identify the optimal settings for each learning 
task. 

The ADF method builds ADFs of initial size equivalent to the main pro- 
gram body. We feel that smaller building blocks (functions) are more useful 
for robotic controllers. The sizes of the ADFs do not decrease well enough be- 
fore the population prematurely converges. We think that it would be best to 
specify a smaller initial and maximum size of the ADFs so that the functions 
require less time to find optimal configurations. 

We feel that the poor performance of the MA method is due to the creation 
of modules which lowers the average program tree size. Since no mechanism 
exists to counteract this loss of program size and accompanying loss of en- 
tropy, the population often converges prematurely to suboptimal solutions. 
We propose that the probability-based compression and expansion operator 
invocation of the MA method be replaced by a need-based operator invoca- 
tion (similar to that found in the ARL method). This new operator invocation 
should lead to better performance through adjustments of operator frequen- 
cies based on population needs. 

The ARL method contains a mechanism to neutralize the bad effects of 
function creation. Thus, the method exhibits very stable entropy and average 
size behaviours while quickly evolving high performing robotic controllers. The 
creation of random individuals using the enriched function set at the start of 
a new epoch provides the genetic algorithm with fresh search material. The 
functions found in the adaptive representation step of the algorithm are small 
and seem better building blocks than the functions in the ADF method. We 
feel that best performance can be achieved by some kind of a dynamically 
evolving entropy threshold calculation. 

Influx of random individuals to the population during evolution can lead 
to problems. Too many new random individuals can destabilize good solu- 
tions present in individuals of the previous population. We think that a low 
replacement fraction used with elitism of best individuals should produce the 
optimal evolutionary balance. Elitist individuals would always be copied into 
a new population and would ensure that the fittest individuals are not lost 
between generations. 

Variation in the population can also be achieved by using a mutation 
operator for the tree-based representation methods. The mutation operator 
can quickly add subtle variety to the population. The crossover operator can 
perform similar mutations but with a lower probability of success based on 
the size and structure of the program tree. 

Future work with the Khepera GP Simulator involves formulation of a 
proper physics model to study object interaction tasks. Modification of the 
simulation engine for multi-threaded robot simulations would enable proper 
real-time multi-robot simulation. With the use of a real Khepera robot, we 
hope to add serial Khepera interface to the simulator and validate the cor- 
rectness of our Khepera simulation engine. 
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In this work, we evolve reactive, memoryless robotic controllers. Our re- 
sults indicate tha t  the  controllers can be trained to  exhibit some level of 
proper behaviour for the studied tasks. The extension t o  this research would 
be t o  study memory-based robotic controllers that  can store previous actions 
and use them t o  decide future behaviour. Such controllers using the linear 
genome method have been shown in [20] to  successfully and quickly evolve 
more complex behaviours than a memoryless controller. 

We would also like to  use a real Khepera robot to  verify our results. Phys- 
ical robots train in a noisy and sometimes unpredictable environment and 
would provide a real world test case for our research. Because of the  reactive 
learning system, the simulator and robotic controllers can be easily modified 
t o  perform experiments with a real Khepera robot. 
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Using traditional path planning and artificial intelligence techniques has re- 
stricted the use of mobile robots to limited tasks in previously known envi- 
ronments, yet potential applications include dynamic and unstructured en- 
vironments. One of the very promising methods of designing controllers for 
autonomous and mobile robots is using Evolutionary Computations, a class 
of algorithms which mimics the natural evolution process. 

In this chapter we present a series of experiments in evolutionary robotics 
that used the miniature mobile robot Khepera. Khepera robot is widely used 
in evolutionary experiments due to its small size and light weight which sim- 
plify the setup of the environments needed for the experiments. The controllers 
evolved by the presented experiments include classical and spiking neural net- 
works controllers, fuzzy logic controllers and computer program obtained by 
Genetic Programming. The tasks performed by the robots through the ex- 
periments reflect learning many basic as well as high level behaviors. These 
behaviors include: navigating in dynamic environment with static or dynamic 
obstacles, seeking and following the light sources present in the environment, 
returning home for recharging the battery, and collecting trash objects from 
the environment. The chapter also presents an experiment in co-evolution in 
which a predator-prey behavior is learned by two robots. The chapter ends 
with an experiment that evolves spiking neural networks, a new artificial neu- 
ral networks model that accurately models the biological neuron activation. 
This experiment presents the use of evolution to obtain a spiking neural net- 
work that enables the robot to navigate depending only on vision information. 

4.1 Introduction 

Khepera is a miniature mobile robot that is widely used in laboratories and 
universities in conducting experiments aiming at developing new control algo- 
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rithms for autonomous robots. It was developed by the Swiss Federal Institute 
of Technology and manufactured by K-team [I] [2]. Khepera robot is cylin- 
drical in shape with a diameter of 55 mm and a height of 30 mm. Its weight 
is about 70 gm. Its small size and weight made it ideal robotic platform for 
experiments of control algorithms that could be carried out in small environ- 
ments such as a desktop. 

The robot is supported by two wheels; each wheel is controlled by a DC 
motor that can rotate in both directions. The variation of the velocities of the 
two wheels, magnitude and direction, will result in wide variety of resulting 
trajectories. For example if the two wheels rotate with equal speeds and in 
same direction, the robot will move in straight line, but if the two velocities 
are equal in magnitude but different in direction the robot will rotate around 
its axis. 

Fig. 4.1. Miniature mobile robot Khepera (with permission of K-team). 

The robot is equipped with eight infrared sensors. Six of the sensors are 
distributed on the front side of the robot while the other two are placed on 
its back. The exact position of the sensors is shown in figure (4.2). The same 
sensor hardware can act as both ambient light intensity sensor and proximity 
sensor. 

Each of the eight sensors consists of emitter and receiver parts so that 
these sensors can function as proximity sensors or ambient light sensors. To 
function as proximity sensors, it emits light and receive the reflected light 
intensity. The measured value is the difference between the received light in- 
tensity and the ambient light. This reading has range [O, 10231 and it gives 
a rough estimate how far the obstacles are. The higher reflected light inten- 
sity the closer obstacles are. It should be noted that we cannot find a direct 
mapping between the sensor reading and the distance from the obstacle, as 
this reading depends on factors other than the distance to the obstacle such 
as the color of the obstacle. 

To function as ambient light sensors, sensors use only receiver part of the 
device to measure the ambient light intensity and return a value that falls in 
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Fig. 4.2. The position of the eight sensors on the robot (with permission of K-team) 

the range of [O, 10231. Again, these measurements depend very strongly on 
many factors such as the distance to the light source and its direction. 

An interesting feature of the Khepera robot is its autonomy, which includes 
autonomy of power and control algorithm. For the purpose of power autonomy, 
the robot is equipped with rechargeable batteries that can last for about 45 
minutes. For experiments that may require much longer time, the robot can 
be connected to a host computer by a lightweight cable to provide it with the 
needed electrical power. This is an important feature that allowed long control 
experiments (such as developing evolutionary algorithms) to be carried out 
without repetitive recharging. 

On the other hand, for the control autonomy, the robot's CPU board is 
equipped with MC68331 microcontroller with 512K bytes of ROM (system 
memory) and 256K bytes of RAM (user memory). This RAM memory can 
accommodate reasonable length program codes to provide control autonomy. 
The robot can be programmed using Cross-C compiler and the program will 
be uploaded to the robot through serial port communication with a host 
computer. Also the robot can be remotely controlled by a host computer 
where the control commands are sent to the robot through the serial link 
connection mentioned above. This mode of operation has an advantage of 
using computational power of the host computer. 

4.2 Evolutionary Computations and Robotics 

The term Evolutionary Computation is used to describe a set of algorithms 
that use the idea of evolution in solving complex computational problems such 
as our problem of designing a robot controller. It includes algorithms such as 
Genetic Algorithms GA, Genetic Programming GP and Evolutionary Strate- 
gies. They operate on a population or a group of individuals each representing 
a proposed solution of the problem. Then they apply a set of biologically in- 
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spired operators such as mutation and crossover to obtain a better generation 
which is more suited to the problem to be solved. 

So what can Evolutionary Computation offer to robotics? First thing it 
offers to robotics is an optimization tool. Optimization is a frequent type of 
problems solved by Genetic Algorithms due to the embedded competition 
between individuals. In applying the Genetic Algorithm for optimization, the 
individuals are usually points in the space to be searched for optimum point 
and the fitness is the function to be optimized. The reproduction aims at 
generating new points from existing ones until the optimum point is found. 
Genetic Algorithm offers useful properties for the optimization problem: 

It is applicable to continuous, discrete and mixed optimization problems 
and it requires no information about the continuity or the differentiabil- 
ity of the function to be optimized. It also can be used for problems of 
optimization with constraints. The constraints on the parameters to be 
optimized can be easily translated to constraints on the genetic operators 
to produce individuals inside the search domain defined by the constraints. 
Genetic Algorithms are suitable for many practical problems that re- 
quire multi-objective functions. Multi-objective optimization can be ac- 
complished by designing fitness function that is a weighted sum of required 
objectives. Another solution is using Co-evolution where multiple popu- 
lations are used instead of single population. Each population is bred to 
optimize certain objective while individuals are exchanged between them 
(migration). 

For example, one of the possible methods for evolving a neural network 
controller is to let the evolutionary algorithm choose the optimal weights of the 
neural network, so the problem of evolving this controller to perform obstacle 
avoidance behavior can be viewed as a problem of optimizing the different 
weights. Also this problem is multi-objective optimization because we want 
the neural network to achieve different goals such as avoiding the obstacles 
while keeping a reasonable velocity and keeping a straight path. 

Second thing evolutionary computations can offer to robotics is providing 
a method of learning rules necessary for the robot to achieve some task. In this 
case the controller is mainly a set of rules and we want to choose the optimal 
set of rules that serve this task. Programming the rules by hand or testing 
different combinations of them is a tedious task. An example of using the 
genetic algorithm to learn robots rules is a system built at the Naval Research 
Laboratories and is called SAMUEL [3]. It used the method described above 
to learn Nomad robot navigation and obstacle avoidance. Rules are not the 
only form of controllers that can be designed by evolutionary computations 
[4] [ 5 ] .  In the next sections see how evolutionary computations can be used to 
design controllers such as neural networks and fuzzy logic controllers. 
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4.3 Evolving Neural Network Controllers 

Many researchers have found neural network and interesting solution for the 
problem of the building behaviors for the Khepera robot. The ability to learn 
and the ability to deal with noisy sensors were apparent advantages in favor 
of the neural network. 

Different approaches exist for designing neural network controllers. One 
approach is to use neural networks learning algorithms to train the synaptic 
weights. Example of this work can be found in [6]. Another Approach is to 
use the Genetic Algorithm as a search or optimization tool to find the best 
neural network controller through the evolution process. The leading work 
of evolving neural network controller for a real Khepera robot was done by 
Floreano and Mondada [7]. They evolved a simple feed forward neural network 
that consisted of input and output layers with no hidden layers. The neural 
network controller enabled the robot to navigate in the arena while avoiding 
obstacles . 

We can use the genetic algorithm in different ways to evolve neural net- 
works. It can be used to search for the optimal synaptic weights, or to search 
for the optimal network architecture along with the synaptic weights. Also, 
it can be used to evolve the learning parameters needed to train the neural 
network. Examples of these methods are presented in the following subsec- 
tions. For example, using the genetic algorithm to search for the suitable 
synaptic weights given a predefined architecture is presented in experiments 
1 and 3 whose goals are to evolve obstacle avoidance and home seeking be- 
haviors respectively. On the other hand, evolving the network architecture 
is the method used in experiment 2 to develop a light seeking behavior. Fi- 
nally, evolving Hebbian learning rules and the rate of learning is an example 
of evolving the learning parameters of the neural network and it is one of 
the methods used in experiment 5 to co-evolve predator-prey behavior in two 
robots. 

4.3.1 Experiment 1: Evolving Obstacle Avoidance Behavior 

The goal of this experiment [8] is to evolve a neural network controller for 
obstacle avoidance navigation in environments with static or dynamic obsta- 
cles. The proposed neural network is a feed forward neural network with input 
layer consisting of 8 neurons, hidden layers of 2 neurons and output layer of 
2 other neurons. The inputs of the neural network are the eight proximity 
sensors that are arranged on the robot as shown in figure (4.2). The input 
range of each sensor is [O, 10231. The values of the inputs were scaled to the 
range [0, 11 before being applied to the neural network. The Outputs of the 
neural network controller are applied to the motors of left and right wheels. 
The activation function of the neurons is the sigmoid function which is limited 
between [-I, 11, so the output of the neural network had to be properly scaled 
before being applied to the motors. 
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The fitness function used rewarded the individual which moves with a 
suitable forward speed and penalize the individual which rotates around itself 
or comes close to the obstacle. It has the following formula: 

where VL, VR are the velocities of left motor, right motor respectively, S, is the 
proximity sensor number i, and C1, C2 are suitable positive scaling factors. 
The term VL + VR will maximize the forward speed while term IVL - VRI will 
minimize the rotation of the robot which occurs due the difference between 
the velocities of left and right wheels. Also, the robot will learn to keep a 
suitable distance separating it from the obstacles in order to decrease the 
magnitude of the sum of the sensors. The constants Cl, C2 set the relative 
importance of each component of the fitness function, for example increasing 
C2 will emphasize the importance of avoiding obstacles relative to keeping a 
straight path. 

The fitness of the individuals is evaluated as follows: each individual was 
allowed to perform a 400 time step, in each step it reads the proximity sensors, 
calculate the output speeds using its own neural network and apply these 
speeds to the motors then it measures the new proximity sensor values and 
calculate its fitness function according to the above formula. Individual fitness 
is the sum of its fitness function over the 400 time steps. The above algorithm 
lasted for 120 generations. 

Fig. 4.3. Trajectory of the robot in an environment with moving obstacle. 

The result of the experiment showed successful emergence of the desired 
behavior. After 80 generations, the robot was able to move in straight tra- 
jectories and it learned to keep a suitable distance between its path and the 
obstacles or walls. This is clear in the left section of figure (4.4) which shows 
the behavior of the robot in an environment with large centered obstacle. 
While moving parallel to the wall, the robot moves in a straight path and 
maintains certain distance between its path and the wall. Fig. (4.3) shows the 
behavior of the best fit individual when a round object of the same size of 
the robot is approaching its path. The slides taken from the motion of the 
robot shows its turning and avoiding collision with the moving object. Fig. 
(4.4) shows the behavior of the robot in an environment with obstacles having 
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Fig. 4.4. Trajectories of the robot in environments with large obstacles with sharp 
corners . 

sharp corners which is difficult to detect if the robot is heading towards the 
corner. We can see that the robot turns before being close to the corner and 
this behavior is repeated twice. It should be also noted in this environment 
that distance between the two obstacles is about twice the diameter of the 
robot. - 

4.3.2 Experiment 2: Evolving Light Seeking Behavior 

This experiment was performed by Hiilse et al. [9]. The goal of the experi- 
ment is to evolve a neural network controller that enables the robot to seek 
the light source available in its arena. The proposed neural network had 16 
input neurons and 2 output neurons. The input neurons corresponds to the 
8 proximity sensors and the 8 ambient light sensors while the two output 
neurons correspond to the two motor speeds. 

The evolutionary algorithm used in this experiment allowed the evolution 
of the structure of the neural network along with the synaptic weights values. 
It can evolve the number of the hidden neurons necessary to connect the input 
and output layers along with their recurrent connections. 

The evolution experiment was carried in a simulated environment while 
the best fit individual was tested in both real and simulated environments. 
The results of the experiments showed the emergence of light seeking behavior 
in the early generations. The best fit individual was tested in two simulated 
environments and in a physical environment. The first simulated environment 
contained one light source. The robot was able to move towards the light 
source from different starting positions. The second simulated environment 
contained more than one light source. The robot moved towards the nearest 
light source. The best fit controller was then moved to a real robot and tested 
in a physical environment. In similar conditions to the simulated environment, 
the robot was able to move to the light source. The environment was slightly 
modified to test the controller ability to adapt to changes in the physical 
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environment. When the light source was moved the robot was still able to 
move towards and follow the light source, which shows consistency with the 
behavior in the simulated environment. Next, the light source was removed 
from the environment, and then the robot started to move in curved or semi 
circular trajectories compared to straight trajectories in the presence of the 
light source. To test how the behavior is affected by the proximity sensors, 
the proximity sensors were removed, in this case the robot was still able to 
move to the light source when it existed in the environment, however in its 
absence, the robot rotated around its axis. These results show good match 
between the behavior in simulated and real environments, they also showed 
that the evolved behavior was invariant when the light source was moved but 
was affected by removing the connections from the proximity sensors when 
there was no light source in the environment [9]. 

We notice in this experiment that the genetic algorithm allowed the evo- 
lution of the network architecture along with the best synaptic weights . This 
method enables the genetic algorithm to search for the best neural network 
controller in the space of the network architectures. In general, this method 
would lead to better quality solution than the case of predefined network 
architecture. On the other hand, this method requires a variable length chro- 
mosome that encodes the neural network. Also the chromosome is expected 
to be longer than the one that encodes only the synaptic weight which would 
result in longer evolution time. 

4.3.3 Experiment 3: Evolving Recharging and Home Seeking 
Behavior 

This experiment was performed by Floreano and Mondada [lo]. Although 
the experiment evolved an interesting home seeking behavior, the actual goal 
of the experiment was to show that behaviors can be evolved without being 
explicitly included in the fitness function. In this experiment the fitness func- 
tion didn't include a pleasure part to reward the robots when returning to 
home (or the recharging area). However, without recharging, the robot will 
not be able to live longer and achieve a high fitness which was allowed to be 
calculated over a period longer than the battery life time. 

The experiment was conducted in a rectangular environment where one of 
the corners was illuminated with a tower carrying a number of lamps. This 
corner was considered the robot's home or recharging area. In this corner, a 
circular sector of the ground is painted in black such that the robot can detect 
it using an extra ambient light sensor placed under the robot. This sensor is 
active in the entire environment except the recharging area. 

Using the robot actual battery which lasts for 40-45 minutes will cause 
the experiment to last for a very long time. Instead, the robot was equipped 
with a simulated battery that discharges linearly with time in a maximum 
of 20 seconds. The reading of the battery time can be considered a virtual 
battery sensor whose value falls between [O, 11, with 1 indicating that the 
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battery is fully charged. For the robot to detect the light source associated 
with its recharging area, two sensors acted as ambient light sensors beside 
their function as proximity sensors. The two sensors are the ones labeled 2 
and 6 in figure (4.2). 

The neural network controller used was 3 layers neural network with re- 
current connections in the hidden layer The input layer has 8 neurons for 
proximity sensors, 2 neurons for ambient light sensors and 2 other neurons for 
floor brightness and simulated battery sensor. The output layer consisted of 
2 neurons that correspond to the motor speeds. 

lR Sensor 1 , 

Neural Network Controller of 
the home seeking experiment 

Right 
Motor 
4 

Left 
Motor + 

The environment of 
the experiment 

Fig. 4.5. The neural network controller of the home seeking experiment (left). A 
figure of the environment(right). 

The fitness function used in the experiment rewarded the individuals that 
move with large speed and avoid the walls. The fitness function formula is 
given by [lo]:  

fitness = u ( l  - i )  (4.2) 

where u is normalized average speed of the two motors 0 < u < 1,  and i 
is normalized value of the maximum proximity sensor 0 < i < 1. The fitness 
function is calculated and summed over maximum number of 150 time step 
while the battery life lasts for 20 seconds or 50 time steps. Also the fitness 
function is not summed when the robot is in the recharging area. The robot 
should learn to return to the recharging area before its battery life comes 
to an end. Furthermore, it should not stay there for long since no fitness is 
gained there. This behavior is not stated explicitly in the fitness function but 
implicitly implied by the conditions of the experiment. 
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The genetic algorithm lasted for 240 generations. The results of the ex- 
periment showed that in the last generations the behavior of the robot was 
as expected. It returned to home for recharging without spending much time 
there after recharging. The behavior of the best fit individuals was as follows: 
When it was placed in the charging area, it quickly moved away and returned 
only before the the battery life ends by 5 time steps. Outside the recharging 
area, it moved with maximum speed avoiding the walls whenever they are 
encountered. Testing the best fit individuals from different initial positions 
showed that it was able to return for recharging for many times for most of 
the initial positions. 

Also the results of the experiments showed that we can find a direct re- 
lation between the activation level of one of hidden neurons and certain be- 
haviors. Observing the activation level of this hidden node over the robot life 
showed that it had a low activation level when the robot navigated outside 
the recharging area but gradually increased during the journey to the back 
for charging in the last period of the battery life. The activation level reached 
its maximum when the robot is in the charging area. This fact supports the 
assertion that this hidden neuron played a role in the behavior responsible for 
planning the journey back to home before the battery life ends [lo]. 

4.3.4 Experiment 4: Evolving Trash Collection Behavior 

This experiment was performed by Nolfi [ll]. The goal of the experiment is to 
teach the Khepera robot how to clear the arena from trash objects by grasping 
and placing them near the walls of the arena. This complex task requires skills 
such as recognizing the trash object and the walls, grasping and releasing the 
object, and obstacle avoidance. To accomplish this task the Khepera robot is 
provided with a gripper module that is added on the top of the robot (see 
figure 4.6). The gripper can perform two main actions: picking and releasing 
the object. The robot can detect the presence of an object in the gripper by 
using a light barrier sensor placed in the gripper. 

One approach to teach the robot this complex task is to split it into a set of 
simpler tasks or behaviors and design a module that control each behavior then 
designing a coordination method that decides which of these modules will take 
control of the robot based on the current situation. Each behavior could be 
designed by hand, evolved or learned by other learning methods. An example 
of this approach is found in [12] where all the modules are programmed by 
hand except the grasping behavior which was learned using reinforcement 
learning. However, in the experiment that we will present the goal was to 
evolve the entire behavior and to test the hypothesis that different modules 
of the evolved neural network correspond to certain basic behaviors. 

The experiment evolved five different neural network architectures among 
them two with modular structure. All the architectures had 7 input neurons 
and 4 output neurons. The input neurons correspond to the 6 proximity sen- 
sors on the front side of the robot and the barrier light sensor present in the 
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Fig. 4.6. Khepera robot with the additional gripper module (with permission of 
K-team) . 

gripper. The output neurons are the 2 motor speeds and the 2 actions of the 
gripper. The five neural network architectures had the following structures: 

1. The first neural network is a feed forward neural network with no hidden 
layer. 

2. The second neural network is also a feed forward neural network but with 
a hidden layer of 4 neurons. 

3. The third neural network has recurrent connections between two extra 
input and output nodes. 

4. The fourth neural network has a modular structure. It has two modules 
each with its own set of the four output neurons. Each module takes 
control in different predefined situations. The first module takes control 
when the robot is looking for the trash object and grasping it. Its goal is 
recognizing the trash object. The second module takes control when the 
robot is holding the trash object and heading towards the wall. Its goal is 
recognizing the wall and avoiding obstacles while holding the trash object. 

5. The fifth neural network has modular structure too. It consists of two 
modules. Each module has its own four output neurons in addition to 
four selector neurons. The selector neurons compete with each other to 
decide which module will take the control. For example, if at a certain 
time the activation level of the selector neuron of the left motor is higher 
in the first module, then output of neuron corresponding to the left motor 
in the first module will be sent to the left motor. 

The environment used in the evolution process was an arena with walls of 
height 3 cm and it contained 5 trash objects which are cylindrical in shape. 
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The genetic algorithm used population of 100 individuals for each of the five 
architectures and it lasted for 1000 generations. The fitness function essen- 
tially rewarded individuals for the number of the trash objects successfully 
placed outside the arena with less rewards for objects that the robot was only 
successful to pick. Each individual was tested for 15 epochs and its fitness 
valuation was the sum of its fitness function in each epoch. 

The experiment described above was repeated 10 times for every architec- 
ture. The 10 best individuals of each architecture were given the same task 
of clearing the arena from 5 trash objects. The results showed that the fifth 
neural network excelled the others where 7 of its best 10 individuals were able 
to successfully complete the task. Only one or two individuals were able to 
complete the task for the other architectures. 

Considering the hypothesis that modular architecture may contain mod- 
ules that correspond to certain behavior, it was found that the best individual 
of the fifth architecture use both modules for controlling the left motor and 
uses only one module for rest of the outputs. This fact showed that relation 
between modules and basic behaviors could not be proven in this experiment 
[ll]. However, in the experiment of home seeking and battery recharging cer- 
tain hidden neuron was shown to be responsible for detecting low battery and 
returning home for recharging. 

4.3.5 Experiment 5: Co-evolving Predator-Prey Behavior 

By co-evolution we mean evolving two competing populations simultaneously 
such that the fitness evaluation of one is at the expense of the other. The 
co-evolution adds more competition stress to the evolution process which is, 
by nature, characterized by the competition for survival among individuals of 
the same generation. We are now going to present an interesting experiment 
in co-evolution whose goal was evolving a predatory-prey behavior in two 
khepera robots. The predator robot is required to chase the prey robot and 
contact it. 

The experiment was performed by Floreano and Nolfi [13] [14]. In the 
experiment, the predator robot is equipped with a vision module ( see figure 
4.7 ) to recognize the prey robot which was provided with a black perturbation 
that can be easily detected on the white walls of the environment. To provide 
fair competition, the maximum speed of the prey robot is allowed to be twice 
that of the predator robot. 

The environment was a square one of dimension 47 cm. That size was 
chosen such that prey will always be within the detection range of the vision 
module of the predator which can detect objects in range of 5 to 50 cm. 
The evolution experiment was carried in a simulated environment of the same 
details of the actual one. This will help to decrease the time of the evolution 
and to avoid the hardware problems resulting from the twisting of the power 
cables of the two robots. 
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The K213 vision module of the khepera robot is an additional module that 
is connected to the top of the robot. It is cable of providing a linear image 
of 64 pixels that cover a vision angle of 36 degrees. Furthermore, the module 
has a microcontroller that can process the image data and instead of sending 
the 64 bytes of the image to the robot it can detect the least eight pixels in 
intensity and pass them to the robot. 

Fig. 4.7. Khepera robot with the extra K213 vision module (with permission of 
K-team) . 

In the simulated computer environment, the experiment designers divided 
the vision range to 5 sections each representing a simulated photosensor. These 
simulated photosensors act as input for the neural network controller of the 
predator robot. A simulated photosensor is considered active if a pixel of 
minimal intensity is within its range, possibly because of the presence of the 
prey robot in this section. 

The controllers of the two robots are shown in figure (4.8). Each controller 
is recurrent neural network. The predator neural network has extra 5 input 
neurons corresponding to the five photosensors. On the other hand, the two 
outputs of the prey neural network are multiplied by a factor of two before 
being applied to the motors of the robot. 

The genetic algorithm used two competitive populations each of 100 in- 
dividuals and the experiment lasted for 100 generations. As we mentioned 
earlier, the fitness evaluation of each robot is at the expense of the other. The 
predator robot is awarded for decreasing the time needed to contact the prey. 
Its fitness is a normalized version of that time and falls in the range of [0, 
11. The prey robot fitness function is just (1 - predatorfitness). The fitness 
function of each individual, predator or prey, is evaluated through testing it 
against the best individuals of the last 10 generations of the opposite type. 

The experiment used direct encoding to encode the synaptic weights of the 
neural network. Each weight is encoded in 5 bits. The first bit is always used 
to encode the sign while the other four bits differed according to the instance 
of the experiment. We will to summarize each of the three instances of the 
experiments along with its results [13] [14]. 
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Fig. 4.8. The neural network controller of the predator and prey robots. 

First instance of the experiment: In this instance the four bits simply 
encoded the value of the synaptic weight which falls in the range of [O, 11. 
The results of this instance of the experiment showed that there was no 
population superior to the other all the time span of the evolution. In the 
first generations the predator was able to chase the prey and contact it. 
After 70 generations, the prey was cable of turning away when the predator 
approached it. After 90 generations, the predator learned better attacking 
methods for chasing the prey. 
Second instance of the experiment: Only two bits were used to encode 
the value of the weight and the other two bits are used to encode four 
different level of uniform noise that would be added to the weights. The 
results of this instance of the experiment showed that the noise level in the 
synaptic weights of the prey was higher than those of the predator which 
suggested that the prey made use of this noise to evolve an unpredictable 
and changing trajectory to confuse the predator robot. 
Third instance of the experiment: The four bits are used to encode the 
learning parameters of the synaptic weights rather than the value of the 
weights. Two bits encoded the Hebbian rules and the other two bits en- 
coded the learning rate. The value of the weight is randomly generated 
between [0, 11 and continuously updated according to the rules. The re- 
sults of this instance of the experiment showed that the average fitness 
of the predator is higher than that of the prey. In terms of the apparent 
behavior, it developed better chasing techniques than that of the first in- 
stance of the experiment. In terms of the synaptic weights, the experiment 
results showed that the synaptic weights were adjusted by the Hebbian 
learning and the resulting motor speed steered the robot towards the prey, 
a property which require fine tuning of the weight values if the encoding 
method of the first instance was used. 
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The results of this experiment are interesting and reflect how the behavior 
of the robot was dependent on the types of the parameters of the controller 
encoded in the gene despite the fact that the controller had the same ar- 
chitecture in the three instances of the experiment. We would expect also 
that different behaviors could have obtained by allowing the evolution of the 
architecture of the neural network along with the weights. 

4.4 Evolving Fuzzy Logic Controllers 

Fuzzy Logic is a mathematical tool that can manipulate human vague concepts 
and linguistic variables. Zadeh in [15] proposed a method to treat human 
knowledge based on the Theory of Approximate Reasoning. He proposed that 
systems with ill defined or with uncertain model can be treated by fuzzy logic. 
These principles were then used to build a controller for the first time in [16]. 

In this section, we will briefly present how the fuzzy controller can be 
applied to the problem of mobile robot navigation and obstacle avoidance. 
The fuzzy controller usually consists of three parts: 

The Fuzzifier 

The first step in any fuzzy control application is to specify the fuzzy sets and 
the corresponding membership functions for each of input or output variables. 
This process is known as fuzzification. If we apply this to the Khepera input 
proximity sensor values, we will find that each sensor has a reading value 
in the range [0,1023]. One of the proposed methods for fuzzification could 
be: " Near" ,"Mediumn, and "Far". Also membership function can have other 
shapes such as the triangular shape or bell shaped. See figure (4.9). 

In our example of the Khepera proximity sensor, the reading 300 may have 
a membership in the fuzzy set "Near" that is equal to 0.75 while the mem- 
bership in the sets "Medium" and "Far" are equal to 0.25 and 0 respectively. 
It is clear here that the crisp value 300 has been assigned a membership value 
for every fuzzy set defined over the range [O, 10231. Also the output variables 
(left motor speed and right motor speed) can be fuzzified in the same sense. 
The fuzzy sets could be "Positive Large", "Positive" , "Zero", "Negative", 
"Negative Large". 

The Fuzzy Rules 

This is the main part of the controller where human knowledge can be repre- 
sented in the form of if-then rules. The rule usually takes the following form: 

If (antecedent part) then (consequent part) 
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Possible membership functions for input sensors 

Possible membership functions for output motor speed 

Fig. 4.9. Possible membership functions for input sensor and output motor speed. 

