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Summary 

Terminal assignment is an NP-hard problem in communications networks. It 
involves assigning a set of terminals to a set of concentrators with a cost for 
each assignment. The objective is to minimize the total cost of the assignment 
and the number of concentrators used. A number of heuristic algorithms, in- 
cluding genetic algorithms, have been proposed for solving this problem. This 
chapter studies several evolutionary and hybrid approaches to terminal as- 
signment. Firstly, a novel chromosome representation scheme based on con- 
centrators is proposed. This representation compares favourably against the 
existing terminal-based representation, which scales poorly for large problems. 
Extensive experiments have been carried out. The results show that our evo- 
lutionary algorithms using the concentrator-based representation outperform 
significantly existing genetic algorithms using the terminal-based representa- 
tion. Secondly, a number of new search operators used in our algorithms are 
also investigated empirically in order to evaluate their effectiveness for the 
terminal assignment problem. Finally, different combinations of evolutionary 
algorithms and local search are studied in this chapter. Both Lamarckian evo- 
lution and Baldwin effect have been examined in combining an evolutionary 
algorithm and local search. Our results show that hybrid algorithms perform 
better than either evolutionary algorithms or local search. However, there is 
no significant difference between Lamarckian-evolution-style combination and 
Baldwin-effect-style combination. 
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1 Introduction 

Evolutionary algorithms (EAs) and their hybridisation with local search have 
been widely studied and applied to solve many real world problems. Com- 
munications network design is a typical combinatorial optimization problem 
for which no efficient algorithm exists unless P=NP. A good design of com- 
munications networks requires certain constraints to be met and at  the same 
time, one or more objectives to be optimized. The algorithms for designing 
communications networks must have good scalability and be able to deal with 
large-scale applications with a large number of network nodes. 

The optimal design of communications networks considering both cost and 
capacity has been investigated in the literature using different heuristic algo- 
rithms, such as tabu search, simulated annealing and greedy search. Recently, 
EAs have been shown to perform well in communications network design, es- 
pecially for the terminal assignment problem, which has been shown to be 
N P  hard [ l l ] .  However, the performance of such EAs is still unsatisfactory for 
large problems. 

This chapter studies novel hybrid EAs. Unlike previous EAs which used 
a terminal-based chromosome representation, a concentrator-based evolution- 
ary approach for solving the terminal assignment problem is proposed in this 
chapter. This evolutionary approach uses a novel concentrator-based repre- 
sentation and associated search operators. It is hybridised with local search 
methods to form hybrid EAs. The concentrator-based representation is pro- 
posed to overcome the difficulties encountered by the terminal-based repre- 
sentation previously used by other evolutionary approaches. Attempts are 
also made to design appropriate search operators that work well with the 
concentrator-based representation. In addition to minimising costs, we also 
consider reducing the number of concentrators used. The objective of min- 
imising the total cost is explicitly dealt with by the fitness function during 
the evolution. Minimising the total number of concentrators used is considered 
as an implicit constraint for the cost objective, or a second objective encoded 
in the fitness function. Hence, there are two problem formulations for the 
terminal assignment problem, i.e., single-objective and multi-objective opti- 
misation. In this chapter, both formulations will be studied using the hybrid 
EAs and the concentrator-based representation. 

In our hybrid EAs, two methods are considered for hybridization with local 
search, i.e., Lamarckian evolution and Baldwin effect. Lamarckian evolution 
forces the genotype to reflect the result of local improvement. The improved 
individual is placed back into the population and allowed to compete for repro- 
ductive opportunities [lo]. The Baldwin Effect allows an individual's fitness 
(phenotype) to be determined after local search. Similar to natural evolution 
(Darwinian evolution), the result of the improvement is not reflected in the 
genetic structure (genotype) of the individual. It only changes the individual's 
chance of survival [lo]. Baldwin effect as used in EAs may introduce unde- 
sirable offspring after crossover. When crossing two individuals, which after 
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local search converge to the same local basin, it is likely that the offspring 
may be similar to the parents and will converge to the same basin. To avoid 
this problem, the use of memory is considered for both Lamarckian evolution 
and Baldwin effect in the work presented here. 

The concentrator-based evolutionary approach and its hybrid evolution are 
fully tested and examined by a series of computational experiments designed 
for the terminal assignment problem. The results have shown that the EA's 
performance was better with concentrator-based representation than with the 
terminal-based representation. The generation of a feasible initial population 
is simpler and more scalable in the concentrator-based representation even 
for a large number of terminals. The concentrator-based hybrid EAs outper- 
formed EAs without local search. However, there is no significant difference 
between two different approaches to hybridise EAs with local search, i.e., 
Lamarckian evolution and Baldwin effect. 

The remainder of this chapter is organised as follows. The next section 
introduces the terminal assignment problem and the previous work in solving 
this problem. Section 3 presents our concentrator-based representation and 
the search operators designed for it. A set of experiments are carried out to 
test the performance of the representation and operators and to compare them 
with the traditional terminal-based EAs. Concentrator-based hybrid EAs that 
integrate Lamarckian evolution or Baldwin effect are studied in Section 4. 
Lamarckian-style and Baldwin-style evolution with and without memory are 
investigated using the terminal assignment problems with single-objective or 
multi-objectives. Section 5 concludes this chapter with a brief summary of our 
work and some future work. 

2 The Terminal Assignment Problem 

2.1 Problem Representation 

In this chapter, we will focus on the two-terminal network (also called source- 
link network) design. The work, however, can also contribute to the design of 
other kinds of networks, i.e., all-terminal networks. In the two-terminal net- 
work, a set of pre-specified source nodes communicate with the pre-specified 
sink nodes through non-specified paths. This can be simplified as a terminal 
assignment problem that concerns the assignment of certain terminals to some 
concentrators. This assignment should keep the total cost minimum. The cost 
may include material cost of cabling, installation cost and connection or com- 
munication cost between the concentrators and terminals. The cost may be 
fixed or varied per connection depending on the real situation. In general, it 
can be summarized as a weight that is used as the complete cost for each 
connection [2], [3], and [14]. 

In addition to minimizing the total cost, the terminal assignment problem 
should take the concentrators' capacity limit into account by satisfying two 
constraints: 
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1. Every terminal is assigned to one and only one concentrator. 
2. The sum of weights of connections between terminals and a concentrator 

should not exceed the capacity of that concentrator. 

Single-objective Optimisation Formulation 

Given 

K :  number of concentrators, 
T: number of terminals, 
Ci: Capacity of concentrator i = 1,2, .  . . , K ,  
dij: weight of the connection between concentrator i and terminal j ,  where 

i =  l , 2  ,..., K ,  j = 1 , 2  ,... T,  

the single objective optimisation problem of terminal assignment is to min- 
imise the total cost, 

subject to 

where j E Ji is the terminal j assigned to concentrator i, and is the set of all 
terminals connected to concentrator i. 

