

N. Nedjah, L. M. Mourelle (Eds.)

Evolvable Machines

Studies in Fuzziness and Soft Computing, Volume 161

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springeronline.com

Vol. 144. Z. Sun, G.R. Finnie
Intelligent Techniques in E-Commerce, 2004
ISBN 3-540-20518-7

Vol. 145. J. Gil-Aluja
Fuzzy Sets in the Management of
Uncertainty, 2004
ISBN 3-540-20341-9

Vol. 146. J.A. Gamez, S. Moral, A. Salmeron
(Eds.)
Advances in Bayesian Networks, 2004
ISBN 3-540-20876-3

Vol. 147. K. Watanabe, M.M.A. Hashem
New Algorithms and their Applications to
Evolutionary Robots, 2004
ISBN 3-540-20901-8

Vol. 148. C. Martin-Vide, V. Mitrana,
G. Pitun (Eds.)
Formal Languages and Applications, 2004
ISBN 3-540-20907-7

Vol. 149. J.J. Buckley
Fuzzy Statistics, 2004
ISBN 3-540-21084-9

Vol. 150. L. Bull (Ed.)
Applications ofLearning Classifier Systems,
2004
ISBN 3-540-21109-8

Vol. 151. T. Kowalczyk, E. Pleszczyliska,
F. Ruland (Eds.)
Grade Models and Methods for Data
Analysis, 2004
ISBN 3-540-21120-9

Vol. 152. J. Rajapakse, L. Wang (Eds.)
Neural Information Processing: Research
and Development, 2004
ISBN 3-540-21123-3

Vol. 153. J. Fulcher, L.C. Jain (Eds.)
Applied Intelligent Systems, 2004
ISBN 3-540-21153-5

Vol. 154. B. Liu
Uncertainty Theory, 2004
ISBN 3-540-21333-3

Vol. 155. G. Resconi, J.L. Jain
Intelligent Agen ts, 2004
ISBN 3-540-22003-8

Vol. 156. R. Tadeusiewicz, M.R. Ogiela
Medical Image Understanding Technology,
2004
ISBN 3-540-21985-4

Vol. 157. R.A. Aliev, F. Fazlollahi, R.R. Aliev
Soft Computing and its Applications in
Business and Economics, 2004
ISBN 3-540-22138-7

Vol. 158. K.K. Dompere
Cost-Benefit Analysis and the Theory
of Fuzzy Decisions - Identification and
Measurement Theory, 2004
ISBN 3-540-22154-9

Vol. 159. E. Damiani, L.C. Jain, M. Madravia
Soft Computing in Software Engineering,
2004
ISBN 3-540-22030-5

Vol. 160. K.K. Dompere
Cost-Benefit Analysis and the Theory
ofFuzzy Decisions - Fuzzy Value Theory,
2004
ISBN 3-540-22161-1

Nadia Nedjah
Luiza de Macedo Mourelle (Eds.)

Evolvable Machines
Theory & Practice

a - Springer

Nadia Nedjah
Luiza d e Macedo Mourelle

Universidade do Estado do Rio de Janeiro

Departamento de Engenharia de Sistemas e Computapio

Rua SBo Francisco Xavier, 524

MaracanH, CEP, 20550-900

Rio de Janeiro, RJ

Brazil

E-mail: nadia@eng.uerj.br

ldmm@eng.uerj.br

ISSN 1434-9922
ISBN 3-540-22905-1 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2004110948

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable to prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

0 Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: data delivered by editors
Cover design: E. Kirchner, Springer-Verlag, Heidelberg
Printed on acid free paper 6213020lM - 5 4 3 2 1 0

To the memory of my father Ali and my beloved mother Fatiha,

Nadia

To my beloved parents Neuxa and Luix,

Luiza

Preface

Evolutionary algorithms are computer-based solving systems, which use the
evolutionary computational models as key element in their design and im-
plementation. A variety of evolutionary algorithms have been proposed. The
most popular ones are genetic algorithms. They have a conceptual base of
simulating the evolution of individual structures via the Darwinian natural
selection process. The process depends on the adherence of the individual
structures as defined by its environment to the problem pre-determined con-
straints. Genetic algorithms are well suited to provide an efficient solution of
hard problems.

Methods for artificial evolution of active components, such as programs
and hardware, are rapidly developing branches of adaptive computation and
adaptive engineering. The evolutionary process can produce, as results, com-
putational expressions, e.g. algorithms, or machines, e.g. mechanical or elec-
tronic devices. The evolved components generally present creativity as well as
inventiveness. Furthermore, they are usually efficient in terms of the specified
requirements.

This book is devoted to reporting innovative and significant progress in
automatic and evolutionary methodology of applied to machine design. The-
oretical as well as practical chapters are contemplated.

The content of this book is divided into three main parts. The first part
consists of four chapters while the second and third part have three chapters.
In the following, we give a brief description of the main contribution of each
of these chapters.

Part I: Evolvable Robots

In Chapter 1, which is entitled Learning for Cooperative Transportation by
Autonomous Humanoid Robots, the authors, Yutaka Inoue, Takahiro To-

VIII Preface

hge and Hitoshi Iba, first clarify the practical difficulties we face from the
cooperative transportation task with two bodies of humanoid robots. After-
wards, we propose a solution to these difficulties and empirically show the
effectiveness both by simulation and by real robots.

In Chapter 2, which is entitled Evolution, Robustness and Adaptation of
Sidewinding Locomotion of Simulated Snake-like Robot, the authors, namely
Ivan Tanev, Thomas Ray and Andrzej Buller, inspired by the effi-
cient method of locomotion of the rattlesnake, propose an automatic design
through genetic programming, of the fastest possible sidewinding locomotion
of simulated limbless, wheelless snake-like robot or snakebot. this work can be
considered as a step forward towards building real Snakebots that are able to
perform robustly in difficult environment.

In Chapter 3, which entitled Evolution of Khepera Robotic Controllers with
Hierarchical Genetic Programming Techniques, the authors, namely Marcin
L. Pilat and Franz Oppacher, show how to evolve robotic controllers for
a miniature mobile Khepera robot. They concentrate on control tasks for ob-
stacle avoidance, wall following, and light avoidance. The robotic controllers
are evolved through canonical GP implementation, linear genome GP system,
and hierarchical GP methods (Automatically Defined Functions, Module Ac-
quisition, Adaptive Representation through Learning).

In Chapter 4, which entitled Evolving Controllers for Miniature Robots,
the author, namely Michael Botros, presents a series of experiments in
evolutionary robotics that used the miniature mobile robot Khepera. Khepera
robot is widely used in evolutionary experiments due to its small size and
light weight which simplify the setup of the environments needed for the
experiments. The controllers evolved in the presented experiments include
classical and spiking neural networks controllers, fuzzy logic controllers and
computer program obtained by Genetic Programming.

Part 11: Evolvable Hardware Synthesis

In Chapter 5, which is entitled Evolutionary Synthesis of Synchronous Fi-
nite State Machines, the authors, namely Nadia Nedjah and Luiza d e
Macedo Mourelle, propose an evolutionary methodology synthesise finite
state machines. First, they optimally solve the state assignment NP-complete
problem, which is inherent to designing any synchronous finite state machines
using genetic algorithms. This is motivated by the fact that with an optimal
state assignment one can physically implement the state machine in question
using a minimal hardware area and response time. Second, with the optimal
state assignment provided, we propose to use the evolutionary methodology
to yield optimal evolvable hardware that implement the state machine con-
trol component. The evolved hardware requires a minimal hardware area and
introduces a minimal propagation delay of the machine output signals.

Preface IX

In Chapter 6, which is entitled Automating the Hierarchical Synthesis of
MEMS Using Evolutionary Approaches, the authors, namely Zhun Fan, Ji-
achuan Wang, Kisung Seo, Jianjun Hu, Ronald Rosenberg, Janis
Terpenny and Erik Goodman, first discuss the hierarchy that is involved
in a typical MEMS design. Then they move on to discuss how evolutionary
approaches can be used to automate the hierarchical design and synthesis pro-
cess for MEMS. At the system level, genetic programming, as a strong search
tool, is used to generate and search in the topologically open-ended design
space. A multiple-resonator microsystem design is taken as an example to il-
lustrate the integrated design automation idea using evolutionary approaches
at multiple levels.

In Chapter 7, which is entitled An Evolutionary Approach to Multi-FPGAs
System Synthesis, the authors, namely F. Ferndndez de Veja, J.I. Hi-
dalgo, J.M. SQnchez and J. Lanchares, explain in details a methodology
for Multi-FPGA systems design. They describe a set of techniques based on
evolutionary algorithms, and we show that they are capable of solving all
of the design tasks, which are partitioning, placement and routing. Firstly
a hybrid compact genetic algorithm is used solves the partitioning problem
and then genetic programming is exploited to evolve a solution for the two
remaining tasks.

Part 111: Evolvable Designs

In Chapter 8, which is entitled Evolutionary Computation and Parallel Pro-
cessing Applied to the Design of Multilayer Perceptrons, the authors namely,
Ana Claudia M. L. Albuquerque, Jorge D. Melo a n d Adriiio D.
D6ria Neto, present the use of genetic algorithms in defining the neural net-
work's architecture and in refining its synaptic weights. A different approach
of a cooperative parallel genetic algorithm with different evolution behaviors
is given. Applications on approximation of functions will be illustrated.

In Chapter 9, which is entitled Evolvable Fuzzy Hardware for Real-time
Embedded Control in Packet Switching, the authors, namely J u Hui Li,
Meng Hiot Lim, Qi Cao, describe a scheme to implement an Evolvable
Fuzzy Hardware for real-time Packet Switching Problem. The proposed evolv-
able fuzzy hardware addresses many issues effectively. For the hardware im-
plementation of the evolvable fuzzy hardware, real-time fuzzy inference with
high-speed context switching capability is necessary. This aspect is addressed
through implementation based on a context independent reconfigurable fuzzy
inference chip.

In Chapter 10, which is entitled Improving Multi Expression Programming:
An Ascending Trail from Sea-Level Even-3-Parity Problem to Alpine Even-18-
Parity Problem, the author, namely Mihai Oltean, proposes and uses several
techniques for improving the search performed by Multi Expression Program-
ming. Some of the most important improvements are Automatically Defined

X Preface

Functions and Sub-symbolic node representation. Several experiments with
Multi Expression Programming are performed in this chapter. Numerical re-
sults show that Multi Expression programming performs very well for the
considered test problems.

Nadia Nedjah, Ph.D.
Luiza de Macedo Mourelle, Ph.D.

Department of System Engineering & Computation
Faculty of Engineering

State University of Rio de Janeiro
(nadia I ldmm) @eng . uer j . br

http://www.eng.uerj.br

Contents

Part I Evolvable Robots

1 Learning for Cooperative Transportation by Autonomous
Humanoid Robots
Yutaka Inoue. Takahiro Tohge. Hitoshi Iba . 3
1.1 Introduction . 3

. 1.2 Problem in cooperative Transportation by humanoid Robots 4
1.3 Approach of Transportation Control . 7

. 1.4 Learning to Correct Positioning 9
. 1.4.1 Learning Model 9

1 A.2 Learning in Simulator . 11
1.4.3 Result of Simulator Learning . 11
1.4.4 Experiments with Real Robots . 13

. 1.4.5 Experimental results 15
1.5 Cooperative Transportation to Target Position 15

1.5.1 Experiments with Real robots . 15
1.5.2 Experimental results . 17

1.6 Discussion . 17
1.7 Conclusion . 19
References . 19
Bibliography . 19

2 Evolution. Robustness and Adaptation of Sidewinding
Locomotion of Simulated Snake-like Robot
Ivan Tanev. Thomas Ray. Andrzej Buller . 21
2.1 Introduction . 22
2.2 Approach . 23

. 2.2.1 Representation of Snakebot 23
2.2.2 Algorithmic paradigm . 24

2.3 Experimental Results . 27
2.3.1 Evolution of fastest locomotion gaits . 28

XI1 Contents

2.3.2 Robustness of Evolved Sidewinding Locomotion 34
. 2.3.3 Adaptation 37

. 2.4 Summary 39
. References 39

3 Evolution of Khepera Robotic Controllers with Hierarchical
Genetic Programming Techniques
Marcin L . Pilat. Franz Oppacher . 43

. 3.1 Introduction 43
. 3.2 Genetic Programming 44

. 3.3 Robotic Control 45
. 3.4 Khepera Simulators 46

3.4.1 Khepera Robot . 47
3.4.2 Khepera Simulator . 48
3.4.3 Khepera GP Simulator . 48

. 3.5 Robotic Controllers 50
. 3.5.1 Tree-based GP 50

. 3.5.2 Linear Genome GP 51
3.5.3 Automatically Defined Functions HGP . 52
3.5.4 Module Acquisition HGP . 53

. 3.5.5 Adaptive Representation HGP 54
. 3.6 Results 56

. 3.6.1 Obstacle Avoidance 56
. 3.6.2 Wall Following 59
. 3.6.3 Light Avoidance 60

. 3.7 Summary 62
. References 70

4 Evolving Controllers for Miniature Robots
. Michael Botros 73

4.1 Introduction . 73
4.2 Evolutionary Computations and Robotics . 75
4.3 Evolving Neural Network Controllers . 77

4.3.1 Experiment 1: Evolving Obstacle Avoidance Behavior 77
4.3.2 Experiment 2: Evolving Light Seeking Behavior 79
4.3.3 Experiment 3: Evolving Recharging and Home Seeking Behavior 80
4.3.4 Experiment 4: Evolving Trash Collection Behavior 82
4.3.5 Experiment 5: Co-evolving Predator-Prey Behavior 84

. 4.4 Evolving Fuzzy Logic Controllers 87
4.4.1 Experiment 6: Evolving Corridor Following Behavior 89

. 4.5 Evolving Controlling Programs 89
4.5.1 Experiment 7: Evolving Obstacle Avoidance behavior using

. Genetic Programming 90
4.6 Evolving Spiking Neural Network Controllers . 91

4.6.1 Experiment 8: Evolving Vision Based Navigation 93

Contents XI11

4.7 Comment on different approaches of evolutionary robotics 94
. 4.8 Summary 97

. References 98
Bibliography . 98

Part I1 Evolvable Hardware Synthesis

5 Evolutionary Synthesis of Synchronous Finite State
Machines

. Nadia Nedjah. Luiza de Macedo Mourelle 103
. 5.1 Introduction 103

. 5.2 Synchronous Finite State Machines 105
5.2.1 Example of State Machine . 106

. 5.3 Principles of Genetic Algorithms 108
5.3.1 Assignment Encoding . 109

. 5.3.2 Individual Reproduction 109
5.4 Application to the State Assignment Problem . 113

. 5.4.1 State Assignment Encoding 114
5.4.2 Genetic Operators for State Assignments 114
5.4.3 State Assinment Fitness Evaluation . 114

. 5.5 Comparative Results 116
5.6 Evolvable Hardware for the Control Logic . 116

. 5.6.1 Circuit Encoding 119
. 5.6.2 Circuit Reproduction 119

. 5.6.3 Circuit Evaluation 120
. 5.7 Comparative Results 122

. 5.8 Summary 125
. References 126

6 Automating the Hierarchical Synthesis of MEMS Using
Evolutionary Approaches
Zhun Fan. Jiachuan Wang. Kisung Seo. Jianjun Hu. Ronald Rosenberg.

. Janis Terpenny. Erik Goodman 129
. 6.1 Introduction 130

6.2 Hierarchical MEMS Design Methodology . 131
6.3 System-Level Synthesis of MEMS Using Genetic Programming and

. Bond Graphs 132
. 6.3.1 Bond graphs 133

6.3.2 Combining bond graphs and genetic programming 133
. 6.3.3 Filter topology 135

. 6.3.4 Function set 135
. 6.3.5 Design embryo 136
. 6.3.6 Fitness function 137

. 6.3.7 Experimental setup 139

XIV Contents

6.3.8 Experimental result . 140
6.4 Second-Level Physical Layout Synthesis Formatting the Headings . . . 140

6.4.1 Solving the constrained optimization problem using GA 146
6.5 Summary . 146
References . 147

7 An Evolutionary Approach to Multi-FPGAs System
Synthesis
F . Ferna'ndez de Veja. J.I. Hidalgo. J.M. Sdnchez. J . Lanchares 151
7.1 Introduction . 151
7.2 Evolutionary Algorithms . 154

7.2.1 The Compact Genetic Algorithms . 155
7.2.2 Genetic Programming . 157

7.3 MFS partitioning and FPGA assignment . 159
7.3.1Methodology . 159
7.3.2 Circuit Description . 160
7.3.3 Genetic Representation . 162
7.3.4 Hybrid Compact Genetic Algorithm . 164

7.4 Placement and Routing on FPGAs . 166
7.4.1 Circuits encoding using trees . 168
7.4.2 GP sets . 169
7.4.3 Evaluating Individuals . 171

7.5 Experimental Results . 172
7.5.1 partitioning and Placement onto the FPGAs 172
7.5.2 Inter-FPGA Placement and Routing . 174

7.6 Summary . 175
7.7 Acknowledgments . 175
References . 175

Part I11 Evolvable Designs

8 Evolutionary Computation and Parallel Processing Applied
to the Design of Multilayer Perceptrons
Ana Claudia M . L . Albuquerque. Jorge D . Melo. Adm'Go D . D6ria Neto . 181
8.1 Introduction . 182
8.2 Artificial Neural Networks . 183
8.3 The Multilayer Perceptron Neural Network . 185
8.4 Genetic Algorithms and Parallelism in Multilayer Perceptron

Learning . 186
8.5 Training Multilayer Perceptron with Genetic Algorithms 188
8.6 Cooperative Parallel Genetic Algorithm with Different Evolution

Behaviors . 188
8.7 Application on Approximation of Functions . 192
8.8 Summary . 200

Contents XV

. References 202

9 Evolvable Fuzzy Hardware for Real-time Embedded Control
in Packet Switching
Ju Hui Li. Meng Hiot Lim. Qi Cao . 205
9.1 Introduction to EHW and EFH . 205
9.2 Packet Switching . 207
9.3 Solutions for Open Issues . 208
9.4 Evolution Scheme . 211

9.4.1 Genetic Coding . 212
9.4.2 Inference Scheme . 213
9.4.3 Fitness Function . 214

9.5 Simulation . 215
9.5.1 Simulation Results . 216
9.5.2 Tunability of EFH . 216

9.6 Hardware Implementation . 218
9.7 Conclusions . 221
References . 225

10 Improving Multi Expression Programming: An Ascending
Trail from Sea-Level Even-3-Parity Problem to Alpine
Even-l&Parity Problem

. Mihai Oltean 229
. 10.1Introduction 229

. 10.2Problem Statement 230
. 10.3Multi Expression Programming 231

. 10.3.Individual Representation 231
10.3.Decoding MEP Chromosome and Fitness Assignment 232
10.3.Genetic Operators . 233

. 10.3.MEP Algorithm 234
10.4Assessing the Performance of the MEP Algorithm 234
10.5Numerical Experiments . 236

. 10.5.Bummarized Results 239
10.6Automatically Defined Functions in MEP . 240
10.7Numerical Experiments with MEP and ADFs . 241

10.7.Bummarized Results . 245
10.8Sub-Symbolic Node Representation . 246

. 10.8.1Smooth MEP Operators 247
10.9Numerical Experiments with MEP and Sub-symbolic

Representation . 248
. 10.9.Bummarized Results 252

. lO.l(llonclusions and Further Work 253
. References 255

Index . 257

XVI Contents

Author Index . 2 5 9

Reviewer List . 2 6 1

List of Figures

1.1 The target of cooperative transportation . 5
1.2 Normal positions and different kinds of positional shifts 6
1.3 Experimental results of initial setting . 8
1.4 Steps of the cooperative transportation . 9
1.5 Different states (27-states) . 10
1.6 Different actions (6-actions) . 10
1.7 Results of a simulation with Q-learning and Classifier System . . 12
1.8 Q-learning vs . Classifier System . 13
1.9 Type of the experiments . 14
1.10 Behavior of NF with short-time learning and full learning 16
1.11 Behavior of LRS with short-time learning and full learning 16
1.12 Result of an experiment with real robots . 18
2.1 Morphological segments of Snakebot linked via universal joint . . 24
2.2 Fitness convergence characteristics of 10 independent runs of GP 29
2.3 Snapshots of sample evolved best-of-run sidewinding

locomotion gaits . 30
2.4 Snapshots of sample evolved best-of-run - left-right top-down . . 30
2.5 Trajectory of the central segment around the center of mass

of Snakebot . 31
2.6 Steering the Snakebot . 31
2.7 Snapshots of Snakebot performing sharp turns 32
2.8 Fitness convergence characteristics for velocity in forward

direction . 32
2.9 Snapshots of sample evolved best-of-run forward crawling

locomotion gaits . 33
2.10 Fitness convergence characteristics when Snakebot is confined

in"tunneln . 33
2.11 Snapshots of evolved best-of-run gaits at intermediate and

final stages Snakebot is confined in "tunnel" 34
2.12 Snapshots of sample evolved best-of-run standstill postures

featuring elevated head of Snakebot . 34

XVIII List of Figures

2.13 Snapshots illustrating robustness of sidewinding in clearing a
pileofboxes . 35

2.14 Snapshots illustrating robustness of sidewinding in emerging
from burial . 35

2.15 Snapshots illustrating the robustness of sidewinding in rugged
terrain area.. 36

2.16 Snapshots illustrating the ability of sidewinding Snakebot in
clearing walls forming a "pen" . 36

2.17 Rpresentation of best fitness of damaged and healty sidwinding
snakebots . 37

2.18 Adaptation of sidewinding Snakebot to damage of a single
segment . 38

2.19 Adaptation of the sidewinding Snakebot to damage of a single
segment . 38
Schematic view of the Khepera robot . 47
Summary of behaviours learned during experimentation with
theKheperarobot. 57
Graphs of minimum, maximum, and average generations of
first detection of obstacle avoidance behaviour 58
Trace runs of perfect evolved obstacle avoidance behaviour in
various testing environments. 58
Graphs of minimum, maximum, and average generations of
first detection wall following behaviour . 60
Trace run of perfect evolved maze-following behaviour. 61
Graphs of minimum, maximum, and average generations of
first detection of light avoidance behaviour 62
Trace runs of perfect evolved light avoidance behaviour in
different testing environments. 63
Graphs of entropy and average size vs. the number of
generations in a sample run using the tree-based method.. 64

3.10 Graphs of entropy, average size, average SC and average EC
vs. the number of generations using the ARL method.. 64

3.11 Graphs of entropy, average size and average EC vs. the
number of generations in a sample run using the ADF method.. 65

3.12 Graphs of entropy, average size, average SC and average EC
vs. the number of generations in a sample run using the MA
method . 65

3.13 Graphs of entropy, average size, average SC and average EC
vs. the number of generations using the linear genome method.. 65

3.14 Code of an ADF program showing light avoidance behaviour . . . 67
3.15 Code of a sample MA program from population showing wall

following behaviour. 68
3.16 Code of a sample ARL program from population showing

obstacle avoidance behaviour . 68
4.1 Miniature mobile robot Khepera (with permission of K-team). . 74

List of Figures XIX

The position of the eight sensors on the robot (with permission
of K-team) .
Trajectory of the robot in an environment with moving obstacle .
Trajectories of the robot in environments with large obstacles
with sharp corners .
The neural network controller of the home seeking experiment
(left) . A figure of the environment(right) .
Khepera robot with the additional gripper module (with

. permission of K-team)
Khepera robot with the extra K213 vision module (with
permission of K.team) .
The neural network controller of the predator and prey robots . .
Possible membership functions for input sensor and output
motor speed .

4.10 Tree representation of computer programs versus linear
representation . 90

4.11 The effect of a spike on the neuron ~ (s) . 92
4.12 Refractory period function q(s) . 93
5.1 The structural description of a finite synchronous state machine 104
5.2 The structural description of a finite synchronous state machine 106
5.3 The machine state schematics for state assignment A 107
5.4 The machine state schematics for state assignment Al 108
5.5 Representation with the roulette wheel selection 110
5.6 Representation of the roulette wheel selection before and after

ranking the individuals according to their fitnesses 111
5.7 Different types of crossover . 113
5.8 Example of state assignment encoding . 114
5.9 Adjacency matrix for the machine state specified in Table ?? . . 115
5.10 Graphical comparison of the degree of fulfilment of rule 1 and

2 reached by the systems . 118
5.1 1 Encoded circuit schematics . 119
5.12 Four-point crossover of circuit schematics . 120
5.13 Operand node mutation for circuit specification 121

. 5.14 First evolved control logic for state machine shi ftreg 123
. 5.15 Second evolved control logic for state machine shi f treg 123

. 5.16 Lookup table-based evolved architeture of shi f treg 124
5.17 Lookup table-based architeture of shi f treg as synthesised by

xilinxTM . 124
5.18 The evolved control logic for state machine lion9 125

. 5.19 The evolved control logic for state machine train11 126
6.1 Hierarchical design of MEMS . 132
6.2 Bond graphs representing a mechatronic system with mixed

energy domains and a controller subsystem 134
6.3 One bond graph represents resonators in different application

domains . 134

XX List of Figures

6.4 Genotype-phenotype mapping . 135
6.5 MEM filter topology I . 136
6.6 MEM filter topology I1 . 137
6.7 Operator to insert Bridging Unit . 138
6.8 Operator to insert Resonator Unit . 138

. 6.9 Design Embryo of a Micro-Electro-Mechanical Filter 139
6.10 Frequency responses of a sampling of design candidates 141
6.11 Fitness improvement curve . 142
6.12 Layout and bond graph representation of a design candidate

from the experiment, with four resonator units coupled with
three coupling units . 143

6.13 A novel topology of MEM filter and its bond graph
representation . 144

6.14 A folded-flexure comb-drive microresonator fabricated in a
polysilicon surface microstructural process 144

6.15 Major design variables for microresonators 145
7.1 General structure of an island-based FPGA 152
7.2 Multi-FPGA Mesh . 153
7.3 MFS Design Flow . 153
7.4 Individuals are encoded by means of trees in Genetic

Programming . 158
7.5 Crossover operation . 158
7.6 Mutation operation . 158
7.7 An example of a CLB described in (a)block, (b)XNF, and

(c)graph formats . 160
7.8 An example of the partitioning process for 4 FPGAs 161
7.9 An example of a post-partitioning implementation using 4

FPGAs . 162
7.10 Representing a circuit with black boxes . 168
7.11 Making connections in the FPGA according to nodes 170
7.12 Encoding circuits by means of binary trees 171
7.13 Evaluating a branch of the tree-corresponding to a connection

ofthecircuit . 172
7.14 Multi-FPGA board designed for testing the methodology 173

. 7.15 One of the circuits employed for testing the methodology 174
7.16 Different solutions obtained by means of GP 175
8.1 Artificial neuron . 184
8.2 Organization in layers of the Multilayer Perceptron 185
8.3 Illustration of two examples of reproduction of the genetic

algorithm . 189
. 8.4 Representation of the genetic material of an individual 190
. 8.5 The parallel structure adopted in the genetic algorithm 191

8.6 MSE signal of the sequential genetic algorithm for the function
f(x) = 1/17: . 192

List of Figures XXI

8.7 MSE signal of the cooperative parallel genetic algorithm for
the function f (x) = 1 / x . 193

8.8 Reconstructed output of the function f (x) = 1 / x obtained
from the Multilayer Perceptron . 194

8.9 MSE signal of the sequential genetic algorithm for the function
f (x) = s i n (2 ~ x) . 195

8.10 MSE signal of the cooperative parallel genetic algorithm for
the function f (x) = s i n (2 ~ x) . 195

8.11 Reconstructed output of the function f (x) = s i n (2 ~ x)
obtained from the Multilayer Perceptron . 196

8.12 MSE signal of the sequential genetic algorithm for the function
z = s in (r) / r . 197

8.13 MSE signal of the cooperative parallel genetic algorithm for
the function z = s in (r) / r . 198

8.14 Reconstructed output of the function z = s in (r) / r obtained
from the Multilayer Perceptron . 198

8.15 Original output of the function z = s in (r) / r 199
8.16 MSE signal of the sequential genetic algorithm for the function

f (x l , ~ 2) = C O S (~ T X ~) . C O S (~ T X ~) . 199
8.17 MSE signal of the cooperative parallel genetic algorithm for

the function f (x l , 22) = c o s (2 ~ x l) . c o s (2 ~ x 2) 200
8.18 Reconstructed output of the function f (X I , 22) =

cos(2nxl).cos(2nx2) obtained from the Multilayer Perceptron . . 201
8.19 Original output of the function f (x l , 22) = cos (2~x l) . co s (2~x2)201
9.1 Multiplexer scheme . 209
9.2 Adaptation framework for EFH . 210
9.3 Membership functions for cl and c2 . 213
9.4 Membership functions for T and F . 213
9.5 Two classes of cell flows . 215
9.6 Cell delay for classl and class2 in scenariol 217
9.7 Cell loss for classl and class2 in scenariol 218
9.8 Cell delay for classl and classz in scenario2 219
9.9 Cell loss for classl and class2 in scenario2 220
9.10 Cell delay for scenariol . 221
9.11 Cell loss for scenariol . 222
9.12 Cell delay for scenario2 . 223
9.13 Cell loss for scenario2 . 224
9.14 Block architecture of RFIC . 224
9.15 The hardware architecture of OAM . 225
10.1 The relationship between the success rate and the chromosome

length and the population size . 237
10.2 A circuit for the even-3-parity problem . 237
10.3 The relationship between the success rate and the chromosome

. length and the population size 238
10.4 A circuit for the even-4-parity problem . 238

XXII List of Figures

10.5 The computational effort and the cumulative probability of
success for the even-5-parity problem. .239

10.6 The relationship between the success rate and the chromosome
length and the population size . .243

10.7 The computational effort and the cumulative probability of
success for the even-5-parity problem . .243

10.8 The computational effort and the cumulative probability of
success for the even-6-parity problem . .244

10.9 The computational effort and the cumulative probability of
success for the even-7-parity problem . .245

10.1OThe relationship between the success rate and the chromosome
length and the population size . .249

10.11The computational effort and the cumulative probability of
success for the even-12-parity problem . .250

10.12The computational effort and the cumulative probability of
success for the even-13-parity problem . .251

10.13The computational effort and the cumulative probability of
success for the even-14-parity problem . .252

10.14The computational effort and the cumulative probability of
success for the even-15-parity problem . .253

10.15The computational effort and the cumulative probability of
success for the even-16-parity problem . .254

List of Tables

1.1 Numbers of average movement . 15
. 2.1 Main parameters of GP 25

. 2.2 ODE-related parameters of simulated Snakebot 27
3.1 Contents of the function set and terminal set used by

tree-based chromosome representations . 51
3.2 Primitive values of instruction parts in the linear genome GP

method . 52
3.3 Summary of results from our experiments for each of the

studied methods . 64
5.1 Example of state transition function . 107
5.2 Best state assignment yield by the compared systems for the

benchmarks . 117
. . . . 5.3 Fitness of best assignments yield by the compared systems 117

5.4 Gate name, symbol, gate-equivalent and propagation delay 118
5.5 Chromosome for the circuit of Fig . ?? . 119
5.6 Comparison of the traditional method vs . genetic programming 123
6.1 Operators in modular function set . 137
6.2 Parameter settings for genetic programming 139
6.3 The parameters for setting the constrained GA 146
6.4 Layout parameters obtained in nine GA runs(different random

seeds) . -147
7.1 Local Search example . 167
7.2 Experimental Results for Partitioning and Placement for the

8-Xilinx4010Board . 174
9.1 A 25-rule fuzzy system for ATM cell scheduling 213
9.2 FIM content in PBCl7 . 222
10.1 MEP uniform recombination . 234
10.2 MEP mutation . 234
10.3 General parameters of the MEP algorithm for solving

even-parity problems . 236

XXIV List of Tables

10.4 Computational effort required by GP and MEP for solving
several even-parity instances. GP results are taken from [7].240

10.5 Parameters, terminal set and the function set for the ADFs
and for the main MEP chromosome. .241

10.6 The general parameters of MEP with ADFs for solving
even-parity problems. .242

10.7 Computational effort required by GP with ADFs and MEP
with ADFs for solving several even-parity instances246

. 10.8 MEP smooth uniform crossover. .247
10.9 MEP smooth mutation. .248
10.1OMEP parameters for solving even-parity problems using a

sub-symbolic representation of operators. .248
10.11Computational effort required by GP and MEP with

Sub-symbolic node representation for solving several
even-parityinstances . 253

List of Algorithms

2.1 Fitness evaluation routine . 27
2.2 Implementation of fitness evaluation routine 28
3.1 Wall Following Fitness Function . 59
5.1 Genetic Algorithms . 109
7.1 Evolutionary algorithm . 154
7.2 Pseudo-code of the CGA for the TSP . 156
7.3 Pseudo-code of the cGA for Multi-FPGA Partitioning 163
7.4 Local search algorithm for MFS partitioning HcGA 166

Part I

Evolvable Robots

Learning for Cooperative Transportation by
Autonomous Humanoid Robots

Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

Department of Frontier Informatics, Graduate School of Frontier Sciences,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan,
inoue0iba.k.u-tokyo.ac.jp, http://www.iba.k.u-tokyo.ac.jp

In this chapter, we describe a cooperative transportation to a target position
with two humanoid robots and introduce a machine learning approach to solv-
ing the problem. The difficulty of the task lies on the fact that each position
shifts with the other's while they are moving. Therefore, it is necessary to
correct the position in a real-time manner. However, it is difficult to generate
such an action in consideration of the physical formula. We empirically show
how successful the humanoid robot HOAP-1's cooperate with each other for
the sake of the transportation as a result of Q-learning. Furthermore, we show
a result of the experiment that transports an object cooperatively to a target
position using those robots.

1.1 Introduction

In this chapter, we first clarify the practical difficulties we face from the coop-
erative transportation task with two bodies of humanoid robots. Afterwards,
we propose a solution to these difficulties and empirically show the effective-
ness both by simulation and by real robots.

In recent years, many researches have been conducted upon various aspects
of humanoid robots [l] [2]. Since humanoid robots have physical features sim-
ilar to us, it is very important to let them behave intelligently like humans. In
addition, from the viewpoint of A1 or DAI (Distributed AI), it is rewarding to
study how cooperatively humanoid robots perform a task just as we humans
can. However, there have been very few studies on the cooperative behaviors
of multiple humanoid robots. Thus, in this chapter, we describe the emergence
of the cooperation between humanoid robots so as to achieve the same goal.
The target task we have chosen is a cooperative transportation, in which two
bodies of humanoids have to cooperate with each other to carry and transport
an object to a certain goal position.

4 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

As for the transportation task, several researches have been reported on
the cooperation between a human and a wheel robot [3] [4] and the cooperation
among multiple wheel robots [5] [6]. However, in most of these studies, the goal
was to let a robot perform a task instead of a human.

Research to realize collaboration with a legged robot includes lifting oper-
ations of an object with two robots [7] and box-pushing with two robots [8].
However, few studies have addressed cooperative work using similar legged
robots. It is presumed that body swinging during walking renders coopera-
tive work by a legged robot difficult [9]. Therefore, it is more difficult for a
humanoid robot to carry out a transportation task, because it is capable of
motions that are more complicated and less stable than a usual legged robot.

In leader-follower type control [lo] [ll], which is often used for cooperative
movement, it is essential that a follower robot acquire information such as the
position and velocity of an object fluctuated by the motion of a leader robot.
This information is usually obtained by a force sensor or wireless communi-
cation. Such a method is considered to be effective for a robot with a stable
center of gravity operating with less information for control. However, much
information must be processed simultaneously to allow a humanoid robot to
perform complicated actions, such as transporting an object cooperatively,
with its difficulty to control caused by its unstable body balance. It would
be expensive to build a system that carries out optimal operation using this
information.

One hurdle in the case where multiple humanoid robots move carrying an
object cooperatively is the disorder of cooperative motion by body swinging
during walking. Therefore in this chapter, learning is carried out to acquire be-
havior to correct a mutual position shift generated by this disorder of motion.
For this purpose, we use two kinds of methods: (i) Classifier System [12] and
(ii) Q-learning [13]. We will show that behavior to correct a position shift can
be acquired based on the simulation results of this study. Moreover, according
to this result, the applicability to a real robot is investigated. Furthermore,
cooperative transportation to a target position is conducted.

This chapter is organized as follows. The next section explains the clarified
problem difficulties with the cooperative transportation. After that, Section
1.3 proposes our method to solve the problem. Section 1.4 presents an experi-
mental result in the simulation and real robots environment. Then Section 1.5
shows an experimental result of cooperative transportation with real robots.
Section 1.6 discusses these results and future researches. Finally, a conclusion
is given in Section 1.7.

1.2 Problem in cooperative Transportat ion by humanoid
Robots

Cooperative transportation by humanoid robots involves solving many dif-
ficult problems. It is different from the transportation by a single robot, in

1 Cooperative Transportation by Autonomous Humanoid Robots 5

which another robot motion is negligible. On the other hand, in case of the
cooperative transportation, one robot's motion has an influence on another
robot to some extent. Thus, it is necessary to synchronize both robots' mo-
tions. However, the synchronization is not easily achieved because precise
motions are not expected by humanoids due to the load weight or the floor
friction.

We conducted an experiment assuming tasks to transport a lightweight ob-
ject all around, aiming to extract specific problems from using two humanoid
robots: HOAP-1 (manufactured by Fujitsu Automation Limited). Dimensions
of a HOAP-1 are 223 x 139 x 483 mm (width, depth, and height) with a weight
of 5.9 kg. It has two arm joints with 4 degrees of freedom each, and two leg
joints with 6 degrees of freedom each: 20 degrees of freedom in all for right
and left.

Actually, when a package is transferred, it seems to be more practical
for two robots to have a single object. However, unless both robots move
synchronously in the desirable direction, too much load will be given to the
arms of robots, which may often cause the mechanical trouble in the arm and
the shoulder. It is assumed in experiment that the arm movement can cancel
the position shift, and that the distance and angle that can be cancelled would
be in the space between two objects.

We assume the following task situation (see Fig. l .la): Each robot raises
its platform, on which a brick, i.e., a transportation target, is to be placed.
However, as a first step, we have removed the target for the sake of simplicity
(Fig. l .lb). The platform each robot raises is made of foam polystyrene and
about 80 gram weigh. The size is about 150 mm wide, 150 mm deep and
200 mm high. This platform is larger than a conventional one because it has
to bear the weight of the transportation target. A sponge grip is attached
on each robot arm, so that an object would not slip off the arm during the
experiment.

(a) Trunk-based transfer (b) Simplified transportation.

Fig. 1.1. The target of cooperative transportation.

6 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

The two robots operate in Master-Slave mode. That is, the Master robot
transmits data corresponding to each operation created in advance to the Slave
robot; the two robots start a motion in the same direction simultaneously. The
created basic motions consist of the following 12 patterns: forward, backward,
rightward, leftward, half forward, half backward, half rightward, half leftward,
right turn, left turn, pick up, and put down. These basic motions are combined
to allow the two robots to transport an object.

The experiment of several times was conducted using each motion. The
initial position in this experiment is shown in Fig. 1.2a. The results indicated
that unintentional motions such as lateral movement (Fig. 1.2b) and back-and-
forth movement (Fig. 1 . 2 ~) by sliding from the normal position, and rotation
(Fig. 1.2d) occur frequently in basic transportation motions such as forward,
backward, rightward, and leftward. This is considered mainly to result from
swinging during walking and the weight of the object.

(c) Approach (d) Spinning

Fig. 1.2. Normal positions and different kinds of positional shifts.

The following three factors can be considered the causes of these shifts in
motion.

Swing when the robot moves

1 Cooperative Transportation by Autonomous Humanoid Robots 7

0 Shift of the center of gravity by having an object
Initialization error of robot's joint motors

Especially, in case of humanoid robots, we can think of motor vibration due
to the body motion as its cause. This may affect the robot's translation or
direction. In addition, the gravity change resultant from carrying an object
may possibly cause some errors in the movement.

When activating a robot, it is necessary to set the initial positions of each
joint's motors manually. Thus, setting those ini-tial values wrongly may result
in fatal errors. In order to investigate the error of initial setting, we performed
experiments in the fundamental mode of motions: forward, backward, right-
ward and leftward. More precisely, a robot was forced to make five steps in
each direction so as to measure the final position. In these experiments, the
initial setting was used twice in each of test patterns, and the experiments
were repeated 10 time, which means that 20 trials were performed in to-tal
for each setting. Note that the same robot was used for these experiments.

The moving distance to front and back, right and left of each experiment
is shown in Fig. 1.3. The moving distance in two initial setups is expressed
by a circle and a triangle. As shown in Fig. 1.3a and Fig. 1.3b, when the
robot moves front-ward or backward, the error occurs to the right incline.
On the other hand, Fig. 1 . 3 ~ and Fig. 1.3d show that rightward or leftward
movements resulted in the errors in the frontward incline. From the results,
it is evident that coincident ini-tial positioning of two robots is very difficult,
and error occurs in moving distance or in direction.

Such a position shift can be cancelled, if only slight, by installing a force
sensor on a wrist and moving arms in the load direction. However, a robot's
position must be corrected in case of a shift beyond the limitation of an
arm. Improper correction may cause failure of an arm or a shoulder joint and
breakage of an object.

1.3 Approach of Transportation Control

The practical problem of transporting an object is the possibility that a robot
falls during movement, due to loss of body balance in connection with a load
on the arm by a mutual position shift after moving. Therefore, it is important
to acquire behavior for correcting the position shift generated from movement
by learning algorithms.

One of the advantages of using reinforcement learning is its easiness of
revising the system due to the change of input-output information and its
possibility to select an appropriate action in response to various information.

A situation is assumed in which two robots move face to face while main-
taining the distance within a range to transport an object stably. This motion
can be divided into two stages: one in which the two robots move simultane-
ously, and one in which one robot corrects its position. Simultaneous move-
ment of two robots is controlled by wireless communication. A shift over a

8 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

(a) Forward

(c) Rightward

(b) Backward

(d) Leftward

Fig. 1.3. Experimental results of initial setting.

certain limit of distance or angle in this motion will be corrected by one robot
according to behavior acquired by learning.

In order to recognize an object or a state, the Master robot is equipped
with an active camera, while the Slave robot carries a static one. The active
camera works with a pan angle of f 90[deg]Cand a tilt angle of f 90[deg].
The robots rotate these cameras and recognize their goal so that they can
transport the target object to the goal. The static camera is used to observe
the current state of two robots. The obtained information is used as the input
to the learning system.

Fig. 1.4 shows the motion overview for conducting a transportation task. In
the first stage, the Master robot performs a motion programmed in advance;
simultaneously, it issues directions to perform the same motion to the Slave
robot. If there is no position shift after movement, the process forwards to the
next stage; otherwise, the position is corrected with the learning system. We
have tried to realize a cooperative transportation task by repeating the series
of this flow.

1 Cooperative Transportation by Autonomous Humanoid Robots

Cooperative moving state

kfisalignnwnt =+
t
Posrtion

Recovery

" *

Comcting position state

Fig. 1.4. Steps of the cooperative transportation.

1.4 Learning to Correct Positioning

1.4.1 Learning Model

The learning for position correction is carried out with Q-learning and Clas-
sifier System.

Q-learning guarantees that the state transition in the environment of a
Markov decision process converges into the optimal direction [14]. However,
it requires much time until the optimal behavior obtains a reward in the early
stage of learning. Thus, it takes time for the convergence of learning. Further-
more, because all combinations of a state and behavior are evaluated for a
predetermined Q value, it is difficult to follow environmental change. There-
fore, learning by a real robot is extremely difficult because of the processing
time.

On the other hand, Classifier System can learn a novel classification and
to maintain the diversity by means of GA, which evolves a rule including #
(don't care symbol). Thus, it enables the learning with relatively few trials so
that the evolved robot may adapt the dynamic environment more effectively.
However, too much generalization might result in the poor performance due
to the overfitting.

We use these above two methods for the sake of simulation-based learning
of the position correction and compare the obtained results.

The effective division of states and the selection of actions are very essential
for the sake of efficient Q-learning and Classifier System. A static camera is
attached to one robot to obtain information required for learning from the

10 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

external environment. The external situation is evaluated with images from
this static camera. Based on the partner robot's position projected on the
image acquired by the static camera, a state space is arranged as shown in
Fig. 1.5. It is divided into three states: vertical, horizontal, and angular. Hence,
the total number of states of the environment is 27. If the vertical, horizontal,
and angular positions are all centered, the goal will be attained.

(a) Vertical alignment

Lcit A!@ CdWv Right ,%I.

(b) Horizontal tllignnient (c) Angular alignment

Fig. 1.5. Different states (27-states).

We assumed six behaviors which a robot can choose among the 12 pat-
terns mentioned in Section 1.2. They are the especially important motions
of forward, backward, rightward, leftward, right turn, and left turn. Fig. 1.6
depicts all these motions.

I
(a) Move fomatd, backward, ~~ghtward and leftward (b) Turn nght and left

Fig. 1.6. Different actions (G-actions).

1 Cooperative Transportation by Autonomous Humanoid Robots 11

1.4.2 Learning in Simulator

The learning model stated in the preceding subsection has been realized in
a simulation environment. This simulator sets a target position at a place of
constant distance from the front of the partner robot, which is present in a
plane. A task will be completed if the learning robot reaches the position and
faces the partner robot.

The target position here ranges in distance movable in one motion. In
this experiment, back-and-forth and lateral distances and the rotational angle
movable in one motion are assumed to be constant. That is, if the movable
distance in one step is about 10 cm back-and-forth and 5 cm laterally, the
range of the target point will be 50 cm2. In this range, the goal will be attained
if the learning robot is in place where it can face the partner robot with one
rotation motion.

The Q-learning parameters for the simulation were as follows: the initial
Q value, Qo, was 0.0, the learning rate a! was 0.01, the reduction ratio y was
0.8 and the reward was 1.0 for the task achievement. We used the following
parameters for Classifier Systems and GA: the initial value for a rule is 0.1,
the tax is 0.001, the bid value is 0.01, the crossover rate is 0.95, the mutation
ratio is 0.05, and the population size is 1,024.

A certain noise is added to the motion. This is to establish the learning
scheme in consideration of uncertain factors, such as translation errors due to
the motion or different operational characteristics of robots. More precisely,
5% error is given to a motion at one time as noise.

1.4.3 Result of Simulator Learning

Behavior patterns obtained by simulation with the Q-learning approach in the
early stage and acquired by learning are shown in Figs. 1.7a and 1.7b, respec-
tively. In the early stage, motions are observed such as walking to the same
place repeatedly and going to a direction different from the target position.
Behavior approaching the target position is gradually observed as learning
progresses; finally, behavior is acquired to move to the target position and
turn to the front with relatively few motions.

As can be seen Classifier System simulation by in Figs. 1 . 7 ~ and 1.7d, the
trajectory divergence occurred at the earlier stage of learning. However, at
the later generations, the effective actions were acquired so as to face the goal
correctly.

Fig. 1.8a plots the success rate of learning for 1,000 steps. Fig. 1.8b gives
the number of successful motions with generations. Both data were averaged
over 10 runs. As can be seen, Q-learning is superior. This may be because it
enables hill-climbing local search. Classifier System's performance goes up and
down irregularly. However, this is considered to show the superiority in terms
of the robust learning. As a result of this, numbers of motions are almost the
same for both methods as the later stage of learning.

12 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

Earlicr trajectory

Earlier trajectoiy

1
&- - - X\

C &- I.
x-"CC
Backward Backwrtrd Backward

Start Posiiion Trajectory End Position Partner Robot Goal Area
(c) Explanation of signs.

Fig. 1.7. Results of a simulation with Q-learning and Classifier System.

1 Cooperative Transportation by Autonomous Humanoid Robots 13

C l a s s i f i e r System
"..-.*.-. -.Q-learninE

V) 11, 1 1 1 1 , , , 1 1 , ,
0 100 200 300 400 500 600 700 800 900

Learned number

(a) Success ratio.

-Ch;sifier System
-,Tb+*c Q-learniw

Learned number

(b) Moved number.

Fig. 1.8. Q-learning vs. Classifier System.

1.4.4 Experiments with Real Robots

Following the simulation results described in the previous subsection, we con-
ducted an experiment with real robots to con-firm their applicability. In this
experiment, we have used the learning data obtained from Q-learning, because
Q-learning acquired the relatively more precise behaviors than Classifier Sys-
tem in the previous simulation.

For the recovery from the horizontal left (right) slide, a humanoid robot
was initially shifted leftward (rightward) against the opponent robot by 5.2
cm. On the other hand, it was initially moved forward (backward) from the
correct position by 3.2 cm for the recovery from front (back) position. In case
of the rotation failure, the robot was shifted either leftward or rightward by

14 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

5.2 cm and rotated toward the opponent by 20 degrees. The images of the
static camera in each pattern are shown in Fig. 1.9. The actions used for the
recovery were of six kinds, i.e., half forward, half backward, half rightward,
half leftward, right turn and left turn.

Approach

Inclined to left

Shifted to right

Step away

Fig. 1.9. Type of the experiments.

For this experiment, robots started from one of the three patterns shown
in Figs. 1.2b, 1 . 2 ~ and 1.2d, which were classified as the failure of actions
(see Section 1.2). We employed two HOAP-l's, one of which used the learning
results, i.e., the acquired Q-table, so as to generate actions for the sake of
recovery from the failure. Q-learning was conducted by simulation with dif-
ferent numbers of iterations, i.e., 1,000, 10,000, and 100,000 iterations. The
learning parameters were the same as in the previous subsection.

1 Cooperative Transportation by Autonomous Humanoid Robots 15

1.4.5 Experimental results

Table 1.1 shows the averaged numbers of actions for the sake of recovery
from the above three failure patterns. In Table 1.1: RL represents the slide
recovery from the right, LR is the slide recovery from the left, NF stands for
the distance recovery from the front, FN is defined as the distance recovery
from the back, RLS and LRS are respectively the angle recovery from the right
and from the left. The averaged numbers of required actions were measured
over five runs for each experimental condition, i.e., with different Q-learning
iterations.

Table 1.1. Numbers of average movement.

For slide motion, the robot learned an effective motion after 1,000 time
steps. This is explained in the following way. A gap usually occurs even when
a robot corrects a position. However, correcting a slide position requires only
a simple sequence of actions, as a result of which the gap rarely occurs.

With 1,000 iterations, more actions were needed to recover from the front
position to the back. This is because the robot had acquired the wrong habit
of moving leftward when the opponent robot was approaching (see Fig. 1.10).
This habit has been corrected with 10,000 iterations, so that much fewer
actions were required for the purpose of repositioning.

The recovery from "spinning around" seems to be the most difficult among
the three patterns. For this task, the movement from the slant to the front (see
Fig. 1.11) was observed with 10,000 iterations, which resulted in the increase of
required actions. This action sequence was not observed with 1,000 iterations.
This is considered that the phenomenon is caused by the difference between
simulation and a real-world environment.

1.5 Cooperative Transportation to Target Position

1.5.1 Experiments with Real robots

The cooperative transportation task, i.e., two humanoid robots cooperate with
each other to transport an object to a certain goal, is carried out by using the

16 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

Fig. 1.10. Behavior of N F with short-time learning and full learning.

Fig. 1.11. Behavior of LRS with short-time learning and full learning.

1 Cooperative Transportation by Autonomous Humanoid Robots 17

obtained Q-learning data shown in the previous section. The transportation
target is a sphere made of foam polystyrene. Its diameter is about 25 cm and
63 gram weigh. The goal is positioned in a place about l m distant from each
humanoid robot and is marked for the purpose of recognition.

The Master robot finds its mark using the active camera, and decides the
transportation path to the destination. The path is derived as follows:

1. Move the Master robot forward or backward so that it is next to the goal.
2. Move the Master robot left or right to a position adjacent to the mark.

In the meantime, if a positional shift occurs, the Slave robot recognizes its
type and tries to recover from it. Afterward, the Master robot searches for a
new path again and the transportation is restarted according to the new path.

1.5.2 Experimental results

Fig. 1.12 shows the transportation process with some recovery actions. As can
be seen, two recovery actions were performed in case of side motions. As a
result, the robots achieved the task successfully. In case of a position shift,
the path to the goal was slightly changed. This was caused by each other's
shift and its recovery. In order to reduce this anomaly and re-calculation of
the path, two robots need to revise their positions simultaneously.

Moreover, when the goal is seen overlapped with the opponent robot, the
mark is difficult to recognize. In order to solve this difficulty, two robots should
rotate cooperatively with the object on the platform or both robots should
be equipped with active cameras for the recognition.

1.6 Discussion

We have established a learning system for the cooperative transportation
by simulation and confirmed its real-world applicability by means of real
robots. Furthermore, we have conducted cooperative transportation includ-
ing acquired behavior to correct position using real robots.

The effective actions were acquired for the sake of recovery from the po-
sition failure as a result of simulation learning. In a real environment, at the
earlier stage of learning, we have often observed the unexpected movement
to a wrong direction by real humanoid robots; which was also the case with
the simulation. In the middle of learning, the forward movement was more
often observed from the slant direction. These types of movements, in fact,
had resulted in the better learning performance by simulation, whereas in a
real environment they prevented the robot from moving effectively. This is
considered to be the distinction between simulation and a real-world environ-
ment. We have confirmed the success of the cooperative transportation by real
robots, i.e., both robots cooperatively transported an object to a goal while
revising their position shift effectively.

18 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

Fig. 1.12. Result of an experiment with real robots.

In this chapter, the position recovery was carried out by one robot. It is
more desirable and efficient if both robots can do so. For this purpose, the
learning of two robots in a real environment is essential. This is also impor-
tant to nullify the difference between simulation and real-world environment.
However, it is not easy using Q-learning because of the frequent loss of a goal
or an opponent in the early state of the learning in a real environment. Thus,
we can conclude Classifier System is superior to Q-learning for the purpose of
the cooperative learning in a real-world environment.

Moreover, we are now developing a methodology of filtering learning result
by means of camera information from difference devices, for the purpose of
applying the obtained result in a simulator to a real environment. This method
is based on the evolutionary computation and probabilistic estimation.

In order to solve the difficulty with the distinction, learning in the real
world is essential. For this purpose, we are currently working on the integration

1 Cooperative Transportation by Autonomous Humanoid Robots 19

of GP and Q-learning in a real robot environment [15]. This method does not
need a precise simulator, because it is learned with a real robot. In other
words, the precision requirement is met only if the task is expressed properly.
As a result of this idea, we can greatly reduce the cost to make the simulator
highly precise and acquire the optimal program by which a real robot can
perform well. We especially showed the effectiveness of this approach with
various types of real robots, e.g. SONY AIBO or HOAP-1.