Where the antecedent part checks the input variables and the consequent 
part sets one or more of the output variables. For our case of Khepera robot 
navigation, one of the rules can be: 

If (left proximity sensor is "Near") then 
(left speed is "Positive Large" ) and (right speed is "Postive") 

This rule tells the robot to turn to right (by moving the left wheel faster 
than the right wheel) if obstacle is found on the left of the robot. If the left 
proximity sensor is near with membership value 0.75, then this rule will have 
firing value equals to 0.75. A group of fuzzy rules resembling the previous one 
are needed for the safe navigation of the robot. 

The Defuzzifier 

The outputs (left and right speeds in our case) need to be crisp values, this 
will be the role of the defuzzifier to convert them form fuzzy sets to crisp 
value. This is done through the fusion of different rules based on their firing 
values. 

Since the performance of the fuzzy logic controllers depends on the param- 
eters of the membership functions and the rules used, then we need to search 
for the best membership functions and the optimal set of rules. This leads 
us to thinking of genetic algorithm to evolve the best fuzzy logic controller 
parameters instead of designing it based on the human experience. 
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4.4.1 Experiment 6: Evolving Corridor Following Behavior 

This experiment was performed by Lee and Cho [17]. The goal of the ex- 
periment was to evolve a fuzzy logic controller that can enable the robot to 
avoid the obstacles and follow the corridors of the environment. The fuzzy 
logic controller had 8 inputs corresponding to the 8 proximity sensors of the 
robots and 2 output neurons that correspond to the motor speeds. The role 
of the genetic algorithm in designing the controller was to evolve the best 
membership functions of the inputs and the outputs along with the necessary 
rules. 

The experiment designers chose to divide the input sensory range [O, 10231 
into four triangular membership functions. The same number and type of the 
membership functions were used for the outputs. The parameters of these 
functions, such as their starting and ending point on the input or output 
range, were binary encoded in the chromosome . Also the chromosome in- 
cluded information about a set of 10 possible rules. 

To encourage the robot to explore the arena and follow the corridors with- 
out colliding with their walls, the fitness function had a positive part that 
is function of the total distance moved and the number of the check points 
in the arena that the robot passed through. It also has negative part that is 
function of the number of collisions. 

The results of the experiment showed that the best fit individual was 
able to develop basic behaviors of avoiding collision and following walls. The 
performance of this evolved fuzzy logic controller was tested in two other 
simulated environments in which it was observed that the robot developed 
three distinct sub-behaviors which are: passing corridors, wall following and 
obstacle avoiding. The corridor passing behavior is active when the robot is 
moving in a narrow path with obstacles on both sides. The wall following 
behavior become active when the obstacles or walls are sensed on one side of 
the robot while the obstacle avoidance behavior become active when obstacles 
are sensed in front of the robot. A relation could be found between each sub 
behavior and a subset of the fuzzy rules that support this sub behavior. The 
robot switched from one sub behavior to the other depending on the current 
situation till its target was reached [17]. 

4.5 Evolving Controlling Programs 

Genetic programming GP applies the evolution model to computer programs. 
The individuals here are computer programs that represent potential solution 
to required problem. Usually these problems are too complex or time con- 
suming to be programmed by hand. An example of this type of problems is 
writing a program to control a mobile robot to navigate and avoid obstacles 
in a new environment. 
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Now the question that may arise is how to represent computer programs as 
individuals and how to design genetic operators, such as crossover and muta- 
tion, that is applicable to computer programs. Answers of these questions are 
in Koza's suggestion [18] of representing programs as trees that is composed 
of nodes and branches. The nodes are the operators that can take any value 
from certain function set such as {multiplication, addition..). The branches 
are the operands which can be constants, input values or results of another 
node. Fig. (4.10) shows an example of a tree that represents a simple program. 

This tree representation provided a method for performing crossover be- 
tween two individuals. This is preformed by exchanging parts of the two trees 
representing the two individuals. To perform mutation operator we need to 
make sure that the resulting individuals represents a valid computer program. 
For example the mutation operator can take place by changing the operator 
in the node by another operator from the function set or by mutating the 
constants in the operands. 

Tree representation of 
computer program 

Linear representation of 
computer program 

Fig. 4.10. Tree representation of computer programs versus linear representation 

Having this brief overview of the Genetic Programming GP, we are now 
ready to present the following experiment in evolving obstacle avoidance con- 
troller program using Genetic Programming. 

4.5.1 Experiment 7: Evolving Obstacle Avoidance behavior using 
Genetic Programming 

This experiment was performed by Nordin and Banzhaf [19]. The goal of 
the experiment was to evolve a controller program for obstacle avoidance 
navigation using genetic programming. The experiment was carried on a real 
khepera robot in two different environments. The first environment was a 
rectangular arena of size 30 x 40 cm with regular walls while the other is 
larger in size with obstacles in its center and characterized by irregular walls. 
In both cases, the khepera robot was controlled by a computer workstation 
through a serial cable. 
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Motivated by applying genetic programming on real robots and obtaining 
a reasonable behavior in a short time, the experiment designers made two 
choices. First choice was not to use the tree structure we discussed above. 
Instead, the individual programs were represented as a linear sequence of op- 
erations along with their operands.An example of this representation is showed 
in figure (4.10). Second choice was to represent these instructions in the low 
level binary format of the controlling workstation (Sun 4). Using this repre- 
sentation, the crossover operators will be carried by exchanging two segments 
of instructions between two individual programs. The mutation operator was 
restricted to produce only valid machine instructions. 

The population size of the experiment was small and consisted of 50 indi- 
viduals and tournament selection is used when individuals are needed to be 
selected for crossover or mutation. The tournament works as follows: First we 
select n individuals from the population size N and each of the n individuals 
is tested and its fitness is evaluated, then we choose the best fit individual out 
of them for crossover and mutation. 

The results of the experiment showed successful evolution of the obstacle 
avoidance behavior in both of the environments. In the first environment, it 
took the robot 20 minutes to evolve a reasonable obstacle avoidance behavior. 
In the second environment, it took the robot some longer time compared to 
learn the same behavior. This may be because of the complexity of the second 
environment [19]. 

The results of this experiment showed how the choice of some parameters 
of the genetic algorithm such as the encoding and selection methods, in addi- 
tion to the machine format of the programs, helped in evolving the required 
behavior in small amount of time. We could see that a reasonable behavior 
emerged in less than an hour in both environments. 

4.6 Evolving Spiking Neural Network Controllers 

In this section, we are going to introduce a new model of the biological neurons 
that models the dynamical nature of neurons communication. This new model 
is what we call spiking neurons. We will also present an evolution experiment 
that evolved spiking neural network for controlling a robot based on vision 
information only. 

To explain the spiking neuron model, we will need first to have a look at the 
actual way of communication between biological neurons. Biological neurons 
communicate by sending a large number of short pulses each second. These 
short pulses are known as spikes. The classical model of neurons considers 
only the rate of these spikes. The current activation level in the classical 
model corresponds to the current rate of spikes normalized by its maximum 
value. On the other hand, the spiking neuron provides more complex model 
of neuron activation function that depends on the timing between spikes. 
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One widely used model of spiking neuron is the "Integrate and Fire" model. 
In this model, the activation of the neuron is described by its membrane po- 
tential. Each spike received contributes to the membrane potential according 
to two factors: the weight of its synaptic connection and the time elapsed since 
its firing. When the accumulated effect of these spikes cause the membrane 
potential to go above certain threshold, the neuron fires a spike. After firing 
the spike, the neuron becomes unable to fire another spike instantaneously. It 
needs a refractory period q before it sends another spike. This refractory time 
depends on a certain time constant r, of the membrane. 

At any time t ,  the effect of a spike on the neuron potential is a function 
of the time difference between the current time t and the firing time of the 
spike tfiring. This function ~ ( t  - tfiring) can be modeled by a pulse shaped 
function as shown in figure (4.11). In the figure, the period A of zero effect 
corresponds to the time required by spike to reach the neuron. One of the 
suggested expressions for ~ ( t  - tfiring) is given by [20], [21]: 

where s = t - tfcing represents the time elapsed since the firing of the 
spike, T~ is the synapse time constant. Also we can model the refractory period 
q(s)  by a negative decaying exponential where the potential of the neuron is 
set after emitting the spike to a very low negative voltage to prevent emitting 
another spike immediately. One of the suggested expressions is given by [20], 
[2 11 : 

I Effect of a spike on the neuron 

Fig. 4.11. The effect of a spike on the neuron ~ ( s )  

Now, we can write the the mathematical model of the spiking neuron the 
gives the potential of neuron i as result of addition of to quantities. The 
first is due to the effect of received spikes and can be written as the sum 
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Fig. 4.12. Refractory period function q(s)  

of the incoming spikes e j ( s j )  from other neurons, labeled by index j ,  with 
each spike effect multiplied by the weight of its synaptic connection w;. The 
second quantity is due to the spikes emitted by neuron i itself and can be 
written as sum of all refractory functions resulting form the emitted spikes. 
A mathematical formula of what we have just described can be given by [22]: 

j All rec ieved spikes  All emi t t ed  spikes  

The above equation describes the model of the activation of the neuron, 
represented by its membrane voltage, which takes into the consideration the 
timing of the emitted and received spikes in contributing to the membrane 
potential. A question might arise here asking why we would be interested in 
more complex model for neural network to employ is robot controllers. The 
answer is that model should be better at detecting the time varying relation 
between the sensors and motors due to its dynamic nature [22]. In the rest of 
this section, we will see how to employ that new model in controlling Khep- 
era robot and mapping the vision information into motor speeds to develop 
obstacle avoidance navigation that depends only on the vision information. 

4.6.1 Experiment 8: Evolving Vision Based Navigation 

This experiment was performed by Floreano and Mattiussi [22]. In the exper- 
iment, the robot was placed in a rectangular arena whose walls are covered 
with vertical white and black strips with variable width. The Khepera robot 
is provided with K213 vision module similar to the one described in the co- 
evolution experiment in section 3.5. The goal of the evolved controller is to 
use the information available from the vision module to enable the robot to 
navigate without colliding with the walls. 

The vision module provides a linear image consisting of 64 pixels that 
cover an angle of 36 degrees. Only 16 equally spaced photoreceptors are used 
as inputs to the spiking neural network. The values of photoreceptors readings 
are filtered to obtain information about the contrast, scaled to the range of 
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[O, 11 and then sent to the spiking neural network. There are extra 2 input 
neuron in the network whose input is the difference between the actual and 
the desired motor speeds. Again this difference is scaled to the rage of [0, 11 
before being sent to the spiking neural network. The network contained four 
output neurons, two for each motor speed. The two neurons set the forward 
and backward speed for each motor. The actual speed sent to the motor is 
their algebraic sum. In addition to the 18 input neurons and the 4 output 
neurons the network contained 10 neurons that are connected to the input 
and output neurons. 

The input vision photoreceptors and the output motor speed are interfaced 
to the spiking neural network as follows. The 16 scaled inputs of photorecep- 
tors are used to set the probability to emit a spike by the corresponding input 
neurons. Also, the firing rates of the 4 output neurons are mapped to the 
motor speeds. This explains the reason of using two neurons for each motor 
speed since that firing rate of the output neurons can not take negative val- 
ues. The cycle of reading the photoreceptors and updating the motor speed 
goes in the following order. Every 100 ms, the input photoreceptors are read, 
filtered, scaled and used to set the probability of emitting a spike by the input 
neurons. During the 100 ms cycle, the activation level of each neuron, except 
input neurons, is updated every 1 ms according to the model of equation (4.5) 
and the neurons are allowed to emit spikes if their activation level exceeds the 
threshold. At the end of the 100 ms cycle, the spiking rate of the output neu- 
rons, calculated over the last 20 ms period of the cycle, is used to update the 
motor speeds. 

The genetic algorithm is used to obtain the best synaptic weights connect- 
ing the spiking neurons. The population consisted of 60 individuals and the 
experiment lasted for 30 generations. Each individual is tested in 400 cycle, in 
which its fitness is the sum of its motor speeds if they are both positive and 
zero otherwise. This fitness function will reward the individuals that move 
forward while offering no reward to individuals that rotate (due to difference 
in the sign of the speeds) or move backward (when both speeds are negative). 
The fitness evaluation of the individual is the average of its fitness over the 
400 cycles. 

The results of the experiment showed that the best individual was able to 
move in curved trajectories of large radii but without colliding with the sur- 
rounding walls. The experiment was repeated using a classical neural network 
with sigmoid activation function and with same architecture. However, the 
fitness of its individuals didn't increase with time and its individual neural 
network controllers were not able to map the vision information into motor 
speed that secure a safe navigation without colliding with the surrounding 
walls [22]. 
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4.7 Comment on different approaches of evolutionary 
robotics 

We presented different approaches for evolving controllers such as neural net- 
works, fuzzy logic and spiking neural networks. Each approach has appealing 
advantages as one form of controller for mobile and autonomous robots. It 
may also include some difficulties or limitations when being evolved. We try 
in this section to shed some light on the attractive features of these different 
approaches and some issues that need to be considered when combined with 
evolutionary computations. 

As a general approach, fuzzy logic provides a tool for dealing with sys- 
tems with uncertain models which suits the dynamic and possibly unknown 
environments encountered by mobile robots. It has the advantages of imple- 
menting human knowledge. It simulates the human method of reasoning by 
using linguistic variables and knowledge that is represented by its rule base. 
For example, the human experience in walking or navigation while avoiding 
possible obstacles can be moved to the robot brain through using a fuzzy 
controller whose rules are based on this experience. 

Another useful feature of fuzzy logic that is interesting in the field of 
robotics is its ability to combine different rules outputs in the defuzzifica- 
tion process. This ability can be further used in behavior coordination. In 
this approach different controllers are designed independently, possibly by 
fuzzy logic, neural networks or even designed by human programmers. Every 
controller implements a certain behavior or task. A simple example is two 
controllers for obstacle avoidance and goal seeking. Our problem in behavior 
coordination is to combine results from different behaviors in one command 
to send to the effectors or motors. The fuzzy approach for this problem works 
by providing a number of rules that assigns weights for fusing the different 
outputs from the controllers based on the current situation. In our example, a 
typical rule will favor the output of obstacle avoidance behavior when a near 
obstacle is detected. This method provides a way of combining the outputs of 
many behaviors each control cycle unlike behavior arbitration methods that 
choose one active behavior each time based on fixed or dynamic priorities. As 
we mentioned, these rules can be based on human experience. Further more, 
genetic algorithm can be employed to evolve the best set of rules for behavior 
coordination. In fact, this was the approach used by Tunstel et al. in [23] to 
evolve fuzzy behavior arbitration for planetary microrovers. 

On the other hand, fuzzy logic approach lacks a standard method for cre- 
ating the rules based on the human experience. Also the time taken in compu- 
tations especially in the defuzzification process may affect the real time per- 
formance of the controller and the the robot if not performed using dedicated 
processors [24]. Another issue that needs to be considered when designing 
fuzzy logic controller for a robot is the design of the membership functions. 
In some experiments, redesigning the membership functions led to avoiding 
oscillations in the robot behavior [25]. 
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Evolutionary computation appears to be a good solution to the problem of 
automatic design of the fuzzy logic controller. However there are some issues 
that the controller designer should consider when evolving the fuzzy logic 
controller. One of these issues is deciding what to evolve, whether it is the 
membership function parameters, the rules or both of them. Evolving both 
rules and membership functions has the advantage of decreasing chances of 
errors due to miss choices made in the early stages of the design, however 
the evolution process will search in a larger space for the best set of rules and 
best parameters for the membership functions. It should be noted that even by 
evolving the rules and the membership parameters, this can not eliminate the 
designer choice of the type of membership function (triangular or trapezoidal 
... etc). Evolving the fuzzy behavior coordination module mentioned earlier 
is an example of evolving the fuzzy rules while the experiment in section 
four of this chapter is an example of evolving the fuzzy rules along with the 
membership functions. 

Another issue to be considered in evolving fuzzy logic controller is the 
number of rules. The number of rules can affect the speed and performance 
of the robot and the choice of the genetic algorithm as well. Small number 
of rules will decrease the computations in the fuzzy logic controllers but on 
the other hand this small number may not cover all the possible situations or 
sensors combinations encountered by the robot. Evolving controller with fixed 
number of rules or fixed maximum number of rules will lead to using fixed 
length chromosome. The other approach of using population of individuals 
with different number of rules requires variable length chromosomes and pos- 
sible modification of the genetic operator. Messy genetic algorithm [27] can be 
a potential evolutionary algorithm for evolving the fuzzy logic controller with 
variable number of rules. It has a modified version of the traditional crossover 
genetic operator called cut and slice operator that can deal with the variation 
of the genetic material length. In fact, it was used by Hoffman and Pfister in 
[26] to evolve the rules for fuzzy logic controllers to enable a mobile robot to 
reach its target while avoiding the obstacles. 

Another approach of evolutionary robotics that we presented is evolving 
neural networks. Artificial neural networks offer many characteristics that 
make them suitable for the problem of controlling autonomous robots. First, 
the noise present in the sensor readings, whether they are sonar sensors or 
infrared sensors, makes the neural networks suitable controllers due to their 
known tolerance to noise. Moreover, if one of the sensors was not functioning, 
the output of the neural network could still be acceptable [7]. Second, the 
neural networks are able to learn and they could be trained. The weights and 
the thresholds and other parameters of the neural network could be adjusted 
to produce different behaviors even for the same network architecture. Also, 
neural networks can select the sensors that are suitable for a given behavior 
by adjusting the weight corresponding to each sensor or input. 

As in the case of fuzzy logic, the genetic algorithm can offer an auto- 
matic way for designing neural network controller by evolving the synaptic 
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weights or the network architecture or both of them. Neural networks have 
many existing learning algorithms, but the genetic algorithms offers potential 
advantage of the parallel search by using a population of individuals. An issue 
to be considered in evolving neural networks that may affect the genetic al- 
gorithm is the size of the parameter to be evolved. Large networks with large 
number of synaptic weights may require a long chromosome. In this case the 
real encoding of these parameters could be considered instead of the binary 
encoding. 

Compared to fuzzy logic, the learning of the neural network which is stored 
as synaptic weights can not be acquired by human reasoning [24]. For exam- 
ple, in the experiment of trash collection no direct relation was found between 
modules of the neural network and the certain behavior of the robot, some- 
times by observing the activation level of some neurons and certain behaviors 
of the robot we could find a correlation as in the experiment of home seeking 
but this is not the general case. On the other hand, the knowledge represented 
by the rules of the fuzzy logic controller can be acquired by human reason- 
ing. For example, we could read on of the evolved rules in the experiment of 
evolving fuzzy logic controller and understand what it implies. Another point 
is that we can not easily implement high level behavior using neural networks 
as we can do using fuzzy logic. Although many relatively complex behaviors 
have be evolved using neural networks, such as trash collection, implementing 
a high level reasoning and selection or coordination between behaviors would 
require a method that mimics human reasoning. 

We have also presented in this chapter a relatively new approach in evo- 
lutionary robotics which is evolving behaviors using spiking neural networks. 
The dynamic model of the spiking neural network suits the time changing 
relation between the sensors and the motors [22]. On the other hand, the com- 
plexity of the model and the need of the interface between the sensors of the 
robot and input of the spiking neural network have limited the experiments of 
evolutionary robotics that use it compared to other widely used approaches as 
artificial neural networks or fuzzy logic. Analog Very Large Scale Integrated 
Circuits (VLSI) can implement spiking neural networks using circuits with 
very small area and power consumption, which is an advantage over other 
approaches. In [28], an analog VLSI circuit that implemented spiking neural 
networks was used for controlling a robotic leg. 

To summarize, each approach of evolutionary robotics is characterized by 
some potential advantages that makes it a suitable solution for the problem 
of controlling mobile robots. Also each approach has some limitations or dif- 
ficulties when being evolved. Choosing which approach is a trade off between 
the advantages and the limitations. 
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4.8 Summary 

In the previous sections we have seen how the evolutionary computations algo- 
rithms were successfully used to  evolve many types of controllers for Khepera 
robot. It was used to  evolve neural network synaptic weights in the  obstacle 
avoidance behavior of experiment 1 and the battery recharging behavior of ex- 
periment 3. We have also seen how it can evolve the  architecture of the  neural 
network along with the  synaptic weights as in the experiment of evolving light 
seeking behavior. Alternatively, it can evolve the learning rules and learning 
rate necessary for training the neural network synaptic weights. Other types 
of controllers were successfully evolved too, such as fuzzy logic controllers and 
computer programs. 

Many other experiments are conducted using evolutionary computations 
on different robotic platforms recently. In fact, evolutionary computation is a 
very promising approach for designing controllers for mobile robots. 
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Synchronous finite state machines are very important for digital sequential 
designs. Among other important aspects, they represent a powerful way for 
synchronising hardware components so that these components may cooperate 
adequately in the fulfilment of the main objective of the hardware design. In 
this chapter, we propose an evolutionary methodology synthesise finite state 
machines. First, we optimally solve the state assignment NP-complete prob- 
lem, which is inherent to designing any synchronous finite state machines 
using genetic algorithms. This is motivated by the fact that with an optimal 
state assignment one can physically implement the state machine in question 
using a minimal hardware area and response time. Second, with the optimal 
state assignment provided, we propose to use the evolutionary methodology 
to yield optimal evolvable hardware that implement the state machine con- 
trol component. The evolved hardware requires a minimal hardware area and 
introduces a minimal propagation delay of the machine output signals. 

5.1 Introduction 

Sequential digital systems or simply finite state machines have two main char- 
acteristics: there is at least one feedback path from the system output signal 
to the system input signals; and there is a memory capability that allows the 
system to determine current and future output signal values based on the 
previous input and output signal values [15]. 
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Traditionally, the design process of a state machine passes through five 
main steps, wherein the second and third steps may be bypassed as shown in 
Fig. 5.1: 

1. the specification of the sequential system, which should determine the 
next states and outputs of every present state of the machine. This is 
done using state tables and state diagrams; 

2. the state reduction, which should reduce the number of present states 
using equivalence and output class grouping; 

3. the state assignment, which should assign a distinct combination to every 
present state. This may be done using Armstrong-Humphrey heuristics 
P51; 

4. the minimisation of the control combinational logic using K-maps and 
transition maps; 

5. finally, the implementation of the state machine, using gates and flip-flops. 

Sequential System SpecTiation n 
State Reduction 1 
State Assqgment Q 

Control Logic Minimisation -? 
State M a c h  Implementation 

Fig. 5.1. The structural description of a finite synchronous state machine 

In this chapter, we concentrate on the third and forth steps of the design 
process, i.e. the state assignment problem and the control logic minimisation. 
We present a genetic algorithm designed for finding a state assignment of a 
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given synchronous finite state machine, which attempts to minimise the cost 
related to the state transitions. Then, we use genetic programming to evolve 
the circuit that controls the machine current and next states. 

The remainder of this chapter is organised into seven sections. In Section 
5.2, we introduce the problems that face the designer of finite state machine, 
which are mainly the state assignment problem and the control logic. We 
show that a better assignment improves considerably the cost of the control 
logic. In Section 5.3, we give a thourough overview on the principles of evo- 
lutionary computations and genetic algorithms and their application to solve 
NP-problems. In Section 5.4, we design a genetic algorithm for evolving best 
state assignment for a given state machine specification. We describe the ge- 
netic operators used as well as the fitness function, which determines whether 
a state assignment is better that another and how much. In Section 5.5, we 
present results evolved through our genetic algorithm for some well-known 
benchmarks. Then we compare the obtained results with those obtained by 
another genetic algorithm described in [I] as well as with NOVA, which is uses 
well established but non-evolutionary method [16]. In Section 5.6, we briefly 
introduce the genetic programming concepts and their applications to engineer 
evolvable hardware. Subsequently, we present a genetic programming-based 
synthesiser for evolving minimal control logic circuit provided the state as- 
signment for the specification of the state machine in question. We describe 
the circuit encoding, genetic operators used as well as the fitness function, 
which determines whether a control logic design is better than another and 
how much. In Section 5.7, we compare the are and time requirements of the 
designs evolved through our evolutionary synthesiser for some well-known 
benchmarks and compare the obtained results with those obtained using the 
traditional method to design state machine, i.e. using Karnaugh maps and 
flip-flop transition maps. In Section 5.8, we summarise the ideas presented 
throughout the chapter and draw some conclusions. 

5.2 Synchronous Finite State Machines 

Once the specification and the state reduction step have been completed, 
the next step consists then of assigning a code to each state present in the 
machine. It is clear that if the machine has N distinct states then one needs 
N distinct combinations of 0s and 1s. So one needs K flip-flops to store the 
machine current state, wherein K is the smallest positive integer such that 
2K 2 N. The state assignment problem consists of finding the best assignment 
of the flip-flop combinations to the machine states. Since a machine state 
is nothing but a counting device, combinational control logic is necessary 
to activate the flip-flops in the desired sequence. This is shown in Fig. 5.2, 
wherein the feedback signals constitute the machine state, the control logic is 
a combinational circuit that computes the state machine output signals (also 
called primary output signals) from the state signals (also called current state) 
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and the input signals (also called primay input signals). It also produces the 
signals of new machine state (also called next state). 

Fig. 5.2. The structural description of a finite synchronous state machine 

The control logic component in a state machine is responsible of generating 
the primary output signals as well as the signal that form the next state. It 
does so using the primary input signals and the signals that constitute the 
current state (see Fig. 5.2). Traditionally, the combinational circuit of the 
control logic is obtained using the transition maps of the flip-flops [15]. Given 
a state transition function, it is expected that the complexity (area and time) 
and so the cost of the control logic will vary for different assignments of 
flip-flop combinations to allowed states. Consequently, the designer should 
seek the assignment that minimises the complexity and so the cost of the 
combinational logic required to control the state transitions. 

5.2.1 Example of State Machine 

Consider the state machine of one input signal (I), one output signal (0) and 
four states whose state transition function is given in tabular form in Table 
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5.1 and assume that we use D-flip-flops to store the machine current state. 
Then the state assignment A. = {so = 00, sl - 11, sa = 01, s3 = 10) requires 
a control logic that consists of three AND gates, five AND gates and three 
OR gates while the assignments A1 = {so = 00,sl = 10,sz - 0 1 , s ~  = 11) 
requires a control logic that consists of only two NOT gates, five AND gates 
and two OR gates. The schematics of the state machines that encode the state 
according to state assignments A. and A1 are given in Fig. 5.3 and Fig. 5.4 
respectively. 

Table 5.1. Example of state transition function 

Present State Next State Output (0) 

C L I R R M W M  

Fig. 5.3. The machine state schematics for state assignment A0 

In Section 5.3, we concentrate on the third step of the design process, i.e. 
the state assignment problem. We present a genetic algorithm designed for 
finding a state assignment of a given synchronous finite state machine, which 
attempts to minimise the cost related to the state transitions. In Section 5.5, 
we focus on evolving minimal control logic for state machines, provided the 
state assignment. 
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Fig. 5.4. The machine state schematics for state assignment A1 

5.3 Principles of Genetic Algorithms 

Evolutionary algorithms are computer-based solving systems, which use the 
evolutionary computational models as key element in their design and im- 
plementation. A variety of evolutionary algorithms have been proposed. The 
most popular ones are genetic algorithms [13]. They have a conceptual base 
of simulating the evolution of individual structures via the Darwinian natu- 
ral selection process. The process depends on the adherence of the individual 
structures as defined by its environment to the problem pre-determined con- 
straints. Genetic algorithms are well suited to provide an efficient solution of 
NP-hard problems [4]. 

Genetic algorithms maintain a population of individuals that evolve ac- 
cording to selection rules and other genetic operators, such as mutation and 
recombination. Each individual receives a measure of fitness. Selection focuses 
on individuals, which shows high fitness. Mutation and crossover provide gen- 
eral heuristics that simulate the recombination process. Those operators at- 
tempt to perturb the characteristics of the parent individuals as to generate 
distinct offspring individuals. 

Genetic algorithms are implemented through the following generic algo- 
rithm described by Algorithm 5.1, wherein parameters ps, f and gn are the 
population size, fitness of the expected individual and the number of genera- 
tion allowed respectively. 

In Algorithm 5.1, function intialPopulation returns a valid random set 
of individuals that compose the population of the first generation, function 
evaluate returns the fitness of a given population. Function select chooses 
according to some criterion that privileges fitter individuals, the individuals 
that will be used to generate the population of the next generation and func- 
tion reproduction implements the crossover and mutation process to yield the 
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Algorithm 5.1 Genetic Algorithms 
input: population size (ps), expected fitness (f),  last generation number (gn); 
output: fittest individual (fit); 
1. generation := 0; 
2. population := initialPopulation() ; 
3. fitness := evaluate(population) ; 
4. do 
5. parents := select(pop1ation) ; 
6. population := reproduce(parent s) ; 
7. fitness := evaluate(popu1ation); 
8. generation := generation + 1; 
9. fit  := fittestIndividual(population); 
10. while( f it < f )  and (generation < gn); 

new population. The main genetic operators will be described in the following 
sections. 

5.3.1 Assignment Encoding 

Encoding of individuals is one of the implementation decisions one has to 
make in order to use genetic algorithms. It very depends on the nature of the 
problem to be solved. There are several representations that have been used 
with success [13]: binary encoding which is the most common mainly because 
it was used in the first works on genetic algorithms, represents an individual 
as a string of bits; permutation encoding mainly used in ordering problem, 
encodes an individual as a sequence of integer; value encoding represents an 
individual as a sequence of values that are some evaluation of some aspect of 
the problem; tree encoding represents an individual as a tree. This encoding is 
generally used to represent structured individuals such as computer programs, 
mathmatical expressions and circuits. 

5.3.2 Individual Reproduction 

Besides the parameters which represent the population size, the fitness of the 
expected result and the maximal number of generation allowed, the genetic 
algorithm has several other parameters, which can be adjust by the user so 
that the result is up to his or her expectation. The selection is performed 
using some selection probabilities and the recombination, as it is subdivided 
into crossover and mutation processes, depends on the kind of crossover and 
the mutation rate and degree to be used. 

Selection 

The selection problem consists of how to select the individuals that should 
yield the new population. According to Darwins evolution theory the best ones 
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should survive longer and create more new offspring. There are many selection 
methods [6] ,  [9]. These methods include roulette wheel selection or fitness 
proportionate reproduction and rank selection. In the following, we describe 
the idea behind each of these selection methods. In our implementation, we 
use fitness proportionate reproduction. 

In fitness proportionate reproduction, parents are selected according to 
their fitness. The better the fitness the individuals have, the higher their 
chances to be selected are. Imagine a roulette wheel where are placed all indi- 
viduals of the population, wherein every individual has portion proportionate 
to its fitness, as it is shown in Fig. 5.5. 

Fig. 5.5. Representation with the roulette wheel selection 

Then a marble is thrown into the roulette and selects an individual. It  is 
clear that individuals with bigger portion in the wheel will be selected more 
times. The selection process can be simulated by following steps: 

1. first, sum up the fitness of all individuals in the population and let S be 
the obtained sum; 

2. then generate a random number from the [O, S], and let f be this number; 
3. subsequently, go through the individuals of the population, summing up 

the fitness of the next one. Let o be this partial sum; 
4. if a 2 f ,  then stop the selection process and choose the current individual 

otherwise return to second step. 