Multi-objective Optimisation Formulation 

The most common objective of the terminal assignment problem is to min- 
imise the total cost of the network. However, in many situations, it makes 
sense to also minimise the number of concentrators used so that the whole 
network can work with a less cost. The minimisation of the number of concen- 
trators can be treated as an implicit constraint to be considered in the above 
single objective optimisation, or as another objective to optimise. In the latter 
case, the problem becomes a true multi-objective optimisation problem that 
minimises both the cost and the number of concentrators used at  the same 
time. A weighted sum approach for this problem is described below. 

Given 

fi: objective i ,  i = 1,2,.  . . ,n, and 

wi: weight of objective, 

then the purpose of the multi-objective optimisation is to minimise 
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In the problem presented here, n is 2 (for two objectives), fi is the total 
cost of all the connections between concentrators and terminals, which is F 
as described in the single objective optimisation; and fi is the total number 
of concentrators used. 

2.2 Previous Work on Terminal Assignment in Communications 
Networks 

Various approaches have been applied to the optimisation of communications 
networks. Previous work in [3] utilised simulated annealing to find the optimal 
design of small-scale networks (less than five nodes). Simulated annealing 
was also adopted in [15] to find solutions for packet switched networks with 
considerations of delay and capacity. Tabu search was used in [7] and in [13] 
to find an appropriate design of communications networks by considering cost 
and capacity together. 

Using greedy algorithms and genetic algorithms (GAS) to assign terminal 
nodes to concentrators was investigated by [I]. The greedy algorithm assigns 
terminals to nearby (but maybe not the nearest) concentrators, if this assign- 
ment can help other terminals to be assigned to nearby concentrators. This 
kind of assignment can lead to infeasible solutions even if a feasible solution 
exists. This means that sometimes there are unassigned terminals that cannot 
be allocated to any concentrator. 

The GA used in [I] had two possible chromosome representations for the 
terminal assignment problem, LC1 and LC2. Both representations are com- 
posed of an integer string. Each integer indicates the concentrator to which a 
terminal is assigned. The integers are arranged in the sequence of terminals, 
so the length of the string is the same as the number of terminals. In LC1, 
the first n l  terminals are assigned to n2 different concentrators, one terminal 
per concentrator. The remaining terminals are assigned in a greedy fashion 
considering the different costs of the concentrators. [I], used a seeding strat- 
egy to initialise the population in order to reduce the number of infeasible 
individuals in the initial population. Unfortunately, this kind of representa- 
tion sometimes may cause inappropriate assignments with a great waste of 
concentrator capacities after the first n l  terminals are allocated to n2 concen- 
trators. In case of large-scale problems with large numbers of terminals and 
concentrators, the computation time may increase considerably due to the 
continuous evaluation of the lowest costs for the assignment of the remaining 
terminals. 

The second representation LC2 do not adopt the strategy of assigning 
the first n l  terminals to n2 concentrators. All the terminals are assigned in a 
greedy fashion. Therefore, unlike LC1, the infeasibility in the initial population 
of LC2 is likely to be high. In case of large-scale problems, the computation 
of the cost can be very high as well. The results in [I] showed that GAS 
outperformed the greedy algorithm. 
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[12] compared greedy algorithms, GAS and grouping GAS (GGAs) for solv- 
ing the terminal assignment problem. A terminal is assigned to the nearest 
concentrator which has sufficient capacity to take this terminal, and if not, 
the next closest concentrator is chosen for assignment. In this algorithm, there 
are many chances that some terminals may not be allocated and hence make 
the solutions infeasible. If the number of terminals or concentrators is large, 
it may take a long time to search for concentrators with the least cost for 
assigning all terminals. 

The GAS in [12] used both binary and non-binary representations indicat- 
ing the concentrators with which the terminals are connected. If the terminal 
size is large, e.g., 1000, the chromosome length will also be large, e.g., 1000. 
Therefore, generating a feasible initial population and evolving such long chro- 
mosomes can be a challenge to GAS. [12] have incorporated a penalty term 
in the fitness function to deal with infeasibility. Infeasible solutions are not 
discarded but included in the population with the penalty incorporated in it. 
The penalty term clearly distinguishes infeasible solutions from feasible ones. 
A higher penalty imposes more selective pressure on infeasible solutions. 

[12] used a GGA as a third approach to solve the terminal assignment 
problem. The representation in GGAs consists of two parts. The first part 
is the same as the representation used in GAS, but there is an additional 
part which groups the terminals and their connected concentrators together. 
The first part of the representation is only used for selection and fitness eval- 
uation. A special crossover operator is designed for the group part in the 
group representation, which selects an entire group from one parent and in- 
serts it into the other parent a t  the crossover point. After crossover there is a 
high possibility that the individuals may become infeasible. So the infeasible 
chromosomes have to be repaired. The repair process needs to  remove the 
duplicate concentrators and re-assign the associated terminals to other con- 
centrators. [12] demonstrated that GAS with the non-binary representation 
outperformed greedy algorithms in most cases, but GGAs did not perform 
very well comparatively. 

It  can be seen from previous work that using evolutionary approaches 
(especially GAS) in communications network design has potentials. These ap- 
proaches showed better performance than other search algorithms such as 
greedy algorithms. However, there is a crucial limitation in the previous evo- 
lutionary approaches concerning their encoding methods, which is usually a 
list of all possible connections to concentrators, arranged in the sequence of 
terminals. Such encoding methods usually cannot work well with large-scale 
problems, and in particular, they have extreme difficulties in generating a 
feasible initial population within a reasonable time. Because those encoding 
schemes are all based on terminals and cannot reflect well the relationship 
between terminals and concentrators, good couplings between terminals and 
concentrators discovered in evolution may not be maintained after search op- 
erations such as crossover and mutation. This makes the evolution more dif- 
ficult to find and keep optimal solutions. Though [12] introduced the concept 
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of group based representation, it was used together with the terminal based 
representation and only for crossover. The performance of GGAs was not sat- 
isfactory. In order to overcome the difficulties presented in the previous work, 
a new chromosome representation is proposed for the terminal assignment 
problem in the next section. 

3 Concentrator-based Evolutionary Approach 

In this chapter, a novel concentrator-based evolutionary approach is proposed 
to make use of the group structure in the terminal assignment problem. This 
approach is especially used to overcome the incapability of previous evolu- 
tionary approaches in handling large-scale networks. The concentrator-based 
evolutionary approach differs from classic EAs in two aspects. First, a spe- 
cial encoding scheme is designed to introduce the structure of groups into 
the genes of chromosomes. Second, given the distinctive encoding, special ge- 
netic operators are designed to evolve the concentrator-based chromosomes 
for solving the terminal assignment problem. 

