
Effective Exploration & Exploit at ion of the
Solution Space via Memetic Algorithms for the
Circuit Partition Problem

Shawki Areibil

School of Engineering, University of Guelph sareibiQuoguelph. ca

1 Introduction

Genetic Algorithms (GA's) are a class of evolutionary techniques that seek
improved performance by sampling areas of the parameter space that have a
high probability for leading to good solutions [Ill. The evolution program is a
probabilistic algorithm which maintains a population of individuals (chromo-
somes). Each chromosome represents a potential solution within the landscape
of the problem at hand. These individuals undergo transformations based on
operators to create new populations (solutions). Many evolution programs
can be formulated to solve different problems. These programs may differ in
the data structures, parameter tuning, specific genetic operators but share
some common principles (i) population of individuals (ii) genetic operators to
transform individuals into new (possibly better) solutions. The power of GA's
comes from the fact that the technique is robust, and can deal successfully
with a wide range of problem areas, including those which are difficult for
other methods to solve. GA's are not guaranteed to find the global optimum
solution to a problem, but they are generally good at finding "acceptably
good" solutions to problems. In other words, GA's are considered to be com-
petitive if: the solution space to be searched is large (exploration) and the
fitness function is noisy (landscape is not smooth nor unimodal).

Genetic Algorithms are not well suited for fine-tuning structures and incor-
poration of local improvement has become essential for Genetic Algorithms to
compete with other meta-heuristic techniques. Memetic Algorithms [l] apply
a separate local search process to refine individuals by hill climbing.

1.1 Motivation and Contributions

Efficient optimization algorithms used to solve hard problems usually employ a
hybrid of at least two techniques to find a near optimal solution to the problem
being solved. The main motivation for hybridization in optimization practice

162 Shawki Areibi

is the achievement of increased efficiency (i.e adequate solution quality in
minimum time or maximum quality in specified time). From an optimization
point of view, Memetic Algorithms combine global and local search by using
Evolutionary Algorithms (EA) to perform exploration while the local search
method performs exploitation.

The main contributions of this book chapter are (i) investigation of pa-
rameter tuning of Genetic Algorithms to solve the circuit partitioning problem
effectively, (ii) investigating the balance between exploration and exploitation
of the solution space.

1.2 Chapter Organization

The book chapter is organized as follows: Section 2 introduces very briefly the
VLSI circuit partitioning problem and terminology used throughout the chap-
ter. The concept of evolutionary computation and Genetic Algorithms will be
introduced in Section 3. Section 4 introduces the need behind Memetic Algo-
rithms to further explore the solution space effectively. Results are introduced
in Section 5. The chapter concludes with some comments on the issue of ef-
fective space exploration and exploitation and possible future work.

2 Background

The last decade has brought explosive growth in the technology for manufac-
turing integrated circuits. Integrated circuits with several million transistors
are now commonplace. This manufacturing capability, combined with the eco-
nomic benefits of large electronic systems, is forcing a revolution in the design
of these systems and providing a challenge to those people interested in inte-
grated system design. Since modern circuits are too complex for an individual
designer or a group of designers to comprehend completely, managing this
tremendous complexity and automating the design process have become cru-
cial issues.

A large subset of problems in VLSI CAD is computationally intensive,
and future CAD tools will require even more accuracy and computational
capabilities from these tools. In the combinatorial sense, the layout prob-
lem is a constrained optimization problem. We are given a circuit (usually a
module-wire connection-list called a netlist) which is a description of switch-
ing elements and their connecting wires. We seek an assignment of geometric
coordinates of the circuit components (in the plane or in one of a few planar
layers) that satisfies the requirements of the fabrication technology (sufficient
spacing between wires, restricted number of wiring layers, and so on) and
that minimizes certain cost criteria. The most common way of breaking up
the layout problem into subproblems is first to do logic partitioning where a
large circuit is divided into a collection of smaller modules according to some
criteria, then to perform component placement, and then to determine the

approximate course of the wires in a global routing phase. This phase may be
followed by a topological-compaction phase that reduces the area requirement
of the layout, after which a detailed-routing phase determines the exact course
of the wires without changing the layout area.