The fitness proportionate reproduction selection presents some limitations 
when the individual fitnesses differ too much from one another. For instance, 
if the best individual has a fitness of 95% of the entire roulette wheel then 
the other individuals will have very few, if any, chances to be selected. To get 
round this limitation, the rank selection method first ranks the individuals 
of the population according to their corresponding fitnesses. The individual 
with the worst fitness receives rankl and that with the best fitness receives 
rankN, which is the number of individuals in the population. The impact 
of the ranking process is shown in Fig. 5.6, which represents the roulette 
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wheel before and after the ranking process. Rank selction may yield a slower 
convergence as the fittest individuals and those that are less fit have much 
closer ranks. 

(a) before individual ranking 

rank 5 
rank 4 7?4! 

3% 

(b) after individual ranking 

Fig. 5.6. Representation of the roulette wheel selection before and after ranking 
the individuals according to their fitnesses 

Reproduct ion 

Given the parents populations, the reproduction can proceed using different 
schemes [6] ,  [9]: a total replacement, steady-state replacement and elitism. In 
the first scheme, offspring replace their parents in the population of the next 
generation. That is only offspring are used to form the population of the next 
generation. The steady-state replacement exploits the idea that only few low- 
fitness individuals should be discarded in the next generation and should then 
be replaced by offspring. Finally, elitism exploits the idea that the best solution 
might be the fittest individual of the current population and so transports it 
unchanged into the population of the next generation. In our implementation 
we use the total replacement reproduction scheme as well as elitism. 
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Obtaining offspring that share some traits with their corresponding parents 
is performed by the crossover function. There are several types of crossover 
operators. These will be presented shortly. The newly obtained population can 
then suffer some mutation, i.e. some of the individuals of some of the genes. 
The crossover type, the number of individuals that should be mutated and 
how far these individuals should be altered are set up during the initialisation 
process of the genetic algorithm. 

Crossover 

There are many ways on how to perform crossover and these may depend 
on the individual encoding used [13]. We present some of these techniques 
crossover techniques. Single-point crossover consists of choosing randomly one 
crossover point then, the part of the individual from the beginning of the off- 
spring till the crossover point is copied from one parent, the rest is copied from 
the second parent as depicted in Fig. 5.7(a). Double-point crossover consists 
of selecting randomly two crossover points, the part of the individual from 
beginning of offspring to the first crossover point is copied from one parent, 
the part from the first to the second crossover point is copied from the second 
parent and the rest is copied from the first parent as depicted in Fig. 5.7(b). 
Uniform crossover copies parts randomly from the first or from the second 
parent. Finally, arithmetic crossover consists of applying some arithmetic op- 
eration to yield a new offspring. 

The single-point and double-point crossover may use randomly selected 
crossover points to allow variation in the generated offspring and to contribute 
in the avoidance of premature convergence on a local optimum [5]. In our 
implementation, we tested all four-crossover strategies. 

Mutation 

Mutation consists of altering some genes of some individuals of the population 
obtained after crossover. The number of individuals that should be mutated 
is given by the parameter mutation rate while the parameter mutation degree 
states how many genes of a selected individual should be changed. The muta- 
tion parameters have to be chosen carefully as if mutation occurs very often 
then the genetic algorithm would in fact change to random search [5]. When 
either of the mutation rate or mutation degree is null, the population is then 
kept unchanged, i.e. the population obtained from the crossover procedure 
represents actually the next generation population. 

The essence of the mutation process depends on the encoding type used. 
When binary encoding is used, the mutation is nothing but a bit inversion of 
those bit genes that were randomised. When permutation encoding is used, 
the mutation is reduced to a permutation of some randomly selected integer 
genes. When value encoding is used, a very small value is added or subtracted 
from the randomised genes. When tree encoding is used, a content of a tree 
node is altered. 
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(a) single-point crossover 

(b) double-point crossover 

(c) uniform crossover 

(d) arthmetic crossover 

Fig. 5.7. Different types of crossover 

5.4 Application to the State Assignment Problem 

The identification of a good state assignment has been thoroughly studied 
over the years. In particular, Armstrong [2] and Humphrey [ll] have pointed 
out that an assignment is good if it respects two rules, which consist of the 
following: 

two or more states that have the same next state should be given adjacent 
assignments; 
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two or more states that are the next states of the same state should be given 
adjacent assignment. State adjacency means that the states appear next to 
each other in the mapped representation. In other terms, the combination 
assigned to the states should differ in only one position; 
the first rule should be given more important the second. For instance, 
state codes 0101 and 1101 are adjacent while state codes 1100 and 1111 
are not adjacent. 

Now we concentrate on the assignment encoding, genetic operators as well 
as the fitness function, which given two different assignment allows one to 
decide which is fitter. 

5.4.1 State Assignment Encoding 

In this case, an individual represents a state assignment. We use the integer 
encoding. Each chromosome consists of an array of N entries, wherein entry 
i is the code assigned to ith. machine state. For instance, the chromosome in 
Fig. 5.5 represents a possible assignment for a machine with 6 states. 

Fig. 5.8. Example of state assignment encoding 

Note that if the considered machine has stores its state in K flip-flops, 
then the state codes can be only chosen from the integer interval [0, 2K - 11. 
Otherwise, the code is not considered valid as it can be kept in the machine 
memory. 

5.4.2 Genetic Operators for State Assignments 

As state assignments are represented using integer encoding, we could use 
single-point, double-point and uniform crossovers (see Section 5.3 for details). 
The mutation is implemented by altering a state code by another valid state. 
Note that when mutation occurs, a code might be used to represent two or 
more distinct states. Such a state assignment is not possible. In order to 
discourage the selection of such assignment, we apply a penalty every time a 
code is used more than once within the considered assignment. This will be 
further discussed in next section. 

5.4.3 State Assinment Fitness Evaluation 

This step of the genetic algorithm allows us to classify the individuals of a 
population so that fitter individuals are selected more often to contribute in 
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the constitution of a new population. The fitness evaluation of state assign- 
ments is performed with respect to two rules of Armstrong [2] and Humphrey 
[l 11 : 

0 how much a given state assignment adheres to the first rule, i.e. how many 
states in the assignment, which have the same next state, have no adjacent 
state codes; 
how much a given state in the assignment adheres to the second rule, i.e. 
how many states in the assignment, which are the next states of the same 
state, have no adjacent state codes. 

In order to efficiently compute the fitness of a given state assignment, 
we use an N x N adjacency matrix, wherein N is the number of the machine 
states. The triangular bottom part of the matrix holds the expected adjacency 
of the states with respect o the first rule while the triangular top part of it 
holds the expected adjacency of the states with respect to the second rule. 
The matrix entries are calculated as in Equation 5.1, wherein AM stands for 
the adjacency matrix, functions next(u) and prev(a) yield the set of states 
that are next and previous to state a respectively. For instance, for the state 
machine in Table 5.2, we get the 4 x 4 adjacency matrix in Fig. 5.9. 

Fig. 5.9. Adjacency matrix for the machine state specified in Table 5.1 

Using the adjacency matrix AM, the fitness function applies a penalty 
of 2, respectively 1, every time the first rule, respectively the second rule, is 
broken. Equation 5.2 states the details of the fitness function applied to a state 
assignment a, wherein function na(q,p) returns 0 if the codes representing 
states q and p are adjacent and 1 otherwise. Note that state assignments that 
encode two distincts states using the same codes are penalised. Note that + 
represents the penalty. 
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For instance, considering the state machine whose state transition function 
is described in Table 5.1, the state assignment {so e 00, sl E 10, s2 - 01, 
SQ E 11) has a fitness of 5 as the codes of states so and s3 are not adjacent 
but AM - 0,3 = 1 and = 1 and the codes of states sl and s2 are not 
adjacent but AMll2 = 2 while the assignments {so - 00, sl - 11, sz - 01, 
s3 -- 10) has a fitness of 3 as the codes of states so and sl are not adjacent 
but AMojl = 1 and AMl,o = 1. 

The objective of the genetic algorithm is to find the assignment that min- 
imise the fitness function as described in Equation 5.2. Assignments with 
fitness 0 satisfy all the adjacency constraints. Such an assignment does not 
always exist. 

5.5 Comparative Results 

In this section, we compare the assignment evolved by our genetic algorithm 
to those yield by another genetic algorithm [5] and to those obtained using the 
non-evolutionary assignment system called NOVA [16]. The examples are well- 
known benchmarks for testing synchronous finite state machines [3]. Table 5.2 
shows the best state assignment generated by the compared systems. The size 
column shows the total number of states/transitions of the machine. 

Table 5.3 gives the fitness of the best state assignment produced by our 
genetic algorithm, the genetic algorithm from [I] and the two versions of 
NOVA system [16]. The #AdjRes stands for the number of expected adjacency 
restrictions. Each adjacency according to rule 1 is counted twice and that with 
respect to rule 2 is counted just once. For instance, in the case of the Shi ftreg 
state machine, all 24 expected restrictions were fulfilled in the state assignment 
yielded by the compared systems. However, the state assignment obtained the 
first version of the NOVA system does not fulfil 8 of the expected adjacency 
restrictions of the state machine. 

The chart of Fig. 5.10 compares graphically the degree of fulfilment of the 
adjacency restrictions expected in the state machines used as benchmarks. 
The chart shows clearly that our genetic algorithm always evolves a better 
state assignment. 

5.6 Evolvable Hardware for the Control Logic 

Genetic programming [lo], [12] is way of producing a program using ge- 
netic evolution. The individuals within the evolutionary process are programs. 
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Table 5.2. Best state assignment yield by the compared systems for the benchmarks 

FSM System State Assignment 

Shiftreg GA [I] [0,2,5,7,4,6,1,3] 
8/16 NOVAl [0,4,2,6,3,7,1,5] 

NOVA2 [0,2,4,6,1,3,5,7] 
Our GA [5,7,4,6,1,3,0,2] 

Lion9 GA [l] [0,4,12,13,15,1,3,7,5] 
9/25 NOVAl [2,0,4,6,7,5,3,1,11] 

NOVA2 [0,4,12,14,6,11,15,13,7] 
Our GA [10,8,12,9,13,15,7,3,11] 

Trainll GA [I] [0,8,2,9,13,12,4,7,5,3,1] 
11/25 NOVAl [0,8,2,9,1,10,4,6,5,3,7] 

NOVA2 [0,13,11,5,4,7,6,10,14,15,12] 
Our GA [2,6,1,4,0,14,10,9,8,11,3] 

Bbarra GA [l] [0,6,2,14,4,5,13,7,3,1] 
10160 NOVAl [4,0,2,3,1,13,12,7,6,5] 

NOVA2 [9,0,2,13,3,8,15,5,4,1] 
Our GA [3,0,8,12,1,9,13,11,10,2] 

Dk14 GA [I] [0,4,2,1,5,7,3] 
7/56 NOVAl [5,7,1,4,3,2,0] 

NOVA2 [7,2,6,3,0,5,4] 
Our GA [3,7,1,0,5,6,2] 

Bbsse GA [I] [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1] 
16/56 NOVAl [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14] 

NOVA2 [2,3,6,15,1,13,7,8,12,4,9,0,5,10,11,14] 
Our GA [15,14,9,12,1,4,3,7,6,10,2,11,13,0,5,8] 

Donfile GA [I] [0,12,9,1,6,7,2,14,11,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3] 
24/96 NOVAl [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1] 

NOVA2 [6,30,11,28,25,19,0,26,1,2,14,10,31,24,27,15,1~,~,~9,~~,~~,9,~,3] 
Our GA [2,18,17,1,29,21,6,22,7,0,4,20,19,3,23,16,9,8,~3,5,~~,~8,~5,~~] 

Table 5.3. Fitness of best assignments yield by the compared systems 

State machine #AdjRes Our GA GA [5]  NOVA^ NOVA:! 

S hiftreg 24 0 0 8 0 
Lion9 69 2 1 27 25 30 
Train11 57 18 19 23 28 
Bbara 225 127 130 135 149 
Dk14 137 68 75 72 76 
Bbsse 305 203 215 220 220 
Donfile 408 241 267 326 291 
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* 1,20 
r Ed Our GA 0 GA [2] NOVA1 NOVA2 

Shifrreg Lion9 Train11 Bbaru DkI4 Bbsse DonJile 
benchmarks 

Fig. 5.10. Graphical comparison of the degree of fulfilment of rule 1 and 2 reached 
by the systems 

The main goal of genetic programming is to provide a domain-independent 
problem-solving method that automatically yields computer programs from 
expected input/output behaviours. Exploiting genetic programming, we au- 
tomatically generate novel control logic circuits that are mznzmal with respect 
to area and time requirements. 

A circuit design may be specified using register-transfer level equations. 
Each instruction in the specification is an output signal assignment. A signal 
is assigned the result of an expression wherein the operators are those that 
represent basic gates in CMOS technology of VLSI circuit implementation and 
the operands are the input signals of the design. The allowed operators are 
shown in Table 5.4. Note that all gates introduce a minimal propagation delay 
as the number of input signal is minimal, which is 2. 

Table 5.4. Gate name, symbol, gate-equivalent and propagation delay 

Name Symbol Gate Code Gate Equiv. Delay 

NOT -p 0 1 0.0625 

AND I 2 0.209 
OR 2 2 0.216 

XOR 3 3 0.212 
NAND Cf 4 1 0.13 

NOR * 5 I 0.156 
XNOR * 6 3 0.211 
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5.6.1 Circuit Encoding 

We encode circuit designs using a matrix of cells that may be interconnected. 
A cell may or may not be involved in the circuit schematics. A cell consists of 
two inputs or three in the case of a MUX, a logical gate and a single output. 
A cell may draw its input signals from the output signals of gates of previous 
rows. The gates include in the first row draw their inputs from the circuit 
global input signal or their complements. The circuit global output signals 
are the output signals of the gates in the last raw of the matrix. An example 
of chromosome with respect to this encoding is given in Table 5.5. It represents 
the circuit of Fig. 5.11. Note that the input signals are numbered 0 to 3, their 
negated signals are numbered 4 to 7 and the output signals are numbered 16 
to 19. If the circuit has n outputs with n < 4, then the signals numbered 16 
to n are the actual output signals of the circuit. 

Table 5.5. Chromosome for the circuit of Fig. 5.11 

Fig. 5.11. Encoded circuit schematics 

5.6.2 Circuit Reproduction 

Crossover recombines two randomly selected circuits into two fresh offsprings. 
It may be single-point or double-point or uniform crossover as explained ear- 
lier. Crossover of circuit specification is implemented using a variable four- 
point crossover as described in Fig. 5.12. 
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Fig. 5.12. Four-point crossover of circuit schematics 

One of the important and complicated operators for genetic programming 
is the mutation. It consists of changing a gene of a selected individual. Here, 
a gene is the expression tree on the left hand side of a signal assignment 
symbol. Altering an expression can be done in two different ways depending 
the node that was randomised and so must be mutated. A node represents 
either an operand or operator. In the former case, the operand, which is a 
bit in the input signal, is substituted with either another input signal or 
simple expression that includes a single operator as depicted in Fig. 5.13 - 
top part. The decision is random. In the case of mutating an operand node 
to an operator node, we proceed as Fig. 5.13 - bottom part. The randomised 
operator node may be mutated to an operator node or to an operator of 
smaller (AND to NOT), the same (AND to XOR) or bigger arity (AND to MUX). 
In the last case, a new operand is randomised to fill in the new operand. 

5.6.3 Circuit Evaluation 

Another important aspect of genetic programming is to provide a way to eval- 
uate the adherence of evolved computer programs to the imposed constraints. 
In our case, these constraints are of three kinds: 

0 First of all, the evolved specification must obey the input/output be- 
haviour, which is given in a tabular form of expected results given the 
inputs. This is the truth table of the expected circuit. 
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Fig. 5.13. Operand node mutation for circuit specification 

a Second, the circuit must have a reduced size. This constraint allows us to 
yield compact digital circuits. 

a Thirdly, the circuit must also reduce the signal propagation delay. This 
allows us to reduce the response time and so discover efficient circuits. 
In order to take into account both area and response time, we evaluate 
circuits using the weighted sum approach. 

We estimate the necessary area for a given circuit using the concept of gate 
equivalent. This is the basic unit of measure for digital circuit complexity [7]. 
It  is based upon the number of logic gates that should be interconnected to 
perform the same input/output behaviour. This measure is more accurate 
that the simple number of gates [7], [15]. 

When the input to an electronic gate changes, there is a finite time de- 
lay before the change in input is seen at the output terminal. This is called 
the propagation delay of the gate and it differs from one gate to another. 
Of primary concern is the path from input to output with the highest total 
propagation delay. We estimate the performance of a given circuit using the 
worst-case delay path. The number of gate equivalent and an average propa- 
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gation delay for each kind of gate are given in Table 5.4. The data were taken 
form [6]. 

Let C be a digital circuit that uses a subset (or the complete set) of the 
gates given in Table 5.4. Let Gates(C) be a function that returns the set of 
all gates of circuit C and Levels(C) be a function that returns the set of all 
the gates of C grouped by level. Notice that the number of levels of a circuit 
coincides with the cardinality of the set expected from function Levels. On 
the other hand, let Val(X) be the Boolean value that the considered circuit 
C propagates for the input Boolean vector X assuming that the size of X 
coincides with the number of input signal required for circuit C. The fitness 
function, which allows us to determine how much an evolved circuit adheres 
to the specified constraints, is given as follows, wherein X represents the input 
values of the input signals while Y represents the expected output values of 
the output signals of circuit C, n denotes the number of output signals that 
circuit C has, function Delay returns the propagation delay of a given gate as 
shown in Table 5.4 and 0 1  and 0 2  are the weighting coefficients [8] that allow 
us to consider both area and response time to evaluate the performance of 
an evolved circuit, with 01 + 0 2  = 1. Note that for each output signal error, 
the fitness function of Equation 5.3 sums up a penalty $I. For implementation 
issue, we minimize the fitness function below for different values of 01 and 
0,. 

5.7 Comparative Results 

In this section, we compare the evolved circuits to those obtained using the 
traditional methods, i.e. transition and Karnaugh maps. This is done for three 
different state machines that are generally used as benchmarks. These state 
machines are commonly called shiftreg, lion9 and trainll .  The detailed de- 
scriptions of these state machines can be found in [3]. The state assignments 
used are the best ones found so far. They also are the result of an evolutionary 
computation [14]. Theses state assignment are given in Table 5.2. 

For each of these state machines, we evolved a minimal circuit that im- 
plements the required behaviour and compared it to the one engineered using 
the traditional method. Table 5.6 shows the details of this comparison. The 
schematics of the evolved circuit of state machines shi ftreg are given in Fig. 
5.14 and Fig. 5.15. 
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Table 5.6. Comparison of the traditional method vs. genetic programming 

State machine Number of gate-Equivalent Response time 

Traditional GP Traditional GP 

Shiftreg 30 12 0.85 0.423 
Lion9 102 33 2.513 0.9185 
Train1 1 153 39 2.945 0.8665 

Fig. 5.14. First evolved control logic for state machine shi ftreg 

Fig. 5.15. Second evolved control logic for state machine shiftreg 
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The lookup table-based implementations of the shi ftreg state machine for 
both control logics (i.e. of Fig. 5.14 and Fig. 5.15) exploits two 2-input, one 
3-input and one 4-input lookup tables. The schematics are given in Fig. 5.10. 

Fig. 5.16. Lookup table-based evolved architeture of shi ftreg 

The lookup table-based implementation of the shi ftreg state machine as 
synthesised by the xilinxTM [17] uses four Zinput, one 3-input and one 4- 
input lookup tables. The schematics are given in Fig. 5.16. 

Fig. 5.17. Lookup table-based architeture of shiftreg as synthesised by Xilinx TM 
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Fig. 5.18 and Fig. 5.19 show the evolved circuits for state machines lion9 
and train11 respectively. It is clear that the evolved circuits are much better 
that those yield by the traditional methods in both terms hardware area and 
signal propagation delay. 

Fig. 5.18. The evolved control logic for state machine lion9 

5.8 Summary 

In this chapter, is divided into two main parts. In the first part, we exploited 
evolutionary computation to solve the NP-complete problem of state encod- 
ing in the design process of asynchronous finite state machines. We compared 
the state assignment evolved by our genetic algorithm for machine of differ- 
ent sizes evolved to existing systems. Our genetic algorithm always obtains 
better assignments. In the second part, we exploited genetic programming to 
synthesise the control logic used in asynchronous finite state machines. We 
compared the circuits evolved by our genetic programming-based synthesiser 
with that that would use the traditional method, i.e. using Karnaugh maps 
and transition maps. The state machine used as benchmarks are well known 
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Fig. 5.19. The evolved control logic for state machine train11 

and of different sizes. Our evolutionary synthesiser always obtains better con- 
trol logic both in terms of hardware area required to  implement the  circuit 
and response time. 
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The complex device, component, and system design issues involved in inte- 
grated MEMS design call for a structured design methodology that borrows 
from VLSI design. In this chapter, we first discuss the hierarchy that is in- 
volved in a typical MEMS design. Then we move on to discuss how evo- 
lutionary approaches can be used to automate the hierarchical design and 
synthesis process for MEMS. At the system level, genetic programming, as a 
strong search tool, is used to generate and search in the topologically open- 
ended design space. Meanwhile, bond graphs are used to represent the lumped 
parameter models of MEMS that cut across mixed energy domains. The ap- 
proach combining bond graphs and genetic programming can lead to satis- 
factory design candidates of system level models that meet the predefined 
behavioral specifications for designers to tradeoff. Then at the second level, 
namely the physical layout synthesis level, the selection of geometric parame- 
ters for component devices is formulated as a constrained optimization prob- 
lem and addressed using a constrained GA approach. Considerations of feature 
size constraints can be incorporated into this approach very conveniently. A 
multiple-resonator microsystem design is taken as an example to illustrate the 
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integrated design automation idea using evolutionary approaches at multiple 
levels. 

6.1 Introduction 

MicroElectroMechanical Systems (MEMS) is a rapidly expanding technology 
that offers new ways of combining sensing, actuation, signal processing, com- 
puting and communication functions on a miniature scale. Although MEMS is 
a promising technology, it is very surprising that we have only seen a handful 
of successful commercial MEMS products which the market has demanded in 
large quantities, including automotive accelerometers and gyroscopes, pres- 
sure sensors, ink-jet print heads and a few others. Prevalence of design and 
fabrication of MEMS application-specific integrated circuits (ASICS) analo- 
gous to electronic ASICS is still not seen. Due to the complexity and intricacy 
involved in MEMS design, designing MEMS still remains an art in most appli- 
cations, requiring a large amount of investment of human resources, time and 
money. Much of the investment is consumed in the iterative trial-and-error 
design process. Automated design synthesis helps engineers to develop rapid, 
optimal configurations for a given set of performance and constraint guide- 
lines, and thus to shorten typical development cycles for MEMS (with a given 
fabrication technology) by a large factor and to enable design of far more 
complex MEMS than can be handled today. Electronic Design Automation 
(EDA) has achieved great success in both industry and academia. However, 
analogous research in design automation for MEMS seems to lag far behind, 
although considering the close affinity of MEMS and VLSI - MEMS actu- 
ally evolved from microelectronics and inherited the fabrication techniques of 
VLSI - the potential successful applications of design automation of MEMS 
appear to be promising. It turns out that translating the key insights of sil- 
icon evolution success into MEMS technologies is a much more challenging 
task than most people have expected. Major research topics to be addressed 
include: 1) developing a broad base of building blocks in MEMS technologies 
so that huge networks of micro-devices could be assembled into arbitrary ar- 
chitectures with desirable functionalities, 2) abstracting design hierarchies to 
stratify and conquer design complexity, thus making the design more amenable 
to an automated process, 3) improving models of computation and extend- 
ing current synthesis methodologies to facilitate generation of viable design 
candidates and smoother transitions from conceptual and embodied designs 
to process fabrication. 4) combining MEMS component layout extraction and 
lumped-parameter bond graph simulation and design synthesis to provide 
MEMS designers with VLSI-like environments enabling faster design cycles 
and improved design productivity. 

This chapter seeks to partially address the above challenges, especially 
the first two. The proposed hierarchical and evolutionary design framework 
for MEMS aims to eliminate tedious and repetitive design tasks, facilitate 
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hierarchical problem decomposition, and combine the power of multiple evo- 
lutionary computation algorithms working simultaneously to identify better 
product designs and process solutions. In particular, we divide design repre- 
sentations of MEMS design into two levels, the system-level behavioral macro- 
model and the detailed-level physical geometric layout model. At the system 
level, we use a combination of genetic programming and bond graphs to au- 
tomatically generate and search for viable design candidates represented by 
behavioral macromodels satisfying high-level design specifications. At the sec- 
ond detailed (layout) level, multiobjective constrained genetic algorithms are 
used to optimize the geometric parameters that relate the physical device 
model to the behavioral macromodel and meet more detailed design objec- 
t ives. 

6.2 Hierarchical MEMS Design Methodology 

MEMS holds the promise of being amenable to structured automated design 
due to its similarities with VLSI. However, design and analysis of MEMS is 
much more complicated due to their multi-domain and intrinsically three- 
dimensional nature. In addition, because of limitations of fabrication technol- 
ogy, there are many constraints in design of MEMS. In MEMS, there are a 
number of levels of designs that need to be synthesized [I]. Usually the design 
process starts with basic capture of the schematic of the overall system, and 
then goes on through layout and construction of a 3-D solid model. So the first 
design level is the system level, which includes selection and configuration of 
a repertoire of planar devices or subsystems. The second level is 2-D layout 
of basic structures like beams to form the elementary planar devices. In some 
cases, if the MEMS is basically a result of a surface-micro machining process 
and no significant 3-D features are present, design of this level will end one 
cycle of design. More generally, modeling and analysis of a 3-D solid model 
for MEMS is necessary. However, even if we have obtained an optimized 3-D 
device shape, it is still very difficult to produce a proper mask layout and 
correct fabrication procedures. Automated mask layout and process synthesis 
tools would be very helpful to relieve designers from considering the fabrica- 
tion details and focus on the functional design of the device and system [2]. 
After a "top-down" design path, a " bottom-up" verification process is usually 
followed to guarantee that at each design level the design specifications are 
met exactly as defined in Fig. 6.1. The ultimate goal is to develop tools for 
MEMS design to ensure first-pass success by having a well-defined " top-down" 
design path and "bottom-up" verification path. 
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Fig. 6.1. Hierarchical design of MEMS 

6.3 System-Level Synthesis of MEMS Using Genetic 
Programming and Bond Graphs 

For system-level design, hand calculation is still the most popular method 
in current design practice. This is mainly because no powerful and widely 
accepted synthesis approach exists to automated design of multi-domain sys- 
tems. In addition, most MEMS system-level design is accomplished by mod- 
eling entire microelectromechanical system as single behavioral entities hav- 
ing no lower hierarchical level in design. If there is any change in geometric 
parameters or topology, a whole new model must be created, and this sub- 
stantially lengthens design cycles. Over the past two decades, computational 
design algorithms based on Darwin's principles of evolution have developed 
from academic curiosities into practical and effective tools for scientists and 
engineers. Gero, for example, investigates evolutionary systems as computa- 
tional models of creative design and studies the relationships among genetic 
engineering, style emergence, and complex evolution [3]. Goodman et al. [4] 
studied evolution of engineering artifacts using heterogeneous parallel genetic 
algorithms. Koza has applied genetic programming to evolve analog filter cir- 
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cuits and can optimize the topology and sizing parameters of the evolved 
circuits simultaneously [5]. In this research, we use genetic programming as 
a strong search tool to explore the topologically open-ended design space for 
system-level behavioral models of MEMS. We also use bond graphs as a mod- 
eling tool to unify representations of mixed energy domains of MEMS. We 
call the overall approach the BG/GP approach. 

6.3.1 Bond graphs 

The reason we used bond graphs in research on MEMS synthesis is because 
MEMS are intrinsically multi-domain systems, unlike electronic systems. We 
need a uniform representation of MEMS so that designers can not only shift 
among different hierarchies of design abstractions but also can move around 
design partitions with different physical domains without difficulty. The bond 
graph is a modeling tool that provides a unified approach to the modeling 
and analysis of dynamic systems, especially hybrid multi-domain systems in- 
cluding mechanical, electrical, pneumatic, hydraulic components, etc. It is the 
explicit representation of model topology that makes the bond graphs a good 
candidate for use in open-ended design search. Fig. 6.2 shows an example of 
unique bond graphs representation of a resonator unit in three different ap- 
plication domains. It is also very natural to use bond graphs to represent a 
dynamic system, such as a mechatronic system, with cross-disciplinary phys- 
ical domains and even controller subsystems (Fig.6.3). For notation details 
and methods of system analysis related to the bond graph representation, see 
[6]. Shah [7] identifies the importance of bond graphs for unifying multi-level 
design of multi-domain systems. Tay et al. [8] use bond graphs and GA to 
generate and analyze dynamic system designs automatically. This approach 
adopts a variational design method, which means they make a complete bond 
graph model first, and then change the bond graph topologically using a GA, 
yielding new design alternatives. However, the efficiency of this approach is 
hampered by the weak ability of GA to search in both topology and parameter 
spaces simultaneously. Terpenny and Jiachuan Wang have begun to explore 
combination of bond graphs and evolutionary computation [9]. Campell [lo] 
also uses the idea of both bond graphs and genetic algorithms in his A-Design 
framework. In this research, we use an approach combining genetic program- 
ming and bond graphs to automate the process of design of dynamic systems 
to a significant degree. 

6.3.2 Combining bond graphs and genetic programming 

The most common form of genetic programming [5] uses trees to represent 
the entities to be evolved. Defining of a proper function set is one of the most 
significant steps in using genetic programming. It may affect both the search 
efficiency and validity of evolved results and is closely related to the selection 
of building blocks for the system being designed. By executing the genotype, 
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Fig. 6.2. Bond graphs representing a mechatronic system with mixed energy do- 
mains and a controller subsystem 

Fig. 6.3. One bond graph represents resonators in different application domains 
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a genetic programming tree that composes of functions in the function set as 
nodes of the tree, an arbitrary representative topology, or phenotype can be 
generated in a developmental manner. In this research, we have an additional 
dimension of flexibility in generating phenotypes, because bond graphs are 
used as modeling representations for multi-domain systems, serving as an 
intermediate representation between the mapping of genotype and phenotype, 
and can be interpreted as systems in different physical domains, chosen as 
appropriate to given circumstances. Fig. 6.4 illustrates the role of bond graphs 
in the mappings from genotypes to phenotypes. [ll] 
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The Bond 
Graph 
Models 

OfA 
Dynamic 
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Physical 
Realization 

Of The 
Dynamic 

Fig. 6.4. Genotype-phenotype mapping 

6.3.3 Filter topology 

Automated synthesis of an RF MEM device, a micro-mechanical bandpass 
filter, is used as an example in this chapter [12]. Through analyzing two pop- 
ular topologies used in surface micromachining of micro-mechanical filters, 
we found that they are topologically composed of a series of concatenated 
Resonator Units (RUs) and Bridging Units (BUS) or RUs and Coupling Units 
(CUs). Fig. 6.5 and Fig. 6.6 illustrates the layouts and bond graph representa- 
tions of two widely accepted filter topologies I and I1 [12]. Their corresponding 
bond graph representations are also shown. 