In the remaining of this section, we will introduce the encoding method 
and the corresponding search operators. The concentrator-based EA is then 
examined and compared with other EAs by a series of experiments with dif- 
ferent experimental settings. 

3.1 Concentrator-based Representation 

The concentrator-based representation is composed of a set of trees in one 
level, in each of which the concentrator is the root node and the terminals 
associated with the concentrator are the leaves. Each tree therefore indicates 
a concentrator together with its terminals. An example of the representation 
is shown in Figure 1, 

Fig. 1. An example of the concentrator-based representation. 
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In this example, there are 4 concentrators (cl to c4) and 5 terminals ( t l  
to  t5). Terminal t l  is assigned to concentrator c l ,  terminal t 3  to concentrator 
c2, and so forth. The representation of this example can be written as: 

When composing the concentrator-based representation, both constraints 
of the terminal assignment problem must be met. Any infeasible representa- 
tions should be either repaired or eliminated in evolution. 

The initial population of the concentrator-based EAs is generated in a way 
similar to that of the terminal-based EA (e.g., the non-binary representation 
used in [12]). Every concentrator has equal probability to serve terminals. A 
terminal is first assigned to a randomly selected concentrator. If the concentra- 
tor has not enough capacity to serve the terminal, then another concentrator 
is randomly chosen. An individual is included in the population only if it is 
feasible. 

The concentrator-based representation, i.e. the tree-based representation, 
allows for variable length genotypes, so the chromosomes are not restrained 
by terminal or concentrator numbers. It is both efficient and flexible. Because 
there is no need to search and evaluate the least cost concentrators when 
generating individuals, the concentrator-based representation works well even 
with a large number of terminals or concentrators. The generation of the initial 
population is simpler than the terminal-based representation. The terminals 
that are to be assigned to a concentrator are taken from a pool where terminals 
are stored, eliminating any duplicates. By generating populations in this way 
the constraints of assigning a terminal to only one concentrator is implicitly 
satisfied. 

3.2 Search operators 

A series of search operators including selection, crossover, and mutation have 
been designed to work with the new concentrator-based representation, as nei- 
ther the standard nor the ordering genetic operators are suitable for grouping 
problems [4]. These operators are introduced below. 

Selection 

Selection is the operation by which individuals are selected from a popula- 
tion for mating. There are many different models of selection such as ranking, 
roulette wheel selection and tournament selection. Because these models se- 
lect chromosomes according to their ranks or fitness values, they can be easily 
applied to the concentrator-based evolution without major changes. In the fol- 
lowing experiments, tournament selection is used due to its good performance 
in selecting optimum or nearly optimum solutions. 
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Crossover 

The purpose of crossover is to pass on the genetic material from the current 
generation to the next one. A typical crossover recombines two individual 
parents to produce two offspring. Several crossover operators can be used on 
the concentrator-based representation. 

One Point Crossover 

This is one of the most common crossover methods used in EAs. A 
crossover point is randomly chosen and children are obtained by swapping the 
tails of the parents' chromosomes. Figure 2 is an example of how one point 
crossover works on the concentrator-based representation. If the crossover 
point divides the parent in equal halves then equal information is inherited. 
Sometimes repair has to be done to make the children feasible. The process of 
repair is explained later. In this type of crossover, the order of concentrators 
in a chromosome is not very important. 

parent 1- cl(tl,t3) / c2(t2.t4,t6) c3(t7,t8,t5) 

parent 2- cl(t2,t3,t4) I c2(tl,t7,t8) c3(t7,t6,t5) 

child 1- cl(tl,t3)c2(tl,t7,t8) c3(t7,t6,t5) 

child 2- cl(t2,t3,t4) c2(t2,t4,t6) c3(t7,t8,t5) 

I 

Fig. 2. One point crossover. 

Two Point Crossover 

In two point crossover, two crossover points are randomly chosen and the 
chromosome parts in between are exchanged between the parents, as shown in 
Figure 3. The information that is inherited depends on the crossover points. If 
the crossover points are far apart, more information is then inherited. Similar 
to one point crossover, this type of crossover is also commonly used in EAs. 

Modzjied Unzform Crossover 

A typical example of the uniform crossover is shown in Figure 4. The 
order of concentrators remains the same in all the chromosomes before and 
after crossover, but only some the terminals associated with each concentrator 
are inherited. 
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parent 1- cl(tl,t3) / c2(t2,t4,t6) I c3(t7,t8,t5) 

parent 2- cl(t2,t3,t4) I c2(tl,t7,t8) I c3(t6,t5) 

child 1- cl(tl,t3) c2(tl,t7,t8) c3(t7,t8,t5) 

child 2- cl(t2,t3,t4) c2(t2,t4,t6) c3(t6,t5) 

Fig. 3. Two point crossover. 

parent 1- cl(tl,t3) c2(t2,t4,t6) c3(t7,t8,t5) 

parent 2- cl(t2,t3,t4) c2(tl,t7,t8) c3(t6,t5) 

child 1- cl(tl,t3) c2(tl ,t7,t8) c3(t7,t8,t5) 

child 2- cl(t2,t3,t4) c2(t2,t4,t6) c3(t6,t5) 

Fig. 4. Uniform crossover. 

In Figure 4, for childl, the terminal set of c l  is inherited from parentl, for 
c2 it is inherited from parent2 and for c3 it is again inherited from parentl. 
In this example, the probability of inheriting a gene from a parent is set 
as 0.5. In the following experiments, the probability is calculated based on 
the available capacities of the concentrators. For example, if the available 
capacity of c l  is 60% in parentl and is 30% in parent2, then the probability 
of selecting c l  from parentl will be greater than from parent2. Such a uniform 
crossover is different from the classical one, and thus called modified uniform 
crossover. In this type of crossover it is possible that both terminal assignment 
constraints may be violated. The crossover may result in infeasible solutions. 
For example, terminals may be assigned to more than one concentrator, such 
as terminal t4 of child2 shown in Figure 4, which is assigned to both c l  and c2. 
Also, there may be some terminals that are not assigned to any concentrator, 
such as terminals t l ,  t7  and t8  in child2. In order to resolve the violation of 
constraints, repair should be done. 
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One node Crossover 

The crossover operators introduced above are similar to classical crossover 
methods on the terminal-based representation. To exploit our representation 
better, two specific crossover methods based on concentrators are also de- 
signed. Figure 5 illustrates one of the methods, which is called one node 
crossover. Each concentrator is deemed as a node in this method. A ran- 
dom node point is chosen (such as c2 in the example shown in Figure 5) and 
the nodes together with their associated terminals in two parents are swapped 
to produce offspring. Repair is used to make the offspring feasible whenever 
necessary. 

parent 1- cl(t1 ,t4) c2(t5,t3,t2) c3(t6,t7) 

parent 2- c 1 (t2,t3) c2(t6,t5) c3(tl ,t4,t7) 

child 1- cl(tl,t4) c2(t6,t5) c3(t6,t7) 

child 2- cl(t2,t3) c2(t5,t3,t2) c3(tl,t4,t7) 

I 

Fig. 5. One node crossover. 