1.7 Conclusion

Specific problems were extracted in an experiment using a practical system in
an attempt to transport an object cooperatively with two humanoid robots.
The result proved that both body swinging during movement and the shift in
the center of gravity, by transporting an object, caused a shift in the position
after movement.

We investigated the behavior of fundamental motions to make sure the
impact of initial positioning on the robot operation. Consequently, it is found
that position matching of motors is very difficult even using the same robot
and even in the same motion, there occur errors in moving distance and di-
rection.

Therefore, we have proposed a learning method to revise a position shift
while the cooperative transportation, and established a learning framework
in a simulation. In addition, the obtained results were verified by using real
robots in a real environment.

In order to move towards the target position efficiently, it is necessary to
perform the real learning by two robots. Therefore, it is important to discuss
the approach for efficient movement and perform experiment with real robots.
Since huge time is required for learning in real robots, it is important to reduce
the time of learning in real environment using learning data in the simulator.

In our future work, we want to study how robots can more to the target
in the shortest path when there is an obstacle in the path or how to more in
an L-shaped path.

References

1. K. Yokoi, et al., "Humanoid Robot's Application in HRP", In Proc. of IARP
International Workshop on Humanoid and Human Friendly Robotics, pp.134-
141, 2002.

2. H. Inoue, et al., "Humanoid Robotics Project of MITI", The 1st IEEE-RAS
International Conference on Humanoid Robots, Boston, 2000.

3. 0. M. AI-Jarrah and Y. F. Zheng, "Armmanipulator Coordination for Load
Sharing using Variable Compliance Control", In Proc. of the 1997 IEEE Inter-
national Conference on Robotics and Automation, pp.895-900, 1997.

20 Yutaka Inoue, Takahiro Tohge, and Hitoshi Iba

4. M. M. Rahman, R. Ikeura and K. Mizutani, "Investigating the Impedance Char-
acteristics o f Human Arm for Development o f Robots t o Cooperate with Human
Operators7', In CD-ROM of the 1999 IEEE International Conference on Sys-
tems, Man and Cybernetics, pp.676-681, 1999.

5. N. Miyata, J . Ota, Y . Aiyama, J.Sasaki and T . Arai, "Cooperative Trans-
port System with Regrasping Car-like Mobile Robots", In Proc. of the
1997 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp.1754-1761, 1997.

6. H . Osumi, H.Nojiri, Y.Kuribayashi and T.Okazaki, "Cooperative Control o f
Three Mobile Robots for Transporting A Large Object", In Proc. of Interna-
tional Conference on Machine Automation (ICMA2000), pp.421-426, 2000.

7. M. J . MatariC, M. Nillson and K. T . Simsarian, "Cooperative Multi-robot Box-
pushing", In Proc. of the 1995 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp.556-561, 1995.

8. H.Kimura and G.Kajiura, "Motion Recognition Based Cooperation between Hu-
man Operating Robot and Autonomous Assistant Robot7', In Proc. of the 1997
IEEE International Conference on Robotics and Automation, pp.297-302, 1997.

9. Y . Inoue, T . Tohge and H. Iba, "Cooperative Transportation by Humanoid
Robots - Learning t o Correct Positioning -", In Proc. of the Hybrid Intelligent
Systems (HIS2003), pp.1124-1133, 2003.

10. J . Ota, Y . Buei, T . Arai, H . Osumi and K. Suyama, "Transferring Control by
Cooperation o f Two Mobile Robots7', The Journal of the Robotics Society of
Japan (JRSJ), vo1.14, no.2, pp.263-270, 1996.

11. K. Kosuge, T . Osumi and H. Seki, "Decentralized Control o f Multiple Manip-
ulators Handling an Object", In Proc. of the 1996 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp.318-323, 1996.

12. L. B. Booker, D. E. Goldberg, and J . H. Holland, "Classifier Systems and Ge-
netic Algorithms", In Machine Learning: Paradigms and Methods, MIT Press,
1990.

13. R . S. Sutton and A. G . Barto, "Reinforcement Learning", MIT Press, Boston,
1998.

14. C . J . C. H. Watkins and P. Dayan, "Q-learning7', Machine Learning, Vol. 8,
pp.279-292, 1992.

15. S. Kamio, H. Mitsuhashi and H . Iba, "Integration o f Genetic Programming and
Reinforcement Learning for Real Robots7', In Proc. of the Genetic Computation
Conference (GECC02003), pp.470-477, 2003.

Evolution, Robustness and Adaptation of
Sidewinding Locomotion of Simulated
Snake-like Robot

Ivan Tanevl, Thomas Ray2, and Andrzej Buller3

Department of Information Systems Design,
Faculty of Engineering, Doshisha University, Japan
ATR Network Informatics Laboratories, Keihanna Science City, Kyoto, Japan
LtanevQatr . jp
Department of Zoology, University of Oklahoma Norman, Oklahoma, USA
ATR Human Information Science Laboratories,
Keihanna Science City, Kyoto, Japan
rayQatr.jp
ATR Network Informatics Laboratories Keihanna Science City, Kyoto, Japan
bullerQatr.jp

Inspired by the efficient method of locomotion of the rattlesnake Crotalus
cerastes, the objective of this work is automatic design through genetic pro-
gramming, of the fastest possible (sidewinding) locomotion of simulated limb-
less, wheelless snake-like robot (Snakebot). The realism of simulation is en-
sured by employing the Open Dynamics Engine (ODE), which facilitates im-
plementation of all physical forces, resulting from the actuators, joints con-
strains, frictions, gravity, and collisions. Empirically obtained results demon-
strate the emergence of sidewinding locomotion from relatively simple motion
patterns of morphological segments. Robustness of the sidewinding Snakebot,
considered as ability to retain its velocity when situated in unanticipated en-
vironment, is illustrated by the ease with which Snakebot overcomes various
types of obstacles such as a pile of or burial under boxes, rugged terrain and
small walls. The ability of Snakebot to adapt to partial damage by gradually
improving its velocity characteristics is discussed. Discovering compensatory
locomotion traits, Snakebot recovers completely from single damage and re-
covers a major extent of its original velocity when more significant damage
is inflicted. Contributing to the better understanding of sidewinding locomo-
tion, this work could be considered as a step towards building real Snakebots,
which are able to perform robustly in difficult environment.

22 Ivan Tanev, Thomas Ray, and Andrzej Buller

2.1 Introduction

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness
characteristics beyond the capabilities of most wheeled and legged vehicles -
ability to traverse terrain that would pose problems for traditional wheeled or
legged robots, and insignificant performance degradation when partial dam-
age is inflicted. Moreover, due to their modular design, Snakebots may be
cheaper to build, maintain and repair. Some useful features of Snakebots in-
clude smaller size of the cross-sectional areas, stability, ability to operate in
difficult terrain, good traction, high redundancy, and complete sealing of the
internal mechanisms [3], [4]. Robots with these properties open up several
critical applications in exploration, reconnaissance, medicine and inspection.
However, compared to the wheeled and legged vehicles, Snakebots feature (i)
smaller payload, (ii) more difficult thermal control, (iii) more difficult control
of locomotion gaits and (iv) inferior speed characteristics. Considering the
first two drawbacks as beyond the scope of our work, and focusing on the
drawbacks of control and speed, we intend to address the following challenge:
how to develop control sequences of Snakebot's actuators, which allow for
achieving the fastest possible speed of locomotion.

Although for many tasks, handcrafting the robot locomotion control code
by applying various theoretical approaches [l] ,[2], [13], [15], [19], [21] can be
seen as a natural approach, it might not be feasible for developing the con-
trol code of Snakebot due to its morphological complexity. While the overall
locomotion gait of Snakebot might emerge from relatively simply defined mo-
tion patterns of morphological segments of Snakebot, neither the degree of
optimality of the developed code nor the way to incrementally improve the
code is evident to the human designer [l l] . Thus, an automated mechanism
for solution evaluation and corresponding rules for incremental optimization
of the intermediate solution(s) are needed [5], [lo]. The proposed approach of
employing genetic programming (GP) implies that the code, which governs
the locomotion of Snakebot is automatically designed by a computer system
via simulated evolution through selection and survival of the fittest in a way
similar to the evolution of species in the nature. The use of an automated
process to design the control code opens the possibility of creating a solution
that would be better than one designed by a human [9].

Out choice of employing GP for designing the control code of snakebot
is motivated by the commonly accepted recognition that applying traditional
learning techniques (reinforcement learning, Q-learning, etc.) to redundant
robotic systems (such as snake-like robots) is difficult and extremely time
consuming. These learning techniques usually involve many random searches,
and the number of these random searches increases exponentially with the
increase of size of the search space.

Evolving a Snakebot's locomotion (and in general, behavior of any robot)
could be performed as a first step in the sequence of simulated off-line evolu-
tion (phylogenetic learning) on the software model, followed by on-line adap-

2 Sidewinding Locomotion of Simulated Snake-like Robot 23

tation (ontogenetic learning) of evolved code on a physical robot situated in
a real environment [12]. Off-line software simulation facilitates the process of
Snakebot's controller design because the verification of behavior on physical
Snakebot is extremely time consuming, costly and often dangerous for Snake-
bot and surrounding environment. Moreover, in some cases it is appropriate to
initially model not only the locomotion, but also to co-evolve the most appro-
priate morphology of the artifact (i.e. number of phenotypic segments; types
and parameters of joints which link segments; actuators' power; type, amount
and location of sensors; etc.) 1141, 1161, 1171 and only then (if appropriate) to
physically implement it as hardware. The software model, used to simulate
Snakebot should fulfill the basic requirements of being quickly developed, ad-
equate, and fast running [6]. Typically slow development time of GP stems
from the highly specific semantics of the main attributes of GP (e.g. represen-
tation, genetic operations, fitness evaluation) and can be significantly reduced
through incorporating off-the-shelf software components and open standards
in software engineering. To address this issue, we developed a GP framework
based on open XML standard and ensure adequacy and runtime efficiency of
Snakebot simulation, we applied the Open Dynamic Engine (ODE) freeware
software library for simulation of rigid body dynamics.

The objectives of our work are (i) to explore the feasibility of applying GP
for automatic design of the fastest possible locomotion of realistically simu-
lated Snakebot and (ii) to investigate the robustness and adaptation of such
locomotion to unanticipated environmental conditions and degraded abilities
of Snakebot. Inspired by the fast sidewinding locomotion of the rattlesnake
Crotalus cerastes, this work is motivated by our desires (i) to better under-
stand the mechanisms underlying sidewinding locomotion of natural snakes,
(ii) to explore the phenomenon of emergence of locomotion of complex bodies
from simply defined motion patterns of the morphological segments compris-
ing these bodies, (iii) to verify the feasibility of employing ODE for realistic
software simulation of a Snakebot, and (iv) to investigate the practicality of
building real Snakebots.

The remainder of this document is organized as follows. Section 2.2 em-
phasizes the main features of the GP proposed for evolution of locomotion of
simulated Snakebot. Section 2.2 presents empirical results of evolving loco-
motion gaits of Snakebots and discusses the emergence of sidewinding. The
same section elaborates on robustness and adaptation of sidewinding to unan-
ticipated environmental conditions and partial damage of Snakebot. Finally,
Section 2.4 draws a conclusion.

2.2 Approach

2.2.1 Representation of Snakebot

Snakebot is simulated as a set of identical spherical morphological segments (
"vertebrae"), linked together via universal joints. All joints feature identical

24 Ivan Tanev, Thomas Ray, and Andrzej Buller

(finite) angle limits and each joint has two attached actuators ("muscles"). In
the initial, standstill position of Snakebot the rotation axes of the actuators
are oriented vertically (vertical actuator) and horizontally (horizontal actu-
ator) and perform rotation of the joint in the horizontal and vertical planes
respectively (Fig. 2.1). Considering the representation of Snakebot, the task
of designing the fastest locomotion can be rephrased as developing temporal
patterns of desired turning angles of horizontal and vertical actuators of each
segment, that result in fastest overall locomotion of Snakebot.

Vertioal
Bxis

\ Universal joint

Horizontal Segment (N Segment Xitl
axis

Fig. 2.1. Morphological segments of Snakebot linked via universal joint. Horizontal
and vertical actuators attached to the joint perform rotation of the segment #if1
in vertical and horizontal planes respectively

2.2.2 Algorithmic paradigm

Genetic Programming

GP [7] is a domain-independent problem-solving approach in which a popula-
tion of computer programs (individuals' genotypes) is evolved to solve prob-
lems. The simulated evolution in GP is based on the Darwinian principle of
reproduction and survival of the fittest. The fitness of each individual is based
on the quality with which the phenotype of the simulated individual is per-
forming in a given environment. The major attributes of GP - function set,
terminal set, fitness evaluation, genetic representation, and genetic operations
are elaborated in the remaining of this Section.

Function set and terminal Set

In applying GP to evolution of Snakebot, the genotype is associated with two
algebraic expressions, which represent the temporal patterns of desired turn-
ing angles of both the horizontal and vertical actuators of each morphological

2 Sidewinding Locomotion of Simulated Snake-like Robot 25

segment. Since locomotion gaits are periodical, we include the trigonometric
functions sin and cos in the GP function set in addition to the basic algebraic
functions. The choice of these trigonometric functions reflects our intention
to verify the hypothesis (first expressed by Petr Miturich in 1920's) that un-
dulative motion mechanisms could yield efficient gaits of snake-like artifacts
operating in air, land, or water. Terminal symbols include the variables time,
index of morphological segment of Snakebot, and two constants: Pi, and ran-
dom constant within the range [O, 21. The main parameters of the GP are
summarised in Table 2.1. The rationale of employing automatically defined
function (ADF) is based on empirical observation that the evolvability of
straightforward, independent encoding of desired turning angles of both hor-
izontal and vertical actuators is poor, although it allows GP to adequately
explore the search space and ultimately, to discover the areas which corre-
spond to fast locomotion gaits in solution space. We discovered that (i) the
motion patterns of horizontal and vertical actuators of each segment in fast
locomotion gaits are highly correlated (e.g. by frequency, direction, etc.) and
that (ii) discovering and preserving such correlation by GP is associated with
enormous computational effort. ADF, as a way of introducing modularity and
reuse of code in GP [8] is employed in our approach to allow GP to explicitly
evolve the correlation between motion patterns of horizontal and vertical ac-
tuators as shared fragments in algebraic expressions of desired turning angles
of actuators. Moreover, the best result was obtained by (i) allowing the use of
ADF as a terminal symbol in algebraic expression of desired turning angle of
vertical actuator only, and (ii) by evaluating the value of ADF by equalizing
it to the value of currently evaluated algebraic expression of desired turning
angle of horizontal actuator.

Table 2.1. Main parameters of GP

Category Value

Function set
Terminal set
Population size
Selection
Elitism
Mutation
Fitness
Trial interval
Termination criterion

sin, cos, +, -, *, /
time, segmentlD, Pi, random constant, ADF
200 individuals
Binary tournament, ratio 0.1
Best 4 individuals
Random subtree mutation, ratio 0.01
Velocity of simulated Snakebot during the trial
180 time steps, each time step account for 50ms of real time
(Fitness1 2 100) or (Generations 2 30) or
no improvement of fitness for 16 generations)

26 Ivan Tanev, Thomas Ray, and Andrzej Buller

Fitness evaluation

The fitness function is based on the velocity of Snakebot, estimated from the
distance which the center of the mass of Snakebot travels during the trial.
The real values of the raw fitness, which are usually within the range (0,
2) are multiplied by a normalizing coefficient in order to deal with integer
fitness values within the range (0, 200). A normalized fitness of 100 (one of
the termination criteria shown in Table 2.1) is equivalent to a velocity which
displaced Snakebot a distance equal to twice its length. The fitness evaluation
routine is shown in Algorithm 2.1. The implementation of fitness evaluation
routine is illustrated in 2.2.

Representation of genotype

Inspired by its flexibility, and the recently emerged widespread adoption of
document object model (DOM) and extensible markup language (XML), we
represent evolved genotypes of simulated Snakebot as DOM-parse trees fea-
turing equivalent flat XML-text in a way as first implemented in [20]. Our
approach implies that both (i) the calculation of the desired turning angles
during fitness evaluation (functions EvalHorisontalAngle and EvalVerticalAn-
gle, shown in Algorithm 2.2, lines 18 and 20 respectively) and (ii) the genetic
operations are performed on DOM-parse trees using off-the shelf, platform-
and language neutral DOM-parsers. The corresponding XML-text represen-
tation (rather than S-expression) is used as a flat file format, feasible for
migration of genetic programs among the computational nodes in an eventual
distributed implementation of the GP. The benefits of using DOM/XML-
based representations of genetic programs are (i) fast prototyping of GP by
using standard built-in API of DOM-parsers for traversing and manipulating
genetic programs, (ii) generic support for the representation of grammar of
strongly-typed GP using W3C-standardized XML-schema; and (iii) inherent
Web-compliance of eventual parallel distributed implementation of GP.

Genetic operations

Binary tournament selection is employed - a robust, commonly used selection
mechanism, which has proved to be efficient and simple to code. Crossover
operation is defined in a strongly typed way in that only the DOM-nodes
(and corresponding DOM-subtrees) of the same data type (i.e. labeled with
the same tag) from parents can be swapped. The sub-tree mutation is allowed
in strongly typed way in that a random node in genetic program is replaced by
syntactically correct sub-tree. The mutation routine refers to the data type
of currently altered node and applies randomly chosen rule from the set of
applicable rewriting rules as defined in the grammar of strongly typed GP.

2 Sidewinding Locomotion of Simulated Snake-like Robot 27

ODE

We have chosen Open Dynamics Engine (ODE) [18] to provide a realistic sim-
ulation of physics in applying forces to phenotypic segments of Snakebot, for
simulation of Snakebot locomotion. ODE is a free, industrial quality software
library for simulating articulated rigid body dynamics. It is fast, flexible and
robust, and it has built-in collision detection. The ODE-related parameters of
simulated Snakebot are summarized in Table 2.2.

Algorithm 2.1 Fitness evaluation routine
Step 1. Incorporating the evolved genotype into the actuators' controllers

of Snakebot;
Step 2. Simulating the locomotion of Snakebot governed by current actuators'

controllers;
Step 3. Estimating the distance, which the center of the mass of Snakebot travels

during the trial.

Table 2.2. ODE-related parameters of simulated Snakebot

Parameter Value

Number of phenotypic segments in snake
Model of segment
Type of joint between segments
Initial alignment of segments in Snakebot
Number of actuators per joint
Orientation of axes of actuators

Operational mode of actuators
Max force of actuators
Actuators stops (angular limits)
Friction between segments and surface (p)
Sampling frequency of simulation

15
Sphere, R=0.2
Universal
Along Y-axis of the world
2
Horizontal - along X-axis and
Vertical - along Z-axis of the world
d AMotorEuler
12
50
5
20 Hz

2.3 Experimental Results

This section discusses experimental results verifying the feasibility of apply-
ing GP for evolution of the fastest possible locomotion gaits of Snakebot for
various fitness and environmental conditions. In addition, it investigates the
properties of the fastest locomotion gait, evolved in an unconstrained envi-
ronment from two perspectives: (i) robustness to various unanticipated en-
vironmental conditions and (ii) gradual adaptation to degraded mechanical

28 Ivan Tanev, Thomas Ray, and Andrzej Buller

A l g o r i t h m 2.2 Implementation of fitness evaluation routine
1. function Evaluate(GenH, GenV: TGenotype): real;
2. // GenH and GenV is a pair of algebraic expressions, which define the
3. // turning angle of the horizontal and vertical actuators at the joints
4. // of simulated Snakebot. GenH and GenV represent the evolved genotype.
5. const
6. Timesteps =180; // duration of the trial
7. SegmentsInSnakebot=l5; // # of phenotypic segments i n simulated Snakebot
8. var
9. t , s : integer;

10. AngleH, AngleV : real; // desired turning angles of actuators
11. CurrAngleH, CurrAngleV: real; // current turning angles of actuators
12. InitialPos, FinalPos : 3DVector; // (X , Y,Z)
13. begin

[nitialPos:=GetPosOfCenterOfMassOfSnakebot;
for t:=O t o Timesteps-1 d o begin
for s:=O to SegmentsInSnakebot-1 d o begin
// traversing XML/DOM-based GenH using DOM-parser:
AngleH := EvalHorizontalAngle(GenH,s,t);
// traversing XML/DOM-based GenV using DOM-parser:
AngleV := EvalVerticalAngle(GenV,s,t);
CurrAngleH := GetCurrentAngleH(s);
CurrAngleV := GetCurrentAngleV(s);
SetDesiredVelocityH(CurrAng1eH-AngleH,s) ;
SetDesiredVelocityV(CurrAng1eV-AngleV,~);
end;
// detect collisions between the objects (phenotypic segments,
// ground plane, etc.):
dSpaceCollide;
// Obtain new properties (position, orientation, velocity
// vectors, etc.) of morphological segments of Snakebot as a result
// of applying all forces:
dWorldStep;
end;

FinalPos := GetPosOfCenterOfMassOfSnakebot;
r e tu rn GetDistance(InitialPos, FinalPos)/(TimeSteps);

36. end;

abilities of Snakebot. These challenges are considered as relevant for success-
ful accomplishment of various practical tasks during anticipated exploration,
reconnaissance, medicine and inspection missions.

2.3.1 Evolu t ion o f fas tes t locomot ion g a i t s

Fig. 2.2 shows the fitness convergence characteristics of 10 independent runs
of GP and Fig. 2.3 shows a sample snapshots of evolved best-of-run loco-

2 Sidewinding Locomotion of Simulated Snake-like Robot 29

motion gaits when fitness is measured in any direction in an unconstrained
environment. Despite the fact that fitness is unconstrained and measured as
velocity in any direction, sidewinding locomotion (defined as locomotion pre-
dominantly perpendicular to the long axis of Snakebot) emerged in all 10
independent runs of GP, suggesting that it provides superior speed character-
istics for Snakebot morphology. The dynamic motions of the sample evolved
best-of-run Snakebot is illustrated in Fig. 2.4. The normalized algebraic ex-
pressions of the genotype of sample best-of-run genetic program are shown in
Equations 2.1 and 2.2. The value of the automatically defined function ADF
in Equation 2.2, is evaluated by equalizing it to the value of GenH, evaluated
in Equation 2.1.

GenH = (sin(((sin(-8))*(segment_id-time))+(3*time)))/(sin(-8)) (2.1)

GenV = sin(ADF) (2.2)

0 10 20 30 40

Generation #

Fig. 2.2. Fitness convergence characteristics of 10 independent runs of GP for cases
where fitness is measured as velocity in any direction

The dynamics of evolved turning angles of actuators in sidewinding loco-
motion result in characteristic circular motion pattern of segments around the
center of the mass as shown in Fig. 2.5a. The circular motion pattern of seg-
ments and the characteristic track on the ground as a series of diagonal lines
(Fig. 2.5b) suggest that during sidewinding the shape of Snakebot takes the
form of a rolling helix. Fig. 2.5 demonstrates that the simulated evolution of
locomotion via GP is able to invent the improvised cylinder of the sidewind-
ing Snakebot to achieve fast locomotion. By modulating the oscillations of
the actuators along the snake's body, the diameter of the cross-section of the
"cylinder" can be tapered towards either the tail or head of the snake, provid-
ing an efficient way of "steering" the Snakebot (Fig. 2.6). Fig. 2.7 illustrates
the ability of Snakebot to perform sharp turn with radius similar to its length
in both clockwise and counterclockwise directions.

The moving Snakebot straight is wrapped around an imagined cylinder
taking the form of a rolling helix (a). By modulating the oscillations of the

30 Ivan Tanev, Thomas Ray, and Andrzej Buller

(a) Snapshots 1 (b) Snapshots 2

Fig. 2.3. Snapshots of sample evolved best-of-run sidewinding locomotion gaits of
simulated Snakebot viewed from above. The dark trailing circles depict the trajec-
tory of the center of the mass of Snakebot. Timestamp interval between each of
these circles is fixed and it is the same (10 time steps) for both snapshots

Fig. 2.4. Snapshots of sample evolved best-of-run sidewinding locomotion of simu-
lated Snakebot (left-right top-down). The dark trailing circles depict the trajectory
of the central segment of Snakebot. Timestamp interval between each of these circles
is 2 time steps (0.1s)

2 Sidewinding Locomotion of Simulated Snake-like Robot 31

(a) Evolved best-of-run (b) Traces of ground contacts

Fig. 2.5. Trajectory of the central segment (cs) around the center of mass (cm) of
Snakebot

Direction OJ
"rnt&m"

(a) Imagined cylinder (b) Imagined cone

Fig. 2.6. Steering the Snakebot

actuators along the snake's body, the diameter of the cross-section of the
"cylinder" can be tapered towards either the tail or head of the snake, provid-
ing an efficient way of "steering" the Snakebot: (b) illustrates the Snakebot
turning counterclockwise. The images are idealized: in simulated Snakebot
(and in snakes in Nature too) the cross sectional areas of the imagined "cylin-
der" (a) and "cone" (b) are much more similar to ellipses (as shown in Fig.
2.5a) rather than to perfect circles as depicted in Fig. 2.6

In order to verify the superiority of velocity characteristics of sidewind-
ing locomotion for Snakebot morphology we compared the fitness convergence
characteristics of evolution in unconstrained environment for the following two
cases: (i) unconstrained fitness measured as velocity in any direction (as dis-
cussed above and illustrated in Fig. 2.2 and 2.3, and (ii) fitness, measured as

32 Ivan Tanev, Thomas Ray, and Andrzej Buller

(a) Clockwise direction (b) Counterclockwise direction

Fig. 2.7. Snapshots of Snakebot performing sharp turns

velocity in forward (non-sidewinding) direction only. Fig. 2.8 depicts the fit-
ness convergence characteristics of 10 independent runs of GP for cases where
fitness is measured as velocity in forward direction. The results of evolution of
forward locomotion, shown in Fig. 2.9 indicate that non-sidewinding motion,
compared to sidewinding, features much inferior velocity characteristics.

Fig. 2.8. Fitness convergence characteristics of 10 independent runs of GP for cases
where fitness is measured as velocity in forward direction

The results of evolution of rectilinear locomotion of simulated Snakebot
confined in narrow "tunnel" are shown in Fig. 2.10 and Fig. 2.11. The width
of the tunnel is three times the diameter of the cross-section (which equals to
the diameter of the segment) of Snakebot. Compared to forward locomotion in
unconstrained environment (Fig. 2.8), the velocity in this experiment is supe-
rior, and comparable to the velocity of sidewinding (Fig. 2.2). This, seemingly
anomalous phenomenon demonstrates the ability of simulated evolution to
discover a way to utilize the walls of "tunnel" as a source of (i) extra grip
and (ii) locomotion gaits which are fast yet unbalanced in an unconstrained
environment. As Fig. 2.11b illustrates, as soon as Snakebot clears the tunnel,
the gait flattens and velocity (visually estimated as a distance between the
traces of the center of gravity of Snakebot) drops dramatically.

2 Sidewinding Locomotion of Simulated Snake-like Robot 33

(a) Forward (b) Locomotion gaits

Fig. 2.9. Snapshots of sample evolved best-of-run forward crawling locomotion gaits
of simulated Snakebot. Timestamp interval between the traces of the center of the
mass is the same as for sidewinding locomotion gaits, shown in Fig. 2.3. The distance
between the traces of center of the mass in both forward and sidewinding locomotion
gaits comparatively illustrates the achieved velocity in both cases

0 1 0 2 0 3 0 4 0
Generation #

Fig. 2.10. Fitness convergence characteristics of 10 indepenuent, I U I I ~ VL 2 P when
simulated Snakebot is confined in narrow "tunnel"

The final experiment discussed in this section is intended to verify the
ability of GP to evolve not only periodic locomotion gaits but also standstill
postures, such as elevation of the head of Snakebot. The best-of-run postures
(as shown in Fig. 2.12) feature well-balanced, standstill elevation of the head.
The elevation is approximately 3 diameters of Snakebot's segments, or about
20% of overall length of creature.

34 Ivan Tanev, Thomas Ray, and Andrzej Buller

(a) Intermediate stage (b) Final stage

Fig. 2.11. Snapshots of sample evolved best-of-run gaits at the intermediate and
final stages of the trial when simulated Snakebot is confined in narrow "tunnel"

(a) Front view (b) Above view

Fig. 2.12. Snapshots of sample evolved best-of-run standstill postures featuring
elevated head of Snakebot: front view and view from above

2.3.2 Robustness of Evolved Sidewinding Locomotion

Within the scope of our work we consider the robustness of sidewinding loco-
motion as the ability of the sidewinding Snakebot to retain its velocity when
situated in a challenging environment. Robustness is qualitatively demon-
strated by the ease with which the sidewinding Snakebot, initially evolved in
unconstrained environment overcomes a pile of 80 boxes (Fig. 2.13), burial
under 80 boxes (Fig. 2.14), rugged terrain with 200 randomly positioned ob-
stacles with uniform random distribution of size in the range 0.1 to 1 of the

2 Sidewinding Locomotion of Simulated Snake-like Robot 35

diameter of the cross-section of Snakebot (Fig. 2.15) and, finally, walls with
height equal to the diameter of the cross-section of Snakebot (Fig. 2.16).

(a) Initial stage (b) Intermediate stage

(c) Final stage

Fig. 2.13. Snapshots illustrating the robustness of sidewinding in clearing a pile of
boxes: initial, intermediate and final stages of the trial

(a) Initial stage (b) Intermediate stage

(c) Final stage

Fig. 2.14. Snapshots illustrating the robustness of sidewinding in emerging from
burial under a stack of boxes: initial, intermediate and final stages of the trial

36 Ivan Tanev, Thomas Ray, and Andrzej Buller

(a) Initial stage (b) Intermediate stage

(c) Final stage

Fig. 2.15. Snapshots illustrating the robustness of sidewinding in rugged terrain
area: initial, intermediate and final stages of the trial

(b) Intermediate stage (a) Initial stage

(c) Final stage

Fig. 2.16. Snapshots illustrating the ability of simulated sidewinding Snakebot in
clearing walls forming a "pen": initial, intermediate and final stages of the trial.
Height of the walls is equal to the diameter of cross-section of simulated Snakebot

2 Sidewinding Locomotion of Simulated Snake-like Robot 37

2.3.3 Adaptation

The ability of sidewinding Snakebot to adapt to partial damage to 1, 2, 4
and 8 (out of 15) segments by gradually improving its velocity by simulated
evolution via GP is shown in Fig. 2.17. Demonstrated results are averaged
over 4 independent runs for each case, where GP is initialized with a popula-
tion comprising 190 randomly created individuals, plus 10 best-of-run genetic
programs obtained from experiments with evolving sidewinding in an uncon-
strained environment as elaborated in Section 2.3.1. The damaged segments
are evenly distributed along the body of Snakebot. Damage inflicted to a
particular segment implies a complete loss of functionality of both horizontal
and vertical actuators of the corresponding joint. The results of validating the
adapted damaged Snakebot against the fixed best-of-run program are shown
in Fig. 2.17. As Fig. 2.17 illustrates, Snakebot completely recovers from dam-
age to single segment in 25 generations, attaining its previous velocity, and
recovers to average of 94% of its previous velocity in the case where 2 (13%
of total amount of 15) segments are damaged. With 4 (27%) and 8 (53%)
damaged segments the degree of recovery is 77% (23% degradation) and 64%
(36% degradation) respectively. Fig. 2.18a shows a snapshot of frontal view of
sidewinding Snakebot adapted to damage of a single segment. Compared to
the sidewinding locomotion of Snakebot before the adaptation (Fig. 2.18b),
the adapted locomotion gait features much higher elevation of the middle part
of the body. This elevation compensates the complete lack of functionality of
actuators in the damaged segment. Snapshots of the sidewinding Snakebot
are shown in Fig. 2.19, before damage to a single segment, immediately af-
ter damage to the segment, and after having completely
damage by adaptation.

0 5 X) I5 20 25 30 35
Generation #

recovered from the

Fig. 2.17. Representation of Fd, the best fitness in evolved population of damaged
snakebots, and F h the best fitness of 10 best-of-run healthy sidewinding snakebots
when sidewinding Snakebot is adapting to damage of 1, 2, 4 and 8 segments

38 Ivan Tanev, Thomas Ray, and Andrzej Buller

(a) After adaptation to damage (b) Before adaptation to damage

Fig. 2.18. Adaptation of sidewinding Snakebot to damage of a single segment

(c) Completely recovered

Fig. 2.19. Adaptation of the sidewinding Snakebot to damage of a single segment
(shown in dark color): healthy Snakebot, Snakebot immediately after damage to
segment #7 causing 24% loss of velocity and after having completely recovered
from the damage through adaptation (c). Notice the shorter distances between the
traces of the center of the mass (and consequently, slower locomotion) in case (b)
compared to both (a) and (c). Snapshots (b) and (c) depict the same positions of
Snakebot as shown in Fig. 2.18b and Fig. 2.18a respectively, viewed from above

2 Sidewinding Locomotion of Simulated Snake-like Robot 39

2.4 Summary

We presented an approach to automatic design through genetic programming,
of sidewinding locomotion of simulated limbless, wheelless artifacts. The soft-
ware model used to simulate Snakebot should fulfill the basic requirements
of being quickly developed, adequate, and fast running. To address the first
of these issues, we employed an XML-based GP framework. To address the
issues of adequacy and runtime efficiency of Snakebot simulation we applied
the Open Dynamic Engine (ODE) - a freeware software library for simulation
of rigid body dynamics. The empirically obtained results demonstrate that
the complex locomotion of sidewinding emerges from relatively simple motion
patterns of phenotypic segments (vertebrae). The evolved locomotion pattern
of each segment is such that the segment is rotating in a circle-like trajec-
tory around the center of the mass of the simulated Snakebot. This suggests
that evolved sidewinding locomotion can be viewed as a process of rolling of
the body of the simulated Snakebot in a helix shape, effectively inventing a
kind of improvised wheel. The efficiency of sidewinding locomotion is much
superior to locomotion in the forward direction, suggesting that sidewinding
is the fastest possible locomotion for the simulated limbless wheelless robots
with the characteristics used in this study (morphology, limits of actuator
forces, joint type, joint movement limits, etc.). Robustness of the sidewind-
ing Snakebot, initially evolved in unconstrained environment (considered as
ability to retain its velocity when situated in unanticipated environment) was
illustrated by the ease with which Snakebot overcomes various types of ob-
stacles such as piles of and burial under boxes, rugged terrain and walls. The
ability of Snakebot to adapt to partial damage by gradually improving its
velocity characteristics was discussed. Discovering compensatory locomotion
traits, Snakebot recovers completely from single damage and recovers a major
extent of its original velocity when more significant damage is inflicted. Con-
tributing to the better understanding of sidewinding locomotion, this work
could be considered as a step towards building real limbless, wheelless robots,
which featuring unique engineering characteristics are able to perform robustly
in difficult environments.

Acknowledgements

The authors thank Katsunori Shimohara for his immense support of this re-
search. The research was supported in part by the National Institute of Infor-
mation and Communications Technology of Japan.

References

1. J. W. Burdick, J. Radford, and G.S. Chirikjian, A 'sidewinding' locomotion gait
for hyper-redundant robots, In Proceedings of the IEEE int. conf. on R.obotics

40 Ivan Tanev, Thomas Ray, and Andrzej Buller

& Automation, Atlanta, USA, pp. 101-106, 1993
2. G. S. Chirikjian and J. W. Burdick, The kinematics of hyper-redundant robotic

locomotion, IEEE Trans. Robotics and Automation, vol.11, No.6, 1995, pp. 781-
793

3. K. Dowling, Limbless locomotion: Learning to Crawl with a Snake Robot, doc-
toral dissertation, Tech. report CMU-RI-TR-97-48, Robotics Institute, Carnegie
Mellon University, 1997

4. S. Hirose, Biologically Inspired Robots: Snake-like Locomotors and Manipula-
tors, Oxford University Press, 1993

5. S. Takamura, G. S. Hornby, T. Yamamoto, J. Yokono, and M. Fujita, Evolution
of Dynamic Gaits for a Robot, IEEE International Conference on Consumer
Electronics, pp. 192-193, 2000

6. N. Jacobi, Minimal Simulations for Evolutionary Robotics, Ph.D. thesis, School
of Cognitive and Computing Sciences, Sussex University, 1998

7. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, Cambridge, MA, MIT Press, 1992

8. J. R. Koza, Genetic Programming 2: Automatic Discovery of Reusable Pro-
grams, The MIT Press, Cambridge, MA, 1994

9. J. R. Koza, M. A. Keane, J. Yu, F. H. Bennett 111, W. Mydlowec, Automatic
Creation of Human-Competitive Programs and Controllers by Means of Genetic
Programming, Genetic Programming and Evolvable Machines, Vol.1 No.1-2,
pp.121-164, 2000

10. S. Mahdavi, P. J. Bentley, Evolving Motion of Robots with Muscles, In Proc. of
EvoROB2003, the 2nd European Workshop on Evolutionary Robotics, EuroGP-
2003, , pp. 655-664, 2003

11. H. J. Morowitz, The Emergence of Everything: How the World Became Com-
plex, Oxford University Press, New York, 2002

12. L. Meeden, D. Kumar, Trends in Evolutionary Robotics, Soft Computing for
Intelligent Robotic Systems, edited by L.C. Jain and T. Fukuda, Physica-Verlag,
New York, NY, pp. 215-233, 1998

13. J. Ostrowski and J. Burdick, Gait kinematics for a serpentine robot, In Proc.
IEEE Int. Conf. on Rob. and Autom., Minneapolis, MN, pp. 1294-1299, 1996

14. R. Pfeifer, On the Role of Morphology and Materials in Adaptive Behavior,
In: J.-A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, and S.W. Wilson (eds.),
From animals to animats 6: Proc. of the 6th Int. Conf. on Simulation of Adaptive
Behavior. Cambridge, Mass., MIT Press, pp. 23-32, 2000

15. B. Salemi, P. Will, and W.-M. Shen, Distributed Task Negotiation in Modular
Robots, Robotics Society of Japan, Special Issue on "Modular Robots", 2003

16. K. Sims, Evolving 3D Morphology and Behavior by Competition, Artificial Life
IV Proceedings, MIT Press, pp. 28-39, 1994

17. T. Ray, Aesthetically Evolved Virtual Pets, Leonardo, Vo1.34, No.4, pp. 313 -
316, 2001

18. R. Smith, Open Dynamics Engine (2001-2003) Web: http://ql2.org/ode/
19. K. Stoy, W.-M. Shen and P.M. Will, A simple approach to the control of locomo-

tion in self-reconfigurable robots, Robotics and Autonomous Systems, Vo1.44,
No.3, pp.191-200, 2003

20. I. Tanev, DOM/XML-Based Portable Genetic Representation of Morphology,
Behavior and Communication Abilities of Evolvable Agents, In Proceedings of
the 8th International Symposium on Artificial Life and Robotics (AROB'OS),
Beppu, Japan, pp. 185-188, 2003

2 Sidewinding Locomotion of Simulated Snake-like Robot 41

21. Y. Zhang, M. H. Yim, C. Eldershaw, D. G. Duff, K. D. Roufas, Phase au-
tomata: a programming model of locomotion gaits for scalable chain-type mod-
ular robots, IEEEIRSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2003), October 27 - 31, Las Vegas, NV, 2003

Evolution of Khepera Robotic Controllers with
Hierarchical Genetic Programming Techniques

Marcin L. Pilatl and Franz Oppacher2

Department of Computer Science, University of Calgary,
2500 University Drive N.W.,
Calgary, AB, T2N 1N4, Canada,
pilatQcpsc.ucalgary.ca, http://www.pilat.org
School of Computer Science, Carleton University,
1125 Colonel By Drive,
Ottawa, ON, K1S 5B6, Canada
oppacher@scs.carleton.ca, http://www.scs.carleton.ca/"oppacher

In this chapter, we evolve robotic controllers for a miniature mobile Khepera
robot. We are concerned with control tasks for obstacle avoidance, wall fol-
lowing, and light avoidance. Robotic controllers are evolved through canonical
GP implementation, linear genome GP system, and hierarchical GP methods
(Automatically Defined Functions, Module Acquisition, Adaptive Represen-
tation through Learning). We compare the different evolutionary strategies
based on their performance in evolution of robotic controllers. Experiments
are performed on the Khepera GP Simulator for Windows. We develop the
simulator as a user and developer friendly software to study GP and other
robot controllers.

3.1 Introduction

Evolutionary computation studies how theories of evolution can be used to
solve computational problems. Various evolutionary computation approaches
currently exist with different methodologies and applications. We are inter-
ested in the area of genetic programming which uses evolutionary ideas to
evolve computer programs.

robotics focuses on building machines to improve the lives of humans.
Robots are designed to perform repetitive or dangerous tasks with excellent
precision and dependability. However, robots require directions and program-
ming to accomplish their goals.

44 Marcin L. Pilat and Franz Oppacher

In this chapter, we study the application of genetic programming tech-
niques to the evolution of control programs for an autonomous miniature
robot. We also present a software simulator for the Khepera miniature robot
designed to study genetic programming based robotic controllers.

3.2 Genetic Programming

Genetic Programming (GP) was introduced by Koza [9] as an extension to
genetic algorithms in order to enrich the chromosome representation. Instead
of fixed-length strings, GP evolves pieces of code written over a specified al-
phabet consisting of a set of functions and a set of terminals. The chromosome
encoding can be directly executed by the system or can be compiled or inter-
preted to produce machine executable code.

The main problem with genetic programming lies in its scalability. Ge-
netic programming has been demonstrated to solve a variety of applications
[ll, 131 but it appears to lose its effectiveness for more complex real-world
problems [5]. When we solve complex problems, we typically break the task
into simpler sub-tasks and solve each sub-task. In contrast, regular GP tries
to compute the entire solution to the problem at once. While this method is
suitable for smaller problems, it is often not powerful enough to solve diffi-
cult problems. The problem decomposition technique of breaking down the
task and solving its sub-tasks (called modularization) seems to be the right
solution to overcome the complexity threshold of real-world problems.

Modularization techniques have been developed for GP but have generally
employed a fixed decomposition structure provided by the experimenter. Hier-
archical Genetic Programming (HGP) introduces modularization techniques
to the GP system so that the GP can evolve module solutions to problems
without human-imposed structure. This automatic modularization technique
should improve the performance of genetic programming on difficult problems.

Koza [ll] identifies five techniques that can enable hierarchical problem
solving to reduce the effort needed to solve a problem: hierarchical decomposi-
tion, recursive application, identical reuse, parameterized reuse, and abstrac-
tion. Hierarchical decomposition is the act of breaking a problem into smaller
sub-problems, solving the sub-problems, and combining their solutions into
a solution for the problem. Recursive application of hierarchical decomposi-
tion to a problem is able to recursively break the problem down into small
sub-problems that would be easy to solve by the system. Identical reuse is
the process of using previously computed solutions to identical sub-problems,
while parameterized reuse offers a way of applying the same problem solving
mechanism to similar sub-problems via parameters. Abstraction deals with
exclusion of irrelevant data from the problem environment.

Several hierarchical genetic programming methods have been suggested,
each with its own advantages and disadvantages. The methods have been
tested on various problems; however, current research does not adequately

3 Evolution of Khepera Robotic Controllers 45

explain whether the studied HGP methods can, in general, outperform stan-
dard GP. In our research, we study the HGP methods: Automatically Defined
Functions (ADFs) [I 11, Module Acquisition (MA) [2], Adaptive Representa-
tion (AR) [25].

3.3 Robotic Control

Programming robots by humans can be a difficult endeavor and is not well
suitable for complex real-world applications. The area of evolutionary robotics
deals with automatic generation of control programs for robots using evolu-
tionary techniques.

The area of robotic control is often subdivided into three sub-areas: re-
active, behavior-based, and hybrid [3]. Reactive control uses a simple set of
condition-action pairs that define how the robot reacts to a stimulus. Brooks
[6] proposed a multi-layer subsumption architecture where higher-level layers
can subsume and block lower-level layers from action. Behavior-based archi-
tecture [14] uses a collection of interacting behaviours that can take input from
the robot's environment sensors or other behaviours and produce output to
the robot's effectors or other behaviours. Hybrid control strategies exist that
offer a compromise between purely-reactive and behavior-based strategies.

Brooks [7] introduced the idea of using Artificial Life techniques to evolve
control programs for mobile robots. Although no experimental results were
presented, Brooks identified genetic programming as a hopeful technique for
control program evolution. Koza [lo] presented results of using GP to evolve
emergent wall following behavior for an autonomous mobile robot. The con-
trol program was based on the subsumption architecture and demonstrated
that GP can evolve control programs for mobile robots. In [12], Koza and
Rice demonstrated that genetic programming can automatically create a con-
trol program to perform a box moving task. The paper also offered a good
comparison between GP techniques and reinforcement learning techniques in
accomplishing the task.

Reynolds [22] has used genetic programming to evolve a controller pro-
gram for tiny critters in a simulated environment. The critter tasks were to
manoeuver in a static obstacle environment (obstacle-avoidance) and avoid a
predator. In this ALife-inspired predator-pray paradigm, the fitness criteria
was based on the sum of the critter lifetimes. Results showed interesting par-
tial solutions to the task but failed to show herding behavior such as observed
in animals.

Nordin and Banzhaf [16, 19, 17, 20, 181 have experimented with a sim-
ulated and real Khepera miniature robot to evolve control programs using
genetic programming. They used the Compiling Genetic Programming Sys-
tem (CGPS) [15] which worked with a variable length linear genome composed
of machine code instructions. The system evolved machine code that was di-
rectly run on the robot without the need of an interpreter.

46 Marcin L. Pilat and Franz Oppacher

The initial experiments of Nordin and Banzhaf [16, 171 were based on a
memory-less genetic programming system with reactive control of the robot.
The system performed a type of symbolic regression to evolve a control pro-
gram that would provide the robot with 2 motor values from an input of 8
(or more) sensor values. GP successfully evolved control programs for simple
control tasks such as: obstacle avoidance, wall following, and light-seeking.
The work was extended [20, 211 to include memory of previous actions and a
two-fold system architecture composed of a planning process and a learning
process. Speed improvements over the memory-less system were observed in
the memory-based system and the robots exhibited more complex behaviours
[20]. Summary of the techniques used and tasks studied can be found in [4].

We are interested in the reactive control of a Khepera robot using genetic
programming techniques. In reactive control experiments, robots learn while
travelling through the experimental environment. No separate fitness cases
are used to calculate fitness and thus the robot positions do not need to be
reset for the purpose of fitness calculation. The reactive control problem is
difficult since it requires dynamic fitness function evaluation where the indi-
vidual fitness values depend on the local environment of the robot. However,
the problem presents a more realistic dynamic learning environment.

The learning method used in an evolutionary algorithm can greatly influ-
ence the successfulness of the solution to the problem. Due to their beneficial
properties, we feel that hierarchical genetic programming methods will
advantages to the problem of reactive robotic control.

3.4 Khepera Simulators

Robotic simulators play an important role in robotic experimentation. Rot
equipment can be costly and requires proper facilities. Software simulators
offer the experimenter a test-bed for robotic technologies when a physical
robot cannot be acquired. Some simulators provide a very accurate model of
the environment and of interactions in the environment. Such simulators can
be used as valid substitutions for real robots for testing various robotic tasks.

Some robotic research on physical robots requires constant supervision
and periodical rearrangement of the robots within the environment. For such
research, robotic simulators have an advantage to physical robots. Simulators
can be left unsupervised and can be programmed to automatically perform
human actions such as relocation of robots in the simulated environment. This
can considerably speed up experimentation time and requires less human time.

The main disadvantage of software simulators is the inexact model of the
environment. A real physical environment contains noisy data that can greatly
influence the results of an experiment. One of the goals of using a robotic
software simulator is to be able to reproduce similar results on the physical
robot. Thus, the software environment must contain noise comparable to the
real physical environment.

3 Evolution of Khepera Robotic Controllers 47

3.4.1 Khepera Robot

The Khepera robot is a miniature mobile robot created and sold by K-Team
S.A. (http://www.k-team.com) - a Swiss company specializing in development
and manufacture of mobile mini-robots. Recently, K-Team has created a new
Khepera I1 robot with an improved micro-processor, more memory, and a
wider range of capabilities. Our research is based on the original Khepera
robot.

Khepera is circular, with a diameter of 55mm and height of 30mm. The
robot can sense its environment with 8 built-in infra-red proximity and ambi-
ent light sensors. Two motors with controllable acceleration are used to move
the robot in the environment. Fig. 3.1 provides a schematic diagram of the
robot's sensors and motors.

Fig. 3.1. Schematic view of the Khepera robot. Sensors are labelled SO to s7 and
motors are labelled m l and m2.

The brain of the Khepera robot is a 16Mhz Motorola 68331 micro-processor
with 256 KB of RAM and 128-256 KB of reprogrammable ROM memory. The
ROM contains a simple operating system and communication interface to a
host computer. The robot can execute its own programming that can be either
provided through a serial connection or downloaded into the onboard memory.

The Khepera robot can be equipped with a variety of extension turrets
that provide it with abilities to perform more complex tasks. Some extension
turrets are: gripper turret used for object recognition and manipulation, video
turret for on-board camera ability, and I/O turrets for improved communica-
tion with the host computer.

48 Marcin L. Pilat and Franz Oppacher

3.4.2 Khepera Simulator

The original Khepera Simulator (h t tp : //diwww. epf 1. ch/lami/team/michel
/khep-sim) was developed by Olivier Michel at the Microprocessor Systems
Lab (LAMI) of the Swiss Federal Institute of Technology (EPFL). The latest
version of the simulator (version 2.0) is available free-of-charge for research
use and it is written exclusively for the UNIX@ platform.

Many other software simulators for the Khepera robots are currently avail-
able. Cyberbotics (http://www.cyberbotics.com) specializes in development
of 3D simulation software for mobile robots. The software - Webots - supports
a variety of robots rendered in a 3-dimensional environment.

3.4.3 Khepera GP Simulator

The Khepera GP Simulator for windows@ is a software package to simulate
Khepera robots in their environment. The software is designed to use the
genetic programming paradigm to automatically generate control programs
for the robots. Thus, the simulator can be used for testing of GP techniques
in the domain of robotic control.

The simulator was created by Marcin L. Pilat in 2001 as a port of the orig-
inal Khepera Simulator to the windows@ platform. In 2003, the simulator
was improved and adapted for simulating GP-based tasks on Khepera robots.
Version 3.0 is available free for educational purposes and can be downloaded
from the author's website (http:/l www.pilat.org/ khepgpsim). The source
code is also available and can be modified by researchers for s ecific experi-
ments. The code was written using ~icrosoft@ Visual C++$ ~icrosof t@
Foundation Class (MFC) Library, and Component Object Model (COM). The
simulator is only available for the windows@ platform.

The main purpose of the Khepera GP Simulator is to simulate a physical
Khepera robot in its environment. The simulation includes sensing of the
environment using the robotic sensors and interacting with the environment
using the robotic actuators (motors powering the wheels). Noise is added to
the simulation in order to approximate a noisy environment. Multiple Khepera
robots can be simulated together thus allowing the study of more complex
robotic behaviours requiring interaction between the robots (e.g. box-pushing,
following, collective garbage collection).

The environment of the robot is modeled as a scalable rectangular working
area. All items in the environment are treated as objects. There are three
types of objects - building objects (bricks, corks, boxes), light objects (lamps,
light boxes), and robot objects. Robot objects are simulated Khepera robots
placed in the environment. Any object can be manipulated in the environment
in real-time during a simulation run.

The Khepera GP Simulator is specifically designed to study GP-based
robotic controllers but can be easily adapted to non-GP controllers. The con-
troller dictates the actions of the robot in the environment. The GP controllers

3 Evolution of Khepera Robotic Controllers 49

included with the simulator modify a population of robotic control programs
in order to evolve certain tasks (or behaviours).

The robotic controller provides a set of motor values to be used by a robot
during each step of the simulation. The motor values are processed to yield a
force vector that specifies the direction of the motion and the amount of force
the robot applies in the world. The force vector is then used to calculate the
next position and rotation of the robot. Collisions are handled by a simple
vector-based collision engine with modifiable parameters.

Each learning task (such as obstacle avoidance, wall following) can be
evolved with any type of GP controller. The controller type specifies the chro-
mosome structure and chromosome interactions during evolution. Multiple
tasks can be evolved by the same GP controller type with different specifi-
cations of the chromosome structure. A task contains a population of chro-
mosomes; thus, it can be used to store snapshots of the population during
evolution.

Each task contains a fitness function which provides guidelines for the
evolution of the population of control programs. The fitness function can
be thought as a formal definition of the learning task. Fitness functions in
the simulator are dynamic and can be easily modified at runtime. The fit-
ness function definitions are written using a scripting language - ~icrosof t@
~ S c r i ~ t ~ ~ . This scriptin language is based on ~ a v a ~ ~ a n d is available free-
of charge from Microsoftb Corporation. JScriPtTMProvides the user with a
rich scripting language to define the fitness function. The language supports
a variety of pre-defined functions and the ability to create variables.

The GP controllers in the simulator gather statistical information during
the run of the evolutionary algorithm. This information is stored in order
to analyze the performance of an evolutionary run. For each generation, the
statistics engine stores average and best population fitness, robotic collisions,
chromosome complexity, and population entropy values. Population entropy
[23] measures the state of a dynamic system represented by the population
and can be correlated with the state of population diversity.

Complexity of the chromosomes in the population is stored using three
complexity measures: size, structural complexity, and evolutional complexity
[27]. The size measure specifies the raw size of the chromosomes defined as
the number of instructions in a linear genome chromosome or the number
of tree nodes in the tree-based chromosome representation. The structural
complexity measure includes the sizes of all unique function trees called from
within an individual. Evaluational complexity of an individual is measured
recursively and includes sizes of all function trees embedded in the individual.
This measure approximates the number of computational units required for
execution of the individual program.

50 Marcin L. Pilat and Franz Oppacher

3.5 Robotic Controllers

Our research into robotic controllers builds on research done by Nordin and
Banzhaf [20] to evolve GP robotic controllers for the Khepera robot. Nordin
and Banzhaf were able to evolve controllers for various learning tasks (such
as obstacle avoidance and wall following). In our research, we compare the
linear genome GP method they have used in their experiments to canonical
tree-based GP representation and three most popular Hierarchical Genetic
Programming methods: Automatically Defined Functions, Module Acquisi-
tion, and Adaptive Representation.

The GP system in the robotic controller evolves control programs that
best approximate a desired solution to a pre-defined problem. This procedure
of inducing a symbolic function to fit a specified set of data is called Symbolic
Regression [18]. The goal of the system is to approximate the function:

f (SO, sl, s2, s3, s4, s5, s6, s7) = {ml, m2) (3.1)

where the function input is the robotic sensor data (SO-s7) and the output is
the speed of the motors controlling the motion of the robot (ml-m2). The con-
trol program code of each individual constitutes the body of the function. The
results are compared using a behaviour-based fitness function that measures
the accuracy of the approximation by the deviation from desired behavior of
the robot.

