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1 Introduction 

Genetic Algorithms (GA's) are a class of evolutionary techniques that seek 
improved performance by sampling areas of the parameter space that have a 
high probability for leading to good solutions [Ill. The evolution program is a 
probabilistic algorithm which maintains a population of individuals (chromo- 
somes). Each chromosome represents a potential solution within the landscape 
of the problem at  hand. These individuals undergo transformations based on 
operators to create new populations (solutions). Many evolution programs 
can be formulated to solve different problems. These programs may differ in 
the data structures, parameter tuning, specific genetic operators but share 
some common principles (i) population of individuals (ii) genetic operators to 
transform individuals into new (possibly better) solutions. The power of GA's 
comes from the fact that the technique is robust, and can deal successfully 
with a wide range of problem areas, including those which are difficult for 
other methods to solve. GA's are not guaranteed to find the global optimum 
solution to a problem, but they are generally good at finding "acceptably 
good" solutions to problems. In other words, GA's are considered to be com- 
petitive if: the solution space to be searched is large (exploration) and the 
fitness function is noisy (landscape is not smooth nor unimodal). 

Genetic Algorithms are not well suited for fine-tuning structures and incor- 
poration of local improvement has become essential for Genetic Algorithms to 
compete with other meta-heuristic techniques. Memetic Algorithms [l] apply 
a separate local search process to refine individuals by hill climbing. 

1.1 Motivation and Contributions 

Efficient optimization algorithms used to solve hard problems usually employ a 
hybrid of at  least two techniques to find a near optimal solution to the problem 
being solved. The main motivation for hybridization in optimization practice 
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is the achievement of increased efficiency (i.e adequate solution quality in 
minimum time or maximum quality in specified time). From an optimization 
point of view, Memetic Algorithms combine global and local search by using 
Evolutionary Algorithms (EA) to perform exploration while the local search 
method performs exploitation. 

The main contributions of this book chapter are (i) investigation of pa- 
rameter tuning of Genetic Algorithms to solve the circuit partitioning problem 
effectively, (ii) investigating the balance between exploration and exploitation 
of the solution space. 

1.2 Chapter Organization 

The book chapter is organized as follows: Section 2 introduces very briefly the 
VLSI circuit partitioning problem and terminology used throughout the chap- 
ter. The concept of evolutionary computation and Genetic Algorithms will be 
introduced in Section 3. Section 4 introduces the need behind Memetic Algo- 
rithms to further explore the solution space effectively. Results are introduced 
in Section 5. The chapter concludes with some comments on the issue of ef- 
fective space exploration and exploitation and possible future work. 

2 Background 

The last decade has brought explosive growth in the technology for manufac- 
turing integrated circuits. Integrated circuits with several million transistors 
are now commonplace. This manufacturing capability, combined with the eco- 
nomic benefits of large electronic systems, is forcing a revolution in the design 
of these systems and providing a challenge to those people interested in inte- 
grated system design. Since modern circuits are too complex for an individual 
designer or a group of designers to comprehend completely, managing this 
tremendous complexity and automating the design process have become cru- 
cial issues. 

A large subset of problems in VLSI CAD is computationally intensive, 
and future CAD tools will require even more accuracy and computational 
capabilities from these tools. In the combinatorial sense, the layout prob- 
lem is a constrained optimization problem. We are given a circuit (usually a 
module-wire connection-list called a netlist) which is a description of switch- 
ing elements and their connecting wires. We seek an assignment of geometric 
coordinates of the circuit components (in the plane or in one of a few planar 
layers) that satisfies the requirements of the fabrication technology (sufficient 
spacing between wires, restricted number of wiring layers, and so on) and 
that minimizes certain cost criteria. The most common way of breaking up 
the layout problem into subproblems is first to do logic partitioning where a 
large circuit is divided into a collection of smaller modules according to some 
criteria, then to perform component placement, and then to determine the 



approximate course of the wires in a global routing phase. This phase may be 
followed by a topological-compaction phase that reduces the area requirement 
of the layout, after which a detailed-routing phase determines the exact course 
of the wires without changing the layout area. 