Best Node Crossover 

In addition to one node crossover, another node-based crossover is pro- 
posed to exploit the best concentrator in the chromosomes. The best concen- 
trator is chosen from each parent and then passed to the offspring. In Figure 
6, concentrator c3 from parent1 and concentrator c l  from parent2 are trans- 
ferred to both children. The offspring replace their parents only if the cost 
is less than or equivalent to that of the parents. This type of crossover can 
reduce the number of concentrators used. 

One Group Crossover 

This operator is inspired by the crossover used in GGAs as described 
in Section 2.2. Two random crossover points are generated separately and 
independently for two parents as shown in Figure 7. The crossover points 
may be different for two parents. Repair will be needed for infeasible children. 



140 X. Yao, F. Wang, K. Padmanabhan and S. Salcedo-Sanz 

parent 1- c l  (tl ,t2) c3(t6,t7) c2(t4,t5,t3) 

parent 2- c 1 (t3,t5) c2(tl ,t2) c3(t4,t6) 

child 1- c l  (t3,tfi) c2(t6,t5) c3(t4,t5,t3) 

child 2- c l  (t3,t5) c2(tl ,t2) c3(t4,t5,t3) 

Fig. 6. Best node crossover. 

parent 1- cl(t2) I c2(t3) I c3(tl,t4) c4(t5) 

parent 2- cl(t1) c2(t4) I c3(t2,t3) I c4(t5) 

child 1- cl(t2) c2(t4) c3(tl,t4) c4(t5) 

child 2- cl(t1) c2(t4) c3(tl,t4) c4(t5) 

Fig. 7. One group crossover. 

Best Group Crossover 

This crossover is similar to the above one group crossover, but the best 
concentrator in the group will be retained in the offspring instead of being 
replaced and lost through crossover. Figure 8 illustrates this crossover. The 
concentrator c2 in parentl is best utilized and hence is retained in childl. 
The concentrator c3 in parentl is the best and hence is inserted into the 
chromosome of child2. 

Repair 

After crossover some terminals may be either presented in duplicates or 
completely missing and hence cause infeasible individuals. Stochastic repair 
is then used to make the individuals feasible. The repair process can be de- 
scribed by two steps: 
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parent 1- c 1 (t2) ( c2(t3) I c3(t 1 $4) c4(t5) 

parent 2- cl(t1) c2(t4) I c3(t2,t3) 1 c4(t5) 

child 1- cl(t2) c2(t3) c3(tl,t4) c4(t5) 

child 2- cl(t1) c2(t4) c3(tl ,t4) c4(t5) 

Fig. 8. Best group crossover. 

1. Deletion of duplicate terminals - Each terminal is examined for duplicates 
and if there is any, a duplicate terminal in a less loaded concentrator is 
deleted; 

2. Stochastic assignment of missing terminals - Missing terminals are as- 
signed to less loaded concentrators which are randomly chosen. 

Mutation 

Mutation makes (usually small) alterations to one or more genes in a chro- 
mosome. It  is considered as a method to recover lost genetic material during 
evolution. Here several mutation methods are used for the concentrator-based 
evolution. 

Point Concentrator Swap 

Two concentrators c l  and c2 are chosen stochastically and all the termi- 
nals associated are swapped between them. Because concentrators may have 
different capacities, swapping their terminals may reduce the cost but not the 
number of concentrators. This is shown in Figure 9. 

Before mutation - cl(t1 ,t3) c2(t2,t4) c3(t5,t6) 

After mutation - cl(t2,t4) c2(tl,t3) c3(t5,t6) 

Fig. 9. Two point concentrator swap. 
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Two Point Terminal Swap 

Here two concentrators are chosen at random and then two terminals are 
randomly chosen from the two concentrators, respectively. The selected ter- 
minals are then interchanged. An example of this mutation is shown in Figure 

Before mutation - cl(tl,t4) c2(t3,t6) c3(t5,t2) 

After mutation - c l  (tl,t3) c2(t4,t6) c3(t5,t2) 

Fig. 10. Two point terminal swap. 

In Figure 10, concentrators c l  and c2 are selected and in them terminals t3 
and t4 are selected and then interchanged. The mutated individual is included 
in the population only if it is feasible and fitter than its parent. 

Delete-Insert One Mutation 

This mutation is designed to alter the concentrator of a terminal. A con- 
centrator c l  is first chosen at  random. Then a random terminal t l  is deleted 
from it and then inserted into the terminal set of another randomly chosen 
concentrator, c3 in this case. The mutated individual joins the population only 
if it is fitter than its parent and is feasible. This type of mutation is designed 
to reduce the number of concentrators used. For example, c l  in Figure 11 is 
no longer needed. 

Before mutation - cl(t1) c2(t2,t4,t3) c3(t6,t5) 

After mutation - cl() c2(t2,t4,t3) c3(t6,t5) 

Fig. 11. Delete-insert one mutation. 

In this mutation, a concentrator c l  is chosen at  random and all the ter- 
minals in c l  are removed and inserted into another concentrator c2, which is 
also chosen at  random, as shown in Figure 12. This type of mutation is de- 
signed to reduce the number of concentrators by shifting all of the terminals 
of a concentrator to other concentrators. In Figure 12, all the terminals of c l  
are shifted to concentrator c2, however they may be reassigned to more than 
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one concentrator if the currently selected concentrator does not have sufficient 
capacity. After this mutation the individual joins the population only if it is 
fitter than its parent and is feasible. 

Before mutation - cl(tl,t3) c2(t2,t4) c3(t7,t6,t5) 

After mutation - cl() c2(tl,t3,t2,t4) c3(t7,t6,t5) 

Fig. 12. Delete-insert all mutation. 

Self Crossover Mutation 

Two concentrators c l  and c2 are chosen at  random. The terminal set of 
each concentrator is regarded as a small "individual" and the 
crossed using one point crossover. 

two sets are 

Before mutation - cl(tl,t4 1 t3,t8) c2(t5, t7 I t6) 

After mutation - c l  (tl,t4,t6) c2(t5,t7,t3,t8) 

Fig. 13. Self crossover mutation. 