2.1 Circuit Partitioning

Circuit partitioning is the task of dividing a circuit into smaller parts. It is
an important aspect of layout for several reasons. Partitioning can be used
directly to divide a circuit into portions that are implemented on separate
physical components, such as printed circuit boards or chips. Here, the ob-
jective is to partition the circuit into parts such that the sizes of the compo-
nents are within prescribed ranges and the complexity of connections (nets
cut) between the components is minimized. Figure 1 presents a circuit that
is partitioned into two blocks (partitions) with a single cut introduced. The
inputs/outputs of the circuit represent the terminals (110 pads) of the circuit.
All gates/cells are interconnected by using nets (hyperedges).

Fig. 1. Circuit Partitioning & Terminology

2.2 Benchmarks

The quality of solutions obtained for the circuit partitioning problem are based
on a set of hypergraphs that are part of widely used ACM/SIGDA [12] circuit
partitioning benchmarks suite. The characteristics of these hypergraphs are
shown in Table 1. The second column of the table shows the number of cells
within the circuit. The third column presents the number of nets connecting

164 Shawki Areibi

the cells within the benchmarks. The total number of pins (i.e connections)
within the circuit is summarized in column four. The last two columns sum-
marize the statistics of the circuit (i.e connectivity).

Table 1. Benchmarks Used as Test Cases

Circuit Cells Nets Pins Cell Degree Net Size
MAX f a MAX f a

462 7 3.1 1.6 17 3.1 2.2
2908 9 3.4 1.2 18 3.2 2.5

2.3 Heuristic Techniques for Circuit Partitioning

Heuristic algorithms for combinatorial optimization problems in general and
circuit partitioning in particular can be classified as being constructive or
iterative. Constructive algorithms determine a partitioning from the graph
describing the circuit or system, whereas iterative methods aim at improv-
ing the quality of an existing partitioning solution. Constructive partition-
ing approaches are mainly based on clustering[3, 61, spectral or eigenvector
methods[5], mathematical programming or network flow computations. To
date, iterative improvement techniques that make local changes to an initial
partition are still the most successful partitioning algorithms in practice. The
advantage of these heuristics is that they are quite robust. In fact, they can
deal with netlists as well as arbitrary vertex weights, edge costs, and balance
criteria.

Constructive Based Techniques (GRASP)

GRASP is a greedy randomized adaptive search procedure that has been
successful in solving many combinatorial optimization problems efficiently [8,

41. Each iteration consists of a construction phase and a local optimization
phase. The construction phase intelligently constructs an initial solution via
an adaptive randomized greedy function. Further improvement in the solution
produced by the construction phase may be possible by using either a simple
local improvement phase or a more sophisticated procedure in the form of
Tabu Search or Simulated Annealing. The construction phase is iterative,
greedy and adaptive in nature. It is iterative because the initial solution is
built by considering one element at a time. The choice of the next element to
be added is determined by ordering all elements in a list. The list of the best
candidates is called the restricted candidate list (RCL). It is greedy because
the addition of each element is guided by a greedy function. The construction
phase is randomized by allowing the selection of the next element added to
the solution to be any element in the RCL. Finally, it is adaptive because
the element chosen at any iteration in a construction is a function of those
previously chosen.

Iterative Improvement

Kernighan and Lin (KL) [lo] described a successful iterative heuristic pro-
cedure for graph partitioning which became the basis for most module
interchange-based improvement partitioning heuristics used in general. Their
approach starts with an initial bisection and then involves the exchange of
pairs of vertices across the cut of the bisection to improve the cut-size. The
algorithm determines the vertex pair whose exchange results in the largest
decrease of the cut-size or in the smallest increase, if no decrease is possible.
A pass in the Kernighan and Lin algorithm attempts to exchange all vertices
on both sides of the bisection. At the end of a pass the vertices that yield the
best cut-size are the only vertices to be exchanged. Fiduccia and Mattheyses
(FM) [7] modified the Kernighan and Lin algorithm by suggesting to move
one cell a t a time instead of exchanging pairs of vertices, and also introduced
the concept of preserving balance in the size of blocks. The FM method re-
duces the time per pass to linear in the size of the netlist (i.e O(p), where p is
the total number of pins) by adapting a single-cell move structure, and a gain
bucket data structure that allows constant-time selection of the highest-gain
cell and fast gain updates after each move.

