
The Co-Evolution of Memetic Algorithms for
Protein Structure Prediction

J.E. Smith

Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England,
Bristol BS16 12QY, U.K.

Summary. This paper describes a co-evolutionary learning-optimisation approach
to Protein Structure Prediction which uses a Memetic Algorithm as its underlying
search method. Instance-specific knowledge can be learned, stored and applied by
the system in the form of a population of rules. These rules determine the neigh-
bourhoods used by the local search process, which is applied to each member of the
co-evolving population of candidate solutions.

A generic co-evolutionary framework is proposed for this approach, and the
implementation of a simple Self-Adaptive instantiation is described. A rule defining
the local search's move operator is encoded as a {condition : action) pair and
added to the genotype of each individual. I t is demonstrated that the action of
mutation and crossover on the patterns encoded in these rules, coupled with the
action of selection on the resultant phenotypes is sufficient to permit the discovery
and propagation of knowledge about the instance being optimised.

The algorithm is benchmarked against a simple Genetic Algorithm, a Memetic
Algorithm using a fixed neighbourhood function, and a similar Memetic Algorithm
which uses random (rather than evolved) rules and shows significant improvements
in terms of the ability to locate optimum configurations using Dill's HP model. It is
shown that this "meta-learning" of problem features provides a means of creating
highly scalable algorithms.

1 Introduction

The performance benefits which can be achieved by hybridising evolutionary
algorithms (EAs) with local search operators, so-called Memetic Algorithms
(MAS), have now been well documented across a wide range of problem do-
mains such as combinatorial optimisation [27], optimisation of non-stationary
functions [42], and multi-objective optimisation [20] (see [29] for a comprehen-
sive bibliography). Commonly in these algorithms, a local search improvement
step is performed on each of the products of the generating (recombination

106 J.E. Smith

and mutation) operators, prior to selection for the next population There are
of course many variants on this theme, for example one or more of the gener-
ating operators may be absent, or the order in which the operators are applied
may vary. The local search step can be illustrated by the pseudo-code below:

LocaLSearch(z) :
Begin

/* given a starting solution i and a neighbourhood function n */
set best = i ;
set i te ra t ions = 0;
Repeat Until (iteration condition is satisfied) Do

set counter = 0;
Repeat Until (termination condition is satisfied) Do
generate the next neighbour j E n (i) ;
set counter = counter + 1 ;
If (f (j) is better than f (best)) Then

set best = j ;
end1 f

endDo
set i = best;
set i te ra t ions = i te ra t ions + 1 ;

endDo
End.

There are three principal components which affect the workings of this
local search. The first is the choice of pivot rule, which can be Steepest Ascent
or Greedy Ascent. In the former the termination condition is that the entire
neighbourhood n(i) has been searched, i.e. counter = I n(i) 1, whereas the lat-
ter stops as soon as an improvement is found; i.e. the termination condition
is (counter = I n(i) 1) V (best # i). Note that some authors resort to only con-
sidering a randomly drawn sample of size N <<[n(i) I if the neighbourhood
is too large to search.

The second component is the depth of the local search, i.e. the itera-
tion condition which lies in the continuum between only one improving step
being applied (iterations = 1) to the search continuing to local optimality
((counter = I n(i) I) A (best = i)). Considerable attention has been paid to
studying the effect of changing this parameter within MAS e.g. [14]. Along
with the choice of pivot rule, it can be shown to have an effect on the perfor-
mance of the Local Search algorithm, both in terms of time taken, and in the
quality of solution found.

The third, and primary factor that affects the behaviour of the local search
is the choice of neighbourhood generating function. This can be thought of
as defining a set of points n(i) that can be reached by the application of
some move operator to the point i . An equivalent representation is as a graph
G = (v, e) where the set of vertices v are the points in the search space, and

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 107

the edges relate to applications of the move operator i.e eij E G e j 6
n(i) . The provision of a scalar fitness value, f, defined over the search space
means that we can consider the graphs defined by different move operators
as "fitness landscapes" [15]. Merz and Freisleben [28] present a number of
statistical measures which can be used to characterise fitness landscapes, and
have been proposed as potential measures of problem difficulty. They show
that the choice of move operator can have a dramatic effect on the efficiency
and effectiveness of the Local Search, and hence of the resultant MA.