2.1 Circuit Partitioning 

Circuit partitioning is the task of dividing a circuit into smaller parts. It is 
an important aspect of layout for several reasons. Partitioning can be used 
directly to divide a circuit into portions that are implemented on separate 
physical components, such as printed circuit boards or chips. Here, the ob- 
jective is to partition the circuit into parts such that the sizes of the compo- 
nents are within prescribed ranges and the complexity of connections (nets 
cut) between the components is minimized. Figure 1 presents a circuit that 
is partitioned into two blocks (partitions) with a single cut introduced. The 
inputs/outputs of the circuit represent the terminals (110 pads) of the circuit. 
All gates/cells are interconnected by using nets (hyperedges). 

Fig. 1. Circuit Partitioning & Terminology 

2.2 Benchmarks 

The quality of solutions obtained for the circuit partitioning problem are based 
on a set of hypergraphs that are part of widely used ACM/SIGDA [12] circuit 
partitioning benchmarks suite. The characteristics of these hypergraphs are 
shown in Table 1. The second column of the table shows the number of cells 
within the circuit. The third column presents the number of nets connecting 
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the cells within the benchmarks. The total number of pins (i.e connections) 
within the circuit is summarized in column four. The last two columns sum- 
marize the statistics of the circuit (i.e connectivity). 

Table 1. Benchmarks Used as Test Cases 

Circuit Cells Nets Pins Cell Degree Net Size 
MAX f a MAX f a 

462 7 3.1 1.6 17 3.1 2.2 
2908 9 3.4 1.2 18 3.2 2.5 

2.3 Heuristic Techniques for Circuit Partitioning 

Heuristic algorithms for combinatorial optimization problems in general and 
circuit partitioning in particular can be classified as being constructive or 
iterative. Constructive algorithms determine a partitioning from the graph 
describing the circuit or system, whereas iterative methods aim at  improv- 
ing the quality of an existing partitioning solution. Constructive partition- 
ing approaches are mainly based on clustering[3, 61, spectral or eigenvector 
methods[5], mathematical programming or network flow computations. To 
date, iterative improvement techniques that make local changes to an initial 
partition are still the most successful partitioning algorithms in practice. The 
advantage of these heuristics is that they are quite robust. In fact, they can 
deal with netlists as well as arbitrary vertex weights, edge costs, and balance 
criteria. 

Constructive Based Techniques (GRASP) 

GRASP is a greedy randomized adaptive search procedure that has been 
successful in solving many combinatorial optimization problems efficiently [8, 



41. Each iteration consists of a construction phase and a local optimization 
phase. The construction phase intelligently constructs an initial solution via 
an adaptive randomized greedy function. Further improvement in the solution 
produced by the construction phase may be possible by using either a simple 
local improvement phase or a more sophisticated procedure in the form of 
Tabu Search or Simulated Annealing. The construction phase is iterative, 
greedy and adaptive in nature. It  is iterative because the initial solution is 
built by considering one element at  a time. The choice of the next element to 
be added is determined by ordering all elements in a list. The list of the best 
candidates is called the restricted candidate list (RCL). It is greedy because 
the addition of each element is guided by a greedy function. The construction 
phase is randomized by allowing the selection of the next element added to 
the solution to be any element in the RCL. Finally, it is adaptive because 
the element chosen at  any iteration in a construction is a function of those 
previously chosen. 

Iterative Improvement 

Kernighan and Lin (KL) [lo] described a successful iterative heuristic pro- 
cedure for graph partitioning which became the basis for most module 
interchange-based improvement partitioning heuristics used in general. Their 
approach starts with an initial bisection and then involves the exchange of 
pairs of vertices across the cut of the bisection to improve the cut-size. The 
algorithm determines the vertex pair whose exchange results in the largest 
decrease of the cut-size or in the smallest increase, if no decrease is possible. 
A pass in the Kernighan and Lin algorithm attempts to exchange all vertices 
on both sides of the bisection. At the end of a pass the vertices that yield the 
best cut-size are the only vertices to be exchanged. Fiduccia and Mattheyses 
(FM) [7] modified the Kernighan and Lin algorithm by suggesting to move 
one cell a t  a time instead of exchanging pairs of vertices, and also introduced 
the concept of preserving balance in the size of blocks. The FM method re- 
duces the time per pass to linear in the size of the netlist (i.e O(p), where p is 
the total number of pins) by adapting a single-cell move structure, and a gain 
bucket data structure that allows constant-time selection of the highest-gain 
cell and fast gain updates after each move. 