Figure 2(a) shows the swap/move of modules between blocks that may
lead to a reduction of nets cut. Each module is initially labeled to be free "F"
to move, but once moved during a pass it is relabeled to be locked "L". The
gain of moving a specific module from one partition to another is maintained
by using the bucket gain data structure (shown in Figure 2(b)). At the end of
a pass only those modules that contribute to the highest gain (i.e reduction
in cut size) are allowed to move to their new destination (as illustrated in
Figure 2 (c)) .

Figure 3 shows the basic Fiduccia-Mattheyses (FM) algorithm used for
circuit partitioning[7].

Shawki Areibi

(a) SwappinglMoving of modules

ib) The Bucket Gain Caneepl

Gain array

Fig. 2. Basic techniques for Interchange Methods

currentsolution t initialsolution
current-cost t evaluate(currentsolution)
Repeat

initialize partition
While (canmove(modu1es))

choose cell with highest gain
update gains of all cells
if (current-gain > previous-gain)

bestgain = current-gain
end while
move nodes pointed to by bestgain-ptr
if (no improvement)

++noimp-counter
Until((pass > MaxPass) OR

(noimp > MaxNoImp))

Fig. 3. Fiduccia Mattheyses Algorithm

Sanchis [13] uses the above technique for multiple way network partition-
ing. Under such a scheme, we should consider all possible moves of each free
cell from its home block to any of the other blocks, a t each iteration during
a pass the best move should be chosen. As usual, passes should be performed
until no improvement in cutset size is obtained. This strategy seems to offer
some hope of improving the partition in a homogeneous way, by adapting the
level gain concept to multiple blocks.

Table 2 presents the results obtained using Sanchis local search technique
for two-way and multi-way partitioning. The results are the average of fifty
runs. The CPU time increases dramatically as the number of partitions in-
crease in size from 2-way to Cway and ultimately to 8-way partitioning. In
general, node interchange methods are greedy or local in nature and get easily
trapped in local minima. More important, it has been shown that interchange
methods fail to converge to "optimal" or "near optimal" partitions unless
they initially begin from "good" partitions. Sechen [14] shows that over 100
trials or different runs (each run beginning with a randomly generated initial
partition) are required to guarantee that the best solution would be within
twenty percent of the optimum solution. In order for interchange methods to
converge to "near optimal" solutions they have to initially begin from "good"
starting points [2].

Table 2. Multi-Way Partitions Based on Local Search

Circuit

F'ract
Prim1
Struct

Indl
Prim2

Bio
Ind2
Ind3

Avqs
Avq.1
Ibm05

ibm07
ibml0
ibml3

2 Blocks
Cuts

11
58
46

30
230
91
507
396

453
460
2451

1350
1972
1560

CPU

0.3
2.3
5.8

7.2
12.4
28.4
70.4
63.5

126.2
178.1
329.4

518.3
1068
1365

4 Blocks
Cuts

28
148
195

245
636
532
1759
1675

2151
2594
8922

13527
22331
26710

CPU

0.3
2.7
6.4

8.3
13.3
45.8
143.1
118.4

309.9
321.8
1618

4437
12855
16456

6 Blocks
Cuts

48
171
264

364
773
726
2162
2636

2436
2728
9629

15922
26544
31949

8 Blocks
CPU

0.4
3.3
8.4

12.5
19.1
71.9
272.2
190.2

499.5
594.5
3719

11820
40252
53715

Cuts

56
189
312

374
804
806
2141
2862

2641
3027
9894

17011
27835
34171

CPU

0.5
4.0
10.5

16.6
28.0
105.9
394.4
280.7

674.7
857.1
6059

23185
79470
105000

168 Shawki Areibi

3 Genetic Algorithms

As an optimization technique, Genetic Algorithms simultaneously examine
and manipulate a set of possible solutions. Figure 4 illustrates a Genetic Al-
gorithm implementation for circuit partitioning.

A PURE GENETIC ALGORITHM
1. Represent Problem Using Group Number Encoding
2.(a) set popsize, max-gen, gen=O;

(b) set crossrate, mutaterate;
3. Initialize Population.
4. While max-gen 1 gen

Evaluate Fitness (Cuts)
For (i=l to popsize)

Select (matel,mate2)
if (rnd(0,l) < crossrate)

child = Crossover(matel,mate2);
if (rnd(0,l) 5 mutaterate)

child = Mutation();
Repair child if necessary

End For
Add offsprings to New Generation.
gen = gen + 1

End While
5. Return best chromosomes (Partitions).