In our research, we deal with a population of control programs for the
Khepera robot. A steady-state tournament selection GP algorithm is applied
to the population in order to evolve control programs that accomplish the
specified learning tasks.

The canonical GP implementation uses a tree-based chromosome represen-
tation [9, 111. The chromosome (originally coded as a LISP S-expression)
represents a parse-tree that can be easily transformed into machine code. The
internal nodes of the program tree are chosen from a set of parameterized
functions with parameters as subtrees. Leaf nodes are chosen from the set of
parameter-less functions and terminals. The terminal set is usually composed
of variables and constants. Variables are place holders in the chromosome that
are filled in with values during execution. Functions perform calculations or
actions and can optionally have parameters. To generate tree-based chromo-
somes, we use the function and terminal sets as shown in Table 3.1.

Program trees of each individual are created in a recursive manner. Three
methods have been suggested for the creation of the initial random population:
full, grow, or ramped half-and-half [9]. The full method creates trees with all
leaf nodes at equal depth and is the method used in our implementation. The

3 Evolution of Khepera Robotic Controllers 51

Table 3.1. Contents of the function set and terminal set used by tree-based chro-
mosome representations.

Function Set: I~dd, Sub, Mul, Div, AND, OR, XOR, <<, >>, IFLTE
Terminal Set: ([SO-s71 (8 proximity sensors),

([lo-171 (8 ambient light sensors),
1 [O-81921 (constants in given range)

grow method grows trees of variable size and the ramped half-and-half method
creates a mixture of trees with different heights through either the full or the
grow method.

Two genetic operators are used in the tree-based chromosome represen-
tation: reproduction and crossover. Reproduction copies a chromosome into
the next generation. Single subtree switching crossover is applied to the two
fittest individuals in a tournament, with a given probability. We use a crossover
probability of 0.9 in all tree-based chromosome representation experiments.

3.5.2 Linear Genome GP

Nordin [15] provided a linear genome GP system which stores 32-bit instruc-
tions that can be executed directly on a processor. Nordin claimed the execu-
tion speed of the Compiling Genetic Programming System (CGPS) is several
orders of magnitude faster than of an equivalent interpreted tree-based GP
system [15]. The major disadvantage of the CGPS system is that it is only us-
able on a processor supporting the specific machine-code instruction set used.
To be used on a processor with a different instruction set, the system needs to
be either rewritten or interpreted. The CGPS was later called the Automatic
Induction of Machine code by Genetic Programming (AIMGP) system [21].

The linear genome method was applied by Nordin and Banzhaf [18] to
evolve a robotic controller for Khepera robots. The structure of our linear
genome GP controller closely resembles the controller used by Nordin and
Banzhaf. We represent each instruction as a text string and process it through
a genome interpreter prior to evaluation. This encoding improves the read-
ability of the program code compared to the binary approach of Nordin and
Banzhaf but suffers a loss in performance due to processing of the string based
instructions. However, the performance of the string-based representation is
sufficient for the purpose of our research.

In the linear genome GP system, each individual is composed of a series
of instructions (genes). The instructions are of the following format:

resvar = varl op (var2lconst) (3.2)

where resvar is the result variable and op is a binary operator working on
either two variables (varl and var2) or a variable and a constant (varl and
const).

52 Marcin L. Pilat and Franz Oppacher

Each individual is randomly assigned a height (number of instructions)
from 1 to the maximum specified height. For each part of an instruction, a
value is selected randomly from a set of primitive values. Table 3.2 provides
primitive value sets of the instruction parts used in our linear genome exper-
iments.

Table 3.2. Primitive values of instruction parts in the linear genome GP method.

Part IPrimitive Value Set
I

intermediate variables (a - f)

light sensor values (10 - 17)
intermediate values (a - f)
add (+), subtract (-), multiply (*), left shift (SHL)
lright shift (SHR), XOR (^), OR (I), AND (t)

const linteger value in range: 0-8191

The linear genome GP method employs three genetic operators: repro-
duction, crossover and mutation. The crossover operator uses a simple vari-
able length 2-point crossover applied to the list of instructions (genes) of two
fittest individuals of a tournament. Genes are treated as atomic units by the
crossover operator and are not modified internally. Simulated bit-wise muta-
tion modifies the contents of a gene. Crossover probability of 0.9 and mutation
probability of 0.05 are used in the linear genome experiments.

3.5.3 Automatically Defined Functions HGP

Koza's Automatically Defined Functions (ADFs) [ll] method is the oldest and
most widely used HGP method. The method automatically evolves function
definitions while evolving the main GP program that is capable of calling the
functions. The ADF HGP method implemented in our research is based on
the ADF method proposed by Koza.

The ADF method has been demonstrated to be advantageous in solving
more complex versions of problems than possible by standard GP (e.g. 6-
parity problem) [ll]. The major disadvantage to the method is that the user
must specify the structure of the ADF chromosomes (number of functions and
arguments) and the function and terminal sets required by each function. In
a true automatic HGP system, this type of information should be evolved by
the GP rather than provided by the user. Taking the downside of ADFs into
consideration, current research is centered around operations that automati-
cally modify the structure of the ADF chromosome and the number of ADFs
PI.

The method is an extension of the tree-based GP method and shares its
basic structure. An ADF chromosome consists of two distinct parts: the func-

3 Evolution of Khepera Robotic Controllers 53

tion defining branch, and the result producing branch. The function defining
part is composed of one or more ADF definition branches which describe the
structure of each ADF. The result producing branch contains the code of the
resulting program. This code can call any function defined in the function
defining branch of the same chromosome. Invariant nodes are fixed structural
nodes and are present in every ADF chromosome. Non-invariant nodes define
the bodies of the ADF definitions and the result producing branch and are
modified during evolution.

All ADFs defined in an individual are available locally to the program tree
of the same individual. The number of ADFs present in each chromosome and
the number of arguments for each ADF are specified as parameters. We use
chromosomes with one, two, and three ADF definitions and two function argu-
ments. Zero or multiple ADFs can be called from within the result producing
branch. Some recursive ADF implementations allow calling of ADFs from
within other ADFs. This leads to problems with circular evocation of ADFs
and requires extra protection. Due to the increase of implementation complex-
ity, we do not allow ADF calls inside ADF definitions in our implementation.

The result producing branch is built using a standard terminal set and
standard function set (shown in Table 3.1) augmented with the ADFs con-
tained in the same chromosome. Separate terminal and function sets are
used by the function defining branches to define the ADFs. The ADF branch
function set is identical to that of the tree-based chromosome representation
whereas the ADF terminal set is composed of ADF argument variables and
constants.

Tree-based reproduction and crossover genetic operators are used in the
ADF chromosomes. The crossover operator can only swap non-invariant nodes
of the same type using branch typing [ll].

3.5.4 Module Acquisition HGP

The Module Acquisition (MA) method of Angeline and Pollack [2] employs
two new operators of compression and expansion to modularize the program
code into subroutines. The subroutines contained in the subroutine collection
are frozen in time and cannot be modified during evolution of the program
trees. The Module Acquisition method automatically generates a hierarchi-
cal module structure [I]; however, no clear advantages of the method have
yet been provided. Kinnear has compared MA to ADFs on the even-4-parity
problem [8] and concluded that the method does not offer improvement in
space or time over the ADF method.

The chromosome structure is identical to that of the original tree-based
chromosomes with standard tree-based function and terminal sets. Modules
(subroutines) are created locally for each chromosome from subtrees of the
program tree and propagate through the population solely by reproduction
and crossover. Module nesting is allowed inside program trees of other mod-
ules; however, by the nature of their creation, modules are not recursive.

54 Marcin L. Pilat and Franz Oppacher

The Module Acquisition method employs four genetic operators: repro-
duction, crossover, and two mutation operators of compression and expansion.
The reproduction and crossover operators perform as for tree-based chromo-
somes. The compression operator creates a new subroutine from a randomly
selected subtree of an individual in the population using depth compression
[I]. We use a maximum depth value from range 2-5. Branches beyond the
maximum depth are used as parameters to the new subroutine.

Since the compression operator lowers the diversity of the population by
removing subtrees, an expansion operator is also provided to counteract the
negative effects. The expansion operator reverses the process of the compres-
sion operator by substituting the original subtree for a subroutine call in the
chromosome tree. The subroutine is removed from the module list of the chro-
mosome if it is no longer used.

The special mutation operators are applied after the standard tree-based
reproduction and crossover operators. We set the probability of compression
to 0.1 and probability of expansion to 0.01.

3.5.5 Adaptive Representation HGP

Rosca and Ballard proposed the Adaptive Representation method to dynami-
cally extend the function set with identified building blocks [25]. The method
uses standard tree-based representation and searches for blocks of code (de-
fined as subtrees of a given maximum height). Blocks are parameterized into
functions by substituting each occurrence of a terminal by a variable. Unlike
in the ADF HGP approach, the functions are discovered automatically and
without human-imposed structure. The method differs from the MA HGP
approach by the algorithms used in function discovery and management of
the function library. Our implementation of the AR method is based on the
improved Adaptive Representation through Learning (ARL) algorithm [26].

The method works by incrementally checking the population for fit build-
ing blocks. Block fitness is dependant on the performance of the individual
where the block resides (and, thus, the block) or the performance of a part of
the individual (e.g. using a block fitness function). Evolution is done in epochs
which are defined as sequences of consecutive generations where no fit build-
ing blocks are discovered. At the end of each epoch (i.e. after a discovery of
a candidate building block) a proportion of the population (constituting the
lowest performing individuals) is replaced by individuals that are randomly
generated from the new extended function set. Rosca and Ballard provide the-
oretical discussion on the usefulness of their approach in improving the speed
of evolution over standard GP [25]. It is unclear, however, how to discover
candidate building blocks without additional domain knowledge.

The structure of the ARL chromosome program trees is identical to that of
the tree-based GP method. The function set is dynamically extended by the
evolutionary algorithm through creation of new functions. Nesting of functions

3 Evolution of Khepera Robotic Controllers 55

is allowed; however, recursive function calls are not possible due to the function
creation method.

The main advantage of the ARL algorithm is the automatic discovery
of useful subroutines through the concepts of differential fitness and block
activation [24]. Differential fitness is defined as the difference in fitness between
an individual and its least fit parent. Rosca states that large differential fitness
can be the result of useful combinations of blocks of code in the individual [24].
Block activation is defined as the number of times a block of code is executed
during evaluations of the individual. Rosca states that only blocks with high
block activation values should be considered candidate blocks. We do not
implement the concept of block activation because of the large performance
overhead on the system.

In our implementation of the ARL algorithm, we select the most promising
individual (based on differential fitness) from the set of promising individuals
discovered during the last generation. Candidate blocks of small height (tree
height of 3) are chosen from the most promising individual. The blocks are
generalized into subroutines which extend the function set.

Rosca [24] computes subroutine utility which is analogous to schema fitness
for subroutines. The utility is defined as the accumulation of rewards for a
subroutine over a fixed time window and is calculated by a special utility
function. Using subroutine utility, low performing subroutines are removed
from the function set. We implement a simpler measure of subroutine utility
by assigning to each subroutine an integer utility value denoting the number
of generations until an unused subroutine is removed from the function set.
Utility value of each unused subroutine is decremented each generation until
it reaches 0 and the subroutine is removed from the population.

The run of the ARL algorithm is divided into epochs which were defined
as sequences of consecutive generations in which no new candidate building
blocks are discovered [25]. The ARL algorithm provides a concrete definition
of epoch creation using population entropy [23] which provides a measure
of the state of a dynamic system represented by the population. Rosca [23]
compares the population-based dynamic system to a physical or informational
system with similar behavior.

In our implementation, entropy is measured by grouping individuals of the
population into a set of classes based on their behavior (phenotype). Shannon's
formula is then used to calculate the entropy:

where pk is the proportion of the population P grouped into partition k. En-
tropy is usually computed based on raw individual fitness; however, we could
not use raw fitness because of the dynamic nature of our fitness calculation.

56 Marcin L. Pilat and Franz Oppacher

We compute a standardized fitness measure through an average of three
fixed test cases. Each test case provides resulting robotic motor values from
individual evaluation on a fixed set of input sensors. We then partition the
individuals into 20 categories based on their standardized fitness measures.
The population entropy value is calculated by applying Shannon's formula on
the partition categories.

The measure of population entropy is important since it correlates to the
state of diversity in the population during a GP run. Drops in population
entropy signify drops in population diversity. The ARL method tries to coun-
teract the drops in population entropy by creation of new individuals. The
start of a new epoch is decided using a static entropy threshold of 1.5. New
epoch begins and subroutines are discovered when the entropy value of the
population falls below the threshold.

After the discovery of new subroutines, the function set is extended by
the new functions. The ARL method generates random individuals using the
new function set. The new individuals replace a fixed proportion of the worst
performing individuals in the population. We use a replacement fraction of
0.2 in our experiments. Genetic operators of reproduction and crossover are
similar as for the tree-based method.

3.6 Results

3.6.1 Obstacle Avoidance

The task of obstacle avoidance is important for many real-world robotic appli-
cations. Robotic exploratory behavior requires some degree of obstacle avoid-
ance to detect and manoeuver around obstacles in the environment. We define
obstacle avoidance as robotic behavior steering the robot away from obstacles
in the testing environment. For the Khepera robot, this task is equivalent to
minimizing the values of the proximity sensors while moving in the environ-
ment.

We select a fitness function based on the work of Banzhaf et al. [4]. The
function is composed of two opposite parts: pain and pleasure. The pleasure
part is computed from motor values and encourages the robot to move in
the environment using straight motion. The pain part is composed of sensor
values and punishes the robot for object proximity. The fitness function can
be expressed as an equation:

where ml and m2 are motor values and so to s7 are proximity sensor values.
The value of a! is set to 10 and value of P to 1. Parameter values were chosen
based on tuning experiments.

3 Evolution of Khepera Robotic Controllers 57

Various robotic behaviours are observed while learning the obstacle avoid-
ance task. We subdivide the learned behaviours into groups based on the
complexity and success rate of each behavior. The simplest (Type 1) be-
haviours are solely based on the blind movement of the robot (straight,
backup, curved). The second level (Type 2) of behaviour (circling, bouncing,
forward-backup) includes behaviours with noticeable use of sensor data. The
highest level (Type 3) of behaviour is called sniffing and demonstrates obsta-
cle detection and avoidance. The perfect sniffing behaviour involves obstacle
sniffing and straight motion behaviours that combine into smooth obstacle
avoidance motion around the entire testing environment. Summary of the
observed behaviours is provided in Fig. 3.2.

straight curved backup

circling bouncing sniffing

Fig. 3.2. Summary of behaviours learned during experimentation with the Khepera
robot.

In our analysis of method performance, we examine population entropy
stability, average chromosome complexity stability, and average generation of
initial behaviour occurrence. Entropy and complexity stability is defined as a
gradual change of the measured values over time without large abrupt value
changes.

For the obstacle avoidance task, the representation method with the most
stable entropy values is the ARL method. The linear genome and ADF meth-
ods also provide long, stable entropy values but with larger variations. The MA
and tree-based representations provide the worst stability with large drops of
entropy values. Most stability in the average chromosome size values is seen
with the linear genome method. Among the HGP methods, the most stable
complexity measures are seen with the ARL method and least stable with the
MA method.

Type 2 and 3 behaviours are analyzed to calculate average generation
values of first occurrence of the behaviours. We do not take into consideration
Type 1 behaviours since they are not directly applicable to the studied task.
Summary of the results of our behaviour calculation can be found in Fig.

58 Marcin L. Pilat and Franz Oppacher

3.3. The method with best (smallest) values is the ARL HGP method and
with worst (largest) values is the linear genome GP method. Overall, the
HGP methods perform comparable to the tree-based GP method. Trace run
of perfect evolved obstacle avoidance behaviour is shown in Fig. 3.4.

Obstacle Avoidance - Initial Behaviour Occurrence

-1

1 Linear Tree ADF MA ARL

Fig. 3.3. Graphs of minimum, maximum, and average generations of first detection
of Type 2 and 3 obstacle avoidance behaviour for each chromosome representation
method.

Fig. 3.4. Trace runs of perfect evolved obstacle avoidance behaviour in various
testing environments.

3 Evolution of Khepera Robotic Controllers 59

3.6.2 Wall Following

The task of wall following allows the robot to perform more difficult and inter-
esting behaviours such as maze navigation. The purpose of the wall following
task is to teach the robot to walk around the boundaries of obstacles with a
certain desirable distance away from the obstacles. The learned task should
include some obstacle avoidance behaviour; however, that is not the main
requirement of the experiments.

The wall following fitness function is composed of a sensor part and a motor
part. The sensor part computes a sensor value from a subset of the robotic
sensor values. The motor part is calculated by computing an absolute motor
sum minus the absolute value of the difference. The fitness function is provided
in Fig. 3.1. In our experiments, we set the values for the free parameters of
the fitness function as follows: Viai = 1, o = 100, p = 1. Parameter values and
fitness function definition were chosen based on tuning experiments.

Algorithm 3.1 Wall Following Fitness Function
input: Left = a0 . s o + a1 . sl + a2 . sz,

Right = a5 . s5 + a4 . s4 + a3 .s3,

MotorPart = lmll + lmzl - Iml - mzl;
output: Fitness;
1. if (Right i 1023)
2. RightSensorPart = 1000 - Right;
3. else if (Right i 20)
4. RightSensorPart = (1000/20) * Right;
5 . else
6. RightSensorPart = 1000;
7. if (Left i 1023)
8. LeftSensorPart = 1000 - Left;
9. else if (Left i 20)
10. LeftSensorPart = (1000/20) * left;
11. else
12. LeftSensorPart = 1000;
13. Fitness = a. MotorPart + ,& (RightSensorPart + LeftSensorPart);

Only six sensors (so - s5) are used in calculating the sensor part of the fit-
ness calculation. The sensors represent the side and front sensors of the robot.
The calculated sensor part value acts as either pleasure or pain depending on
the sensor values. The robot is punished when it is either too far away from
a wall or too close to it. The training environment consists of a long, straight
stretch of corridor and curved environment boundaries.

Summary of observed behaviours is provided in Fig. 3.2. We partition
the behaviours into categories based on their relative performance and suc-
cess. The Type 1 category is of poor wall following behaviour and consists of
simple wall-bouncing and circling behaviours. The Type 2 category of good

60 Marcin L. Pilat and Franz Oppacher

wall following behaviour contains wall-sniffing and some maze following. The
best behaviour category, Type 3, consists of perfect maze following behaviour
without wall touching.

The most stable entropy is noticed in experiments using the ARL HGP
method. The least stable entropy is observed using the ADF method and
includes a large initial drop of entropy values to a low, stable level. Good
stability of average size values is seen in the linear genome GP and ARL HGP
methods. The largest drops in average chromosome size are noticed with the
MA method.

We calculate average generation values of first occurrence of Type 2 and
3 behaviours. Type 1 category bahaviour is not directly applicable to the
studied task. Summary of our behaviour calculation can be found in Fig. 3.5.
The ARL method produces the best average results with smallest deviation
whereas the worst performance is seen using the MA method. Trace run of
perfect evolved maze-following behaviour is shown in Fig. 3.6.

Wall Following - Initial Behaviour Occurrence

300 - ..

n

Linear Tree ADF MA ARL

Fig. 3.5. Graphs of minimum, maximum, and average generations of first detec-
tion of Type 2 and 3 wall following behaviour for each chromosome representation
method.

3.6.3 Light Avoidance

The light avoidance task is similar to the obstacle avoidance task but relies
on the ambient light sensors of the robot instead of the proximity sensors.
The source of light in the training and testing environments is composed of
overhead lamps that cannot be touched by the robot. The robot must learn
to stay inside an unlit section of the world environment while moving as much
as possible.

The fitness function for light avoidance is derived from the fitness func-
tion for the obstacle avoidance task. The function contains a pleasure part

3 Evolution of Khepera Robotic Controllers 61

Fig. 3.6. Trace run of perfect evolved maze-following behaviour.

computed from the motor values of the robot and a pain part computed from
the light sensors. Proximity sensors are not part of the fitness evaluation. A
formal definition of the function is given as:

7

Fitness = a(Jml1 + lmzl - Iml - ma)) - P(4000 - 1,) (3.5)
2=0

where ml and ma are motor values and lo to l7 are ambient light sensor
values. We set a default value of 10 for a and default value of 1 for ,B in
our experiments. Because of the definition of light sensor values (with 0 as
maximum light and 500 as minimum), we subtract the sensor sum from 4000
(8 sensors of 500 value each) to make the fitness function behave similar to the
fitness function for obstacle avoidance. Parameter values were chosen based
on tuning experiments.

The training environment is composed of a rectangle of darkness sur-
rounded by lights and a circular light island in the middle of the darkness
area. The testing environment contains a similar dark rectangular area with-
out the middle island.

We subdivide the learned behaviours of the robots into two categories.
The Type 2 category of behaviour consists of circular, oval or uneven robot
maneuvers with low degree of light detection and avoidance. Type 3 behaviour
classifies definite light detection and avoidance behaviours. Perfect behaviour
usually consists of travelling around the boundary of the dark area in the

62 Marcin L. Pilat and Franz Oppacher

testing environment. Summary of possible behaviours can be found in Fig.
3.2 with the substitution of light boundaries for obstacle boundaries.

The most stable entropy is noticed with the linear genome method and the
least stable with the ADF method. Most stable average size values are noticed
using the ARL method. The linear genome and tree-based representations also
provide quite stable average size behaviour. The worst average size stability
is seen with the MA representation method.

Results with Type 2 and 3 light avoidance behaviour are processed to cal-
culate average generation values of first occurrence of the behaviour. Summary
of our behaviour calculation results can be found in Fig. 3.7. The best (lowest)
values are from experiments using the ARL method while the worst (highest)
values are from linear genome experiments. The HGP methods perform com-
parable to or better than the tree-based method. Trace runs of perfect evolved
light avoidance behaviour are shown in Fig. 3.8.

I Light Avoidance - Initial Behaviour Occurrence

Linear Tree ADF MA ARL

Fig. 3.7. Graphs of minimum, maximum, and average generations of first detection
of Type 2 and 3 light avoidance behaviour for each chromosome representation
method.

3.7 Summary

Our research deals with evolution of robotic controllers for the Khepera robot.
We are interested in the population of individuals making up the robotic
controller. The reactive robotic control problem provides a challenge to the
genetic programming paradigm. With the lack of test cases for fitness function
evaluation, the fitness of an individual can differ greatly depending on the
immediate neighbourhood of the robot. The definition of the fitness function
can influence the population contents and thus the resulting behaviours.

3 Evolution of Khepera Robotic Controllers 63

Fig. 3.8. Trace runs of perfect evolved light avoidance behaviour in different testing
environments.

Robotic controllers often over-adapt to the training environment. This
problem of overfitting is a common problem in genetic programming. A choice
of proper training environment for a particular task is thus very important.
From our obstacle avoidance and wall following task learning experiments, we
notice that sharp corners of the environment form an area of difficulty for the
robotic controller. This is probably caused by a corner fitting between the
fields of view of the proximity sensors.

The population entropy value is an important indicator of population di-
versity in our experiments. Good trained behaviour is found in populations
with relatively high entropy value (above 0.6). Low entropy value signifies
convergence in the population which usually accompanies a convergence to a
low average chromosome size. Populations of individuals with low chromosome
size do not contain enough information to successfully search for a good so-
lution. No special measures are taken to prevent bloating in our experiments;
however, a maximum tree height (or maximum number of instructions for the
linear genome method) is specified for each chromosome.

We examine three HGP learning methods: Automatically Defined Func-
tions (ADF), Module Acquisition (MA), and Adaptive Representation through
Learning (ARL) and two GP methods: tree-based and linear genome. Robotic
controllers using each method are able to evolve some degree of proper be-
haviour for each learning task. Summary of method performance is available
in Table 3.3. We treat the treebased method as a basis for evaluating the per-
formance of the linear genome and HGP methods. We define the behaviour
of the tree-based method as average. Sample plots of population entropy and
chromosome complexity observed in tree-based experiments are provided in
Fig. 3.9.

The best entropy and best average size stability is seen with experiments
using the ARL method (see Fig. 3.10). The worst entropy behaviour is seen
mainly with the ADF method (as shown in Fig. 3.11) but also with the MA

64 Marcin L. Pilat and Franz Oppacher

Table 3.3. Summary of results from our experiments for each of the studied meth-
ods. Behavioural performance is based on first occurrence of good evolved behaviour.
Methods are compared based on relative performance.

Method lEntropy StabilitylSize Stabilitj

Tree GP average average
ADF HGP average
MA HGP average

Behavioural Performance

poor
average
average
average -

ARL HGP 1 excellent I excellent I -
excellent

Fig. 3.9. Graphs of entropy and average size vs. the number of generations in a
sample run using the tree-based method.

and tree-based methods. The worst average size behaviour is noticed with the
MA method for all the studied tasks (see Fig. 3.12).

Fig. 3.10. Graphs of entropy, average size, average SC and average EC vs. the
number of generations using the ARL method.

Throughout most of our experiments, the linear genome method enforces
a stable level of entropy and average chromosome size (as seen in sample
plot of Fig. 3.13). This behaviour is probably due to the different crossover
operator in the linear genome method than in the tree-based methods and
by the additional mutation operator. Because of the stable entropy levels,

3 Evolution of Khepera Robotic Controllers 65

Fig. 3.11. Graphs of entropy, average size and average EC vs. the number of gen-
erations in a sample run using the ADF method.

Fig. 3.12. Graphs of entropy, average size, average SC and average EC vs. the
number of generations in a sample run using the MA method.

populations of 50 individuals are enough to provide stable behaviour for many
generations.

Population Entropy- hear genome

2.5 j..-" .- ...

c h r o m m s Conplexny. linear genome I

Fig. 3.13. Graphs of entropy, average size, average SC and average EC vs. the
number of generations using the linear genome method.

With the tree-based chromosome representations, entropy value stability
depends on the definition and parameter values of the fitness function. Ten-
dency toward smaller program sizes is seen with the half-and-half chromosome
creation method or the full method with small sized populations. To keep pro-

66 Marcin L. Pilat and Franz Oppacher

gram sizes and entropy at high values for reasonable time, we need to evolve
populations of 100 or more individuals (with the exception of the ARL method
discussed below).

The average generation values of initial good behaviour occurrence are
usually highest with the linear genome method. However, the methods are
based on different population sizes and individual sizes so it is difficult to
draw conclusions from the raw results. With our implementation of the linear
genome method (through a genome interpreter) the evolution time is similar
to the time using the tree-based representation (with equivalent population
size and tree size settings). The main difference between the methods is the
contents of the function sets.

The ADF method uses a predefined, constant function set containing one
or more ADFs. Function call acquisition occurs only through crossover with
individuals of the population. The ADFs inside individuals showing proper
evolved behaviour are usually quite large and complex with no noticeable
patterns. It is possible that in our experiments the ADFs only provide few
extra tree levels of instructions. The ADF method runs provided performance
that was usually below that of the tree-based method and sometimes the worst
of all HGP methods. Fig. 3.14 shows the code of a sample ADF program taken
from a population with learned light avoidance behaviour.

The slowest method of function creation is the MA method. Most of the
individuals in the population with proper evolved behaviour do not contain
any of the functions in the module set. The creation of functions produces
program size loss which in turn often lowers the entropy of the population.
The behavioural performance of the MA method is usually worse than that
of the tree-based method. Since similar experimental settings are used for the
two methods, we can deduce that the function creation of our MA method
disrupted the task learning instead of helping it. Fig. 3.15 shows the code of
a sample MA program taken from a population with learned wall following
behaviour.

The ARL method displays the most stable entropy and average chromo-
some size behaviour in most experiments. This stable behaviour is observed
only with function creation, thus we think that the function creation and new
individual creation processes are responsible for the stability. The method also
achieves the best time and smallest deviation to reach good evolved behaviour
in most experiments.

The number of functions created by the ARL algorithm depend on each
run but do not grow monotonically as first expected. The function set grows
and shrinks throughout the runs of the algorithm. The functions usually con-
tain simple arithmetic operators working on function parameters. Many of
the functions from populations with proper evolved behaviour contain divi-
sion and addition operators that seem to calculate some form of ratio of the
function parameters. Since such ratios can be helpful in all of our studied
tasks, we think that some of the evolved functions are of benefit to the indi-

3 Evolution of Khepera Robotic Controllers 67

values

ADFO
+
+

16
14

ADFO
12
14

ADFO
12
9
0

I
14
14

ADFO
+

ADFO
0
I 1

13
I

10

13
2

defun ADFO (ARGO, ARGI)
values

ARG 1
9

I
6
ARG l

ARG 1
ARGO

ARG l
9

Fig. 3.14. Code of a sample ADF program from population showing light avoid-
ance behaviour. ADF function definition shows characteristic large size and complex
format.

viduals. Code of a sample ARL program taken from a population with learned
obstacle avoidance behaviour can be found in Fig. 3.16.

Algorithms and strategies of solving problems can usually be improved to
yield better solutions. Our research enables us to indicate areas of possible
improvement to the studied genetic programming algorithms for the domain
of robotic control. We feel that population diversity (entropy) stability, chro-
mosome size stability, and proper fitness evaluation are the most important
attributes of a well functioning genetic programming robotic controller train-
ing system. Entropy and chromosome size values should be relatively stable so
that they remain at reasonable levels for a reasonable number of generations.
Stability of those values depends on the definition of the fitness function and
on the controller settings.

Modification of fitness function parameters leads to strong statistical and
behaviour changes in the evolving population. Definition of the fitness function
is thus a very important aspect for evolution of correct solutions. We choose
the fitness function definitions and parameter values that produce the best
performance in trial runs. However, more testing of fitness functions and their

68 Marcin L. Pilat and Franz Oppacher

values
1

I
+

1

1
I

+

Fig. 3.15. Code of a sample MA program from population showing wall following
behaviour.

values
+
so
9

Fig. 3.16. Code of a sample ARL program from population showing obstacle avoid-
ance behaviour. Characteristic ARL functions are visible.

3 Evolution of Khepera Robotic Controllers 69

parameters should be done to identify the optimal settings for each learning
task.

The ADF method builds ADFs of initial size equivalent to the main pro-
gram body. We feel that smaller building blocks (functions) are more useful
for robotic controllers. The sizes of the ADFs do not decrease well enough be-
fore the population prematurely converges. We think that it would be best to
specify a smaller initial and maximum size of the ADFs so that the functions
require less time to find optimal configurations.

We feel that the poor performance of the MA method is due to the creation
of modules which lowers the average program tree size. Since no mechanism
exists to counteract this loss of program size and accompanying loss of en-
tropy, the population often converges prematurely to suboptimal solutions.
We propose that the probability-based compression and expansion operator
invocation of the MA method be replaced by a need-based operator invoca-
tion (similar to that found in the ARL method). This new operator invocation
should lead to better performance through adjustments of operator frequen-
cies based on population needs.

The ARL method contains a mechanism to neutralize the bad effects of
function creation. Thus, the method exhibits very stable entropy and average
size behaviours while quickly evolving high performing robotic controllers. The
creation of random individuals using the enriched function set at the start of
a new epoch provides the genetic algorithm with fresh search material. The
functions found in the adaptive representation step of the algorithm are small
and seem better building blocks than the functions in the ADF method. We
feel that best performance can be achieved by some kind of a dynamically
evolving entropy threshold calculation.

Influx of random individuals to the population during evolution can lead
to problems. Too many new random individuals can destabilize good solu-
tions present in individuals of the previous population. We think that a low
replacement fraction used with elitism of best individuals should produce the
optimal evolutionary balance. Elitist individuals would always be copied into
a new population and would ensure that the fittest individuals are not lost
between generations.

Variation in the population can also be achieved by using a mutation
operator for the tree-based representation methods. The mutation operator
can quickly add subtle variety to the population. The crossover operator can
perform similar mutations but with a lower probability of success based on
the size and structure of the program tree.

Future work with the Khepera GP Simulator involves formulation of a
proper physics model to study object interaction tasks. Modification of the
simulation engine for multi-threaded robot simulations would enable proper
real-time multi-robot simulation. With the use of a real Khepera robot, we
hope to add serial Khepera interface to the simulator and validate the cor-
rectness of our Khepera simulation engine.

70 Marcin L. Pilat and Franz Oppacher

In this work, we evolve reactive, memoryless robotic controllers. Our re-
sults indicate tha t the controllers can be trained to exhibit some level of
proper behaviour for the studied tasks. The extension t o this research would
be t o study memory-based robotic controllers that can store previous actions
and use them t o decide future behaviour. Such controllers using the linear
genome method have been shown in [20] to successfully and quickly evolve
more complex behaviours than a memoryless controller.

We would also like to use a real Khepera robot to verify our results. Phys-
ical robots train in a noisy and sometimes unpredictable environment and
would provide a real world test case for our research. Because of the reactive
learning system, the simulator and robotic controllers can be easily modified
t o perform experiments with a real Khepera robot.

References

1. P.J. Angeline, Genetic Programming and Emergent Intelligence, In K.E. Kin-
near, Jr. (ed.), Advances in Genetic Programming, chapter 4, pp. 75-98, MIT
Press, 1994

2. P. J. Angeline and J. B. Pollack, The evolutionary induction of subroutines,
In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, Lawrence Erlbaum, Bloomington, Indiana, USA, 1992

3. R.C. Arkin, Behavior-Based robotics, MIT Press, Cambridge, MA, 1998
4. W. Banzhaf, P. Nordin and M. Olmer, Generating Adaptive Behavior using

Function Regression within Genetic Programming and a Real Robot, In J.R.
Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo (eds.),
Genetic Programming 1997: Proceedings of the Second Annual Conference, pp.
35-43, Morgan Kaufmann, San Francisco, CA, USA, 1997

5. W. Banzhaf, D. Banscherus, and P. Dittrich, Hierarchical Genetic Programming
using Local Modules, Series Computational Intelligence, Internal Report of SFB
531, No. 56/99, Univ. of Dortmund, D-44221 Dortmund, Germany, 1999

6. R. Brooks, A robust layered control system for a mobile robot, IEEE Journal
of Robotics and Automation, 2(1), 1986

7. R. Brooks, Artificial Life and Real Robots, In F. J. Varela and P. Bourgine (eds.),
Toward a Practice of Autonomous Systems: Proceedings of the first European
Conference on Artificial Life, pp. 3-10, MIT Press-Bradford Books, Cambridge,
MA, 1992

8. K.E. Kinnear, Jr., Alternatives in Automatic Function Definition: A Comparison
Of Performance, In K.E. Kinnear, Jr. (ed.), Advances in Genetic Programming,
chapter 6, pp. 119-141, MIT Press, 1994

9. J.R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, 1992

10. J.R. Koza, Evolution of subsumption using genetic programming, In F. J. Varela
and P. Bourgine (eds.), Proceedings of the First European Conference on Ar-
tificial Life, Towards a Practice of Autonomous Systems, pp. 110-119, MIT
Press-Bradford Books, Cambridge, MA, 1992

11. J.R. Koza, Genetic Programming 11: Automatic Discovery of Reusable Pro-
grams, MIT Press, Cambridge, MA, 1994

3 Evolution of Khepera Robotic Controllers 71

12. J.R. Koza and J.P. Rice, Automatic programming of robots using genetic pro-
gramming, In Proceedings of Tenth National Conference on Artificial Intelli-
gence, pp. 194-201, AAAI Press/MIT Press, 1992

13. J.R. Koza, F. H. Bennett 111, D. Andre, and M. A. Keane, Genetic Program-
ming 111: Darwinian Invention and Problem Solving, Morgan Kaufmann, San
Francisco, 1999

14. M. J. Mataric, Behavior-Based Control: Examples from Navigation, Learning,
and Group Behavior, Journal of Experimental and Theoretical Artificial Intel-
ligence, 9(2-3),1997

15. P. Nordin, A Compiling Genetic Programming System that Directly Manipu-
lates the Machine-Code, In K.E. Kinnear, Jr. (ed.), Advances in Genetic Pro-
gramming, chapter 14, pp. 311-331, MIT Press, Cambridge, MA, 1994

16. P. Nordin and W. Banzhaf, Genetic Programming Controlling a Miniature
Robot, In E.V. Siege1 and J.R. Koza (eds.), Working Notes for the AAAI Sympo-
sium on Genetic Programming, pp. 61-67, AAAI, MIT, Cambridge, MA, USA,
1995

17. P. Nordin and W. Banzhaf, A genetic programming system learning obstacle
avoiding behavior and controlling a miniature robot in real time, SysReport
4/95, University of Dortmund, Fachbereich Informatik, 1995

18. P. Nordin and W. Banzhaf, Real Time Evolution of Behavior and a World Model
for a Miniature Robot using Genetic Programming, SysReport 5/95, Dept. of
CS, University of Dortmund, 1995

19. P. Nordin and W. Banzhaf, An on-line method to evolve behavior and to control
a miniature robot in real time with genetic programming, Adaptive Behavior,
5(2), pp. 107-140, 1997

20. P. Nordin and W. Banzhaf, Real Time Control of a Khepera Robot using Genetic
Programming, Cybernetics and Control, 26(3), pp. 533-561, 1997

21. P. Nordin, W. Banzhaf, and M. Brameier, Evolution of a world model for a
miniature robot using genetic programming, Robotics and Autonomous Sys-
tems, 25(1-2), pp. 105-116, 1998

22. C. Reynolds, An Evolved, Vision-Based Behavioral Model of Coordinated Group
Motion, In J. Meyer, H.L. Roitblat and S.W. Wilson (eds.), From Animals to
Animats 11: Proceedings of the Second International Conference on Simulation
of Adaptive Behavior, MIT Press-Bradford Books, Cambridge, MA, 1993

23. J.P. Rosca, Entropy-Driven Adaptive Representation, In J.P. Rosca (ed.), Pro-
ceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications, pp. 23-32, Tahoe City, California, USA, 1995

24. J.P. Rosca, Hierarchical Learning with Procedural Abstraction Mechanisms,
PhD thesis, University of Rochester, 1997

25. J.P. Rosca and D.H. Ballard, Hierarchical Self-organization in Genetic Pro-
gramming, In Proceedings of the Eleventh International Conference on Machine
Learning, Morgan Kaufmann, 1994

26. J.P. Rosca and D.H. Ballard, Discovery of Subroutines in Genetic Programming,
In P. J. Angeline and K.E. Kinnear, Jr. (eds.), Advances in Genetic Programming
2, chapter 9, pp. 177-202, MIT Press, Cambridge, MA, USA, 1996

27. J.P. Rosca and D.H. Ballard, Genetic Programming with Adaptive Represen-
tations, Technical Report TR 489, University of Rochester, Computer Science
Department, Rochester, NY, USA, 1994

Evolving Controllers for Miniature Robots

Michael Botros

Department of Computer and Electrical Engineering,
Faculty of Engineering, McMaster University,
1280 Main St. West, Hamilton, Ontario , Canada L8S 4K1,
botrosmw(9mcmaster.ca

Using traditional path planning and artificial intelligence techniques has re-
stricted the use of mobile robots to limited tasks in previously known envi-
ronments, yet potential applications include dynamic and unstructured en-
vironments. One of the very promising methods of designing controllers for
autonomous and mobile robots is using Evolutionary Computations, a class
of algorithms which mimics the natural evolution process.

In this chapter we present a series of experiments in evolutionary robotics
that used the miniature mobile robot Khepera. Khepera robot is widely used
in evolutionary experiments due to its small size and light weight which sim-
plify the setup of the environments needed for the experiments. The controllers
evolved by the presented experiments include classical and spiking neural net-
works controllers, fuzzy logic controllers and computer program obtained by
Genetic Programming. The tasks performed by the robots through the ex-
periments reflect learning many basic as well as high level behaviors. These
behaviors include: navigating in dynamic environment with static or dynamic
obstacles, seeking and following the light sources present in the environment,
returning home for recharging the battery, and collecting trash objects from
the environment. The chapter also presents an experiment in co-evolution in
which a predator-prey behavior is learned by two robots. The chapter ends
with an experiment that evolves spiking neural networks, a new artificial neu-
ral networks model that accurately models the biological neuron activation.
This experiment presents the use of evolution to obtain a spiking neural net-
work that enables the robot to navigate depending only on vision information.

4.1 Introduction

Khepera is a miniature mobile robot that is widely used in laboratories and
universities in conducting experiments aiming at developing new control algo-

74 Michael Botros

rithms for autonomous robots. It was developed by the Swiss Federal Institute
of Technology and manufactured by K-team [I] [2]. Khepera robot is cylin-
drical in shape with a diameter of 55 mm and a height of 30 mm. Its weight
is about 70 gm. Its small size and weight made it ideal robotic platform for
experiments of control algorithms that could be carried out in small environ-
ments such as a desktop.

The robot is supported by two wheels; each wheel is controlled by a DC
motor that can rotate in both directions. The variation of the velocities of the
two wheels, magnitude and direction, will result in wide variety of resulting
trajectories. For example if the two wheels rotate with equal speeds and in
same direction, the robot will move in straight line, but if the two velocities
are equal in magnitude but different in direction the robot will rotate around
its axis.

Fig. 4.1. Miniature mobile robot Khepera (with permission of K-team).

The robot is equipped with eight infrared sensors. Six of the sensors are
distributed on the front side of the robot while the other two are placed on
its back. The exact position of the sensors is shown in figure (4.2). The same
sensor hardware can act as both ambient light intensity sensor and proximity
sensor.

Each of the eight sensors consists of emitter and receiver parts so that
these sensors can function as proximity sensors or ambient light sensors. To
function as proximity sensors, it emits light and receive the reflected light
intensity. The measured value is the difference between the received light in-
tensity and the ambient light. This reading has range [O, 10231 and it gives
a rough estimate how far the obstacles are. The higher reflected light inten-
sity the closer obstacles are. It should be noted that we cannot find a direct
mapping between the sensor reading and the distance from the obstacle, as
this reading depends on factors other than the distance to the obstacle such
as the color of the obstacle.

To function as ambient light sensors, sensors use only receiver part of the
device to measure the ambient light intensity and return a value that falls in

4 Evolving Controllers for Miniature Robots 75

Fig. 4.2. The position of the eight sensors on the robot (with permission of K-team)

the range of [O, 10231. Again, these measurements depend very strongly on
many factors such as the distance to the light source and its direction.

An interesting feature of the Khepera robot is its autonomy, which includes
autonomy of power and control algorithm. For the purpose of power autonomy,
the robot is equipped with rechargeable batteries that can last for about 45
minutes. For experiments that may require much longer time, the robot can
be connected to a host computer by a lightweight cable to provide it with the
needed electrical power. This is an important feature that allowed long control
experiments (such as developing evolutionary algorithms) to be carried out
without repetitive recharging.

On the other hand, for the control autonomy, the robot's CPU board is
equipped with MC68331 microcontroller with 512K bytes of ROM (system
memory) and 256K bytes of RAM (user memory). This RAM memory can
accommodate reasonable length program codes to provide control autonomy.
The robot can be programmed using Cross-C compiler and the program will
be uploaded to the robot through serial port communication with a host
computer. Also the robot can be remotely controlled by a host computer
where the control commands are sent to the robot through the serial link
connection mentioned above. This mode of operation has an advantage of
using computational power of the host computer.

4.2 Evolutionary Computations and Robotics

The term Evolutionary Computation is used to describe a set of algorithms
that use the idea of evolution in solving complex computational problems such
as our problem of designing a robot controller. It includes algorithms such as
Genetic Algorithms GA, Genetic Programming GP and Evolutionary Strate-
gies. They operate on a population or a group of individuals each representing
a proposed solution of the problem. Then they apply a set of biologically in-

76 Michael Botros

spired operators such as mutation and crossover to obtain a better generation
which is more suited to the problem to be solved.

So what can Evolutionary Computation offer to robotics? First thing it
offers to robotics is an optimization tool. Optimization is a frequent type of
problems solved by Genetic Algorithms due to the embedded competition
between individuals. In applying the Genetic Algorithm for optimization, the
individuals are usually points in the space to be searched for optimum point
and the fitness is the function to be optimized. The reproduction aims at
generating new points from existing ones until the optimum point is found.
Genetic Algorithm offers useful properties for the optimization problem:

It is applicable to continuous, discrete and mixed optimization problems
and it requires no information about the continuity or the differentiabil-
ity of the function to be optimized. It also can be used for problems of
optimization with constraints. The constraints on the parameters to be
optimized can be easily translated to constraints on the genetic operators
to produce individuals inside the search domain defined by the constraints.
Genetic Algorithms are suitable for many practical problems that re-
quire multi-objective functions. Multi-objective optimization can be ac-
complished by designing fitness function that is a weighted sum of required
objectives. Another solution is using Co-evolution where multiple popu-
lations are used instead of single population. Each population is bred to
optimize certain objective while individuals are exchanged between them
(migration).

For example, one of the possible methods for evolving a neural network
controller is to let the evolutionary algorithm choose the optimal weights of the
neural network, so the problem of evolving this controller to perform obstacle
avoidance behavior can be viewed as a problem of optimizing the different
weights. Also this problem is multi-objective optimization because we want
the neural network to achieve different goals such as avoiding the obstacles
while keeping a reasonable velocity and keeping a straight path.

Second thing evolutionary computations can offer to robotics is providing
a method of learning rules necessary for the robot to achieve some task. In this
case the controller is mainly a set of rules and we want to choose the optimal
set of rules that serve this task. Programming the rules by hand or testing
different combinations of them is a tedious task. An example of using the
genetic algorithm to learn robots rules is a system built at the Naval Research
Laboratories and is called SAMUEL [3]. It used the method described above
to learn Nomad robot navigation and obstacle avoidance. Rules are not the
only form of controllers that can be designed by evolutionary computations
[4] [5] . In the next sections see how evolutionary computations can be used to
design controllers such as neural networks and fuzzy logic controllers.

4 Evolving Controllers for Miniature Robots 77

4.3 Evolving Neural Network Controllers

Many researchers have found neural network and interesting solution for the
problem of the building behaviors for the Khepera robot. The ability to learn
and the ability to deal with noisy sensors were apparent advantages in favor
of the neural network.

Different approaches exist for designing neural network controllers. One
approach is to use neural networks learning algorithms to train the synaptic
weights. Example of this work can be found in [6]. Another Approach is to
use the Genetic Algorithm as a search or optimization tool to find the best
neural network controller through the evolution process. The leading work
of evolving neural network controller for a real Khepera robot was done by
Floreano and Mondada [7]. They evolved a simple feed forward neural network
that consisted of input and output layers with no hidden layers. The neural
network controller enabled the robot to navigate in the arena while avoiding
obstacles .

We can use the genetic algorithm in different ways to evolve neural net-
works. It can be used to search for the optimal synaptic weights, or to search
for the optimal network architecture along with the synaptic weights. Also,
it can be used to evolve the learning parameters needed to train the neural
network. Examples of these methods are presented in the following subsec-
tions. For example, using the genetic algorithm to search for the suitable
synaptic weights given a predefined architecture is presented in experiments
1 and 3 whose goals are to evolve obstacle avoidance and home seeking be-
haviors respectively. On the other hand, evolving the network architecture
is the method used in experiment 2 to develop a light seeking behavior. Fi-
nally, evolving Hebbian learning rules and the rate of learning is an example
of evolving the learning parameters of the neural network and it is one of
the methods used in experiment 5 to co-evolve predator-prey behavior in two
robots.

4.3.1 Experiment 1: Evolving Obstacle Avoidance Behavior

The goal of this experiment [8] is to evolve a neural network controller for
obstacle avoidance navigation in environments with static or dynamic obsta-
cles. The proposed neural network is a feed forward neural network with input
layer consisting of 8 neurons, hidden layers of 2 neurons and output layer of
2 other neurons. The inputs of the neural network are the eight proximity
sensors that are arranged on the robot as shown in figure (4.2). The input
range of each sensor is [O, 10231. The values of the inputs were scaled to the
range [0, 11 before being applied to the neural network. The Outputs of the
neural network controller are applied to the motors of left and right wheels.
The activation function of the neurons is the sigmoid function which is limited
between [-I, 11, so the output of the neural network had to be properly scaled
before being applied to the motors.

78 Michael Botros

The fitness function used rewarded the individual which moves with a
suitable forward speed and penalize the individual which rotates around itself
or comes close to the obstacle. It has the following formula:

where VL, VR are the velocities of left motor, right motor respectively, S, is the
proximity sensor number i, and C1, C2 are suitable positive scaling factors.
The term VL + VR will maximize the forward speed while term IVL - VRI will
minimize the rotation of the robot which occurs due the difference between
the velocities of left and right wheels. Also, the robot will learn to keep a
suitable distance separating it from the obstacles in order to decrease the
magnitude of the sum of the sensors. The constants Cl, C2 set the relative
importance of each component of the fitness function, for example increasing
C2 will emphasize the importance of avoiding obstacles relative to keeping a
straight path.

The fitness of the individuals is evaluated as follows: each individual was
allowed to perform a 400 time step, in each step it reads the proximity sensors,
calculate the output speeds using its own neural network and apply these
speeds to the motors then it measures the new proximity sensor values and
calculate its fitness function according to the above formula. Individual fitness
is the sum of its fitness function over the 400 time steps. The above algorithm
lasted for 120 generations.

Fig. 4.3. Trajectory of the robot in an environment with moving obstacle.

The result of the experiment showed successful emergence of the desired
behavior. After 80 generations, the robot was able to move in straight tra-
jectories and it learned to keep a suitable distance between its path and the
obstacles or walls. This is clear in the left section of figure (4.4) which shows
the behavior of the robot in an environment with large centered obstacle.
While moving parallel to the wall, the robot moves in a straight path and
maintains certain distance between its path and the wall. Fig. (4.3) shows the
behavior of the best fit individual when a round object of the same size of
the robot is approaching its path. The slides taken from the motion of the
robot shows its turning and avoiding collision with the moving object. Fig.
(4.4) shows the behavior of the robot in an environment with obstacles having

4 Evolving Controllers for Miniature Robots 79

Fig. 4.4. Trajectories of the robot in environments with large obstacles with sharp
corners .

sharp corners which is difficult to detect if the robot is heading towards the
corner. We can see that the robot turns before being close to the corner and
this behavior is repeated twice. It should be also noted in this environment
that distance between the two obstacles is about twice the diameter of the
robot. -

4.3.2 Experiment 2: Evolving Light Seeking Behavior

This experiment was performed by Hiilse et al. [9]. The goal of the experi-
ment is to evolve a neural network controller that enables the robot to seek
the light source available in its arena. The proposed neural network had 16
input neurons and 2 output neurons. The input neurons corresponds to the
8 proximity sensors and the 8 ambient light sensors while the two output
neurons correspond to the two motor speeds.

The evolutionary algorithm used in this experiment allowed the evolution
of the structure of the neural network along with the synaptic weights values.
It can evolve the number of the hidden neurons necessary to connect the input
and output layers along with their recurrent connections.

The evolution experiment was carried in a simulated environment while
the best fit individual was tested in both real and simulated environments.
The results of the experiments showed the emergence of light seeking behavior
in the early generations. The best fit individual was tested in two simulated
environments and in a physical environment. The first simulated environment
contained one light source. The robot was able to move towards the light
source from different starting positions. The second simulated environment
contained more than one light source. The robot moved towards the nearest
light source. The best fit controller was then moved to a real robot and tested
in a physical environment. In similar conditions to the simulated environment,
the robot was able to move to the light source. The environment was slightly
modified to test the controller ability to adapt to changes in the physical

80 Michael Botros

environment. When the light source was moved the robot was still able to
move towards and follow the light source, which shows consistency with the
behavior in the simulated environment. Next, the light source was removed
from the environment, and then the robot started to move in curved or semi
circular trajectories compared to straight trajectories in the presence of the
light source. To test how the behavior is affected by the proximity sensors,
the proximity sensors were removed, in this case the robot was still able to
move to the light source when it existed in the environment, however in its
absence, the robot rotated around its axis. These results show good match
between the behavior in simulated and real environments, they also showed
that the evolved behavior was invariant when the light source was moved but
was affected by removing the connections from the proximity sensors when
there was no light source in the environment [9].

We notice in this experiment that the genetic algorithm allowed the evo-
lution of the network architecture along with the best synaptic weights . This
method enables the genetic algorithm to search for the best neural network
controller in the space of the network architectures. In general, this method
would lead to better quality solution than the case of predefined network
architecture. On the other hand, this method requires a variable length chro-
mosome that encodes the neural network. Also the chromosome is expected
to be longer than the one that encodes only the synaptic weight which would
result in longer evolution time.

4.3.3 Experiment 3: Evolving Recharging and Home Seeking
Behavior

This experiment was performed by Floreano and Mondada [lo]. Although
the experiment evolved an interesting home seeking behavior, the actual goal
of the experiment was to show that behaviors can be evolved without being
explicitly included in the fitness function. In this experiment the fitness func-
tion didn't include a pleasure part to reward the robots when returning to
home (or the recharging area). However, without recharging, the robot will
not be able to live longer and achieve a high fitness which was allowed to be
calculated over a period longer than the battery life time.

The experiment was conducted in a rectangular environment where one of
the corners was illuminated with a tower carrying a number of lamps. This
corner was considered the robot's home or recharging area. In this corner, a
circular sector of the ground is painted in black such that the robot can detect
it using an extra ambient light sensor placed under the robot. This sensor is
active in the entire environment except the recharging area.

Using the robot actual battery which lasts for 40-45 minutes will cause
the experiment to last for a very long time. Instead, the robot was equipped
with a simulated battery that discharges linearly with time in a maximum
of 20 seconds. The reading of the battery time can be considered a virtual
battery sensor whose value falls between [O, 11, with 1 indicating that the

4 Evolving Controllers for Miniature Robots 81

battery is fully charged. For the robot to detect the light source associated
with its recharging area, two sensors acted as ambient light sensors beside
their function as proximity sensors. The two sensors are the ones labeled 2
and 6 in figure (4.2).

The neural network controller used was 3 layers neural network with re-
current connections in the hidden layer The input layer has 8 neurons for
proximity sensors, 2 neurons for ambient light sensors and 2 other neurons for
floor brightness and simulated battery sensor. The output layer consisted of
2 neurons that correspond to the motor speeds.

lR Sensor 1 ,

Neural Network Controller of
the home seeking experiment

Right
Motor
4

Left
Motor +

The environment of
the experiment

Fig. 4.5. The neural network controller of the home seeking experiment (left). A
figure of the environment(right).