Figure 2(a) shows the swap/move of modules between blocks that may 
lead to a reduction of nets cut. Each module is initially labeled to be free "F" 
to move, but once moved during a pass it is relabeled to be locked "L". The 
gain of moving a specific module from one partition to another is maintained 
by using the bucket gain data structure (shown in Figure 2(b)). At the end of 
a pass only those modules that contribute to the highest gain (i.e reduction 
in cut size) are allowed to move to their new destination (as illustrated in 
Figure 2 (c)) . 

Figure 3 shows the basic Fiduccia-Mattheyses (FM) algorithm used for 
circuit partitioning[7]. 
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(a) SwappinglMoving of modules 

ib )  The Bucket Gain Caneepl 

Gain array 

Fig. 2. Basic techniques for Interchange Methods 

currentsolution t initialsolution 
current-cost t evaluate(currentsolution) 
Repeat 

initialize partition 
While (canmove(modu1es)) 

choose cell with highest gain 
update gains of all cells 
if (current-gain > previous-gain) 

bestgain = current-gain 
end while 
move nodes pointed to by bestgain-ptr 
if (no improvement) 

++noimp-counter 
Until((pass > MaxPass) OR 

(noimp > MaxNoImp)) 

Fig. 3. Fiduccia Mattheyses Algorithm 



Sanchis [13] uses the above technique for multiple way network partition- 
ing. Under such a scheme, we should consider all possible moves of each free 
cell from its home block to any of the other blocks, a t  each iteration during 
a pass the best move should be chosen. As usual, passes should be performed 
until no improvement in cutset size is obtained. This strategy seems to offer 
some hope of improving the partition in a homogeneous way, by adapting the 
level gain concept to multiple blocks. 

Table 2 presents the results obtained using Sanchis local search technique 
for two-way and multi-way partitioning. The results are the average of fifty 
runs. The CPU time increases dramatically as the number of partitions in- 
crease in size from 2-way to Cway and ultimately to 8-way partitioning. In 
general, node interchange methods are greedy or local in nature and get easily 
trapped in local minima. More important, it has been shown that interchange 
methods fail to converge to "optimal" or "near optimal" partitions unless 
they initially begin from "good" partitions. Sechen [14] shows that over 100 
trials or different runs (each run beginning with a randomly generated initial 
partition) are required to guarantee that the best solution would be within 
twenty percent of the optimum solution. In order for interchange methods to 
converge to "near optimal" solutions they have to initially begin from "good" 
starting points [2]. 

Table 2. Multi-Way Partitions Based on Local Search 

Circuit 

F'ract 
Prim1 
Struct 

Indl 
Prim2 

Bio 
Ind2 
Ind3 

Avqs 
Avq.1 
Ibm05 

ibm07 
ibml0 
ibml3 

2 Blocks 
Cuts 

11 
58 
46 

30 
230 
91 
507 
396 

453 
460 
2451 

1350 
1972 
1560 

CPU 

0.3 
2.3 
5.8 

7.2 
12.4 
28.4 
70.4 
63.5 

126.2 
178.1 
329.4 

518.3 
1068 
1365 

4 Blocks 
Cuts 

28 
148 
195 

245 
636 
532 
1759 
1675 

2151 
2594 
8922 

13527 
22331 
26710 

CPU 

0.3 
2.7 
6.4 

8.3 
13.3 
45.8 
143.1 
118.4 

309.9 
321.8 
1618 

4437 
12855 
16456 

6 Blocks 
Cuts 

48 
171 
264 

364 
773 
726 
2162 
2636 

2436 
2728 
9629 

15922 
26544 
31949 

8 Blocks 
CPU 

0.4 
3.3 
8.4 

12.5 
19.1 
71.9 
272.2 
190.2 

499.5 
594.5 
3719 

11820 
40252 
53715 

Cuts 

56 
189 
312 

374 
804 
806 
2141 
2862 

2641 
3027 
9894 

17011 
27835 
34171 

CPU 

0.5 
4.0 
10.5 

16.6 
28.0 
105.9 
394.4 
280.7 

674.7 
857.1 
6059 

23185 
79470 
105000 
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3 Genetic Algorithms 