One Group Mutation 

A less loaded concentrator is chosen at  random from a parent and all the 
terminals associated with the concentrator are deleted. The deleted terminals 
are then reassigned to other concentrators chosen randomly. In Figure 14 
concentrator c2 is chosen at  random and terminal t3 is deleted. The missing 
terminal t3 is added to the terminal list of concentrator c l .  This type of 
mutation may result in fewer concentrators. 

Multi-Group Mutation 

This mutation is similar to the one group mutation except that more than 
one concentrator is involved. Several less loaded concentrators are chosen at 
random. In Figure 15 concentrators c2 and c4 are randomly chosen and termi- 
nals t4 and t2 are removed from their terminal lists. The removed terminals 
t4 and t2 are reassigned to a random concentrator c3. This type of mutation 
operator can also reduce the number of concentrators used. 
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I Before mutation - cl(tl,t4) c2(t3) c3(t2,t5,t6) I I After mutation - cl(tl,t4,t3) c2() c3(t2,t5,t6) 1 
Fig. 14. One group mutation. 

Before mutation - cl(tl,t3) c2(t4) c3(t5) c4(t2) 

After mutation - cl(tl,t3) c2() c3(t4,t5,t2) c4() 

Fig. 15. Two group mutation. 

3.3 Experimental Studies 

In the previous sections, we introduced the concentrator-based representation 
and a number of search operators that can be used on the representation. 
In order to evaluate the proposed concentrator-based EA, a number of ex- 
periments were run with different experimental settings. In this section, both 
the concentrator-based representation and the corresponding operators will 
be tested for their performance. 

Performance Test of the Concentrator-based Representation 

The first experiment is used to examine the performance of the proposed 
concentrator-based representation. For the purpose of comparison, the terminal- 
based representation was also tested in the experiments. The initial popula- 
tions in the experiments were generated in the way as described in Section 
3.1. Tournament selection with uniform crossover and two-point interchange 
mutation was used for both representations in this comparison test. The EAs 
are terminated after the fitness value remains unchanged for 25 generations. 
Both concentrator-based and terminal-based representations are tested on dif- 
ferent problems in which the number of terminals ranges from 100 to 1000. 
However, problems with more than 500 terminals were not considered in the 
terminal-based representation because the generation of their initial popula- 
tions took too long. Table 1 gives a list of the experimental parameters used 
in the experiment. The experiment was run for 30 times and the results are 
shown in Table 2. 

The results in Table 2 show that the concentrator-based representation 
generally found solutions better and much faster (with fewer generations) than 
the terminal-based representation, especially when the problem was large. 
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Table 1. Experimental setting 

Population size: 100 
Chromosome: terminal basedlconcentrator 

based representation 
Selection: tournament selection 
Crossover: uniform crossover 
Mutation: two-point interchange 
Termination Criterion: the fitness value presents no 

change for 25 generations 
Elitism: Yes 
Number of runs: 30 
Ratio of number of terminals to 
terminal number of concentrators: 2:l 
Number of terminals: 100 to 500/100 to 1000 
Number of concentrators: 50 to 250150 to 500 
Weight of terminals to: 1 to 6 
concentrators 
Capacity of concentrators: 15 to 25 

Table 2. Comparison between concentrator-based and terminal-based representa- 
tions, where Size indicates the number of terminals, s.d. indicates standard devia- 
tions and N indicates the number of generations. 

I Concentrator-based I Terminal-based 
Size 1 cost 

best mean s.d. worst + 

During the experiments, we found that the difference in cost between two rep- 
resentations was higher in the first generation as compared with the final gen- 
eration. Though the concentrator-based representation produced a relatively 
uncompetitive population at  the beginning, it obtained superior final results 
through evolution, except when the problem is very small, e.g., for terminal 
sizes 100 and 200. The concentrator-based representation achieved the results 
in fewer generations for all terminal sizes. The genetic operators worked more 
effectively on the concentrator-based representation than its counterpart. 

N 

250 
587 
1008 
1306 
1709 
2160 
2306 
2761 
3224 
3624 

cost 
best mean s.d. worst 
932 1062 72 1212 
1565 1782 122 2051 
2038 2305 171 2756 
2676 3119 241 3843 
3194 3753 320 4665 
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The concentrator-based representation also showed good scalability. It  eas- 
ily generated and evolved populations for terminals up to 1000. This is in con- 
trast to  the terminal-based representation which became incapable of solving 
the problem when the number of terminals involved was more than 500. This 
incapability inevitably restricts the application of the terminal-based repre- 
sentation in real world communications networks, which usually involve a 
great number of network nodes. The number of generations required by the 
concentrator-based representation was approximately linearly increased with 
the increased number of terminals, as shown in Figure 16. The well-presented 
scalability of the concentrator-based representation shows that it is suitable 
for large-scale network applications. 

Fig. 16. Scalability of the concentrator-based representation. The generations re- 
quired by the concentrator-based EA was linearly increased with the problem size. 
On the contrary, the terminal-based EA became incapable of solving the problem 
when terminals were more than 500. 

Performance Tests of Search Operators 

Various crossover and mutation operators designed for the concentrator-based 
representation were tested for their performance here. The EA guided by the 
operators should achieve the objective of minimizing the total cost between 
terminals and concentrators, and at  the same time, the operators should keep 
the number of concentrators used at  a minimum. In our experiments, the 
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number of terminals was set as 100 and the number of concentrators was 
50. The other settings of the experiments were the same as those used in 
the previous tests (see Table 1). The experimental results over 30 runs are 
presented in Table 3. 

Table 3. Performance tests of various search operators, where s.d. indicates stan- 
dard deviation and N indicates the number of generations. 

Search operators Number of Cost N 
conc. best mean worst s.d. 

1 One point crossover 20 4160 4567 4797 25622 50 
2 Two point crossover 
3 Uniform crossover 
4 One node crossover 
5 Best node crossover 
6 One group crossover 
7 Best group crossover 
8 Delete-insert one mutation 
9 Delete-insert all mutation 
10 Two point concentrator swap 
11 Two point terminal swap 
12 Self crossover mutation 
13 One group mutation 
14 Multi-group mutation 

 from Table 3 we can see that, when the cost alone is considered, delete- 
insert one mutation was the best among all search operators. Two point ter- 
minal swap mutation, self crossover mutation, two point concentrator swap 
mutation and delete-insert all mutation followed delete-insert one mutation, 
but all of them required more generations. All the other operators performed 
similarly. When the number of concentrators used alone is considered, uni- 
form crossover is the best, followed by one point crossover, one node crossover, 
delete-insert all mutation and delete-insert one mutation. The remaining op- 
erators had similar performance. 