6.3.4 Function set 

In this research, a GP function set is presented and listed in Table 6.1. Ex- 
amples of operators, namely insert-CU and insert-RU, are illustrated in Figs 
6.7 and 6.8. Fig. 6.7 explains how the insert-CU function works. A Coupling 
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Fig. 6.5. MEM filter topology I 

Unit (CU) is a subsystem that is composed of a capacitor attached with a 
0-junction in the center and two bonds connecting 1-junctions at the left and 
right ends. After execution of the insert-CU function, an additional modifiable 
site (2) appears at the rightmost newly created bond. As illustrated in Fig. 6.8, 
a resonator unit (RU), composed of one I, R, and C component all attached 
to a 1-junction, is inserted in an original bond with a modifiable site through 
the insert-RU function. After the insert-RU function is executed, a new RU 
is created and one additional modifiable site, namely bond (3), appears in 
the resulting phenotype bond graph, along with the original modifiable site 
bond (1). The newly-added 1-junction also has an additional modifiable site 
(2). As components C, I, and R all have parameters to be evolved, the insert- 
RU function has three corresponding ERC-typed sites, (4), ( 5 ) ,  and (6), for 
numerical evolution of parameters. 

6.3.5 Design embryo 

All individual genetic programming trees create bond graphs from an embryo. 
Selection of the embryo is also an important topic in system design, especially 
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Fig. 6.6. MEM filter topology I1 

for multi-port systems. In our filter design problems, we use the bond graph 
shown in Fig. 6.9 as our embryo. 

Table 6.1. Operators in modular function set 

6.3.6 Fitness function 

Within the frequency range of interest, f,,,, = [f,,,, f,,,], uniformly sam- 
ple 100 points. Here, f,,,, = [O. 1,1000Kl Hz. Compare the magnitudes of the 

Operator Name 
Insert-RU 
Insert-CU 
Insert-BU 
Add-RU 
Insert-JO1 
Insert-CIR 
Insert-CR 

Functionality 
insert a resonator unit 
insert a coupling unit 
insert a bridging unit 
add a resonator unit 
insert a 0-1-junction 
insert a special CIR component 
insert a special CR component 
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Fig. 6.7. Operator to insert Bridging Unit 

Fig. 6.8. Operator to insert Resonator Unit 
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Fig. 6.9. Design Embryo of a Micro-Electro-Mechanical Filter 

frequency response at  target magnitudes, which are 1.0 within the pass fre- 
quency range of [316,1000] Hz, and 0.0 otherwise, between 0.1 and 1000KHz. 

6.3.7 Experimental setup 

Three major code modules were created in this work. The algorithm kernel 
of HFC-GP was a strongly typed version [13] of an open software package 
developed in our research group - lilgp. Parameters for lilgp are shown in the 
tableau 6.2. 

Table 6.2. Parameter settings for genetic programming 

Parameter 
population size 
initial population 
initial depth 
maximum depth 
maximum nodes 
selection method 
crossover rate 
mutation rate 

Setting 
500 in each of thirteen subpopulations 
half and half 
4-6 
50 
5000 
tournament with size 7 
0.9 
0.3 
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A bond graph class was implemented in C++. The fitness evaluation pack- 
age is C++ code converted from Matlab code, with hand-coded functions used 
to interface with the other modules of the project. The commercial software 
package 2OSim was used to verify the dynamic characteristics of the evolved 
design. The GP program obtains satisfactory results on a Pentium-IV lGHz 
in 1000 1250 minutes. 

6.3.8 Experimental result 

Experimental results show the strong topological search capability of genetic 
programming and feasibility of our BG/GP approach for finding realizable 
designs for micro-mechanical filters [14]. In Fig. 6.11, K is the number of res- 
onator units appearing in the best design of the generation on the horizontal 
axis. As fitness improves, the number of resonator units, K, grows - unsurpris- 
ing because a higher-order system with more resonator units has the potential 
of better system performance than its low-order counterpart. The plot of cor- 
responding system frequency responses at generations 27, 52, 117 and 183 are 
shown in Fig. 6.10. A layout of a design candidate with four resonators and 
three coupling units as well as its bond graph representation is shown below in 
Fig. 6.12. Notice that the geometry of resonators may not show the real sizes 
and shapes of a physical resonator and the layout figure only serves as a topo- 
logical illustration. Using the BG/GP approach, it is also possible to explore 
novel topologies of MEM filter design. In this case, we may not necessarily use 
a strictly realizable function set. Instead, a semi-realizable function set may 
be used to relax the topological constraints, with the purpose of finding new 
topologies not realized before but still realizable after careful design. Fig. 6.13 
gives an example of a novel topology for a MEM filter design. An attempt 
to fabricate this kind of topology is being carried out in a university research 
setting. 

6.4 Second-Level Physical Layout Synthesis Formatting 
the Headings 

Layout synthesis automatically generates valid or optimized geometric siz- 
ing parameters for cell components, which in most cases are commonly used 
micromechanical devices with fixed topologies, according to engineering de- 
sign objectives. In this research, the cell component is a resonator device in 
MEMS domain. The design objectives come from either high-level specifica- 
tions such as behavioral model parameters that need to be satisfied, or from 
layout-level objectives such as minimum areas occupied. Our approach is to 
model the design problem as a formal constrained optimization problem, and 
then solve it with powerful optimization techniques, resulting in a tool that 
automates the design synthesis of MEMS structures. Two categories of op- 
timization techniques are used: one category includes stochastic algorithms 
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Responses of Design Candidates 

Frequency 

Fig. 6.10. Frequency responses of a sampling of design candidates, which evolved 
topologies with larger numbers, K, of resonators as the evolution progressed. All 
results are from one genetic programming run of the BG/GP approach 

such as genetic algorithms, and the other category includes deterministic al- 
gorithms such as nonlinear programming. For both categories, the process of 
solving the optimization problem involves determining the design variables, 
the design constraints, and the design objective. We decided to use 14 design 
variables for an example cell component, a folded-flexure comb-drive microres- 
onator fabricated in a polysilicon surface microstructural process (Fig. 6.14) 
in this research. Design variables and their constraints are listed as follows 
(Fig. 6.15) [15]: 

It is noted that the first 13 design variables have units of pm. The four- 
teenth design variable has units of volts. In addition, we assume t = w, = g 
= d. in our design for simplicity. Some design variables are predefined: they 
are wb, = 11 , w,, = 14 , 6 = 4 , N = 10 . The constraints for the design 
variables are listed below. 
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Fitness Improvement Curve for Band Pass Micromechanical Filter 

Number of Generation 

Fig. 6.11. Fitness improvement curve 

10 I LC, 6 700,8L LC < 4 0 0 , 2 6  w, i 2 0 , 2  6 L,, 1 4 0 0  (6.3) 

also a number of design constraints for the microresonator cell compo- 
nent, including both geometric constraints and functional constraints. In this 
chapter, without loss of generality, we consider the following constraints: 

Among them, the first three are linear constraints, and the fourth is a non- 
linear constraint because the term xdisp is highly nonlinear. xdisp = QFe,x/Kx, 
where Fe,, = 1 . 1 2 ~ ~ N V ~ t l ~  , 

Suppose that in the system-level synthesis, we get a set of behavioral 
parameters for the cell component of a microresonator as 
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Fig. 6.12. Layout and bond graph representation of a design candidate from the 
experiment, with four resonator units coupled with three coupling units 

Then we have three additional equation constraints.Equations to relate the 
design variables and the three behavioral model parameters are as follows: 

where cr = ( w ~ / I v ~ ) ~ ,  MS = PA,, Mt = pAt, Mh = pAb, and 
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Fig. 6.13. A novel topology of MEM filter and its bond graph representation 

Fig. 6.14. A folded-flexure comb-drive microresonator fabricat 
surface microstructural process a) Layout b) Cross-section A-A' 

polysilicon 
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Fig. 6.15. Major design variables for microresonators 

As an alternative, we can also put reformulations of these three constraint 
equations into our design objectives, expressing them as differences to be 
minimized. In that case, we actually deal with a multi-objective constrained 
optimization problem.We take the objective function with the following nor- 
malized Sum of Squared Error (SSE) format: 

Finally, it is important to note the role of feature size in VLSI and MEMS 
design. Feature size, which is often represented as X , means the minimum 
size a particular design can achieve, based on specific fabrication procedures. 
In addition, the actual sizes of geometric shapes should be integer multiples 
of the feature size A, such as A, 2X , 5X , 10X etc. In this research, we set X = 
0.09pm . 

While it is very difficult for many numerical optimization approaches (for 
example, gradient-based approaches) to include considerations of feature size 
constraints [15], it is quite convenient for genetic algorithms to do so. We 
need to modify the objective function only slightly, mapping real values of 
design variables to integer multiples of the feature size X before using them 
in formulations of constraints and objectives. No modifications to the genetic 
algorithm are needed. 
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6.4.1 Solving the constrained optimization problem using GA 

In trying to solve constrained optimization problems using genetic algorithms 
or classical deterministic optimization methods, penalty function methods 
have been the most popular approach, because of their simplicity and ease 
of implementation. In this chapter, we use a special constrained GA that 
exploits pair-wise comparisons in a tournament selection operator to devise 
a penalty function approach that does not require any penalty parameter. 
Careful comparisons among feasible and infeasible solutions are made so as 
to provide a search direction towards the feasible region. Once sufficient fea- 
sible solutions are found, a niching method (along with a controlled mutation 
operator) is used to maintain diversity among feasible solutions. This allows 
a real-parameter GA's crossover operator to continuously find better feasible 
solutions, gradually leading the search nearer to the true optimum solution 
[16]. The parameters for setting the constrained GA are listed in Table 6.3. 

Table 6.3. The parameters for setting the constrained GA 

total number of generations 
crossover probability 
mutation probability 0.15 

Parameter 
variable boundaries 
population size 

Setting 
rigid 
500 

In nine runs of the genetic algorithm using different random seeds, we 
obtained the sizing parameters and values of the objective function NSSE (to 
be minimized) listed in Table 6.4. 

It can be seen that during the nine runs using different seeds, the con- 
strained GA performs very steadily. Almost all runs achieved NSSE within 
the range of 1.OE-06. The biggest NSSE is 1.4E-05. However, the normalized 
squared sum of errors of 1.4E-05 is still considered very good result. It also 
appears that there are many alternatives and rather different ways in which 
parameters can be set and still produce behavior rather close to that desired. 

niching parameter 
exponent(n for SBX) 
exponent (n for mutation) 

6.5 Summary 

0.9 
2.0 
50.0 

This chapter has suggested a design methodology for automatically synthesiz- 
ing hierarchical designs for MEMS. While there has been much research using 
evolutionary computation techniques to synthesize MEMS [2] [17], this is the 
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Table 6.4. Layout parameters obtained in nine GA runs(different random seeds) 

first work reported to seek to automate the hierarchical MEMS synthesis pro- 
cess in an integrated framework. Our first step is to synthesize system-level 
behavioral models using a combination of genetic programming and bond 
graphs. Then as the second step, we use a constrained genetic algorithm to 
automatically optimize the geometric sizing parameters for the cell compo- 
nents. An example of MEM filter design with coupling of multiple microres- 
onators is used to illustrate the approach. Extension of this work can lead to a 
composable design and synthesis environment for micromechatronic systems 
[18]. In addition, target cascading in optimal system design needs to be in- 
vestigated in depth to propagate the desirable top-level design specifications 
to appropriate specifications for the various subsystems and components in a 
consistent and efficient manner [19] [20]. More work is underway to improve 
the efficiency of genetic programming to explore topologically open-ended de- 
sign spaces, and the robustness of the constrained genetic algorithm to solve 
real-world constrained optimization problems. 
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In this chapter we explain in detail a methodology for Multi-FPGA systems 
(MFS) design. MFSs are hardware platforms used for a great variety of appli- 
cations, including dynamically re-configurable hardware applications, digital 
circuit emulation, and numerical computation. There are a lot of MFS not 
only academical, but also commercial implementations. We describe a set of 
techniques based on evolutionary algorithms (EA), and we show that they 
are capable of solving all of the design tasks (partitioning, placement and 
routing). Firstly a hybrid compact genetic algorithm (HcGA) solves the par- 
titioning problem and then genetic programming (GP) is used to obtain a 
solution for the two remaining tasks. 

7.1 Introduction 

Field Programmable Gate Arrays (FPGAs) are integrated devices used on the 
implementation of digital circuits by means of a configuration or programming 
process. There are different manufacturers and several kind of FPGAs are 
available. We will focus on those called island-based FPGAs. This model in- 
cludes three main components: configurable logic blocks, input-output blocks 
and connection blocks (see figure 7.1). Configurable logic blocks (CLBs) are 
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used to implement all the logic circuitry. They are positioned in a matrix way 
in the device, and they have different configuration possibilities. Input-output 
blocks (IOBs) are responsible for connecting the circuit implemented by the 
CLBs with any external system. The third class of components are connec- 
tion blocks (switch-boxes and interconnection lines). They are the elements 
available for the designer to make the internal routing of the circuit. In most 
occasions we need to use some of the CLBs to accomplish the routing [I]. 

When the size of an FPGA is not enough to implement large circuits, 
the designer must think on higher reconfigurable platforms, in other words, 
on the use of Multi-FPGA system (MFS) [2]. These systems can eventually 
include, in addition to several FPGA devices, memories and other hardware 
elements. MFS are used for dynamically re-configurable hardware applica- 
tions [3] [4], digital circuit emulation 151, numerical computation 161, etc [7] [8]. 
The two most widely used topologies are the mesh and crossbar types. Mesh 
MFSs have simple routing methodologies, an easy expandability, FPGAs are 
connected in the nearest-neighbor pattern, and all devices are used for the 
same functionality. Fig. 7.2 (a) represents a mesh-topology MFS. A Crossbar 
MFS model is depicted on figure 7.2 (b). On this style, FPGAs are separated 
into logic and routing chips. Crossbar distributions are normally designed for 
some specific problems, but they usually waste logic and routing resources. 
For these reasons we have focused on mesh topologies. 

Fig. 7.1. General structure of an island-based FPGA 

MFSs design flow has three major tasks: partitioning, placement and rout- 
ing (see figure 7.3). Frequently two of these tasks are tackled together, because 
when accomplishing the partitioning, the placement must be considered or 
vice versa in order to obtain the optimal implementation. In this chapter a 
methodology, based on evolutionary computation, for the automation of the 
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(a) crossbar (b) topologies 

Fig. 7.2. Multi-FPGA Mesh 

whole design flow is explained. There are two separated steps: First, the par- 
titions of the circuit are obtained. During the first stage of the design flow, we 
also assign a partition (portion of the circuit) to each FPGA. The second step 
is devoted to place and route the circuit using the FPGA resources. Two dif- 
ferent evolutionary algorithms are used: a hybrid compact genetic algorithm 
(HcGA) for the partitioning step and the genetic programming (GP) tech- 
nique for the routing and placement step. The experimental results have been 
obtained in the basis of a real board made up of 8 FPGA (see later 7.11). 

Initial Circuit 

I_, 
MFPGA Partitioning and Placement I I Hybrid compact GA 

I CLBs Placement and Routing 
Genetic Programming 1 

Fig. 7.3. MFS Design Flow 
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The rest of the chapter is organized as follows: section 7.2 shows an 
overview about Evolutionary Algorithms, the Compact Genetic Algorithm 
and Genetic Programming. Section 7.3 describes the partitioning method- 
ology, while section 7.4 shows how the design process within the FPGAs - 
including the placement and routing steps- has been performed. Section 7.5 
contains the experimental results and finally we offer our conclusions in section 
7.6. 

7.2 Evolutionary Algorithms 

Several decades ago, some researchers begun to explore how some ideas taken 
from nature could be adapted and harnessed for solving well-know diffi- 
cult problems. Among the concepts borrowed from nature, natural evolution 
demonstrated from the beginning how simple but also brittle ideas can be 
helpful for devising new ways of solving difficult problems. Among the tech- 
niques that arose under the umbrella of natural evolution, Genetic Algorithms 
(GAS) [9], Evolutionary Programming [lo] and Evolution Strategies [ll, 121 
have pioneered, matured and demonstrated its usefulness. More recently, John 
Koza [13] presented Genetic Programming (GP) a new technique that aims 
at automatically developing computer programs. Koza employed Lisp expres- 
sions for evolving programs, and this has favored the use of tree-like data 
structures in GP, although some researchers have sometimes employed differ- 
ent alternatives. Basically, any EA -including GP- can be described by means 
of algorithm 7.1. 

Algorithm 7.1 Evolutionary algorithm 
1. Initialize the population. 
2. Evaluate all of the individuals in the population and assign a fitness value to 

each one. 
3. Select individuals in the population using the selection algorithm. 
4. Apply genetic operations to the selected individuals. 
5. Insert the result of the genetic operations into the new population. 
6. If the population is not fully populated go to step 3. 
7. If the termination criterion is reached, then present the best individual as the 

output. Otherwise, replace the existing population with the new population and 
go to step 3. 

We notice from the algorithm that an evaluation process is performed 
in step 2. Therfore, for evaluating individuals, a fitness function has to be 
implemented. This function is in charge of computing a fitness value for the 
individual under evaluation. The fitness value is proportional to the quality of 
the individual. The selection operation usually takes into account the fitness 
value of individuals, and select with higher probabilities those with larger 
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fitness values. Finally, we must point out that crossover and mutation are 
the genetic operations applied to the individuals selected. Crossover operator 
takes a couple of individuals, that act like parents, and exchange some of their 
information, thus creating a couple of new descendant individuals, that share 
information from both parents. On the other hand, the mutation operation, 
randomly mutate some of the information contained in the individual to which 
the operation is applied. Depending on the kind of EA employed, different data 
structures for encoding candidate solutions -individuals- might be employed. 
Typically, individuals are encoded by means of bit or integer strings when 
using GAS, while tree structures are employed for GP. 

7.2.1 The Compact Genetic Algorithms 

In [14] a compact Genetic Algorithm (cGA) has been proposed. It does not 
manage a population of solutions but only mimics its existence and it simulates 
the order-one behavior of a simple GA with uniform crossover. The cGAs' 
authors do not propose it as an alternative algorithm but it can be used to 
quickly estimate the "difficulty" of a problem. A problem is easy if it can 
be solved with a cGA exploiting a low selection rate. The more the selection 
rate must be increased to solve the problem, the more it has to be considered 
difficult. 

The idea on which the cGA is based was primarily inspired by the ran- 
dom walk model, proposed to estimate GA convergence on a class of prob- 
lems in which there is no interaction among the building blocks constitut- 
ing the solution [15]. Other concepts that inspired the cGA were Bit-based 
Simulated Crossover (BC) [16] and Population-Based Incremental Learning 
(PBIL) [17]. The cGA represents the population by means of a vector of 
values pi E [O,l],Qi = 1,. . . ,1, where 1 is the number of alleles needed to 
represent the solutions. Each value pi measures the proportion of individ- 
uals in the simulated population which have a zero (one) in the ith locus of 
their representation. By treating these values as probabilities, new individuals 
can be generated and, based on their fitness, the probability vector updated 
accordingly in order to favour the generation of better individuals. 

The initial probabilities values, pi, are set to 0.5 to represent a randomly 
generated population in which the value for each allele has equal probabil- 
ity. At each iteration, the CGA generates two individuals on the basis of the 
current probability vector and compares their fitness. Lets W be the repre- 
sentation of the individual with better fitness, and L the one of the individual 
whose fitness was worse. The competitor representations are used to update 
the probability vector at step k + 1 in the following way: 
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where n is the dimension of the population simulated, and Wi (Li) is the 
value of the ith allele of W (L). The cGA ends when the values of the proba- 
bility vector are all equal to 0 or 1. At this point the vector p itself represents 
the final solution. Note that the cGA evaluates an individual by considering 
its whole chromosome. At each iteration, some alleles of solution W might not 
belong to the optimal solution of the problem, and the correspondent proba- 
bility values wrongly modified. For example, consider the OneMax problem, 
in which the related fitness function computes the number of bits set to 1 of 
a binary string. Lets a = 10110 and b = 01010 be the two competitors. String 
a clearly is the individual with better fitness. The first and third element of 
the probability vector are thus increased by l l n ,  the fourth and fifth elements 
remain unchanged, while the second element is incorrectly decreased by l l n .  

Algorithm 7.2 Pseudo-code of the CGA for the TSP. 
Program TSP-CGA 
begingroup 

Initialize (P,method) ; 
F-best := INT-MAX; 
count := 0; 
repeat 

S [I] : = Generate (PI ; 
F [I] : = Tour-Lenght (S [I] ) ; 
idx-best := 1; 
for k := 2 to s do 

S [k] : = Generate (PI ; 
F [k] : = Tour-Lenght (S [k] ) ; 
if (F[k] < F[idx-best] ) then idx-best := k; 

end for 
for k := I to s do 

if (F [idx-best] < F [k] ) then Update (P, S [idx-best] , S [ill ; 
end for 
if (F[idx-best] < F-best) then 

count := 0; 
F-best : = F [idx-best] ; 
S-best : = S [idx-best] ; 

else 
Update (P , S-best , S [idx-best] ) ; 
count := count + I; 

end if 
until (Convergence(P) OR count > CONV-LIMIT) 
Output (S-best ,F-best) ; 

end 

In order to represent a given population of n individuals, the cGA updates 
the probability vector by a constant value equal to l l n .  Only loga n bits are 
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thus needed to store the finite set of values for each pi. The CGA therefore 
requires loga n * 1 bits with respect to the n * 1 bits needed by a classic GA. 
Larger population dimension can be exploited without significantly increasing 
memory requirements, but only slowing CGA convergence. This peculiarity 
makes the use of CGAs very attractive to solve problems for which the huge 
memory requirements of GAS is a constraint. 

To solve problems higher than order-one GAS with both higher selection 
rates and larger population sizes have to be exploited [18]. The cGA selection 
pressure can be increased by modifying the algorithm in the following way: (1) 
generate at each iteration s individuals from the probability vector instead of 
two; (2) choose among the s individuals the one with best fitness and select as 
W its representation; (3) compare W with the other s - 1 representations and 
update the probability vector accordingly. The other parts of the algorithm 
remain unchanged. Such an increase on the selection pressure helps the cGA 
to converge to better solutions since it increases the survival probability of 
higher order building blocks [14]. Algorithm 7.2 shows a pseudocode of the 
cGA for the TSP problem. 

7.2.2 Genetic Programming 

One of the difference between GP and other EAs is that fitness values are to be 
computed by evaluating computer programs. If we consider that individuals 
-programs- are encoded by means of tree like structures (see figure 7.4)) each 
program is made up of internal nodes -functions- and terminals -the leaves of 
the tree. Which functions and terminals are of interest for the problem that 
is to be solved is decided by the researcher, and usually varies largely from 
a problem to another. For instance, if we employ GP for solving a symbolic 
regression problem, we may choose arithmetic functions for the function set, 
while if we apply GP for programming a robot, some primitives that allows 
to move the robot along several directions could make up the function set. 
The terminal set are usually made up of the constant values and parame- 
ters employed by the functions included in the terminal set. Therefore, the 
first concern for GP practitioners is to appropriately define the function and 
terminal sets. This means that even when the solution for the problem to be 
addressed is not known, one must be sure that the solution can be found using 
the functions and terminals selected. 

Genetic operators applied in GP are similar to those employed with any 
other Evolutionary Algorithm. One of the main differences is due to the kind 
of data structures employed. When crossover is applied to a couple of individ- 
uals, two new descendants are obtained by exchanging some randomly chosen 
subtrees from each of the parents (see figure 7.5). On the other hand, mutation 
operator generates a new individual by substituting a randomly chosen sub- 
tree from the parent, by a new one that is also randomly generated (see figure 
7.6). Although other possibilities are available, the previously described ones 
are the simplest and most widely employed versions of the genetic operators. 
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Fig. 7.4. Individuals are encoded by means of trees in Genetic Programming. 

Fig. 7.5. Crossover operation. 

Fig. 7.6. Mutation operation. 
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Once all of the above components are integrated within the GP algorithm 
-that is basically the same described in algorithm 7.1-, it can be applied to 
any optimization problem. In section 7.4 we show how GP has been applied 
for solving the problem of Placement and routing circuits on FPGAs. A wider 
description of Genetic Programming can be found in [19]. 

7.3 MFS partitioning and FPGA assignment 

In this section we present the first stage of the design flow. We describe dif- 
ferent techniques and algorithms presented in several papers. Most of the 
previous approximations do not preserve the structure of the circuit or use a 
difficult encoding. For example Laszewski and M114hlenbein implemented a 
parallel GA which solves the graph partitioning problem with an easy encod- 
ing, but the solutions do not preserve the structure of the circuit, and that is 
a key issue if we want to minimize the delays of the partitioned circuitn [20]. 
Alpert uses a GA for improving another partitioning algorithm with good 
results for bi-partitions [21] . An exception, concerning the structure, is the 
approximation made by Hulin [22]. The approximation used here solves these 
problems. It is adaptable and can be modified for using in other graph parti- 
tioning problems with few changes, it is parallelizable (the method is intrinsi- 
cally parallel, because it uses a genetic algorithm as a tool for optimization), 
and in addition, the evaluation of the fitness function can be parallelized very 
easily. The algorithm also preserves the structure of the circuit and it detects 
those parts of the graph which are independent. 

7.3.1 Methodology 

partitioning deals with the problem of dividing a given circuit into several 
parts, called partitions, in order to be implemented on a MFS. The partitions 
are obtained and each partition is assigned to a different FPGA within the 
board. We use a &FPGA Mesh topology board, so we must bear in mind sev- 
eral constraints related to the board. Some, and usually most important, of 
these constraints are the number of available 110 pins on each FPGA and logic 
capacity. FPGA devices have a much reduced number of pins when compared 
with their logic capacity. In addition we must connect parts of the circuit that 
are placed on non-adjacent FPGAs, and for this task we have to use some of 
the available pins. Partitioning appears in a lot of design automation design 
problems, and most of the research related to MFS partitioning were adapted 
from other VLSI areas [23]. For this specific board we have developed a new 
methodology. We apply the graph theory to describe a given circuit, and then 
a compact genetic algorithm (cGA) with a local search improvement is ap- 
plied with a problem-specific encoding. This algorithm not only preserves the 
original structure of the circuit but also evaluates the 110-pins consumption 
due to direct and indirect connections between FPGAs. The MFS placement 
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or FPGA assignment is done by means of a fuzzy technique. We have used 
the partitioning93 benchmarks [24], described in the Xilinx Netlist Format 
(XNF), a netlist description language [25]. 

7.3.2 Circuit Description 

Some authors use hyper-graphs as the way of representing a circuit, but there 
are also some approximations, which use graphs [26]. We have thus, employed 
an undirected graph representation to describe the circuit. This representation 
permits an efficient encoding of the compact genetic algorithm and a direct 
encoding of the solutions using this code. 

Hidalgo et al. [27] describe a method that uses the edges of a graph to rep- 
resent k-way partitioning solutions. They transform the netlist circuit descrip- 
tion into a graph, and then operate with its spanning tree. A spanning tree 
of a graph is a tree, which has been obtained selecting edges from this graph. 
One of the properties of a spanning tree is that if n edges are suppressed, n - 1 
isolated trees are obtained. As we are treating a k-way partitioning problem, 
k - 1 edges of the spanning tree are selected and eliminated in order to ob- 
tain k partitions of the original circuit. The partitions are represented by the 
deleted edges and a hybrid compact genetic algorithm (HcGA) works under 
this representation to obtain the best partitioning accordingly to the board 
constraints previously explained. Based on the previous statement, a specific 
algorithm to address the partitioning and placement problems in MFS sys- 
tems can be used. The algorithm, which is also adaptable to different boards 
and devices, preserves the main structure of the circuit and, by means of a 
fuzzy technique, evaluates the I 0  pins consumption due to not only direct, 
but also indirect connections between FPGAs within the MFS (an 8-FPGA 
board). 

SYM INS1 CLB 
P I N  A, I 

P I N  K t  
P I N  X, 0 K 

Fig. 7.7. An example of a CLB described in (a)block, (b)XNF,and (c)graph formats. 
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Fig. 7.8. An example of the partitioning process for 4 FPGAs. 

The main objective is to solve the circuit partitioning problem and to 
obtain a set of portions or partitions of the original circuit suitable for the 
implementation over a single FPGA. The partitioning process is targeted to 
a device board which has their devices connected in a 4-way mesh topology 
[2]. So, the method works as follows. First a graph representing the circuit 
netlist description is obtained. Fig. 7.7 shows the equivalence between an XNF 
netlist description of a Configurable Logic Block and a graph. After that a 
spanning tree of that graph is randomly selected, from this tree we select 
k - 1 edges and we eliminate them in order to obtain a k - way partition. 
The partitions are represented by the deleted edges. In Fig. 7.8 we can see 
an example of the partitioning process. Starting from the circuit graph (a), 
we get its spanning tree (b) using the Kruskal algorithm [26]. From it, we 
select the necessary edges and finally we obtain the partitions (c). The figure 
represents an example for four FPGA devices, so we select only 3 edges of the 
tree. Once the partitions have been obtained the graph representation can 
be transformed into a XNF file for each partition and then these files, with 
the necessary additional information, can be implemented on each FPGA (see 
Fig. 7.9). 
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Fig. 7.9. An example of a post-partitioning implementation using 4 FPGAs. 

It is important to note that when accomplishing the transformation we 
should work with the whole graph instead with its spanning tree. This is be- 
cause the information related to connections is included in the graph and the 
spanning tree only works with some of them. It is necessary to determine the 
optimum distribution of the CLBs on the different available FPGAs. An opti- 
mum distribution has a minimal cost and guarantees the internal routability 
of each FPGA. 

1 1 1 1 1 1 1 1  
4 FPGA 2 I 
I A.B.C.I .I .N.0  

I S.T.U 

I 
I 

I I 

1 1 1 1 1 1 1 1  
I FPGA 1 I 

I I D.E.F.K,L 

I I 
I u 

7.3.3 Genetic Representation 
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I I I I 
I I I I 
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The evaluation process tell us the goodness of the solutions by means of 
a fitness function. The main task of the HcGA is to solve the partitioning 
while attending some board requirements related to I 0  pins and logic blocks 
(called CLBs on Xilinx's devices). The fitness function guides the search of 
the algorithm, so it must minimize the number of cutting edges (that is the 
connections between FPGAS of the MFS) and in addition, it must distribute 
the blocks uniformly among the FPGAs. So we have a multi-objective genetic 
algorithm problem. This problem is well known and a number of non-genetic 
and genetic algorithms have been implemented for its resolution [28] [29]. One 
of the techniques commonly used is the use of added functions which include 
weighted sum methods, where the user assigns a weight to each objective 
and the total fitness is the sum of all weighted fitness values. Nowadays a 
lot of multi-objective techniques are available for the designer to adapt those 
partitioning problems. 
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In order to design a cGA for Multi-FPGA Partitioning we adopted the 
edge representation previously commented and we consider the frequencies of 
the edges occurring in the simulated population. A vector V of dimension 
equal to the number of nodes minus one was used to store these frequencies. 
Each element vi of V represents the proportion of individuals whose partition 
use the edge ei.  The vector elements vi were initialized to 0.5 to represent 
a randomly generated population in which each edge has equal probability 
to belong to a solution. In Algorithm 7.3 the pseudo code of a cGA to solve 
Multi-FPGA partitioning is shown. 