In some cases, domain specific information may be used to guide the choice
of neighbourhood structure within the local search algorithms. However, it
has recently been shown that the optimal choice of operators can be not
only instance specific within a class of problems [28, pp254-2581, but also
dependent on the state of the evolutionary search [26]. This result is not
surprising when we consider that points which are locally optimal with respect
to one neighbourhood structure may not be with respect to another (unless of
course they are globally optimal). Thus if a set of points has converged to the
state where all are locally optimal with respect to the current neighbourhood
operator, then changing the neighbourhood operator may provide a means
of progression, in addition to recombination and mutation. This observation
forms the heart of the Variable Neighbourhood Search algorithm [49].

This paper describes one mechanism whereby the definitions of local search
operators applied within the MA may be changed during the course of op-
timisation, and in particular how this system may usefully be applied to a
simplified model of the Protein Structure Prediction Problem. This system
is called Co-evolving Memetic Algorithms (COMA). The rest of this paper
proceeds as follows:

Section 2 discusses some previous work in this area, describes the pro-
posed approach, and the development of a simplified model within that
framework. It also summarises the results of initial investigations published
elsewhere.
Section 3 draws some parallels between this work and related work in
different fields, in order to place this work within the context of more
general studies into adaptation, development and learning.
Section 4 details the particular application under concern, namely Protein
Structure Prediction using Dill's HP model [8].
Section 5 presents the results and analysis of a set of preliminary experi-
ments designed to investigate whether the use of adaptive rules is able to
benefit the optimisation process.
Section 6 goes on to investigate the benefits of restricting the search to
feasible solutions, rather than using a penalty function approach.
Section 7 presents some analyses of the behaviour of the evolving rule-
bases, and then Section 6 discusses the implications of these results, before
drawing conclusions and suggesting future work.

108 J.E. Smith

2 A Rule-Based Model for the Adaptation of Move
Operators

2.1 The Model

The aim of this work is to provide a means whereby the definition of the local
search operator (LSO) used within a MA can be varied over time, and then to
examine whether evolutionary processes can be used to control that variation,
so that a beneficial adaptation takes place. Accomplishing this aim requires
the provision of five major components, namely:

0 A means of representing a LSO in a form that can be processed by an
evolutionary algorithm
Intimately related to this, a set of variation operators, such as recombina-
tion and mutation that can be applied to the LSO representation, and a
means for initialising a population of LSO operators.

0 A means of assigning fitness to the LSO population members
A choice of population structures and sizes, along with selection and re-
placement methods for managing the LSO population
A set of experiments, problems and measurements designed to permit eval-
uation and analysis of the behaviour of the system.

The representation chosen for the LSOs is a tuple <Pivot-Rule, Depth,
Pairing, Move, Fitness>.

The first two elements in the tuple have been described above and can
be easily mapped onto an integer or cardinal representation as desired, and
manipulated by standard genetic operators.

The element Pairing effectively co-ordinates the evolution of the two pop-
ulations. When a candidate solution is to be evaluated, a member of the LSO
population is chosen to operate on it, hopefully yielding improvements. The
fitness of the candidate solution is thus affected by the choice of LSO to op-
erate on it, and the fitness assigned to the LSO is in turn affected by the
candidate solution to which it is applied.

Values for Pairing are taken from the set {linked, fitness-based, random}.
The purpose of this element is to allow the system to be varied between the
extremes of a fully unlinked system, in which although still interacting the
two populations evolve separately, and a fully linked system in which the LS
operators can be considered to be self-adapted. The different values have the
following effects:

For a linked pairing strategy, the LSOs can be considered to be extra
genetic material which is inherited and varied along with the problem
representation. Thus if the kth candidate solution is created from parents i
and j , then a LSO is created by the actions of recombination and mutation
on members i and j of the current LSO population. This new LSO is used
to evaluate the new candidate solution and becomes the kth member of

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 109

the next LSO population. Note that this assumes the two population are
the same size. The fitness is assigned to the new LSO is immaterial since
selection to act as parents happens via association with good members of
the solution population.
For a fitness-based pairing strategy, when a candidate solution requires
evaluation, a LSO is created and put into the next LSO population as
above. However the two LSOs which acts as parents for recombination are
now chosen using a standard selection mechanism acting on those members
of the current LSO population which do not have Pai r ing = l inked . A
number of methods can be used to define the fitness of an LSO.
For a random pairing strategy, the same process occurs as for the fitness-
based method, except that parents are selected randomly from the un-
linked members of the LSO population, without regard to their fitness.