The fitness function used in the experiment rewarded the individuals that
move with large speed and avoid the walls. The fitness function formula is
given by [lo]:

fitness = u (l - i) (4.2)

where u is normalized average speed of the two motors 0 < u < 1, and i
is normalized value of the maximum proximity sensor 0 < i < 1. The fitness
function is calculated and summed over maximum number of 150 time step
while the battery life lasts for 20 seconds or 50 time steps. Also the fitness
function is not summed when the robot is in the recharging area. The robot
should learn to return to the recharging area before its battery life comes
to an end. Furthermore, it should not stay there for long since no fitness is
gained there. This behavior is not stated explicitly in the fitness function but
implicitly implied by the conditions of the experiment.

82 Michael Botros

The genetic algorithm lasted for 240 generations. The results of the ex-
periment showed that in the last generations the behavior of the robot was
as expected. It returned to home for recharging without spending much time
there after recharging. The behavior of the best fit individuals was as follows:
When it was placed in the charging area, it quickly moved away and returned
only before the the battery life ends by 5 time steps. Outside the recharging
area, it moved with maximum speed avoiding the walls whenever they are
encountered. Testing the best fit individuals from different initial positions
showed that it was able to return for recharging for many times for most of
the initial positions.

Also the results of the experiments showed that we can find a direct re-
lation between the activation level of one of hidden neurons and certain be-
haviors. Observing the activation level of this hidden node over the robot life
showed that it had a low activation level when the robot navigated outside
the recharging area but gradually increased during the journey to the back
for charging in the last period of the battery life. The activation level reached
its maximum when the robot is in the charging area. This fact supports the
assertion that this hidden neuron played a role in the behavior responsible for
planning the journey back to home before the battery life ends [lo].

4.3.4 Experiment 4: Evolving Trash Collection Behavior

This experiment was performed by Nolfi [ll]. The goal of the experiment is to
teach the Khepera robot how to clear the arena from trash objects by grasping
and placing them near the walls of the arena. This complex task requires skills
such as recognizing the trash object and the walls, grasping and releasing the
object, and obstacle avoidance. To accomplish this task the Khepera robot is
provided with a gripper module that is added on the top of the robot (see
figure 4.6). The gripper can perform two main actions: picking and releasing
the object. The robot can detect the presence of an object in the gripper by
using a light barrier sensor placed in the gripper.

One approach to teach the robot this complex task is to split it into a set of
simpler tasks or behaviors and design a module that control each behavior then
designing a coordination method that decides which of these modules will take
control of the robot based on the current situation. Each behavior could be
designed by hand, evolved or learned by other learning methods. An example
of this approach is found in [12] where all the modules are programmed by
hand except the grasping behavior which was learned using reinforcement
learning. However, in the experiment that we will present the goal was to
evolve the entire behavior and to test the hypothesis that different modules
of the evolved neural network correspond to certain basic behaviors.

The experiment evolved five different neural network architectures among
them two with modular structure. All the architectures had 7 input neurons
and 4 output neurons. The input neurons correspond to the 6 proximity sen-
sors on the front side of the robot and the barrier light sensor present in the

4 Evolving Controllers for Miniature Robots 83

Fig. 4.6. Khepera robot with the additional gripper module (with permission of
K-team) .

gripper. The output neurons are the 2 motor speeds and the 2 actions of the
gripper. The five neural network architectures had the following structures:

1. The first neural network is a feed forward neural network with no hidden
layer.

2. The second neural network is also a feed forward neural network but with
a hidden layer of 4 neurons.

3. The third neural network has recurrent connections between two extra
input and output nodes.

4. The fourth neural network has a modular structure. It has two modules
each with its own set of the four output neurons. Each module takes
control in different predefined situations. The first module takes control
when the robot is looking for the trash object and grasping it. Its goal is
recognizing the trash object. The second module takes control when the
robot is holding the trash object and heading towards the wall. Its goal is
recognizing the wall and avoiding obstacles while holding the trash object.

5. The fifth neural network has modular structure too. It consists of two
modules. Each module has its own four output neurons in addition to
four selector neurons. The selector neurons compete with each other to
decide which module will take the control. For example, if at a certain
time the activation level of the selector neuron of the left motor is higher
in the first module, then output of neuron corresponding to the left motor
in the first module will be sent to the left motor.

The environment used in the evolution process was an arena with walls of
height 3 cm and it contained 5 trash objects which are cylindrical in shape.

84 Michael Botros

The genetic algorithm used population of 100 individuals for each of the five
architectures and it lasted for 1000 generations. The fitness function essen-
tially rewarded individuals for the number of the trash objects successfully
placed outside the arena with less rewards for objects that the robot was only
successful to pick. Each individual was tested for 15 epochs and its fitness
valuation was the sum of its fitness function in each epoch.

The experiment described above was repeated 10 times for every architec-
ture. The 10 best individuals of each architecture were given the same task
of clearing the arena from 5 trash objects. The results showed that the fifth
neural network excelled the others where 7 of its best 10 individuals were able
to successfully complete the task. Only one or two individuals were able to
complete the task for the other architectures.

Considering the hypothesis that modular architecture may contain mod-
ules that correspond to certain behavior, it was found that the best individual
of the fifth architecture use both modules for controlling the left motor and
uses only one module for rest of the outputs. This fact showed that relation
between modules and basic behaviors could not be proven in this experiment
[ll]. However, in the experiment of home seeking and battery recharging cer-
tain hidden neuron was shown to be responsible for detecting low battery and
returning home for recharging.

4.3.5 Experiment 5: Co-evolving Predator-Prey Behavior

By co-evolution we mean evolving two competing populations simultaneously
such that the fitness evaluation of one is at the expense of the other. The
co-evolution adds more competition stress to the evolution process which is,
by nature, characterized by the competition for survival among individuals of
the same generation. We are now going to present an interesting experiment
in co-evolution whose goal was evolving a predatory-prey behavior in two
khepera robots. The predator robot is required to chase the prey robot and
contact it.

The experiment was performed by Floreano and Nolfi [13] [14]. In the
experiment, the predator robot is equipped with a vision module (see figure
4.7) to recognize the prey robot which was provided with a black perturbation
that can be easily detected on the white walls of the environment. To provide
fair competition, the maximum speed of the prey robot is allowed to be twice
that of the predator robot.

The environment was a square one of dimension 47 cm. That size was
chosen such that prey will always be within the detection range of the vision
module of the predator which can detect objects in range of 5 to 50 cm.
The evolution experiment was carried in a simulated environment of the same
details of the actual one. This will help to decrease the time of the evolution
and to avoid the hardware problems resulting from the twisting of the power
cables of the two robots.

4 Evolving Controllers for Miniature Robots 85

The K213 vision module of the khepera robot is an additional module that
is connected to the top of the robot. It is cable of providing a linear image
of 64 pixels that cover a vision angle of 36 degrees. Furthermore, the module
has a microcontroller that can process the image data and instead of sending
the 64 bytes of the image to the robot it can detect the least eight pixels in
intensity and pass them to the robot.

Fig. 4.7. Khepera robot with the extra K213 vision module (with permission of
K-team) .

In the simulated computer environment, the experiment designers divided
the vision range to 5 sections each representing a simulated photosensor. These
simulated photosensors act as input for the neural network controller of the
predator robot. A simulated photosensor is considered active if a pixel of
minimal intensity is within its range, possibly because of the presence of the
prey robot in this section.

The controllers of the two robots are shown in figure (4.8). Each controller
is recurrent neural network. The predator neural network has extra 5 input
neurons corresponding to the five photosensors. On the other hand, the two
outputs of the prey neural network are multiplied by a factor of two before
being applied to the motors of the robot.

The genetic algorithm used two competitive populations each of 100 in-
dividuals and the experiment lasted for 100 generations. As we mentioned
earlier, the fitness evaluation of each robot is at the expense of the other. The
predator robot is awarded for decreasing the time needed to contact the prey.
Its fitness is a normalized version of that time and falls in the range of [0,
11. The prey robot fitness function is just (1 - predatorfitness). The fitness
function of each individual, predator or prey, is evaluated through testing it
against the best individuals of the last 10 generations of the opposite type.

The experiment used direct encoding to encode the synaptic weights of the
neural network. Each weight is encoded in 5 bits. The first bit is always used
to encode the sign while the other four bits differed according to the instance
of the experiment. We will to summarize each of the three instances of the
experiments along with its results [13] [14].

86 Michael Botros

IR
"nso lg

Photo
S e n s o a

Photo
S e n s o s

Predator Neural
Network Controller

Right
Motor

A?-
Motor

Prey Neural
Network Controller

Fig. 4.8. The neural network controller of the predator and prey robots.

First instance of the experiment: In this instance the four bits simply
encoded the value of the synaptic weight which falls in the range of [O, 11.
The results of this instance of the experiment showed that there was no
population superior to the other all the time span of the evolution. In the
first generations the predator was able to chase the prey and contact it.
After 70 generations, the prey was cable of turning away when the predator
approached it. After 90 generations, the predator learned better attacking
methods for chasing the prey.
Second instance of the experiment: Only two bits were used to encode
the value of the weight and the other two bits are used to encode four
different level of uniform noise that would be added to the weights. The
results of this instance of the experiment showed that the noise level in the
synaptic weights of the prey was higher than those of the predator which
suggested that the prey made use of this noise to evolve an unpredictable
and changing trajectory to confuse the predator robot.
Third instance of the experiment: The four bits are used to encode the
learning parameters of the synaptic weights rather than the value of the
weights. Two bits encoded the Hebbian rules and the other two bits en-
coded the learning rate. The value of the weight is randomly generated
between [0, 11 and continuously updated according to the rules. The re-
sults of this instance of the experiment showed that the average fitness
of the predator is higher than that of the prey. In terms of the apparent
behavior, it developed better chasing techniques than that of the first in-
stance of the experiment. In terms of the synaptic weights, the experiment
results showed that the synaptic weights were adjusted by the Hebbian
learning and the resulting motor speed steered the robot towards the prey,
a property which require fine tuning of the weight values if the encoding
method of the first instance was used.

4 Evolving Controllers for Miniature Robots 87

The results of this experiment are interesting and reflect how the behavior
of the robot was dependent on the types of the parameters of the controller
encoded in the gene despite the fact that the controller had the same ar-
chitecture in the three instances of the experiment. We would expect also
that different behaviors could have obtained by allowing the evolution of the
architecture of the neural network along with the weights.

4.4 Evolving Fuzzy Logic Controllers

Fuzzy Logic is a mathematical tool that can manipulate human vague concepts
and linguistic variables. Zadeh in [15] proposed a method to treat human
knowledge based on the Theory of Approximate Reasoning. He proposed that
systems with ill defined or with uncertain model can be treated by fuzzy logic.
These principles were then used to build a controller for the first time in [16].

In this section, we will briefly present how the fuzzy controller can be
applied to the problem of mobile robot navigation and obstacle avoidance.
The fuzzy controller usually consists of three parts:

The Fuzzifier

The first step in any fuzzy control application is to specify the fuzzy sets and
the corresponding membership functions for each of input or output variables.
This process is known as fuzzification. If we apply this to the Khepera input
proximity sensor values, we will find that each sensor has a reading value
in the range [0,1023]. One of the proposed methods for fuzzification could
be: " Near" ,"Mediumn, and "Far". Also membership function can have other
shapes such as the triangular shape or bell shaped. See figure (4.9).

In our example of the Khepera proximity sensor, the reading 300 may have
a membership in the fuzzy set "Near" that is equal to 0.75 while the mem-
bership in the sets "Medium" and "Far" are equal to 0.25 and 0 respectively.
It is clear here that the crisp value 300 has been assigned a membership value
for every fuzzy set defined over the range [O, 10231. Also the output variables
(left motor speed and right motor speed) can be fuzzified in the same sense.
The fuzzy sets could be "Positive Large", "Positive" , "Zero", "Negative",
"Negative Large".

The Fuzzy Rules

This is the main part of the controller where human knowledge can be repre-
sented in the form of if-then rules. The rule usually takes the following form:

If (antecedent part) then (consequent part)

88 Michael Botros

Possible membership functions for input sensors

Possible membership functions for output motor speed

Fig. 4.9. Possible membership functions for input sensor and output motor speed.

Where the antecedent part checks the input variables and the consequent
part sets one or more of the output variables. For our case of Khepera robot
navigation, one of the rules can be:

If (left proximity sensor is "Near") then
(left speed is "Positive Large") and (right speed is "Postive")

This rule tells the robot to turn to right (by moving the left wheel faster
than the right wheel) if obstacle is found on the left of the robot. If the left
proximity sensor is near with membership value 0.75, then this rule will have
firing value equals to 0.75. A group of fuzzy rules resembling the previous one
are needed for the safe navigation of the robot.

The Defuzzifier

The outputs (left and right speeds in our case) need to be crisp values, this
will be the role of the defuzzifier to convert them form fuzzy sets to crisp
value. This is done through the fusion of different rules based on their firing
values.

Since the performance of the fuzzy logic controllers depends on the param-
eters of the membership functions and the rules used, then we need to search
for the best membership functions and the optimal set of rules. This leads
us to thinking of genetic algorithm to evolve the best fuzzy logic controller
parameters instead of designing it based on the human experience.

4 Evolving Controllers for Miniature Robots 89

4.4.1 Experiment 6: Evolving Corridor Following Behavior

This experiment was performed by Lee and Cho [17]. The goal of the ex-
periment was to evolve a fuzzy logic controller that can enable the robot to
avoid the obstacles and follow the corridors of the environment. The fuzzy
logic controller had 8 inputs corresponding to the 8 proximity sensors of the
robots and 2 output neurons that correspond to the motor speeds. The role
of the genetic algorithm in designing the controller was to evolve the best
membership functions of the inputs and the outputs along with the necessary
rules.

The experiment designers chose to divide the input sensory range [O, 10231
into four triangular membership functions. The same number and type of the
membership functions were used for the outputs. The parameters of these
functions, such as their starting and ending point on the input or output
range, were binary encoded in the chromosome . Also the chromosome in-
cluded information about a set of 10 possible rules.

To encourage the robot to explore the arena and follow the corridors with-
out colliding with their walls, the fitness function had a positive part that
is function of the total distance moved and the number of the check points
in the arena that the robot passed through. It also has negative part that is
function of the number of collisions.

The results of the experiment showed that the best fit individual was
able to develop basic behaviors of avoiding collision and following walls. The
performance of this evolved fuzzy logic controller was tested in two other
simulated environments in which it was observed that the robot developed
three distinct sub-behaviors which are: passing corridors, wall following and
obstacle avoiding. The corridor passing behavior is active when the robot is
moving in a narrow path with obstacles on both sides. The wall following
behavior become active when the obstacles or walls are sensed on one side of
the robot while the obstacle avoidance behavior become active when obstacles
are sensed in front of the robot. A relation could be found between each sub
behavior and a subset of the fuzzy rules that support this sub behavior. The
robot switched from one sub behavior to the other depending on the current
situation till its target was reached [17].

4.5 Evolving Controlling Programs

Genetic programming GP applies the evolution model to computer programs.
The individuals here are computer programs that represent potential solution
to required problem. Usually these problems are too complex or time con-
suming to be programmed by hand. An example of this type of problems is
writing a program to control a mobile robot to navigate and avoid obstacles
in a new environment.

90 Michael Botros

Now the question that may arise is how to represent computer programs as
individuals and how to design genetic operators, such as crossover and muta-
tion, that is applicable to computer programs. Answers of these questions are
in Koza's suggestion [18] of representing programs as trees that is composed
of nodes and branches. The nodes are the operators that can take any value
from certain function set such as {multiplication, addition..). The branches
are the operands which can be constants, input values or results of another
node. Fig. (4.10) shows an example of a tree that represents a simple program.

This tree representation provided a method for performing crossover be-
tween two individuals. This is preformed by exchanging parts of the two trees
representing the two individuals. To perform mutation operator we need to
make sure that the resulting individuals represents a valid computer program.
For example the mutation operator can take place by changing the operator
in the node by another operator from the function set or by mutating the
constants in the operands.

Tree representation of
computer program

Linear representation of
computer program

Fig. 4.10. Tree representation of computer programs versus linear representation

Having this brief overview of the Genetic Programming GP, we are now
ready to present the following experiment in evolving obstacle avoidance con-
troller program using Genetic Programming.

4.5.1 Experiment 7: Evolving Obstacle Avoidance behavior using
Genetic Programming

This experiment was performed by Nordin and Banzhaf [19]. The goal of
the experiment was to evolve a controller program for obstacle avoidance
navigation using genetic programming. The experiment was carried on a real
khepera robot in two different environments. The first environment was a
rectangular arena of size 30 x 40 cm with regular walls while the other is
larger in size with obstacles in its center and characterized by irregular walls.
In both cases, the khepera robot was controlled by a computer workstation
through a serial cable.

4 Evolving Controllers for Miniature Robots 91

Motivated by applying genetic programming on real robots and obtaining
a reasonable behavior in a short time, the experiment designers made two
choices. First choice was not to use the tree structure we discussed above.
Instead, the individual programs were represented as a linear sequence of op-
erations along with their operands.An example of this representation is showed
in figure (4.10). Second choice was to represent these instructions in the low
level binary format of the controlling workstation (Sun 4). Using this repre-
sentation, the crossover operators will be carried by exchanging two segments
of instructions between two individual programs. The mutation operator was
restricted to produce only valid machine instructions.

The population size of the experiment was small and consisted of 50 indi-
viduals and tournament selection is used when individuals are needed to be
selected for crossover or mutation. The tournament works as follows: First we
select n individuals from the population size N and each of the n individuals
is tested and its fitness is evaluated, then we choose the best fit individual out
of them for crossover and mutation.

The results of the experiment showed successful evolution of the obstacle
avoidance behavior in both of the environments. In the first environment, it
took the robot 20 minutes to evolve a reasonable obstacle avoidance behavior.
In the second environment, it took the robot some longer time compared to
learn the same behavior. This may be because of the complexity of the second
environment [19].

The results of this experiment showed how the choice of some parameters
of the genetic algorithm such as the encoding and selection methods, in addi-
tion to the machine format of the programs, helped in evolving the required
behavior in small amount of time. We could see that a reasonable behavior
emerged in less than an hour in both environments.

4.6 Evolving Spiking Neural Network Controllers

In this section, we are going to introduce a new model of the biological neurons
that models the dynamical nature of neurons communication. This new model
is what we call spiking neurons. We will also present an evolution experiment
that evolved spiking neural network for controlling a robot based on vision
information only.

To explain the spiking neuron model, we will need first to have a look at the
actual way of communication between biological neurons. Biological neurons
communicate by sending a large number of short pulses each second. These
short pulses are known as spikes. The classical model of neurons considers
only the rate of these spikes. The current activation level in the classical
model corresponds to the current rate of spikes normalized by its maximum
value. On the other hand, the spiking neuron provides more complex model
of neuron activation function that depends on the timing between spikes.

92 Michael Botros

One widely used model of spiking neuron is the "Integrate and Fire" model.
In this model, the activation of the neuron is described by its membrane po-
tential. Each spike received contributes to the membrane potential according
to two factors: the weight of its synaptic connection and the time elapsed since
its firing. When the accumulated effect of these spikes cause the membrane
potential to go above certain threshold, the neuron fires a spike. After firing
the spike, the neuron becomes unable to fire another spike instantaneously. It
needs a refractory period q before it sends another spike. This refractory time
depends on a certain time constant r, of the membrane.

At any time t , the effect of a spike on the neuron potential is a function
of the time difference between the current time t and the firing time of the
spike tfiring. This function ~ (t - tfiring) can be modeled by a pulse shaped
function as shown in figure (4.11). In the figure, the period A of zero effect
corresponds to the time required by spike to reach the neuron. One of the
suggested expressions for ~ (t - tfiring) is given by [20], [21]:

where s = t - tfcing represents the time elapsed since the firing of the
spike, T~ is the synapse time constant. Also we can model the refractory period
q(s) by a negative decaying exponential where the potential of the neuron is
set after emitting the spike to a very low negative voltage to prevent emitting
another spike immediately. One of the suggested expressions is given by [20],
[2 11 :

I Effect of a spike on the neuron

Fig. 4.11. The effect of a spike on the neuron ~ (s)

Now, we can write the the mathematical model of the spiking neuron the
gives the potential of neuron i as result of addition of to quantities. The
first is due to the effect of received spikes and can be written as the sum

4 Evolving Controllers for Miniature Robots 93

0 5 t - tsling 10 (ms) 15 20

Fig. 4.12. Refractory period function q(s)

of the incoming spikes e j (s j) from other neurons, labeled by index j , with
each spike effect multiplied by the weight of its synaptic connection w;. The
second quantity is due to the spikes emitted by neuron i itself and can be
written as sum of all refractory functions resulting form the emitted spikes.
A mathematical formula of what we have just described can be given by [22]:

j All rec ieved spikes All emi t t ed spikes

The above equation describes the model of the activation of the neuron,
represented by its membrane voltage, which takes into the consideration the
timing of the emitted and received spikes in contributing to the membrane
potential. A question might arise here asking why we would be interested in
more complex model for neural network to employ is robot controllers. The
answer is that model should be better at detecting the time varying relation
between the sensors and motors due to its dynamic nature [22]. In the rest of
this section, we will see how to employ that new model in controlling Khep-
era robot and mapping the vision information into motor speeds to develop
obstacle avoidance navigation that depends only on the vision information.

4.6.1 Experiment 8: Evolving Vision Based Navigation

This experiment was performed by Floreano and Mattiussi [22]. In the exper-
iment, the robot was placed in a rectangular arena whose walls are covered
with vertical white and black strips with variable width. The Khepera robot
is provided with K213 vision module similar to the one described in the co-
evolution experiment in section 3.5. The goal of the evolved controller is to
use the information available from the vision module to enable the robot to
navigate without colliding with the walls.

The vision module provides a linear image consisting of 64 pixels that
cover an angle of 36 degrees. Only 16 equally spaced photoreceptors are used
as inputs to the spiking neural network. The values of photoreceptors readings
are filtered to obtain information about the contrast, scaled to the range of

94 Michael Botros

[O, 11 and then sent to the spiking neural network. There are extra 2 input
neuron in the network whose input is the difference between the actual and
the desired motor speeds. Again this difference is scaled to the rage of [0, 11
before being sent to the spiking neural network. The network contained four
output neurons, two for each motor speed. The two neurons set the forward
and backward speed for each motor. The actual speed sent to the motor is
their algebraic sum. In addition to the 18 input neurons and the 4 output
neurons the network contained 10 neurons that are connected to the input
and output neurons.

The input vision photoreceptors and the output motor speed are interfaced
to the spiking neural network as follows. The 16 scaled inputs of photorecep-
tors are used to set the probability to emit a spike by the corresponding input
neurons. Also, the firing rates of the 4 output neurons are mapped to the
motor speeds. This explains the reason of using two neurons for each motor
speed since that firing rate of the output neurons can not take negative val-
ues. The cycle of reading the photoreceptors and updating the motor speed
goes in the following order. Every 100 ms, the input photoreceptors are read,
filtered, scaled and used to set the probability of emitting a spike by the input
neurons. During the 100 ms cycle, the activation level of each neuron, except
input neurons, is updated every 1 ms according to the model of equation (4.5)
and the neurons are allowed to emit spikes if their activation level exceeds the
threshold. At the end of the 100 ms cycle, the spiking rate of the output neu-
rons, calculated over the last 20 ms period of the cycle, is used to update the
motor speeds.

The genetic algorithm is used to obtain the best synaptic weights connect-
ing the spiking neurons. The population consisted of 60 individuals and the
experiment lasted for 30 generations. Each individual is tested in 400 cycle, in
which its fitness is the sum of its motor speeds if they are both positive and
zero otherwise. This fitness function will reward the individuals that move
forward while offering no reward to individuals that rotate (due to difference
in the sign of the speeds) or move backward (when both speeds are negative).
The fitness evaluation of the individual is the average of its fitness over the
400 cycles.

The results of the experiment showed that the best individual was able to
move in curved trajectories of large radii but without colliding with the sur-
rounding walls. The experiment was repeated using a classical neural network
with sigmoid activation function and with same architecture. However, the
fitness of its individuals didn't increase with time and its individual neural
network controllers were not able to map the vision information into motor
speed that secure a safe navigation without colliding with the surrounding
walls [22].

4 Evolving Controllers for Miniature Robots 95

4.7 Comment on different approaches of evolutionary
robotics

We presented different approaches for evolving controllers such as neural net-
works, fuzzy logic and spiking neural networks. Each approach has appealing
advantages as one form of controller for mobile and autonomous robots. It
may also include some difficulties or limitations when being evolved. We try
in this section to shed some light on the attractive features of these different
approaches and some issues that need to be considered when combined with
evolutionary computations.

As a general approach, fuzzy logic provides a tool for dealing with sys-
tems with uncertain models which suits the dynamic and possibly unknown
environments encountered by mobile robots. It has the advantages of imple-
menting human knowledge. It simulates the human method of reasoning by
using linguistic variables and knowledge that is represented by its rule base.
For example, the human experience in walking or navigation while avoiding
possible obstacles can be moved to the robot brain through using a fuzzy
controller whose rules are based on this experience.

Another useful feature of fuzzy logic that is interesting in the field of
robotics is its ability to combine different rules outputs in the defuzzifica-
tion process. This ability can be further used in behavior coordination. In
this approach different controllers are designed independently, possibly by
fuzzy logic, neural networks or even designed by human programmers. Every
controller implements a certain behavior or task. A simple example is two
controllers for obstacle avoidance and goal seeking. Our problem in behavior
coordination is to combine results from different behaviors in one command
to send to the effectors or motors. The fuzzy approach for this problem works
by providing a number of rules that assigns weights for fusing the different
outputs from the controllers based on the current situation. In our example, a
typical rule will favor the output of obstacle avoidance behavior when a near
obstacle is detected. This method provides a way of combining the outputs of
many behaviors each control cycle unlike behavior arbitration methods that
choose one active behavior each time based on fixed or dynamic priorities. As
we mentioned, these rules can be based on human experience. Further more,
genetic algorithm can be employed to evolve the best set of rules for behavior
coordination. In fact, this was the approach used by Tunstel et al. in [23] to
evolve fuzzy behavior arbitration for planetary microrovers.

On the other hand, fuzzy logic approach lacks a standard method for cre-
ating the rules based on the human experience. Also the time taken in compu-
tations especially in the defuzzification process may affect the real time per-
formance of the controller and the the robot if not performed using dedicated
processors [24]. Another issue that needs to be considered when designing
fuzzy logic controller for a robot is the design of the membership functions.
In some experiments, redesigning the membership functions led to avoiding
oscillations in the robot behavior [25].

96 Michael Botros

Evolutionary computation appears to be a good solution to the problem of
automatic design of the fuzzy logic controller. However there are some issues
that the controller designer should consider when evolving the fuzzy logic
controller. One of these issues is deciding what to evolve, whether it is the
membership function parameters, the rules or both of them. Evolving both
rules and membership functions has the advantage of decreasing chances of
errors due to miss choices made in the early stages of the design, however
the evolution process will search in a larger space for the best set of rules and
best parameters for the membership functions. It should be noted that even by
evolving the rules and the membership parameters, this can not eliminate the
designer choice of the type of membership function (triangular or trapezoidal
... etc). Evolving the fuzzy behavior coordination module mentioned earlier
is an example of evolving the fuzzy rules while the experiment in section
four of this chapter is an example of evolving the fuzzy rules along with the
membership functions.

Another issue to be considered in evolving fuzzy logic controller is the
number of rules. The number of rules can affect the speed and performance
of the robot and the choice of the genetic algorithm as well. Small number
of rules will decrease the computations in the fuzzy logic controllers but on
the other hand this small number may not cover all the possible situations or
sensors combinations encountered by the robot. Evolving controller with fixed
number of rules or fixed maximum number of rules will lead to using fixed
length chromosome. The other approach of using population of individuals
with different number of rules requires variable length chromosomes and pos-
sible modification of the genetic operator. Messy genetic algorithm [27] can be
a potential evolutionary algorithm for evolving the fuzzy logic controller with
variable number of rules. It has a modified version of the traditional crossover
genetic operator called cut and slice operator that can deal with the variation
of the genetic material length. In fact, it was used by Hoffman and Pfister in
[26] to evolve the rules for fuzzy logic controllers to enable a mobile robot to
reach its target while avoiding the obstacles.

Another approach of evolutionary robotics that we presented is evolving
neural networks. Artificial neural networks offer many characteristics that
make them suitable for the problem of controlling autonomous robots. First,
the noise present in the sensor readings, whether they are sonar sensors or
infrared sensors, makes the neural networks suitable controllers due to their
known tolerance to noise. Moreover, if one of the sensors was not functioning,
the output of the neural network could still be acceptable [7]. Second, the
neural networks are able to learn and they could be trained. The weights and
the thresholds and other parameters of the neural network could be adjusted
to produce different behaviors even for the same network architecture. Also,
neural networks can select the sensors that are suitable for a given behavior
by adjusting the weight corresponding to each sensor or input.

As in the case of fuzzy logic, the genetic algorithm can offer an auto-
matic way for designing neural network controller by evolving the synaptic

4 Evolving Controllers for Miniature Robots 97

weights or the network architecture or both of them. Neural networks have
many existing learning algorithms, but the genetic algorithms offers potential
advantage of the parallel search by using a population of individuals. An issue
to be considered in evolving neural networks that may affect the genetic al-
gorithm is the size of the parameter to be evolved. Large networks with large
number of synaptic weights may require a long chromosome. In this case the
real encoding of these parameters could be considered instead of the binary
encoding.

Compared to fuzzy logic, the learning of the neural network which is stored
as synaptic weights can not be acquired by human reasoning [24]. For exam-
ple, in the experiment of trash collection no direct relation was found between
modules of the neural network and the certain behavior of the robot, some-
times by observing the activation level of some neurons and certain behaviors
of the robot we could find a correlation as in the experiment of home seeking
but this is not the general case. On the other hand, the knowledge represented
by the rules of the fuzzy logic controller can be acquired by human reason-
ing. For example, we could read on of the evolved rules in the experiment of
evolving fuzzy logic controller and understand what it implies. Another point
is that we can not easily implement high level behavior using neural networks
as we can do using fuzzy logic. Although many relatively complex behaviors
have be evolved using neural networks, such as trash collection, implementing
a high level reasoning and selection or coordination between behaviors would
require a method that mimics human reasoning.

We have also presented in this chapter a relatively new approach in evo-
lutionary robotics which is evolving behaviors using spiking neural networks.
The dynamic model of the spiking neural network suits the time changing
relation between the sensors and the motors [22]. On the other hand, the com-
plexity of the model and the need of the interface between the sensors of the
robot and input of the spiking neural network have limited the experiments of
evolutionary robotics that use it compared to other widely used approaches as
artificial neural networks or fuzzy logic. Analog Very Large Scale Integrated
Circuits (VLSI) can implement spiking neural networks using circuits with
very small area and power consumption, which is an advantage over other
approaches. In [28], an analog VLSI circuit that implemented spiking neural
networks was used for controlling a robotic leg.

To summarize, each approach of evolutionary robotics is characterized by
some potential advantages that makes it a suitable solution for the problem
of controlling mobile robots. Also each approach has some limitations or dif-
ficulties when being evolved. Choosing which approach is a trade off between
the advantages and the limitations.

98 Michael Botros

4.8 Summary

In the previous sections we have seen how the evolutionary computations algo-
rithms were successfully used to evolve many types of controllers for Khepera
robot. It was used to evolve neural network synaptic weights in the obstacle
avoidance behavior of experiment 1 and the battery recharging behavior of ex-
periment 3. We have also seen how it can evolve the architecture of the neural
network along with the synaptic weights as in the experiment of evolving light
seeking behavior. Alternatively, it can evolve the learning rules and learning
rate necessary for training the neural network synaptic weights. Other types
of controllers were successfully evolved too, such as fuzzy logic controllers and
computer programs.

Many other experiments are conducted using evolutionary computations
on different robotic platforms recently. In fact, evolutionary computation is a
very promising approach for designing controllers for mobile robots.

Acknowledgement

The author would like to thank S. Mercorious and S. Kirolos for their
support all over the past years.

References

1. K-Team, "Khepera User Manual," Lasuanne, Switzerland, 1999.
2. F. Mondada, F. Franz and I. Paolo, "Mobile Robot Miniaturisation: A Tool

for Investigation in Control Algorithm," Proceedings of the Third International
Symposium on Experimental Robotics, Kyoto, Japan, 1993.

3. A. Schultz and J. Grefenstette, "Using a Genetic Algorithm to Learn Behaviors
for Autonomous Vehicles," Naval Research Laboratory, Washington, Dc, 1992.

4. J. Meyer, P. Husbands and I. Harvey, "Evolutionary Robotics: a Survey of Ap-
plications and Problems," In Evolutionary Robotics : First European Workshop,
Evorobot798, P. Husbands and J. Meyer (editors), Springer Verlag 1998.

5. I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi, "Evolutionary
Robotics: the Sussex Approach," In Robotics and Autonomous Systems, Vol.
20, pp. 205-224, 1997.

6. A. Loffler, J. Klahold and U. Ruckert, "The Mini-Robot Khepera as a Forag-
ing Animate: Synthesis and Analysis of Behavior," In Proceedings of the Fifth
International Heinz Nixdorf Symposium: Autonomous Minirobots for Research
and Edutainment (AMiRE), Vol. 97, pp. 93-130, 2001.

7. D. Floreano and F. Mondada, "Automatic Creation of An Autonomous Agent:
Genetic Evolution of a Neural Network Driven Robot," From Animals to An-
imats:3, Proceedings of the Conference on Simulation of Adaptive Behavior,
edited by D. Cliff, P. Husbands and S. Wilson, MIT Press, 1994.

8. M. Botros "Evovlving Neural Network Based Controllers for Autonomous
Robots Using Genetic Algorithms," Master Thesis, Cairo University, Egypt,
2003.

4 Evolving Controllers for Miniature Robots 99

9. M. Hulse, B. Lara, F. Pasemann and U. Steinmetz, "Evolving Neural Behaviour
Control for Autonomous Robots," Max-Planck Institute for Mathematics in the
Sciences, Leipzig, Germany, 2001.

10. D. Floreano and F. Mondada, "Evolution of Homing Navigation in a Real Mobile
Robot," IEEE Transactions on Systems, Man, and Cybernetics (B), Vol. 2, pp.
396-407, 1996.

11. S. Nolfi, "Using Emergent Modularity to Develop Control Systems for Mobile
Robots," Journal of Adaptive Behavior, Vol. 5, pp. 343-363, 1997.

12. C. Scheier and R. Pfeifer, "Classification as Sensory-Motor Coordination," Ad-
vances in Artificial Life: Proceedings of the Third European Conference on Ar-
tificial Life, edited by F. Moran, A.Moreno, J. Merelo and P. Chacon, Springer
Verlag, 1995.

13. D. Floreano and S. Nolfi, "God Save the Red Queen! Competetion in Co-
evolutionary Robotics," Genetic Programming 1997: Proceedings of the Second
Annual Conference, Stanford University, edited by J. Koza, K. Deb, M. Dorigo,
D. Fogel, M. Garzon, H. Iba, and R. Riolo, pp. 398-406, 1997.

14. D. Floreano and S. Nolfi, "Adaptive Behavior in Competing Co-Evolving
Species," Fourth European Conference on Artificial Life, MIT press, Cambridge
MA, editted by P. Husbands and I. Harvey, pp. 378-387, 1997.

15. Zadeh, L., "Outline of a New Approach to the Analysis of Complex Systems
and Decision Process," IEEE Transaction Systems, Man and Cybernetics, Vol.
3, pp 28-40, 1973.

16. E. Mamdani and S. Assilian, "An Experiment in Linguistic Synthesis with Fuzzy
Logic Controller," Journal of Man-Machine Studies, Vol. 7, pp. 1-7, 1975.

17. S. Lee and S. Cho, "Emergent Behaviors of a Fuzzy Sensory-Motor Controller
Evolved by Genetic Algorithm," IEEE Transaction Systems Man and Cyber-
netics (B), Vol. 31, No. 6, pp. 919-929, 2001.

18. J. Koza, "Genetic Programming," MIT Press, Cambridge MA, 1992.
19. P. Nordin and W. Banzhaf, 'LGenetic Programming Controlling a Miniature

Robot," Working Notes for the AAAI Symposium on Genetic Programming,
MIT, Cambridge MA, 1995.

20. W. Gerstner and W. Kistler, "Spiking Neuron Models," Cambridge University
Press, 2002.

21. W. Gerstner, J. van Hemmen, and J. Cowan, LLWhat Matters in Neuronal Lock-
ing?," Neural Computation, Vol. 8, pp. 1653-1676, 1996.

22. D. Floreano and C. Mattiussi, "Evolution of Spiking Neural Controllers for
Autonomous Vision-Based Robots," Evolutionary Robotics. From Intelligent
Robotics to Artificial Life, Springer Verlag, Tokyo, 2001.

23. E. Tunstel, H. Danny, and M. Jamshidi, " Behavior Hierarchy for Autonomous
Mobile Robots: Fuzzy-behavior modulation and evolution," International Jour-
nal of Intelligent Automation and Soft Computing, Special Issue: Autonomous
Control Engineering a t NASA ACE Center, Vol. 3, pp. 37-49, 1997.

24. J. Godjevac, "Comparative Study of Fuzzy Control, Neural Network Control
and Neuro-Fuzzy Control", In Fuzzy Set Theory and Advanced Mathematical
Applications,D. Ruan Ed., Kluwer Academic, Chapter 12, pp. 291-322, 1995.

25. S. Marapane, M. Trivedi, N. Lassiter and M. Holder, "Motion Control of Coop-
erative Robotic Teams through Visual Observation and Fuzzy Logic Control,"
Proceedings of IEEE International Conference on Robotics and Automation,
Vol. 2, pp. 1738-1743, 1996.

100 Michael Botros

26. F. Hoffmann and G. Pfister, "Evolutionary Design of a Fuzzy Knowledge Base
for a Mobile Robot," International Journal of Approximate Reasoning, Vol. 17,
pp. 447-469, 1997.

27. D. Goldberg, B. Krob and K. Deb, "Messy Gentic Algorithms Motivations,
Analysis and First Results," Complex Systems, Vol. 3, pp. 493-530, 1989.

28. M. A. Lewis, M. Hartmann, R. Etienne-Cummings, and A. Cohen, "Biomorphic
Control of a Running Robot Leg using a Custom aVLSI CPG Chip," Neuro-
computing, Vol. 38-40, pp. 1409-1421, June 2001.

Part I1

Evolvable Hardware Synthesis

Evolutionary Synthesis of Synchronous Finite
State Machines

Nadia Nedjah and Luiza de Macedo Mourelle

Department of System Engineering and Computation,
Engineering Faculty,
State University of Rio de Janeiro,
Rua Sh Francisco Xavier, 524, Sala 5022-D,
Maracanl, Rio de Janeiro, Brazil
(nadia I ldmm) 0eng .uerj . br
www.eng.uerj.br

Synchronous finite state machines are very important for digital sequential
designs. Among other important aspects, they represent a powerful way for
synchronising hardware components so that these components may cooperate
adequately in the fulfilment of the main objective of the hardware design. In
this chapter, we propose an evolutionary methodology synthesise finite state
machines. First, we optimally solve the state assignment NP-complete prob-
lem, which is inherent to designing any synchronous finite state machines
using genetic algorithms. This is motivated by the fact that with an optimal
state assignment one can physically implement the state machine in question
using a minimal hardware area and response time. Second, with the optimal
state assignment provided, we propose to use the evolutionary methodology
to yield optimal evolvable hardware that implement the state machine con-
trol component. The evolved hardware requires a minimal hardware area and
introduces a minimal propagation delay of the machine output signals.

5.1 Introduction

Sequential digital systems or simply finite state machines have two main char-
acteristics: there is at least one feedback path from the system output signal
to the system input signals; and there is a memory capability that allows the
system to determine current and future output signal values based on the
previous input and output signal values [15].

104 Nadia Nedjah and Luiza de Macedo Mourelle

Traditionally, the design process of a state machine passes through five
main steps, wherein the second and third steps may be bypassed as shown in
Fig. 5.1:

1. the specification of the sequential system, which should determine the
next states and outputs of every present state of the machine. This is
done using state tables and state diagrams;

2. the state reduction, which should reduce the number of present states
using equivalence and output class grouping;

3. the state assignment, which should assign a distinct combination to every
present state. This may be done using Armstrong-Humphrey heuristics
P51;

4. the minimisation of the control combinational logic using K-maps and
transition maps;

5. finally, the implementation of the state machine, using gates and flip-flops.

Sequential System SpecTiation n
State Reduction 1
State Assqgment Q

Control Logic Minimisation -?
State M a c h Implementation

Fig. 5.1. The structural description of a finite synchronous state machine

In this chapter, we concentrate on the third and forth steps of the design
process, i.e. the state assignment problem and the control logic minimisation.
We present a genetic algorithm designed for finding a state assignment of a

5 Evolutionary Synthesis of Synchronous Finite State Machines 105

given synchronous finite state machine, which attempts to minimise the cost
related to the state transitions. Then, we use genetic programming to evolve
the circuit that controls the machine current and next states.

The remainder of this chapter is organised into seven sections. In Section
5.2, we introduce the problems that face the designer of finite state machine,
which are mainly the state assignment problem and the control logic. We
show that a better assignment improves considerably the cost of the control
logic. In Section 5.3, we give a thourough overview on the principles of evo-
lutionary computations and genetic algorithms and their application to solve
NP-problems. In Section 5.4, we design a genetic algorithm for evolving best
state assignment for a given state machine specification. We describe the ge-
netic operators used as well as the fitness function, which determines whether
a state assignment is better that another and how much. In Section 5.5, we
present results evolved through our genetic algorithm for some well-known
benchmarks. Then we compare the obtained results with those obtained by
another genetic algorithm described in [I] as well as with NOVA, which is uses
well established but non-evolutionary method [16]. In Section 5.6, we briefly
introduce the genetic programming concepts and their applications to engineer
evolvable hardware. Subsequently, we present a genetic programming-based
synthesiser for evolving minimal control logic circuit provided the state as-
signment for the specification of the state machine in question. We describe
the circuit encoding, genetic operators used as well as the fitness function,
which determines whether a control logic design is better than another and
how much. In Section 5.7, we compare the are and time requirements of the
designs evolved through our evolutionary synthesiser for some well-known
benchmarks and compare the obtained results with those obtained using the
traditional method to design state machine, i.e. using Karnaugh maps and
flip-flop transition maps. In Section 5.8, we summarise the ideas presented
throughout the chapter and draw some conclusions.

5.2 Synchronous Finite State Machines

Once the specification and the state reduction step have been completed,
the next step consists then of assigning a code to each state present in the
machine. It is clear that if the machine has N distinct states then one needs
N distinct combinations of 0s and 1s. So one needs K flip-flops to store the
machine current state, wherein K is the smallest positive integer such that
2K 2 N. The state assignment problem consists of finding the best assignment
of the flip-flop combinations to the machine states. Since a machine state
is nothing but a counting device, combinational control logic is necessary
to activate the flip-flops in the desired sequence. This is shown in Fig. 5.2,
wherein the feedback signals constitute the machine state, the control logic is
a combinational circuit that computes the state machine output signals (also
called primary output signals) from the state signals (also called current state)

106 Nadia Nedjah and Luiza de Macedo Mourelle

and the input signals (also called primay input signals). It also produces the
signals of new machine state (also called next state).

Fig. 5.2. The structural description of a finite synchronous state machine

The control logic component in a state machine is responsible of generating
the primary output signals as well as the signal that form the next state. It
does so using the primary input signals and the signals that constitute the
current state (see Fig. 5.2). Traditionally, the combinational circuit of the
control logic is obtained using the transition maps of the flip-flops [15]. Given
a state transition function, it is expected that the complexity (area and time)
and so the cost of the control logic will vary for different assignments of
flip-flop combinations to allowed states. Consequently, the designer should
seek the assignment that minimises the complexity and so the cost of the
combinational logic required to control the state transitions.

5.2.1 Example of State Machine

Consider the state machine of one input signal (I), one output signal (0) and
four states whose state transition function is given in tabular form in Table

5 Evolutionary Synthesis of Synchronous Finite State Machines 107

5.1 and assume that we use D-flip-flops to store the machine current state.
Then the state assignment A. = {so = 00, sl - 11, sa = 01, s3 = 10) requires
a control logic that consists of three AND gates, five AND gates and three
OR gates while the assignments A1 = {so = 00,sl = 10,sz - 0 1 , s ~ = 11)
requires a control logic that consists of only two NOT gates, five AND gates
and two OR gates. The schematics of the state machines that encode the state
according to state assignments A. and A1 are given in Fig. 5.3 and Fig. 5.4
respectively.

Table 5.1. Example of state transition function

Present State Next State Output (0)

C L I R R M W M

Fig. 5.3. The machine state schematics for state assignment A0

In Section 5.3, we concentrate on the third step of the design process, i.e.
the state assignment problem. We present a genetic algorithm designed for
finding a state assignment of a given synchronous finite state machine, which
attempts to minimise the cost related to the state transitions. In Section 5.5,
we focus on evolving minimal control logic for state machines, provided the
state assignment.

108 Nadia Nedjah and Luiza de Macedo Mourelle

Fig. 5.4. The machine state schematics for state assignment A1

5.3 Principles of Genetic Algorithms

Evolutionary algorithms are computer-based solving systems, which use the
evolutionary computational models as key element in their design and im-
plementation. A variety of evolutionary algorithms have been proposed. The
most popular ones are genetic algorithms [13]. They have a conceptual base
of simulating the evolution of individual structures via the Darwinian natu-
ral selection process. The process depends on the adherence of the individual
structures as defined by its environment to the problem pre-determined con-
straints. Genetic algorithms are well suited to provide an efficient solution of
NP-hard problems [4].

Genetic algorithms maintain a population of individuals that evolve ac-
cording to selection rules and other genetic operators, such as mutation and
recombination. Each individual receives a measure of fitness. Selection focuses
on individuals, which shows high fitness. Mutation and crossover provide gen-
eral heuristics that simulate the recombination process. Those operators at-
tempt to perturb the characteristics of the parent individuals as to generate
distinct offspring individuals.

Genetic algorithms are implemented through the following generic algo-
rithm described by Algorithm 5.1, wherein parameters ps, f and gn are the
population size, fitness of the expected individual and the number of genera-
tion allowed respectively.

In Algorithm 5.1, function intialPopulation returns a valid random set
of individuals that compose the population of the first generation, function
evaluate returns the fitness of a given population. Function select chooses
according to some criterion that privileges fitter individuals, the individuals
that will be used to generate the population of the next generation and func-
tion reproduction implements the crossover and mutation process to yield the

5 Evolutionary Synthesis of Synchronous Finite State Machines 109

Algorithm 5.1 Genetic Algorithms
input: population size (ps), expected fitness (f), last generation number (gn);
output: fittest individual (fit);
1. generation := 0;
2. population := initialPopulation() ;
3. fitness := evaluate(population) ;
4. do
5. parents := select(pop1ation) ;
6. population := reproduce(parent s) ;
7. fitness := evaluate(popu1ation);
8. generation := generation + 1;
9. fit := fittestIndividual(population);
10. while(f it < f) and (generation < gn);

new population. The main genetic operators will be described in the following
sections.

5.3.1 Assignment Encoding

Encoding of individuals is one of the implementation decisions one has to
make in order to use genetic algorithms. It very depends on the nature of the
problem to be solved. There are several representations that have been used
with success [13]: binary encoding which is the most common mainly because
it was used in the first works on genetic algorithms, represents an individual
as a string of bits; permutation encoding mainly used in ordering problem,
encodes an individual as a sequence of integer; value encoding represents an
individual as a sequence of values that are some evaluation of some aspect of
the problem; tree encoding represents an individual as a tree. This encoding is
generally used to represent structured individuals such as computer programs,
mathmatical expressions and circuits.

5.3.2 Individual Reproduction

Besides the parameters which represent the population size, the fitness of the
expected result and the maximal number of generation allowed, the genetic
algorithm has several other parameters, which can be adjust by the user so
that the result is up to his or her expectation. The selection is performed
using some selection probabilities and the recombination, as it is subdivided
into crossover and mutation processes, depends on the kind of crossover and
the mutation rate and degree to be used.

Selection

The selection problem consists of how to select the individuals that should
yield the new population. According to Darwins evolution theory the best ones

110 Nadia Nedjah and Luiza de Macedo Mourelle

should survive longer and create more new offspring. There are many selection
methods [6] , [9]. These methods include roulette wheel selection or fitness
proportionate reproduction and rank selection. In the following, we describe
the idea behind each of these selection methods. In our implementation, we
use fitness proportionate reproduction.

In fitness proportionate reproduction, parents are selected according to
their fitness. The better the fitness the individuals have, the higher their
chances to be selected are. Imagine a roulette wheel where are placed all indi-
viduals of the population, wherein every individual has portion proportionate
to its fitness, as it is shown in Fig. 5.5.

Fig. 5.5. Representation with the roulette wheel selection

Then a marble is thrown into the roulette and selects an individual. It is
clear that individuals with bigger portion in the wheel will be selected more
times. The selection process can be simulated by following steps:

1. first, sum up the fitness of all individuals in the population and let S be
the obtained sum;

2. then generate a random number from the [O, S], and let f be this number;
3. subsequently, go through the individuals of the population, summing up

the fitness of the next one. Let o be this partial sum;
4. if a 2 f , then stop the selection process and choose the current individual

otherwise return to second step.

The fitness proportionate reproduction selection presents some limitations
when the individual fitnesses differ too much from one another. For instance,
if the best individual has a fitness of 95% of the entire roulette wheel then
the other individuals will have very few, if any, chances to be selected. To get
round this limitation, the rank selection method first ranks the individuals
of the population according to their corresponding fitnesses. The individual
with the worst fitness receives rankl and that with the best fitness receives
rankN, which is the number of individuals in the population. The impact
of the ranking process is shown in Fig. 5.6, which represents the roulette

5 Evolutionary Synthesis of Synchronous Finite State Machines 11 1

wheel before and after the ranking process. Rank selction may yield a slower
convergence as the fittest individuals and those that are less fit have much
closer ranks.

(a) before individual ranking

rank 5
rank 4 7?4!

3%

(b) after individual ranking

Fig. 5.6. Representation of the roulette wheel selection before and after ranking
the individuals according to their fitnesses

Reproduct ion

Given the parents populations, the reproduction can proceed using different
schemes [6] , [9]: a total replacement, steady-state replacement and elitism. In
the first scheme, offspring replace their parents in the population of the next
generation. That is only offspring are used to form the population of the next
generation. The steady-state replacement exploits the idea that only few low-
fitness individuals should be discarded in the next generation and should then
be replaced by offspring. Finally, elitism exploits the idea that the best solution
might be the fittest individual of the current population and so transports it
unchanged into the population of the next generation. In our implementation
we use the total replacement reproduction scheme as well as elitism.

112 Nadia Nedjah and Luiza de Macedo Mourelle

Obtaining offspring that share some traits with their corresponding parents
is performed by the crossover function. There are several types of crossover
operators. These will be presented shortly. The newly obtained population can
then suffer some mutation, i.e. some of the individuals of some of the genes.
The crossover type, the number of individuals that should be mutated and
how far these individuals should be altered are set up during the initialisation
process of the genetic algorithm.

Crossover

There are many ways on how to perform crossover and these may depend
on the individual encoding used [13]. We present some of these techniques
crossover techniques. Single-point crossover consists of choosing randomly one
crossover point then, the part of the individual from the beginning of the off-
spring till the crossover point is copied from one parent, the rest is copied from
the second parent as depicted in Fig. 5.7(a). Double-point crossover consists
of selecting randomly two crossover points, the part of the individual from
beginning of offspring to the first crossover point is copied from one parent,
the part from the first to the second crossover point is copied from the second
parent and the rest is copied from the first parent as depicted in Fig. 5.7(b).
Uniform crossover copies parts randomly from the first or from the second
parent. Finally, arithmetic crossover consists of applying some arithmetic op-
eration to yield a new offspring.

The single-point and double-point crossover may use randomly selected
crossover points to allow variation in the generated offspring and to contribute
in the avoidance of premature convergence on a local optimum [5]. In our
implementation, we tested all four-crossover strategies.

Mutation

Mutation consists of altering some genes of some individuals of the population
obtained after crossover. The number of individuals that should be mutated
is given by the parameter mutation rate while the parameter mutation degree
states how many genes of a selected individual should be changed. The muta-
tion parameters have to be chosen carefully as if mutation occurs very often
then the genetic algorithm would in fact change to random search [5]. When
either of the mutation rate or mutation degree is null, the population is then
kept unchanged, i.e. the population obtained from the crossover procedure
represents actually the next generation population.

The essence of the mutation process depends on the encoding type used.
When binary encoding is used, the mutation is nothing but a bit inversion of
those bit genes that were randomised. When permutation encoding is used,
the mutation is reduced to a permutation of some randomly selected integer
genes. When value encoding is used, a very small value is added or subtracted
from the randomised genes. When tree encoding is used, a content of a tree
node is altered.

5 Evolutionary Synthesis of Synchronous Finite State Machines 113

(a) single-point crossover

(b) double-point crossover

(c) uniform crossover

(d) arthmetic crossover

Fig. 5.7. Different types of crossover

5.4 Application to the State Assignment Problem

The identification of a good state assignment has been thoroughly studied
over the years. In particular, Armstrong [2] and Humphrey [ll] have pointed
out that an assignment is good if it respects two rules, which consist of the
following:

two or more states that have the same next state should be given adjacent
assignments;

114 Nadia Nedjah and Luiza de Macedo Mourelle

two or more states that are the next states of the same state should be given
adjacent assignment. State adjacency means that the states appear next to
each other in the mapped representation. In other terms, the combination
assigned to the states should differ in only one position;
the first rule should be given more important the second. For instance,
state codes 0101 and 1101 are adjacent while state codes 1100 and 1111
are not adjacent.

Now we concentrate on the assignment encoding, genetic operators as well
as the fitness function, which given two different assignment allows one to
decide which is fitter.

5.4.1 State Assignment Encoding

In this case, an individual represents a state assignment. We use the integer
encoding. Each chromosome consists of an array of N entries, wherein entry
i is the code assigned to ith. machine state. For instance, the chromosome in
Fig. 5.5 represents a possible assignment for a machine with 6 states.

Fig. 5.8. Example of state assignment encoding

Note that if the considered machine has stores its state in K flip-flops,
then the state codes can be only chosen from the integer interval [0, 2K - 11.
Otherwise, the code is not considered valid as it can be kept in the machine
memory.

5.4.2 Genetic Operators for State Assignments

As state assignments are represented using integer encoding, we could use
single-point, double-point and uniform crossovers (see Section 5.3 for details).
The mutation is implemented by altering a state code by another valid state.
Note that when mutation occurs, a code might be used to represent two or
more distinct states. Such a state assignment is not possible. In order to
discourage the selection of such assignment, we apply a penalty every time a
code is used more than once within the considered assignment. This will be
further discussed in next section.