Generally speaking, crossover operators showed better performance in re- 
ducing the number of concentrators because most crossover operators are de- 
signed for this purpose. Moreover, the stochastic repair mechanism is also very 
effective in reducing the number of concentrators used. While the exchange 
of genes is more frequent (and hence more repair is required) in one point 
crossover and uniform crossover, only 40% of the total concentrators were fi- 
nally utilized in the solutions found by these two crossover methods. Unlike 
one point crossover, two point crossover may not have frequent gene exchange 
and the repair mechanism only works on limited numbers of concentrators. 
The reduction of the concentrators used is therefore not so significant in two 
point crossover. Best node crossover is similar to one node crossover except 
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that the best utilized concentrator is chosen for crossover in both parents. 
Although repair may help reducing the concentrators used in both cases, it is 
unclear why the former is ineffective in the concentrator usage while the later 
is relatively more effective. This issue will be our future work. Compared with 
other crossover operators, the performance of group based crossover methods 
(e.g., one group crossover and best group crossover) was unsatisfactory. In 
most cases, group based crossover involves less exchange of genes than others. 
This may be the main reason why more concentrator used in group based 
crossover. Group based crossover also required much longer time to meet the 
termination criterion. All crossover operators showed insufficient effect on re- 
ducing the total cost. 

In contrast to crossover, most mutation operators effectively reduced the 
total cost because the assignment of terminals to concentrators was continu- 
ously altered and only fitter individuals after mutation were allowed to join 
the population. Among these operators, delete-insert one and delete-insert 
all mutation performed best by maintaining better utilized concentrators and 
mutating less loaded concentrators. Two point concentrator swap, two point 
terminal swap and self crossover mutation were also good at  reducing cost, 
but less effective than delete-insert one and delete-insert all mutation. This is 
because these operators do not take the concentrator load into account when 
swapping genes. Similar to group based crossover, one group mutation and 
multi-group mutation demonstrated unsatisfactory performance in both cost 
minimization and reduction of the number of concentrators used. 

It  is worth emphasizing that our study of genetic operators was carried 
out for each operator independently. We did not run EAs with two or more 
operators in the above experiments (Table 3). We expect EA's performance 
will improve further if we use two or more appropriate operators together. 

4 Concentrator-based Hybrid Evolutionary Approaches 

Hybrid EAs have been shown to be quite effective in solving a wide range of 
real world problems. How EAs and local search are combined is an extremely 
important issue that influences the final solution quality and the computa- 
tional efficiency of the algorithm [lo]. Hybridization of EA with local search 
gives rise to the concepts of Lamarckian evolution and Baldwin effect [lo], 
which are the most often studied techniques in hybrid EAs. 

In this section, both Lamarckian evolution and Baldwin effect are incor- 
porated with the concentrator-based EA to form hybrid EAs for communi- 
cations network design. Lamarckian evolution or Baldwin effect is applied to 
all the individuals in every generation. The two different forms of hybrid EAs 
are fully investigated on the terminal assignment problem, for both single- 
objective and multi-objective optimisation as introduced in Section 2.1. A 
series of experiments are designed to examine the performance of the hybrid 
EAs. 
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4.1 Lamarckian Evolution and Baldwin Effect 

In Lamarckian evolution individuals improve during their lifetime through 
local search and the improvement is passed to the next generation. The indi- 
viduals are selected based on improved fitness and are transferred to the next 
generation with the improvement incorporated in the genotype. 

The Baldwin effect utilized in EAs was first investigated by Hinton and 
Nolan in [8]. Unlike Lamarckian evolution, the improvement does not change 
the genetic structure (genotype) of the individual that is transferred to the 
next generation. The individual is kept the same as before local search, but 
the selection is based on the improved fitness after local search. Baldwin effect 
follows natural evolution (Darwinian), i.e., learning improves the fitness and 
selection is based on fitness. The improvement is passed indirectly to the next 
generation through fitness in Baldwin effect. 

While Lamarckian learning may disrupt the schema processing of a GA, 
Baldwin learning certainly aggravates the mapping problem of multiple geno- 
types to one phenotype. In a comparison of Baldwin and Lamarckian learning, 
[16] showed that utilizing either form of learning would be more effective than 
the classical GA without any local improvement procedure. They argued that, 
while Lamarckian learning is faster, it may be susceptible to premature con- 
vergence to a local optimum as compared to Baldwin learning [lo]. 

4.2 Use of Memory 

In Baldwin effect, if two individuals are different but map to the same local 
basin, the evolutionary approach will try to exploit both individuals. If these 
two individuals are crossed over and produce offspring in the same basin, 
computational effort will then be wasted on applying the local search to search 
the same basin again [lo]. 

In Lamarckian evolution, these individuals are possibly identical and will 
reproduce clones of themselves if crossed over. The local improvement is there- 
fore unnecessary as the children are the same as the parents. Slight mutation 
change may be useless since it may leave the individual in the same basin 
or in a later generation the EA may generate an individual that falls in a 
basin already explored. Therefore, the local improvement procedure may be 
reapplied to search the same basin while valuable computational cycles could 
be used to explore other regions in the search space. To solve this problem, 
random linkage, a search algorithm taken from global optimization, was de- 
signed [lo] to prevent repeated searches by using an acceptlreject function 
that determines whether a local search is appropriate. 

In the work presented in this chapter, it is assumed that the offspring will 
converge to the same local basin after local search (though in practice it may 
not be the case), so these individuals are forbidden from crossing over with 
themselves. Consequently, the computational effort can be used to explore 
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other basins. Because this technique will check the fitness values of the off- 
spring before crossover, it is similar to  the use of memory. The memory is used 
with both Lamarckian evolution and Baldwin effect, and their performances 
are compared with those without memory in the following experiments. Ta- 
bles 4 and 5 list the algorithmic descriptions of Lamarckian evolution and 
Baldwin effect with and without memory, respectively. 