Fig. 4. A Genetic Algorithm for Circuit Partitioning

The GA starts with several alternative solutions to the optimization prob-
lem, which are considered as individuals in a population. These solutions are
coded as binary strings, called chromosomes. Figure 5 shows a group number
encoding scheme to represent the partitioning problem where the j th integer
ij E (1 , . . . , I c) indicates the group number assigned to object j.

The initial population is constructed randomly. These individuals are eval-
uated, using the partitioning-specific fitness function. The GA then uses these
individuals to produce a new generation of hopefully better solutions. In each
generation, two of the individuals are selected probabilistically as parents, with
the selection probability proportional to their fitness. Crossover is performed
on these individuals to generate two new individuals, called oflspring, by ex-
changing parts of their structure. Thus each offspring inherits a combination
of features from both parents. The next step is mutation where an incremental
change is made to each member of the population, with a small probability.
This ensures that the GA can explore new features that may not be in the
population yet. It makes the entire search space reachable, despite the finite

I

Nets Cut

Block l

Group Number Encoding

Fig. 5. Chromosome Representation for Circuit Partitioning

population size. However an offspring may contain less than k groups; more-
over, an offspring of two parents, both representing feasible solutions may be
infeasible, since the constraint of having equal number of modules in each
partition is not met. In this case either special repair heuristics are used to
modify chromosomes to become feasible, or penalty functions that penalize
infeasible solutions, are used to eliminate the problem.

3.1 Crossover & Mutation

Figure 6 shows the crossover/mutation operators used for the circuit parti-
tioning problem. Operators in the reproduction module, mimic the biological
evolution process, by using unary (mutation type) and higher order (crossover
type) transformation to create new individuals. Mutation as shown in Fig-
ure 6(a) is simply the introduction of a random element, that creates new
individuals by a small change in a single individual. When mutation is applied
to a bit string, it sweeps down the list of bits, replacing each by a randomly
selected bit, if a probability test is passed. On the other hand, crossover recom-
bines the genetic material in two parent chromosomes to make two children.
It is the structured yet random way that information from a pair of strings is
combined to form an offspring. Crossover begins by randomly choosing a cut
point K where 1 5 K 5 L, and L is the string length. The parent strings are
both bisected so that the left-most partition contains K string elements, and
the rightmost partition contains L - K elements. The child string is formed
by copying the rightmost partition from parent PI and then the left-most

170 Shawki Areibi

partition from parent P2. Figure 6(b) shows an example of applying the stan-
dard crossover operator (sometimes called one-point crossover) to the group
number encoding scheme. Increasing the number of crossover points is known
to be multi-point crossover as seen in Figure 6(c).

Fig. 6. Mutation & Crossover Operators

Figure 7 and Figure 8 show the affect of mutation rate on the quality of
solutions obtained. Figure 9 and Figure 10 highlight the importance of tuning

Mutation Rate vs Cutsize
1200 , 9 ! 9 8 8 1 ,

fract -
struct

*. ..~ ~. .~. ~.. .~ ~. ~.. - - - - - - - - - - -

0 5 10 15 20 25 30 35 40 45 50
% Mutation Applied

Fig. 7. Mutation Rate (Small Circuits)

the crossover rate and its affect on the solution quality. Figures 11, 12, 13
show the affect of crossover points. It is clear from the figures that multi-point

Mutatton Rate vs Cutstze
65000
60000
55000
50000

.: 45000

30000
25000
200001 ' ' ' I

0 5 10 15 20 25 30 35 40 45 50
% Mutation Applied

Fig. 8. Mutation Rate (Very Large Circuits)

Crossover Rate vs Cutsize
1000

Fract -
Prim1 -.
Struct

x-----d-+--x

X....~-.... -*--- 100 - r~ ----....... *...* I

0
-8--,

0 10 20 30 40 50 60 70 80 90 100
% Crossover Applied

Fig. 9. Crossover Rate (Small Circuits)

Crossover Rate vs Cutsize
18000,,9
16000 -

5 8000 -
.... 6000 -

4000 -

2000
0 10 20 30 40 50 60 70 80 90 100

% Crossover Applied

Fig. 10. Crossover Rate (Large Circuits)

172 Shawki Areibi

crossover performs much better than one-point crossover technique. A 3-point
and $-point crossover works best for our circuit partitioning problem.