5.4.3 State Assinment Fitness Evaluation

This step of the genetic algorithm allows us to classify the individuals of a
population so that fitter individuals are selected more often to contribute in

5 Evolutionary Synthesis of Synchronous Finite State Machines 115

the constitution of a new population. The fitness evaluation of state assign-
ments is performed with respect to two rules of Armstrong [2] and Humphrey
[l 11 :

0 how much a given state assignment adheres to the first rule, i.e. how many
states in the assignment, which have the same next state, have no adjacent
state codes;
how much a given state in the assignment adheres to the second rule, i.e.
how many states in the assignment, which are the next states of the same
state, have no adjacent state codes.

In order to efficiently compute the fitness of a given state assignment,
we use an N x N adjacency matrix, wherein N is the number of the machine
states. The triangular bottom part of the matrix holds the expected adjacency
of the states with respect o the first rule while the triangular top part of it
holds the expected adjacency of the states with respect to the second rule.
The matrix entries are calculated as in Equation 5.1, wherein AM stands for
the adjacency matrix, functions next(u) and prev(a) yield the set of states
that are next and previous to state a respectively. For instance, for the state
machine in Table 5.2, we get the 4 x 4 adjacency matrix in Fig. 5.9.

Fig. 5.9. Adjacency matrix for the machine state specified in Table 5.1

Using the adjacency matrix AM, the fitness function applies a penalty
of 2, respectively 1, every time the first rule, respectively the second rule, is
broken. Equation 5.2 states the details of the fitness function applied to a state
assignment a, wherein function na(q,p) returns 0 if the codes representing
states q and p are adjacent and 1 otherwise. Note that state assignments that
encode two distincts states using the same codes are penalised. Note that +
represents the penalty.

116 Nadia Nedjah and Luiza de Macedo Mourelle

For instance, considering the state machine whose state transition function
is described in Table 5.1, the state assignment {so e 00, sl E 10, s2 - 01,
SQ E 11) has a fitness of 5 as the codes of states so and s3 are not adjacent
but AM - 0,3 = 1 and = 1 and the codes of states sl and s2 are not
adjacent but AMll2 = 2 while the assignments {so - 00, sl - 11, sz - 01,
s3 -- 10) has a fitness of 3 as the codes of states so and sl are not adjacent
but AMojl = 1 and AMl,o = 1.

The objective of the genetic algorithm is to find the assignment that min-
imise the fitness function as described in Equation 5.2. Assignments with
fitness 0 satisfy all the adjacency constraints. Such an assignment does not
always exist.

5.5 Comparative Results

In this section, we compare the assignment evolved by our genetic algorithm
to those yield by another genetic algorithm [5] and to those obtained using the
non-evolutionary assignment system called NOVA [16]. The examples are well-
known benchmarks for testing synchronous finite state machines [3]. Table 5.2
shows the best state assignment generated by the compared systems. The size
column shows the total number of states/transitions of the machine.

Table 5.3 gives the fitness of the best state assignment produced by our
genetic algorithm, the genetic algorithm from [I] and the two versions of
NOVA system [16]. The #AdjRes stands for the number of expected adjacency
restrictions. Each adjacency according to rule 1 is counted twice and that with
respect to rule 2 is counted just once. For instance, in the case of the Shi ftreg
state machine, all 24 expected restrictions were fulfilled in the state assignment
yielded by the compared systems. However, the state assignment obtained the
first version of the NOVA system does not fulfil 8 of the expected adjacency
restrictions of the state machine.

The chart of Fig. 5.10 compares graphically the degree of fulfilment of the
adjacency restrictions expected in the state machines used as benchmarks.
The chart shows clearly that our genetic algorithm always evolves a better
state assignment.

5.6 Evolvable Hardware for the Control Logic

Genetic programming [lo], [12] is way of producing a program using ge-
netic evolution. The individuals within the evolutionary process are programs.

5 Evolutionary Synthesis of Synchronous Finite State Machines 117

Table 5.2. Best state assignment yield by the compared systems for the benchmarks

FSM System State Assignment

Shiftreg GA [I] [0,2,5,7,4,6,1,3]
8/16 NOVAl [0,4,2,6,3,7,1,5]

NOVA2 [0,2,4,6,1,3,5,7]
Our GA [5,7,4,6,1,3,0,2]

Lion9 GA [l] [0,4,12,13,15,1,3,7,5]
9/25 NOVAl [2,0,4,6,7,5,3,1,11]

NOVA2 [0,4,12,14,6,11,15,13,7]
Our GA [10,8,12,9,13,15,7,3,11]

Trainll GA [I] [0,8,2,9,13,12,4,7,5,3,1]
11/25 NOVAl [0,8,2,9,1,10,4,6,5,3,7]

NOVA2 [0,13,11,5,4,7,6,10,14,15,12]
Our GA [2,6,1,4,0,14,10,9,8,11,3]

Bbarra GA [l] [0,6,2,14,4,5,13,7,3,1]
10160 NOVAl [4,0,2,3,1,13,12,7,6,5]

NOVA2 [9,0,2,13,3,8,15,5,4,1]
Our GA [3,0,8,12,1,9,13,11,10,2]

Dk14 GA [I] [0,4,2,1,5,7,3]
7/56 NOVAl [5,7,1,4,3,2,0]

NOVA2 [7,2,6,3,0,5,4]
Our GA [3,7,1,0,5,6,2]

Bbsse GA [I] [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1]
16/56 NOVAl [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14]

NOVA2 [2,3,6,15,1,13,7,8,12,4,9,0,5,10,11,14]
Our GA [15,14,9,12,1,4,3,7,6,10,2,11,13,0,5,8]

Donfile GA [I] [0,12,9,1,6,7,2,14,11,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3]
24/96 NOVAl [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1]

NOVA2 [6,30,11,28,25,19,0,26,1,2,14,10,31,24,27,15,1~,~,~9,~~,~~,9,~,3]
Our GA [2,18,17,1,29,21,6,22,7,0,4,20,19,3,23,16,9,8,~3,5,~~,~8,~5,~~]

Table 5.3. Fitness of best assignments yield by the compared systems

State machine #AdjRes Our GA GA [5] NOVA^ NOVA:!

S hiftreg 24 0 0 8 0
Lion9 69 2 1 27 25 30
Train11 57 18 19 23 28
Bbara 225 127 130 135 149
Dk14 137 68 75 72 76
Bbsse 305 203 215 220 220
Donfile 408 241 267 326 291

118 Nadia Nedjah and Luiza de Macedo Mourelle

* 1,20
r Ed Our GA 0 GA [2] NOVA1 NOVA2

Shifrreg Lion9 Train11 Bbaru DkI4 Bbsse DonJile
benchmarks

Fig. 5.10. Graphical comparison of the degree of fulfilment of rule 1 and 2 reached
by the systems

The main goal of genetic programming is to provide a domain-independent
problem-solving method that automatically yields computer programs from
expected input/output behaviours. Exploiting genetic programming, we au-
tomatically generate novel control logic circuits that are mznzmal with respect
to area and time requirements.

A circuit design may be specified using register-transfer level equations.
Each instruction in the specification is an output signal assignment. A signal
is assigned the result of an expression wherein the operators are those that
represent basic gates in CMOS technology of VLSI circuit implementation and
the operands are the input signals of the design. The allowed operators are
shown in Table 5.4. Note that all gates introduce a minimal propagation delay
as the number of input signal is minimal, which is 2.

Table 5.4. Gate name, symbol, gate-equivalent and propagation delay

Name Symbol Gate Code Gate Equiv. Delay

NOT -p 0 1 0.0625

AND I 2 0.209
OR 2 2 0.216

XOR 3 3 0.212
NAND Cf 4 1 0.13

NOR * 5 I 0.156
XNOR * 6 3 0.211

5 Evolutionary Synthesis of Synchronous Finite State Machines 119

5.6.1 Circuit Encoding

We encode circuit designs using a matrix of cells that may be interconnected.
A cell may or may not be involved in the circuit schematics. A cell consists of
two inputs or three in the case of a MUX, a logical gate and a single output.
A cell may draw its input signals from the output signals of gates of previous
rows. The gates include in the first row draw their inputs from the circuit
global input signal or their complements. The circuit global output signals
are the output signals of the gates in the last raw of the matrix. An example
of chromosome with respect to this encoding is given in Table 5.5. It represents
the circuit of Fig. 5.11. Note that the input signals are numbered 0 to 3, their
negated signals are numbered 4 to 7 and the output signals are numbered 16
to 19. If the circuit has n outputs with n < 4, then the signals numbered 16
to n are the actual output signals of the circuit.

Table 5.5. Chromosome for the circuit of Fig. 5.11

Fig. 5.11. Encoded circuit schematics

5.6.2 Circuit Reproduction

Crossover recombines two randomly selected circuits into two fresh offsprings.
It may be single-point or double-point or uniform crossover as explained ear-
lier. Crossover of circuit specification is implemented using a variable four-
point crossover as described in Fig. 5.12.

120 Nadia Nedjah and Luiza de Macedo Mourelle

I-; I

j ;;;;;i;t;iii:;;il:ijj;i;;3;i;ii;i I I
I,.::...
I I I

L L + 1 I
I.:.:... 171 - :

. ' . ' . : I 1::::::: (
I I j i;iii$ --- ---- 4 ---- rrrr I
I.:.:.:. I ;;;:;;;I 1:;;;::; j . . I :::::::I

1 * - - . I
; ;::::::I I:.:.:.:
I :;:;:::I

. . . I I I;:;;;;; I I I
t ;:;:::,I . :I 1::::::: , ; t I

Fig. 5.12. Four-point crossover of circuit schematics

One of the important and complicated operators for genetic programming
is the mutation. It consists of changing a gene of a selected individual. Here,
a gene is the expression tree on the left hand side of a signal assignment
symbol. Altering an expression can be done in two different ways depending
the node that was randomised and so must be mutated. A node represents
either an operand or operator. In the former case, the operand, which is a
bit in the input signal, is substituted with either another input signal or
simple expression that includes a single operator as depicted in Fig. 5.13 -
top part. The decision is random. In the case of mutating an operand node
to an operator node, we proceed as Fig. 5.13 - bottom part. The randomised
operator node may be mutated to an operator node or to an operator of
smaller (AND to NOT), the same (AND to XOR) or bigger arity (AND to MUX).
In the last case, a new operand is randomised to fill in the new operand.

5.6.3 Circuit Evaluation

Another important aspect of genetic programming is to provide a way to eval-
uate the adherence of evolved computer programs to the imposed constraints.
In our case, these constraints are of three kinds:

0 First of all, the evolved specification must obey the input/output be-
haviour, which is given in a tabular form of expected results given the
inputs. This is the truth table of the expected circuit.

5 Evolutionary Synthesis of Synchronous Finite State Machines 121

Fig. 5.13. Operand node mutation for circuit specification

a Second, the circuit must have a reduced size. This constraint allows us to
yield compact digital circuits.

a Thirdly, the circuit must also reduce the signal propagation delay. This
allows us to reduce the response time and so discover efficient circuits.
In order to take into account both area and response time, we evaluate
circuits using the weighted sum approach.

We estimate the necessary area for a given circuit using the concept of gate
equivalent. This is the basic unit of measure for digital circuit complexity [7].
It is based upon the number of logic gates that should be interconnected to
perform the same input/output behaviour. This measure is more accurate
that the simple number of gates [7], [15].

When the input to an electronic gate changes, there is a finite time de-
lay before the change in input is seen at the output terminal. This is called
the propagation delay of the gate and it differs from one gate to another.
Of primary concern is the path from input to output with the highest total
propagation delay. We estimate the performance of a given circuit using the
worst-case delay path. The number of gate equivalent and an average propa-

122 Nadia Nedjah and Luiza de Macedo Mourelle

gation delay for each kind of gate are given in Table 5.4. The data were taken
form [6].

Let C be a digital circuit that uses a subset (or the complete set) of the
gates given in Table 5.4. Let Gates(C) be a function that returns the set of
all gates of circuit C and Levels(C) be a function that returns the set of all
the gates of C grouped by level. Notice that the number of levels of a circuit
coincides with the cardinality of the set expected from function Levels. On
the other hand, let Val(X) be the Boolean value that the considered circuit
C propagates for the input Boolean vector X assuming that the size of X
coincides with the number of input signal required for circuit C. The fitness
function, which allows us to determine how much an evolved circuit adheres
to the specified constraints, is given as follows, wherein X represents the input
values of the input signals while Y represents the expected output values of
the output signals of circuit C, n denotes the number of output signals that
circuit C has, function Delay returns the propagation delay of a given gate as
shown in Table 5.4 and 0 1 and 0 2 are the weighting coefficients [8] that allow
us to consider both area and response time to evaluate the performance of
an evolved circuit, with 01 + 0 2 = 1. Note that for each output signal error,
the fitness function of Equation 5.3 sums up a penalty $I. For implementation
issue, we minimize the fitness function below for different values of 01 and
0,.

5.7 Comparative Results

In this section, we compare the evolved circuits to those obtained using the
traditional methods, i.e. transition and Karnaugh maps. This is done for three
different state machines that are generally used as benchmarks. These state
machines are commonly called shiftreg, lion9 and trainll . The detailed de-
scriptions of these state machines can be found in [3]. The state assignments
used are the best ones found so far. They also are the result of an evolutionary
computation [14]. Theses state assignment are given in Table 5.2.

For each of these state machines, we evolved a minimal circuit that im-
plements the required behaviour and compared it to the one engineered using
the traditional method. Table 5.6 shows the details of this comparison. The
schematics of the evolved circuit of state machines shi ftreg are given in Fig.
5.14 and Fig. 5.15.

5 Evolutionary Synthesis of Synchronous Finite State Machines 123

Table 5.6. Comparison of the traditional method vs. genetic programming

State machine Number of gate-Equivalent Response time

Traditional GP Traditional GP

Shiftreg 30 12 0.85 0.423
Lion9 102 33 2.513 0.9185
Train1 1 153 39 2.945 0.8665

Fig. 5.14. First evolved control logic for state machine shi ftreg

Fig. 5.15. Second evolved control logic for state machine shiftreg

124 Nadia Nedjah and Luiza de Macedo Mourelle

The lookup table-based implementations of the shi ftreg state machine for
both control logics (i.e. of Fig. 5.14 and Fig. 5.15) exploits two 2-input, one
3-input and one 4-input lookup tables. The schematics are given in Fig. 5.10.

Fig. 5.16. Lookup table-based evolved architeture of shi ftreg

The lookup table-based implementation of the shi ftreg state machine as
synthesised by the xilinxTM [17] uses four Zinput, one 3-input and one 4-
input lookup tables. The schematics are given in Fig. 5.16.

Fig. 5.17. Lookup table-based architeture of shiftreg as synthesised by Xilinx TM

5 Evolutionary Synthesis of Synchronous Finite State Machines 125

Fig. 5.18 and Fig. 5.19 show the evolved circuits for state machines lion9
and train11 respectively. It is clear that the evolved circuits are much better
that those yield by the traditional methods in both terms hardware area and
signal propagation delay.

Fig. 5.18. The evolved control logic for state machine lion9

5.8 Summary

In this chapter, is divided into two main parts. In the first part, we exploited
evolutionary computation to solve the NP-complete problem of state encod-
ing in the design process of asynchronous finite state machines. We compared
the state assignment evolved by our genetic algorithm for machine of differ-
ent sizes evolved to existing systems. Our genetic algorithm always obtains
better assignments. In the second part, we exploited genetic programming to
synthesise the control logic used in asynchronous finite state machines. We
compared the circuits evolved by our genetic programming-based synthesiser
with that that would use the traditional method, i.e. using Karnaugh maps
and transition maps. The state machine used as benchmarks are well known

126 Nadia Nedjah and Luiza de Macedo Mourelle

Fig. 5.19. The evolved control logic for state machine train11

and of different sizes. Our evolutionary synthesiser always obtains better con-
trol logic both in terms of hardware area required to implement the circuit
and response time.

References

1. Amaral, J.N., Tumer, K. and Gosh, J., Designing genetic algorithms for the State
Assignment problem, IEEE Transactions on Systems Man and Cybernetics, vol.,
no. 1999.

2. Armstrong, D.B., A programmed algorithm for assigning internal codes to se-
quential machines, IRE Transactions on Electronic Computers, EC l l , no. 4,
pp. 466-472, August 1962.

3. Collaborative Benchmarking Laboratory, North Carolina State University,
http://www.cbl.ncsu.edu/pub/ Benchmark-dirs/LGSynth89/fsmexamples,
November 27th. 2003.

5 Evolutionary Synthesis of Synchronous Finite State Machines 127

4. DeJong, K. and Spears, W.M., Using genetic algorithms to solve NP-complete
problems, Proceedings of the Third International Conference on Genetic Algo-
rithms, pp. 124-132, Morgan Kaufrnann, 1989.

5. DeJong, K. and Spears, W.M., An analysis of the interacting roles of the popu-
lation size and crossover type in genetic algorithms, In Parallel problem solving
from nature, pp. 38-47, Springer-Verlag, 1990.

6. Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1991.

7. Ercegovac, M. D., Lang, T. and Moreno, J.H., Introduction to digital systems,
John Wiley, 1999.

8. Fonseca, C.M. and Fleming, P.J., An overview of evolutionary algorithms in
multi-objective optimization, Evolutionary Computation, 3(1):1-16.

9. Goldberg, D. E., Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley, Massachusetts, Reading, MA, 1989.

10. Haupt, R.L. and Haupt, S.E., Practical genetic algorithms, John Wiley and
Sons, 1998.

11. Humphrey, W.S., Switching circuits with computer applications, New York:
McGraw-Hill, 1958.

12. Koza, J.R., Genetic Programming. MIT Press, 1992.
13. Michalewics, Z., Genetic algorithms + data structures = evolution program,

Springer-Verlag, USA, third edition, 1996.
14. Nedjah, N. and Mourelle, L.M, Evolutionary state assignment for synchronous

finite state machine, Proceedings of International Conference on Computational
Science, Lecture Notes in Computer Science, Springer-Verlag, 2004.

15. Rhyne, V.T., Fundmentals of digital systems design, Computer Applications in
Electrical Engineering Series, Prentice-Hall, 1973.

16. Villa, T, and Sangiovanni-Vincentelli, A. Nova: state assignment of finite state
machine for optimal two-level logic implementation, IEEE Transactions on
Computer-Aided Design, vol. 9, pp. 905-924, September 1990.

17. Xilinx, Project Manager, ISE 6.li, http: //www. xl inx . corn.

Automating the Hierarchical Synthesis of
MEMS Using Evolutionary Approaches

Zhun Fan12, Jiachuan Wang3, Kisung Seol, Jianjun Hu4, Ronald
Rosenberg5, Janis Terpenny3, and Erik Goodman1

Department of Electrical and Computer Engineering, Michigan State University,
East Lansing, MI, 48823, USA (f anzhun I ksseo I goodman)@egr .msu.edu,
http://www.egr.msu.edu
Department of Mechanical Engineering,
Technical University of Denmark,
DK-2800 Kgs. Lynby, Denmark
Department of Industrial Engineering and Operations Research
University of Massachusetts Amherst, Amherst, MA 01003 USA
(j iacwang I terpenny) 0ecs. umass. edu, http: //www-unix. ecs .mass. edu
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, 48823, USA
hujianju@egr.msu.edu, http://www.egr.msu.edu/ hujianju
Department of Mechanical Engineering,
Michigan State University, East Lansing, MI, 48823, USA

The complex device, component, and system design issues involved in inte-
grated MEMS design call for a structured design methodology that borrows
from VLSI design. In this chapter, we first discuss the hierarchy that is in-
volved in a typical MEMS design. Then we move on to discuss how evo-
lutionary approaches can be used to automate the hierarchical design and
synthesis process for MEMS. At the system level, genetic programming, as a
strong search tool, is used to generate and search in the topologically open-
ended design space. Meanwhile, bond graphs are used to represent the lumped
parameter models of MEMS that cut across mixed energy domains. The ap-
proach combining bond graphs and genetic programming can lead to satis-
factory design candidates of system level models that meet the predefined
behavioral specifications for designers to tradeoff. Then at the second level,
namely the physical layout synthesis level, the selection of geometric parame-
ters for component devices is formulated as a constrained optimization prob-
lem and addressed using a constrained GA approach. Considerations of feature
size constraints can be incorporated into this approach very conveniently. A
multiple-resonator microsystem design is taken as an example to illustrate the

130 Zhun Fan et al.

integrated design automation idea using evolutionary approaches at multiple
levels.

6.1 Introduction

MicroElectroMechanical Systems (MEMS) is a rapidly expanding technology
that offers new ways of combining sensing, actuation, signal processing, com-
puting and communication functions on a miniature scale. Although MEMS is
a promising technology, it is very surprising that we have only seen a handful
of successful commercial MEMS products which the market has demanded in
large quantities, including automotive accelerometers and gyroscopes, pres-
sure sensors, ink-jet print heads and a few others. Prevalence of design and
fabrication of MEMS application-specific integrated circuits (ASICS) analo-
gous to electronic ASICS is still not seen. Due to the complexity and intricacy
involved in MEMS design, designing MEMS still remains an art in most appli-
cations, requiring a large amount of investment of human resources, time and
money. Much of the investment is consumed in the iterative trial-and-error
design process. Automated design synthesis helps engineers to develop rapid,
optimal configurations for a given set of performance and constraint guide-
lines, and thus to shorten typical development cycles for MEMS (with a given
fabrication technology) by a large factor and to enable design of far more
complex MEMS than can be handled today. Electronic Design Automation
(EDA) has achieved great success in both industry and academia. However,
analogous research in design automation for MEMS seems to lag far behind,
although considering the close affinity of MEMS and VLSI - MEMS actu-
ally evolved from microelectronics and inherited the fabrication techniques of
VLSI - the potential successful applications of design automation of MEMS
appear to be promising. It turns out that translating the key insights of sil-
icon evolution success into MEMS technologies is a much more challenging
task than most people have expected. Major research topics to be addressed
include: 1) developing a broad base of building blocks in MEMS technologies
so that huge networks of micro-devices could be assembled into arbitrary ar-
chitectures with desirable functionalities, 2) abstracting design hierarchies to
stratify and conquer design complexity, thus making the design more amenable
to an automated process, 3) improving models of computation and extend-
ing current synthesis methodologies to facilitate generation of viable design
candidates and smoother transitions from conceptual and embodied designs
to process fabrication. 4) combining MEMS component layout extraction and
lumped-parameter bond graph simulation and design synthesis to provide
MEMS designers with VLSI-like environments enabling faster design cycles
and improved design productivity.

This chapter seeks to partially address the above challenges, especially
the first two. The proposed hierarchical and evolutionary design framework
for MEMS aims to eliminate tedious and repetitive design tasks, facilitate

6 Automating the Hierarchical Synthesis of MEMS 131

hierarchical problem decomposition, and combine the power of multiple evo-
lutionary computation algorithms working simultaneously to identify better
product designs and process solutions. In particular, we divide design repre-
sentations of MEMS design into two levels, the system-level behavioral macro-
model and the detailed-level physical geometric layout model. At the system
level, we use a combination of genetic programming and bond graphs to au-
tomatically generate and search for viable design candidates represented by
behavioral macromodels satisfying high-level design specifications. At the sec-
ond detailed (layout) level, multiobjective constrained genetic algorithms are
used to optimize the geometric parameters that relate the physical device
model to the behavioral macromodel and meet more detailed design objec-
t ives.

6.2 Hierarchical MEMS Design Methodology

MEMS holds the promise of being amenable to structured automated design
due to its similarities with VLSI. However, design and analysis of MEMS is
much more complicated due to their multi-domain and intrinsically three-
dimensional nature. In addition, because of limitations of fabrication technol-
ogy, there are many constraints in design of MEMS. In MEMS, there are a
number of levels of designs that need to be synthesized [I]. Usually the design
process starts with basic capture of the schematic of the overall system, and
then goes on through layout and construction of a 3-D solid model. So the first
design level is the system level, which includes selection and configuration of
a repertoire of planar devices or subsystems. The second level is 2-D layout
of basic structures like beams to form the elementary planar devices. In some
cases, if the MEMS is basically a result of a surface-micro machining process
and no significant 3-D features are present, design of this level will end one
cycle of design. More generally, modeling and analysis of a 3-D solid model
for MEMS is necessary. However, even if we have obtained an optimized 3-D
device shape, it is still very difficult to produce a proper mask layout and
correct fabrication procedures. Automated mask layout and process synthesis
tools would be very helpful to relieve designers from considering the fabrica-
tion details and focus on the functional design of the device and system [2].
After a "top-down" design path, a " bottom-up" verification process is usually
followed to guarantee that at each design level the design specifications are
met exactly as defined in Fig. 6.1. The ultimate goal is to develop tools for
MEMS design to ensure first-pass success by having a well-defined " top-down"
design path and "bottom-up" verification path.

132 Zhun Fan et al.

Concept Technology

Component

1 Level

Physical Numerical
Analysis

Mask & Fabrication '-4
Packing and Test 1 31d Level

Product

Fig. 6.1. Hierarchical design of MEMS

6.3 System-Level Synthesis of MEMS Using Genetic
Programming and Bond Graphs

For system-level design, hand calculation is still the most popular method
in current design practice. This is mainly because no powerful and widely
accepted synthesis approach exists to automated design of multi-domain sys-
tems. In addition, most MEMS system-level design is accomplished by mod-
eling entire microelectromechanical system as single behavioral entities hav-
ing no lower hierarchical level in design. If there is any change in geometric
parameters or topology, a whole new model must be created, and this sub-
stantially lengthens design cycles. Over the past two decades, computational
design algorithms based on Darwin's principles of evolution have developed
from academic curiosities into practical and effective tools for scientists and
engineers. Gero, for example, investigates evolutionary systems as computa-
tional models of creative design and studies the relationships among genetic
engineering, style emergence, and complex evolution [3]. Goodman et al. [4]
studied evolution of engineering artifacts using heterogeneous parallel genetic
algorithms. Koza has applied genetic programming to evolve analog filter cir-

6 Automating the Hierarchical Synthesis of MEMS 133

cuits and can optimize the topology and sizing parameters of the evolved
circuits simultaneously [5]. In this research, we use genetic programming as
a strong search tool to explore the topologically open-ended design space for
system-level behavioral models of MEMS. We also use bond graphs as a mod-
eling tool to unify representations of mixed energy domains of MEMS. We
call the overall approach the BG/GP approach.

6.3.1 Bond graphs

The reason we used bond graphs in research on MEMS synthesis is because
MEMS are intrinsically multi-domain systems, unlike electronic systems. We
need a uniform representation of MEMS so that designers can not only shift
among different hierarchies of design abstractions but also can move around
design partitions with different physical domains without difficulty. The bond
graph is a modeling tool that provides a unified approach to the modeling
and analysis of dynamic systems, especially hybrid multi-domain systems in-
cluding mechanical, electrical, pneumatic, hydraulic components, etc. It is the
explicit representation of model topology that makes the bond graphs a good
candidate for use in open-ended design search. Fig. 6.2 shows an example of
unique bond graphs representation of a resonator unit in three different ap-
plication domains. It is also very natural to use bond graphs to represent a
dynamic system, such as a mechatronic system, with cross-disciplinary phys-
ical domains and even controller subsystems (Fig.6.3). For notation details
and methods of system analysis related to the bond graph representation, see
[6]. Shah [7] identifies the importance of bond graphs for unifying multi-level
design of multi-domain systems. Tay et al. [8] use bond graphs and GA to
generate and analyze dynamic system designs automatically. This approach
adopts a variational design method, which means they make a complete bond
graph model first, and then change the bond graph topologically using a GA,
yielding new design alternatives. However, the efficiency of this approach is
hampered by the weak ability of GA to search in both topology and parameter
spaces simultaneously. Terpenny and Jiachuan Wang have begun to explore
combination of bond graphs and evolutionary computation [9]. Campell [lo]
also uses the idea of both bond graphs and genetic algorithms in his A-Design
framework. In this research, we use an approach combining genetic program-
ming and bond graphs to automate the process of design of dynamic systems
to a significant degree.

6.3.2 Combining bond graphs and genetic programming

The most common form of genetic programming [5] uses trees to represent
the entities to be evolved. Defining of a proper function set is one of the most
significant steps in using genetic programming. It may affect both the search
efficiency and validity of evolved results and is closely related to the selection
of building blocks for the system being designed. By executing the genotype,

134 Zhun Fan et al.

I I

Mechanical Resonator

F=cdxldt=cv .___..'

a

Bond Graphs Model of
Resonator Unit

Electrical Resonator

MEM Resonator

Fig. 6.2. Bond graphs representing a mechatronic system with mixed energy do-
mains and a controller subsystem

Fig. 6.3. One bond graph represents resonators in different application domains

6 Automating the Hierarchical Synthesis of MEMS 135

a genetic programming tree that composes of functions in the function set as
nodes of the tree, an arbitrary representative topology, or phenotype can be
generated in a developmental manner. In this research, we have an additional
dimension of flexibility in generating phenotypes, because bond graphs are
used as modeling representations for multi-domain systems, serving as an
intermediate representation between the mapping of genotype and phenotype,
and can be interpreted as systems in different physical domains, chosen as
appropriate to given circumstances. Fig. 6.4 illustrates the role of bond graphs
in the mappings from genotypes to phenotypes. [ll]

{ Genotype

A 1 Genetic (
Programming e

The Bond
Graph
Models

OfA
Dynamic
System

Phenotype }

Physical
Realization

Of The
Dynamic

Fig. 6.4. Genotype-phenotype mapping

6.3.3 Filter topology

Automated synthesis of an RF MEM device, a micro-mechanical bandpass
filter, is used as an example in this chapter [12]. Through analyzing two pop-
ular topologies used in surface micromachining of micro-mechanical filters,
we found that they are topologically composed of a series of concatenated
Resonator Units (RUs) and Bridging Units (BUS) or RUs and Coupling Units
(CUs). Fig. 6.5 and Fig. 6.6 illustrates the layouts and bond graph representa-
tions of two widely accepted filter topologies I and I1 [12]. Their corresponding
bond graph representations are also shown.

6.3.4 Function set

In this research, a GP function set is presented and listed in Table 6.1. Ex-
amples of operators, namely insert-CU and insert-RU, are illustrated in Figs
6.7 and 6.8. Fig. 6.7 explains how the insert-CU function works. A Coupling

136 Zhun Fan et al.

Fig. 6.5. MEM filter topology I

Unit (CU) is a subsystem that is composed of a capacitor attached with a
0-junction in the center and two bonds connecting 1-junctions at the left and
right ends. After execution of the insert-CU function, an additional modifiable
site (2) appears at the rightmost newly created bond. As illustrated in Fig. 6.8,
a resonator unit (RU), composed of one I, R, and C component all attached
to a 1-junction, is inserted in an original bond with a modifiable site through
the insert-RU function. After the insert-RU function is executed, a new RU
is created and one additional modifiable site, namely bond (3), appears in
the resulting phenotype bond graph, along with the original modifiable site
bond (1). The newly-added 1-junction also has an additional modifiable site
(2). As components C, I, and R all have parameters to be evolved, the insert-
RU function has three corresponding ERC-typed sites, (4), (5) , and (6), for
numerical evolution of parameters.

6.3.5 Design embryo

All individual genetic programming trees create bond graphs from an embryo.
Selection of the embryo is also an important topic in system design, especially

6 Automating the Hierarchical Synthesis of MEMS 137

v v
Resonator Resonator

Unit

Fig. 6.6. MEM filter topology I1

for multi-port systems. In our filter design problems, we use the bond graph
shown in Fig. 6.9 as our embryo.

Table 6.1. Operators in modular function set

6.3.6 Fitness function

Within the frequency range of interest, f,,,, = [f,,,, f,,,], uniformly sam-
ple 100 points. Here, f,,,, = [O. 1,1000Kl Hz. Compare the magnitudes of the

Operator Name
Insert-RU
Insert-CU
Insert-BU
Add-RU
Insert-JO1
Insert-CIR
Insert-CR

Functionality
insert a resonator unit
insert a coupling unit
insert a bridging unit
add a resonator unit
insert a 0-1-junction
insert a special CIR component
insert a special CR component

138 Zhun Fan et al.

Fig. 6.7. Operator to insert Bridging Unit

Fig. 6.8. Operator to insert Resonator Unit

6 Automating the Hierarchical Synthesis of MEMS 139

[To be I I

I evolved j -
voltage

-2

I
I
I
I I

force I
+:

I I

I I

I I

!

Q)

.;

3
U

parts:

Mechanical
resonators +
Coupling1
Bridging
units.

1 force 1 1 current@ voltage ,
I
I I 3
I
I I

Fig. 6.9. Design Embryo of a Micro-Electro-Mechanical Filter

frequency response at target magnitudes, which are 1.0 within the pass fre-
quency range of [316,1000] Hz, and 0.0 otherwise, between 0.1 and 1000KHz.

6.3.7 Experimental setup

Three major code modules were created in this work. The algorithm kernel
of HFC-GP was a strongly typed version [13] of an open software package
developed in our research group - lilgp. Parameters for lilgp are shown in the
tableau 6.2.

Table 6.2. Parameter settings for genetic programming

Parameter
population size
initial population
initial depth
maximum depth
maximum nodes
selection method
crossover rate
mutation rate

Setting
500 in each of thirteen subpopulations
half and half
4-6
50
5000
tournament with size 7
0.9
0.3

140 Zhun Fan et al.

A bond graph class was implemented in C++. The fitness evaluation pack-
age is C++ code converted from Matlab code, with hand-coded functions used
to interface with the other modules of the project. The commercial software
package 2OSim was used to verify the dynamic characteristics of the evolved
design. The GP program obtains satisfactory results on a Pentium-IV lGHz
in 1000 1250 minutes.

6.3.8 Experimental result

Experimental results show the strong topological search capability of genetic
programming and feasibility of our BG/GP approach for finding realizable
designs for micro-mechanical filters [14]. In Fig. 6.11, K is the number of res-
onator units appearing in the best design of the generation on the horizontal
axis. As fitness improves, the number of resonator units, K, grows - unsurpris-
ing because a higher-order system with more resonator units has the potential
of better system performance than its low-order counterpart. The plot of cor-
responding system frequency responses at generations 27, 52, 117 and 183 are
shown in Fig. 6.10. A layout of a design candidate with four resonators and
three coupling units as well as its bond graph representation is shown below in
Fig. 6.12. Notice that the geometry of resonators may not show the real sizes
and shapes of a physical resonator and the layout figure only serves as a topo-
logical illustration. Using the BG/GP approach, it is also possible to explore
novel topologies of MEM filter design. In this case, we may not necessarily use
a strictly realizable function set. Instead, a semi-realizable function set may
be used to relax the topological constraints, with the purpose of finding new
topologies not realized before but still realizable after careful design. Fig. 6.13
gives an example of a novel topology for a MEM filter design. An attempt
to fabricate this kind of topology is being carried out in a university research
setting.

6.4 Second-Level Physical Layout Synthesis Formatting
the Headings

Layout synthesis automatically generates valid or optimized geometric siz-
ing parameters for cell components, which in most cases are commonly used
micromechanical devices with fixed topologies, according to engineering de-
sign objectives. In this research, the cell component is a resonator device in
MEMS domain. The design objectives come from either high-level specifica-
tions such as behavioral model parameters that need to be satisfied, or from
layout-level objectives such as minimum areas occupied. Our approach is to
model the design problem as a formal constrained optimization problem, and
then solve it with powerful optimization techniques, resulting in a tool that
automates the design synthesis of MEMS structures. Two categories of op-
timization techniques are used: one category includes stochastic algorithms

6 Automating the Hierarchical Synthesis of MEMS 141

Responses of Design Candidates

Frequency

Fig. 6.10. Frequency responses of a sampling of design candidates, which evolved
topologies with larger numbers, K, of resonators as the evolution progressed. All
results are from one genetic programming run of the BG/GP approach

such as genetic algorithms, and the other category includes deterministic al-
gorithms such as nonlinear programming. For both categories, the process of
solving the optimization problem involves determining the design variables,
the design constraints, and the design objective. We decided to use 14 design
variables for an example cell component, a folded-flexure comb-drive microres-
onator fabricated in a polysilicon surface microstructural process (Fig. 6.14)
in this research. Design variables and their constraints are listed as follows
(Fig. 6.15) [15]:

It is noted that the first 13 design variables have units of pm. The four-
teenth design variable has units of volts. In addition, we assume t = w, = g
= d. in our design for simplicity. Some design variables are predefined: they
are wb, = 11 , w,, = 14 , 6 = 4 , N = 10 . The constraints for the design
variables are listed below.

142 Zhun Fan et al.

Fitness Improvement Curve for Band Pass Micromechanical Filter

Number of Generation

Fig. 6.11. Fitness improvement curve

10 I LC, 6 700,8L LC < 4 0 0 , 2 6 w, i 2 0 , 2 6 L,, 1 4 0 0 (6.3)

also a number of design constraints for the microresonator cell compo-
nent, including both geometric constraints and functional constraints. In this
chapter, without loss of generality, we consider the following constraints:

Among them, the first three are linear constraints, and the fourth is a non-
linear constraint because the term xdisp is highly nonlinear. xdisp = QFe,x/Kx,
where Fe,, = 1 . 1 2 ~ ~ N V ~ t l ~ ,

Suppose that in the system-level synthesis, we get a set of behavioral
parameters for the cell component of a microresonator as

6 Automating the Hierarchical Synthesis of MEMS 143

Fig. 6.12. Layout and bond graph representation of a design candidate from the
experiment, with four resonator units coupled with three coupling units

Then we have three additional equation constraints.Equations to relate the
design variables and the three behavioral model parameters are as follows:

where cr = (w ~ / I v ~) ~ , MS = PA,, Mt = pAt, Mh = pAb, and

144 Zhun Fan et al.

Fig. 6.13. A novel topology of MEM filter and its bond graph representation

Fig. 6.14. A folded-flexure comb-drive microresonator fabricat
surface microstructural process a) Layout b) Cross-section A-A'

polysilicon

6 Automating the Hierarchical Synthesis of MEMS 145

Fig. 6.15. Major design variables for microresonators

As an alternative, we can also put reformulations of these three constraint
equations into our design objectives, expressing them as differences to be
minimized. In that case, we actually deal with a multi-objective constrained
optimization problem.We take the objective function with the following nor-
malized Sum of Squared Error (SSE) format:

Finally, it is important to note the role of feature size in VLSI and MEMS
design. Feature size, which is often represented as X , means the minimum
size a particular design can achieve, based on specific fabrication procedures.
In addition, the actual sizes of geometric shapes should be integer multiples
of the feature size A, such as A, 2X , 5X , 10X etc. In this research, we set X =
0.09pm .

While it is very difficult for many numerical optimization approaches (for
example, gradient-based approaches) to include considerations of feature size
constraints [15], it is quite convenient for genetic algorithms to do so. We
need to modify the objective function only slightly, mapping real values of
design variables to integer multiples of the feature size X before using them
in formulations of constraints and objectives. No modifications to the genetic
algorithm are needed.

146 Zhun Fan et al.

6.4.1 Solving the constrained optimization problem using GA

In trying to solve constrained optimization problems using genetic algorithms
or classical deterministic optimization methods, penalty function methods
have been the most popular approach, because of their simplicity and ease
of implementation. In this chapter, we use a special constrained GA that
exploits pair-wise comparisons in a tournament selection operator to devise
a penalty function approach that does not require any penalty parameter.
Careful comparisons among feasible and infeasible solutions are made so as
to provide a search direction towards the feasible region. Once sufficient fea-
sible solutions are found, a niching method (along with a controlled mutation
operator) is used to maintain diversity among feasible solutions. This allows
a real-parameter GA's crossover operator to continuously find better feasible
solutions, gradually leading the search nearer to the true optimum solution
[16]. The parameters for setting the constrained GA are listed in Table 6.3.

Table 6.3. The parameters for setting the constrained GA

total number of generations
crossover probability
mutation probability 0.15

Parameter
variable boundaries
population size

Setting
rigid
500

In nine runs of the genetic algorithm using different random seeds, we
obtained the sizing parameters and values of the objective function NSSE (to
be minimized) listed in Table 6.4.

It can be seen that during the nine runs using different seeds, the con-
strained GA performs very steadily. Almost all runs achieved NSSE within
the range of 1.OE-06. The biggest NSSE is 1.4E-05. However, the normalized
squared sum of errors of 1.4E-05 is still considered very good result. It also
appears that there are many alternatives and rather different ways in which
parameters can be set and still produce behavior rather close to that desired.

niching parameter
exponent(n for SBX)
exponent (n for mutation)

6.5 Summary

0.9
2.0
50.0

This chapter has suggested a design methodology for automatically synthesiz-
ing hierarchical designs for MEMS. While there has been much research using
evolutionary computation techniques to synthesize MEMS [2] [17], this is the

6 Automating the Hierarchical Synthesis of MEMS 147

Table 6.4. Layout parameters obtained in nine GA runs(different random seeds)

first work reported to seek to automate the hierarchical MEMS synthesis pro-
cess in an integrated framework. Our first step is to synthesize system-level
behavioral models using a combination of genetic programming and bond
graphs. Then as the second step, we use a constrained genetic algorithm to
automatically optimize the geometric sizing parameters for the cell compo-
nents. An example of MEM filter design with coupling of multiple microres-
onators is used to illustrate the approach. Extension of this work can lead to a
composable design and synthesis environment for micromechatronic systems
[18]. In addition, target cascading in optimal system design needs to be in-
vestigated in depth to propagate the desirable top-level design specifications
to appropriate specifications for the various subsystems and components in a
consistent and efficient manner [19] [20]. More work is underway to improve
the efficiency of genetic programming to explore topologically open-ended de-
sign spaces, and the robustness of the constrained genetic algorithm to solve
real-world constrained optimization problems.

References

1. Fedder, G.K. and Q. Jing, A Hierarchical Circuit-Level Design Methodology for
Microelectromechanical Systems, IEEE Transactions on Circuits and Systems
I1 (TCAS), vol. 46, no. 10, pp. 1309-1315, Oct. 1999

2. Ma, L. and E. K. Antonsson, Automated Mask-Layout and Process Synthesis for
MEMS, Technical Proceedings of the 2000 International Conference on Modeling
and Simulation of Microsystems, pp. 20-23, 2000

3. Gero J. S., Computers and Creative Design, in M. Tan and R. Teh (eds), The
Global Design Studio, National University of Singarpo pp. 11-19, 1996

148 Zhun Fan et al.

4. Eby, D., R. Averill, B. Gelfand, W. Punch, 0. Matthews, E. Goodman, An
Injection Island GA for Flywheel Design Optimization. 5th European Congress
on Intelligent Techniques and Soft Computing, EUFIT'97. Vol. 1. pp. 687-691,
1997

5. Koza J. R., Genetic Programming 11: Automatic Discovery of Reusable Pro-
grams, MIT Press, 1994

6. Rosenberg R. C., Reflections on Engineering Systems and Bond Graphs, Trans.
ASME J. Dynamic Systems, Measurements and Control, 115, pp. 242-251, 1993

7. Vargas-Hernandez N., J. Shah, Z. Lacroix, Development of a Computer-Aided
Conceptual Design Tool for Complex Electromechanical Systems, Computa-
tional Synthesis: From Basic Building Blocks to High Level Functionality, Pa-
pers from the 2003 AAAI Symposium Technical Report SS-03-02 pp. 255-261,
2003

8. Tay E. H., Flowers W. and Barrus J., Automated Generation and Analysis of
Dynamic System Designs, Research in Engineering Design 10: pp. 15-29, 1998

9. Wang, J. and Terpenny, J., Interactive Evolutionary Solution Synthesis in Fuzzy
Set-based Preliminary Engineering Design, Special Issue on Soft Computing in
Manufacturing, Journal of Intelligent Manufacturing, Vol. 14. pp. 153-167, 2003

10. Campbell, M., Cagan J. and Kotovsky K., Agent-based Synthesis of Electro-
Mechanical Design Configurations, Journal of Mechanical Design, Vol. 122. No.
1, pp. 61-69, 2000

11. Fan Z., Hu J., Seo K., Goodman E., Rosenberg R., and Zhang B., Bond Graph
Representation and GP for Automated Analog Filter Design, GECCO-2001
Late-Breaking Papers, San Francisco, pp. 81-86, 2001

12. Wang K. and Nguyen C. T. C., High-Order Medium Frequency Micromechanical
Electronic Filters, Journal of Microelectromechanical Systems, pp. 534-556, 1999

13. Luke S., Strongly-Typed, Multithreaded C Genetic Programming Kernel,
http://www.cs.umd.edu/users/-seanl/gp/patched-gp/, 1997

14. Fan Z., Seo K., Rosenberg R., Hu J., Goodman E., System-Level Synthesis
of MEMS via Genetic Programming and Bond Graphs, Proc. 2003 Genetic
and Evolutionary Computing Conference, Chicago, Springer, Lecture Notes in
Computer Science, July,2058-2071, 2003

15. Fedder G. and Mukherjee T., Physical Design for Surface-Micromachined
MEMS, Proceedings of the Fifth ACM/SIGDA Physical Design Workshop,
April, pp. 53-60, 1996

16. Deb K., An efficient constraint handling method for genetic algorithms, Comput.
Methods Appl. Mech. Engrg., Vol. 186, pp. 311-338, 2000

17. N. Zhou, B. Zhu, A.M. Agogino, K.S.J. Pister, Evolutionary Synthesis of MEMS
(Microelectronic Mechanical Systems) Design, Proceedings of ANNIE 2001, In-
telligent Engineering Systems through Artificial Neural Networks, Volume 11,
ASME Press, pp. 197-202, 2001

18. C. J. J. Paredis, A. Diaz-Calderon, R. Sinha, and P. K. Khosla, Composable
Models for Simulation-Based Design, Engineering with Computers 17, pp. 112-
128, 2001

19. Kim, H.M., Michelena, N.F., Papalambros, P.Y., and Jiang, T., " Target Cas-
cading in Optimal System Design, Proceedings of the 2000 ASME Design Au-
tomation Conference, DAC-14265, Baltimore, Maryland, USA, September 10-
13, 2000

6 Automating the Hierarchical Synthesis of MEMS 149

20. Kim, H.M., Target Cascading in Optimal System Design, Ph.D. Dissertation,
Department of Mechanical Engineering, University of Michigan, Ann Arbor,
Michigan, USA, 2001

An Evolutionary Approach to Multi-FPGAs
System Synthesis

F. Fernbndez de Vejal, J.I. Hidalgo2, J.M. SBnchezl, and J. Lanchares3

Departamento de InformAtica, Centro Universitario de MQrida,
Universidad de Extremadura, C/ Sta Teresa de Jornet, 38 - 06800 MBrida, Spain
fcofdez@unex.es, http://atc.unex.es/pacof
Departmento de Arquitectura de Computadores y AutomAtica,
Facultad de InformAtica, Universidad Complutense de Madrid,
C/ Juan del Rosal, 8 -28040 Madrid Spain
hidalgo0dacya.ucm.es, http://www.dacya.ucm.es/hidalgo
Departamento de InformAtica, Escuela PolitQcnica,
Universidad de Extremadura, Spain
Departmento de Arquitectura de Computadores y AutomAtica, Facultad de
InformAtica, Universidad Complutense de Madrid, C/ Juan del Rosal, 8, Spain,
julandan0dacya.ucm.e~

In this chapter we explain in detail a methodology for Multi-FPGA systems
(MFS) design. MFSs are hardware platforms used for a great variety of appli-
cations, including dynamically re-configurable hardware applications, digital
circuit emulation, and numerical computation. There are a lot of MFS not
only academical, but also commercial implementations. We describe a set of
techniques based on evolutionary algorithms (EA), and we show that they
are capable of solving all of the design tasks (partitioning, placement and
routing). Firstly a hybrid compact genetic algorithm (HcGA) solves the par-
titioning problem and then genetic programming (GP) is used to obtain a
solution for the two remaining tasks.

7.1 Introduction

Field Programmable Gate Arrays (FPGAs) are integrated devices used on the
implementation of digital circuits by means of a configuration or programming
process. There are different manufacturers and several kind of FPGAs are
available. We will focus on those called island-based FPGAs. This model in-
cludes three main components: configurable logic blocks, input-output blocks
and connection blocks (see figure 7.1). Configurable logic blocks (CLBs) are

152 F. FernBndez de Veja, J.I. Hidalgo, J.M. SBnchez, and J. Lanchares

used to implement all the logic circuitry. They are positioned in a matrix way
in the device, and they have different configuration possibilities. Input-output
blocks (IOBs) are responsible for connecting the circuit implemented by the
CLBs with any external system. The third class of components are connec-
tion blocks (switch-boxes and interconnection lines). They are the elements
available for the designer to make the internal routing of the circuit. In most
occasions we need to use some of the CLBs to accomplish the routing [I].

When the size of an FPGA is not enough to implement large circuits,
the designer must think on higher reconfigurable platforms, in other words,
on the use of Multi-FPGA system (MFS) [2]. These systems can eventually
include, in addition to several FPGA devices, memories and other hardware
elements. MFS are used for dynamically re-configurable hardware applica-
tions [3] [4], digital circuit emulation 151, numerical computation 161, etc [7] [8].
The two most widely used topologies are the mesh and crossbar types. Mesh
MFSs have simple routing methodologies, an easy expandability, FPGAs are
connected in the nearest-neighbor pattern, and all devices are used for the
same functionality. Fig. 7.2 (a) represents a mesh-topology MFS. A Crossbar
MFS model is depicted on figure 7.2 (b). On this style, FPGAs are separated
into logic and routing chips. Crossbar distributions are normally designed for
some specific problems, but they usually waste logic and routing resources.
For these reasons we have focused on mesh topologies.

Fig. 7.1. General structure of an island-based FPGA

MFSs design flow has three major tasks: partitioning, placement and rout-
ing (see figure 7.3). Frequently two of these tasks are tackled together, because
when accomplishing the partitioning, the placement must be considered or
vice versa in order to obtain the optimal implementation. In this chapter a
methodology, based on evolutionary computation, for the automation of the

7 Evolutionary Multi-FPGAs System Synthesis 153

(a) crossbar (b) topologies

Fig. 7.2. Multi-FPGA Mesh

whole design flow is explained. There are two separated steps: First, the par-
titions of the circuit are obtained. During the first stage of the design flow, we
also assign a partition (portion of the circuit) to each FPGA. The second step
is devoted to place and route the circuit using the FPGA resources. Two dif-
ferent evolutionary algorithms are used: a hybrid compact genetic algorithm
(HcGA) for the partitioning step and the genetic programming (GP) tech-
nique for the routing and placement step. The experimental results have been
obtained in the basis of a real board made up of 8 FPGA (see later 7.11).

Initial Circuit

I_,
MFPGA Partitioning and Placement I I Hybrid compact GA

I CLBs Placement and Routing
Genetic Programming 1

Fig. 7.3. MFS Design Flow

154 F. Ferndndez de Veja, J.I. Hidalgo, J.M. Shchez, and J. Lanchares

The rest of the chapter is organized as follows: section 7.2 shows an
overview about Evolutionary Algorithms, the Compact Genetic Algorithm
and Genetic Programming. Section 7.3 describes the partitioning method-
ology, while section 7.4 shows how the design process within the FPGAs -
including the placement and routing steps- has been performed. Section 7.5
contains the experimental results and finally we offer our conclusions in section
7.6.

7.2 Evolutionary Algorithms

Several decades ago, some researchers begun to explore how some ideas taken
from nature could be adapted and harnessed for solving well-know diffi-
cult problems. Among the concepts borrowed from nature, natural evolution
demonstrated from the beginning how simple but also brittle ideas can be
helpful for devising new ways of solving difficult problems. Among the tech-
niques that arose under the umbrella of natural evolution, Genetic Algorithms
(GAS) [9], Evolutionary Programming [lo] and Evolution Strategies [ll, 121
have pioneered, matured and demonstrated its usefulness. More recently, John
Koza [13] presented Genetic Programming (GP) a new technique that aims
at automatically developing computer programs. Koza employed Lisp expres-
sions for evolving programs, and this has favored the use of tree-like data
structures in GP, although some researchers have sometimes employed differ-
ent alternatives. Basically, any EA -including GP- can be described by means
of algorithm 7.1.

Algorithm 7.1 Evolutionary algorithm
1. Initialize the population.
2. Evaluate all of the individuals in the population and assign a fitness value to

each one.
3. Select individuals in the population using the selection algorithm.
4. Apply genetic operations to the selected individuals.
5. Insert the result of the genetic operations into the new population.
6. If the population is not fully populated go to step 3.
7. If the termination criterion is reached, then present the best individual as the

output. Otherwise, replace the existing population with the new population and
go to step 3.

We notice from the algorithm that an evaluation process is performed
in step 2. Therfore, for evaluating individuals, a fitness function has to be
implemented. This function is in charge of computing a fitness value for the
individual under evaluation. The fitness value is proportional to the quality of
the individual. The selection operation usually takes into account the fitness
value of individuals, and select with higher probabilities those with larger

7 Evolutionary Multi-FPGAs System Synthesis 155

fitness values. Finally, we must point out that crossover and mutation are
the genetic operations applied to the individuals selected. Crossover operator
takes a couple of individuals, that act like parents, and exchange some of their
information, thus creating a couple of new descendant individuals, that share
information from both parents. On the other hand, the mutation operation,
randomly mutate some of the information contained in the individual to which
the operation is applied. Depending on the kind of EA employed, different data
structures for encoding candidate solutions -individuals- might be employed.
Typically, individuals are encoded by means of bit or integer strings when
using GAS, while tree structures are employed for GP.

7.2.1 The Compact Genetic Algorithms

In [14] a compact Genetic Algorithm (cGA) has been proposed. It does not
manage a population of solutions but only mimics its existence and it simulates
the order-one behavior of a simple GA with uniform crossover. The cGAs'
authors do not propose it as an alternative algorithm but it can be used to
quickly estimate the "difficulty" of a problem. A problem is easy if it can
be solved with a cGA exploiting a low selection rate. The more the selection
rate must be increased to solve the problem, the more it has to be considered
difficult.

The idea on which the cGA is based was primarily inspired by the ran-
dom walk model, proposed to estimate GA convergence on a class of prob-
lems in which there is no interaction among the building blocks constitut-
ing the solution [15]. Other concepts that inspired the cGA were Bit-based
Simulated Crossover (BC) [16] and Population-Based Incremental Learning
(PBIL) [17]. The cGA represents the population by means of a vector of
values pi E [O,l],Qi = 1,. . . ,1, where 1 is the number of alleles needed to
represent the solutions. Each value pi measures the proportion of individ-
uals in the simulated population which have a zero (one) in the ith locus of
their representation. By treating these values as probabilities, new individuals
can be generated and, based on their fitness, the probability vector updated
accordingly in order to favour the generation of better individuals.