Table 4. Algorithmic descriptions of Lamarckian evolution with and without mem- 
ory 

Lamarckian evolution without memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P(i)  based on their fitness in P(i);  
Apply crossover to the parents and repair if necessary to make it feasible. 
Replace the parents only if the offspring is better; 
Apply mutation to the individuals and replace the population 

if the mutated individual is better and feasible; 
For each solution so from the population: 

REPEAT 
Perform local search to get a new solution s; 
If (f (s) < f (so)) replace so by s; 

UNTIL terminal size 
UNTIL the population converges 

END 

Lamarckian evolution with memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P(i)  based on their fitness in P(i);  
Apply crossover to the parents only if their fitness are different and repair 

if necessary to make it feasible 
and replace the parents only if the offspring is better; 

For each solution so from the population; 
REPEAT 

Perform local search to get new a solution s 
If (f (s) < f (so)) replace so by s; 

UNTIL terminal size 
UNTIL the population converges 

END 
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Table 5. Algorithmic descriptions of Baldwin effect with and without memory 

Baldwin effect without memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P( i )  based on their fitness(Ba1dwin) in P(i) ;  
Apply crossover to the parents and repair if necessary to make it feasible. 
Replace the parents only if the offspring is better; 
Apply mutation to the individuals and replace the population 

if the mutated individual is better and feasible; 
For each solution so from the population: 

REPEAT 
Perform local search to get a new solution s; 
Replace so by s; 

UNTIL terminal size 
UNTIL the population converges; 

END 

Baldwin effect with memory 

BEGIN 
Generate initial population P(0) randomly, 
i t 0; 
REPEAT 

Select the parents from P( i )  based on their fitness(Ba1dwin) in P(i) ;  
Apply crossover to the parents only if their fitness are different and repair 

if necessary to make it feasible and 
replace the parents only if the offspring is better; 

For each solution so from the population; 
REPEAT 

Perform local search to get new a solution s 
Replace so by s; 

UNTIL terminal size 
UNTIL the population converges; 

END 

4.3 Experimental Studies 

Concentrator-based hybrid EAs using Lamarckian evolution or Baldwin effect 
are evaluated and compared. Lamarckian evolution and Baldwin Effect are 
first combined with the various search operators introduced in Section 3.2 
to solve the terminal assignment problem with a single-objective, then that 
with multi-objectives. The experimental setup is the same as the one used 
previously, as introduced by Table 1 in Section 3.3. Delete-insert one mutation 
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is used in the local search due to its effectiveness in reducing the cost as well 
as the number of concentrators. 

Single Objective Optimization 

Lamarckian evolution and Baldwin effect with and without memory are tested 
on the single-objective terminal assignment problem. Table 6 shows the total 
cost obtained by Lamarckian evolution and Baldwin Effect without mem- 
ory and Table 7 shows the cost obtained with memory. All tests eventually 
used the same number of concentrators, which is 40, regardless of the use of 
memory. Because the use of memory influences only crossover, no mutation 
operators were used in the tests of Lamarckian and Baldwin learning with 
memory. 

The experimental results listed in Tables 6 and 7 show that there is no 
significant difference in performance between Lamarckian and Baldwin evolu- 
tion. When the local search is used without memory, the best results obtained 
are all around 680 for different combinations of search operators. The two-tail 
t-test on the mean cost also indicates that for a=0.5, none of the local search 
is significantly different from others. The hybrid EAs found the same basin 
for different combinations of search operators. 

In the case of memory, the two tail t-test on the mean cost again shows no 
significant difference between Lamarckian and Baldwin evolution. However, 
the best cost obtained with memory can be lower than 680 when one point 
crossover, uniform crossover, one node crossover or best node crossover is used 
(the lowest is 461). This suggests that the use of memory aids the crossover 
operators to explore other basins and hence the computational effort can be 
saved from repeated exploration of the same basin. However, the standard 
deviation is quite high for those operators. It is worth noting that the perfor- 
mance of all the hybrid EAs outperformed the concentrator-based EA without 
local search as introduced in Section 3. 

Multi-objective Optimisation 

In real world communications networks, minimising cost and number of con- 
centrators are both important and should be considered at  the same time. It 
is therefore more sensible to deal with them as two independent objectives like 
in a multi-objective optimisation problem. To enable this, concentrator-based 
hybrid EAs with multiple objectives are studied. 

In multi-objective optimisation, more than one objective should be opti- 
mised and these objectives are often in conflict with each other. Obtaining 
a global optimal solution for all the objectives is therefore not easy. Usually 
only a set of solutions that are non-dominated (known as Pareto optimal so- 
lutions) can be obtained. There are three main approaches to evolutionary 
multi-objective optimisation: the weighted sum approach, population-based 
non-Pareto approach and Pareto-based approach [6]. 
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Table 6 .  Cost comparison between Lamarckian and Baldwin effect without memory 
in single-objective optimisation 

Crossover 

1 
One point 

2 
Two point 

3 
Uniform 

4 
One node 

5 
Best node 

6 
One group 

7 
Best grour 

Mutation 

Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

Self crossover 

Lamarckian 
aest mean s.d. 
680 685 8 
680 685 8 
680 685 18 
680 684 11 

Baldwin 
best mean s.d 
680 685 11 
680 685 15 
680 684 9 
680 684 6 
680 684 5 
680 684 16 
680 683 8 
680 684 12 
680 683 8 
680 683 10 
680 684 7 
680 685 11 
680 683 10 
680 683 6 
680 685 11 
680 685 5 
680 685 7 
680 685 6 
680 685 10 
680 685 7 
680 684 9 
680 683 4 
680 684 6 
680 683 4 
680 684 9 
680 682 5 
680 684 8 
680 684 8 
680 683 4 
680 683 4 
680 683 6 
680 683 4 
680 683 6 
680 684 9 
680 684 8 

When hybrid EAs are used for the multi-objective terminal assignment 
problem, the weighted sum approach is used. It is similar to the single- 
objective optimisation except that the fitness function explicitly deals with 
two objectives: one is to minimise the total cost and the other is to min- 
imise the number of concentrators used. The mathematical formulation for 
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Table 7. Comparison between Lamarckian evolution and Baldwin effect with mem- 
ory in single-objective optimisation 

1 Type 
a) One point crossover 
b) Two point crossover 
c) Uniform crossover 
d) One node crossover 
e) Best node crossover 
f )  One group crossover 
g) Best group crossover 

Lamarckian 
best mean s.d. 
542 741 19021 
680 684 11 
583 705 4643 
661 687 284 
668 684 35 
680 685 17 
680 686 17 

Baldwin 
best mean s.d. 
461 715 1541f 
461 683 6 
551 726 6577 
662 683 101 
665 685 38 
680 683 4 
680 684 7 

- 
t-test 

- 
0.01 
0.43 
-0.02 
0.07 
-0.10 
0.62 
0.59 

this problem was shown in Section 2.1. However, there are some weaknesses 
in the weighted sum approach [9]: 

1. It can provide only one Pareto solution from one run; 
2. It has been shown that the weighted sum approach is unable to deal with 

a multi-objective optimisation problem with a concave Pareto front [5]. 

If the weights for different objectives are changing during optimisation, 
the optimiser may go through all points on the Pareto front. If the searched 
non-dominated solutions are archived, the whole Pareto front can be achieved. 
This has been shown to be working well for both convex and concave Pareto 
fronts. Whether the weighted sum approach is able to converge to a Pareto- 
optimal solution depends on the stability of the Pareto solution corresponding 
to the given weight combination. Without considering the time consumption, 
the whole Pareto front can be obtained by running the optimiser as long as 
possible [9]. 