As an optimization technique, Genetic Algorithms simultaneously examine 
and manipulate a set of possible solutions. Figure 4 illustrates a Genetic Al- 
gorithm implementation for circuit partitioning. 

A PURE GENETIC ALGORITHM 
1. Represent Problem Using Group Number Encoding 
2.(a) set popsize, max-gen, gen=O; 

(b) set crossrate, mutaterate; 
3. Initialize Population. 
4. While max-gen 1 gen 

Evaluate Fitness (Cuts) 
For (i=l to popsize) 

Select (matel,mate2) 
if (rnd(0,l) < crossrate) 

child = Crossover(matel,mate2); 
if (rnd(0,l) 5 mutaterate) 

child = Mutation(); 
Repair child if necessary 

End For 
Add offsprings to New Generation. 
gen = gen + 1 

End While 
5. Return best chromosomes (Partitions). 

Fig. 4. A Genetic Algorithm for Circuit Partitioning 

The GA starts with several alternative solutions to the optimization prob- 
lem, which are considered as individuals in a population. These solutions are 
coded as binary strings, called chromosomes. Figure 5 shows a group number 
encoding scheme to represent the partitioning problem where the j th  integer 
ij E ( 1 , .  . . , I c )  indicates the group number assigned to object j. 

The initial population is constructed randomly. These individuals are eval- 
uated, using the partitioning-specific fitness function. The GA then uses these 
individuals to produce a new generation of hopefully better solutions. In each 
generation, two of the individuals are selected probabilistically as parents, with 
the selection probability proportional to their fitness. Crossover is performed 
on these individuals to generate two new individuals, called oflspring, by ex- 
changing parts of their structure. Thus each offspring inherits a combination 
of features from both parents. The next step is mutation where an incremental 
change is made to each member of the population, with a small probability. 
This ensures that the GA can explore new features that may not be in the 
population yet. It  makes the entire search space reachable, despite the finite 
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Group Number Encoding 

Fig. 5. Chromosome Representation for Circuit Partitioning 

population size. However an offspring may contain less than k groups; more- 
over, an offspring of two parents, both representing feasible solutions may be 
infeasible, since the constraint of having equal number of modules in each 
partition is not met. In this case either special repair heuristics are used to 
modify chromosomes to become feasible, or penalty functions that penalize 
infeasible solutions, are used to eliminate the problem. 

3.1 Crossover & Mutation 

Figure 6 shows the crossover/mutation operators used for the circuit parti- 
tioning problem. Operators in the reproduction module, mimic the biological 
evolution process, by using unary (mutation type) and higher order (crossover 
type) transformation to create new individuals. Mutation as shown in Fig- 
ure 6(a) is simply the introduction of a random element, that creates new 
individuals by a small change in a single individual. When mutation is applied 
to a bit string, it sweeps down the list of bits, replacing each by a randomly 
selected bit, if a probability test is passed. On the other hand, crossover recom- 
bines the genetic material in two parent chromosomes to make two children. 
It is the structured yet random way that information from a pair of strings is 
combined to form an offspring. Crossover begins by randomly choosing a cut 
point K where 1 5 K 5 L, and L is the string length. The parent strings are 
both bisected so that the left-most partition contains K string elements, and 
the rightmost partition contains L - K elements. The child string is formed 
by copying the rightmost partition from parent PI and then the left-most 
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partition from parent P2. Figure 6(b) shows an example of applying the stan- 
dard crossover operator (sometimes called one-point crossover) to the group 
number encoding scheme. Increasing the number of crossover points is known 
to be multi-point crossover as seen in Figure 6(c). 