The initial probabilities values, pi, are set to 0.5 to represent a randomly
generated population in which the value for each allele has equal probabil-
ity. At each iteration, the CGA generates two individuals on the basis of the
current probability vector and compares their fitness. Lets W be the repre-
sentation of the individual with better fitness, and L the one of the individual
whose fitness was worse. The competitor representations are used to update
the probability vector at step k + 1 in the following way:

156 F. Fernindez de Veja, J.I. Hidalgo, J.M. Sinchez, and J. Lanchares

where n is the dimension of the population simulated, and Wi (Li) is the
value of the ith allele of W (L). The cGA ends when the values of the proba-
bility vector are all equal to 0 or 1. At this point the vector p itself represents
the final solution. Note that the cGA evaluates an individual by considering
its whole chromosome. At each iteration, some alleles of solution W might not
belong to the optimal solution of the problem, and the correspondent proba-
bility values wrongly modified. For example, consider the OneMax problem,
in which the related fitness function computes the number of bits set to 1 of
a binary string. Lets a = 10110 and b = 01010 be the two competitors. String
a clearly is the individual with better fitness. The first and third element of
the probability vector are thus increased by l l n , the fourth and fifth elements
remain unchanged, while the second element is incorrectly decreased by l l n .

Algorithm 7.2 Pseudo-code of the CGA for the TSP.
Program TSP-CGA
begingroup

Initialize (P,method) ;
F-best := INT-MAX;
count := 0;
repeat

S [I] : = Generate (PI ;
F [I] : = Tour-Lenght (S [I]) ;
idx-best := 1;
for k := 2 to s do

S [k] : = Generate (PI ;
F [k] : = Tour-Lenght (S [k]) ;
if (F[k] < F[idx-best]) then idx-best := k;

end for
for k := I to s do

if (F [idx-best] < F [k]) then Update (P, S [idx-best] , S [ill ;
end for
if (F[idx-best] < F-best) then

count := 0;
F-best : = F [idx-best] ;
S-best : = S [idx-best] ;

else
Update (P , S-best , S [idx-best]) ;
count := count + I;

end if
until (Convergence(P) OR count > CONV-LIMIT)
Output (S-best ,F-best) ;

end

In order to represent a given population of n individuals, the cGA updates
the probability vector by a constant value equal to l l n . Only loga n bits are

7 Evolutionary Multi-FPGAs System Synthesis 157

thus needed to store the finite set of values for each pi. The CGA therefore
requires loga n * 1 bits with respect to the n * 1 bits needed by a classic GA.
Larger population dimension can be exploited without significantly increasing
memory requirements, but only slowing CGA convergence. This peculiarity
makes the use of CGAs very attractive to solve problems for which the huge
memory requirements of GAS is a constraint.

To solve problems higher than order-one GAS with both higher selection
rates and larger population sizes have to be exploited [18]. The cGA selection
pressure can be increased by modifying the algorithm in the following way: (1)
generate at each iteration s individuals from the probability vector instead of
two; (2) choose among the s individuals the one with best fitness and select as
W its representation; (3) compare W with the other s - 1 representations and
update the probability vector accordingly. The other parts of the algorithm
remain unchanged. Such an increase on the selection pressure helps the cGA
to converge to better solutions since it increases the survival probability of
higher order building blocks [14]. Algorithm 7.2 shows a pseudocode of the
cGA for the TSP problem.

7.2.2 Genetic Programming

One of the difference between GP and other EAs is that fitness values are to be
computed by evaluating computer programs. If we consider that individuals
-programs- are encoded by means of tree like structures (see figure 7.4)) each
program is made up of internal nodes -functions- and terminals -the leaves of
the tree. Which functions and terminals are of interest for the problem that
is to be solved is decided by the researcher, and usually varies largely from
a problem to another. For instance, if we employ GP for solving a symbolic
regression problem, we may choose arithmetic functions for the function set,
while if we apply GP for programming a robot, some primitives that allows
to move the robot along several directions could make up the function set.
The terminal set are usually made up of the constant values and parame-
ters employed by the functions included in the terminal set. Therefore, the
first concern for GP practitioners is to appropriately define the function and
terminal sets. This means that even when the solution for the problem to be
addressed is not known, one must be sure that the solution can be found using
the functions and terminals selected.

Genetic operators applied in GP are similar to those employed with any
other Evolutionary Algorithm. One of the main differences is due to the kind
of data structures employed. When crossover is applied to a couple of individ-
uals, two new descendants are obtained by exchanging some randomly chosen
subtrees from each of the parents (see figure 7.5). On the other hand, mutation
operator generates a new individual by substituting a randomly chosen sub-
tree from the parent, by a new one that is also randomly generated (see figure
7.6). Although other possibilities are available, the previously described ones
are the simplest and most widely employed versions of the genetic operators.

158 F. Ferndndez de Veja, J.I. Hidalgo, J.M. Sdnchez, and J. Lanchares

Fig. 7.4. Individuals are encoded by means of trees in Genetic Programming.

Fig. 7.5. Crossover operation.

Fig. 7.6. Mutation operation.

7 Evolutionary Multi-FPGAs System Synthesis 159

Once all of the above components are integrated within the GP algorithm
-that is basically the same described in algorithm 7.1-, it can be applied to
any optimization problem. In section 7.4 we show how GP has been applied
for solving the problem of Placement and routing circuits on FPGAs. A wider
description of Genetic Programming can be found in [19].

7.3 MFS partitioning and FPGA assignment

In this section we present the first stage of the design flow. We describe dif-
ferent techniques and algorithms presented in several papers. Most of the
previous approximations do not preserve the structure of the circuit or use a
difficult encoding. For example Laszewski and M114hlenbein implemented a
parallel GA which solves the graph partitioning problem with an easy encod-
ing, but the solutions do not preserve the structure of the circuit, and that is
a key issue if we want to minimize the delays of the partitioned circuitn [20].
Alpert uses a GA for improving another partitioning algorithm with good
results for bi-partitions [21] . An exception, concerning the structure, is the
approximation made by Hulin [22]. The approximation used here solves these
problems. It is adaptable and can be modified for using in other graph parti-
tioning problems with few changes, it is parallelizable (the method is intrinsi-
cally parallel, because it uses a genetic algorithm as a tool for optimization),
and in addition, the evaluation of the fitness function can be parallelized very
easily. The algorithm also preserves the structure of the circuit and it detects
those parts of the graph which are independent.

7.3.1 Methodology

partitioning deals with the problem of dividing a given circuit into several
parts, called partitions, in order to be implemented on a MFS. The partitions
are obtained and each partition is assigned to a different FPGA within the
board. We use a &FPGA Mesh topology board, so we must bear in mind sev-
eral constraints related to the board. Some, and usually most important, of
these constraints are the number of available 110 pins on each FPGA and logic
capacity. FPGA devices have a much reduced number of pins when compared
with their logic capacity. In addition we must connect parts of the circuit that
are placed on non-adjacent FPGAs, and for this task we have to use some of
the available pins. Partitioning appears in a lot of design automation design
problems, and most of the research related to MFS partitioning were adapted
from other VLSI areas [23]. For this specific board we have developed a new
methodology. We apply the graph theory to describe a given circuit, and then
a compact genetic algorithm (cGA) with a local search improvement is ap-
plied with a problem-specific encoding. This algorithm not only preserves the
original structure of the circuit but also evaluates the 110-pins consumption
due to direct and indirect connections between FPGAs. The MFS placement

160 F. Ferndndez de Veja, J.I. Hidalgo, J.M. Sdnchez, and J. Lanchares

or FPGA assignment is done by means of a fuzzy technique. We have used
the partitioning93 benchmarks [24], described in the Xilinx Netlist Format
(XNF), a netlist description language [25].

7.3.2 Circuit Description

Some authors use hyper-graphs as the way of representing a circuit, but there
are also some approximations, which use graphs [26]. We have thus, employed
an undirected graph representation to describe the circuit. This representation
permits an efficient encoding of the compact genetic algorithm and a direct
encoding of the solutions using this code.

Hidalgo et al. [27] describe a method that uses the edges of a graph to rep-
resent k-way partitioning solutions. They transform the netlist circuit descrip-
tion into a graph, and then operate with its spanning tree. A spanning tree
of a graph is a tree, which has been obtained selecting edges from this graph.
One of the properties of a spanning tree is that if n edges are suppressed, n - 1
isolated trees are obtained. As we are treating a k-way partitioning problem,
k - 1 edges of the spanning tree are selected and eliminated in order to ob-
tain k partitions of the original circuit. The partitions are represented by the
deleted edges and a hybrid compact genetic algorithm (HcGA) works under
this representation to obtain the best partitioning accordingly to the board
constraints previously explained. Based on the previous statement, a specific
algorithm to address the partitioning and placement problems in MFS sys-
tems can be used. The algorithm, which is also adaptable to different boards
and devices, preserves the main structure of the circuit and, by means of a
fuzzy technique, evaluates the I 0 pins consumption due to not only direct,
but also indirect connections between FPGAs within the MFS (an 8-FPGA
board).

SYM INS1 CLB
P I N A, I

P I N K t
P I N X, 0 K

Fig. 7.7. An example of a CLB described in (a)block, (b)XNF,and (c)graph formats.

7 Evolutionary Multi-FPGAs System Synthesis 161

Fig. 7.8. An example of the partitioning process for 4 FPGAs.

The main objective is to solve the circuit partitioning problem and to
obtain a set of portions or partitions of the original circuit suitable for the
implementation over a single FPGA. The partitioning process is targeted to
a device board which has their devices connected in a 4-way mesh topology
[2]. So, the method works as follows. First a graph representing the circuit
netlist description is obtained. Fig. 7.7 shows the equivalence between an XNF
netlist description of a Configurable Logic Block and a graph. After that a
spanning tree of that graph is randomly selected, from this tree we select
k - 1 edges and we eliminate them in order to obtain a k - way partition.
The partitions are represented by the deleted edges. In Fig. 7.8 we can see
an example of the partitioning process. Starting from the circuit graph (a),
we get its spanning tree (b) using the Kruskal algorithm [26]. From it, we
select the necessary edges and finally we obtain the partitions (c). The figure
represents an example for four FPGA devices, so we select only 3 edges of the
tree. Once the partitions have been obtained the graph representation can
be transformed into a XNF file for each partition and then these files, with
the necessary additional information, can be implemented on each FPGA (see
Fig. 7.9).

162 F. Fernhdez de Veja, J.I. Hidalgo, J.M. Shchez, and J. Lanchares

Fig. 7.9. An example of a post-partitioning implementation using 4 FPGAs.

It is important to note that when accomplishing the transformation we
should work with the whole graph instead with its spanning tree. This is be-
cause the information related to connections is included in the graph and the
spanning tree only works with some of them. It is necessary to determine the
optimum distribution of the CLBs on the different available FPGAs. An opti-
mum distribution has a minimal cost and guarantees the internal routability
of each FPGA.

1 1 1 1 1 1 1 1
4 FPGA 2 I
I A.B.C.I .I .N.0

I S.T.U

I
I

I I

1 1 1 1 1 1 1 1
I FPGA 1 I

I I D.E.F.K,L

I I
I u

7.3.3 Genetic Representation

I H,M I I G.P.Q,R I
I I I I
I I I I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C .D

C.H

K . 0

K.U

The evaluation process tell us the goodness of the solutions by means of
a fitness function. The main task of the HcGA is to solve the partitioning
while attending some board requirements related to I 0 pins and logic blocks
(called CLBs on Xilinx's devices). The fitness function guides the search of
the algorithm, so it must minimize the number of cutting edges (that is the
connections between FPGAS of the MFS) and in addition, it must distribute
the blocks uniformly among the FPGAs. So we have a multi-objective genetic
algorithm problem. This problem is well known and a number of non-genetic
and genetic algorithms have been implemented for its resolution [28] [29]. One
of the techniques commonly used is the use of added functions which include
weighted sum methods, where the user assigns a weight to each objective
and the total fitness is the sum of all weighted fitness values. Nowadays a
lot of multi-objective techniques are available for the designer to adapt those
partitioning problems.

7 Evolutionary Multi-FPGAs System Synthesis 163

In order to design a cGA for Multi-FPGA Partitioning we adopted the
edge representation previously commented and we consider the frequencies of
the edges occurring in the simulated population. A vector V of dimension
equal to the number of nodes minus one was used to store these frequencies.
Each element vi of V represents the proportion of individuals whose partition
use the edge ei. The vector elements vi were initialized to 0.5 to represent
a randomly generated population in which each edge has equal probability
to belong to a solution. In Algorithm 7.3 the pseudo code of a cGA to solve
Multi-FPGA partitioning is shown.

Algorithm 7.3 Pseudo-code of the cGA for Multi-FPGA Partitioning.
Program Multi-FPGA-cGA
begin
Initialize(V);
F-best := INT-MAX;
count := 0;
repeat

S [I] : = Generate (V) ;
F [I] : = Partition(S [I1) ;
idx-best := I;
fork := 2 to s do

S [k] : = Generate (V) ;
F[k] := Partition@ [kl) ;
if (FCkl < F[idx-best]) then idx-best := k;

end for
for k := 1 to s do

if (F [idx-best] < F [k]) then Update (V, S [idx-best] , S [i]) ;
end for
if (F [idx-best] < F-best) then

count := 0;
F-best : = F [idx-best] ;
S-best : = S [idx-best] ;

else
Update(V,S-best , S [idx-best]) ;
count := count + I;

end if
until (Convergence(V) OR count > CONV-LIMIT)
Output(S-best,F-best);

end

After the initialization phase an individual is generated and its fitness
value is computed. Then, according to the selection pressure adopted s - 1 in-
dividuals are generated, evaluated and the best individual is carried out. The
last is used to update the probability vector V according to Equation 7.1.
Moreover, the best individual generated in the current iteration (S[idx-best])

164 F. FernBndez de Veja, J.I. Hidalgo, J.M. SBnchez, and J. Lanchares

is compared with the best individual found until now (S-best) and V is up-
dated accordingly. The cGA proposed in [14] ends when the values of the
probability vector are all equal to 0 or 1. Since in our tests such a condition
was rarely achieved we introduced a supplementary end condition which limits
the maximum number of generations occurring without an improvement of the
best solution achieved (see algorithm 7.3). Reached such a limit the execution
is terminated and the best individual found is returned as final solution.

The cGA (and also the HcGA) uses the encoding presented in section 7.3.2
which directly represents solutions to the partitioning problem. As we have
said, the code is based on the edges of a spanning tree. We have seen above
how the partition is obtained by the elimination of some edges. A number
is assigned to every edge of the tree. Consequently, for a k-way partitioning
problem a chromosome will have k-1 genes, and the value of these genes can
be any of the order values of the edges. For example, chromosome (3 14 26
32 56 74 89) for a 8-way partitioning, represents a solution obtained after the
suppression of edge numbers 3, 14, 26, 32, 56, 74, and 89 from a spanning
tree. So the alphabet of the algorithm is: 0 = (0 , l . . . , n - 1) where n is the
number of vertexes of the target graph (circuit), because the spanning tree
has n - 1 edges.

7.3.4 Hybrid Compact Genetic Algorithm

A Hybrid cGA (HcGA) uses non-evolutionary algorithms for local search,
that is, to improve good solutions found by the cGA. When designing a cGA
for MFS partitioning, a vector (V), with the same dimension as the num-
ber of nodes minus one, stores the frequencies of the edges occurring in the
simulated population. Each element vi of V represents the proportion of in-
dividuals whose partition use the edge ei. Following the original cGA, the
vector elements vi were initialised to 0.5 to represent a randomly generated
population in which each edge has equal probability to belong to a solution
[14]. Sometimes it is necessary to increase the selection pressure rate Ps, (the
number of individuals generated on each iteration) to reach to good results
with a Compact Genetic Algorithm. A value for Ps near to 4 has shown to
be a good value for MFS partitioning. It is not to be recommended a large
increasing of this value, because the computation time will grow drastically.
Additionally, for some problems we need a complement to cGA in order to
solve them properly. We can combine heuristics techniques with local search
algorithms to obtain this additional tool called hybrid algorithms. We have
implemented a cGA with local search.

In [30] a compact genetic algorithm for MFSs partitioning was presented,
and in [31] a Hybrid cGA was explained. Authors combine a cGA with the Lin-
Kernighan (LK) local search algorithm, to solve Traveling Salesman Problems
(see Algorithm 7.2). The cGA part explores the most interesting areas of
the search space and LK task is the fine-tuning of those solutions obtained
by cGA. Following this structure, but changing the local search method, we

7 Evolutionary Multi-FPGAs System Synthesis 165

can implement a hybrid cGA for MFS partitioning. Ideally, a local search
algorithm must try to perform the search process as exhaustively as possible.
Unfortunately, in our problem this also implies an unacceptable amount of
computation. Therefore, we have employed a local search heuristic each certain
number (n) of iterations and we need to study the value of n to keep the
algorithm search in good working order. After empirically studying the local
search frequency, we have obtained that n must be assigned a value between
20 and 60, with an optimal value (that depends on the circuit benchmark)
near to 50. So for our experiments we fixed the local search frequency n to
50 iterations, i.e. we develop a local search process every 50 iterations of the
cGA.

Now it is necessary to define a new concept, neighbouring. We have men-
tioned that a chromosome has k - 1 genes for a k-way partitioning, and the
value of these genes are the edges that are removed from the spanning tree
representing the circuit when looking for a solution.

Definition.

solution A is a neighbour solution of B (and B is a neighbour solution of A)
if the difference between their chromosomes is just one gene.

Our local search heuristic explores only one neighbour solution for each
gene, that is k-1 neighbouring solutions of the best solution every n iterations.
The local search process works as Algortihm 7.4 explain [32].

Although only a very small part of the solution neighbourhood space is
explored, the performance of the algorithm improves significantly (in terms of
quality of solutions) without degrading drastically its total computation time.
In order to clarify the explanation about the proposed local search method we
can see an example. Let us suppose a graph with 12 nodes and its spanning
tree, for a 5-way partitioning problem (i.e. we want to divide the circuit into
five parts). As we have explained, we will use individuals with 4 genes. Let us
also suppose a local search frequency (n) of 50 and that after 50 iterations we
have reached to a best solution represented by:

The circuit graph has 12 nodes, so its spanning tree is formed by 11 edges.
The whole set of possible edges to obtain a partitioning solution is called E:

In order to generate TS1 we need to know the available edges ALS for random
selection, as we have said, we eliminate the edges within BS from E to obtain
ALS:

ALS = {0,1,2,5,8,9,10) (7.4)

166 F. Ferndndez de Veja, J.I. Hidalgo, J.M. Shchez, and J. Lanchares

Algorithm 7.4 Local search algorithm for MFS ~artitionine: HcGA.
- -

1. Every n iterations, we obtain the best solution up to that time (BS).To obtain
BS:
a) first we explore the compact GA probability vector and select the k-1 most

used genes (edges) to form MBS (vector best individual).
b) The best individual generated up to now (GBS) (similar to elitism) is also

stored.
c) The best individual between MBS and GBS (i.e. which of them has the

best fitness value) will be BS.
2. the first random neighbour solution (TSI) to BS is generated substituting the

first gene (edge) of the chromosome by a random one, not present in BS.
3. Calculate the fitness value of BS (FVBS) and the fitness value of TSI (FVTSI)
4. Compare If FVTSl is better than FVBS, if so TS1 is dropped to BS and the

initial BS is eliminated, otherwise TS1 is eliminated
5 . Repeat the same process using the new BS and with the second gene, to generate

TS2
6. If the fitness value of TS2 (FVTS2) is better than the present FVBS then TS2

will be our new BS or, if FVTS2 is worst than FVBS, there will be no change
in BS.

7. Repeat last step for the rest of the genes until1 the end of the chromosome (that
is, k-1 times for a k-way partitioning).

Now we randomly select an edge (suppose 0) to build TSlsubstituting it by
the first gene in BS:

T S l = (0,4,6,7) (7.5)

The third step is the evaluation of TS1 (suppose FVTSl = 12) and
comparing (suppose a minimization problem) with FVBS (suppose F V B S =

25). As FVTSl is better than FVBS, TS1 will be our new BS and the original
BS is eliminated. Those changes also affect to ALS because our new ALS is:

ALS = {1,2,3,5,8,9,10) (7.6)

Table 7.1 represents the rest of the local search process for this example.

7.4 Placement and Routing on FPGAs

Once the first step has been carried out, we have several partitions. Each
partition - that is in charge of a small circuit - have to be implemented in-
dependently in a different FPGA. Finally, all the FPGAs will be connected
together, thus obtaining the global circuit. Even when much research has
been done on the automatic generation of digital and analogue circuits, we
will review now some proposals that are related with the idea of applying
evolutionary algorithms to the problem we are addressing, and with the way
circuits are encoded.

7 Evolutionary Multi-FPGAs System Synthesis 167

Table 7.1. Local Search example

i ALS BS FV Random gene TS FV New Bs

1 0,1,2,5,8,9,10 3,4,6,7 25 0 0,4,6,7 12 0,4,6,7
2 1,2,3,5,8,9,10 0,4,6,7 12 1 0,1,6,7 37 0,1,6,7
3 1,2,3,5,8,9,10 0,4,6,7 12 9 0,4,9,7 10 0,4,9,7
4 1,2,3,5,6,8,10 094,977 10 8 0,4,8,9 11 0,4,9,7

Pre-Local Search Best Solution: 3,4,6,7
Post-Local Search Best Solution: 0,4,9,7

A given circuit, with wires, gates and connections, can be considered as
a graph. Several papers have dealt with the problem of encoding graphs,
i.e. circuits, when working with GA and GP [33]. Sometimes new techniques
have been developed to do so. For instance, Cartesian Genetic Programming
[34] is a variation of GP which was developed for representing graphs, and
shows some similarities to other graph based forms of genetic programming.
Miller et al's aim is to find complete circuits capable of implementing a given
boolean function. Nevertheless, we are more interested in physical layout. Our
optimisation problem begins with a given circuit description, and the goal is
to find out how to place components and wires in FPGAs. Meanwhile we have
also developed a new methodology for representing circuits by means of GP
with individuals represented as trees.

Other researchers have also applied Evolutionary Algorithm for evolving
analogue circuits [33]. Even Koza have employed Genetic Programming for
designing and discovering analogue circuits [35], which have eventually been
patented. Thompson's research scope is the physical design and implemen-
tation of circuits in FPGAs [36]. However, all of them work with analogue
circuits, while we are addressing digital ones. Another difference is the kind
of evolutionary algorithm employed for solving each problem. Thompson uses
GAS while we are using GP (Koza uses GP but not for solving the kind of
problem we address here).

There are also other researchers that have addressed problems employing
reconfigurable hardware and Genetic Programming. For instance, in [37] au-
thors describe how trees can be implemented and evaluated on FPGAs. But
our aim is not to implement a Genetic Programming tool on an FPGA but
using GP for physically placing and routing circuits. Therefore, in this second
step, we take each of the partitions as the input of the problem, and the goal
is to place components and establish connections among them in a different
FPGA. Our proposal now is to use Genetic Programming (GP) for solving
this task. The main reason behind this choice is the similarity between data
structures that GP uses -trees- and the way of describing circuits -graphs.
A tree is more convenient than a fix-sized string for describing graphs of any

168 F. FernAndez de Veja, J.I. Hidalgo, J.M. SBnchez, and J. Lanchares

length. In the following sections we describe how graphs are encoded by means
of trees.

7.4.1 Circuits encoding using trees

As described in section 7.3, the output for the partitioning algorithm is a set
of partitions, and a description of the way they must be connected. Each of the
partition includes a circuit that must be implemented in a separate FPGA.
Therefore, the main goal for this step is to implement a partition (circuit)
into an FPGA. Each of the circuit component has to be implemented into
a CLB, and after that previous step, all the CLBs have to be connected
according to the circuit's topology. Given that we use tree-based GP in this
stage of the methodology, we need a mapping between a graph -circuit- and
a tree. Circuits have to be encoded as trees, and any of the trees that GP
will generate, should also have an equivalent circuit; the fitness function will
later decide if the circuit is correct or not, and its resemblance degree with
the correct circuit.

Considering that any of the components of a circuit is simple enough to be
implemented employing a CLB from the FPGA, we might describe a circuit
employing black boxes, such as is depicted by means of an example in figure
7.10. This means that we only have to connect CLBs from the FPG A according
to the interconnection model that a given circuit implements, and then we can
configure each of the CLB with the function that each component performs
in the circuit. We want to perform this task by using GP. This means that
circuits must be described by means of trees -individuals in GP. To do it, we
can firstly label each component from the circuit with a number, and then
assign components' labels to the ends of wires connected to them (see figure
7.10).

Fig. 7.10. Representing a circuit with black boxes.

We may now describe all the wires by means of a tree by connecting each
of the wires as a branch of the tree and keeping them all together in the same
tree. By labeling both extremes of branches, we will have all the information
required to reconstructing the circuits. Any given tree, randomly generated,

7 Evolutionary Multi-FPGAs System Synthesis 169

will always correspond to a particular graph, regardless of the usefulness of
the associated circuit (see figure 7.8). In this proposal, each node from the tree
is representing a connection, and each branch is representing a wire. The next
stage is to encode the path of wires into an FPGA. Each branch of the tree
will encode a wire from the circuit: internal nodes specify switch connections
that are traversed by the wire, while the first and last nodes of the branch are
employed to connect the wire to an adjacent CLB -by specifying which of the
CLB is employed and to which pin is the wire connected.

Each of the branches will include as many internal nodes as required for
describing all of the switch connections required for the wire (see figure 7.8).
Sometimes, branches will not include any internal nodes. This may happen
when an input/output connection is directly attached to any of the CLB from
the surrounding area of the FPGA. Only two nodes are required in the branch:
the first one specify which IOB is employed, while the second one select the
CLB to which it is connected and the wire employed.

Each internal node requires some extra information: if the node corre-
sponds to a CLB we need to know information about the position of the CLB
in the FPGA, the number of pin to which one of the ends of the wire is con-
nected, and which of the wires of the wire block we are using; if the node
represents a switch connection, we need information about that connection
(figures 7.11 and 7.12 graphically depicts how a tree describes a circuit, and
the way each branch maps a connection).

It may well happen that when placing a wire into an FPGA, some of
the required connections specified in the branch can not be made, because,
for instance, a switch block connection has been previously used for routing
another wire segment. In this case the circuit is not valid, in the sense that
not all the connections can be placed into a physical circuit, and the function
in charge of analyzing the tree will apply a high penalty to that individual
from the population.

In order for the whole circuit to be represented by means of a tree, we
will use a binary tree, whose left most branch will correspond to one of its
connections, and the left branch will consist of another subtree constructed
recursively in the same way (left-branch is a connection and right-branch a
subtree). The last and deepest right branch will be the last circuit connection.
Given that all internal nodes are binary ones we can use only a kind of function
with two descendants. In the following subsection we describe the GP sets
required.

7.4.2 GP sets

When solving a problem by means of GP one of the first things to do once
the problem has been analyzed is to build both the function and terminal
sets. The function set for our problem contains only one element: F={SW),
Similarly, the terminal set contains only one element T={CLB). But SW and
CLB may be interpreted differently depending on the position of the node

170 F. Fernrindez de Veja, J.I. Hidalgo, J.M. Srinchez, and J. Lanchares

Fig. 7.11. Making connections in the FPGA according to nodes

within a tree. Sometimes a terminal node corresponds to an IOB connection,
while sometimes it corresponds to a CLB connection in the FPGA (see figure
7.8. Similarly, an internal node - SW node- sometimes corresponds to a CLB
connection (the first node in the branch), while others affects switch connec-
tions in the FPGA (internal node in a branch, see figure 7.9). Each of the
nodes in the tree will thus contain different information:

0 If we are dealing with a terminal node, it will include information about
the position of CLBs, the number of pins selected, the number of wires to
which it is connected, and the direction we are taking when placing the
wire.

0 If we are instead in a function node, it will have information about the
direction we are taking. This information enables us to establish the switch
connection, or in the case of the first node of the branch, the number of
the pin where the connection ends.

We can notice in figure 7.8, that wires with IOBs at one of their ends are
shorter -only needs a couple of nodes- than those that have CLBs at both

7 Evolutionary Multi-FPGAs System Synthesis 171

Fig. 7.12. Encoding circuits by means of binary trees. Each branch of the tree
describes a connection from the circuit. Dotted lines indicates a number of internal
nodes in the branch

ends -they require internal nodes for expressing switch connections-. Wires
expressed in the latest position of trees have less space to grow, and so we
decided to place IOB wires in that position, thus leaving the first parts of the
trees for long wires joining CLBs.

7.4.3 Evaluating Individuals

In order for GP to work, individuals from the population have to be evaluated
and reproduced employing the GP algorithm. For evaluating an individual we
must convert the genotype (tree structure) to the phenotype (circuit in the
FPGA), and then compare it to the circuit provided by the partitioning algo-
rithm. We developed an FPGA simulator for this task. This software allows us
to simulate any circuit and checks its resemblance to other circuit. Therefore,
this software tool is in charge of taking an individual from the population and
evaluating every branch from the tree, in a sequential way, establishing the
connections that each branch specifies. Circuits are thus mapped by visiting
each of the useful nodes of the trees and making connections on the virtual
FPGA, thus obtaining phenotype. Each time a connection is made, the po-
sition into the FPGA must be brought up to date, in order to be capable of
making new connections when evaluating the remaining nodes. If we evaluate
each branch, beginning with the terminal node, thus establishing the first end
of the wire, we could continue evaluating nodes of the branch from the bottom
to the top. Nevertheless, we must be aware that there are several terminals

172 F. Fernhdez de Veja, J.I. Hidalgo, J.M. Shnchez, and J. Lanchares

related to each branch, because each function node has two different descen-
dants. We must decide which of the terminals will be taken as the beginning
of the wire, and then drive the evaluation to the top of the branch. We have
decided to use the terminal that is reached when going down through the
branch using always the left descendant, and evaluate all the nodes traversed
from the root of the branch to that terminal (see figure 7.13).

Fig. 7.13. Evaluating a branch of the tree-corresponding to a connection of the
circuit. Evaluation order is specified with numbers labelling nodes.

In one sense there is a waste of resources when having so many unused
nodes. Nevertheless they represent new possibilities that can show up after a
crossover operation (in nature, there always exist recessive genes, which from
time to time appear in descendants). These nodes are hidden, in the sense
that they do not take part in the construction of the circuit and may appear
in new individuals after some generations. If they are useful in solving the
problem, they will remain in descendants in the form of nodes that express
connections. The fitness function is computed as the difference between the
circuit provided and the circuit described by the individual.

7.5 Experimental Results

7.5.1 partitioning and Placement onto the FPGAs

The algorithm has been implemented in C and run on a Pentium 3, 866 MHz
with Linux Red Hat 7.3. We have used the MCNC partitioning benchmarks in
XNF format. We have supposed that each block of the circuits uses one CLB.
We use the Xilinx's 4010 FPGA. 7.2 contains the experimental results. It has
five columns which express: the name of the test circuit (Circuit), its number of
CLBs (CLB), the number of connections between CLBs (Edges), the number
of CLBs used on each FPGA (Distribution) and the CPU time in seconds
necessary to obtain a solution for 100 generations of a GA with a population
of 501 individuals (T(sec)). There are some unbalanced distributions, because

7 Evolutionary Multi-FPGAs System Synthesis 173

we need to use some resources to pass the nets from one device to another.
In addition our fitness function has been developed to achieve two objectives,
so that the GA works. To cap it all, the algorithm succeeds in solving the
partitioning problem with board constraints.

Fig. 7.14 shows a picture of the board. This card consists of 8 FPGAs
of the 4010 family from Xilinx [38] although, these can be replaced by other
devices of greater capacity and benefits, just adapting the connections. The
FPGAs are connected according to a mesh topology, in other words, they
directly connect their next neighbours. The figure shows, in addition to the
FPGAs, the electrical power supply and lines for programming them (DIN,
DONE, CCLK, INIT, PROGRAM), which allows the configuration by means
of an XChequer cable from Xilinx. The cable transmits the configuration data
to all FPGAs within the board, the transmission frequency is 921 kHz. The
speed depends on the used computer, in our case with a PC, a Baud Rate of
115200 can be reached. The power supply used is an ATX computer source.
This allows us to have the voltages necessary to feed not only the FPGAS,
but also the programming cables such as the XChequer. The MFS board also
incorporates some jumper pins, for programming and isolation of a group of
FPGA within the board. There are also six connectors for expansion of the
board using other similar card.

Fig. 7.14. Multi-FPGA board designed for testing the methodology

174 F. Ferndndez de Veja, J.I. Hidalgo, J.M. Sdnchez, and J. Lanchares

Table 7.2. Experimental Results for Partitioning and Placement for the 8 -Xilinx
4010 Board

Circuit CLB Edges Distribution T(sec)

7.5.2 Inter-FPGA Placement and Routing

Several experiments with different sizes and complexities have been performed
for testing the placement and routing process . Fig. 7.15 graphically depicts
one of the circuits employed in the series of test of increasing complexity that
has been used for validating the methodology (a larger set of experiments and
results can be found in [39]). The main parameters employed were the fol-
lowing: Number of generations = 500, Population size: 200, Maximum depth:
30, Steady State Tournament size: 10. Crossover probability=98%, Mutation
probability=2%, Creation type: Ramp Half/Half, and elitism.

Fig. 7.15. One of the circuits employed for testing the methodology

Fig. 7.16 shows some of the solutions that were obtained with GP- for the
circuit described above. A very important fact is that each of the solutions
that GP found possesses different features, such as area of the FPGA used,
position of the input/output terminals. This means that the methodology
could easily be adapted for managing typical constraints in FPGA placement
and routing. More solutions found for this and other circuits are described in
[39] and [40]. The time required for finding the solution was of some minutes in

7 Evolutionary Multi-FPGAs System Synthesis 175

a 2Ghz Pentium processor. So, the methodology can be successfully employed
for routing circuits of larger complexity.

Fig. 7.16. Different solutions obtained by means of GP

7.6 Summary

In this chapter a methodology for circuit design using Multi-FPGA Systems
has been presented. We have used evolutionary computation for all the steps
of the process. Firstly, an Hybrid compact genetic algorithm was applied on
achieving partitioning and placement for inter-FPG A systems and, for the
Intra-FPGA tasks Genetic programming was used. This method can be ap-
plied for different boards and solves the whole design flow process.

7.7 Acknowledgments

Part of this research has been possible thanks to Ministerio de Ciencia y Tec-
nologa, research projects number TIC2002-04498-C05-01 and TIC 20021750.

References

1. S.Trimberger: A reprogrammable gate array and applications. Proceedings of
the IEEE 81 (1993) 1030-1040

2. Hauck, S.: Multi-FPGA systems. PhD thesis, University of Washington (1994)
3. Macketanz, R., Karl, W.: Jvx - a rapid prototyping system based on java and

fpgas. In Springer-Verlag, ed.: Field Programmable Logic: From FPGAs to
Computing Paradigm, Berlin (1998) 99-108

4. Hauck, S.: The roles of fpgas in re-programmable systems. Proceedings of the
IEEE 86 (1998) 615-638

176 F. FernBndez de Veja, J.I. Hidalgo, J.M. SBnchez, and J. Lanchares

5. Baxter, M.: Icarus: A dynamically reconfigurable computer architecture. In:
IEEE Symposium on FPGAs for Custom Computing Machines. (1999) 278-279

6. Heywood, M., Zincir-Heywood, A.: Register based genetic programming on fpga
computing platforms. In Spinger-Verkag, ed.: Proceedings of EuroGP 2000.
(2000) 44-59

7. HArtenstein, R., Kress, R., Reinig, H.: A reconfigurable data-driven alu for
xputers. In Press, I., ed.: IEEE Workshop on FPGAs for Custom Computing
Machines. (1994) 139-146

8. Callahan, T., Wawrzynek, J.: Instuction- level parallelism fot reconfigurable
computing. In Springer-Verlag, ed.: Field Programmable Logic: From FPGAs
to Computing Paradigm, Berlin (1998) 248-257

9. Holland, J.H.: Adpatation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI (1975)

10. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through a simula-
tion of evolution. In Maxfield, M., Callahan, A., Fogel, L.J., eds.: Biophysics and
Cybernetic Systems: Proc. of the 2nd Cybernetic Sciences Symposium, Wash-
ington, D.C., Spartan Books (1965) 131-155

11. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. frommann-holzbog, Stuttgart (1973) Ger-
man.

12. Schwefel, H.P.: Evolutionsstrategie und numerische Optimierung. PhD thesis,
Technische Universitat Berlin, Berlin (1975)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

14. G. Harik, F.L., Goldberg, D.: The compact genetic algorithm. Technical Report
97006, University of Illinois at Urbana-Champaign, Urbana, IL (1997)

15. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE-
EC 3 (1999) 287

16. Syswerda, G.: Simulated crossover in genetic algorithms. In L. D. Whitley,
editor,Fondation of Genetic Algorithms 2, pages 38-45, San Mateo, CA, Morgan
Kaufmann (1993)

17. Baluja, S.: Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical
Report CMU-CS-94-163, Carnegie Mellon University, Pittsburg, Pennsylvania
(1994)

18. Thierens, D., Goldberg, D.: Mixing in genetic algorithms. In: Proceedings of
the Fifth International Conference on Genetic Algorithms. (1993) 38-45

19. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming -
An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, dpunkt.verlag (1998)

20. Laszewski, G., Muhlenbein, H.: A parallel genetic algorithm for the k-way graph
partitioning problem. In: 1st inter. Workshop on Parallel Problem Solving from
Nature. (1990)

21. C.J. Alpert, L.W.Hagen, A.K.: A hybrid multilevel/genetic approach for circuit
partitioning. Technical report, UCLA Computer Science Department (1994)

22. Hulin, M.: Circuit partitioning with genetic algorithms using a coding scheme
to preserve the structure of a circuit. In: Lecture Notes in Computer Science,
496, Springer-Verlag (1989) 75-79

23. Alpert, C., Kahng, A.: Recent directions in netlist partitioning: A survey. Tech-
nical Report CA 90024-1596, UCLA Computer Science Department (1997)

7 Evolutionary Multi-FPGAs System Synthesis 177

24. http://vlsicad.cs.ud.edu/: (Cad benchmarking laboratory)
25. Inc, X.: XnE Xilinx netlist format. (www.xilinx.xom)
26. Harary, F.: Graph Theory. Addison-Wesley (1968)
27. J.I. Hidalgo, J . Lanchares, R.H.: Graph partitioning methods for multi-fpga

systems and reconfigurable hardware based on genetic algorithms. In: Proceed-
ings of the 1999 Genetic and Evolutionary Computation Conference Workshop
Program. (1999) 357-358

28. Parmee, I.C., Watson, A.H.: Preliminary airframe design using co-evolutionary
multi-objective genetic algorithms. In: Proceedings of the 1999 Genetic And
Evolutionary Computation Conference, Morgan Kaufmann (1999) 1657-1665

29. C. A.Coello: A comprehensive survey of evolutionary-based multiob jective opti-
mization techniques. Knowledge and Information Systems 1 (1999) 269-308

30. J.I. Hidalgo, R. Baraglia, R.P.J.L.F.T.: A parallel compact genetic algorithm
for multi-fpga partitioning. In: PDP20001, 9th Euromicro Workshop on Parallel
and Distributed Processing. (2001)

31. R. Baraglia, J.I. Hidalgo, R.P.: A hybrid heuristic for the traveling salesman
problem. IEEE Transactions on Evolutionary Computation 5 (2001) 613-622

32. Hidalgo, J.: Multi-FPGA systems partitioning and placement techniques based
on Genetic Algorithms. PhD thesis, Universidad Complutense de Madrid (2001)

33. Lohn, J.D., Colombano, S.P.: Automated analog circuit synthesis using a linear
representation. Lecture Notes in Computer Science 1478 (1998) 125+

34. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of
digital circuits-part I. Genetic Programming and Evolvable Machines 1 (2000)
7-35

35. Koza, J.R., David Andre, Bennett 111, F.H., Keane, M.: Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufman (1999)

36. Thompson, A., Layzell, P.J.: Evolution of robustness in an electronics design.
In: ICES. (2000) 218-228

37. Seok, H.S., Lee, K.J., Zhang, B.T., Lee, D.W., Sim, K.B.: Genetic programming
of process decomposition strategies for evolvable hardware. In: Proceedings of
the Second NASA / DoD Workshop on Evolvable Hardware, Palo Alto, Cal-
ifornia, Jet Propulsion Laboratory, California Institute of Technology, IEEE
Computer Society (2000) 25-34

38. Xilinx Corporation (www.xilinx.com)
39. Fernandez de Vega, F.: Distributed Genetic Programming Models with Appli-

cation to Logic Synthesis on FPGAs. PhD thesis, University of Extremadura
(2001)

40. Fernandez, F., Sanchez, J.M., Tomassini, M.: Placing and routing circuits on
FPGAs by means of parallel and distributed genetic programming. In Liu, Y.,
Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M., eds.: Evolvable Systems:
From Biology to Hardware, Proceedings of the 4th International Conference,
ICES 2001. Volume 2210 of Lecture Notes in Computer Science., Tokyo, Japan,
Springer-Verlag (2001) 204-214

Part I11

Evolvable Designs

Evolutionary Computation and Parallel
Processing Applied to the Design of Multilayer
Perceptrons

Ana Claudia M. L. Albuquerque, Jorge D. Melo, and Adriiio D. D6ria Neto

Departamento de Engenharia de Computqih e Automa@o,
Universidade Federal do Rio Grande do Norte,
Campus Universititrio s/n - 59072-970 - Natal - RN, Brazil,
(aclaudia I jdmelo I adriao)@dca.ufrn.br

Neural networks consist of very powerful tools and had their use extended
vastly due to their ability of providing great results to a broad range of ap-
plications. The combination of evolutionary computation, such as genetic al-
gorithms and parallel processing can be very powerful when applied to the
learning process of the neural network, as well as to the definition of its archi-
tecture. A lot of research has been developed combining and applying evolu-
tionary computation into the design of neural networks. It is very important
to emphasize that most of the learning algorithms developed to train neural
networks only refine their synaptic weights, not considering the design of the
networks architecture. However, it is a very hard task to define the neural
networks architecture for specific applications under given sets of constraints.
To a large extent, that could be a process of trial and error, relying mostly
on past experience with similar applications. Evolutionary algorithms, on the
other hand, offer attractive ways to search for optimal solutions in a variety of
problem domains. Due to this characteristic, the definition of architectures for
neural networks becomes a natural candidate for the application of evolution-
ary algorithms, such as genetic. Also, the learning process of neural networks
can be very slow which can put in danger the performance of countless ap-
plications. Therefore, the use of parallel processing is essential in minimizing
the time required on the training process, improving the applications perfor-
mance. Furthermore, the use of cooperation in the genetic algorithm allows
the interaction of different populations, avoiding local minima and helping
in the search of the ideal solution, accelerating the evolutionary process. Fi-
nally, individuals and evolution behavior can be exclusive on each copy of the
genetic algorithm running in each task enhancing the diversity of populations.

182 Ana Claudia Albuquerque, Jorge Melo, Adrilo D6ria Neto

8.1 Introduction

The use of neural networks on the solution of problems has become even
more usual due to the great results provided by these powerful tools. More
specifically, the Multilayer Perceptron neural networks have received a lot of
attention due to their desirable characteristics such as versatility, simplicity,
computational efficiency, accuracy and high degree of applicability, which have
motivated the use of these tools as a global interpolator and as a pattern
classifier [I].

However, it is well known that, in general, the design of artificial neural
networks is a very hard task. Defining architectures of neural networks for
specific applications is, therefore, basically a process of trial and error, relying
mostly on past experience with similar applications [2].

The great majority of learning algorithms designed to train neural net-
works, such as the error back-propagation algorithm, are not able to deter-
mine an ideal architecture for a certain application. Instead, they only refine
the network's synaptic weights.

Thus, techniques for automating the design of neural networks are clearly
of interest and a natural candidate for the application of evolutionary algo-
rithms.

A lot of research has been developed combining and applying evolutionary
computation to the design of neural networks [3]. Therefore, instead of using
the classical error back-propagation algorithm in the learning process of the
neural network, a different approach using genetic algorithms to train the
neural network and to define its architecture is introduced in this chapter.

Neural networks and genetic algorithms can be combined in a way that
a population of neural networks competes against each other in a Darwinian
setting. Each individual of the population represents a certain neural network
with differing architecture and synaptic weights. The individuals codifying
neural networks that produce good results are combined and passed onto the
next generation. After a number of iterations, an optimized neural network
can be obtained.

The learning process of the Multilayer Perceptron neural network can be
very slow, varying according to the size of the network, which can put in
danger the performance of countless applications. Aiming to minimize the
time required on the training process and to improve the applications perfor-
mance, the use of parallel processing and techniques were incorporated into
the training algorithm developed.

The main concept of parallelism consists of dividing and executing a large
number of tasks simultaneously. Therefore, knowing that the essence of genetic
algorithms consists of having populations fighting against each other in search
of the fit solution, it is very easy to see that there are many ways to explore
parallelism in genetic algorithms, as it will be introduced later.

Several parallel processes were created, each one of them corresponding to
a different population. All populations created will evolve simultaneously. At

8 Evolutionary Computation and Parallel Processing to Design MLPs 183

the end of a predetermined number of generations, the created processes will
be able to communicate in order to exchange information concerning the best
individuals selected by each one of them. That procedure goes on until the
error signal produced by the neural network tends to zero and, consequently,
the network can be considered trained.

The exchange of information between the populations is very important,
allowing them to cooperate and exploit promising areas of the search space
found by other populations and, also, reintroduce in the population previously
lost genetic material [4].

Furthermore, different reproduction and evolution behaviors were intro-
duced in each one of the coexisting populations. The use of distinct evolution
behavior will contribute on the maintenance of the diversity of the individuals
regarding each population.

This chapter is organized in the following way. In Section 8.1, an intro-
ductory view of the combination of genetic algorithms and parallel processing
into the training process of Multilayer Perceptrons neural networks is given. In
Section 8.2 and Section 8.3, it will be presented an overview of neural networks
and Multilayer Perceptrons, respectively. In Section 8.4, it will be explained,
with further details, the use of genetic algorithms and parallel processing in
Multilayer Perceptrons. In Section 8.5, it will be presented the use of genetic
algorithms in defining the neural network's architecture and in refining its
synaptic weights. In Section 8.6, a different approach of a cooperative parallel
genetic algorithm with different evolution behaviors is given. In Section 8.7,
applications on approximation of functions will be illustrated. Finally, in Sec-
tion 8.8, it will be presented the conclusions obtained by the combination
of genetic algorithms and parallel processing into the design of Multilayer
Perceptrons neural networks.

8.2 Artificial Neural Networks

Artificial neural networks consist of an architecture projected to simulate the
way as the brain accomplishes a certain task. It is composed by processing
units, denominated artificial neurons, which introduce the capacity of storing
experimental knowledge in order to be available for the practical use. Basi-
cally, an artificial neural network resembles the human brain in the following
aspects:

The network, starting from its environment, acquires knowledge through
a learning process;
The acquired knowledge is stored in the connections within the neurons,
known as synaptic weights.

The artificial neurons are connected by communication channels that are
associated to a certain synaptic weight and only operate their local data, which
are inputs received by their connections. The intelligent behavior of the neural

184 Ana Claudia Albuquerque, Jorge Melo, Adrib Ddria Neto

network comes from the interactions between these several processing units
of the network.

Yn

Output

Fig. 8.1. Artificial neuron

As it can be observed in Fig. 8.1, the artificial neuron presents a set of
synapses, each one characterized by a self-weight (wij). An input signal x, in
the entrance of the p-th synapse connected to the neuron n is multiplied by the
synaptic weight w,,. The summation symbol, represented by the Greek letter
C in Fig. 8.1, is used to add the input signals, weighted by the respective
synapses of the neuron. The activation function, represented in Fig. 8.1 by
cp(.), is used to restrict the output amplitude of the neuron. This function is
going to restrict the allowed range of the output amplitude signal to a finite
value. Typically, the normalized range of the output amplitude of a neuron
is written as the closed unitary interval [0,1], or as the closed interval [-1,1].
The bias, represented by b,, has the effect either to increasing or to decrease
the network input of the activation function, depending whether it is positive
or negative, respectively.

The learning algorithms, used in the training process of artificial neural
networks, basically modify the synaptic weights of the network in an ordered
way until there is the production of a wished output. Thus, it is said that an
artificial neural network is trained for a given problem when it produces an
equal or nearly equal response to the desired one. As previously mentioned,
this training procedure can be very slow, depending, mostly, on the complexity
of the neural network's architecture (a large number of layers as well as of
neurons per layers). Therefore, a good alternative to improve this performance
and, consequently, to decrease the time of training, would be the application
of parallelism techniques in the training algorithm of the neural network.

8 Evolutionary Computation and Parallel Processing to Design MLPs 185

8.3 The Multilayer Perceptron Neural Network

The Multilayer Perceptron neural networks belong to an important class of
neural networks. They were developed for the resolution of more complex
problems, which could not be solved by using the model of basic neuron pro-
posed by Rosemblatt in [5] , since this model works properly only regarding
to problems that are linearly separable. For example, a sole perceptron or a
combination of the outputs of some perceptrons, would not be able to learn a
logic or exclusive operation (XOR), once it defines a non-linear problem. To
do that it will be necessary to introduce more connections, which exist only
in a perceptron network disposed in layers. It is worth to point out the im-
portance of these internal neurons in the neural network, once it was proved
that without the presence of such units the resolution of linearly not sepa-
rable problems would be impossible. Thus, the Multilayer Perceptron neural
networks are constituted by a set of sensor units forming the input layer, one
or more hidden layers, and an output layer of computational nodes. Fig. 8.2
illustrates the architecture of the Multilayer Perceptron.

Hidden Layers
Input
Layer

XI . . .

xz . . .

. . .
Fig. 8.2. Organization in layers of the Multilayer Perceptron

A Multilayer Perceptron neural network has three distinctive characteris-
tics [I]:

1. The model of each neuron of the network includes a smooth non-linear
activation function. In other words, it is differentiable at any point, since
it does not present the abrupt limitation used in Rosenblatt's perceptron.

2. The network contains one or more layers of hidden neurons, which are part
of the input or output of the net. These hidden neurons enable the net-
work to learn complex tasks extracting progressively the most significant
characteristics in the standard (vector) inputs.

186 Ana Claudia Albuquerque, Jorge Melo, Adriiio D6ria Neto

3. The network exhibits a high degree of connectivity, determined by its
synapses. A modification in the connectivity of the network requires a
change in the population of the synaptic connections or of their weights.

It is through the combination of these characteristics, together with the
ability to learn the experience through the training, that the Multilayer Per-
ceptron neural network derives its computational power.

8.4 Genetic Algorithms and Parallelism in Multilayer
Perceptron Learning

The genetic algorithms belong to one of the five areas of the evolutionary
computation that is based on the selection theory and the natural evolution.
Thus, it is proposed a model of computational structures that evolve with
the goal of improving the general performance of the population regarding a
set of individual characteristics. Such characteristic, then, translate the adap-
tation or individual's adequacy to the environment. Therefore, the genetic
algorithms consist in dynamic methods of search based on selection mecha-
nisms and natural evolution having, as aim, the finding of the optimal individ-
ual of a genetically refined population. The refinement process is then given
from generation to generation, with the renewal of the population obeying the
probabilistic criteria of selection and natural reproduction.

All search and optimization task have several components such as the
search space, in which are considered all the solution possibilities of a certain
problem, and the fitness function, used to evaluate the members of the search
space. The techniques for search and traditional optimization initiate with a
sole candidate who, iteratively, is manipulated using some heuristics (static)
directly associated to the problem to be solved. At the same time, the genetic
algorithms operate over a candidates' population. In this way, searches in
different areas of the solution space are accomplished, allocating a number of
members appropriated for the search in several regions.

Much of conventional methods of maximization or minimization from cer-
tain characteristics of a given individual, use deterministic criteria to move
from a point to the other in the search hyperspace. However, being a mul-
timodal function, i.e., a function with several peaks within a same interval,
these methods can result in a premature stop or in the paralysis of the search
process in a maximum (or minimum) local point, instead of a maximum (or
minimum) global point. It is possible, however, to overcome this problem pro-
ducing a new population to each iteration or generation allowing, thus, the
simultaneous exploration of several points of the hyperspace. In this way, many
maximum (or minimum) can be explored efficiently reducing, consequently,
eventual stops in undesirable maximum (or minimum) locals.

To code the characteristics involved in the optimization process, chains of
the binary alphabet are frequently used. During the execution phase, then, the

8 Evolutionary Computation and Parallel Processing to Design MLPs 187

length of the chain usually remains fixed, depending on the degree of precision,
required for the solution of the problem, or of the amount of characteristics
in observation.

As stated previously, parallel processing techniques have been used in the
learning process of the Multilayer Perceptron networks in order to minimize
the amount of time consumed on the training process of more complex net-
works architectures and enlarge their range of applications. Several possibil-
ities have been exploited in literature [6], [7]. In [8] a new parallel algorithm
was presented, based on the cooperation concept. Multiple copies of the neural
network in each task allow new parallel strategies. Information is periodically
exchanged among the tasks to efficiently guide the search procedure and the
back-propagation algorithm was used to refine the connection weights and
minimize the error signal.

The use of parallel genetic algorithms is a very good alternative since
they are able to improve the performance of the genetic algorithms both in
terms of velocity as in terms of enhancing the search quality, allowing, thus,
simultaneous exploration of several points of the search space. Consequently,
the maintenance of more diverse subpopulations helps to avoid premature
convergence (local minima).

In genetic algorithms, parallelism was exploited in different levels produc-
ing both coarse and fine grain solutions. The fine-grained model assumes the
placement of only one member of the population on each processing node.
Therefore, the individuals can only reproduce and exchange genetic material
with other individuals in a bounded region, as opposed to global ones. The
coarse-grain model, on the other hand, is the most popular model used and
assumes the division of a large population into several subpopulations with or
without communication among the tasks [9]. Therefore, multiple processors
run a sequential genetic algorithm on their population. Cooperation can be
used in coarse-grain parallel genetic algorithms, where processors exchange in-
dividuals from their subpopulation with other processors. In the island model,
individuals can randomly migrate from one population to another. In the step-
ping stone model, however, the individuals can migrate only to geographically
nearby subpopulations. The existence of isolated subpopulations will help in
the maintenance of genetic diversity.

Also, the concept of cooperative parallel algorithms differs from the tra-
ditional approach of parallel algorithm development [lo]. Instead of dividing
the computational load among the tasks and having them only to compete
against each other, complete problems are solved in each task (competitive
approach) and their solutions are speeded-up with the information provided
by the other ones (cooperative approach).