Algorithm 7.3 Pseudo-code of the cGA for Multi-FPGA Partitioning. 
Program Multi-FPGA-cGA 
begin 
Initialize(V); 
F-best := INT-MAX; 
count := 0; 
repeat 

S [I] : = Generate (V) ; 
F [I] : = Partition(S [I1 ) ; 
idx-best := I; 
fork := 2 to s do 

S [k] : = Generate (V) ; 
F[k] := Partition@ [kl ) ; 
if (FCkl < F[idx-best] ) then idx-best := k; 

end for 
for k := 1 to s do 

if (F [idx-best] < F [k] ) then Update (V, S [idx-best] , S [i] ) ; 
end for 
if (F [idx-best] < F-best) then 

count := 0; 
F-best : = F [idx-best] ; 
S-best : = S [idx-best] ; 

else 
Update(V,S-best , S [idx-best] ) ; 
count := count + I; 

end if 
until (Convergence(V) OR count > CONV-LIMIT) 
Output(S-best,F-best); 

end 

After the initialization phase an individual is generated and its fitness 
value is computed. Then, according to the selection pressure adopted s - 1 in- 
dividuals are generated, evaluated and the best individual is carried out. The 
last is used to update the probability vector V according to Equation 7.1. 
Moreover, the best individual generated in the current iteration (S[idx-best]) 
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is compared with the best individual found until now (S-best) and V is up- 
dated accordingly. The cGA proposed in [14] ends when the values of the 
probability vector are all equal to 0 or 1. Since in our tests such a condition 
was rarely achieved we introduced a supplementary end condition which limits 
the maximum number of generations occurring without an improvement of the 
best solution achieved (see algorithm 7.3). Reached such a limit the execution 
is terminated and the best individual found is returned as final solution. 

The cGA (and also the HcGA) uses the encoding presented in section 7.3.2 
which directly represents solutions to the partitioning problem. As we have 
said, the code is based on the edges of a spanning tree. We have seen above 
how the partition is obtained by the elimination of some edges. A number 
is assigned to every edge of the tree. Consequently, for a k-way partitioning 
problem a chromosome will have k-1 genes, and the value of these genes can 
be any of the order values of the edges. For example, chromosome (3 14 26 
32 56 74 89) for a 8-way partitioning, represents a solution obtained after the 
suppression of edge numbers 3, 14, 26, 32, 56, 74, and 89 from a spanning 
tree. So the alphabet of the algorithm is: 0 = ( 0 , l . .  . , n - 1) where n is the 
number of vertexes of the target graph (circuit), because the spanning tree 
has n - 1 edges. 

7.3.4 Hybrid Compact Genetic Algorithm 

A Hybrid cGA (HcGA) uses non-evolutionary algorithms for local search, 
that is, to improve good solutions found by the cGA. When designing a cGA 
for MFS partitioning, a vector (V), with the same dimension as the num- 
ber of nodes minus one, stores the frequencies of the edges occurring in the 
simulated population. Each element vi of V represents the proportion of in- 
dividuals whose partition use the edge ei. Following the original cGA, the 
vector elements vi were initialised to 0.5 to represent a randomly generated 
population in which each edge has equal probability to belong to a solution 
[14]. Sometimes it is necessary to increase the selection pressure rate Ps, (the 
number of individuals generated on each iteration) to reach to good results 
with a Compact Genetic Algorithm. A value for Ps near to 4 has shown to 
be a good value for MFS partitioning. It is not to be recommended a large 
increasing of this value, because the computation time will grow drastically. 
Additionally, for some problems we need a complement to cGA in order to 
solve them properly. We can combine heuristics techniques with local search 
algorithms to obtain this additional tool called hybrid algorithms. We have 
implemented a cGA with local search. 

In [30] a compact genetic algorithm for MFSs partitioning was presented, 
and in [31] a Hybrid cGA was explained. Authors combine a cGA with the Lin- 
Kernighan (LK) local search algorithm, to solve Traveling Salesman Problems 
(see Algorithm 7.2). The cGA part explores the most interesting areas of 
the search space and LK task is the fine-tuning of those solutions obtained 
by cGA. Following this structure, but changing the local search method, we 
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can implement a hybrid cGA for MFS partitioning. Ideally, a local search 
algorithm must try to perform the search process as exhaustively as possible. 
Unfortunately, in our problem this also implies an unacceptable amount of 
computation. Therefore, we have employed a local search heuristic each certain 
number (n) of iterations and we need to study the value of n to keep the 
algorithm search in good working order. After empirically studying the local 
search frequency, we have obtained that n must be assigned a value between 
20 and 60, with an optimal value (that depends on the circuit benchmark) 
near to 50. So for our experiments we fixed the local search frequency n to 
50 iterations, i.e. we develop a local search process every 50 iterations of the 
cGA. 

Now it is necessary to define a new concept, neighbouring. We have men- 
tioned that a chromosome has k - 1 genes for a k-way partitioning, and the 
value of these genes are the edges that are removed from the spanning tree 
representing the circuit when looking for a solution. 

Definition. 

solution A is a neighbour solution of B (and B is a neighbour solution of A) 
if the difference between their chromosomes is just one gene. 

Our local search heuristic explores only one neighbour solution for each 
gene, that is k-1 neighbouring solutions of the best solution every n iterations. 
The local search process works as Algortihm 7.4 explain [32]. 

Although only a very small part of the solution neighbourhood space is 
explored, the performance of the algorithm improves significantly (in terms of 
quality of solutions) without degrading drastically its total computation time. 
In order to clarify the explanation about the proposed local search method we 
can see an example. Let us suppose a graph with 12 nodes and its spanning 
tree, for a 5-way partitioning problem (i.e. we want to divide the circuit into 
five parts). As we have explained, we will use individuals with 4 genes. Let us 
also suppose a local search frequency (n) of 50 and that after 50 iterations we 
have reached to a best solution represented by: 

The circuit graph has 12 nodes, so its spanning tree is formed by 11 edges. 
The whole set of possible edges to obtain a partitioning solution is called E: 

In order to generate TS1 we need to know the available edges ALS for random 
selection, as we have said, we eliminate the edges within BS from E to obtain 
ALS: 

ALS = {0,1,2,5,8,9,10) (7.4) 
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Algorithm 7.4 Local search algorithm for MFS ~artitionine: HcGA. 
- - 

1. Every n iterations, we obtain the best solution up to that time (BS).To obtain 
BS: 
a) first we explore the compact GA probability vector and select the k-1 most 

used genes (edges) to form MBS (vector best individual). 
b) The best individual generated up to now (GBS) (similar to elitism) is also 

stored. 
c) The best individual between MBS and GBS (i.e. which of them has the 

best fitness value) will be BS. 
2. the first random neighbour solution (TSI) to BS is generated substituting the 

first gene (edge) of the chromosome by a random one, not present in BS. 
3. Calculate the fitness value of BS (FVBS) and the fitness value of TSI (FVTSI) 
4. Compare If FVTSl is better than FVBS, if so TS1 is dropped to BS and the 

initial BS is eliminated, otherwise TS1 is eliminated 
5 .  Repeat the same process using the new BS and with the second gene, to generate 

TS2 
6. If the fitness value of TS2 (FVTS2) is better than the present FVBS then TS2 

will be our new BS or, if FVTS2 is worst than FVBS, there will be no change 
in BS. 

7. Repeat last step for the rest of the genes until1 the end of the chromosome (that 
is, k-1 times for a k-way partitioning). 

Now we randomly select an edge (suppose 0) to build TSlsubstituting it by 
the first gene in BS: 

T S l  = (0,4,6,7) (7.5) 

The third step is the evaluation of TS1 (suppose FVTSl  = 12) and 
comparing (suppose a minimization problem) with FVBS (suppose F V B S  = 

25). As FVTSl is better than FVBS, TS1 will be our new BS and the original 
BS is eliminated. Those changes also affect to ALS because our new ALS is: 

ALS = {1,2,3,5,8,9,10) (7.6) 

Table 7.1 represents the rest of the local search process for this example. 

7.4 Placement and Routing on FPGAs 

Once the first step has been carried out, we have several partitions. Each 
partition - that is in charge of a small circuit - have to be implemented in- 
dependently in a different FPGA. Finally, all the FPGAs will be connected 
together, thus obtaining the global circuit. Even when much research has 
been done on the automatic generation of digital and analogue circuits, we 
will review now some proposals that are related with the idea of applying 
evolutionary algorithms to the problem we are addressing, and with the way 
circuits are encoded. 
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Table 7.1. Local Search example 

i ALS BS FV Random gene TS FV New Bs 

1 0,1,2,5,8,9,10 3,4,6,7 25 0 0,4,6,7 12 0,4,6,7 
2 1,2,3,5,8,9,10 0,4,6,7 12 1 0,1,6,7 37 0,1,6,7 
3 1,2,3,5,8,9,10 0,4,6,7 12 9 0,4,9,7 10 0,4,9,7 
4 1,2,3,5,6,8,10 094,977 10 8 0,4,8,9 11 0,4,9,7 

Pre-Local Search Best Solution: 3,4,6,7 
Post-Local Search Best Solution: 0,4,9,7 

A given circuit, with wires, gates and connections, can be considered as 
a graph. Several papers have dealt with the problem of encoding graphs, 
i.e. circuits, when working with GA and GP [33]. Sometimes new techniques 
have been developed to do so. For instance, Cartesian Genetic Programming 
[34] is a variation of GP which was developed for representing graphs, and 
shows some similarities to other graph based forms of genetic programming. 
Miller et al's aim is to find complete circuits capable of implementing a given 
boolean function. Nevertheless, we are more interested in physical layout. Our 
optimisation problem begins with a given circuit description, and the goal is 
to find out how to place components and wires in FPGAs. Meanwhile we have 
also developed a new methodology for representing circuits by means of GP 
with individuals represented as trees. 

Other researchers have also applied Evolutionary Algorithm for evolving 
analogue circuits [33]. Even Koza have employed Genetic Programming for 
designing and discovering analogue circuits [35], which have eventually been 
patented. Thompson's research scope is the physical design and implemen- 
tation of circuits in FPGAs [36]. However, all of them work with analogue 
circuits, while we are addressing digital ones. Another difference is the kind 
of evolutionary algorithm employed for solving each problem. Thompson uses 
GAS while we are using GP (Koza uses GP but not for solving the kind of 
problem we address here). 

There are also other researchers that have addressed problems employing 
reconfigurable hardware and Genetic Programming. For instance, in [37] au- 
thors describe how trees can be implemented and evaluated on FPGAs. But 
our aim is not to implement a Genetic Programming tool on an FPGA but 
using GP for physically placing and routing circuits. Therefore, in this second 
step, we take each of the partitions as the input of the problem, and the goal 
is to place components and establish connections among them in a different 
FPGA. Our proposal now is to use Genetic Programming (GP) for solving 
this task. The main reason behind this choice is the similarity between data 
structures that GP uses -trees- and the way of describing circuits -graphs. 
A tree is more convenient than a fix-sized string for describing graphs of any 
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length. In the following sections we describe how graphs are encoded by means 
of trees. 

7.4.1 Circuits encoding using trees 

As described in section 7.3, the output for the partitioning algorithm is a set 
of partitions, and a description of the way they must be connected. Each of the 
partition includes a circuit that must be implemented in a separate FPGA. 
Therefore, the main goal for this step is to implement a partition (circuit) 
into an FPGA. Each of the circuit component has to be implemented into 
a CLB, and after that previous step, all the CLBs have to be connected 
according to the circuit's topology. Given that we use tree-based GP in this 
stage of the methodology, we need a mapping between a graph -circuit- and 
a tree. Circuits have to be encoded as trees, and any of the trees that GP 
will generate, should also have an equivalent circuit; the fitness function will 
later decide if the circuit is correct or not, and its resemblance degree with 
the correct circuit. 

Considering that any of the components of a circuit is simple enough to be 
implemented employing a CLB from the FPGA, we might describe a circuit 
employing black boxes, such as is depicted by means of an example in figure 
7.10. This means that we only have to connect CLBs from the FPG A according 
to the interconnection model that a given circuit implements, and then we can 
configure each of the CLB with the function that each component performs 
in the circuit. We want to perform this task by using GP. This means that 
circuits must be described by means of trees -individuals in GP. To do it, we 
can firstly label each component from the circuit with a number, and then 
assign components' labels to the ends of wires connected to them (see figure 
7.10). 

Fig. 7.10. Representing a circuit with black boxes. 

We may now describe all the wires by means of a tree by connecting each 
of the wires as a branch of the tree and keeping them all together in the same 
tree. By labeling both extremes of branches, we will have all the information 
required to reconstructing the circuits. Any given tree, randomly generated, 
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will always correspond to a particular graph, regardless of the usefulness of 
the associated circuit (see figure 7.8). In this proposal, each node from the tree 
is representing a connection, and each branch is representing a wire. The next 
stage is to encode the path of wires into an FPGA. Each branch of the tree 
will encode a wire from the circuit: internal nodes specify switch connections 
that are traversed by the wire, while the first and last nodes of the branch are 
employed to connect the wire to an adjacent CLB -by specifying which of the 
CLB is employed and to which pin is the wire connected. 

Each of the branches will include as many internal nodes as required for 
describing all of the switch connections required for the wire (see figure 7.8). 
Sometimes, branches will not include any internal nodes. This may happen 
when an input/output connection is directly attached to any of the CLB from 
the surrounding area of the FPGA. Only two nodes are required in the branch: 
the first one specify which IOB is employed, while the second one select the 
CLB to which it is connected and the wire employed. 

Each internal node requires some extra information: if the node corre- 
sponds to a CLB we need to know information about the position of the CLB 
in the FPGA, the number of pin to which one of the ends of the wire is con- 
nected, and which of the wires of the wire block we are using; if the node 
represents a switch connection, we need information about that connection 
(figures 7.11 and 7.12 graphically depicts how a tree describes a circuit, and 
the way each branch maps a connection). 

It may well happen that when placing a wire into an FPGA, some of 
the required connections specified in the branch can not be made, because, 
for instance, a switch block connection has been previously used for routing 
another wire segment. In this case the circuit is not valid, in the sense that 
not all the connections can be placed into a physical circuit, and the function 
in charge of analyzing the tree will apply a high penalty to that individual 
from the population. 

In order for the whole circuit to be represented by means of a tree, we 
will use a binary tree, whose left most branch will correspond to one of its 
connections, and the left branch will consist of another subtree constructed 
recursively in the same way (left-branch is a connection and right-branch a 
subtree). The last and deepest right branch will be the last circuit connection. 
Given that all internal nodes are binary ones we can use only a kind of function 
with two descendants. In the following subsection we describe the GP sets 
required. 

7.4.2 GP sets 

When solving a problem by means of GP one of the first things to do once 
the problem has been analyzed is to build both the function and terminal 
sets. The function set for our problem contains only one element: F={SW), 
Similarly, the terminal set contains only one element T={CLB). But SW and 
CLB may be interpreted differently depending on the position of the node 



170 F. Fernrindez de Veja, J.I. Hidalgo, J.M. Srinchez, and J. Lanchares 

Fig. 7.11. Making connections in the FPGA according to nodes 

within a tree. Sometimes a terminal node corresponds to an IOB connection, 
while sometimes it corresponds to a CLB connection in the FPGA (see figure 
7.8. Similarly, an internal node - SW node- sometimes corresponds to a CLB 
connection (the first node in the branch), while others affects switch connec- 
tions in the FPGA (internal node in a branch, see figure 7.9). Each of the 
nodes in the tree will thus contain different information: 

0 If we are dealing with a terminal node, it will include information about 
the position of CLBs, the number of pins selected, the number of wires to 
which it is connected, and the direction we are taking when placing the 
wire. 

0 If we are instead in a function node, it will have information about the 
direction we are taking. This information enables us to establish the switch 
connection, or in the case of the first node of the branch, the number of 
the pin where the connection ends. 

We can notice in figure 7.8, that wires with IOBs at  one of their ends are 
shorter -only needs a couple of nodes- than those that have CLBs at both 
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Fig. 7.12. Encoding circuits by means of binary trees. Each branch of the tree 
describes a connection from the circuit. Dotted lines indicates a number of internal 
nodes in the branch 

ends -they require internal nodes for expressing switch connections-. Wires 
expressed in the latest position of trees have less space to grow, and so we 
decided to place IOB wires in that position, thus leaving the first parts of the 
trees for long wires joining CLBs. 

7.4.3 Evaluating Individuals 

In order for GP to work, individuals from the population have to be evaluated 
and reproduced employing the GP algorithm. For evaluating an individual we 
must convert the genotype (tree structure) to the phenotype (circuit in the 
FPGA), and then compare it to the circuit provided by the partitioning algo- 
rithm. We developed an FPGA simulator for this task. This software allows us 
to simulate any circuit and checks its resemblance to other circuit. Therefore, 
this software tool is in charge of taking an individual from the population and 
evaluating every branch from the tree, in a sequential way, establishing the 
connections that each branch specifies. Circuits are thus mapped by visiting 
each of the useful nodes of the trees and making connections on the virtual 
FPGA, thus obtaining phenotype. Each time a connection is made, the po- 
sition into the FPGA must be brought up to date, in order to be capable of 
making new connections when evaluating the remaining nodes. If we evaluate 
each branch, beginning with the terminal node, thus establishing the first end 
of the wire, we could continue evaluating nodes of the branch from the bottom 
to the top. Nevertheless, we must be aware that there are several terminals 
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related to each branch, because each function node has two different descen- 
dants. We must decide which of the terminals will be taken as the beginning 
of the wire, and then drive the evaluation to the top of the branch. We have 
decided to use the terminal that is reached when going down through the 
branch using always the left descendant, and evaluate all the nodes traversed 
from the root of the branch to that terminal (see figure 7.13). 

Fig. 7.13. Evaluating a branch of the tree-corresponding to a connection of the 
circuit. Evaluation order is specified with numbers labelling nodes. 

In one sense there is a waste of resources when having so many unused 
nodes. Nevertheless they represent new possibilities that can show up after a 
crossover operation (in nature, there always exist recessive genes, which from 
time to time appear in descendants). These nodes are hidden, in the sense 
that they do not take part in the construction of the circuit and may appear 
in new individuals after some generations. If they are useful in solving the 
problem, they will remain in descendants in the form of nodes that express 
connections. The fitness function is computed as the difference between the 
circuit provided and the circuit described by the individual. 

7.5 Experimental Results 

7.5.1 partitioning and Placement onto the FPGAs 

The algorithm has been implemented in C and run on a Pentium 3, 866 MHz 
with Linux Red Hat 7.3. We have used the MCNC partitioning benchmarks in 
XNF format. We have supposed that each block of the circuits uses one CLB. 
We use the Xilinx's 4010 FPGA. 7.2 contains the experimental results. It has 
five columns which express: the name of the test circuit (Circuit), its number of 
CLBs (CLB), the number of connections between CLBs (Edges), the number 
of CLBs used on each FPGA (Distribution) and the CPU time in seconds 
necessary to obtain a solution for 100 generations of a GA with a population 
of 501 individuals (T(sec)). There are some unbalanced distributions, because 
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we need to use some resources to pass the nets from one device to another. 
In addition our fitness function has been developed to achieve two objectives, 
so that the GA works. To cap it all, the algorithm succeeds in solving the 
partitioning problem with board constraints. 

Fig. 7.14 shows a picture of the board. This card consists of 8 FPGAs 
of the 4010 family from Xilinx [38] although, these can be replaced by other 
devices of greater capacity and benefits, just adapting the connections. The 
FPGAs are connected according to a mesh topology, in other words, they 
directly connect their next neighbours. The figure shows, in addition to the 
FPGAs, the electrical power supply and lines for programming them (DIN, 
DONE, CCLK, INIT, PROGRAM), which allows the configuration by means 
of an XChequer cable from Xilinx. The cable transmits the configuration data 
to all FPGAs within the board, the transmission frequency is 921 kHz. The 
speed depends on the used computer, in our case with a PC, a Baud Rate of 
115200 can be reached. The power supply used is an ATX computer source. 
This allows us to have the voltages necessary to feed not only the FPGAS, 
but also the programming cables such as the XChequer. The MFS board also 
incorporates some jumper pins, for programming and isolation of a group of 
FPGA within the board. There are also six connectors for expansion of the 
board using other similar card. 

Fig. 7.14. Multi-FPGA board designed for testing the methodology 
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Table 7.2. Experimental Results for Partitioning and Placement for the 8 -Xilinx 
4010 Board 

Circuit CLB Edges Distribution T(sec) 

7.5.2 Inter-FPGA Placement and Routing 

Several experiments with different sizes and complexities have been performed 
for testing the placement and routing process . Fig. 7.15 graphically depicts 
one of the circuits employed in the series of test of increasing complexity that 
has been used for validating the methodology (a larger set of experiments and 
results can be found in [39]). The main parameters employed were the fol- 
lowing: Number of generations = 500, Population size: 200, Maximum depth: 
30, Steady State Tournament size: 10. Crossover probability=98%, Mutation 
probability=2%, Creation type: Ramp Half/Half, and elitism. 

Fig. 7.15. One of the circuits employed for testing the methodology 

Fig. 7.16 shows some of the solutions that were obtained with GP- for the 
circuit described above. A very important fact is that each of the solutions 
that GP found possesses different features, such as area of the FPGA used, 
position of the input/output terminals. This means that the methodology 
could easily be adapted for managing typical constraints in FPGA placement 
and routing. More solutions found for this and other circuits are described in 
[39] and [40]. The time required for finding the solution was of some minutes in 
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a 2Ghz Pentium processor. So, the methodology can be successfully employed 
for routing circuits of larger complexity. 

Fig. 7.16. Different solutions obtained by means of GP 

7.6 Summary 

In this chapter a methodology for circuit design using Multi-FPGA Systems 
has been presented. We have used evolutionary computation for all the steps 
of the process. Firstly, an Hybrid compact genetic algorithm was applied on 
achieving partitioning and placement for inter-FPG A systems and, for the 
Intra-FPGA tasks Genetic programming was used. This method can be ap- 
plied for different boards and solves the whole design flow process. 
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Neural networks consist of very powerful tools and had their use extended 
vastly due to their ability of providing great results to a broad range of ap- 
plications. The combination of evolutionary computation, such as genetic al- 
gorithms and parallel processing can be very powerful when applied to the 
learning process of the neural network, as well as to the definition of its archi- 
tecture. A lot of research has been developed combining and applying evolu- 
tionary computation into the design of neural networks. It is very important 
to emphasize that most of the learning algorithms developed to train neural 
networks only refine their synaptic weights, not considering the design of the 
networks architecture. However, it is a very hard task to define the neural 
networks architecture for specific applications under given sets of constraints. 
To a large extent, that could be a process of trial and error, relying mostly 
on past experience with similar applications. Evolutionary algorithms, on the 
other hand, offer attractive ways to search for optimal solutions in a variety of 
problem domains. Due to this characteristic, the definition of architectures for 
neural networks becomes a natural candidate for the application of evolution- 
ary algorithms, such as genetic. Also, the learning process of neural networks 
can be very slow which can put in danger the performance of countless ap- 
plications. Therefore, the use of parallel processing is essential in minimizing 
the time required on the training process, improving the applications perfor- 
mance. Furthermore, the use of cooperation in the genetic algorithm allows 
the interaction of different populations, avoiding local minima and helping 
in the search of the ideal solution, accelerating the evolutionary process. Fi- 
nally, individuals and evolution behavior can be exclusive on each copy of the 
genetic algorithm running in each task enhancing the diversity of populations. 
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8.1 Introduction 

The use of neural networks on the solution of problems has become even 
more usual due to the great results provided by these powerful tools. More 
specifically, the Multilayer Perceptron neural networks have received a lot of 
attention due to their desirable characteristics such as versatility, simplicity, 
computational efficiency, accuracy and high degree of applicability, which have 
motivated the use of these tools as a global interpolator and as a pattern 
classifier [I]. 

However, it is well known that, in general, the design of artificial neural 
networks is a very hard task. Defining architectures of neural networks for 
specific applications is, therefore, basically a process of trial and error, relying 
mostly on past experience with similar applications [2]. 

The great majority of learning algorithms designed to train neural net- 
works, such as the error back-propagation algorithm, are not able to deter- 
mine an ideal architecture for a certain application. Instead, they only refine 
the network's synaptic weights. 

Thus, techniques for automating the design of neural networks are clearly 
of interest and a natural candidate for the application of evolutionary algo- 
rithms. 

A lot of research has been developed combining and applying evolutionary 
computation to the design of neural networks [3]. Therefore, instead of using 
the classical error back-propagation algorithm in the learning process of the 
neural network, a different approach using genetic algorithms to train the 
neural network and to define its architecture is introduced in this chapter. 

Neural networks and genetic algorithms can be combined in a way that 
a population of neural networks competes against each other in a Darwinian 
setting. Each individual of the population represents a certain neural network 
with differing architecture and synaptic weights. The individuals codifying 
neural networks that produce good results are combined and passed onto the 
next generation. After a number of iterations, an optimized neural network 
can be obtained. 

The learning process of the Multilayer Perceptron neural network can be 
very slow, varying according to the size of the network, which can put in 
danger the performance of countless applications. Aiming to minimize the 
time required on the training process and to improve the applications perfor- 
mance, the use of parallel processing and techniques were incorporated into 
the training algorithm developed. 

The main concept of parallelism consists of dividing and executing a large 
number of tasks simultaneously. Therefore, knowing that the essence of genetic 
algorithms consists of having populations fighting against each other in search 
of the fit solution, it is very easy to see that there are many ways to explore 
parallelism in genetic algorithms, as it will be introduced later. 

Several parallel processes were created, each one of them corresponding to 
a different population. All populations created will evolve simultaneously. At 
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the end of a predetermined number of generations, the created processes will 
be able to communicate in order to exchange information concerning the best 
individuals selected by each one of them. That procedure goes on until the 
error signal produced by the neural network tends to zero and, consequently, 
the network can be considered trained. 

The exchange of information between the populations is very important, 
allowing them to cooperate and exploit promising areas of the search space 
found by other populations and, also, reintroduce in the population previously 
lost genetic material [4]. 

Furthermore, different reproduction and evolution behaviors were intro- 
duced in each one of the coexisting populations. The use of distinct evolution 
behavior will contribute on the maintenance of the diversity of the individuals 
regarding each population. 

This chapter is organized in the following way. In Section 8.1, an intro- 
ductory view of the combination of genetic algorithms and parallel processing 
into the training process of Multilayer Perceptrons neural networks is given. In 
Section 8.2 and Section 8.3, it will be presented an overview of neural networks 
and Multilayer Perceptrons, respectively. In Section 8.4, it will be explained, 
with further details, the use of genetic algorithms and parallel processing in 
Multilayer Perceptrons. In Section 8.5, it will be presented the use of genetic 
algorithms in defining the neural network's architecture and in refining its 
synaptic weights. In Section 8.6, a different approach of a cooperative parallel 
genetic algorithm with different evolution behaviors is given. In Section 8.7, 
applications on approximation of functions will be illustrated. Finally, in Sec- 
tion 8.8, it will be presented the conclusions obtained by the combination 
of genetic algorithms and parallel processing into the design of Multilayer 
Perceptrons neural networks. 

8.2 Artificial Neural Networks 

Artificial neural networks consist of an architecture projected to simulate the 
way as the brain accomplishes a certain task. It is composed by processing 
units, denominated artificial neurons, which introduce the capacity of storing 
experimental knowledge in order to be available for the practical use. Basi- 
cally, an artificial neural network resembles the human brain in the following 
aspects: 

The network, starting from its environment, acquires knowledge through 
a learning process; 
The acquired knowledge is stored in the connections within the neurons, 
known as synaptic weights. 

The artificial neurons are connected by communication channels that are 
associated to a certain synaptic weight and only operate their local data, which 
are inputs received by their connections. The intelligent behavior of the neural 
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network comes from the interactions between these several processing units 
of the network. 

Yn 

Output 

Fig. 8.1. Artificial neuron 

As it can be observed in Fig. 8.1, the artificial neuron presents a set of 
synapses, each one characterized by a self-weight (wij). An input signal x, in 
the entrance of the p-th synapse connected to the neuron n is multiplied by the 
synaptic weight w,,. The summation symbol, represented by the Greek letter 
C in Fig. 8.1, is used to add the input signals, weighted by the respective 
synapses of the neuron. The activation function, represented in Fig. 8.1 by 
cp(.), is used to restrict the output amplitude of the neuron. This function is 
going to restrict the allowed range of the output amplitude signal to a finite 
value. Typically, the normalized range of the output amplitude of a neuron 
is written as the closed unitary interval [0,1], or as the closed interval [-1,1]. 
The bias, represented by b,, has the effect either to increasing or to decrease 
the network input of the activation function, depending whether it is positive 
or negative, respectively. 

The learning algorithms, used in the training process of artificial neural 
networks, basically modify the synaptic weights of the network in an ordered 
way until there is the production of a wished output. Thus, it is said that an 
artificial neural network is trained for a given problem when it produces an 
equal or nearly equal response to the desired one. As previously mentioned, 
this training procedure can be very slow, depending, mostly, on the complexity 
of the neural network's architecture (a large number of layers as well as of 
neurons per layers). Therefore, a good alternative to improve this performance 
and, consequently, to decrease the time of training, would be the application 
of parallelism techniques in the training algorithm of the neural network. 
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8.3 The Multilayer Perceptron Neural Network 

The Multilayer Perceptron neural networks belong to an important class of 
neural networks. They were developed for the resolution of more complex 
problems, which could not be solved by using the model of basic neuron pro- 
posed by Rosemblatt in [5 ] ,  since this model works properly only regarding 
to problems that are linearly separable. For example, a sole perceptron or a 
combination of the outputs of some perceptrons, would not be able to learn a 
logic or exclusive operation (XOR), once it defines a non-linear problem. To 
do that it will be necessary to introduce more connections, which exist only 
in a perceptron network disposed in layers. It is worth to point out the im- 
portance of these internal neurons in the neural network, once it was proved 
that without the presence of such units the resolution of linearly not sepa- 
rable problems would be impossible. Thus, the Multilayer Perceptron neural 
networks are constituted by a set of sensor units forming the input layer, one 
or more hidden layers, and an output layer of computational nodes. Fig. 8.2 
illustrates the architecture of the Multilayer Perceptron. 

Hidden Layers 
Input 
Layer 

XI . . .  

xz . . . 

. . . 
Fig. 8.2. Organization in layers of the Multilayer Perceptron 

A Multilayer Perceptron neural network has three distinctive characteris- 
tics [I]: 

1. The model of each neuron of the network includes a smooth non-linear 
activation function. In other words, it is differentiable at  any point, since 
it does not present the abrupt limitation used in Rosenblatt's perceptron. 