Fig. 6. Mutation & Crossover Operators 

Figure 7 and Figure 8 show the affect of mutation rate on the quality of 
solutions obtained. Figure 9 and Figure 10 highlight the importance of tuning 

Mutation Rate vs Cutsize 
1200 , 9 ! 9 8 8 1 , 

fract - 
struct 

*. ..~ ~. .~. ~.. .~ ..... . ~. .... ~.. - - -  - - - - - - -  - 

0 5 10 15 20 25 30 35 40 45 50 
% Mutation Applied 

Fig. 7. Mutation Rate (Small Circuits) 

the crossover rate and its affect on the solution quality. Figures 11, 12, 13 
show the affect of crossover points. It  is clear from the figures that multi-point 
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65000 
60000 
55000 
50000 

.: 45000 

30000 
25000 
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% Mutation Applied 

Fig. 8. Mutation Rate (Very Large Circuits) 

Crossover Rate vs Cutsize 
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Prim1 -. 
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Fig. 9. Crossover Rate (Small Circuits) 

Crossover Rate vs Cutsize 
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Fig. 10. Crossover Rate (Large Circuits) 
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crossover performs much better than one-point crossover technique. A 3-point 
and $-point crossover works best for our circuit partitioning problem. 

Crossover Points vs Cutsize 
300 1 I 

I 
1-point %point 3-point 4-point 

Crossover Points 

Fig. 11. Crossover Points (Small Circuits) 

Crossover Points vs Cutsize 
900 
800 , 

I 
I-point Bpoint 3-point 4-point 

Crossover Points 

Fig. 12. Crossover Points (Medium Circuits) 

3.2 Population/Generation Size 

The size of the population is one of the most important choices in imple- 
menting any Genetic Algorithm and is considered to be critical for several 
applications. If the population size is too small then this may lead to early 
convergence and if it is too large this may lead to huge computation time (i.e 
waste of computational resources). Figure 14 shows the affect of the popula- 
tion size on the quality of solutions obtained for large circuits. The population 
in any Genetic Algorithm implementation evolves for a prespecified total num- 
ber of generations under the application of evolutionary rules. The generation 
size is crucial in any Genetic Algorithm implementation. As the number of 
generations increase the quality of solutions improve, but the computation 
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Fig. 13. Crossover Points (Very Large Circuits) 

Population Size vs Cutsize 

Chroms in the Population 

Fig. 14. Population Size (Large Benchmarks) 
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Fig. 15. Population Size (Very Large Benchmarks) 
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time involved increases dramatically. Figure 16 and Figure 17 show the affect 
of generation size on the solution quality obtained based on large circuits and 
very large circuits respectively. 

Generation Size vs Cutsize 
18000 
16000 
14000 

0 50 100 150 200 250 300 350 400 450 500 

Generation 

Fig. 16. Affect of Generation Size for Large Benchmarks 

Generation Size vs Cutsize 

"OoO 20000 15000 l l - - . - /  
0 50 100 150 200 250 300 350 400 450 500 

Generation 

Fig. 17. Affect of Generation Size for Very Large Benchmarks 

3.3 Selection Techniques 

Strings are selected for mating based on their fitness, those with greater fitness 
are awarded more offspring than those with lesser fitness. Parent selection 
techniques that are used, vary from stochastic to deterministic methods. The 
probability that a string i is selected for mating is pi, "the ratio of the fitness 

itnessi of string i to the sum of all string fitness values", pi = E! :ItitnPsr. The ratio 
3 

of individual fitness to the fitness sum denotes a ranking of that string in 
the population. The Roulette Wheel Selection method (Gsml) is one of the 
stochastic selection techniques that is widely used. The ratio pi is used to 
construct a weighted roulette wheel, with each string occupying an area on 