Individuals and evolution behavior can be exclusive on each copy of the
genetic algorithm running in each task and communications can be used to
accelerate the evolutionary process. In the following sections, this approach
will be exploited.

188 Ana Claudia Albuquerque, Jorge Melo, Adri50 DD6ria Neto

8.5 Training Multilayer Perceptron with Genetic
Algorithms

A genetic algorithm consists of a dynamic search method based on the theory
of natural selection and can be successfully used in the learning process of a
Multilayer Perceptron neural network since each individual of the population
is represented by a finite string of binary symbols, known as chromosome [l l] .
The chromosome of an individual will encode one specific neural network.
Therefore, in each population there are a finite number of individuals rep-
resenting one neural network, with differing architecture, as well as synaptic
weights. At the end of the training process, the selected individual will hold
the final configuration of the neural network.

The genetic algorithm will proceed in the following way: an initial popula-
tion of individuals is generated randomly. Each individual's genetic material,
which consists of a vector of 0s and Is, will contain a description of a specific
neural network. Later, the individuals are decoded and evaluated according
to a predefined fitness function. The best individuals are the ones capable to
approximate the fitness function to zero.

The fitness function, however, is calculated for each set of the training
samples by adding all the mean square error signals obtained for each element
located in the output of the neural network and dividing the result by the
number of samples applied to the network. The error signal, meanwhile, is the
result of the subtraction between a desired response previously defined and
the actual response obtained by the network.

If the stop condition is not yet reached, the learning process continues
and a certain number of individuals are chosen, according to the selection
criteria, to be the parents of the next generation. In order to maintain a high
degree of diversity among the individuals, different reproduction criteria were
incorporated into the genetic algorithm. In general, it can be said that to
form a new population, individuals are selected according to their capability
of minimizing the fitness function. Thus, the individuals that obtained the
smaller errors signals have a better chance of reproducing, while the others
are more likely to disappear.

8.6 Cooperative Parallel Genetic Algorithm with
Different Evolution Behaviors

The cooperative parallel genetic algorithm with different evolution behav-
iors developed is used to determine the Multilayer Perceptron neural network
synaptic weights and architecture. In each population, there are a finite num-
ber of individuals codifying one specific Multilayer Perceptron neural network
with differing architectures and synaptic weights. As the populations evolve,
the network's synaptic weights are being refined along with its architecture.

8 Evolutionary Computation and Parallel Processing to Design MLPs 189

In the end, from the genetic material of the individual that best fit the solu-
tion, both architecture and set of synaptic weights for the neural network are
extracted.

It is worth to stress that the definition of neural networks architectures
can become a process of trial and error, relying mostly on past experience
with similar applications. Also, the performance of neural networks on a large
number of applications is critically dependent on the choice of an ideal archi-
tecture. As a result, it is very hard to predefine architectures for Multilayer
Perceptron neural networks for a certain problem without previous knowl-
edge or experience with similar applications. The use of genetic algorithms is,
therefore, a natural and intuitive way to accomplish such task.

Besides defining the network's architecture, the genetic algorithm is used,
simultaneously, to refine the network's synaptic weights. In order to enhance
the search for the fit individual, different reproduction criteria were incorpo-
rated into the genetic algorithm. The use of different reproduction criteria
will contribute on the maintenance of the diversity of the individuals regard-
ing each population, speeding up the search for the ideal solution. Therefore,
existing populations will evolve differently from one another following its own
criterion of reproduction.

The reproduction step of a genetic algorithm can be performed using many
different kinds of heuristics. In the algorithm developed, the individuals are
ordered according to the value of the fitness function produced by them. The
quantity of individuals that will become parents of the next generation is,
then, chosen randomly. Note that the parents of the next generation are the
individuals that produced the lowest error signals. From the set of individuals
chosen to be parents of the next generation, two are randomly chosen to have
its genetic material combined, producing an offspring. The genetic material
can be combined in one or two different points. A small number of mutations,
also obtained in a random manner, were introduced to the new population.
Fig. 8.3 illustrates two examples of reproduction of the genetic algorithm.

Parent 2 1 0 0 I I 0 1 1 1 0 0 1 1 U l I

Offspring

Fig. 8.3. Illustration of two examples of reproduction of the genetic algorithm

Besides presenting different evolution behaviors, the existing populations
are able to communicate with each other and exchange valuable information
on the best individual selected by each one of them so far. The presence

190 Ana Claudia Albuquerque, Jorge Melo, Adriiio DD6ria Neto

of cooperation in the genetic algorithm is, therefore, very important since
the exchange of information between the populations helps to avoid local
minima. Also, it allows the exploitation of a larger range of the search space
and reintroduces previously lost genetic material.

The genetic material of each individual contains two main fields. The first
field codifies an index to a table of architectures. The second field codifies the
synaptic weights for the architecture defined in the first field. Each synap-
tic weight is represented by a 32-bits binary string. The index to a table of
architectures is also represented by a 32-bits binary string. During the initial-
ization, the binary strings representing the networks architecture and synaptic
weights are generated randomly. As the populations evolve, the best architec-
tures and set of synaptic weights are maintained. Finally, the best individual
will hold the final configuration of the neural network. Fig. 8.4 illustrates the
representation of the genetic material of each individual. Note that the table
of architectures will contain different kinds of networks with different num-
bers of layers, as well as neuron per layer. However, the input and output
dimensions of the neural network are pre-determined since they depend and
vary according to the application.

Fig. 8.4. Representation of the genetic material of an individual

Once again, each individual of the population codifies different neural net-
works architectures. Therefore, the size of the genetic material of each indi-
vidual varies according to the size of the neural network it represents, i.e.,
an individual codifying a simpler neural network will present a smaller set of
synaptic weights when compared to an individual that codifies a much more
complex architecture.

However, it is necessary to standardize the representation of the genetic
materials since, performing operations on differently sized chromosomes, mem-
ory that is not part of the smaller chromosome will be used in the recombi-
nation process.

The simpler solution to this problem consists on taking as standard the
size of the genetic material of the individual that codifies the largest neural

Table of
Architectures

Index of a table of
architectures (1)

Synaptic weights

8 Evolutionary Computation and Parallel Processing to Design MLPs 191

network. As a result, all individuals would present chromosomes with same
sizes and the layers, neurons and connections that do not exist would be
represented by zero. However, by doing so, the size of the neural networks
and the genetic materials could increase inappropriately. Besides demanding
a lot of memory and making the recombination process very slow, this solution
increases the amount of time required on the exchange of messages performed
by the parallel tasks, which can badly affect the final performance of the
algorithm.

The most viable solution found was based on the specification of a rea-
sonable interval of synaptic weights for the networks. Therefore, all possible
neural networks architectures that obeyed the specified interval were consid-
ered. By doing so, the uncontrolled growth of the genetic materials can be
avoided. Furthermore, the massive use of memory space is also avoided and,
more importantly, the message exchange among parallel tasks is accelerated.
Therefore, during the initialization of the populations, the amount of indi-
viduals at each population and the interval of synaptic weights are previously
specified. Later, the genetic material of each individual is generated randomly.

In Fig. 8.5, the parallel structure adopted is illustrated.

Master Structure

01

Population 1 Population 2 Population N

Fig. 8.5. The parallel structure adopted in the genetic algorithm

As can be seen through Fig. 8.5, there is a master structure that is re-
sponsible for the initialization of the populations. Each population will evolve
simultaneously, following its own reproduction criteria. After a predetermined
number of generations, each one of the populations will send to the master
structure the best individual, i.e., the individual that has produced the lowest
error signal. From this set of best individuals received from all the coexisting
populations, the master structure will select the one with the lowest error sig-
nal. Finally the master structure will send a copy of the individual selected to
each one of the coexisting populations and so on, until the error signal tends
to zero.

192 Ana Claudia Albuquerque, Jorge Melo, Adrigo DDdria Neto

The environment used for the implementation of the parallel algorithm
was the PVM (Parallel Virtual Machine). The software PVM is an environ-
ment for parallel and distributed computation. It allows the user to create
and to access a parallel computation system made up from a collection of
distributed processes, as well as to treat the resultant system as a unique
virtual machine, hence the name parallel virtual machine. The software PVM
is based on the message-exchange parallel programming model. In this way,
messages are exchanged among the tasks through a connection chain.

8.7 Application on Approximat ion of Functions

The genetic algorithm developed in this chapter was used in the learning pro-
cess of the Multilayer Perceptron network in order to approximate functions.
The first two results illustrate the approximation of the functions f (x) = l / x
and f (x) = sin(2rx). Later, two more complex functions, z = sin(r)/r and
f (xl, 22) = cos(2rxl) .cos(2rx2), were used.

As was said before, the great advantage of the cooperative parallel genetic
algorithm is the concept of having different populations with different evo-
lutional behaviors evolving simultaneously. To illustrate that, it is drawn a
comparison between the sequential and the parallel approach of genetic algo-
rithms.

Fig. 8.6 represents the mean square error (MSE) signal of the usual se-
quential genetic algorithm with five populations evolving independently for
the function f (x) = 11%. Each line represents the best individual selected by
each one of the five populations.

305 310 315 320 325 330 335 340 345
Generation

Fig. 8.6. MSE signal of the sequential genetic algorithm for the function f (x) = l/x

8 Evolutionary Computation and Parallel Processing to Design MLPs 193

Therefore, as the populations evolve independently, this is equivalent to
an isolated genetic algorithm being executed, i.e., there is one population and
new generations are born from it, always aiming to find the individual that
best fits the solution. No exchange of information or cooperation exists among
the populations.

According to the initialization, is very easy to find populations stuck in
local minima. For instance, the members of Population 1 , 2 and 3 seem to have
its MSE signal stabilized. On the other hand, the members of Population 4
and 5 are slowly reducing the MSE signal but were unfortunate during the
initialization, presenting the two highest error signals produced.

On the contrary, through Fig. 8.7, where there are five populations evolving
simultaneously, it is possible to realize the improvement that the cooperative
parallel genetic algorithm with different evolution behavior represents.

0.030474 I
305 310 315 320 325 330 335 340 345 350

Generation

Fig. 8.7. MSE signal of the cooperative parallel genetic algorithm for the function
f (x) = 112

As said before, the five populations appear evolving in independent ways,
exchanging genetic material once in a while. On the 315th generation, for
instance, the members of Population 2 contain the best of all the individuals,
i.e., the one with the lowest MSE signal. On the 330th generation, all tasks
communicate, meaning that all populations will receive a copy of the best
individual produced so far. By doing so, we allow that all the populations that
initially evolved independently have a common aspect: the fit individual. From
then on, the populations continue evolving independently again. Note that due
to the communication during the 330th generation, the MSE signal produced
by all populations dropped, especially the one produced by Population 4 that
accomplished the lowest MSE signal right after this episode.

The parallel genetic algorithm developed was also used to define the Multi-
layer Perceptron neural network architecture. Several configurations of neural

194 Ana Claudia Albuquerque, Jorge Melo, Adrih D6ria Neto

networks were used. The number of hidden layers varied from one to six and
the number of neurons per hidden layer varied from three to fifteen. There
was one neuron in the input layer and one neuron in the output layer. The
number of neurons per input layer and the number of neurons per output
layer were pre-determined since they depend on the application.

The final configuration of the Multilayer Perceptron neural network pre-
sented one neuron in the input layer, one neuron in the output layer and one
hidden layer with ten neurons.

In Fig. 8.8 is illustrated the reconstructed output of the Multilayer Per-
ceptron along with the original function.

Fig. 8.8. Reconstructed output of the function f(x) = l/x obtained from the
Multilayer Perceptron

The results obtained by the approximation of the function f (z) = sin(2nx)
are now presented.

First, a sequential genetic algorithm is used and the MSE signal of the five
populations evolving independently is illustrated on Fig. 8.9.

As can be seen through Fig. 8.9, there are five populations evolving, with-
out any cooperation or communication. The new generations are born from
its population only.

Once again, it can be seen that without the cooperation, the populations
are more likely to get stuck in local minima. On this example, all the popu-
lations are reducing the MSE signals very slowly, which can badly affect the
performance of the neural network.

In Fig. 8.10, on the other hand, there are five populations evolving si-
multaneously by the use of the cooperative parallel algorithm with different
evolution behaviors. Once again, the use of different behaviors during the re-
production phase of the genetic algorithm was crucial in helping maintaining
the diversity of the populations, fastening the obtainment of convergence.

8 Evolutionary Computation and Parallel Processing to Design MLPs 195

Fig. 8.9. MSE signal of the sequential genetic algorithm for the function f (x) =
sin(2rrx)

For instance, from the 540th generation up to the 555th generation, the
individuals from Populations 1, 3, 4 and 5 presented a higher MSE signal
than the ones from Population 2. During the 555th generation, by means of
communication, the genetic material of all populations was exchanged and all
the MSE signals werk brought down to the same level.

0.0302485
UO 535 540 545 550 555 5M) 565

Generation

Fig. 8.10. MSE signal of the cooperative parallel genetic algorithm for the function
f (x) = sin(2rrx)

The Multilayer Perceptron neural network architecture was defined by
the use of the parallel genetic algorithm developed. Several configurations of
neural networks were used. The number of hidden layers varied from one to

196 Ana Claudia Albuquerque, Jorge Melo, Adri50 DDdria Neto

six and the number of neurons per hidden layer varied from three to fifteen.
There was one neuron in the input layer and one neuron in the output layer.
The number of neurons per input layer and the number of neurons per output
layer were pre-determined since they depend on the application.

The final configuration of the Multilayer Perceptron neural network pre-
sented one neuron in the input layer, one neuron in the output layer and two
hidden layers with five neurons in the first hidden layer and four neurons in
the second.

The final output obtained by the Multilayer Perceptron is reconstructed
and illustrated in Fig. 8.11, along with the original function.

Fig. 8.11. Reconstructed output of the function f(x) = sin(2rx) obtained from
the Multilayer Perceptron

Later, the function z = sin(r)/r, where r = and -7.5 <= z <=
7.5 and -7.5 <= y <= 7.5 was approximated by the Multilayer Perceptron
neural network trained with the cooperative parallel genetic algorithm.

Once again, a sequential genetic algorithm was first used on the approxi-
mation of the function.

Thus, there are five populations evolving independently, without any de-
gree of cooperation neither communication. The new generations are born
from the recombination of individuals that belong to each one of the five
populations only.

The MSE signal of the five populations is illustrated on Fig. 8.12. However,
it can also be noticed the existence of populations, such as 1 and 3, presenting
higher error signals that, due to the lack of cooperation, are not helped by
the others. The performance of the neural network can, then, be affected in a
bad way.

Later, the cooperative parallel genetic algorithm with different evolution
behaviors was used on the approximation of the function z = sin(r)/r. The

8 Evolutionary Computation and Parallel Processing to Design MLPs 197

0.036 I
380 385 390 395 4W 405 410 415 420

Generation

Fig. 8.12. MSE signal of the sequential genetic algorithm for the function z =
sin(r) / r

use of parallel processing, along with cooperation and different evolution be-
haviors, once again helped to accelerate the convergence of the neural network.

In Fig. 8.13, there are five populations evolving simultaneously, where each
line represents the best individual produced so far by each one of them.

Right from the start, it can be noticed, through Fig. 8.13, that the MSE
signals of populations 1, 2, 3 and 5 were brought down to the same level of
the Population 4 at the 360th generation. Then, all the existing populations
went on evolving simultaneously, competing and cooperating with one another
every once in a while. Finally, from the help of its neighbors, the Population
2, which started out with the second highest MSE signal, accomplished the
lowest one in the end, at generation 420.

Once again, the parallel genetic algorithm developed was used to define
the Multilayer Perceptron neural network architecture. Several configurations
of neural networks were used. The number of hidden layers varied from one to
six and the number of neurons per hidden layer varied from three to fifteen.
There were two neurons in the input layer and one neuron in the output layer.
The number of neurons per input layer and the number of neurons per output
layer were pre-determined since they depend on the application.

The final configuration of the Multilayer Perceptron neural network p r c
sented two neurons in the input layer, one neuron in the output layer and two
hidden layers with ten neurons in the first hidden layer and six neurons in the
second.

The reconstructed output of the function z = sin(r)/r is illustrated in
Fig. 8.14. In Fig. 8.15, it is presented the original output of the function.

Finally, the Multilayer Perceptron neural network was used to approximate
the function f (xl, 22) = cos(2~xl).cos(2nx2).

198 Ana Claudia Albuquerque, Jorge Melo, Adri50 DD6ria Neto

Fig. 8.13. MSE signal of the cooperative parallel genetic algorithm for the function
z = s i n (r) / r

Fig. 8.14. Reconstructed output of the function z = s i n (r) / r obtained from the
Multilayer Perceptron

First, a sequential genetic algorithm is used and the MSE signal of the five
populations evolving independently is illustrated on Fig. 8.16.

All five populations evolve independently, without exchange of information
or cooperation among them. Once again, with this approach, is very easy to
find populations stuck in local minima, such as Populations 3, 4 and 5.

On the contrary, through Fig. 8.17, where there are five populations evolv-
ing simultaneously, it is possible to realize the improvement that the cooper-
ative parallel genetic algorithm with different evolution behavior represents.

8 Evolutionary Computation and Parallel Processing to Design MLPs 199

Fig. 8.15. Original output of the function z = sin(r)/r

Fig. 8.16. MSE signal of the sequential genetic algorithm for the function
f (xl, 22) = ws(27rxl) .ws(2m2)

As can be seen through Fig. 8.17, from the 360th generation up to the
375th, the members of Population 4 were the ones with the lowest MSE signal.
However, at the 375th generation, due to the exchange of genetic material
among the populations, the MSE signal produced by Populations 1, 2, 3 and
5 were brought down to the same level of Population 4.

The parallel genetic algorithm developed was also used to define the Multi-
layer Perceptron neural network architecture. Several configurations of neural
networks were used. The number of hidden layers varied from one to six and
the number of neurons per hidden layer varied from three to fifteen. There
were two neurons in the input layer and one neuron in the output layer. The

200 Ana Claudia Albuquerque, Jorge Melo, Adrib D6ria Neto

Fig. 8.17. MSE signal of the cooperative parallel genetic algorithm for the function
f (xl, x2) = cos(2nxl) .cos(2nx2)

number of neurons per input layer and the number of neurons per output
layer were pre-determined since they vary according to the application.

The final configuration of the Multilayer Perceptron neural network pre-
sented two neurons in the input layer, one neuron in the output layer and two
hidden layers with six neurons in the first hidden layer and eight neurons in
the second.

Therefore, the advantage of the cooperative parallel genetic algorithm with
different evolution behaviors, besides allowing the search of the ideal archi-
tecture for network given a certain application, is having several populations
evolving simultaneously. This evolution will take place independently, up to
a given position in which all populations cooperate with one another by the
exchange of genetic material. Up to this point, all populations will have the fit
individual so far produced. Therefore, the populations that were captured in
high errors signals immediately pass to the same level of the others, avoiding
local minima. In other words, while the existence of differing evolution behav-
iors helps maintain the diversity, the use of cooperation gives the opportunity
to all the populations to evolve in such a way that they will become the best
one.

The reconstructed output of the function f (XI, 22) = cos(2?rxl).cos(2?rx2)
is illustrated in Fig. 8.18. In Fig. 8.19, it is presented the original output of
the function.

8.8 Summary

The cooperative parallel genetic algorithm with different evolution behaviors
used in the learning process of the Multilayer Perceptron neural network was

8 Evolutionary Computation and Parallel Processing to Design MLPs 201

Fig. 8.18. Reconstructed output of the function f (xl, 22) = cos(2nxl) .cos(2nx2)
obtained from the Multilaver Perceptron

Fig. 8.19. Original output of the function f (xl, 22) = cos(2nxl).cos(2.rr22)

very efficient when compared to the sequential form of the genetic algorithm.
The cooperative parallel genetic algorithm was applied to the approximation
of functions but can have its use extended to the several other kinds of appli-
cations with neural networks.

As it could be seen through the analysis of the obtained results, the sim-
ple fact of allowing the exchange of information among different populations
represented a great achievement in the final performance of the algorithm.
Therefore, through cooperation, different populations could interact within

202 Ana Claudia Albuquerque, Jorge Melo, Adrih D6ria Neto

each other, avoiding local minima and helping in the search of the ideal solu-
tion.

Thus, the concept of having a pure competitive algorithm, where popula-
tions will only compete against each other in order to find the best individual
was modified by the insertion of cooperation between populations. In this way,
starting from a certain position, the different populations will contain the best
individual up to now found. Therefore, populations associated to high error
signals immediately drop to the same level of the others.

Furthermore, it is worth to stress that the use of different evolutionary
behaviors in each population enabled a larger diversification of them, speeding
up the search for the ideal solution as well.

Also, the genetic algorithm was used simultaneously to refine the net-
work's synaptic weights and to define its architecture. In general, defining
architectures for neural networks is a very hard task and most of the learning
algorithms developed only refine their synaptic weights. Therefore, the combi-
nation and application of evolutionary computation into the design of neural
networks are clearly of interest.

References

1. S. Haykin, Neural Networks: A Comprehensive Foundation, Maxwell Macmillan
International, 1994.

2. K. Balakrishnan, V. Honavar, Evolutionary Design of Neural Network A Pre-
liminary Taxonomy and Guide to Literature, Artificial Intelligence Research
Group, CS TR #95-01, January 1995.

3. D. Curran, C. ORiordan, Applying Evolutionary Computation to Designing
Neural Networks: A Study of the State of the Art, Technical Report: NUIG-IT
111002, 12 pages, National University of Ireland, Galway, Ireland, October 2002.

4. M. Potter, K. DeJong, Cooperative coevolution: An architecture for evolving
coadapted subcomponents, Evolutionary Computation, 8(1):1-29, 2000.

5. F. Rosenblatt, The Perceptron: A probabilistic model for information storage
and organization in the brain, Psychological Review, vol. 65. pp. 386-408, 1958.

6. J. Torresen, Parallelization of Back-propagation Training for Feed-Forward Neu-
ral Networks, PhD Thesis, The Norwegian Institute of Technology, 1996.

7. S. Foo, P. Saratchandran, N. Sundararajan, Parallel Implementation of Back-
propagation Neural Networks on a Heterogeneous Array of Transputers, IEEE
Trans. Systems, Man and Cybernetics - Part B, Vol. 27:1, pp. 118-126, 1997.

8. R. Alves, J. Melo, A. D6ria Neto, A. Albuquerque, New Parallel Algorithms
for Back-Propagation Learning, INNS-IEEE International Joint Conference on
Neural Networks, Honolulu, USA, 2002.

9. P. Adamidis, S. Kazarlis, V. Petridis, Advanced Methods for Evolutionary Op-
timisation, LSS'98, 8th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale
Systems: Theory and Applications, University of Patras, Greece, July 15 -17,
1998.

10. T. G. Crainic , M. Gendreau, Cooperative Parallel Tabu Search for Capacitated
Network Design, Journal of Heuristics, 8, 601-627, 2002.

8 Evolutionary Computation and Parallel Processing to Design MLPs 203

11. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs,
Springer-Verlag, 1992.

Evolvable Fuzzy Hardware for Real-time
Embedded Control in Packet Switching

Ju Hui Li, Meng Hiot Lim, and Qi Cao

School of EEE, Block S1, Nanyang Technological University, Singapore 639798,
(pg01896341 1 emhlim 1 pg04780942) Qntu. edu. sg

In this chapter, we describe a scheme to realize an Evolvable Fuzzy Hardware
(EFH) for real-time Packet Switching problem. The common challenges of
Evolvable hardware (EHW) implementation are issues pertaining to online
adaptation, scalability and termination of evolution [I]. The proposed EFH
addresses these issues effectively. A very interesting advantage of the pro-
posed EFH is that the system performance can be tuned intuitively through
parametric adjustment of the fitness function. This advantage gives the EFH
system a very special property that conventional scheduling methods cannot
fulfill easily. For the hardware implementation of the EFH, real-time fuzzy
inference with high-speed context switching capability is necessary. We ad-
dress this aspect through implementation based on a context independent
reconfigurable fuzz9 inference chip (RFIC).

9.1 Introduction to EHW and EFH

Evolvable hardware (EHW) is a new type of hardware whose architecture can
be evolved to suit the operating environment. In recent years, it has been at-
tracting greater attention from researchers. The idea behind EHW is based on
evolutionary algorithm, a methodology to search the solution space to derive
the appropriate hardware architecture. EHW can be classified into extrinsic
and intrinsic EHW based on the scheme of evolution used. Extrinsic EHW
relies on a simulated evolutionary process independent of the hardware. It
may rely on hardware description languages (HDL), C or other programming
languages to represent the circuit and then rely on an evolutionary algorithm
to evolve the hardware configuration. Only the elite design is downloaded
into the reconfigurable device. Intrinsic evolvability means that the evolution
and evaluation of solutions are carried out at the hardware level of the EHW

206 Ju Hui Li, Meng Hiot Lim, and Qi Cao

system. In principle, intrinsic EHW can modify its own hardware configura-
tion and behavior autonomously. If the environment changes, the behavior or
architecture will also change to maintain an acceptable level of system per-
formance. Currently, there has been great progress made for extrinsic type of
EHW [2, 3, 4, 5, 6, 71.

There are also research works that focused on intrinsic EHW. In some
reported works, the researchers rely on a semi-intrinsic approach. They use
software to realize the evolution part and hardware to carry out evaluation of
the derived architecture. After the evolution process, the best chromosome is
implemented in hardware. This scheme can be called ofline adaptive intrinsic
EHW. Most of the works on intrinsic EHW up to now can be found in [8,9,10].
This type of EHW generally has some advantages over extrinsic EHW. Since
it carries out the evaluation in hardware, the evaluation process is very fast,
and the performance of the elite is not affected by error in the simulation
model. Intrinsic EHW is useful for applications that require online and real-
time system reconfiguration. However, the implementation of intrinsic EHW
still poses significant challenges for such promising areas.

From the perspective of evolution granularity, current EHW can be classi-
fied into three types: transistor level, gate level and function level. Among the
three, the transistor level represents the lowest level of evolution granularity.
This gives the greatest flexibility because transistors are the smallest compo-
nents of any circuit. Gate level EHW means that logic gates are the smallest
configurable components of the EHW [ll, 12, 13, 14, 15, 16, 171. Functional
level EHW carries out the evolution of macro units (adder, multiplier, sine,
cosine, etc.) implemented on a special type of FPGA [2, 18, 191. There are
many functional processing units (FPU) in the FPGA chip. Each FPU can be
configured to perform one of the high-level functions such as addition, subtrac-
tion, multiplication, division, sine and cosine. The functions and connections
of FPUs are configured based on the elite chromosome. Most of the EHW
reported can be categorized into one of these three levels. The limitations of
these forms of EHW imply that evolutions can only be done extrinsically or
in some instances, intrinsically but in an offline adaptive manner.

For the implementation of intrinsic Evolvable and online adaptive EHW,
there are three main open issues that need to be addressed [I]. These issues
are briefly outlined below.
Online adaptation: This means that the system hardware is required to adapt
during the normal operation. Online adaptation is very hard to realize because
the system has to reconfigure the hardware for every chromosome in order to
carry out the evaluation. Some chromosomes may inevitably result in very
poor performance. If these chromosomes are evaluated by reconfiguring the
hardware, they may potentially result in some damages or disastrous outcome.

Scalability refers to the extensibility of the scheme to handle more complex
architecture or configurations. For a typical EHW, the chromosome length
may be hundreds or even thousands of genes for a complicated system. The

9 Evolvable Fuzzy Hardware for Control in Packet Switching 207

search space represented by a chromosome may be very big. Hence the search
by the genetic algorithms (GA) for a good solution in such a big solution
space may take a very long time.

Termination of evolution pertains to criteria or conditions for stopping the
evolution process. For example, one commonly used criterion is the number
of runs. With a GA scheme, there is no guarantee as to the number of runs
required before a desirable solution can be found. This can be a significant
drawback for real-time operation.

In order to perform online adaptive and intrinsic Evolvable hardware, we
propose a new form of EHW that is referred to as Evolvable Fuzzy Hardware
(EFH). EFH can be viewed as a form of Evolvable fuzzy system (EFS) whereby
the fuzzy inference system is implemented in hardware to deliver real-time in-
ference throughput. Furthermore, the domain knowledge of the fuzzy system
should be able to support online real-time reconfiguration. EFH can overcome
the disadvantages of the other three EHWs described earlier and is amenable
to intrinsic evolution and online adaptation. Earlier in [20], we proposed EFS
for ATM cell scheduling. In that system, the EFS searches for an appropriate
fuzzy rule set to carry out the scheduling task on dynamically changing cell
flows. The evolutionary search process does not cause any interruption in the
system operation. After a good fuzzy rule set is found, the old one is replaced
immediately. From simulation results, it was shown that EFS is capable of
dynamic real-time adaptation to deliver robust performance. To further sup-
port our work, we have also proposed a reconfigurable fuzzy inference chip
(RFIC) whereby the context can be changed or reconfigured online [21]. By
combining the advantages of the EFS and RFIC, we demonstrate in this work
how intrinsic Evolvable and online adaptive EFH can be implemented.

In Section 2, we introduce the real-time Packet Switching problem, an
application for demonstrating the viability of the EFH. In Section 3, we de-
scribe specifically how the implementation challenges of the intrinsic EFH are
addressed. In Section 4, we describe the detailed formulation of the fitness
function adopted in our EFH. In Section 5, we present the simulation results
of applying EFH to solve the real-time problem. Certain desirable properties
of the EFH in dealing with the real-time problem are also discussed in this
section. In Section 6, we outline details on how the EFH can be implemented
from a system's perspective. Finally, we offer some concluding remarks for our
work on EFH.

9.2 Packet Switching

Packet Switching is a backbone of modern communication networks. Because
of the characteristics of the various services supported by the network, the
management of the bandwidth resources is very critical. The multiplexer is
an important component used to administer the sharing of bandwidth among

208 Ju Hui Li, Meng Hiot Lim, and Qi Cao

different cell flows. It is mainly employed to provide a means of sharing high-
speed link for network terminations or network inter-nodes. Time division
scheme is adopted in the multiplexer. The output link can be divided into
different time slots. At anytime, only one input flow is accorded the priority of
sending packets through the output channel. The simplified block architecture
of the multiplexer is as shown in Fig. 9.1. For illustration, we classify the
services into two types, classl and class2. In the block diagram, BUFl and
BUF2 refer to buffers for classl and class2 respectively. MP represents the
time division multiplexing system for transmitting packets through the OUT
channel. The switching control block is a part of the hardware that handles
cell scheduling. When the OUT channel is available, the switching control
block decides on which cell flow to be sent.

For Packet Switching, class1 can be a form of CBR (Constant Bit Rate)
traffic, rt-VBR (real-time Variable Bit Rate) or both. The class2 traffic type
may refer to nrt-VBR (non-real-time Variable Bit Rate), UBR (Unspecified Bit
Rate) or ABR (Available Bit Rate) [22]. While classl type is delay sensitive,
class2 is considered to be not sensitive to delay. These two sources of cell flow
must be multiplexed on the output channel (OUT) by the MP unit through
time division. The capacities of OUT and the input channels are fixed. In
this problem, the QoS (Quality of Service) of the system can be evaluated by
classl cell delay, classz cell loss and the balance between classl cell loss and
class2 cell loss. The ideal case is that classl cell delay and class2 cell loss are
very small and there is also a good balance established between classl cell
loss and class2 cell loss.

The application of EHW in ATM cell scheduling has been reported in
Liu et. a1 [2, 31. In their works, the authors presented schemes of functional
EHW to solve the problem of cell scheduling. The functional EHW system
successfully achieved a circuit that had service performance similar to that
of traditional scheduling schemes. However, the scheme has some significant
limitations, hence not suitable for practical applications. The main limitation
of the system is its inability to evolve intrinsically. Another limitation is that
the system had to rely on an external computation platform to carry out
evolutionary process due to its large search space. Finally, the system faces
the limitation of being trained and tested only on fixed cell flow patterns.
In a practical system, the cell flows can change dramatically. There was no
effective scheme in this system to adjust the system along with the changing
cell flows.

9.3 Solutions for Open Issues

In order to solve the packet scheduling problem, we design the system archi-
tecture, incorporating evolutionary mechanisms as in Fig. 9.2. In this system,
the training buffers TB1 and TB2 are used to store classl and class2 cells
respectively. The size of TB1 and TB2 is at least 2 or 3 times that of BUFl

9 Evolvable Fuzzy Hardware for Control in Packet Switching 209

and BUF2. When either TB1 or TB2 is full, the evolutionary process is trig-
gered. Fitness evaluation is carried out by subjecting each chromosome to the
scheduling model according to the cell flow stored in TB1 and TB2. The pur-
pose of the scheduling model is to emulate the function of the multiplexer as in
Fig. 9.1. After a specified number of cycles and generations, if a chromosome

Switching Control r

Fig. 9.1. Multiplexer scheme

that corresponds to a system rule set is better than the working chromosome,
the working chromosome is replaced immediately. In order to prevent the
search procedure from being trapped in a local region, after a pre-specified
number of generations, the whole evolutionary process is restarted, from the
point where the initial population is generated. This is essentially the start of
a new evolution cycle. Functionally, the scheduling model emulates the packet
switching to derive the cell delay and cell loss parameters. This is achieved
by a multiplexer model within the scheduling model block. The derived pa-
rameters enable the fitness value to be calculated using the fitness function.
Basically, the evolution module evolves the appropriate rule set by interacting
with the scheduling model to evaluate the fitness of each evolved fuzzy rule
set. When evolution is triggered, it works in the background while the MP
unit is in operation. With EFH, the fuzzy inference circuit is a very important
component and it directly affects the speed of the system's response to the
changes in cell flow. Two high-speed fuzzy inference components are required.
One is in the scheduling model and another is the RFIC block performing cell
scheduling control.

During evolution, it is inevitable that poor quality chromosomes i.e., chro-
mosomes that result in poor switching performance, are also evaluated. To
avoid the possibility of detrimental effects on the system performance by these
chromosomes, the scheduling model is incorporated in Fig. 9.2 to emulate the
cell scheduling process. This allows for evaluation of the evolved chromosomes
in the background. After the evolution process, only the final fuzzy rule set

210 Ju Hui Li, Meng Hiot Lim, and Qi Cao

Fig. 9.2. Adaptation framework for EFH

will be configured in the RFIC block. In this way, we address the first major
open issue of the intrinsic EHW.

In order to achieve online adaptation and intrinsic evolution for real-time
control, another issue that can be regarded as a sub-problem of online adapta-
tion and intrinsic evolution, must also be addressed. During evolution, training
data are required. In [2], the EHW system uses the same data for training and
testing. This scheme can work well in applications when the real time data
do not change dramatically. But if the application scenario is significantly
different from the training situation, the system may not perform very well.
This indicates that extensive data samples are necessary for such an evolu-
tion scheme. If the real-time data change dramatically, it is not practical to
incorporate diversely representative real data samples to train the system.
For many real-time control areas, we believe that there is no need to do so.
In fact, we can apply the principle of "locality" to substantiate this belief.
For example, in computer operating system, the design of the cache memory
system is based on this principle. Accordingly in computer operating system,
if a program is accessing a certain part of the memory, then there is a great
likelihood that the program will also access the part of the memory within the
same locality in the next time period. In our EFH, we contend that there is a
very high probability that the data model within a small time window is the
same as the model of data samples in the previous time window. The locality
proposition is valid if we assume that the time window is small enough. For the
CBR flow, since the cell rate is constant [22,23], the cell rate at any particular
time period is the same as that of the preceding time period. For VBR flow,
which can be described by a two-phase burst/silence model [2, 24, 25, 26, 271,
cells can be sent equidistantly during the burst period and no cells are trans-

9 Evolvable Fuzzy Hardware for Control in Packet Switching 211

mitted during the silence period. The cell rate during the burst period can
be approximated based on the principle of "locality". But at the edge of the
burst period and the silence period or vice versa, significant error may occur.
This kind of prediction error can be tolerated if the time window is sufficiently
small. Based on this justification, we can train the system using the previous
data flow to approximate the expected data model of the subsequent time
period. The smaller the time window, the more flexible the EFH adapts to
the cell flow. The best chromosome after an evolution process will be used to
do scheduling in the next time period.

To address the scalability issue, we adopt an evolutionary granularity at
the fuzzy rule level. In the EFH for Packet Switching, a chromosome can be
represented as a string of 25 integers. Each gene of a chromosome represents
a fuzzy rule. For this scheme, the search space is not too big compared to the
search space in [2, 91, in which each chromosome is represented by a string
comprising of hundreds of integers or thousands of bits. The evolution time in
the EFH is thus manageable. The third issue to address is the termination of
evolution. In many EHW systems, the evolution system may require thousands
of generations to get close to an optimal chromosome. The extent of evolution
time may limit the applicability of the system for real-time application. In
[2], in order to get a good functional EHW to do ATM cell scheduling, the
system evolved for 2500 generations with a population size of 400. In [9],
in order to derive a circuit with Gaussian output voltage characteristic, the
Evolvable hardware system has to evolve 10000 generations. The time scale
for evolution in these reported works is not appropriate if used in real-time
intrinsic EHW control system. For comparison, in the proposed EFH, a very
small population size and small number of the generations are important
features of the evolutionary process. In order to prevent the system from
adopting a very poor performing fuzzy rule set, we defined a core rule set
in the system derived based on the analysis of the problem through human
intuition. The core rule set is also used as the startup rule set. If the EFH
system is not able to find a chromosome that is better than the core rule
set within a fixed number of generations, the core rule set is adopted. The
appropriate number of generations for each evolutionary cycle is determined
through experimentation. The objective of the evolution is to get a fuzzy rule
set better than the working chromosome for the cell flow of the following time
period. Even if the derived fuzzy rule set is not optimal, it is deemed to be
sufficient. By adopting this idea, the criterion for the termination of evolution
can be satisfactorily managed.

9.4 Evolution Scheme

To carry out evolution, GA manipulates a population of chromosomes. These
chromosomes are solution representations denoting the application domain
fuzzy rule sets,when decoded. In the rest of this section, we will first introduce

212 Ju Hui Li, Meng Hiot Lim, and Qi Cao

the fuzzy system and its coding scheme. Then we will describe the inference
scheme and the fitness function of this system.

9.4.1 Genetic Coding

A fuzzy system can be formally defined as an application or system, which
employs a fuzzy control algorithm. In general, the fuzzy control algorithm
refers to a set of if-then rules with linguistic values and fuzzy variables. The
values are specified as fuzzy concepts defined by membership functions. Fuzzy
system implicitly means a set of rules and membership functions.

Suppose a fuzzy system has q input variables XI, 2 2 , . . ., x, and single
output control variable y, a typical rule for the fuzzy system will be "if < xl
is Al > and < 2 2 is A2 > . . . and < x, is A, > then < y is D >". Al, A2, . . .,
A, and D are fuzzy concepts or linguistic values. Usually, the development
of a fuzzy system involves specifying a finite set of labels to represent the
linguistic values for describing each of the variables. If the number of labels
for the input variables XI, x2, . . ., x, are &, 52, . . ., J, respectively, then the
number of rules that one can declare will be 51 x & x . . . xQ. We refer to
this as the maximum or exhaustive rule set. An n-rule fuzzy system would
therefore refer to a system with n being less than or equal to & x & X . . . xJ,.
This is refered to as an n-rule constrained fuzzy system or simply an n-rule
fuzzy system [28, 29, 301.

To begin with, we define two symbols for the inputs, cl and c2. The symbol
cl refers to the status of classl cell flow, which is a function of V1 and V,,,.
V1 is the current cell rate of classl cell flow while V,,, is the line capacity.
The symbol c2 refers to the buffer status of BUF2. It is a function of L2 and
L,,,. L2 is the number of empty units in BUF2 while L,,, is the length
of BUF2. For cl and c2, the memberships are characterized by the term set
{VS, S, M, L, VL} as depicted in Fig. 9.3. These are standard triangular
membership functions. The output SEL of the fuzzy switching control block
(see Fig. 9.2) is characterized by the term set {T, F}. Both T and F are
singletons, or fuzzy sets with impluse membership functions as shown in Fig.
9.4. Functionally, a T or true means that the MP unit allocates time slots
to cater for the classl cell flow in BUF1. An output F or false implies that
switching is reverted to cells in BUF2.

Based on the above characterization of the switching network, it is pos-
sible to define the n-rule heuristics to control the switching behavior. With
the fuzzy memberships defined, one can rely on intuitive logic to define the
necessary input-output mappings as shown in Table 9.1. The 25-rule system
serves as the default cell scheduling algorithm on system startup. We refer to
this rule set as the core rule set.

A fuzzy rule set can be represented as a string of integers. For example,
the genetic code for the 25-rule system in Table 9.1 can be described by the
string " 2221122111221112111111111". The allelic code 1 and 2 correspond to
the labels true and false respectively. The position of the gene in the string

9 Evolvable Fuzzy Hardware for Control in Packet Switching 213

vs rvery-smal l
S small
M =medium
L r l a r g e
VL. very-large

Fig. 9.3. Membership functions for cl and c2

Fig. 9.4. Membership functions for T and F

identifies a specific rule in Table 9.1 when interpreted accordingly in a row
wise manner. If the value of a gene is 0, it means that there is no specific fuzzy
rule defined for the corresponding input condition. The core rule set not only
serves as the startup rule set, but also provides a means to benchmark the
performance during the evolution of chromosomes. This scheme guarantees
that the performance of the system is better than or at least comparable to
that of the core rule set.

Table 9.1. A 25-rule fuzzy system for ATM cell scheduling

9.4.2 Inference Scheme

Each entry in Table 9.1 can be interpreted as a statement of the form "if
antecedent1 and antecedent2 then conclusion". The antecedent# represents
the fuzzy conditions for cl or cz, characterized over the term set {VS, S, M ,

214 Ju Hui Li, Meng Hiot Lim, and Qi Cao

L, VL). The conclusion can be T or F. The degree of firing for each fuzzy
rule is taken as the minimum of the degrees of matching between the inputs
cl and c2 and the antecedents. The aggregation is carried out by averaging
the fuzzy conclusions derived from all the rules.

Although we have shown a 25-rule system, for this Evolvable system, the
number of the fuzzy rules can vary between 0 and 25. In order to manage the
evolution time and reduce the search space, we can fix the size of the rule set
to be less than 25 as in [29], so that the evolution time can be managed. This
is because the search space for a reduced rule set is more manageable and
hence the evolution efficiency can be significantly improved.

9.4.3 Fitness Function

According to the specifications of the problem, the capacity of the output
channel is fixed. This implies that no further adjustment on the output ca-
pacity can be made to cater for fluctuations in demand. If the bandwidth is
not big enough to meet the demand of the two cell flows, servicing classl cell
would mean filling up the class2 buffer and eventually resulting in cell loss for
class2. Hence for a specified requirement on the level of cell delay for classl,
a certain expected level of class2 cell loss is inevitable. In other words, the
class2 cell loss is constrained by the desired level of classl cell delay that the
system is trying to achieve.

There is one main consideration in formulating the fitness function for the
EFH. This pertains to the classl average cell delay. From the above discussion,
it is apparent that the level of class2 cell loss is negatively correlated to
the average class1 cell delay. Adjusting class1 cell delay will adversely affect
the class2 cell loss. Based on these justifications, the fitness function can be
described explicitly as in Eq.9.1.

In Eq.9.1, K is a very large numerical constant. It is used to adjust the
range of fitness values such that F is proportional to the fitness measure
of the chromosome. The larger the fitness value, the fitter the chromosome.
AveDelay is the average delay of classl cell units after all the cells in TB1 have
been processed. DelayFactor is a constant used as a reference for scaling the
value of X based on the desired classl cell delay. X is an adjustable coefficient
to denote the desired level of average cell delay for classl cell units stored
in TB1. In general, the system tries to search for a chromosome with mini-
mum IAveDelay - X x DelayFactorl. Both the AveDelay and DelayFactor
in Eq.9.1 can be determined from Eq.9.2 and Eq.9.3 respectively.

1
AveDelay = - x EL1 m (i)

7

DelayFactor = p x v

9 Evolvable Fuzzy Hardware for Control in Packet Switching 215

In Eq.9.2, m(i) is the waiting time of the ith cell in TB1 before being sent
out. T is a variable denoting the number of classl cell units in TB1 sent
during evaluation. ELl m(i) is the sum of the cell delay of the cell units in
TB1. In Eq.9.3, p is a constant corresponding to the time required to send a
cell through the output channel. The value of p depends on the bandwidth
capacity of the output channel. The symbol v denotes the size of TB#. With
Eq.9.3, a reference value for the possible delay of classl cell units can be
determined.

9.5 Simulation

In order to demonstrate the viability of the EFH scheme, we carried out simu-
lations of EFH in cell scheduling on two different scenarios. In the simulation,
we assume the capacity of the output channel (OUT) and the input channels
to be 155.52MHz. The two cell flows are as shown in Fig. 9.5.

For scenariol, classl is the CBR cell flow with cell bit rate of 155.52MHz.
class2 is VBR cell flow, also with a cell bit rate of 155.52MHz. The difference is
that the VBR specified has a 2ms ON time period and a 2ms OFF time period.
This scenario is a very extreme case used to test the system's controllability.
In order to simulate the system performance on a more realistic cell flow, we
can adopt scenario2. For scenario2, class1 refers to CBR cell flow with a cell
bit rate of 100MHz. class2 is VBR cell flow with unknown random cell bit
rate. The minimum cell bit rate for VBR is 55.52MHz while the maximum is
155.52MHz. In these two scenarios, since the sum of the CBR and VBR cell
rate is larger than the OUT channel's capacity, cell loss is unavoidable. From

class,

classl

Fig. 9.5. Two classes of cell flows

a practical point of view, the second scenario is more likely compared to the
first scenario.

The simulation results are compared with the results of first-in first-out
(FIFO) and dynamically weighted priority scheduling (DWPS) [24]. FIFO is
a very traditional scheduling method. It schedules the cell flows based on

216 Ju Hui Li, Meng Hiot Lim, and Qi Cao

the arrival time of the packets. FIFO can achieve very good balance between
classl cell loss and class2 loss, but it is very bad in terms of classl cell delay
performance. DWPS is a very good algorithm for cell scheduling. It adjusts
the priority according to the cell flow scenarios. But the adaptation scheme
of DWPS is not very efficient if the cell flow changes dramatically. DWPS
can be described by Eq.9.4. In Eq.9.4, vi is the fixed priority for different cell
flow inputs, a lower value indicates a higher priority. Ti(t) is the waiting time
of the oldest packet in the buffer of the ith channel. Qi is the priority index
associated with each cell. The lower the value, the higher the priority. y is an
emphasis parameter and the recommended value is 0.9.

9.5.1 Simulation Results

For the simulation, the size of BUFl and BUF2 is 100 cells, and the size of
TB1 and TB2 is 300 cells. In the fitness function, X is 0.35. All the simulations
are carried out by using a C++ program. The setting for the parameters of
the evolutionary algorithm is as follows:

0 population size = 10;
elite pool size = 2;
crossover probability = 0.6;

0 mutation probability = 0.05;
number of generation = 9;

0 number of evolutionary cycle = 2.

We simulated each scheduling scheme for cell flows lasting 2 seconds. Fig.
9.6 and 9.7 are the simulation results of FIFO, DWPS and EFH schemes
on scenariol. Fig. 9.8 and 9.9 are simulation results for FIFO, DWPS and
EFH schemes on scenario2. The simulation results demonstrate the viability
of the evolution scheme and that EFH can fulfill the cell scheduling task. For
scenariol, EFH can achieve lower classl cell delay than FIFO and DWPS.
The balance of classl and class2 cell loss by using these three methods is
acceptable. None of the schemes show significant bias towards any of the two
cell flows. For scenario2, the situation is quite different. EFH can still achieve
lower classl cell delay with an acceptable balance between classl cell loss and
class2 cell loss. The class1 cell delay by using DWPS is higher than that of
EFH and the balance between the classl cell loss and the class2 cell loss is
not good. So according to the quality factors as discussed in Section 9.2, EFH
can control the cell scheduling better than FIFO and DWPS when the cell
flow changes dramatically.

9.5.2 Tunability of EFH

One advantageous property of EFH is that the system performance can be ad-
justed very intuitively by decreasing or increasing the value of X in Eq.9.1. The

9 Evolvable Fuzzy Hardware for Control in Packet Switching 217

Cell Average Delay for class, Cell Average Delay for class2

18001

0 1 2 3
simulate time (pS) 06

Fig. 9.6. Cell delay for classl and class2 in scenariol

smaller the value, the smaller the classl cell delay. This property cannot be
achieved conveniently using traditional scheduling methods. As in the above,
the tunability of EFH is demonstrated by simulation results on scenario1 and
scenario2 .

The results of the simulation with different values of X for scenariol and
scenario2 are as shown in Fig. 9.10, 9.11, 9.12 and 9.13. In Fig. 9.10 and
9.11, when X is 0.4, the classl cell delay and classl cell loss are very small.
Accordingly, the class2 cell delay and cell loss are significant. If good balance
of classl cell loss and class2 cell loss is desired, a bigger value can be assigned
to A. In Fig. 9.10 and 9.11, both the classl cell loss and class2 cell loss are
moderate when X is 0.6. For situations where QoS for class2 needs to be
significantly emphasized, the value of X can be increased. The larger the value
for A, the better the QoS for classz. For example, it is clear from the plots in
Fig. 9.10 and 9.11 that X=0.8 offers good QoS for classa.

For the simulation results in Fig. 9.12 and 9.13 on scenario2, the same
conclusion can also be derived. In principle, classl cell delay can be adjusted
in the range from 0 to p x v if X is between 0 and 1. This means that classl
cell delay has a very wide range of tunability. It further implies that classl
cell loss and class2 cell loss are also tunable to a wide range. According to the

218 Ju Hui Li, Meng Hiot Lim, and Qi C m

1 o5 Cell Loss for class,

FIFO

DWPS

EFH

1 2
simulate time (pS)

Cell Loss for claw2 .r--

1 2
simulate time (BS)

Fig. 9.7. Cell loss for classl and classa in scenario1

fitness function, the acceptable level of classl cell delay can be decided based
on the value of A. On the other hand, if one can decide on the satisfactory
classl cell delay to be achieved, the value of X can also be approximated.

9.6 Hardware Implement at ion

According to the evolution scheme described by Fig. 9.2 in Section 9.4, the
chromosomes need to be evaluated within a very short time period for each
evolution. If the whole evolution process can be completed within the time it
takes to send one cell packet through the OUT channel, and a good fuzzy rule
set can be found during this time period, the system will enjoy the greatest
flexibility in adapting to the changing environment. On the whole, the perfor-
mance of the system is very much dictated by the quality of the rule set being
applied. Each rule set instance is referred to as a context, and is applicable
to the current scenario of the operating environment. As context changes, the
fuzzy inference circuit is required to accommodate the new context without
incurring significant overhead for setup. This implies that a reconfigurable
high-speed fuzzy inference circuit is very critical in EFH. In order to achieve

9 Evolvable Fuzzy Hardware for Control in Packet Switching 219

Cell Average Delay for class,

600--1
Cell Average Delay for class,

800 I

3
$
3 = 300
8
a

E?
P
200

100

0

DWPS

-

-

-

-,
1 2

simulate time (pS)

700

600

3 =0°
2 -
2 400
8

k+
2 300

200

100

0
0 1 2 3

simulate time (pS) 106

Fig. 9.8. Cell delay for class1 and class2 in scenario2

DWPS

-

-
EFH

FIFO
-

-

-

-

-

2

fast fuzzy inference and at the same time accommodate real-time online con-
text updating, we have proposed a hardware scheme for fuzzy inference called
reconfigurable fuzzy inference chip (RFIC) [21].

The novelty of the RFIC lies in its ability to accommodate an online
context change without interrupting the system operation. The block archi-
tecture of RFIC is as shown in Fig. 9.14. The main component is the FIM
(fuzzy inference map) block. It adopts an implicit inference approach to de-
liver high inference speed for applications with dynamically changing contexts.
The current applicable context is managed by the CMU (context management
unit). It stores the working fuzzy context and generates control signals such
as Ens<,,> and Sel<x,y> for the FIM. AEM (address encoding mechanism)
is the module that generates the address to access the FIM partition blocks
activated by the Ens<,,,> signals. The OAM (output aggregation mechanism)
is the dedicated circuit for fuzzy inference aggregation.

The proposed EFH system for cell scheduling is able to accommodate fuzzy
rule sets of up to 25 fuzzy rules. Hence, the FIM block incorporates 25 PBs
(partition blocks); PB<1,1>, PB<1,2> . . . PB<5,5>. Each PB is a mapping that
accommodates all the input situations with specific outputs. The mapping for
each PB is created based on a software fuzzy inference model. To illustrate

220 Ju Hui Li, Meng Hiot Lim, and Qi Cao

Cell Loss for class,

EFH

, DWPS

1 2
simulate time (pS)

Cell Loss for classz
lo4

20 8
DWPS

1 2
simulate time (pS)

Fig. 9.9. Cell loss for class1 and class2 in scenario2

the basic structure and format of each PB, we can assume that the inputs and
the membership functions are digitized to 5 bits. A sample of the mapping
data for PB<1,1> is presented in Table 9.2 for illustration. The left column of
the table lists the addresses. The whole address string is composed of three
parts, i.e., the digitized values of Inputl, Inputz and Sel<l,l>. The data are
made up of two parts. The most significant bit is the fuzzy conclusion bit
indicating T or F. The other bits represent the degree of firing for the corre-
sponding fuzzy rule. For example, refering to the first memory unit in Table
9.2, where both Inputl and Inputz equal to "OOOOO", the degree of matching
to the membership function VS is "11111". So the corresponding datum in
the location is "0,11111". Its first bit "0" represents the fuzzy conclusion T
and the other bits "11111" is the firing strength.

CMU stores the current application context and generates Ens<,,,> and
Sel<,,,> signals. For the application described, the size of the context register
required is 50 bits. Each two-bit datum in the register represents a fuzzy
rule. The position of each two-bit datum in the 50-bit string identifies the
specific rule of the context. A "01" means the fuzzy conclusion is T and "10"
indicates the fuzzy conclusion is F. A "00" means that there is no fuzzy rule
for the corresponding input situation. Each Ens<,,,> signal can be generated

9 Evolvable Fuzzy Hardware for Control in Packet Switching 221

Cell Average Delay for class,

600 7
Cell Average Delay for classz

1000 -,

Fig. 9.10. Cell delay for scenario1

by applying the logical OR operation to the corresponding two bits. A value
of "1" for Ena<x,y> indicates that PB,,,,, is enabled, which otherwise is
disabled. Sel<x,y> also depends on the specific two bits and is connected to
PB<,,,> separately. A "01" generates a "0" for Sel<,,,> and "10" produces a
"1". The circuit for OAM is as shown in Fig. 9.15. It is made up of Ave-2 blocks
and Ave-3 block. In this circuit, the most significant bit of each datum shown
in Table 9.2 involve in the aggregration operation is a sign bit. The output
has 5 more bits than the input data in order to preserve calculation precision.
The control output is derived from the sign bit, i.e, the most significant bit
of the OAM output. A positive value indicates that the inference conclusion
is T and a negative means the conclusion is F.