2. The network contains one or more layers of hidden neurons, which are part 
of the input or output of the net. These hidden neurons enable the net- 
work to learn complex tasks extracting progressively the most significant 
characteristics in the standard (vector) inputs. 
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3. The network exhibits a high degree of connectivity, determined by its 
synapses. A modification in the connectivity of the network requires a 
change in the population of the synaptic connections or of their weights. 

It is through the combination of these characteristics, together with the 
ability to learn the experience through the training, that the Multilayer Per- 
ceptron neural network derives its computational power. 

8.4 Genetic Algorithms and Parallelism in Multilayer 
Perceptron Learning 

The genetic algorithms belong to one of the five areas of the evolutionary 
computation that is based on the selection theory and the natural evolution. 
Thus, it is proposed a model of computational structures that evolve with 
the goal of improving the general performance of the population regarding a 
set of individual characteristics. Such characteristic, then, translate the adap- 
tation or individual's adequacy to the environment. Therefore, the genetic 
algorithms consist in dynamic methods of search based on selection mecha- 
nisms and natural evolution having, as aim, the finding of the optimal individ- 
ual of a genetically refined population. The refinement process is then given 
from generation to generation, with the renewal of the population obeying the 
probabilistic criteria of selection and natural reproduction. 

All search and optimization task have several components such as the 
search space, in which are considered all the solution possibilities of a certain 
problem, and the fitness function, used to evaluate the members of the search 
space. The techniques for search and traditional optimization initiate with a 
sole candidate who, iteratively, is manipulated using some heuristics (static) 
directly associated to the problem to be solved. At the same time, the genetic 
algorithms operate over a candidates' population. In this way, searches in 
different areas of the solution space are accomplished, allocating a number of 
members appropriated for the search in several regions. 

Much of conventional methods of maximization or minimization from cer- 
tain characteristics of a given individual, use deterministic criteria to move 
from a point to the other in the search hyperspace. However, being a mul- 
timodal function, i.e., a function with several peaks within a same interval, 
these methods can result in a premature stop or in the paralysis of the search 
process in a maximum (or minimum) local point, instead of a maximum (or 
minimum) global point. It is possible, however, to overcome this problem pro- 
ducing a new population to each iteration or generation allowing, thus, the 
simultaneous exploration of several points of the hyperspace. In this way, many 
maximum (or minimum) can be explored efficiently reducing, consequently, 
eventual stops in undesirable maximum (or minimum) locals. 

To code the characteristics involved in the optimization process, chains of 
the binary alphabet are frequently used. During the execution phase, then, the 
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length of the chain usually remains fixed, depending on the degree of precision, 
required for the solution of the problem, or of the amount of characteristics 
in observation. 

As stated previously, parallel processing techniques have been used in the 
learning process of the Multilayer Perceptron networks in order to minimize 
the amount of time consumed on the training process of more complex net- 
works architectures and enlarge their range of applications. Several possibil- 
ities have been exploited in literature [6], [7]. In [8] a new parallel algorithm 
was presented, based on the cooperation concept. Multiple copies of the neural 
network in each task allow new parallel strategies. Information is periodically 
exchanged among the tasks to efficiently guide the search procedure and the 
back-propagation algorithm was used to refine the connection weights and 
minimize the error signal. 

The use of parallel genetic algorithms is a very good alternative since 
they are able to improve the performance of the genetic algorithms both in 
terms of velocity as in terms of enhancing the search quality, allowing, thus, 
simultaneous exploration of several points of the search space. Consequently, 
the maintenance of more diverse subpopulations helps to avoid premature 
convergence (local minima). 

In genetic algorithms, parallelism was exploited in different levels produc- 
ing both coarse and fine grain solutions. The fine-grained model assumes the 
placement of only one member of the population on each processing node. 
Therefore, the individuals can only reproduce and exchange genetic material 
with other individuals in a bounded region, as opposed to global ones. The 
coarse-grain model, on the other hand, is the most popular model used and 
assumes the division of a large population into several subpopulations with or 
without communication among the tasks [9]. Therefore, multiple processors 
run a sequential genetic algorithm on their population. Cooperation can be 
used in coarse-grain parallel genetic algorithms, where processors exchange in- 
dividuals from their subpopulation with other processors. In the island model, 
individuals can randomly migrate from one population to another. In the step- 
ping stone model, however, the individuals can migrate only to geographically 
nearby subpopulations. The existence of isolated subpopulations will help in 
the maintenance of genetic diversity. 

Also, the concept of cooperative parallel algorithms differs from the tra- 
ditional approach of parallel algorithm development [lo]. Instead of dividing 
the computational load among the tasks and having them only to compete 
against each other, complete problems are solved in each task (competitive 
approach) and their solutions are speeded-up with the information provided 
by the other ones (cooperative approach). 

Individuals and evolution behavior can be exclusive on each copy of the 
genetic algorithm running in each task and communications can be used to 
accelerate the evolutionary process. In the following sections, this approach 
will be exploited. 
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8.5 Training Multilayer Perceptron with Genetic 
Algorithms 

A genetic algorithm consists of a dynamic search method based on the theory 
of natural selection and can be successfully used in the learning process of a 
Multilayer Perceptron neural network since each individual of the population 
is represented by a finite string of binary symbols, known as chromosome [ l l ] .  
The chromosome of an individual will encode one specific neural network. 
Therefore, in each population there are a finite number of individuals rep- 
resenting one neural network, with differing architecture, as well as synaptic 
weights. At the end of the training process, the selected individual will hold 
the final configuration of the neural network. 

The genetic algorithm will proceed in the following way: an initial popula- 
tion of individuals is generated randomly. Each individual's genetic material, 
which consists of a vector of 0s and Is, will contain a description of a specific 
neural network. Later, the individuals are decoded and evaluated according 
to a predefined fitness function. The best individuals are the ones capable to 
approximate the fitness function to zero. 

The fitness function, however, is calculated for each set of the training 
samples by adding all the mean square error signals obtained for each element 
located in the output of the neural network and dividing the result by the 
number of samples applied to the network. The error signal, meanwhile, is the 
result of the subtraction between a desired response previously defined and 
the actual response obtained by the network. 

If the stop condition is not yet reached, the learning process continues 
and a certain number of individuals are chosen, according to the selection 
criteria, to be the parents of the next generation. In order to maintain a high 
degree of diversity among the individuals, different reproduction criteria were 
incorporated into the genetic algorithm. In general, it can be said that to 
form a new population, individuals are selected according to their capability 
of minimizing the fitness function. Thus, the individuals that obtained the 
smaller errors signals have a better chance of reproducing, while the others 
are more likely to disappear. 

8.6 Cooperative Parallel Genetic Algorithm with 
Different Evolution Behaviors 

The cooperative parallel genetic algorithm with different evolution behav- 
iors developed is used to determine the Multilayer Perceptron neural network 
synaptic weights and architecture. In each population, there are a finite num- 
ber of individuals codifying one specific Multilayer Perceptron neural network 
with differing architectures and synaptic weights. As the populations evolve, 
the network's synaptic weights are being refined along with its architecture. 
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In the end, from the genetic material of the individual that best fit the solu- 
tion, both architecture and set of synaptic weights for the neural network are 
extracted. 

It is worth to stress that the definition of neural networks architectures 
can become a process of trial and error, relying mostly on past experience 
with similar applications. Also, the performance of neural networks on a large 
number of applications is critically dependent on the choice of an ideal archi- 
tecture. As a result, it is very hard to predefine architectures for Multilayer 
Perceptron neural networks for a certain problem without previous knowl- 
edge or experience with similar applications. The use of genetic algorithms is, 
therefore, a natural and intuitive way to accomplish such task. 

Besides defining the network's architecture, the genetic algorithm is used, 
simultaneously, to refine the network's synaptic weights. In order to enhance 
the search for the fit individual, different reproduction criteria were incorpo- 
rated into the genetic algorithm. The use of different reproduction criteria 
will contribute on the maintenance of the diversity of the individuals regard- 
ing each population, speeding up the search for the ideal solution. Therefore, 
existing populations will evolve differently from one another following its own 
criterion of reproduction. 

The reproduction step of a genetic algorithm can be performed using many 
different kinds of heuristics. In the algorithm developed, the individuals are 
ordered according to the value of the fitness function produced by them. The 
quantity of individuals that will become parents of the next generation is, 
then, chosen randomly. Note that the parents of the next generation are the 
individuals that produced the lowest error signals. From the set of individuals 
chosen to be parents of the next generation, two are randomly chosen to have 
its genetic material combined, producing an offspring. The genetic material 
can be combined in one or two different points. A small number of mutations, 
also obtained in a random manner, were introduced to the new population. 
Fig. 8.3 illustrates two examples of reproduction of the genetic algorithm. 

Parent 2 1  0 0  I I 0  1 1  1 0 0 1 1 U l I  

Offspring 

Fig. 8.3. Illustration of two examples of reproduction of the genetic algorithm 

Besides presenting different evolution behaviors, the existing populations 
are able to communicate with each other and exchange valuable information 
on the best individual selected by each one of them so far. The presence 
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of cooperation in the genetic algorithm is, therefore, very important since 
the exchange of information between the populations helps to avoid local 
minima. Also, it allows the exploitation of a larger range of the search space 
and reintroduces previously lost genetic material. 

The genetic material of each individual contains two main fields. The first 
field codifies an index to a table of architectures. The second field codifies the 
synaptic weights for the architecture defined in the first field. Each synap- 
tic weight is represented by a 32-bits binary string. The index to a table of 
architectures is also represented by a 32-bits binary string. During the initial- 
ization, the binary strings representing the networks architecture and synaptic 
weights are generated randomly. As the populations evolve, the best architec- 
tures and set of synaptic weights are maintained. Finally, the best individual 
will hold the final configuration of the neural network. Fig. 8.4 illustrates the 
representation of the genetic material of each individual. Note that the table 
of architectures will contain different kinds of networks with different num- 
bers of layers, as well as neuron per layer. However, the input and output 
dimensions of the neural network are pre-determined since they depend and 
vary according to the application. 

Fig. 8.4. Representation of the genetic material of an individual 

Once again, each individual of the population codifies different neural net- 
works architectures. Therefore, the size of the genetic material of each indi- 
vidual varies according to the size of the neural network it represents, i.e., 
an individual codifying a simpler neural network will present a smaller set of 
synaptic weights when compared to an individual that codifies a much more 
complex architecture. 

However, it is necessary to standardize the representation of the genetic 
materials since, performing operations on differently sized chromosomes, mem- 
ory that is not part of the smaller chromosome will be used in the recombi- 
nation process. 

The simpler solution to this problem consists on taking as standard the 
size of the genetic material of the individual that codifies the largest neural 

Table of 
Architectures 

Index of a table of 
architectures (1) 

Synaptic weights 
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network. As a result, all individuals would present chromosomes with same 
sizes and the layers, neurons and connections that do not exist would be 
represented by zero. However, by doing so, the size of the neural networks 
and the genetic materials could increase inappropriately. Besides demanding 
a lot of memory and making the recombination process very slow, this solution 
increases the amount of time required on the exchange of messages performed 
by the parallel tasks, which can badly affect the final performance of the 
algorithm. 

The most viable solution found was based on the specification of a rea- 
sonable interval of synaptic weights for the networks. Therefore, all possible 
neural networks architectures that obeyed the specified interval were consid- 
ered. By doing so, the uncontrolled growth of the genetic materials can be 
avoided. Furthermore, the massive use of memory space is also avoided and, 
more importantly, the message exchange among parallel tasks is accelerated. 
Therefore, during the initialization of the populations, the amount of indi- 
viduals at  each population and the interval of synaptic weights are previously 
specified. Later, the genetic material of each individual is generated randomly. 

In Fig. 8.5, the parallel structure adopted is illustrated. 

Master Structure 

01 

Population 1 Population 2 Population N 

Fig. 8.5. The parallel structure adopted in the genetic algorithm 

As can be seen through Fig. 8.5, there is a master structure that is re- 
sponsible for the initialization of the populations. Each population will evolve 
simultaneously, following its own reproduction criteria. After a predetermined 
number of generations, each one of the populations will send to the master 
structure the best individual, i.e., the individual that has produced the lowest 
error signal. From this set of best individuals received from all the coexisting 
populations, the master structure will select the one with the lowest error sig- 
nal. Finally the master structure will send a copy of the individual selected to 
each one of the coexisting populations and so on, until the error signal tends 
to zero. 



192 Ana Claudia Albuquerque, Jorge Melo, Adrigo DDdria Neto 

The environment used for the implementation of the parallel algorithm 
was the PVM (Parallel Virtual Machine). The software PVM is an environ- 
ment for parallel and distributed computation. It allows the user to create 
and to access a parallel computation system made up from a collection of 
distributed processes, as well as to treat the resultant system as a unique 
virtual machine, hence the name parallel virtual machine. The software PVM 
is based on the message-exchange parallel programming model. In this way, 
messages are exchanged among the tasks through a connection chain. 

8.7 Application on Approximat ion of Functions 

The genetic algorithm developed in this chapter was used in the learning pro- 
cess of the Multilayer Perceptron network in order to approximate functions. 
The first two results illustrate the approximation of the functions f (x) = l / x  
and f (x) = sin(2rx). Later, two more complex functions, z = sin(r)/r  and 
f (xl, 22) = cos(2rxl) .cos(2rx2), were used. 

As was said before, the great advantage of the cooperative parallel genetic 
algorithm is the concept of having different populations with different evo- 
lutional behaviors evolving simultaneously. To illustrate that, it is drawn a 
comparison between the sequential and the parallel approach of genetic algo- 
rithms. 

Fig. 8.6 represents the mean square error (MSE) signal of the usual se- 
quential genetic algorithm with five populations evolving independently for 
the function f (x) = 11%. Each line represents the best individual selected by 
each one of the five populations. 

305 310 315 320 325 330 335 340 345 
Generation 

Fig. 8.6. MSE signal of the sequential genetic algorithm for the function f (x) = l/x 
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Therefore, as the populations evolve independently, this is equivalent to 
an isolated genetic algorithm being executed, i.e., there is one population and 
new generations are born from it, always aiming to find the individual that 
best fits the solution. No exchange of information or cooperation exists among 
the populations. 

According to the initialization, is very easy to find populations stuck in 
local minima. For instance, the members of Population 1 , 2  and 3 seem to have 
its MSE signal stabilized. On the other hand, the members of Population 4 
and 5 are slowly reducing the MSE signal but were unfortunate during the 
initialization, presenting the two highest error signals produced. 

On the contrary, through Fig. 8.7, where there are five populations evolving 
simultaneously, it is possible to realize the improvement that the cooperative 
parallel genetic algorithm with different evolution behavior represents. 

0.030474 I 
305 310 315 320 325 330 335 340 345 350 

Generation 

Fig. 8.7. MSE signal of the cooperative parallel genetic algorithm for the function 
f (x) = 112 

As said before, the five populations appear evolving in independent ways, 
exchanging genetic material once in a while. On the 315th generation, for 
instance, the members of Population 2 contain the best of all the individuals, 
i.e., the one with the lowest MSE signal. On the 330th generation, all tasks 
communicate, meaning that all populations will receive a copy of the best 
individual produced so far. By doing so, we allow that all the populations that 
initially evolved independently have a common aspect: the fit individual. From 
then on, the populations continue evolving independently again. Note that due 
to the communication during the 330th generation, the MSE signal produced 
by all populations dropped, especially the one produced by Population 4 that 
accomplished the lowest MSE signal right after this episode. 

The parallel genetic algorithm developed was also used to define the Multi- 
layer Perceptron neural network architecture. Several configurations of neural 



194 Ana Claudia Albuquerque, Jorge Melo, Adrih D6ria Neto 

networks were used. The number of hidden layers varied from one to six and 
the number of neurons per hidden layer varied from three to fifteen. There 
was one neuron in the input layer and one neuron in the output layer. The 
number of neurons per input layer and the number of neurons per output 
layer were pre-determined since they depend on the application. 

The final configuration of the Multilayer Perceptron neural network pre- 
sented one neuron in the input layer, one neuron in the output layer and one 
hidden layer with ten neurons. 

In Fig. 8.8 is illustrated the reconstructed output of the Multilayer Per- 
ceptron along with the original function. 

Fig. 8.8. Reconstructed output of the function f(x) = l/x obtained from the 
Multilayer Perceptron 

The results obtained by the approximation of the function f (z) = sin(2nx) 
are now presented. 

First, a sequential genetic algorithm is used and the MSE signal of the five 
populations evolving independently is illustrated on Fig. 8.9. 

As can be seen through Fig. 8.9, there are five populations evolving, with- 
out any cooperation or communication. The new generations are born from 
its population only. 

Once again, it can be seen that without the cooperation, the populations 
are more likely to get stuck in local minima. On this example, all the popu- 
lations are reducing the MSE signals very slowly, which can badly affect the 
performance of the neural network. 

In Fig. 8.10, on the other hand, there are five populations evolving si- 
multaneously by the use of the cooperative parallel algorithm with different 
evolution behaviors. Once again, the use of different behaviors during the re- 
production phase of the genetic algorithm was crucial in helping maintaining 
the diversity of the populations, fastening the obtainment of convergence. 
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Fig. 8.9. MSE signal of the sequential genetic algorithm for the function f (x) = 
sin(2rrx) 

For instance, from the 540th generation up to the 555th generation, the 
individuals from Populations 1, 3, 4 and 5 presented a higher MSE signal 
than the ones from Population 2. During the 555th generation, by means of 
communication, the genetic material of all populations was exchanged and all 
the MSE signals werk brought down to the same level. 

0.0302485 
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Generation 

Fig. 8.10. MSE signal of the cooperative parallel genetic algorithm for the function 
f (x) = sin(2rrx) 

The Multilayer Perceptron neural network architecture was defined by 
the use of the parallel genetic algorithm developed. Several configurations of 
neural networks were used. The number of hidden layers varied from one to 
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six and the number of neurons per hidden layer varied from three to fifteen. 
There was one neuron in the input layer and one neuron in the output layer. 
The number of neurons per input layer and the number of neurons per output 
layer were pre-determined since they depend on the application. 

The final configuration of the Multilayer Perceptron neural network pre- 
sented one neuron in the input layer, one neuron in the output layer and two 
hidden layers with five neurons in the first hidden layer and four neurons in 
the second. 

The final output obtained by the Multilayer Perceptron is reconstructed 
and illustrated in Fig. 8.11, along with the original function. 

Fig. 8.11. Reconstructed output of the function f(x) = sin(2rx) obtained from 
the Multilayer Perceptron 

Later, the function z = sin(r)/r,  where r = and -7.5 <= z <= 
7.5 and -7.5 <= y <= 7.5 was approximated by the Multilayer Perceptron 
neural network trained with the cooperative parallel genetic algorithm. 

Once again, a sequential genetic algorithm was first used on the approxi- 
mation of the function. 

Thus, there are five populations evolving independently, without any de- 
gree of cooperation neither communication. The new generations are born 
from the recombination of individuals that belong to each one of the five 
populations only. 

The MSE signal of the five populations is illustrated on Fig. 8.12. However, 
it can also be noticed the existence of populations, such as 1 and 3, presenting 
higher error signals that, due to the lack of cooperation, are not helped by 
the others. The performance of the neural network can, then, be affected in a 
bad way. 

Later, the cooperative parallel genetic algorithm with different evolution 
behaviors was used on the approximation of the function z = sin(r)/r.  The 
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Fig. 8.12. MSE signal of the sequential genetic algorithm for the function z = 
sin(r ) / r  

use of parallel processing, along with cooperation and different evolution be- 
haviors, once again helped to accelerate the convergence of the neural network. 

In Fig. 8.13, there are five populations evolving simultaneously, where each 
line represents the best individual produced so far by each one of them. 

Right from the start, it can be noticed, through Fig. 8.13, that the MSE 
signals of populations 1, 2, 3 and 5 were brought down to the same level of 
the Population 4 at  the 360th generation. Then, all the existing populations 
went on evolving simultaneously, competing and cooperating with one another 
every once in a while. Finally, from the help of its neighbors, the Population 
2, which started out with the second highest MSE signal, accomplished the 
lowest one in the end, at generation 420. 

Once again, the parallel genetic algorithm developed was used to define 
the Multilayer Perceptron neural network architecture. Several configurations 
of neural networks were used. The number of hidden layers varied from one to 
six and the number of neurons per hidden layer varied from three to fifteen. 
There were two neurons in the input layer and one neuron in the output layer. 
The number of neurons per input layer and the number of neurons per output 
layer were pre-determined since they depend on the application. 

The final configuration of the Multilayer Perceptron neural network p r c  
sented two neurons in the input layer, one neuron in the output layer and two 
hidden layers with ten neurons in the first hidden layer and six neurons in the 
second. 

The reconstructed output of the function z = sin(r)/r is illustrated in 
Fig. 8.14. In Fig. 8.15, it is presented the original output of the function. 

Finally, the Multilayer Perceptron neural network was used to approximate 
the function f (xl, 22) = cos(2~xl).cos(2nx2). 
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Fig. 8.13. MSE signal of the cooperative parallel genetic algorithm for the function 
z = s i n ( r ) / r  

Fig. 8.14. Reconstructed output of the function z = s i n ( r ) / r  obtained from the 
Multilayer Perceptron 

First, a sequential genetic algorithm is used and the MSE signal of the five 
populations evolving independently is illustrated on Fig. 8.16. 

All five populations evolve independently, without exchange of information 
or cooperation among them. Once again, with this approach, is very easy to 
find populations stuck in local minima, such as Populations 3, 4 and 5. 

On the contrary, through Fig. 8.17, where there are five populations evolv- 
ing simultaneously, it is possible to realize the improvement that the cooper- 
ative parallel genetic algorithm with different evolution behavior represents. 
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Fig. 8.15. Original output of the function z = sin(r)/r 

Fig. 8.16. MSE signal of the sequential genetic algorithm for the function 
f (xl, 22) = ws(27rxl) .ws(2m2) 

As can be seen through Fig. 8.17, from the 360th generation up to the 
375th, the members of Population 4 were the ones with the lowest MSE signal. 
However, at the 375th generation, due to the exchange of genetic material 
among the populations, the MSE signal produced by Populations 1, 2, 3 and 
5 were brought down to the same level of Population 4. 

The parallel genetic algorithm developed was also used to define the Multi- 
layer Perceptron neural network architecture. Several configurations of neural 
networks were used. The number of hidden layers varied from one to six and 
the number of neurons per hidden layer varied from three to fifteen. There 
were two neurons in the input layer and one neuron in the output layer. The 
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Fig. 8.17. MSE signal of the cooperative parallel genetic algorithm for the function 
f (xl, x2) = cos(2nxl) .cos(2nx2) 

number of neurons per input layer and the number of neurons per output 
layer were pre-determined since they vary according to the application. 

The final configuration of the Multilayer Perceptron neural network pre- 
sented two neurons in the input layer, one neuron in the output layer and two 
hidden layers with six neurons in the first hidden layer and eight neurons in 
the second. 

Therefore, the advantage of the cooperative parallel genetic algorithm with 
different evolution behaviors, besides allowing the search of the ideal archi- 
tecture for network given a certain application, is having several populations 
evolving simultaneously. This evolution will take place independently, up to 
a given position in which all populations cooperate with one another by the 
exchange of genetic material. Up to this point, all populations will have the fit 
individual so far produced. Therefore, the populations that were captured in 
high errors signals immediately pass to the same level of the others, avoiding 
local minima. In other words, while the existence of differing evolution behav- 
iors helps maintain the diversity, the use of cooperation gives the opportunity 
to all the populations to evolve in such a way that they will become the best 
one. 

The reconstructed output of the function f (XI, 22) = cos(2?rxl).cos(2?rx2) 
is illustrated in Fig. 8.18. In Fig. 8.19, it is presented the original output of 
the function. 

8.8 Summary 

The cooperative parallel genetic algorithm with different evolution behaviors 
used in the learning process of the Multilayer Perceptron neural network was 
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Fig. 8.18. Reconstructed output of the function f (xl, 22) = cos(2nxl) .cos(2nx2) 
obtained from the Multilaver Perceptron 

Fig. 8.19. Original output of the function f (xl, 22) = cos(2nxl).cos(2.rr22) 

very efficient when compared to the sequential form of the genetic algorithm. 
The cooperative parallel genetic algorithm was applied to the approximation 
of functions but can have its use extended to the several other kinds of appli- 
cations with neural networks. 

As it could be seen through the analysis of the obtained results, the sim- 
ple fact of allowing the exchange of information among different populations 
represented a great achievement in the final performance of the algorithm. 
Therefore, through cooperation, different populations could interact within 
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each other, avoiding local minima and helping in the search of the ideal solu- 
tion. 

Thus, the concept of having a pure competitive algorithm, where popula- 
tions will only compete against each other in order to find the best individual 
was modified by the insertion of cooperation between populations. In this way, 
starting from a certain position, the different populations will contain the best 
individual up to now found. Therefore, populations associated to high error 
signals immediately drop to the same level of the others. 

Furthermore, it is worth to stress that the use of different evolutionary 
behaviors in each population enabled a larger diversification of them, speeding 
up the search for the ideal solution as well. 

Also, the genetic algorithm was used simultaneously to refine the net- 
work's synaptic weights and to define its architecture. In general, defining 
architectures for neural networks is a very hard task and most of the learning 
algorithms developed only refine their synaptic weights. Therefore, the combi- 
nation and application of evolutionary computation into the design of neural 
networks are clearly of interest. 
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In this chapter, we describe a scheme to realize an Evolvable Fuzzy Hardware 
(EFH) for real-time Packet Switching problem. The common challenges of 
Evolvable hardware (EHW) implementation are issues pertaining to online 
adaptation, scalability and termination of evolution [I]. The proposed EFH 
addresses these issues effectively. A very interesting advantage of the pro- 
posed EFH is that the system performance can be tuned intuitively through 
parametric adjustment of the fitness function. This advantage gives the EFH 
system a very special property that conventional scheduling methods cannot 
fulfill easily. For the hardware implementation of the EFH, real-time fuzzy 
inference with high-speed context switching capability is necessary. We ad- 
dress this aspect through implementation based on a context independent 
reconfigurable fuzz9 inference chip (RFIC). 

9.1 Introduction to EHW and EFH 

Evolvable hardware (EHW) is a new type of hardware whose architecture can 
be evolved to suit the operating environment. In recent years, it has been at- 
tracting greater attention from researchers. The idea behind EHW is based on 
evolutionary algorithm, a methodology to search the solution space to derive 
the appropriate hardware architecture. EHW can be classified into extrinsic 
and intrinsic EHW based on the scheme of evolution used. Extrinsic EHW 
relies on a simulated evolutionary process independent of the hardware. It 
may rely on hardware description languages (HDL), C or other programming 
languages to represent the circuit and then rely on an evolutionary algorithm 
to evolve the hardware configuration. Only the elite design is downloaded 
into the reconfigurable device. Intrinsic evolvability means that the evolution 
and evaluation of solutions are carried out at the hardware level of the EHW 



206 Ju Hui Li, Meng Hiot Lim, and Qi Cao 

system. In principle, intrinsic EHW can modify its own hardware configura- 
tion and behavior autonomously. If the environment changes, the behavior or 
architecture will also change to maintain an acceptable level of system per- 
formance. Currently, there has been great progress made for extrinsic type of 
EHW [2, 3, 4, 5, 6, 71. 

There are also research works that focused on intrinsic EHW. In some 
reported works, the researchers rely on a semi-intrinsic approach. They use 
software to realize the evolution part and hardware to carry out evaluation of 
the derived architecture. After the evolution process, the best chromosome is 
implemented in hardware. This scheme can be called ofline adaptive intrinsic 
EHW. Most of the works on intrinsic EHW up to now can be found in [8,9,10]. 
This type of EHW generally has some advantages over extrinsic EHW. Since 
it carries out the evaluation in hardware, the evaluation process is very fast, 
and the performance of the elite is not affected by error in the simulation 
model. Intrinsic EHW is useful for applications that require online and real- 
time system reconfiguration. However, the implementation of intrinsic EHW 
still poses significant challenges for such promising areas. 

From the perspective of evolution granularity, current EHW can be classi- 
fied into three types: transistor level, gate level and function level. Among the 
three, the transistor level represents the lowest level of evolution granularity. 
This gives the greatest flexibility because transistors are the smallest compo- 
nents of any circuit. Gate level EHW means that logic gates are the smallest 
configurable components of the EHW [ll, 12, 13, 14, 15, 16, 171. Functional 
level EHW carries out the evolution of macro units (adder, multiplier, sine, 
cosine, etc.) implemented on a special type of FPGA [2, 18, 191. There are 
many functional processing units (FPU) in the FPGA chip. Each FPU can be 
configured to perform one of the high-level functions such as addition, subtrac- 
tion, multiplication, division, sine and cosine. The functions and connections 
of FPUs are configured based on the elite chromosome. Most of the EHW 
reported can be categorized into one of these three levels. The limitations of 
these forms of EHW imply that evolutions can only be done extrinsically or 
in some instances, intrinsically but in an offline adaptive manner. 

For the implementation of intrinsic Evolvable and online adaptive EHW, 
there are three main open issues that need to be addressed [I]. These issues 
are briefly outlined below. 
Online adaptation: This means that the system hardware is required to adapt 
during the normal operation. Online adaptation is very hard to realize because 
the system has to reconfigure the hardware for every chromosome in order to 
carry out the evaluation. Some chromosomes may inevitably result in very 
poor performance. If these chromosomes are evaluated by reconfiguring the 
hardware, they may potentially result in some damages or disastrous outcome. 

Scalability refers to the extensibility of the scheme to handle more complex 
architecture or configurations. For a typical EHW, the chromosome length 
may be hundreds or even thousands of genes for a complicated system. The 
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search space represented by a chromosome may be very big. Hence the search 
by the genetic algorithms (GA) for a good solution in such a big solution 
space may take a very long time. 

Termination of evolution pertains to criteria or conditions for stopping the 
evolution process. For example, one commonly used criterion is the number 
of runs. With a GA scheme, there is no guarantee as to the number of runs 
required before a desirable solution can be found. This can be a significant 
drawback for real-time operation. 

In order to perform online adaptive and intrinsic Evolvable hardware, we 
propose a new form of EHW that is referred to as Evolvable Fuzzy Hardware 
(EFH). EFH can be viewed as a form of Evolvable fuzzy system (EFS) whereby 
the fuzzy inference system is implemented in hardware to deliver real-time in- 
ference throughput. Furthermore, the domain knowledge of the fuzzy system 
should be able to support online real-time reconfiguration. EFH can overcome 
the disadvantages of the other three EHWs described earlier and is amenable 
to intrinsic evolution and online adaptation. Earlier in [20], we proposed EFS 
for ATM cell scheduling. In that system, the EFS searches for an appropriate 
fuzzy rule set to carry out the scheduling task on dynamically changing cell 
flows. The evolutionary search process does not cause any interruption in the 
system operation. After a good fuzzy rule set is found, the old one is replaced 
immediately. From simulation results, it was shown that EFS is capable of 
dynamic real-time adaptation to deliver robust performance. To further sup- 
port our work, we have also proposed a reconfigurable fuzzy inference chip 
(RFIC) whereby the context can be changed or reconfigured online [21]. By 
combining the advantages of the EFS and RFIC, we demonstrate in this work 
how intrinsic Evolvable and online adaptive EFH can be implemented. 