the wheel in proportions to this ratio. The wheel is then employed to determine 
the string that participates in the reproduction. A random number generator 
is invoked to determine the location of the spin on the roulette wheel. In 
Deterministic Selection methods, reproduction trials (selection) are allocated 
according to the rank of the individual strings in the population rather than by 
individual fitness relative to the population average. Several selection methods 
have been implemented as seen in Figure 18 and 19. The technique referred 
to as GsmO is a deterministic technique where parents are picked uniformly 
one after the other from the population. Gsml is the stochastic roullette 
wheel technique. In Gsm2 the population is sorted according to their fitness 
each trial the best two in the list are chosen for mating. Gsm3 is similar to 
Gsm2 except that the first half of the sorted list would take higher chances 
for mating than the rest of the population at  the end of the list. Gsm4 and 
Gsm5 are based on a ranking technique. The last two approaches Gsm6 and 
Gsm7 are based on Tournament with replacement and without replacement 
respectivley. It  is clear from Figures 18 and 19 that Tournament Selection 
with replacement gives the best solution quality compared to other selection 
techniques. 

Selection Technique vs Cutsize 
1400 1 I 

Gsm0 Gsml Gsm2 Gsm3 Gsm4 Gsm5 Gsm6 Gsm7 
Selection Technique 

Fig. 18. Selection vs Cutsize (Medium Circuits) 

3.4 Replacement Strategy 

Generation replacement techniques are used to select a member of the old 
population and replace it with the new offspring. The quality of solutions 
obtained depends on the replacement scheme used. Some of the replacement 
schemes used are based on: (i) deleting the old population and replacing it 
with new offsprings (R-ap), (ii) both old and new populations are sorted and 
the newly created population is constructed from the top half of each (R- 
hp), (iii) replacing parent with the child if newly created member is more fit 
(R-pc) (iv) replacing the most inferior members (R-mi) in a population by 
new offsprings. Figure 20 and 21 show the performance of each replacement 
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Selection Technique vs Cutsize 
18000 1 I 

Selection Technique 

Fig. 19. Selection vs Cutsize (Large Circuits) 

a 

16000 

technique for large circuits and very large circuits respectivley. It  is evident 
from the Figures that (R-ap) and (R-pc) perform poorly with respect to (R- 
hp) and (R-mi). Variations to (R-hp) scheme use an incremental replacement 
approach, where at  each step the new chromosome replaces one randomly se- 
lected from those which currently have a below-average fitness. The quality 
of solutions improve using (R-hp) and (R-mi) replacement schemes due to 
the fact that they maintain a large diversity in the population. Our genera- 
tion replacement technique utilized in both the pure Genetic Algorithm and 
Memetic Algorithm for circuit partitioning are based on replacing the most 
inferior member (R-mi) in a population by new offsprings. 

2000 
GsmO Gsml Gsm2 Gsm3 Gsm4 Gsm5 Gsm6 Gsm7 

- 

Fig. 20. Replacement Strategy vs Cutsize (Large Circuits) 
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3.5 Computational Results for GA 

w 12000 
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Table 3 shows the solution quality for multi-way partitioning and CPU time 
involved. It is interesting to note that the Genetic Algorithm solution quality 
compared to Local Search is better for small, medium and large circuits for 
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Replacement Technique vs Cutsize 
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Fig. 21. Replacement Strategy vs Cutsize (Very Large Circuits) 

2-way and multi-way partitions. As the size of the circuit increases, the perfor- 
mance of GA deteriorates (as can be seen for benchmarks ibm07, ibmlO and 
ibml3). On the other hand the complexity of Genetic Algorithm in terms of 
CPU time is linear as the number of blocks increases. For example, comparing 
Table 2 and Table 3 for benchmark ibml3, the GA technique cuts the CPU 
time by almost 50%. 