9.7 Conclusions

There are several challenges to the application of Evolvable hardware for solv-
ing time critical problems. We highlighted three issues, namely online adapta-
tion, scalability as well as termination of evolution. To realize EHW capable of
intrinsic online evolution, these issues have to be considered. In this chapter,

222 Ju Hui Li, Meng Hiot Lim, and Qi Cao

1 o5 Cell Loss for class,

1 2
simulate time (pS) simulate time (pS) , 06

Fig. 9.11. Cell loss for scenario1

Table 9.2. FIM content in PB<l,l>

Address Data
ooooo,ooooo,o 0,111 11
00000,00000,1 1,11111

9 Evolvable Fuzzy Hardware for Control in Packet Switching 223

Cell Average Delay for clas.~, Cell Average Delay for c l a ~ s ~

simulate time (pS)

Fig. 9.12. Cell delay for scenario2

we proposed the EFH scheme, a form of EHW whereby the fuzzy inference
scheme is carried out in hardware to achieve real-time operation. The scheme
allows for updating of online context and domain rules and further incorporat-
ing mechanisms to evolve a context appropriate for the application scenario.
In order to demonstrate the viability of our proposed EFH, we simulated the
control performance of the EFH in cell scheduling and compared the results
with some traditional scheduling methods. From the simulation results, it can
be seen that the EFH is capable of dealing with changing cell flows much bet-
ter than the traditional methods. Another significant advantage of the EFH is
tunability. This was also analyzed based on the simulation results. Based on
analysis of the simulation results, the EFH possesses significant advantages
over conventional scheduling methods. To implement the EFH, we described
the hardware implementation based on a context switchable RFIC to achieve
real-time high-speed fuzzy inferencing and high-speed context updating. By
combining this hardware scheme and the evolution scheme, an online adaptive
and intrinsic Evolvable EFH can be potentially realized using system-on-chip
technology. Although we demonstrated the application of EFH on Packet
Switching, the application of EFH is not limited to this. Some real-time con-
trol problems such as packet control in parallel computer, token control in

224 Ju Hui Li, Meng Hiot Lim, and Qi Cao

1 2
simulate time (NS) simulate time (CIS)

Fig. 9.13. Cell loss for scenario2

CMU

Fig. 9.14. Block architecture of RFIC

9 Evolvable Fuzzy Hardware for Control in Packet Switching 225

Fig. 9.15. The hardware architecture of OAM

da ta flow machine, cell flow control in future communication networks are
potentially suitable application areas.

References

X. Yao and T. Higuchi, "Promises and Challenges of Evolvable Hardware",
IEEE Trans on Syst., Man and Cybern., Part C, Applications and Reviews,
vo1.29, no.1, pp: 87-97, Feb. 1999.
W.X. Liu, M. Murakawa and T. Higuchi, "ATM Cell Scheduling by Function
Level Evolvable Hardware", LNCS 1259 (ICES1996): pp. 180-192
W.X. Liu, M. Murakawa and T. Higuchi, "Evolvable Hardware for On-line Adap-
tive T r d c Control in ATM Networks", Genetic Programming 1997, Proc. of the
Second Annual Conference, pp.504-509, Morgan Kaufmann Publishers, 1997.
T.G.W. Gordon and P.J. Bentley, "On Evolvable Hardware", In Ovaska, S. and
Sztandera, L. (Ed.) Soft Computing in Industrial Electronics. Physica-Verlag,
Heidelberg, Germany, 2002, pp. 279-323
H. D. Garis, "Evolvable Hardware: Principles and Practice",
http://www.cs.usu.edu/Ndegaris/papers/CACM-E-Hard.html
M. Iwata, I. Kajitani, H. Yamada, H. Iba and T. Higuchi, "A pattern recognition
system using Evolvable hardware1', in Proc. Int. Conf. Parallel Probl. Solving
Nature (PPSN196).

226 Ju Hui Li, Meng Hiot Lim, and Qi Cao

7. E. Sanchez, Towards Evolvable hardware: the evolutionary engineering approach,
Berlin; New York: Springer, c1996.

8. K.C. Tan, C.M. Chew, K.K. Tan, L.F Wang and Y.J. Chen, "Autonomous Robot
Navigation via Intrinsic Evolution", Proc. of the 2002 Congress on Evolutionary
Computation, 2002 (CEC'02). vo1.2, 2002 pp.1272-1277

9. J . Langeheine, K. Meier and J. Schemmel, "Intrinsic Evolution of Quasi DC
Solutions for Transistor Level Analog Electronic Circuits Using a CMOS FPTA
Chip". Proc. NASA/DoD Conference on Evolvable Hardware, 2002, pp.75-84

10. F.H. Bennett, J.R. Koza, M.A. Keane, J. Yu, W. Mydlowee and 0. Stiffelman,
"Evolution by Means of Genetic Programming of Analog Circuits that Perform
Digital Functions", Proc. of the Genetic and Evolutionary Computation Con-
ference, July 13-17, 1999, Orlando, Florida.

11. T. Higuchi, M. Iwata, I. Kajitani, M. Murakawa, S. Yoshizawa and T. Furuya,
"Hardware Evolution at Gate and Function Levels," Proc. Biologically Inspired
Autonomous Systems: Computation, Cognition and Action, Durham, North Car-
olina, March, 1996.

12. D. Keymeulen, K. Konada, M. Iwata, Y. Kuniyoshi and T. Higuchi, "Robot
Learning using Gate-Level Evolvable Hardware", In A. Birk and J. Demiris,
(ed.), Proc. of the Sixth European Workshop on Learning Robots, Lecture Notes
in Artificial Intelligence, Springer-Verlag, 1998.

13. M. Iwata, I. Kajitani, Y. Liu, N. Kajihara and T. Higuchi, "Implementation of
a Gate-Level Evolvable Hardware Chip", LNCS 2210 (ICES2001), pp. 38-49,
Springer Verlag, 2001.

14. D. Keymeulen, M. Durantez, K. Konaka, Y. Kuniyoshi and T. Higuchi, "An Evo-
lutionary Robot Navigation System using a Gate-Level Evolvable Hardware",
LNCS 1259 (ICES1996), pp.195-209, Springer Verlag, 1996.

15. I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauchi, T.
Inuo, N. Kajihara, M. Iwata, D. Keymeulen and T. Higuchi, "A gate-level EHW
chip: Implementing GA operations and reconfigurable hardware on a single LSI" ,
Evolvable Systems: From Biology to Hardware (ICES1998), LNCS 1478, pp.1-12,
Springer Verlag, 1998.

16. H. Iba, M. Iwata and T. Higuchi, "Gate-Level Evolvable Hardware: Empirical
Study and Application", In D. Dasgupta and Z. Michalewicz, editors, Evolu-
tionary Algorithms in Engineering Applications, pp.260-275, Springer-Verlag,
Berline,1997.

17. H. Iba, M. Iwata and T. Higuchi, "Machine Learning Approach to Gate-
Level Evolvable Hardware", Evolvable Systems: From Biology to Hardware
(ICES1996), LNCS 1259, pp.327-343, Springer-Verlag, 1997.

18. T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu and M. Salami, "Evolv-
able Hardware a t Function Level", Proc. of 1997 IEEE Int. Conf. on Evolution-
ary Computation (ICEC97), pp. 187-192, 1997.

19. M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata and T. Higuchi,
"Hardware Evolution a t Function Level", Parallel Problem Solving from Nature-
PPSN IV, LNCS 1141, pp.62-71, Springer-Verlag, 1996.

20. J.H. Li and M.H. Lim, "Evolvable fuzzy system for ATM cell scheduling", Proc.
of 5th k t . Conf. Evolvable Syst.: From Biology to Hardware (ICES 2003) LNCS
2606, pp. 208-217, Springer-Verlag, 2003.

21. Q. Cao, M.H. Lim and J.H. Li, "A context switchable fuzzy inference chip,"
submitted to IEEE Trans. on Fuzzy Syst..

9 Evolvable Fuzzy Hardware for Control in Packet Switching 227

22. ATM Forum, "ATM Traffic Management Specification 4.0n, April 1996,
ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.pdf

23. R. Jain, "Congestion Control and Traffic Management in ATM Networks: Recent
Advances and A Survey," Computer Networks and ISDN Systems, vo1.28, no.13,
October 1996, pp. 1723-1738.

24. T. Lizambri, F. Duran and S. Wakid, "Priority Scheduling and Buffer Manage-
ment for ATM Traffic Shaping", Proc. of 7th IEEE Workshop on Future Trends
of Distributed Computing Systems, FTDCS'99, pp.36-43, Dec.20-22, 1999, Cape
Town, South Africa.

25. E.P. Rathgeb, "Modeling and Performance Comparison of Policing Mechanisms
for ATM Networks", IEEE J. Select. Areas Commun., vo1.9, no.3, April 1991.

26. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson and J.D. Robbins, "Perfor-
mance models of statistical multiplexing in packet video communications," IEEE
Trans. Commun., vo1.36, no.7, pp.834-844, July 1988.

27. R. Guerin, H. Ahmadi, M. Naghshineh, "Equivalent Capacity and Its Applica-
tion to Bandwidth Allocation in High-speed Networks," IEEE J. Select. Areas
Commun., vo1.9, no.7, pp968-981, Sept. 1991.

28. M.H. Lim, S. Rahardja and B.H. Gwee, "A GA paradigm for learning fuzzy
rules", Fuzzy Sets and Systems 82(1996), pp.177-186.

29. M.H. Lim and W.L. Ng, "Iterative Genetic Algorithm for Learning Efficient
fuzzy rule Set", to appear in AIEDAM, 2004.

30. B. Kosko, Neural Networks and fizzy Systems, Prentice Hall, Englewood Cliffs,
NJ, 1992.

Improving Multi Expression Programming: An
Ascending Trail from Sea-Level Even-3-Parity
Problem to Alpine Even-18-Parity Problem

Mihai Oltean

Department of Computer Science,
Faculty of Mathematics and Computer Science,
Babes Bolyai University, Kogalniceanu 1, 3400 Cluj-Napoca, Romania,
moltean@cs.ubbcluj.ro, www.cs.ubbcluj.ro/~moltean

Multi Expression Programming is a Genetic Programming variant that uses
a linear representation of individuals. A unique feature of Multi Expression
Programming is its ability of storing multiple solutions of a problem in a sin-
gle chromosome. In this chapter, we propose and use several techniques for
improving the search performed by Multi Expression Programming. Some of
the most important improvements are Automatically Defined Functions and
Sub-symbolic node representation. Several experiments with Multi Expres-
sion Programming are performed in this chapter. Numerical results show that
Multi Expression Programming performs very well for the considered test
problems.

10.1 Introduction

Multi Expression Programming (MEP)' [l l , 12, 131 is a new and very effi-
cient technique that may be used for solving difficult real-world problems. A
unique feature of MEP is its ability of storing multiple solutions of a prob-
lem in a single chromosome. As shown in [l l] , this feature does not increase
the complexity of the decoding process when compared to other Genetic Pro-
gramming (GP) [7, 81 variants that store a single solution in a chromosome
(such as Gene Expression Programming (GEP) [5] , Genetic Algorithms for
Deriving Software (GADS) [16], Grammatical Evolution (GE) [14], Cartesian
Genetic Programming (CGP) [lo]).

The MEP technique has been efficiently used for solving symbolic regres-
sion problems [ll] and even-parity problems [13].

MEP source code is available at www.mep.cs.ubbc1uj.ro.

230 Mihai Oltean

Parity problems arise in many practical applications related to the infor-
mation technology, especially when data need to be safely transmitted over
a network. According to [7] the Boolean even-parity functions are the most
difficult Boolean functions to detect via a blind random search. Due to this
reason, the ability of the evolutionary algorithms of performing an efficient
search in the solutions space can be tested using this problem as a benchmark.

In [13], the MEP has been used for solving even-3 and even-4-parity prob-
lems. In this chapter we propose and use several techniques for improving the
search performed by Multi Expression Programming. Some of these techniques
are:

(i) Automatically Defined Functions (ADFs) [7].
(ii) Sub-Symbolic Node Representation [18].

Numerical experiments performed in this chapter include the use of MEP
for solving the even-parity instances from even-3 up to even-18-parity.

MEP without ADFs was able to solve (using a reasonable population and
within a reasonable timeframe) up to even-5-parity problem. When Automati-
cally Defined Functions are employed a considerable improvement is obtained,
allowing us to evolve a solution for up to even-8-parity problem. More improve-
ments are done when a Sub-symbolic node representation was employed.

Results of the numerical experiments are compared to those provided by
Genetic Programming [7, 8, 181. It can be easily seen that Multi Expression
Programming outperforms Genetic Programming with more than one order
of magnitude. Note that a perfect comparison between MEP and GP cannot
be made due to the incompatibility of respective representations.

The chapter is organized as follows. In section 10.2 the Even-Parity prob-
lem is described. The Multi Expression Programming technique is briefly de-
scribed in section 10.3. The metrics used to assess the performance of the MEP
algorithm are described in section 10.4. Several numerical experiments with
MEP for solving the even-3, even-4 and even-5-parity problems are performed
in section 10.5. Automatically Defined Functions for MEP are introduced in
section 10.6. Several numerical experiments with MEP and ADFs are per-
formed in section 10.7. The sub-symbolic node representation and the smooth
operators are introduced in section 10.8. Numerical experiments with MEP
and sub-symbolic node representation are performed in section 10.9. Conclu-
sions and the further work directions are suggested in section 10.10.

10.2 Problem Statement

Our aim is to find a Boolean function that satisfies a set of fitness cases. The
particular function that we want to find is the Boolean even-parity function.
This function has k Boolean arguments and it returns T (True) if an even
number of its arguments are T. Otherwise the even-parity function returns F

10 Improving Multi Expression Programming 231

(False) [7, 181. According to [7] the Boolean even-parity functions appear to
be the most difficult Boolean functions to detect via a blind random search.

In applying a Genetic Programming technique (particularly Multi Expres-
sion Programming) to the even-parity function of k arguments, the terminal
set T consists of the k Boolean arguments do, dl, dz, ... dk-1.

The function set F usually consists of four two-argument primitive Boolean
functions (also called gates [9]): AND, OR, NAND, NOR [7, 81. Using this
set we can obtain a solution for small instances of the even-parity problem.
Genetic Programming with Automatically Defined Functions has obtained
a solution for up to even-11-parity problem using a reasonable population
size. If we extend this set by including other Boolean functions (such as EQ
and XOR) we can obtain solutions for larger instances. For instance, in [18]
Genetic Programming using an extended set of function symbols has been
used for solving up to even-22-parity problems. Note that in this case a parallel
variant of GP was used on a network of computers structured in a client-server
architecture.

The set of fitness cases for this problem consists of the 2k combinations of
the Ic Boolean arguments. The fitness of an MEP chromosome is the sum, over
these 2k fitness cases, of the Hamming distance (error) between the returned
value by the MEP chromosome and the correct value of the Boolean function.
Since the standardized fitness ranges between 0 and 2k, a value closer to zero
is better (the fitness is to be minimized).

10.3 Multi Expression Programming

In this section the Multi Expression Programming (MEP) [ll] paradigm is
briefly described.

10.3.1 Individual Representation

MEP genes are represented by substrings of a variable length. The number
of genes per chromosome is constant and it defines the length of the chromo-
some. Each gene encodes a terminal or a function symbol. A gene encoding a
function includes references towards the function arguments. Function argu-
ments always have indices of lower values than the position of that function
in the chromosome.

This representation is similar to the way in which C and Pascal compilers
translate mathematical expressions into machine code [I].

MEP representation ensures that no cycle arises while the chromosome
is decoded (phenotypically transcripted). According to the representation
scheme the first symbol of the chromosome must be a terminal symbol. In
this way only syntactically correct programs (MEP individuals) are obtained.

232 Mihai Oltean

Example. We employ a representation where the numbers on the left positions
stand for gene labels (or memory addresses). Labels do not belong to the
chromosome, they are provided here only for explanation purposes.

For this example, we use the set of functions F = {+, *) and the set of
terminals T = {a, b, c, d). An example of chromosome using the sets F and
T is given below:

10.3.2 Decoding MEP Chromosome and Fitness Assignment

In this section we described the way in which MEP individuals are translated
into computer programs and the way in which the fitness of these programs
is computed.

This translation is achieved by reading the chromosome top-down. A termi-
nal symbol specifies a simple expression. A function symbol specifies a complex
expression obtained by connecting the operands specified by the argument po-
sitions with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple
expressions formed by a single terminal symbol. These expressions are El = a,
Ez = b, E4 = c and Eg = d. Gene 3 indicates the operation + on the
operands located at positions 1 and 2 of the chromosome. Therefore gene
3 encodes the expression E3 = a + b. Gene 6 indicates the operation + on the
operands located at positions 4 and 5. Therefore gene 6 encodes the expression
E6 = c + d. Gene 7 indicates the operation * on the operands located at
position 3 and 6. Therefore gene 7 encodes the expression E7 = (a + b) * (c+ d),
wherein E7 is the expression encoded by the whole chromosome.

There is neither practical nor theoretical evidence that one of these ex-
pressions is better than the others. Moreover Wolpert and McReady [20, 211
proved that we cannot use the search algorithm's behavior so far for a par-
ticular test function to predict its future behavior on that function. Thus we
cannot choose one of the expressions (let us say expression E7) to store the
output of the chromosome. Even this expression proves to be useful for the
first 10 generations we cannot guarantee that it will be the best option for all
generations.

This is why each MEP chromosome is allowed to encode a number of
expressions equal to the chromosome length. Each of these expressions is con-
sidered as being a potential solution of the problem.

10 Improving Multi Expression Programming 233

The value of these expressions may be computed by reading the chromo-
some top down. Partial results are computed by Dynamic Programming [2]
and are stored in a conventional manner.

As MEP chromosome encodes more than one problem solution, it is in-
teresting to see how the fitness is assigned. Usually the chromosome fitness is
defined as the fitness of the best expression encoded by that chromosome. For
instance, if we want to solve symbolic regression problems the fitness of each
sub-expression Ei may be computed using the formula:

where ok,i is the obtained result by the expression Ei for the fitness case k
and wk is the targeted result for the fitness case k. In this case the fitness
needs to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in chromosome:

When we have to deal with other problems we compute the fitness of
each sub-expression encoded in the MEP chromosome and the fitness of the
entire individual is given by the fitness of the best expression encoded in that
chromosome.

10.3.3 Genetic Operators

Search operators used within MEP algorithm are crossover and mutation.
These operators preserve the chromosome structure. All offspring are syntac-
tically correct expressions.

Crossover

By crossover two parents are selected and recombined. For instance, within
the uniform recombination the offspring genes are taken randomly from one
parent or another.

Example. Let us consider the two parents Cl and C2 given in Table 10.1. The
two offspring O1 and O2 are obtained by uniform recombination as shown in
Table 10.1.

Mutation

Each symbol (terminal, function or function pointer) in the chromosome may
be the target of mutation operator. By mutation some symbols in the chro-
mosome are changed. To preserve the consistency of the chromosome its first
gene must encode a terminal symbol.

234 Mihai Oltean

Table 10.1. MEP uniform recombination.

Parents Offspring

Example. Consider the chromosome C given in Table 10.2. If the boldfaced
symbols are selected for mutation, an offspring 0 is obtained as given in Table
10.2.

Table 10.2. MEP mutation.
c 0

10.3.4 MEP Algorithm

Standard MEP algorithm uses steady state [19] as its underlying mechanism.
MEP algorithm starts by creating a random population of individuals. The fol-
lowing steps are repeated until a given number of generations is reached. Two
parents are selected using a selection procedure. The parents are recombined
in order to obtain two offspring. The offspring are considered for mutation.
The best offspring replaces the worst individual in the current population if
the offspring is better than the worst individual. The algorithm returns as its
answer the best expression evolved along a fixed number of generations.

10.4 Assessing the Performance of the MEP Algorithm

For assessing the performance of the MEP algorithm three statistics are of
high interest:

10 Improving Multi Expression Programming 235

(i) The relationship between the success rate and the number of genes in a
MEP chromosome,

(ii)The relationship between the success rate and the size of the population
used by the MEP algorithm,

(iiiphe computational effort.

The success rate is computed using the equation (10.1).

The number o f successful runs
Success rate =

The total number of runs
' (10.1)

Another method used to assess the effectiveness of an algorithm, has been
suggested by Koza [7]. The method consists of calculating the number of
chromosomes, which would have to be processed to give a certain probability
of success. To calculate this figure one must first calculate the cumulative
probability of success P(M, i), where M represents the population size, and i
the generation number. The value R(z) represents the number of independent
runs required for a probability of success (given by z) at generation i. The
quantity I (M, z, i) represents the minimum number of chromosomes which
must be processed to give a probability of success z, at generation i. The
formulae are given by the equations (10.2), (10.3) and (10.4). Ns(i) represents
the number of successful runs at generation i, and Ntotal, represents the total
number of runs. Note that when z = 1.0 the formulae (10.3) and (10.4) are
invalid (all runs successful). In the tables and graphs of this chapter z takes
the value 0.99.

log(1 - 2)
R(z) = ceil { log(1- P(M, i)

Another important issue is related to the number of function evaluations
performed by the considered techniques (MEP and GP in our case). Due to
its special Multi-Expression ability MEP performs more function evaluations
than GP (considering the same parameters for both algorithms). But, note
that 1 function evaluation performed by MEP is not equivalent with 1 function
evaluation performed by GP. MEP and GP have the same complexity for the
process of decoding the individuals (that is O(NG), where NG is the number
of genes). MEP encodes NG solutions in a chromosome whereas GP encodes
1 solution in a chromosome. Thus, the complexity of performing 1 function
evaluation is O(1) for MEP and O(NG) for GP. This is why we calculate
the computational effort for both MEP and GP using the same formula 10.4
without taking into account the number of genes in a MEP chromosome.

236 Mihai Oltean

10.5 Numerical Experiments

In this section we perform several experiments with standard MEP for solving
several instances of the even-parity problem. General parameter settings for
MEP are given in Table 10.3.

Table 10.3. General parameters of the MEP algorithm for solving even-parity
problems.

Parameter Value
Number of generations 51
Mutation probability 0.2
Crossover type Uniform
Crossover probability 0.9
Selection q-tournament (q = 10% of the Population size)
Function set F = {AND, OR, NAND, NOR)

For reducing the chromosome length we keep all the terminals on the first
positions of the MEP chromosomes. We also increased the selection pressure
by using larger values (usually 10% of the population size) for the tournament
sample.

Even-3- parity

The even-3-parity problem has three Boolean inputs and one Boolean output.
The number of fitness cases is 23 = 8. The relationship between the success
rate and the number of genes in a chromosome and the population size is
analyzed for this problem.

A population of 100 individuals has been used when the relationship be-
tween the success rate and the chromosome length has been analyzed. Chro-
mosomes of 100 genes have been used for analyzing the relationship between
the success rate and the population size. Other parameters of the MEP algo-
rithm are given in Table 10.3. Results are depicted in Fig. 10.1.

Fig. 10.1 shows that MEP is able to solve very well this problem. A popu-
lation of 240 individuals each having 100 genes (see Fig. 10.1 right side) or a
population of 100 individuals with 200 genes (see Fig. 10.1 left side) is suffi-
cient to yield a 100% probability of success GP used [7] a population of 4000
individuals in order to achieve a 100% probability of success for this problem.

The shortest evolved circuit implementing the even-3-parity problem has
6 gates. One of the evolved circuits is depicted in Fig. 10.2.The minimum
computational effort required to solve this problem is 6840 and it has been
obtained at generation 11 using a population of 40 individuals with 100 genes
each.

10 Improving Multi Expression Programming 237

Number of genes Population size

Fig. 10.1. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 100 runs.

Fig. 10.2. A circuit for the even-3-parity problem.

In this experiment, the relationship between the number of genes in a chro-
mosome and the success rate is analyzed for the even-4-parity problem. A
population of 400 individuals has been used when the relationship between
the success rate and the chromosome length has been analyzed. Chromosomes
having 200 genes have been used for analyzing the relationship between the
success rate and the population size. Other parameters of the MEP algorithm
are given in Table 10.3. Results are depicted in Fig. 10.3.

Fig. 10.3 shows that MEP performs very well on the considered test prob-
lem. A population of 200 individuals each having 180 genes is sufficient for
yielding a success rate of 42% (see Fig. 10.3 left side).

238 Mihai Oltean

Number of genes Population size

Fig. 10.3. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 100 runs.

Knowing that GP used a population of 4000 individuals to achieve a suc-
cess rate of 42% we may infer that MEP needs a population smaller with one
order of magnitude than the population needed by GP to solve the even-4-
parity problem. The shortest evolved circuit implementing the even-4-parity
problem has 9 gates. One of the evolved circuits is depicted in Fig. 10.4.

Fig. 10.4. A circuit for the even-Cparity problem.

The minimum computational effort required to solve this problem is 45,900
and it has been obtained at generation 9 using a population of 300 individuals
with 200 genes each.

10 Improving Multi Expression Programming 239

In this experiment, the behavior of the MEP algorithm for solving the even-
5-parity problem is analyzed. For this problem MEP is run with a population
of 4000 individuals having 600 genes each. In 5 runs (out of 30) MEP was able
to find a perfect solution for this problem, yielding a success rate of 16.66%.

Note that for this problem GP - without Automatically Defined Functions
(ADFs) - was not able to obtain a solution (within 20 runs) with a popula-
tion of 4000 individuals [7]. When the population size was increased to 8000
individuals a solution was obtained by GP after 8 runs [7].

The curve representing the computational effort needed by MEP to solve
the even-5-parity problem is depicted in Fig. 10.5.

0 5 10 15 20 25 30 35 40 45 50
Number of Generations

Fig. 10.5. The computational effort and the cumulative probability of success for
the even-5-parity problem.

The minimum computational effort required to solve this problem is
1,364,000 and it was obtained at generation 11.

10.5.1 Summarized Results

The results obtained by GP and MEP are summarized in Table 10.4.
Table 10.4 shows that MEP outperforms standard GP with more than one

order of magnitude for the even-3 and even-4-parity problems.
We may conclude that MEP significantly outperforms standard GP (with-

out ADFs) for these particular cases of the even-parity problem.

240 Mihai Oltean

Table 10.4. Computational effort required by GP and MEP for solving several
even-parity instances. G P results are taken from [7].

Problem GP MEP
even-bparity 80,000 6,840

10.6 Automatically Defined Functions in MEP

In this section we describe the way in which the Automatically Defined Func-
tions [8] are implemented within the context of Multi Expression Program-
ming.

The necessity of using reusable subroutines is a day-by-day demand of the
software industry. Writing reusable subroutines proved to reduce:

(2) the size of the programs.
(iz)the number of errors in the source code.
(zzz,khe cost associated with the maintenance of the existing software.
(zv)the cost and the time spent for upgrading the existing software.

As noted by Koza [8] function definitions exploit the underlying regularities
and symmetries of a problem by obviating the need to tediously rewrite lines
of essentially similar code. Also, the process of defining and calling a function,
in effect, decomposes the problem into a hierarchy of subproblems.

A function definition is especially efficient when it is repeatedly called with
different instantiations of its arguments. GP with ADFs have shown significant
improvements over the standard GP for most of the considered test problems
[7, 81.

An ADF in MEP has the same structure as a MEP chromosome (i.e. a
string of genes). The ADF is also evolved in the same way as a standard MEP
chromosome. The function symbols used by an ADF are the same as those
used by the standard MEP chromosomes. The terminal symbols used by an
ADF are restricted to the function (ADF) parameters (formal parameters).
For instance, if we define an ADF with two formal parameters po and pl
we may use only these two parameters as terminal symbols within the ADF
structure, even if in the standard MEP chromosome (i.e. the main evolvable
structure) we may use, let say, 20 terminal symbols only.

The set of function symbols of the main MEP structure is enriched with
the Automatically Defined Functions considered in the system.

Example. Let us suppose that we want to evolve a problem using 2 ADFs,
denoted ADFO and ADFl having 2 (po and pl) respectively 3 (po and pl and
p z) arguments. Let us also suppose that the terminal set for the main MEP
chromosome is T = {a , b) and the function set F = {+, -, *, 1). The terminal

10 Improving Multi Expression Programming 241

and function symbols that may appear in ADFs and main MEP chromosome
are given in Table 10.5.

Table 10.5. Parameters, terminal set and the function set for the ADFs and for
the main MEP chromosome.

Parameters Terminal set Function set
ADFO Po, PI T={Po, pl) F={+,-,*,/)
ADFl Po1 P11 P2 T={po, pi, p2) F={+,-,*,I}
MEP chromosome - T={a, b) F={+,-,*,I, ADFO, ADF1)

The ADFO (pol pl) could be defined as follows:

The main MEP chromosome could be the following:

1. a
2. b
3. + 1, 2
4. ADFO 3 , l
5. a
6. ADFl 4, 5, 5
7. * 3, 6

The fitness of a MEP chromosome is computed as described in section
10.3.2. The quality of an ADF is computed in a similar manner. The ADF
is read once and the partial results are stored in an array (by the means
of Dynamic Programming [2]) . The best expression encoded in the ADF is
chosen to represent the ADF.

The genetic operators (crossover and mutation) used in conjunction with
the standard MEP chromosomes may be used for the ADFs too. The prob-
abilities for applying genetic operators are the same for MEP chromosomes
and for the Automatically Defined Functions. The crossover operator may
be applied only between structures of the same type (that is ADFs having
the same parameters or main MEP chromosomes) in order to preserve the
chromosome consistency.

10.7 Numerical Experiments with MEP and ADFs

In this section, several numerical experiments with Multi Expression Program-
ming and Automatically Defined Functions are performed. The experiments

242 Mihai Oltean

performed in this section show that the ADF mechanism greatly improves the
quality of the search, allowing us to perform a detailed analysis up to the even-
8-parity problem. General parameters for Multi Expression Programming are
given in Table 10.6.

Table 10.6. The general parameters of MEP with ADFs for solving even-parity
problems.

Parameter Value
Number of generations 51
Mutation 0.02
Crossover type Uniform
Selection q-tournament (q = 10% of the Population Size)
Function set F = {AND, OR, NAND, NOR)

All terminals are kept on the first positions of the MEP chromosomes. The
tournament size is set to 10% of the population size).

In this experiment the relationship between the success rate, the population
size and the chromosome length for the even-$-parity problem is analyzed.

A population of 200 individuals is used when the relationship between the
success rate and the chromosome length is analyzed. Chromosomes having 200
genes is used for analyzing the relationship between the success rate and the
population size. Two Automatically Defined Functions taking two and three
arguments are used in conjunction with Multi Expression Programming. The
number of genes in ADFs was set to 50. Other parameters are given in Table
10.6. Results are depicted in Fig. 10.6.

The success rate of MEP is 100% when the population size is 200. By
contrast, Genetic Programming uses a population of 4000 individuals to obtain
the same success rate (100%) [7].

We also computed the effort needed to solve this problem. For this purpose
we use a population of 60 MEP individuals having 200 genes each. The number
of individuals that needs to be processed in order to obtain a solution with
99% probability is 7,440. This number was obtained at generation 43.

For this experiment we use a population with 400 individuals. Each individual
has 200 genes. Three Automatically Defined Functions taking two, three and
four arguments are used. The number of genes in each ADF is 50. Other MEP
parameters are given in Table 10.6.

10 Improving Multi Expression Programming 243

Number of genes
20 40 60 80 100120140160180200

Population size

Fig. 10.6. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 100 runs.

The cumulative probability of success and the computational effort needed
for solving this problem are depicted in Fig. 10.7.

0 5 10 15 20 25 30 35 40 45 50
Number of Generations

Fig. 10.7. The computational effort and the cumulative probability of success for
the even-5-parity problem. Results are averaged over 100 runs.

244 Mihai Oltean

The I (M, i, z) curve reaches a minimum value at generation 15. Process-
ing a number of 36,000 individuals is sufficient to yield a solution with 99%
probability.

As a comparison, GP with ADFs requires 152,000 individuals to be pro-
cessed in order to obtain a solution with 99% probability [8].

For this problem we use a population with 800 individuals. Each individual has
300 genes. Three ADFs taking two, three and four arguments are used. The
number of genes in each ADF is 50. Other parameters of the MEP algorithm
are given in Table 10.6. Results are presented in Fig. 10.8.

0 5 10 15 20 25 30 35 40 45 50
Number of Generations

Fig. 10.8. The computational effort and the cumulative probability of success for
the even-6-parity problem. Results are averaged over 50 runs.

The I (M , i, z) curve reaches a minimum value at generation 9. Processing
a number of 93,600 individuals is sufficient to yield a solution to with 99%
probability.

For this experiment we use a population with 1000 individuals. Each indi-
vidual has 400 genes. Three ADFs taking two, three and four arguments are

10 Improving Multi Expression Programming 245

Number of Generations

Fig. 10.9. The computational effort and the cumulative probability of success for
the even-7-parity problem. Results are averaged over 50 runs.

used. The number of genes in each ADF is 100. Other parameters are given
in Table 10.6. Results are given in Fig. 10.9.

Fig. 10.9 shows that the I (M , i, z) curve reaches a minimum value at
generation 20. Processing a number of 160,000 individuals is sufficient to yield
a solution to with 99% probability. The cumulative probability of success is
60% at generation 50.

This case of the even-parity is the most difficult problem analyzed in this
section. A population of 1000 individuals is used in this case. Each individual
has 400 genes. Three ADFs taking two, three and four arguments are used.
The number of genes in each ADF is 100. Other parameters are given in
Table 10.6. Due to the increased computational time we performed only five
runs which are not sufficient for computing a statistic (i.e. the success rate or
the computational effort). A perfect solution (satisfying all fitness cases) was
obtained in the fourth run.

10.7.1 Summarized Results

The results obtained by GP and MEP with Automatically Defined Functions
are summarized in Table 10.7.

246 Mihai Oltean

Table 10.7. Computational effort required by GP with ADFs and MEP with ADFs
for solving several even-parity instances. GP results are taken from [8].

Problem GP with ADFs MEP with ADFs
even-4-parity 80,000 7,440

Table 10.7 shows that MEP with ADFs outperforms GP with ADFs with
more than one order of magnitude for the even-4, even-5, even-6, and even-7-
parity problems.

10.8 Sub-Symbolic Node Representation

The Sub-Symbolic Node Representation [15, 181 in order to allow GP to per-
form small moves in the search space. It is widely known that a single point
mutation, that can be applied to a MEP chromosome under the standard rep-
resentation, may nevertheless result in a significant change in behavior of the
MEP program. For instance, consider the gene AND 1 7, where the expressions
encoded in positions 1 and 7 are Boolean expressions. If the operator AND is
replaced with NAND, the return value of that subtree will be changed for all
fitness cases. Instead of such a radical change we want a smoother mechanism
that produced a more refined result (that is a mechanism that changes the
results produced by only a subset of the training set).

A Boolean function of arity n can be represented as a truth table (bit-
string) of length 2n, specifying its return values on each of the 2n input com-
binations. Thus, AND may be represented as 1000, OR as 1110, XOR as 0110.
This representation is referred [15, 181 as sub-symbolic because function nodes
are now seen as collection of entities rather than atomic units.

One feature of the Sub-Symbolic representation of Boolean function nodes
is that, in contrast with the reduced function set normally used in Boolean
classification tasks, it is unbiased, since it incorporates all 2n nodes of arity n
into its function set. Some of these may be superfluous (e.g. always-ON and
always-OFF).

Our principal reason for including all Boolean functions of a given arity in
our set is simplicity [18]. IF we want to reduce this set we have to put some
constrains in the smooth operators (described in the next section). Note that
the EQ and XOR functions are necessarily included in the arity 2 functions sets
and that these will probably enhance the performance on the parity problems.
On the other hand, the function set is much larger than normal leading to a
significantly larger search space.

10 Improving Multi Expression Programming 247

10.8.1 Smooth MEP Operators

In this section two new MEP operators are proposed. These operators are
similar to the standard MEP operators but they can work with the sub-
symbolic node representation.

Smooth Uniform Crossover

By crossover two parents are selected and are recombined. For instance, within
the uniform recombination the offspring genes are taken randomly from one
parent or another. The function parts, which are now binary strings of length
4, are recombined using the uniform crossover from the binary encoding [4].

Example. Let us consider the two parents Cl and C2 given in Table 10.8. The
two offspring 01 and 0 2 are obtained by uniform recombination as shown in
Table 10.8.

Table 10.8. MEP smooth uniform crossover.

Parents Offspring
C1 c'2 01 0'2

Smooth Mutation

Each symbol (terminal, function reference and bit encoding the function sym-
bol) in the chromosome may be target of mutation operator. Each binary
position encoding the function symbol in a gene is affected by the smooth
mutation operator with the same probability as all other symbols in a chro-
mosome. To preserve chromosome consistency its first gene must encode a
terminal symbol.

Example. Consider the chromosome C given in Table 10.9. If the boldfaced
symbols are selected for mutation an offspring 0 is obtained as shown in Table
10.9.

248 Mihai Oltean

Table 10.9. MEP smooth mutation.

10.9 Numerical Experiments with MEP and
Sub-Symbolic Representation

The use of Sub-symbolic representation greatly improved the performance
of MEP algorithm. Due to this reason we begin our experiments with the
even-11-parity problem.

In [18] a parallel version of GP was used to solve the even-parity problem
using a sub-symbolic representation. The parallel GP program was run on a
client-server architecture with 50 processors. In [18] the authors performed a
single run for all instances larger than the even-12-parity problem. More than
that, a special technique called sub-machine code GP [17] was used in order
to speed-up the GP program. The technique sub-machine code GP make use
of processor's ability to perform some operations (such as AND) in parallel
for all bits.

Due to the simplicity and efficiency of the MEP algorithm we performed
multiple runs (at least 10) for each experiment. This allows us to compute
the statistics described in section 10.4. Note that MEP was run on a single
processor (at 850 MHz) architecture.

General parameter settings used by MEP in all the experiments performed
in this section are given in Table 10.10.

Table 10.10. MEP parameters for solving even-parity problems using a sub-
symbolic representation of operators.

Parameter Value
Mutation probability 0.02
Crossover type Uniform
Crossover probability 0.9
Selection binary tournament
Function set 16 Boolean functions

10 Improving Multi Expression Programming 249

The even-11-parity problem has 11 Boolean inputs and one Boolean output.
The number of fitness cases is 2'' = 2048.

The relationship between the success rate and the number of genes in a
chromosome and the population size is analyzed for this problem.

A population of 50 individuals is used when the relationship between the
success rate and the chromosome length is analyzed. Chromosomes with 300
genes are used for analyzing the relationship between the success rate and the
population size. The number of generations was set to 100. Other parameters
of the MEP algorithm are given in Table 10.11. Results are depicted in Fig.

Number of genes Population size

Fig. 10.10. The relationship between the success rate and the chromosome length
(left side) and the population size (right side). Results are averaged over 50 runs.

Fig. 10.10 show that MEP is able to solve very well this problem. A pop-
ulation of 70 individuals having 300 genes each(see Fig. 10.10 right side) is
sufficient to yield a 100% probability of success. The success rate increases as
long as the number of genes in a MEP chromosome increases (see Fig. 10.10).

The number of fitness cases for the even-12-parity problem is 4096. For solving
this problem with MEP we use a population of 25 individuals having 500 genes
each. Other MEP parameters are given in Table 10.10. The program was run
for 100 generations. Results over 100 independent runs are presented in Fig.
10.11.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 7,420. This number
is obtained at generation 99.

250 Mihai Oltean

Number of Generations

Fig. 10.11. The computational effort and the cumulative probability of success for
the even-12-parity problem. Results are averaged over 100 runs.

By contrast, Genetic Programming with a population of 100 individuals
requires 98,800 individuals to be processed in order to obtain a solution with
99% probability [18]. Thus, GP requires at least 13.6 times more individuals
to be processed than MEP for solving this problem.

Even- 13-parity

The number of fitness cases for this problem is 8192. We use the same MEP
parameters as for the even-12-parity problem. The relationship between the
number of generations and the cumulative probability of success is depicted
in Fig. 10.12. The number of individuals to be processed in order to obtain a
solution with 99% probability is computed for this problem, too.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 2,325. This number
is obtained at generation 93.

Even- 14-parity

The number of fitness cases for the even-14-parity problem is 16384. For solv-
ing this problem with MEP we use a population of 40 individuals having 500
genes each. Other MEP parameters are given in Table 10.10. The program
was run for 100 generations. Results over 100 independent runs are presented
in Fig. 10.13.

10 Improving Multi Expression Programming 251

Fig. 10.12. The computational effort and the cumulative probability of success for
the even-13-parity problem. Results are averaged over 100 runs.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 7,210. This number
is obtained at generation 89.

The number of fitness cases for the even-15-parity problem is 32768. For solv-
ing this problem with MEP we use a population of 100 individuals having 700
genes each. Other MEP parameters are given in Table 10.10. The program
was run for 100 generations. Results over 100 independent runs are presented
in Fig. 10.14.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 29,700. This number
is obtained at generation 99.

Even- 16-parity

The number of fitness cases for the even-16-parity problem is 65536. For solv-
ing this problem with MEP we use a population of 100 individuals having 700
genes each. Other MEP parameters are given in Table 10.10. The program
was run for 250 generations. Results over 100 independent runs are presented
in Fig. 10.15.

252 Mihai Oltean

30 40 50 60 70 80 90 100
Number of Generations

Fig. 10.13. The computational effort and the cumulative probability of success for
the even-14-parity problem. Results are averaged over 100 runs.

The minimum number of individuals that needs to be processed in order
to obtain a solution with a 99% probability of success is 28,000. This number
is obtained at generation 140.

For this problem we performed 10 independent runs using the same parameters
as those used for the problem even-16-parity. In all runs we obtained a perfect
solution. The average number of generations required to obtain a solution is
131.

For this problem we performed 6 independent runs using the same parameters
as those used for the problem even-16-parity. In 4 runs we obtained a perfect
solution. The average number of generations required to obtain a solution is
168.

10.9.1 Summarized Results

The results obtained by MEP with Sub-symbolic node representation are
summarized in Table 10.11.

10 Improving Multi Expression Programming 253

Fig. 10.14. The computational effort and the cumulative probability of success for
the even-15-parity problem. Results are averaged over 100 runs.

Table 10.11. Computational effort required by GP and MEP with Sub-symbolic
node representation for solving several even-parity instances. GP results are taken
from [18].

Problem GP with Sub- MEP with Sub-
Symbolic node repre- Symbolic node repre-
sentation sentat ion

even-12-parity 98,800 7,420
even-lbparity - 2,325
even-14-parity - 7,210
even-15-parity - 29,700
even-16-parity - 28,000

Table 10.10 shows that MEP is able to solve the considered instances of the
parity problem very well. The cells corresponding to GP are empty because
GP was run only once for the considered examples.

10.10 Conclusions and Further Work

In this chapter, MEP technique has been used for solving even-parity prob-
lems. Two mechanisms for improving the MEP technique have been proposed
and tested: Automatically Defined Functions and Sub-symbolic node repre-
sentation.

254 Mihai Oltean

60 80 100 120 140 160 180 200 220 240
Number of Generations

Fig. 10.15. The computational effort and the cumulative probability of success for
the even-16-parity problem. Results are averaged over 100 runs.

Tables 10.4, 10.9 and 10.10 show that MEP outperforms GP when the
success rate and the number of individuals to be processed is considered. As
we said it before this statistics should be interpreted carefully since there are
significant differences between GP and MEP representations and a perfect
comparison between these two techniques cannot be made.

Further research will be focused on developing a Hierarchically Automat-
ically Defined Functions [8] system within the context of Multi Expression
Programming. In this system any function is allowed to call any other func-
tion already defined within the system.

Further efforts will be dedicated for implementing a parallel version of
MEP (similar to that used in [18] for GP). Using this implementation we will
be able to solve other large scale problems including higher versions of the
even-parity problem.

Acknowledgments

The author is grateful to anonymous referees for their constructive comments
and criticism of earlier versions of this chapter. The title of the chapter is
adapted from [6] .

10 Improving Multi Expression Programming 255

References

1. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1986.

2. R. Bellman, Dynamic Programming, Princeton University Press, New Jersey,
1957.

3. M. Brameier, W. Banzhaf, A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining, IEEE Transactions on Evolutionary
Computation, 5, 17-26, 2001.

4. D. Dumitrescu, B. Lazzerini, L. Jain, A. Dumitrescu, Evolutionary Computa-
tion, CRC Press, Boca Raton, FL, 2000.

5. C. Ferreira, Gene Expression Programming: a New Adaptive Algorithm for Solv-
ing Problems. Complex Systems, Vol. 13, Nr. 2, pp. 87-129, 2001.

6. A. S. Fraenkel, Scenic trails ascending from sea-level Nim to alpine chess, Games
of No Chance, MSRI Workshop on Combinatorial Games, July, 1994, Berkeley,
CA, MSRI Publications, R. J. Nowakowski (Editor), Vol. 29, Cambridge Uni-
versity Press, Cambridge, pp. 13-42, 1996.

7. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, 1992.

8. J. R. Koza, Genetic Programming 11: Automatic Discovery of Reusable Pro-
grams, MIT Press, Cambridge, MA, 1994.

9. J. Miller, D. Job and V. Vassilev, Principles in the Evolutionary Design of
Digital Circuits - Part I, Genetic Programming and Evolvable Machines, Vol. 1,
pp. 7 - 35, Kluwer Academic Publishers, 2000.

10. J.F. Miller and P. Thomson, Cartesian Genetic Programming. The 3rd Interna-
tional Conference on Genetic Programming (EuroGP2000), R. Poli, J.F. Miller,
W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. Fogarty (Editors),
LNCS 1802, Springer-Verlag, Berlin, pp. 15-17, 2000.

11. M. Oltean and D. Dumitrescu, Multi Expression Programming, technical re-
port, UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania, available
at www.mep.cs.ubbcluj.ro, 2002.

12. M. Oltean and C. Grogan, Evolving Evolutionary Algorithms using Multi Ex-
pression Programming, The 7th European Conference on Artificial Life, Dort-
mund, W. Banzhaf (et. al), (Editors), LNCS 2801, pp. 651-658, Springer-Verlag,
Berlin, 2003.

13. M. Oltean, Solving Even-parity problems with Multi Expression Programming,
The 5th International Workshop on Frontiers in Evolutionary Algorithm, K.
Chen (et. al), (Editors) Research Park Triangle, North Carolina, pp. 315-318,
2003.

14. M. O'Neill and C. Ryan, Grammatical Evolution: A Steady State approach,
The Second International Workshop on Frontiers in Evolutionary Algorithms,
pp. 419-423, 1998.

15. J. Page, R. Poli and W. B. Langdon, Smooth Uniform Crossover with Smooth
Point Mutation in Genetic Programming: A Preliminary Study. Genetic Pro-
gramming, Proceedings of EuroGP'99, R. Poli, P. Nordin, W. B. Langdon and
T. C. Fogarty, (Editors), LNCS 1598, pp. 39-49, Springer-Verlag, Berlin, 1999.

16. N.R. Patterson, Genetic Programming with Context-Sensitive Grammars, PhD
thesis, University of St. Andrews, Scotland, 2003.

256 Mihai Oltean

17. R. Poli and W. B. Langdon, Sub-machine Code Genetic Programming, Advances
in Genetic Programming 3, L. Spector, W. B. Langdon, U-M 07Reilly and P.
Angeline, (Editors), pp. 301-323, MIT Press, Cambridge, MA, 1999.

18. R. Poli and J. Page, Solving High-Order Boolean Parity Problems with Smooth
Uniform Crossover, Sub-Machine Code GP and Demes, Journal of Genetic Pro-
gramming and Evolvable Machines, Kluwer, pp. 1-21, 2000.

19. G. Syswerda, Uniform Crossover in Genetic Algorithms, in Proceedings of the
3'd International Conference on Genetic Algorithms, J.D. Schaffer (Editor),
Morgan Kaufmann Publishers, CA, 2-9, 1989.

20. D.H. Wolpert and W.G. McReady, No Free Lunch Theorems for Optimization,
IEEE Transaction on Evolutionary Computation, Vol. 1, pp 67-82, 1997.

21. D.H. Wolpert and W.G. McReady, No Free Lunch Theorems for Search, Tech-
nical Report, SFI-TR-05-010, Santa Fe Institute, 1995.

Index

adaptation, 22, 23, 27, 37, 38
Adaptive Representation, 54, 55,

57, 58, 60, 62, 63, 66, 69
ambient light sensor, 74
arena, 89
artificial intelligence, 73
assignment, 103-105,107,113-116,

118
Automatically Defined Functions,

52, 57, 60, 62, 63, 66, 69
autonomous, 74
autonomy, 75

battery, 80
behavior, 77

chromosome, 80, 89
chromosome complexity, 49,57,60,

62, 63
co-evolution, 84
collision, 21, 27, 28
computer programs, 89
control logic, 104-106, 118, 125
controller, 43,45,48,49,67,73,75,

77, 79, 85, 87, 88, 94-96
cooperative, 3, 4, 15, 17
crossover, 90

defuzzifier, 88

even-7-parity, 245, 246
even-8-parity, 230, 242
evolution, 22-24, 27, 29, 31, 32, 37
evolutionary, 129, 131, 146, 166,

167, 175
Evolutionary computation, 181,182:

186, 202
evolutionary computation, 43, 75
evolutionary robotics, 73
evolutionary synthesiser, 105, 126
Evolvable, 205-207, 211, 214, 221,

223, 225, 226
evolvable hardware, 103, 105

fitness function, 49, 56, 59, 60, 62,
65, 67, 78, 81, 94

FPGA, 151, 152, 159, 161, 162,
166-171

friction, 21
fuzzifier, 87
fuzzy, 73, 76, 87-89, 95
Fuzzy Hardware, 205, 207
fuzzy logic, 87, 95
fuzzy rule, 87, 207, 209, 211-214,

218-220,227

generation, 76
genetic algorithm, 75
Genetic algorithms, 181-183, 186,

187, 189, 192
genetic operators, 51-54, 56
genetic programming, 44, 62, 89
GP, 229, 230, 235, 238-240
gravity, 21, 32
gripper, 82

Hebbian learning, 77, 86
hierarchical genetic programming,

44, 46, 50, 52, 57, 58, 62, 63
home seeking behavior, 80
humanoid, 3, 4, 13, 19

258 INDEX

initial behaviour occurrence, 57,60,
62, 66

K-team, 74
Khepera, 43-48, 50, 51, 56, 62, 69,

70, 73
Khepera GP Simulator, 48, 69

learning, 3, 4, 7-9, 11, 13, 76
learning task, 49, 56, 59, 60
light avoidance, 60
light seeking behavior, 79
linear genome, 51, 52, 57, 58, 60,

62-64, 66
locomotion, 21, 22, 27, 29, 37, 39

membership function, 87
membrane potential, 91
MEMS, 129, 130, 133, 146
MEP, 229-232
migration, 76
Module Acquisition, 53, 54, 57, 60,

62-64, 66, 69
motion, 4-7, 15
moving obstacle, 79
multi-objective optimization, 76
mutation, 76

neural network, 76, 95
neural network architecture, 82
Neural networks, 181-185,189-191,

193, 195, 197, 199, 201, 202

obstacle avoidance, 56, 63, 77, 90
optimization, 76

Packet Switching, 205, 207, 208,
211, 223

Parallel processing, 181-183, 187,
197

partitioning, 151, 153, 154, 159-
165, 172

photoreceptors, 94
population, 75
population entropy, 49, 55-57, 60,

62, 63

proximity sensors, 74, 81, 89

reactive control, 46, 62
refractory period, 92
robot, 3-7, 9, 13, 15, 17, 19, 21, 22
robotic behaviours, 57, 59, 61
robotic controller, 49-51, 62, 70
robotic simulators, 46
robotics, 43, 45, 70, 76
robustness, 22, 23, 27, 34-36
routing, 151-153, 159, 167, 174

sensor, 4, 7
sensors, 74
Shannon's formula, 55, 56
sidewinding, 21, 23, 29-35, 37, 39
snakebot, 37
spiking neural network, 91, 95
state machine, 103-107, 116, 122
symbolic regression, 46, 50
synaptic weight, 77, 80
synthesis, 129, 130, 132, 140, 147,

177

transportation, 3, 4, 8, 17, 19
trash collection behavior, 82
tree-based, 50, 51, 57, 58, 62-66

vision based navigation, 93

wall following, 59, 63

Author Index

Adriiio D. D6ria Neto, 181
Ana Claudia M. L. Albuquerque,

181
Andrzej Buller, 21

Erik Goodman, 128

F. FernBndez de Vega, 150
Franz Oppacher, 42

Hitoshi Iba, 3

Ivan Tanev, 21

J. Lanchares, 150
J.I. Hidalgo, 150
J.M. SBnchez, 150
Janis Terpenny, 128
Jiachuan Wang, 128
Jianjun Hu, 128
Jorge D. Melo, 181
Ju Hui Li, 204

Kisung Seo, 128

Luiza de Macedo Mourelle, 103

Marcin L. Pilat, 42
Meng Hiot Lim, 204
Michael Botros, 72
Mihai Oltean, 228

Nadia Nedjah, 103

Qi Cao, 204

Ronald Rosenberg, 128

Takahiro Tohge, 3
Thomas Ray, 21

Yutaka Inoue, 3

Zhun Fan, 128

Reviewer List

Adriane Serapio

Ajith Abraham

Ali Afzalian

Carlos R. H. Barbosa

Carlos A. C. Coello

Cristiana Bentes

Dirk Biiche

El-Ghazali Talbi

Evaristo C. Biscaia Jr.

Felipe G. M. Fran~a

Fltivio J. Souza

Gregory Hornby

Hitoshi Iba

Ismat Beg

Janusz Kacprzyk

Joo A. Vasconcelos

Johan Andersson

John R. Koza

Julian F. Miller

Kalyanmoy Deb

Leon Reznik

Luiza M. Mourelle

Marley M. Vellasco

Nadia Nedjah

Orlando Bernardo Filho

Peter Dittrich

Phillip A. Laplante

Radu-Emil Precup

Ricardo S. Zebulum

Ricardo Tansheit

Saeid Abbasbandy

Tapabrata Ray

Tim Hendtlass

Wolfgang Banzhaf

Printing: Strauss GmbH, Mörlenbach

Binding: Schäffer, Grünstadt