In Section 2, we introduce the real-time Packet Switching problem, an 
application for demonstrating the viability of the EFH. In Section 3, we de- 
scribe specifically how the implementation challenges of the intrinsic EFH are 
addressed. In Section 4, we describe the detailed formulation of the fitness 
function adopted in our EFH. In Section 5, we present the simulation results 
of applying EFH to solve the real-time problem. Certain desirable properties 
of the EFH in dealing with the real-time problem are also discussed in this 
section. In Section 6, we outline details on how the EFH can be implemented 
from a system's perspective. Finally, we offer some concluding remarks for our 
work on EFH. 

9.2 Packet Switching 

Packet Switching is a backbone of modern communication networks. Because 
of the characteristics of the various services supported by the network, the 
management of the bandwidth resources is very critical. The multiplexer is 
an important component used to administer the sharing of bandwidth among 
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different cell flows. It is mainly employed to provide a means of sharing high- 
speed link for network terminations or network inter-nodes. Time division 
scheme is adopted in the multiplexer. The output link can be divided into 
different time slots. At anytime, only one input flow is accorded the priority of 
sending packets through the output channel. The simplified block architecture 
of the multiplexer is as shown in Fig. 9.1. For illustration, we classify the 
services into two types, classl and class2. In the block diagram, BUFl and 
BUF2 refer to buffers for classl and class2 respectively. MP represents the 
time division multiplexing system for transmitting packets through the OUT 
channel. The switching control block is a part of the hardware that handles 
cell scheduling. When the OUT channel is available, the switching control 
block decides on which cell flow to be sent. 

For Packet Switching, class1 can be a form of CBR (Constant Bit Rate) 
traffic, rt-VBR (real-time Variable Bit Rate) or both. The class2 traffic type 
may refer to nrt-VBR (non-real-time Variable Bit Rate), UBR (Unspecified Bit 
Rate) or ABR (Available Bit Rate) [22]. While classl type is delay sensitive, 
class2 is considered to be not sensitive to delay. These two sources of cell flow 
must be multiplexed on the output channel (OUT) by the MP unit through 
time division. The capacities of OUT and the input channels are fixed. In 
this problem, the QoS (Quality of Service) of the system can be evaluated by 
classl cell delay, classz cell loss and the balance between classl cell loss and 
class2 cell loss. The ideal case is that classl cell delay and class2 cell loss are 
very small and there is also a good balance established between classl cell 
loss and class2 cell loss. 

The application of EHW in ATM cell scheduling has been reported in 
Liu et. a1 [2, 31. In their works, the authors presented schemes of functional 
EHW to solve the problem of cell scheduling. The functional EHW system 
successfully achieved a circuit that had service performance similar to that 
of traditional scheduling schemes. However, the scheme has some significant 
limitations, hence not suitable for practical applications. The main limitation 
of the system is its inability to evolve intrinsically. Another limitation is that 
the system had to rely on an external computation platform to carry out 
evolutionary process due to its large search space. Finally, the system faces 
the limitation of being trained and tested only on fixed cell flow patterns. 
In a practical system, the cell flows can change dramatically. There was no 
effective scheme in this system to adjust the system along with the changing 
cell flows. 

9.3 Solutions for Open Issues 

In order to solve the packet scheduling problem, we design the system archi- 
tecture, incorporating evolutionary mechanisms as in Fig. 9.2. In this system, 
the training buffers TB1 and TB2 are used to store classl and class2 cells 
respectively. The size of TB1 and TB2 is at  least 2 or 3 times that of BUFl 
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and BUF2. When either TB1 or TB2 is full, the evolutionary process is trig- 
gered. Fitness evaluation is carried out by subjecting each chromosome to the 
scheduling model according to the cell flow stored in TB1 and TB2. The pur- 
pose of the scheduling model is to emulate the function of the multiplexer as in 
Fig. 9.1. After a specified number of cycles and generations, if a chromosome 

Switching Control r 

Fig. 9.1. Multiplexer scheme 

that corresponds to a system rule set is better than the working chromosome, 
the working chromosome is replaced immediately. In order to prevent the 
search procedure from being trapped in a local region, after a pre-specified 
number of generations, the whole evolutionary process is restarted, from the 
point where the initial population is generated. This is essentially the start of 
a new evolution cycle. Functionally, the scheduling model emulates the packet 
switching to derive the cell delay and cell loss parameters. This is achieved 
by a multiplexer model within the scheduling model block. The derived pa- 
rameters enable the fitness value to be calculated using the fitness function. 
Basically, the evolution module evolves the appropriate rule set by interacting 
with the scheduling model to evaluate the fitness of each evolved fuzzy rule 
set. When evolution is triggered, it works in the background while the MP 
unit is in operation. With EFH, the fuzzy inference circuit is a very important 
component and it directly affects the speed of the system's response to the 
changes in cell flow. Two high-speed fuzzy inference components are required. 
One is in the scheduling model and another is the RFIC block performing cell 
scheduling control. 

During evolution, it is inevitable that poor quality chromosomes i.e., chro- 
mosomes that result in poor switching performance, are also evaluated. To 
avoid the possibility of detrimental effects on the system performance by these 
chromosomes, the scheduling model is incorporated in Fig. 9.2 to emulate the 
cell scheduling process. This allows for evaluation of the evolved chromosomes 
in the background. After the evolution process, only the final fuzzy rule set 
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Fig. 9.2. Adaptation framework for EFH 

will be configured in the RFIC block. In this way, we address the first major 
open issue of the intrinsic EHW. 

In order to achieve online adaptation and intrinsic evolution for real-time 
control, another issue that can be regarded as a sub-problem of online adapta- 
tion and intrinsic evolution, must also be addressed. During evolution, training 
data are required. In [2], the EHW system uses the same data for training and 
testing. This scheme can work well in applications when the real time data 
do not change dramatically. But if the application scenario is significantly 
different from the training situation, the system may not perform very well. 
This indicates that extensive data samples are necessary for such an evolu- 
tion scheme. If the real-time data change dramatically, it is not practical to 
incorporate diversely representative real data samples to train the system. 
For many real-time control areas, we believe that there is no need to do so. 
In fact, we can apply the principle of "locality" to substantiate this belief. 
For example, in computer operating system, the design of the cache memory 
system is based on this principle. Accordingly in computer operating system, 
if a program is accessing a certain part of the memory, then there is a great 
likelihood that the program will also access the part of the memory within the 
same locality in the next time period. In our EFH, we contend that there is a 
very high probability that the data model within a small time window is the 
same as the model of data samples in the previous time window. The locality 
proposition is valid if we assume that the time window is small enough. For the 
CBR flow, since the cell rate is constant [22,23], the cell rate at any particular 
time period is the same as that of the preceding time period. For VBR flow, 
which can be described by a two-phase burst/silence model [2, 24, 25, 26, 271, 
cells can be sent equidistantly during the burst period and no cells are trans- 
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mitted during the silence period. The cell rate during the burst period can 
be approximated based on the principle of "locality". But at the edge of the 
burst period and the silence period or vice versa, significant error may occur. 
This kind of prediction error can be tolerated if the time window is sufficiently 
small. Based on this justification, we can train the system using the previous 
data flow to approximate the expected data model of the subsequent time 
period. The smaller the time window, the more flexible the EFH adapts to 
the cell flow. The best chromosome after an evolution process will be used to 
do scheduling in the next time period. 

To address the scalability issue, we adopt an evolutionary granularity at 
the fuzzy rule level. In the EFH for Packet Switching, a chromosome can be 
represented as a string of 25 integers. Each gene of a chromosome represents 
a fuzzy rule. For this scheme, the search space is not too big compared to the 
search space in [2, 91, in which each chromosome is represented by a string 
comprising of hundreds of integers or thousands of bits. The evolution time in 
the EFH is thus manageable. The third issue to address is the termination of 
evolution. In many EHW systems, the evolution system may require thousands 
of generations to get close to an optimal chromosome. The extent of evolution 
time may limit the applicability of the system for real-time application. In 
[2], in order to get a good functional EHW to do ATM cell scheduling, the 
system evolved for 2500 generations with a population size of 400. In [9], 
in order to derive a circuit with Gaussian output voltage characteristic, the 
Evolvable hardware system has to evolve 10000 generations. The time scale 
for evolution in these reported works is not appropriate if used in real-time 
intrinsic EHW control system. For comparison, in the proposed EFH, a very 
small population size and small number of the generations are important 
features of the evolutionary process. In order to prevent the system from 
adopting a very poor performing fuzzy rule set, we defined a core rule set 
in the system derived based on the analysis of the problem through human 
intuition. The core rule set is also used as the startup rule set. If the EFH 
system is not able to find a chromosome that is better than the core rule 
set within a fixed number of generations, the core rule set is adopted. The 
appropriate number of generations for each evolutionary cycle is determined 
through experimentation. The objective of the evolution is to get a fuzzy rule 
set better than the working chromosome for the cell flow of the following time 
period. Even if the derived fuzzy rule set is not optimal, it is deemed to be 
sufficient. By adopting this idea, the criterion for the termination of evolution 
can be satisfactorily managed. 

9.4 Evolution Scheme 

To carry out evolution, GA manipulates a population of chromosomes. These 
chromosomes are solution representations denoting the application domain 
fuzzy rule sets,when decoded. In the rest of this section, we will first introduce 
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the fuzzy system and its coding scheme. Then we will describe the inference 
scheme and the fitness function of this system. 

9.4.1 Genetic Coding 

A fuzzy system can be formally defined as an application or system, which 
employs a fuzzy control algorithm. In general, the fuzzy control algorithm 
refers to a set of if-then rules with linguistic values and fuzzy variables. The 
values are specified as fuzzy concepts defined by membership functions. Fuzzy 
system implicitly means a set of rules and membership functions. 

Suppose a fuzzy system has q input variables XI,  2 2 ,  . . ., x, and single 
output control variable y, a typical rule for the fuzzy system will be "if < xl 
is Al > and < 2 2  is A2 > . . . and < x, is A, > then < y is D >". Al, A2, . . ., 
A, and D are fuzzy concepts or linguistic values. Usually, the development 
of a fuzzy system involves specifying a finite set of labels to represent the 
linguistic values for describing each of the variables. If the number of labels 
for the input variables XI,  x2, . . ., x, are &, 52, . . ., J, respectively, then the 
number of rules that one can declare will be 51 x & x . . . xQ. We refer to 
this as the maximum or exhaustive rule set. An n-rule fuzzy system would 
therefore refer to a system with n being less than or equal to & x & X  . . . xJ,. 
This is refered to as an n-rule constrained fuzzy system or simply an n-rule 
fuzzy system [28, 29, 301. 

To begin with, we define two symbols for the inputs, cl and c2. The symbol 
cl refers to the status of classl cell flow, which is a function of V1 and V,,,. 
V1 is the current cell rate of classl cell flow while V,,, is the line capacity. 
The symbol c2 refers to the buffer status of BUF2. It is a function of L2 and 
L,,,. L2 is the number of empty units in BUF2 while L,,, is the length 
of BUF2. For cl and c2, the memberships are characterized by the term set 
{VS, S, M, L, VL} as depicted in Fig. 9.3. These are standard triangular 
membership functions. The output SEL of the fuzzy switching control block 
(see Fig. 9.2) is characterized by the term set {T, F}. Both T and F are 
singletons, or fuzzy sets with impluse membership functions as shown in Fig. 
9.4. Functionally, a T or true means that the MP unit allocates time slots 
to cater for the classl cell flow in BUF1. An output F or false implies that 
switching is reverted to cells in BUF2. 

Based on the above characterization of the switching network, it is pos- 
sible to define the n-rule heuristics to control the switching behavior. With 
the fuzzy memberships defined, one can rely on intuitive logic to define the 
necessary input-output mappings as shown in Table 9.1. The 25-rule system 
serves as the default cell scheduling algorithm on system startup. We refer to 
this rule set as the core rule set. 

A fuzzy rule set can be represented as a string of integers. For example, 
the genetic code for the 25-rule system in Table 9.1 can be described by the 
string " 2221122111221112111111111". The allelic code 1 and 2 correspond to 
the labels true and false respectively. The position of the gene in the string 
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vs rvery-smal l  
S  small 
M =medium 
L r l a r g e  
VL. very-large 

Fig. 9.3. Membership functions for cl and c2 

Fig. 9.4. Membership functions for T and F 

identifies a specific rule in Table 9.1 when interpreted accordingly in a row 
wise manner. If the value of a gene is 0, it means that there is no specific fuzzy 
rule defined for the corresponding input condition. The core rule set not only 
serves as the startup rule set, but also provides a means to benchmark the 
performance during the evolution of chromosomes. This scheme guarantees 
that the performance of the system is better than or at least comparable to 
that of the core rule set. 

Table 9.1. A 25-rule fuzzy system for ATM cell scheduling 

9.4.2 Inference Scheme 

Each entry in Table 9.1 can be interpreted as a statement of the form "if 
antecedent1 and antecedent2 then conclusion". The antecedent# represents 
the fuzzy conditions for cl or cz, characterized over the term set {VS, S, M ,  
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L, VL). The conclusion can be T or F. The degree of firing for each fuzzy 
rule is taken as the minimum of the degrees of matching between the inputs 
cl and c2 and the antecedents. The aggregation is carried out by averaging 
the fuzzy conclusions derived from all the rules. 

Although we have shown a 25-rule system, for this Evolvable system, the 
number of the fuzzy rules can vary between 0 and 25. In order to manage the 
evolution time and reduce the search space, we can fix the size of the rule set 
to be less than 25 as in [29], so that the evolution time can be managed. This 
is because the search space for a reduced rule set is more manageable and 
hence the evolution efficiency can be significantly improved. 

9.4.3 Fitness Function 

According to the specifications of the problem, the capacity of the output 
channel is fixed. This implies that no further adjustment on the output ca- 
pacity can be made to cater for fluctuations in demand. If the bandwidth is 
not big enough to meet the demand of the two cell flows, servicing classl cell 
would mean filling up the class2 buffer and eventually resulting in cell loss for 
class2. Hence for a specified requirement on the level of cell delay for classl, 
a certain expected level of class2 cell loss is inevitable. In other words, the 
class2 cell loss is constrained by the desired level of classl cell delay that the 
system is trying to achieve. 

There is one main consideration in formulating the fitness function for the 
EFH. This pertains to the classl average cell delay. From the above discussion, 
it is apparent that the level of class2 cell loss is negatively correlated to 
the average class1 cell delay. Adjusting class1 cell delay will adversely affect 
the class2 cell loss. Based on these justifications, the fitness function can be 
described explicitly as in Eq.9.1. 

In Eq.9.1, K is a very large numerical constant. It is used to adjust the 
range of fitness values such that F is proportional to the fitness measure 
of the chromosome. The larger the fitness value, the fitter the chromosome. 
AveDelay is the average delay of classl cell units after all the cells in TB1 have 
been processed. DelayFactor is a constant used as a reference for scaling the 
value of X based on the desired classl cell delay. X is an adjustable coefficient 
to denote the desired level of average cell delay for classl cell units stored 
in TB1. In general, the system tries to search for a chromosome with mini- 
mum IAveDelay - X x DelayFactorl. Both the AveDelay and DelayFactor 
in Eq.9.1 can be determined from Eq.9.2 and Eq.9.3 respectively. 

1 
AveDelay = - x EL1 m ( i )  

7 

DelayFactor = p x v 
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In Eq.9.2, m(i) is the waiting time of the ith cell in TB1 before being sent 
out. T is a variable denoting the number of classl cell units in TB1 sent 
during evaluation. ELl m(i) is the sum of the cell delay of the cell units in 
TB1. In Eq.9.3, p is a constant corresponding to the time required to send a 
cell through the output channel. The value of p depends on the bandwidth 
capacity of the output channel. The symbol v denotes the size of TB#. With 
Eq.9.3, a reference value for the possible delay of classl cell units can be 
determined. 

9.5 Simulation 

In order to demonstrate the viability of the EFH scheme, we carried out simu- 
lations of EFH in cell scheduling on two different scenarios. In the simulation, 
we assume the capacity of the output channel (OUT) and the input channels 
to be 155.52MHz. The two cell flows are as shown in Fig. 9.5. 

For scenariol, classl is the CBR cell flow with cell bit rate of 155.52MHz. 
class2 is VBR cell flow, also with a cell bit rate of 155.52MHz. The difference is 
that the VBR specified has a 2ms ON time period and a 2ms OFF time period. 
This scenario is a very extreme case used to test the system's controllability. 
In order to simulate the system performance on a more realistic cell flow, we 
can adopt scenario2. For scenario2, class1 refers to CBR cell flow with a cell 
bit rate of 100MHz. class2 is VBR cell flow with unknown random cell bit 
rate. The minimum cell bit rate for VBR is 55.52MHz while the maximum is 
155.52MHz. In these two scenarios, since the sum of the CBR and VBR cell 
rate is larger than the OUT channel's capacity, cell loss is unavoidable. From 

class, 

classl 

Fig. 9.5. Two classes of cell flows 

a practical point of view, the second scenario is more likely compared to the 
first scenario. 

The simulation results are compared with the results of first-in first-out 
(FIFO) and dynamically weighted priority scheduling (DWPS) [24]. FIFO is 
a very traditional scheduling method. It schedules the cell flows based on 
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the arrival time of the packets. FIFO can achieve very good balance between 
classl cell loss and class2 loss, but it is very bad in terms of classl cell delay 
performance. DWPS is a very good algorithm for cell scheduling. It adjusts 
the priority according to the cell flow scenarios. But the adaptation scheme 
of DWPS is not very efficient if the cell flow changes dramatically. DWPS 
can be described by Eq.9.4. In Eq.9.4, vi is the fixed priority for different cell 
flow inputs, a lower value indicates a higher priority. Ti(t) is the waiting time 
of the oldest packet in the buffer of the ith channel. Qi is the priority index 
associated with each cell. The lower the value, the higher the priority. y is an 
emphasis parameter and the recommended value is 0.9. 

9.5.1 Simulation Results 

For the simulation, the size of BUFl and BUF2 is 100 cells, and the size of 
TB1 and TB2 is 300 cells. In the fitness function, X is 0.35. All the simulations 
are carried out by using a C++ program. The setting for the parameters of 
the evolutionary algorithm is as follows: 

0 population size = 10; 
elite pool size = 2; 
crossover probability = 0.6; 

0 mutation probability = 0.05; 
number of generation = 9; 

0 number of evolutionary cycle = 2. 

We simulated each scheduling scheme for cell flows lasting 2 seconds. Fig. 
9.6 and 9.7 are the simulation results of FIFO, DWPS and EFH schemes 
on scenariol. Fig. 9.8 and 9.9 are simulation results for FIFO, DWPS and 
EFH schemes on scenario2. The simulation results demonstrate the viability 
of the evolution scheme and that EFH can fulfill the cell scheduling task. For 
scenariol, EFH can achieve lower classl cell delay than FIFO and DWPS. 
The balance of classl and class2 cell loss by using these three methods is 
acceptable. None of the schemes show significant bias towards any of the two 
cell flows. For scenario2, the situation is quite different. EFH can still achieve 
lower classl cell delay with an acceptable balance between classl cell loss and 
class2 cell loss. The class1 cell delay by using DWPS is higher than that of 
EFH and the balance between the classl cell loss and the class2 cell loss is 
not good. So according to the quality factors as discussed in Section 9.2, EFH 
can control the cell scheduling better than FIFO and DWPS when the cell 
flow changes dramatically. 

9.5.2 Tunability of EFH 

One advantageous property of EFH is that the system performance can be ad- 
justed very intuitively by decreasing or increasing the value of X in Eq.9.1. The 
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Cell Average Delay for class, Cell Average Delay for class2 

18001 
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simulate time (pS) 06 

Fig. 9.6. Cell delay for classl and class2 in scenariol 

smaller the value, the smaller the classl cell delay. This property cannot be 
achieved conveniently using traditional scheduling methods. As in the above, 
the tunability of EFH is demonstrated by simulation results on scenario1 and 
scenario2 . 

The results of the simulation with different values of X for scenariol and 
scenario2 are as shown in Fig. 9.10, 9.11, 9.12 and 9.13. In Fig. 9.10 and 
9.11, when X is 0.4, the classl cell delay and classl cell loss are very small. 
Accordingly, the class2 cell delay and cell loss are significant. If good balance 
of classl cell loss and class2 cell loss is desired, a bigger value can be assigned 
to A. In Fig. 9.10 and 9.11, both the classl cell loss and class2 cell loss are 
moderate when X is 0.6. For situations where QoS for class2 needs to be 
significantly emphasized, the value of X can be increased. The larger the value 
for A, the better the QoS for classz. For example, it is clear from the plots in 
Fig. 9.10 and 9.11 that X=0.8 offers good QoS for classa. 

For the simulation results in Fig. 9.12 and 9.13 on scenario2, the same 
conclusion can also be derived. In principle, classl cell delay can be adjusted 
in the range from 0 to p x v if X is between 0 and 1. This means that classl 
cell delay has a very wide range of tunability. It further implies that classl 
cell loss and class2 cell loss are also tunable to a wide range. According to the 
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Fig. 9.7. Cell loss for classl and classa in scenario1 

fitness function, the acceptable level of classl cell delay can be decided based 
on the value of A. On the other hand, if one can decide on the satisfactory 
classl cell delay to be achieved, the value of X can also be approximated. 

9.6 Hardware Implement at ion 

According to the evolution scheme described by Fig. 9.2 in Section 9.4, the 
chromosomes need to be evaluated within a very short time period for each 
evolution. If the whole evolution process can be completed within the time it 
takes to send one cell packet through the OUT channel, and a good fuzzy rule 
set can be found during this time period, the system will enjoy the greatest 
flexibility in adapting to the changing environment. On the whole, the perfor- 
mance of the system is very much dictated by the quality of the rule set being 
applied. Each rule set instance is referred to as a context, and is applicable 
to the current scenario of the operating environment. As context changes, the 
fuzzy inference circuit is required to accommodate the new context without 
incurring significant overhead for setup. This implies that a reconfigurable 
high-speed fuzzy inference circuit is very critical in EFH. In order to achieve 
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fast fuzzy inference and at the same time accommodate real-time online con- 
text updating, we have proposed a hardware scheme for fuzzy inference called 
reconfigurable fuzzy inference chip (RFIC) [21]. 

The novelty of the RFIC lies in its ability to accommodate an online 
context change without interrupting the system operation. The block archi- 
tecture of RFIC is as shown in Fig. 9.14. The main component is the FIM 
(fuzzy inference map) block. It adopts an implicit inference approach to de- 
liver high inference speed for applications with dynamically changing contexts. 
The current applicable context is managed by the CMU (context management 
unit). It stores the working fuzzy context and generates control signals such 
as Ens<,,> and Sel<x,y> for the FIM. AEM (address encoding mechanism) 
is the module that generates the address to access the FIM partition blocks 
activated by the Ens<,,,> signals. The OAM (output aggregation mechanism) 
is the dedicated circuit for fuzzy inference aggregation. 

The proposed EFH system for cell scheduling is able to accommodate fuzzy 
rule sets of up to 25 fuzzy rules. Hence, the FIM block incorporates 25 PBs 
(partition blocks); PB<1,1>, PB<1,2> . . . PB<5,5>. Each PB is a mapping that 
accommodates all the input situations with specific outputs. The mapping for 
each PB is created based on a software fuzzy inference model. To illustrate 
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Fig. 9.9. Cell loss for class1 and class2 in scenario2 

the basic structure and format of each PB, we can assume that the inputs and 
the membership functions are digitized to 5 bits. A sample of the mapping 
data for PB<1,1> is presented in Table 9.2 for illustration. The left column of 
the table lists the addresses. The whole address string is composed of three 
parts, i.e., the digitized values of Inputl, Inputz and Sel<l,l>. The data are 
made up of two parts. The most significant bit is the fuzzy conclusion bit 
indicating T or F. The other bits represent the degree of firing for the corre- 
sponding fuzzy rule. For example, refering to the first memory unit in Table 
9.2, where both Inputl and Inputz equal to "OOOOO", the degree of matching 
to the membership function VS is "11111". So the corresponding datum in 
the location is "0,11111". Its first bit "0" represents the fuzzy conclusion T 
and the other bits "11111" is the firing strength. 

CMU stores the current application context and generates Ens<,,,> and 
Sel<,,,> signals. For the application described, the size of the context register 
required is 50 bits. Each two-bit datum in the register represents a fuzzy 
rule. The position of each two-bit datum in the 50-bit string identifies the 
specific rule of the context. A "01" means the fuzzy conclusion is T and "10" 
indicates the fuzzy conclusion is F. A "00" means that there is no fuzzy rule 
for the corresponding input situation. Each Ens<,,,> signal can be generated 
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Fig. 9.10. Cell delay for scenario1 

by applying the logical OR operation to the corresponding two bits. A value 
of "1" for Ena<x,y> indicates that PB,,,,, is enabled, which otherwise is 
disabled. Sel<x,y> also depends on the specific two bits and is connected to 
PB<,,,> separately. A "01" generates a "0" for Sel<,,,> and "10" produces a 
"1". The circuit for OAM is as shown in Fig. 9.15. It is made up of Ave-2 blocks 
and Ave-3 block. In this circuit, the most significant bit of each datum shown 
in Table 9.2 involve in the aggregration operation is a sign bit. The output 
has 5 more bits than the input data in order to preserve calculation precision. 
The control output is derived from the sign bit, i.e, the most significant bit 
of the OAM output. A positive value indicates that the inference conclusion 
is T and a negative means the conclusion is F. 

9.7 Conclusions 

There are several challenges to the application of Evolvable hardware for solv- 
ing time critical problems. We highlighted three issues, namely online adapta- 
tion, scalability as well as termination of evolution. To realize EHW capable of 
intrinsic online evolution, these issues have to be considered. In this chapter, 
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Fig. 9.11. Cell loss for scenario1 

Table 9.2. FIM content in PB<l,l> 

Address Data 
ooooo,ooooo,o 0,111 11 
00000,00000,1 1,11111 
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Fig. 9.12. Cell delay for scenario2 

we proposed the EFH scheme, a form of EHW whereby the fuzzy inference 
scheme is carried out in hardware to achieve real-time operation. The scheme 
allows for updating of online context and domain rules and further incorporat- 
ing mechanisms to evolve a context appropriate for the application scenario. 
In order to demonstrate the viability of our proposed EFH, we simulated the 
control performance of the EFH in cell scheduling and compared the results 
with some traditional scheduling methods. From the simulation results, it can 
be seen that the EFH is capable of dealing with changing cell flows much bet- 
ter than the traditional methods. Another significant advantage of the EFH is 
tunability. This was also analyzed based on the simulation results. Based on 
analysis of the simulation results, the EFH possesses significant advantages 
over conventional scheduling methods. To implement the EFH, we described 
the hardware implementation based on a context switchable RFIC to achieve 
real-time high-speed fuzzy inferencing and high-speed context updating. By 
combining this hardware scheme and the evolution scheme, an online adaptive 
and intrinsic Evolvable EFH can be potentially realized using system-on-chip 
technology. Although we demonstrated the application of EFH on Packet 
Switching, the application of EFH is not limited to this. Some real-time con- 
trol problems such as packet control in parallel computer, token control in 
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Fig. 9.14. Block architecture of RFIC 
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Fig. 9.15. The hardware architecture of OAM 

da ta  flow machine, cell flow control in future communication networks are 
potentially suitable application areas. 
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Multi Expression Programming is a Genetic Programming variant that uses 
a linear representation of individuals. A unique feature of Multi Expression 
Programming is its ability of storing multiple solutions of a problem in a sin- 
gle chromosome. In this chapter, we propose and use several techniques for 
improving the search performed by Multi Expression Programming. Some of 
the most important improvements are Automatically Defined Functions and 
Sub-symbolic node representation. Several experiments with Multi Expres- 
sion Programming are performed in this chapter. Numerical results show that 
Multi Expression Programming performs very well for the considered test 
problems. 

10.1 Introduction 

Multi Expression Programming (MEP)' [ l l ,  12, 131 is a new and very effi- 
cient technique that may be used for solving difficult real-world problems. A 
unique feature of MEP is its ability of storing multiple solutions of a prob- 
lem in a single chromosome. As shown in [ l l ] ,  this feature does not increase 
the complexity of the decoding process when compared to other Genetic Pro- 
gramming (GP) [7, 81 variants that store a single solution in a chromosome 
(such as Gene Expression Programming (GEP) [ 5 ] ,  Genetic Algorithms for 
Deriving Software (GADS) [16], Grammatical Evolution (GE) [14], Cartesian 
Genetic Programming (CGP) [lo]). 

The MEP technique has been efficiently used for solving symbolic regres- 
sion problems [ll] and even-parity problems [13]. 

MEP source code is available at www.mep.cs.ubbc1uj.ro. 
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Parity problems arise in many practical applications related to the infor- 
mation technology, especially when data need to be safely transmitted over 
a network. According to [7] the Boolean even-parity functions are the most 
difficult Boolean functions to detect via a blind random search. Due to this 
reason, the ability of the evolutionary algorithms of performing an efficient 
search in the solutions space can be tested using this problem as a benchmark. 

In [13], the MEP has been used for solving even-3 and even-4-parity prob- 
lems. In this chapter we propose and use several techniques for improving the 
search performed by Multi Expression Programming. Some of these techniques 
are: 

(i) Automatically Defined Functions (ADFs) [7]. 
(ii) Sub-Symbolic Node Representation [18]. 

Numerical experiments performed in this chapter include the use of MEP 
for solving the even-parity instances from even-3 up to even-18-parity. 

MEP without ADFs was able to solve (using a reasonable population and 
within a reasonable timeframe) up to even-5-parity problem. When Automati- 
cally Defined Functions are employed a considerable improvement is obtained, 
allowing us to evolve a solution for up to even-8-parity problem. More improve- 
ments are done when a Sub-symbolic node representation was employed. 

Results of the numerical experiments are compared to those provided by 
Genetic Programming [7, 8, 181. It can be easily seen that Multi Expression 
Programming outperforms Genetic Programming with more than one order 
of magnitude. Note that a perfect comparison between MEP and GP cannot 
be made due to the incompatibility of respective representations. 

The chapter is organized as follows. In section 10.2 the Even-Parity prob- 
lem is described. The Multi Expression Programming technique is briefly de- 
scribed in section 10.3. The metrics used to assess the performance of the MEP 
algorithm are described in section 10.4. Several numerical experiments with 
MEP for solving the even-3, even-4 and even-5-parity problems are performed 
in section 10.5. Automatically Defined Functions for MEP are introduced in 
section 10.6. Several numerical experiments with MEP and ADFs are per- 
formed in section 10.7. The sub-symbolic node representation and the smooth 
operators are introduced in section 10.8. Numerical experiments with MEP 
and sub-symbolic node representation are performed in section 10.9. Conclu- 
sions and the further work directions are suggested in section 10.10. 

10.2 Problem Statement 

Our aim is to find a Boolean function that satisfies a set of fitness cases. The 
particular function that we want to find is the Boolean even-parity function. 
This function has k Boolean arguments and it returns T (True) if an even 
number of its arguments are T. Otherwise the even-parity function returns F 
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(False) [7, 181. According to [7] the Boolean even-parity functions appear to 
be the most difficult Boolean functions to detect via a blind random search. 