Crossover Points vs Cutsize
300 1 I

I
1-point %point 3-point 4-point

Crossover Points

Fig. 11. Crossover Points (Small Circuits)

Crossover Points vs Cutsize
900
800 ,

I
I-point Bpoint 3-point 4-point

Crossover Points

Fig. 12. Crossover Points (Medium Circuits)

3.2 Population/Generation Size

The size of the population is one of the most important choices in imple-
menting any Genetic Algorithm and is considered to be critical for several
applications. If the population size is too small then this may lead to early
convergence and if it is too large this may lead to huge computation time (i.e
waste of computational resources). Figure 14 shows the affect of the popula-
tion size on the quality of solutions obtained for large circuits. The population
in any Genetic Algorithm implementation evolves for a prespecified total num-
ber of generations under the application of evolutionary rules. The generation
size is crucial in any Genetic Algorithm implementation. As the number of
generations increase the quality of solutions improve, but the computation

Crossover Points vs Cutsize
55000
50000
45000
40000

lbm10-70% ----+---

! 35000
2 30000
0

25000
20000
15000
10000

1-point 2-point 3-point 4-point
Crossover Points

Fig. 13. Crossover Points (Very Large Circuits)

Population Size vs Cutsize

Chroms in the Population

Fig. 14. Population Size (Large Benchmarks)

Population Size vs Cutsize

45000 , , , , , 9 40000)-- ---...
j*--.-.-.-._._.._._.. % ~ ~ .-.... x ~ ~ . . - ~ ~ ~ . ~~~ x~~~~ ~ ..-.. ~ ...

35000
30000
25000
20000

0 100 200 300 400 500 600 700 800 900 1000
Chroms in the Population

Fig. 15. Population Size (Very Large Benchmarks)

174 Shawki Areibi

time involved increases dramatically. Figure 16 and Figure 17 show the affect
of generation size on the solution quality obtained based on large circuits and
very large circuits respectively.

Generation Size vs Cutsize
18000
16000
14000

0 50 100 150 200 250 300 350 400 450 500

Generation

Fig. 16. Affect of Generation Size for Large Benchmarks

Generation Size vs Cutsize

"OoO 20000 15000 l l - - . - /
0 50 100 150 200 250 300 350 400 450 500

Generation

Fig. 17. Affect of Generation Size for Very Large Benchmarks

3.3 Selection Techniques

Strings are selected for mating based on their fitness, those with greater fitness
are awarded more offspring than those with lesser fitness. Parent selection
techniques that are used, vary from stochastic to deterministic methods. The
probability that a string i is selected for mating is pi, "the ratio of the fitness

itnessi of string i to the sum of all string fitness values", pi = E! :ItitnPsr. The ratio
3

of individual fitness to the fitness sum denotes a ranking of that string in
the population. The Roulette Wheel Selection method (Gsml) is one of the
stochastic selection techniques that is widely used. The ratio pi is used to
construct a weighted roulette wheel, with each string occupying an area on

the wheel in proportions to this ratio. The wheel is then employed to determine
the string that participates in the reproduction. A random number generator
is invoked to determine the location of the spin on the roulette wheel. In
Deterministic Selection methods, reproduction trials (selection) are allocated
according to the rank of the individual strings in the population rather than by
individual fitness relative to the population average. Several selection methods
have been implemented as seen in Figure 18 and 19. The technique referred
to as GsmO is a deterministic technique where parents are picked uniformly
one after the other from the population. Gsml is the stochastic roullette
wheel technique. In Gsm2 the population is sorted according to their fitness
each trial the best two in the list are chosen for mating. Gsm3 is similar to
Gsm2 except that the first half of the sorted list would take higher chances
for mating than the rest of the population at the end of the list. Gsm4 and
Gsm5 are based on a ranking technique. The last two approaches Gsm6 and
Gsm7 are based on Tournament with replacement and without replacement
respectivley. It is clear from Figures 18 and 19 that Tournament Selection
with replacement gives the best solution quality compared to other selection
techniques.