Investigation of Varied Weights 

To examine the weight effect on optimisation, varying weights between 0.1 
and 0.9 are set for both objectives of the terminal assignment problem. In the 
experiments, EAs with one point crossover and delete-insert one mutation are 
used, and all the other experimental settings are the same as those used for 
the performance tests of various search operators, as introduced by Table 1 
in Section 3.3. Table 8 summarises the experimental results, including the 
number of concentrators used, the total cost obtained and the number of 
generations required by each EA. Figure 17 shows the relationship between the 
values obtained for both objectives, i.e., cost vs the number of concentrators. 

In Table 8, Weight One indicates the weight assigned to the first objective 
(cost) and Weight Two is that assigned to the number of concentrators. As 
Weight One increases, the cost decreases as expected. The decrease in cost 
became less obvious while weight one is higher than 0.4. The EA reaches a 
relatively reasonable performance for both objectives when their weights are 
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around 0.5. In the following experiments of hybrid EAs for multi-objective 
optimisation, we choose 0.5 as the weights for both objectives. 

Table 8. Results obtained by varied weights in the weighted sum approach to multi- 
objective optimisation 

Weight one Weight two Number of Cost Generations 
concentrators best mean worst s.d. 

0.90 20 1623 2101 2528 50012 62 
0.80 2 1 1029 1256 1466 10207 50 
0.70 23 888 1008 1126 3538 52 
0.60 24 795 846 918 1110 53 
0.50 27 740 770 813 236 59 
0.40 29 713 733 760 170 50 
0.30 30 697 714 745 144 5 1 
0.20 33 689 696 712 27 52 
0.10 35 684 690 697 10 50 

Concentrators 

Fig. 17. Relationship between obtained cost and number of concentrators. 
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Comparison Between Lamarckian and Baldwin Effect in 
Multi-objective Optimization 

In multi-objective optimization, both Lamarckian evolution and Baldwin ef- 
fect are tested with various combinations of search operators. For simplicity, 
the use of memory is not considered in these tests. The weights for the two 
objectives are set as 0.5. Table 9 shows the comparison results. 

In the Lamarckian-style hybrid EA, the best cost obtained was 719 when 
one point crossover was used with delete-insert all mutation and two point 
crossover was used with two point concentrator swap. The corresponding num- 
ber of concentrators used was 26 in both cases. In Baldwin effect, the best 
cost obtain was 720 and the corresponding number of concentrators used was 
also 26, when two point crossover and two point concentrator swap mutation 
are used together. The experimental results again demonstrate that there is 
no significant difference between these two local search methods. 

When comparing the results obtained for single-objective and multi- 
objective optimization, hybrid EA in single-objective optimization sometimes 
obtained a lower cost than in multi-objective optimization, such as the Lamar- 
ckian evolution with one point crossover plus two point terminal swap muta- 
tion, and Baldwin effect with uniform crossover plus self crossover mutation 
and with best node crossover plus delete-insert all mutation. The cost achieved 
for the single objective case is around 685, compared with the cost around 760 
achieved for the multi-objective case. The number of concentrators used, how- 
ever, is much lower in the multi-objective case, which is around 26, compared 
with 40 obtained in the single-objective case. If taking both objectives into 
consideration, the multi-objective optimization performed better in satisfy- 
ing two objectives simultaneously than the single objective optimization. It is 
worth noting that in either case, hybrid EAs with local search outperformed 
EAs without local search as given in Section 3. 

5 Conclusions and Future Work 

Communications network design is essential to the development and imple- 
mentation of widely used packet switch networks and fiber optical networks. 
Optimal communications network design is challenging since it needs to sat- 
isfy multiple constraints and to minimize one or more objectives a t  the same 
time. EAs have been shown to perform well for the terminal assignment prob- 
lem. Their performance can be further enhanced by a new concentrator-based 
chromosome representation and by hybridization with local search. 

This chapter proposes a novel concentrator-based representation that uti- 
lizes the group character of terminals and concentrators to overcome the limi- 
tations of the traditional terminal-based representation. A series of new search 
operators including crossover and mutation are designed for the concentrator- 
based representation. The concentrator-based EAs have been shown to outper- 
form other terminal-based EAs. Our computational study also demonstrates 
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Table 9. Comparison between Lamarckian evolution and Baldwin effect in multi- 
objective optimisation 

Two point conc. 
l ~ w o  point term. 
Self crossover 

point I~el - ins  all mut. 

- 
Unif. 

- 
One 
node 

Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins. all mut. 
Two point conc. 

l ~ w o  point term. 

node I~el - ins  all mut. 

One 
group 

Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 
Self crossover 
Del-ins one mut. 
Del-ins all mut. 
Two point conc. 
Two point term. 

- 
t-test 

- 
0.06 
0.01 
0.01 
0.04 
-0.08 - 
0.07 
0.10 
-0.03 
0.05 
0.00 - 
-0.04 
-0.04 
0.12 
-0.02 
0.04 - 
0.08 
0.04 
0.10 
0.05 
-0.07 - 
0.11 
0.16 
0.07 
0.14 
-0.03 - 
0.06 
0.00 
0.03 
0.10 
0.02 - 
0.15 
0.11 
-0.01 
0.00 
0.25 

the good scalability of the concentrator-based EAs, which can still work well 
with the number of terminals up to 1000. 

Hybrid EAs integrating Lamarckian evolution or Baldwin effect with or 
without memory have been designed to tackle both the single-objective and 
multi-objective formulations of the terminal assignment problem. Our experi- 
mental results reveal that Lamarckian evolution and Baldwin effect performed 
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similarly in most cases for the terminal assignment problem. However, the hy- 
brid EAs obviously outperformed the EAs without local search. 

It  is worth noting that the proposed concentrator-based hybrid EAs are 
not limited to the terminal assignment problem. They can also be applied 
to other real world applications, such as bin packing and cutting stock prob- 
lems. Further study of the concentrator-based hybrid EAs in these applica- 
tions will be carried out. Although the work presented here includes a com- 
prehensive investigation of the performance of various search operators for 
the concentrator-based representation, the most proper combination of these 
operators for the concentrator-based hybrid EA still needs further study. In 
particular, we are interested in analysing those group based crossover and mu- 
tation, which showed unsatisfactory performance in the experiments. Another 
work we want to investigate is the use of memory in hybrid EAs. Our experi- 
ments show that there is no significant difference between the EAs with and 
without memory. This is somewhat anti-intuitive and needs to be investigated 
further. 
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