Table 3. Genetic Algorithm Solution Quality for Multi-Way Partitioning 

Circuit 
Cuts 
39 
145 
161 

111 
325 
266 
1010 
1337 

986 
1002 
11890 

18183 
29108 
38186 

2 Blocks 
Cuts I CPU 1 1  

4 Blocks 
Cuts 
52 
159 
255 

159 
557 
367 
1590 
2341 

1425 
1426 
13704 

20499 
32983 
43139 

6 Blocks 
CPU 1 

24 1 
Prim1 
Struct 277 

Bio 
Ind2 272 2103 
Ind3 491 3106 

Comparing results obtained by the Genetic Algorithm with those based 
on Local Search we can conclude the following. (i) GA's are not guaranteed 
to  find the global optimum solution to a problem, but they are generally good 

8 Blocks 
Cuts I CPU 
49 1 28 

Avq.s 
Avq.1 

464 
465 

3911 
3999 



178 Shawki Areibi 

at finding "acceptably good" solutions to problems, (ii) Where specialized 
techniques exist for solving particular problems, they are likely to out-perform 
GA's in both speed and accuracy of the final result. Another drawback of 
Genetic Algorithms is that they are not well suited to perform finely tuned 
search, but on the other hand they are good at  exploring the solution space 
since they search from a set of designs and not from a single design. Genetic 
Algorithms are not well suited for fine-tuning structures which are close to 
optimal solutions [9]. Incorporation of local improvement operators into the 
recombination step of a Genetic Algorithm is essential if a competitive Genetic 
Algorithm is desired. 

4 Memetic Algorithms 

Memetic algorithms (MAS) are evolutionary algorithms (EAs) that apply a 
separate local search process to refine individuals (i.e improve their fitness by 
hill-climbing). Under different contexts and situations, MAS are also known 
as hybrid EAs, genetic local searchers. Combining global and local search is 
a strategy used by many successful global optimization approaches, and MAS 
have in fact been recognized as a powerful algorithmic paradigm for evolution- 
ary computing. In particular, the relative advantage of MAS over GA is quite 
consistent on complex search spaces. Figure 22 shows one possible implemen- 
tation of a Memetic algorithm based on the Genetic Algorithm introduced 
earlier in Section 3. We use a simple variation of the Fiduccia and Mattheyses 
(FM) heuristic [13]. The original FM heuristic has several passes after which 
the heuristic terminates as presented in Section 2. In the local optimization 
phase, a single pass is allowed, furthermore a restriction on the number of 
modules to be moved is set to a certain value. It  is to  be noted that if local 
optimization is not strong enough to overcome the inherent disruption of the 
crossover, more strong local optimization is needed. 

4.1 Computational Results for MA 

Table 4 shows the results obtained from the Memetic Algorithm. The first 
column in the table MA-ii is the direct application of local search on each 
chromosome in the population at  only the initial stage. The secon column 
MA-gi is the direct application of local search on each chromosome in the 
population in every generation. It  is clear that MA-gi performs better fine 
tuning and exploitation than MA-ii which only attempts to fine tune the 
search at  an early stage. MA-hi is in affect the combination of MA-ii with 
MA-gi such that after an early exploitation of the landscape the system at- 
tempts to explore and exploit the solution space simultaneously. The results 
in the table indicate that the combination does not have a drastic affect on 
the final solution quality even though an improvement of 2-3% is achieved. 
The fourth column in the table MA-ci is the direct application of GRASP 



MEMETIC ALGORITHM 
1. Encode Solution Space 
2.(a) set popsize, maxgen, gen=O; 

(b) set crossrate, mutaterate; 
3. Initialize Population Randomly. 
** Utilize GRASP to  Construct Initial Population (MA-ci) 
** Apply Local Search to  Initial Population (MA-ii) 
4. While(Gen < Gensize) 

Apply Generic GA 
** Apply F M  Local Search to  Population (MA-gi) 
EndWhile /* end of a run */ 
** Apply Final Local Search to  Best Chromosome (MA-fi) 

Fig. 22. The Memetic Algorithm 

to effectively construct good intial solutions for the Genetic Algorithm. The 
system achieves an improvement of 65% over MA-ii and 51% over MA-gi for 
the largest benchmark (ibml3). Experimental results indicate that less than 
25% of the population should be injected with good initial solutions for MA-ci 
to perform well. The last column in the table MA-ci-gi is a combined M A 4  
and MA-gi approach where good intial solutions are injected into the initial 
population followed by a balanced exploration (via crossover, mutation) and 
exploitation (via a single pass of local search) stage. It is quite evident that 
this Memetic Algorithm approach achieves the best overall results compared 
to the previously mentioned methods (i.e MA-ii, MA-gi and MA-hi). The 
overall improvement obtained (over MA-hi) for the largest circuits are: 61% 
for ibm07, 50% for ibmlO and over 66% for the largest benchmark ibml3. 