Selection Technique vs Cutsize
1400 1 I

Gsm0 Gsml Gsm2 Gsm3 Gsm4 Gsm5 Gsm6 Gsm7
Selection Technique

Fig. 18. Selection vs Cutsize (Medium Circuits)

3.4 Replacement Strategy

Generation replacement techniques are used to select a member of the old
population and replace it with the new offspring. The quality of solutions
obtained depends on the replacement scheme used. Some of the replacement
schemes used are based on: (i) deleting the old population and replacing it
with new offsprings (R-ap), (ii) both old and new populations are sorted and
the newly created population is constructed from the top half of each (R-
hp), (iii) replacing parent with the child if newly created member is more fit
(R-pc) (iv) replacing the most inferior members (R-mi) in a population by
new offsprings. Figure 20 and 21 show the performance of each replacement

176 Shawki Areibi

Selection Technique vs Cutsize
18000 1 I

Selection Technique

Fig. 19. Selection vs Cutsize (Large Circuits)

a

16000

technique for large circuits and very large circuits respectivley. It is evident
from the Figures that (R-ap) and (R-pc) perform poorly with respect to (R-
hp) and (R-mi). Variations to (R-hp) scheme use an incremental replacement
approach, where at each step the new chromosome replaces one randomly se-
lected from those which currently have a below-average fitness. The quality
of solutions improve using (R-hp) and (R-mi) replacement schemes due to
the fact that they maintain a large diversity in the population. Our genera-
tion replacement technique utilized in both the pure Genetic Algorithm and
Memetic Algorithm for circuit partitioning are based on replacing the most
inferior member (R-mi) in a population by new offsprings.

2000
GsmO Gsml Gsm2 Gsm3 Gsm4 Gsm5 Gsm6 Gsm7

-

Fig. 20. Replacement Strategy vs Cutsize (Large Circuits)

14000 \ --- /-----+-: Avqs --

Replacement Technique vs Cutsize

16000

3.5 Computational Results for GA

w 12000

14000

12000

Table 3 shows the solution quality for multi-way partitioning and CPU time
involved. It is interesting to note that the Genetic Algorithm solution quality
compared to Local Search is better for small, medium and large circuits for

- Avq.l *..~.

. ' -U ..
-

lbm05

.... __.. *... +./- *

lnd2 -
lnd3 *~~~

2000
R-ap R-hp R-pc R-mi

Replacement Technique

Replacement Technique vs Cutsize

::::

20000 1 I
R-ap R-hp R-pc R-mi

Replacement Technique

Fig. 21. Replacement Strategy vs Cutsize (Very Large Circuits)

2-way and multi-way partitions. As the size of the circuit increases, the perfor-
mance of GA deteriorates (as can be seen for benchmarks ibm07, ibmlO and
ibml3). On the other hand the complexity of Genetic Algorithm in terms of
CPU time is linear as the number of blocks increases. For example, comparing
Table 2 and Table 3 for benchmark ibml3, the GA technique cuts the CPU
time by almost 50%.

Table 3. Genetic Algorithm Solution Quality for Multi-Way Partitioning

Circuit
Cuts
39
145
161

111
325
266
1010
1337

986
1002
11890

18183
29108
38186

2 Blocks
Cuts I CPU 1 1

4 Blocks
Cuts
52
159
255

159
557
367
1590
2341

1425
1426
13704

20499
32983
43139

6 Blocks
CPU 1

24 1
Prim1
Struct 277

Bio
Ind2 272 2103
Ind3 491 3106

Comparing results obtained by the Genetic Algorithm with those based
on Local Search we can conclude the following. (i) GA's are not guaranteed
to find the global optimum solution to a problem, but they are generally good

8 Blocks
Cuts I CPU
49 1 28

Avq.s
Avq.1

464
465

3911
3999

178 Shawki Areibi

at finding "acceptably good" solutions to problems, (ii) Where specialized
techniques exist for solving particular problems, they are likely to out-perform
GA's in both speed and accuracy of the final result. Another drawback of
Genetic Algorithms is that they are not well suited to perform finely tuned
search, but on the other hand they are good at exploring the solution space
since they search from a set of designs and not from a single design. Genetic
Algorithms are not well suited for fine-tuning structures which are close to
optimal solutions [9]. Incorporation of local improvement operators into the
recombination step of a Genetic Algorithm is essential if a competitive Genetic
Algorithm is desired.