In applying a Genetic Programming technique (particularly Multi Expres- 
sion Programming) to the even-parity function of k arguments, the terminal 
set T consists of the k Boolean arguments do, dl, dz, ... dk-1. 

The function set F usually consists of four two-argument primitive Boolean 
functions (also called gates [9]): AND, OR, NAND, NOR [7, 81. Using this 
set we can obtain a solution for small instances of the even-parity problem. 
Genetic Programming with Automatically Defined Functions has obtained 
a solution for up to even-11-parity problem using a reasonable population 
size. If we extend this set by including other Boolean functions (such as EQ 
and XOR) we can obtain solutions for larger instances. For instance, in [18] 
Genetic Programming using an extended set of function symbols has been 
used for solving up to even-22-parity problems. Note that in this case a parallel 
variant of GP was used on a network of computers structured in a client-server 
architecture. 

The set of fitness cases for this problem consists of the 2k combinations of 
the Ic Boolean arguments. The fitness of an MEP chromosome is the sum, over 
these 2k fitness cases, of the Hamming distance (error) between the returned 
value by the MEP chromosome and the correct value of the Boolean function. 
Since the standardized fitness ranges between 0 and 2k, a value closer to zero 
is better (the fitness is to be minimized). 

10.3 Multi Expression Programming 

In this section the Multi Expression Programming (MEP) [ll] paradigm is 
briefly described. 

10.3.1 Individual Representation 

MEP genes are represented by substrings of a variable length. The number 
of genes per chromosome is constant and it defines the length of the chromo- 
some. Each gene encodes a terminal or a function symbol. A gene encoding a 
function includes references towards the function arguments. Function argu- 
ments always have indices of lower values than the position of that function 
in the chromosome. 

This representation is similar to the way in which C and Pascal compilers 
translate mathematical expressions into machine code [I]. 

MEP representation ensures that no cycle arises while the chromosome 
is decoded (phenotypically transcripted). According to the representation 
scheme the first symbol of the chromosome must be a terminal symbol. In 
this way only syntactically correct programs (MEP individuals) are obtained. 
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Example. We employ a representation where the numbers on the left positions 
stand for gene labels (or memory addresses). Labels do not belong to the 
chromosome, they are provided here only for explanation purposes. 

For this example, we use the set of functions F = {+, *) and the set of 
terminals T = {a, b, c, d). An example of chromosome using the sets F and 
T is given below: 

10.3.2 Decoding MEP Chromosome and Fitness Assignment 

In this section we described the way in which MEP individuals are translated 
into computer programs and the way in which the fitness of these programs 
is computed. 

This translation is achieved by reading the chromosome top-down. A termi- 
nal symbol specifies a simple expression. A function symbol specifies a complex 
expression obtained by connecting the operands specified by the argument po- 
sitions with the current function symbol. 

For instance, genes 1, 2, 4 and 5 in the previous example encode simple 
expressions formed by a single terminal symbol. These expressions are El = a, 
Ez = b, E4 = c and Eg = d. Gene 3 indicates the operation + on the 
operands located at positions 1 and 2 of the chromosome. Therefore gene 
3 encodes the expression E3 = a + b. Gene 6 indicates the operation + on the 
operands located at positions 4 and 5. Therefore gene 6 encodes the expression 
E6 = c + d. Gene 7 indicates the operation * on the operands located at 
position 3 and 6. Therefore gene 7 encodes the expression E7 = (a + b) * (c+ d), 
wherein E7 is the expression encoded by the whole chromosome. 

There is neither practical nor theoretical evidence that one of these ex- 
pressions is better than the others. Moreover Wolpert and McReady [20, 211 
proved that we cannot use the search algorithm's behavior so far for a par- 
ticular test function to predict its future behavior on that function. Thus we 
cannot choose one of the expressions (let us say expression E7) to store the 
output of the chromosome. Even this expression proves to be useful for the 
first 10 generations we cannot guarantee that it will be the best option for all 
generations. 

This is why each MEP chromosome is allowed to encode a number of 
expressions equal to the chromosome length. Each of these expressions is con- 
sidered as being a potential solution of the problem. 
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The value of these expressions may be computed by reading the chromo- 
some top down. Partial results are computed by Dynamic Programming [2] 
and are stored in a conventional manner. 

As MEP chromosome encodes more than one problem solution, it is in- 
teresting to see how the fitness is assigned. Usually the chromosome fitness is 
defined as the fitness of the best expression encoded by that chromosome. For 
instance, if we want to solve symbolic regression problems the fitness of each 
sub-expression Ei may be computed using the formula: 

where ok,i is the obtained result by the expression Ei for the fitness case k 
and wk is the targeted result for the fitness case k. In this case the fitness 
needs to be minimized. 

The fitness of an individual is set to be equal to the lowest fitness of the 
expressions encoded in chromosome: 

When we have to deal with other problems we compute the fitness of 
each sub-expression encoded in the MEP chromosome and the fitness of the 
entire individual is given by the fitness of the best expression encoded in that 
chromosome. 

10.3.3 Genetic Operators 

Search operators used within MEP algorithm are crossover and mutation. 
These operators preserve the chromosome structure. All offspring are syntac- 
tically correct expressions. 

Crossover 

By crossover two parents are selected and recombined. For instance, within 
the uniform recombination the offspring genes are taken randomly from one 
parent or another. 

Example. Let us consider the two parents Cl and C2 given in Table 10.1. The 
two offspring O1 and O2 are obtained by uniform recombination as shown in 
Table 10.1. 

Mutation 

Each symbol (terminal, function or function pointer) in the chromosome may 
be the target of mutation operator. By mutation some symbols in the chro- 
mosome are changed. To preserve the consistency of the chromosome its first 
gene must encode a terminal symbol. 
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Table 10.1. MEP uniform recombination. 

Parents Offspring 

Example. Consider the chromosome C given in Table 10.2. If the boldfaced 
symbols are selected for mutation, an offspring 0 is obtained as given in Table 
10.2. 

Table 10.2. MEP mutation. 
c 0 

10.3.4 MEP Algorithm 

Standard MEP algorithm uses steady state [19] as its underlying mechanism. 
MEP algorithm starts by creating a random population of individuals. The fol- 
lowing steps are repeated until a given number of generations is reached. Two 
parents are selected using a selection procedure. The parents are recombined 
in order to obtain two offspring. The offspring are considered for mutation. 
The best offspring replaces the worst individual in the current population if 
the offspring is better than the worst individual. The algorithm returns as its 
answer the best expression evolved along a fixed number of generations. 

10.4 Assessing the Performance of the MEP Algorithm 

For assessing the performance of the MEP algorithm three statistics are of 
high interest: 
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(i) The relationship between the success rate and the number of genes in a 
MEP chromosome, 

(ii)The relationship between the success rate and the size of the population 
used by the MEP algorithm, 

(iiiphe computational effort. 

The success rate is computed using the equation (10.1). 

The number o f successful runs 
Success rate = 

The total number of  runs 
' (10.1) 

Another method used to assess the effectiveness of an algorithm, has been 
suggested by Koza [7]. The method consists of calculating the number of 
chromosomes, which would have to be processed to give a certain probability 
of success. To calculate this figure one must first calculate the cumulative 
probability of success P(M,  i), where M represents the population size, and i 
the generation number. The value R(z) represents the number of independent 
runs required for a probability of success (given by z )  at  generation i. The 
quantity I (M,  z, i )  represents the minimum number of chromosomes which 
must be processed to give a probability of success z, at generation i. The 
formulae are given by the equations (10.2), (10.3) and (10.4). Ns(i) represents 
the number of successful runs at  generation i, and Ntotal, represents the total 
number of runs. Note that when z = 1.0 the formulae (10.3) and (10.4) are 
invalid (all runs successful). In the tables and graphs of this chapter z takes 
the value 0.99. 

log(1 - 2) 
R(z) = ceil { log(1- P(M,  i )  

Another important issue is related to the number of function evaluations 
performed by the considered techniques (MEP and GP in our case). Due to 
its special Multi-Expression ability MEP performs more function evaluations 
than GP (considering the same parameters for both algorithms). But, note 
that 1 function evaluation performed by MEP is not equivalent with 1 function 
evaluation performed by GP. MEP and GP have the same complexity for the 
process of decoding the individuals (that is O(NG), where NG is the number 
of genes). MEP encodes NG solutions in a chromosome whereas GP encodes 
1 solution in a chromosome. Thus, the complexity of performing 1 function 
evaluation is O(1) for MEP and O(NG) for GP. This is why we calculate 
the computational effort for both MEP and GP using the same formula 10.4 
without taking into account the number of genes in a MEP chromosome. 
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10.5 Numerical Experiments 

In this section we perform several experiments with standard MEP for solving 
several instances of the even-parity problem. General parameter settings for 
MEP are given in Table 10.3. 

Table 10.3. General parameters of the MEP algorithm for solving even-parity 
problems. 

Parameter Value 
Number of generations 51 
Mutation probability 0.2 
Crossover type Uniform 
Crossover probability 0.9 
Selection q-tournament (q = 10% of the Population size) 
Function set F = {AND, OR, NAND, NOR) 

For reducing the chromosome length we keep all the terminals on the first 
positions of the MEP chromosomes. We also increased the selection pressure 
by using larger values (usually 10% of the population size) for the tournament 
sample. 

Even-3- parity 

The even-3-parity problem has three Boolean inputs and one Boolean output. 
The number of fitness cases is 23 = 8. The relationship between the success 
rate and the number of genes in a chromosome and the population size is 
analyzed for this problem. 

A population of 100 individuals has been used when the relationship be- 
tween the success rate and the chromosome length has been analyzed. Chro- 
mosomes of 100 genes have been used for analyzing the relationship between 
the success rate and the population size. Other parameters of the MEP algo- 
rithm are given in Table 10.3. Results are depicted in Fig. 10.1. 

Fig. 10.1 shows that MEP is able to solve very well this problem. A popu- 
lation of 240 individuals each having 100 genes (see Fig. 10.1 right side) or a 
population of 100 individuals with 200 genes (see Fig. 10.1 left side) is suffi- 
cient to yield a 100% probability of success GP used [7] a population of 4000 
individuals in order to achieve a 100% probability of success for this problem. 

The shortest evolved circuit implementing the even-3-parity problem has 
6 gates. One of the evolved circuits is depicted in Fig. 10.2.The minimum 
computational effort required to solve this problem is 6840 and it has been 
obtained at generation 11 using a population of 40 individuals with 100 genes 
each. 
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Number of genes Population size 

Fig. 10.1. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 100 runs. 

Fig. 10.2. A circuit for the even-3-parity problem. 

In this experiment, the relationship between the number of genes in a chro- 
mosome and the success rate is analyzed for the even-4-parity problem. A 
population of 400 individuals has been used when the relationship between 
the success rate and the chromosome length has been analyzed. Chromosomes 
having 200 genes have been used for analyzing the relationship between the 
success rate and the population size. Other parameters of the MEP algorithm 
are given in Table 10.3. Results are depicted in Fig. 10.3. 

Fig. 10.3 shows that MEP performs very well on the considered test prob- 
lem. A population of 200 individuals each having 180 genes is sufficient for 
yielding a success rate of 42% (see Fig. 10.3 left side). 
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Number of genes Population size 

Fig. 10.3. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 100 runs. 

Knowing that GP used a population of 4000 individuals to achieve a suc- 
cess rate of 42% we may infer that MEP needs a population smaller with one 
order of magnitude than the population needed by GP to solve the even-4- 
parity problem. The shortest evolved circuit implementing the even-4-parity 
problem has 9 gates. One of the evolved circuits is depicted in Fig. 10.4. 

Fig. 10.4. A circuit for the even-Cparity problem. 

The minimum computational effort required to solve this problem is 45,900 
and it has been obtained at generation 9 using a population of 300 individuals 
with 200 genes each. 
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In this experiment, the behavior of the MEP algorithm for solving the even- 
5-parity problem is analyzed. For this problem MEP is run with a population 
of 4000 individuals having 600 genes each. In 5 runs (out of 30) MEP was able 
to find a perfect solution for this problem, yielding a success rate of 16.66%. 

Note that for this problem GP - without Automatically Defined Functions 
(ADFs) - was not able to obtain a solution (within 20 runs) with a popula- 
tion of 4000 individuals [7]. When the population size was increased to 8000 
individuals a solution was obtained by GP after 8 runs [7]. 

The curve representing the computational effort needed by MEP to solve 
the even-5-parity problem is depicted in Fig. 10.5. 

0 5 10 15 20 25 30 35 40 45 50 
Number of Generations 

Fig. 10.5. The computational effort and the cumulative probability of success for 
the even-5-parity problem. 

The minimum computational effort required to solve this problem is 
1,364,000 and it was obtained at generation 11. 

10.5.1 Summarized Results 

The results obtained by GP and MEP are summarized in Table 10.4. 
Table 10.4 shows that MEP outperforms standard GP with more than one 

order of magnitude for the even-3 and even-4-parity problems. 
We may conclude that MEP significantly outperforms standard GP (with- 

out ADFs) for these particular cases of the even-parity problem. 
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Table 10.4. Computational effort required by GP and MEP for solving several 
even-parity instances. G P  results are taken from [7]. 

Problem GP MEP 
even-bparity 80,000 6,840 

10.6 Automatically Defined Functions in MEP 

In this section we describe the way in which the Automatically Defined Func- 
tions [8] are implemented within the context of Multi Expression Program- 
ming. 

The necessity of using reusable subroutines is a day-by-day demand of the 
software industry. Writing reusable subroutines proved to reduce: 

(2) the size of the programs. 
(iz)the number of errors in the source code. 
(zzz,khe cost associated with the maintenance of the existing software. 
(zv)the cost and the time spent for upgrading the existing software. 

As noted by Koza [8] function definitions exploit the underlying regularities 
and symmetries of a problem by obviating the need to tediously rewrite lines 
of essentially similar code. Also, the process of defining and calling a function, 
in effect, decomposes the problem into a hierarchy of subproblems. 

A function definition is especially efficient when it is repeatedly called with 
different instantiations of its arguments. GP with ADFs have shown significant 
improvements over the standard GP for most of the considered test problems 
[7, 81. 

An ADF in MEP has the same structure as a MEP chromosome (i.e. a 
string of genes). The ADF is also evolved in the same way as a standard MEP 
chromosome. The function symbols used by an ADF are the same as those 
used by the standard MEP chromosomes. The terminal symbols used by an 
ADF are restricted to the function (ADF) parameters (formal parameters). 
For instance, if we define an ADF with two formal parameters po and pl 
we may use only these two parameters as terminal symbols within the ADF 
structure, even if in the standard MEP chromosome (i.e. the main evolvable 
structure) we may use, let say, 20 terminal symbols only. 

The set of function symbols of the main MEP structure is enriched with 
the Automatically Defined Functions considered in the system. 

Example. Let us suppose that we want to evolve a problem using 2 ADFs, 
denoted ADFO and ADFl having 2 (po and pl) respectively 3 (po and pl and 
p z )  arguments. Let us also suppose that the terminal set for the main MEP 
chromosome is T = {a ,  b) and the function set F = {+, -, *, 1). The terminal 



10 Improving Multi Expression Programming 241 

and function symbols that may appear in ADFs and main MEP chromosome 
are given in Table 10.5. 

Table 10.5. Parameters, terminal set and the function set for the ADFs and for 
the main MEP chromosome. 

Parameters Terminal set Function set 
ADFO Po, PI T={Po, pl) F={+,-,*,/) 
ADFl Po1 P11 P2 T={po, pi, p2) F={+,-,*,I} 
MEP chromosome - T={a, b )  F={+,-,*,I, ADFO, ADF1) 

The ADFO (pol pl) could be defined as follows: 

The main MEP chromosome could be the following: 

1. a 
2. b 
3. + 1, 2 
4. ADFO 3 , l  
5. a 
6. ADFl 4, 5, 5 
7. * 3, 6 

The fitness of a MEP chromosome is computed as described in section 
10.3.2. The quality of an ADF is computed in a similar manner. The ADF 
is read once and the partial results are stored in an array (by the means 
of Dynamic Programming [ 2 ] ) .  The best expression encoded in the ADF is 
chosen to represent the ADF. 

The genetic operators (crossover and mutation) used in conjunction with 
the standard MEP chromosomes may be used for the ADFs too. The prob- 
abilities for applying genetic operators are the same for MEP chromosomes 
and for the Automatically Defined Functions. The crossover operator may 
be applied only between structures of the same type (that is ADFs having 
the same parameters or main MEP chromosomes) in order to preserve the 
chromosome consistency. 

10.7 Numerical Experiments with MEP and ADFs 

In this section, several numerical experiments with Multi Expression Program- 
ming and Automatically Defined Functions are performed. The experiments 
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performed in this section show that the ADF mechanism greatly improves the 
quality of the search, allowing us to perform a detailed analysis up to the even- 
8-parity problem. General parameters for Multi Expression Programming are 
given in Table 10.6. 

Table 10.6. The general parameters of MEP with ADFs for solving even-parity 
problems. 

Parameter Value 
Number of generations 51 
Mutation 0.02 
Crossover type Uniform 
Selection q-tournament (q = 10% of the Population Size) 
Function set F = {AND, OR, NAND, NOR) 

All terminals are kept on the first positions of the MEP chromosomes. The 
tournament size is set to 10% of the population size). 

In this experiment the relationship between the success rate, the population 
size and the chromosome length for the even-$-parity problem is analyzed. 

A population of 200 individuals is used when the relationship between the 
success rate and the chromosome length is analyzed. Chromosomes having 200 
genes is used for analyzing the relationship between the success rate and the 
population size. Two Automatically Defined Functions taking two and three 
arguments are used in conjunction with Multi Expression Programming. The 
number of genes in ADFs was set to 50. Other parameters are given in Table 
10.6. Results are depicted in Fig. 10.6. 

The success rate of MEP is 100% when the population size is 200. By 
contrast, Genetic Programming uses a population of 4000 individuals to obtain 
the same success rate (100%) [7]. 

We also computed the effort needed to solve this problem. For this purpose 
we use a population of 60 MEP individuals having 200 genes each. The number 
of individuals that needs to be processed in order to obtain a solution with 
99% probability is 7,440. This number was obtained at generation 43. 

For this experiment we use a population with 400 individuals. Each individual 
has 200 genes. Three Automatically Defined Functions taking two, three and 
four arguments are used. The number of genes in each ADF is 50. Other MEP 
parameters are given in Table 10.6. 
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Population size 

Fig. 10.6. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 100 runs. 

The cumulative probability of success and the computational effort needed 
for solving this problem are depicted in Fig. 10.7. 

0 5 10 15 20 25 30 35 40 45 50 
Number of Generations 

Fig. 10.7. The computational effort and the cumulative probability of success for 
the even-5-parity problem. Results are averaged over 100 runs. 
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The I (M,  i, z )  curve reaches a minimum value at generation 15. Process- 
ing a number of 36,000 individuals is sufficient to yield a solution with 99% 
probability. 

As a comparison, GP with ADFs requires 152,000 individuals to be pro- 
cessed in order to obtain a solution with 99% probability [8]. 

For this problem we use a population with 800 individuals. Each individual has 
300 genes. Three ADFs taking two, three and four arguments are used. The 
number of genes in each ADF is 50. Other parameters of the MEP algorithm 
are given in Table 10.6. Results are presented in Fig. 10.8. 

0 5 10 15 20 25 30 35 40 45 50 
Number of Generations 

Fig. 10.8. The computational effort and the cumulative probability of success for 
the even-6-parity problem. Results are averaged over 50 runs. 

The I ( M ,  i, z )  curve reaches a minimum value at generation 9. Processing 
a number of 93,600 individuals is sufficient to yield a solution to with 99% 
probability. 

For this experiment we use a population with 1000 individuals. Each indi- 
vidual has 400 genes. Three ADFs taking two, three and four arguments are 
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Number of Generations 

Fig. 10.9. The computational effort and the cumulative probability of success for 
the even-7-parity problem. Results are averaged over 50 runs. 

used. The number of genes in each ADF is 100. Other parameters are given 
in Table 10.6. Results are given in Fig. 10.9. 

Fig. 10.9 shows that the I ( M ,  i, z )  curve reaches a minimum value at 
generation 20. Processing a number of 160,000 individuals is sufficient to yield 
a solution to with 99% probability. The cumulative probability of success is 
60% at generation 50. 

This case of the even-parity is the most difficult problem analyzed in this 
section. A population of 1000 individuals is used in this case. Each individual 
has 400 genes. Three ADFs taking two, three and four arguments are used. 
The number of genes in each ADF is 100. Other parameters are given in 
Table 10.6. Due to the increased computational time we performed only five 
runs which are not sufficient for computing a statistic (i.e. the success rate or 
the computational effort). A perfect solution (satisfying all fitness cases) was 
obtained in the fourth run. 

10.7.1 Summarized Results 

The results obtained by GP and MEP with Automatically Defined Functions 
are summarized in Table 10.7. 
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Table 10.7. Computational effort required by GP with ADFs and MEP with ADFs 
for solving several even-parity instances. GP results are taken from [8]. 

Problem GP with ADFs MEP with ADFs 
even-4-parity 80,000 7,440 

Table 10.7 shows that MEP with ADFs outperforms GP with ADFs with 
more than one order of magnitude for the even-4, even-5, even-6, and even-7- 
parity problems. 

10.8 Sub-Symbolic Node Representation 

The Sub-Symbolic Node Representation [15, 181 in order to allow GP to per- 
form small moves in the search space. It is widely known that a single point 
mutation, that can be applied to a MEP chromosome under the standard rep- 
resentation, may nevertheless result in a significant change in behavior of the 
MEP program. For instance, consider the gene AND 1 7, where the expressions 
encoded in positions 1 and 7 are Boolean expressions. If the operator AND is 
replaced with NAND, the return value of that subtree will be changed for all 
fitness cases. Instead of such a radical change we want a smoother mechanism 
that produced a more refined result (that is a mechanism that changes the 
results produced by only a subset of the training set). 

A Boolean function of arity n can be represented as a truth table (bit- 
string) of length 2n, specifying its return values on each of the 2n input com- 
binations. Thus, AND may be represented as 1000, OR as 1110, XOR as 0110. 
This representation is referred [15, 181 as sub-symbolic because function nodes 
are now seen as collection of entities rather than atomic units. 

One feature of the Sub-Symbolic representation of Boolean function nodes 
is that, in contrast with the reduced function set normally used in Boolean 
classification tasks, it is unbiased, since it incorporates all 2n nodes of arity n 
into its function set. Some of these may be superfluous (e.g. always-ON and 
always-OFF). 

Our principal reason for including all Boolean functions of a given arity in 
our set is simplicity [18]. IF we want to reduce this set we have to put some 
constrains in the smooth operators (described in the next section). Note that 
the EQ and XOR functions are necessarily included in the arity 2 functions sets 
and that these will probably enhance the performance on the parity problems. 
On the other hand, the function set is much larger than normal leading to a 
significantly larger search space. 
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10.8.1 Smooth MEP Operators 

In this section two new MEP operators are proposed. These operators are 
similar to the standard MEP operators but they can work with the sub- 
symbolic node representation. 

Smooth Uniform Crossover 

By crossover two parents are selected and are recombined. For instance, within 
the uniform recombination the offspring genes are taken randomly from one 
parent or another. The function parts, which are now binary strings of length 
4, are recombined using the uniform crossover from the binary encoding [4]. 

Example. Let us consider the two parents Cl and C2 given in Table 10.8. The 
two offspring 01 and 0 2  are obtained by uniform recombination as shown in 
Table 10.8. 

Table 10.8. MEP smooth uniform crossover. 

Parents Offspring 
C1 c'2 01 0'2 

Smooth Mutation 

Each symbol (terminal, function reference and bit encoding the function sym- 
bol) in the chromosome may be target of mutation operator. Each binary 
position encoding the function symbol in a gene is affected by the smooth 
mutation operator with the same probability as all other symbols in a chro- 
mosome. To preserve chromosome consistency its first gene must encode a 
terminal symbol. 

Example. Consider the chromosome C given in Table 10.9. If the boldfaced 
symbols are selected for mutation an offspring 0 is obtained as shown in Table 
10.9. 
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Table 10.9. MEP smooth mutation. 

10.9 Numerical Experiments with MEP and 
Sub-Symbolic Representation 

The use of Sub-symbolic representation greatly improved the performance 
of MEP algorithm. Due to this reason we begin our experiments with the 
even-11-parity problem. 

In [18] a parallel version of GP was used to solve the even-parity problem 
using a sub-symbolic representation. The parallel GP program was run on a 
client-server architecture with 50 processors. In [18] the authors performed a 
single run for all instances larger than the even-12-parity problem. More than 
that, a special technique called sub-machine code GP [17] was used in order 
to speed-up the GP program. The technique sub-machine code GP make use 
of processor's ability to perform some operations (such as AND) in parallel 
for all bits. 

Due to the simplicity and efficiency of the MEP algorithm we performed 
multiple runs (at least 10) for each experiment. This allows us to compute 
the statistics described in section 10.4. Note that MEP was run on a single 
processor (at 850 MHz) architecture. 

General parameter settings used by MEP in all the experiments performed 
in this section are given in Table 10.10. 

Table 10.10. MEP parameters for solving even-parity problems using a sub- 
symbolic representation of operators. 

Parameter Value 
Mutation probability 0.02 
Crossover type Uniform 
Crossover probability 0.9 
Selection binary tournament 
Function set 16 Boolean functions 
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The even-11-parity problem has 11 Boolean inputs and one Boolean output. 
The number of fitness cases is 2'' = 2048. 

The relationship between the success rate and the number of genes in a 
chromosome and the population size is analyzed for this problem. 

A population of 50 individuals is used when the relationship between the 
success rate and the chromosome length is analyzed. Chromosomes with 300 
genes are used for analyzing the relationship between the success rate and the 
population size. The number of generations was set to 100. Other parameters 
of the MEP algorithm are given in Table 10.11. Results are depicted in Fig. 

Number of genes Population size 

Fig. 10.10. The relationship between the success rate and the chromosome length 
(left side) and the population size (right side). Results are averaged over 50 runs. 

Fig. 10.10 show that MEP is able to solve very well this problem. A pop- 
ulation of 70 individuals having 300 genes each(see Fig. 10.10 right side) is 
sufficient to yield a 100% probability of success. The success rate increases as 
long as the number of genes in a MEP chromosome increases (see Fig. 10.10). 

The number of fitness cases for the even-12-parity problem is 4096. For solving 
this problem with MEP we use a population of 25 individuals having 500 genes 
each. Other MEP parameters are given in Table 10.10. The program was run 
for 100 generations. Results over 100 independent runs are presented in Fig. 
10.11. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 7,420. This number 
is obtained at  generation 99. 
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Number of Generations 

Fig. 10.11. The computational effort and the cumulative probability of success for 
the even-12-parity problem. Results are averaged over 100 runs. 

By contrast, Genetic Programming with a population of 100 individuals 
requires 98,800 individuals to be processed in order to obtain a solution with 
99% probability [18]. Thus, GP requires at least 13.6 times more individuals 
to be processed than MEP for solving this problem. 

Even- 13-parity 

The number of fitness cases for this problem is 8192. We use the same MEP 
parameters as for the even-12-parity problem. The relationship between the 
number of generations and the cumulative probability of success is depicted 
in Fig. 10.12. The number of individuals to be processed in order to obtain a 
solution with 99% probability is computed for this problem, too. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 2,325. This number 
is obtained at generation 93. 

Even- 14-parity 

The number of fitness cases for the even-14-parity problem is 16384. For solv- 
ing this problem with MEP we use a population of 40 individuals having 500 
genes each. Other MEP parameters are given in Table 10.10. The program 
was run for 100 generations. Results over 100 independent runs are presented 
in Fig. 10.13. 
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Fig. 10.12. The computational effort and the cumulative probability of success for 
the even-13-parity problem. Results are averaged over 100 runs. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 7,210. This number 
is obtained at generation 89. 

The number of fitness cases for the even-15-parity problem is 32768. For solv- 
ing this problem with MEP we use a population of 100 individuals having 700 
genes each. Other MEP parameters are given in Table 10.10. The program 
was run for 100 generations. Results over 100 independent runs are presented 
in Fig. 10.14. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 29,700. This number 
is obtained at  generation 99. 

Even- 16-parity 

The number of fitness cases for the even-16-parity problem is 65536. For solv- 
ing this problem with MEP we use a population of 100 individuals having 700 
genes each. Other MEP parameters are given in Table 10.10. The program 
was run for 250 generations. Results over 100 independent runs are presented 
in Fig. 10.15. 
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Fig. 10.13. The computational effort and the cumulative probability of success for 
the even-14-parity problem. Results are averaged over 100 runs. 

The minimum number of individuals that needs to be processed in order 
to obtain a solution with a 99% probability of success is 28,000. This number 
is obtained at generation 140. 

For this problem we performed 10 independent runs using the same parameters 
as those used for the problem even-16-parity. In all runs we obtained a perfect 
solution. The average number of generations required to obtain a solution is 
131. 

For this problem we performed 6 independent runs using the same parameters 
as those used for the problem even-16-parity. In 4 runs we obtained a perfect 
solution. The average number of generations required to obtain a solution is 
168. 

10.9.1 Summarized Results 

The results obtained by MEP with Sub-symbolic node representation are 
summarized in Table 10.11. 
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Fig. 10.14. The computational effort and the cumulative probability of success for 
the even-15-parity problem. Results are averaged over 100 runs. 

Table 10.11. Computational effort required by GP and MEP with Sub-symbolic 
node representation for solving several even-parity instances. GP results are taken 
from [18]. 

Problem GP with Sub- MEP with Sub- 
Symbolic node repre- Symbolic node repre- 
sentation sentat ion 

even-12-parity 98,800 7,420 
even-lbparity - 2,325 
even-14-parity - 7,210 
even-15-parity - 29,700 
even-16-parity - 28,000 

Table 10.10 shows that MEP is able to solve the considered instances of the 
parity problem very well. The cells corresponding to GP are empty because 
GP was run only once for the considered examples. 

10.10 Conclusions and Further Work 

In this chapter, MEP technique has been used for solving even-parity prob- 
lems. Two mechanisms for improving the MEP technique have been proposed 
and tested: Automatically Defined Functions and Sub-symbolic node repre- 
sentation. 
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Fig. 10.15. The computational effort and the cumulative probability of success for 
the even-16-parity problem. Results are averaged over 100 runs. 

Tables 10.4, 10.9 and 10.10 show that MEP outperforms GP when the 
success rate and the number of individuals to be processed is considered. As 
we said it before this statistics should be interpreted carefully since there are 
significant differences between GP and MEP representations and a perfect 
comparison between these two techniques cannot be made. 

Further research will be focused on developing a Hierarchically Automat- 
ically Defined Functions [8] system within the context of Multi Expression 
Programming. In this system any function is allowed to call any other func- 
tion already defined within the system. 

Further efforts will be dedicated for implementing a parallel version of 
MEP (similar to that used in [18] for GP). Using this implementation we will 
be able to solve other large scale problems including higher versions of the 
even-parity problem. 
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