5 Results & Analysis 

In this section we will summarize the results obtained using (i) Local Search 
(ii) Genetic Algorithms (iii) Memetic Algorithm. Table 5 presents the results 
obtained by the three techniques mentioned above for four way partitioning. 
As can be seen in Table 5 the Memetic Algorithm obtains on average better 
solutions (cuts) than the Local Search technique. As the benchmarks increase 
in size the quality of solutions obtained using the local search technique dete- 
rioates. A comparison between the pure Genetic Algorithm and the Memetic 
Algorithm reveals the importance of embeding local search within GA to im- 
prove its performance. The affect of exploitation shows very clearly for the 
large benchmarks (ibmO7, ibmlO and ibml3). 
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Table 4. Comparison of Several Memetic Algorithm Implementations 

Circuit MA-ii MA-gi M 
Cuts I CPU II Cuts I CPU I1 Cuts 

Fract 47 24 37 
Prim1 131 157 145 
Struct 1 1  165 1 
Indl 1 1  100 1 

-ci MA-c 
CPU II Cuts I 

. . 
1-gl 

CPU 

351 

34322 

Table 5. Comparison between LS, GA and MA 

Circuit 

Fract 
Prim1 
Struct 

I n d l  
Prim2 

Bio 
Ind2 
Ind3 

Avq.s 
Avq.1 
Ibm05 

ibm07 
ibmlO 
ibml3  

Local Search 
Cuts  

28 
148 
195 

245 
636 
532 
1759 
1675 

2151 
2594 
8922 

13527 
22331 
26710 

CPU 

0.3 
2.7 
6.4 

8.3 
13.3 
45.8 
143 
118 

309 
321 
1618 

4437 
12855 
16456 

Genetic Algorithms 
Cuts 

39 
145 
161 

111 
325 
266 
1010 
1337 

986 
1002 

11890 

18183 
29108 
38186 

CPU 

24 
156 
344 

408 
581 
1122 
2778 
4645 

4831 
6336 
8158 

16901 
30507 
41371 

Memetic Algorithms Improvement 
Cuts  

35 
103 
127 

90 
265 
233 
587 
1185 

882 
965 

5158 

6485 
10119 
8152 

LS 

-20% 
+30% 
+34% 

+63% 
+58% 
+56% 
+66% 
+29% 

+59% 
+62% 
+42% 

+52% 
+54% 
+69% 

CPU 

24 
159 
351 

416 
621 
1147 
2832 
4837 

5019 
6319 
8948 

18096 
34322 
45438 

GA 

+lo% 
+29% 
+21% 

+18% 
+18% 
+12% 
+41% 
+ l l %  

+lo% 
+4% 

+56% 

+64% 
+65% 
+78% 



6 Conclusions 

Memetic Algorithms (MAS) are Evolutionary Algorithms (EAs) that apply 
some sort of local search to further improve the fitness of individuals in the 
population. This paper provides a forum for identifying and exploring the key 
issues that affect the design and application of Memetic Algorithms. Several 
approaches of integrating Evolutionary Computation models with local search 
techniques (i.e Memetic Algorithms) for efficiently solving underlying VLSI 
circuit partitioning problem were presented. A Constructive heuristic tech- 
nique in the form of GRASP was utilized to inject the initial population with 
good initial solutions to diversify the search and exploit the solution space. 
Furthermore, the local search technique was able to enhance the convergence 
rate of the Evolutionary Algorithm by finely tuning the search on the imme- 
diate area of the landscape being considered. Future work involves adaptive 
techniques to fine-tune parameter of the Genetic Algorithm and Local Search 
when combined to form a Memetic Algorithm. Balancing exploration and ex- 
ploitation is yet another issue that needs to be addressed more carefully. 
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