4 Memetic Algorithms

Memetic algorithms (MAS) are evolutionary algorithms (EAs) that apply a
separate local search process to refine individuals (i.e improve their fitness by
hill-climbing). Under different contexts and situations, MAS are also known
as hybrid EAs, genetic local searchers. Combining global and local search is
a strategy used by many successful global optimization approaches, and MAS
have in fact been recognized as a powerful algorithmic paradigm for evolution-
ary computing. In particular, the relative advantage of MAS over GA is quite
consistent on complex search spaces. Figure 22 shows one possible implemen-
tation of a Memetic algorithm based on the Genetic Algorithm introduced
earlier in Section 3. We use a simple variation of the Fiduccia and Mattheyses
(FM) heuristic [13]. The original FM heuristic has several passes after which
the heuristic terminates as presented in Section 2. In the local optimization
phase, a single pass is allowed, furthermore a restriction on the number of
modules to be moved is set to a certain value. It is to be noted that if local
optimization is not strong enough to overcome the inherent disruption of the
crossover, more strong local optimization is needed.

4.1 Computational Results for MA

Table 4 shows the results obtained from the Memetic Algorithm. The first
column in the table MA-ii is the direct application of local search on each
chromosome in the population at only the initial stage. The secon column
MA-gi is the direct application of local search on each chromosome in the
population in every generation. It is clear that MA-gi performs better fine
tuning and exploitation than MA-ii which only attempts to fine tune the
search at an early stage. MA-hi is in affect the combination of MA-ii with
MA-gi such that after an early exploitation of the landscape the system at-
tempts to explore and exploit the solution space simultaneously. The results
in the table indicate that the combination does not have a drastic affect on
the final solution quality even though an improvement of 2-3% is achieved.
The fourth column in the table MA-ci is the direct application of GRASP

MEMETIC ALGORITHM
1. Encode Solution Space
2.(a) set popsize, maxgen, gen=O;

(b) set crossrate, mutaterate;
3. Initialize Population Randomly.
** Utilize GRASP to Construct Initial Population (MA-ci)
** Apply Local Search to Initial Population (MA-ii)
4. While(Gen < Gensize)

Apply Generic GA
** Apply F M Local Search to Population (MA-gi)
EndWhile /* end of a run */
** Apply Final Local Search to Best Chromosome (MA-fi)

Fig. 22. The Memetic Algorithm

to effectively construct good intial solutions for the Genetic Algorithm. The
system achieves an improvement of 65% over MA-ii and 51% over MA-gi for
the largest benchmark (ibml3). Experimental results indicate that less than
25% of the population should be injected with good initial solutions for MA-ci
to perform well. The last column in the table MA-ci-gi is a combined M A 4
and MA-gi approach where good intial solutions are injected into the initial
population followed by a balanced exploration (via crossover, mutation) and
exploitation (via a single pass of local search) stage. It is quite evident that
this Memetic Algorithm approach achieves the best overall results compared
to the previously mentioned methods (i.e MA-ii, MA-gi and MA-hi). The
overall improvement obtained (over MA-hi) for the largest circuits are: 61%
for ibm07, 50% for ibmlO and over 66% for the largest benchmark ibml3.

5 Results & Analysis

In this section we will summarize the results obtained using (i) Local Search
(ii) Genetic Algorithms (iii) Memetic Algorithm. Table 5 presents the results
obtained by the three techniques mentioned above for four way partitioning.
As can be seen in Table 5 the Memetic Algorithm obtains on average better
solutions (cuts) than the Local Search technique. As the benchmarks increase
in size the quality of solutions obtained using the local search technique dete-
rioates. A comparison between the pure Genetic Algorithm and the Memetic
Algorithm reveals the importance of embeding local search within GA to im-
prove its performance. The affect of exploitation shows very clearly for the
large benchmarks (ibmO7, ibmlO and ibml3).

180 Shawki Areibi

Table 4. Comparison of Several Memetic Algorithm Implementations

Circuit MA-ii MA-gi M
Cuts I CPU II Cuts I CPU I1 Cuts

Fract 47 24 37
Prim1 131 157 145
Struct 1 1 165 1
Indl 1 1 100 1

-ci MA-c
CPU II Cuts I

. .
1-gl

CPU

351

34322

Table 5. Comparison between LS, GA and MA

Circuit

Fract
Prim1
Struct

I n d l
Prim2

Bio
Ind2
Ind3

Avq.s
Avq.1
Ibm05

ibm07
ibmlO
ibml3

Local Search
Cuts

28
148
195

245
636
532
1759
1675

2151
2594
8922

13527
22331
26710

CPU

0.3
2.7
6.4

8.3
13.3
45.8
143
118

309
321
1618

4437
12855
16456

Genetic Algorithms
Cuts

39
145
161

111
325
266
1010
1337

986
1002

11890

18183
29108
38186

CPU

24
156
344

408
581
1122
2778
4645

4831
6336
8158

16901
30507
41371

Memetic Algorithms Improvement
Cuts

35
103
127

90
265
233
587
1185

882
965

5158

6485
10119
8152

LS

-20%
+30%
+34%

+63%
+58%
+56%
+66%
+29%

+59%
+62%
+42%

+52%
+54%
+69%

CPU

24
159
351

416
621
1147
2832
4837

5019
6319
8948

18096
34322
45438

GA

+lo%
+29%
+21%

+18%
+18%
+12%
+41%
+ l l %

+lo%
+4%

+56%

+64%
+65%
+78%

6 Conclusions

Memetic Algorithms (MAS) are Evolutionary Algorithms (EAs) that apply
some sort of local search to further improve the fitness of individuals in the
population. This paper provides a forum for identifying and exploring the key
issues that affect the design and application of Memetic Algorithms. Several
approaches of integrating Evolutionary Computation models with local search
techniques (i.e Memetic Algorithms) for efficiently solving underlying VLSI
circuit partitioning problem were presented. A Constructive heuristic tech-
nique in the form of GRASP was utilized to inject the initial population with
good initial solutions to diversify the search and exploit the solution space.
Furthermore, the local search technique was able to enhance the convergence
rate of the Evolutionary Algorithm by finely tuning the search on the imme-
diate area of the landscape being considered. Future work involves adaptive
techniques to fine-tune parameter of the Genetic Algorithm and Local Search
when combined to form a Memetic Algorithm. Balancing exploration and ex-
ploitation is yet another issue that needs to be addressed more carefully.

References

1. S. Areibi, M. Moussa, and H. Abdullah. A Comparison of GeneticIMemetic
Algorithms and Other Heuristic Search Techniques. In International Conference
on Artificial Intelligence, pages 660-666, Las Vegas, Nevada, June 2001.

2. S. Areibi. An Integrated Genetic Algorithm With Dynamic Hill Climbing for
VLSI Circuit Partitioning. In GECCO 2000, pages 97-102, Las Vegas, Nevada,
July 2000. IEEE.

3. S. Areibi and A. Vannelli. An Efficient Clustering Technique for Circuit Parti-
tioning. In IEEE ISCAS, pages 671-674, san Diego, California, 1996.

4. S. Areibi and A. Vannelli. A GRASP Clustering Technique for Circuit Parti-
tioning. 35:711-724, 1997.

5. P.K. Chan, D.F. Schlag, and J.Y. Zien. Spectral K-way Ratio-Cut Partitioning
and Clustering. IEEE Transactions on Computer Aided Design, 13(9):1088-
1096, 1994.

6. S. Dutt and W. Deng. VLSI Circuit Partitioning by Cluster-Removal Using
Iterative Improvement Techniques. In IEEE International Conference on CAD,
pages 194-200. ACMIIEEE, 1996.

7. C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving
Network Partitions. In Proceedings of 19th DAC, pages 175-181, Las Vegas,
Nevada, June 1982. ACMIIEEE.

8. T. Feo, M. Resende, and S. Smith. A Greedy Randomized Adaptive Search
Procedure for The Maximum Ind ependent Set. Operations Research, 1994.
Journal of Operations Research.

9. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc, Reading, Massachusetts,
1989.

10. B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49(2):291-307, February 1970.

182 Shawki Areibi

11. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlog, Berlin, Heidelberg, 1992.

12. K. Roberts and B. Preas. Physical Design Workshop 1987. Technical report,
MCNC, Marriott's Hilton Head Resort,South Carolina, April 1987.

13. L.A. Sanchis. Multiple-Way Network Partitioning. IEEE Transactions on Com-
puters, 38(1):62-81, January 1989.

14. C. Sechen and D. Chen. An improved Objective Function for Min-Cut Circuit
Partitioning. In Proceedings of ICCAD, pages 502-505, San Jose, California,
1988.