Although the long-term goal is to examine a LLmixed-economy" of par-
ing strategies, for the purposes of this paper the system is restricted to
the situation where the whole population uses the same value, initially
Pai r ing = l inked .

The representation chosen for the move operators was as condition:action
pairs, which specify a pattern to be looked for in the problem representation,
and a different pattern it should be changed to. Although this representation
at first appears very simple, it has the potential to represent highly complex
moves via the use of symbols to denote not only single/multiple wildcard
characters (in a manner similar to that used for regular expressions in Unix)
but also the specifications of repetitions and iterations. Further, permitting
the use of different length patterns in the condition and action parts of the rule
gives scope for cut and splice operators working on variable length solutions.

In themselves, the degrees of freedom afforded by the five components
listed above provide basis for a major body of research, and the framework
described above is intended to permit a full exploration of these issues which
is currently underway [37, 361.

This paper presents results from a simplified instantiation of this frame-
work, focusing on the benefits of knowledge discovery and re-use. In order to
achieve this focus, some of the adaptive capabilities are restricted, i.e., the
LSOs always use one of greedy or steepest ascent, a single improvement step,
and full linkage. These choices are coded into the LSO chromosomes at ini-
tialisation, and variation operator are not used on them. This restriction to
what are effectively self-adaptive systems provides a means of dealing with
the credit assignment and population management issues noted above

The COMA system is also restricted to considering only rules where the
condition and action patterns are of equal length and are composed of values
taken from the set of permissible allele values of the problem representation,
augmented by a "don't care" symbol # which is allowed to appear in the
condition part of the rule but not the action, although this could be interpreted
as "leave alone". The neighbourhood of a point i then consists of all those

110 J.E. Smith

points where the substring denoted by condition appears in the representation
of i and is replaced by the action. The neighbourhood of i therefore potentially
includes i itself, for example by means of a rule with identical condition and
action parts.

To give an example, if a solution is represented by the binary string
1100111000 and a rule by 1#0:111, then this rule matches the first, second,
sixth and seventh positions, and the neighbourhood is the set (1110111000,
11111111000,1100111100,1100111110). In practice a random permutation is
used to specify the order in which the neighbours are evaluated, so as not
to introduce positional bias into the local search when greedy ascent is used.
Note that in this work the string is not considered as toroidal (although this
will be considered in later work).

In practice, each rule was implemented as two 16 bit strings, and was
augmented by a value rule-length which detailed the number of positions in
the pattern string to consider. This permits not only the examination of the
effects of different fixed rule sizes, but also the ability to adapt via the action of
mutation operators on this value. This representation for the rules means that
"standard" genetic operators (uniform11 point crossover, point mutation) can
be used to vary this part of the LSO chromosome.

2.2 Initial Results

The results of initial investigations using this system were reported in [37].
The test suite was problems made out of a number of sub-functions either
interleaved or concatenated. Two different classes of sub-function were used
which posed either entropic (Royal Road) or fitness (Deceptive) barriers to
the discovery of the global optimum. Greedy versions of the COMA (GComa)
algorithm were tested against the GA,MA, GRand algorithms described be-
low, and it was shown that a version of the system with adaptive rule lengths
was able to perform better than these three, and comparably with variants of
GComa with optimal fixed rule-lengths for the different problems. Analysis
showed that these algorithms discovered and used problem specific informa-
tion (such as optimal patterns for different sub-problems).

Subsequent work [36] has shown them to be highly scalable with respect to
problem length on problems where there are repeated patterns in the regions
of the search space corresponding to high quality solutions. This behaviour
arises from the discovery and re-use of knowledge about these patterns. It
was also shown that in the absence of such patterns, the systems still displays
better performance (both in terms of mean best fitness and the reliability of
locating the global optimum). In this case the improved performance arose
from the maintenance of a diverse set of move operators, and hence from the
examination of multiple search landscapes, which provides a better means of
escaping local optima.

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 111

3 Related Work

The COMA system can be related to a number of different branches of re-
search, all of which offer different perspectives and means of analysing it's be-
haviour. These range from MultiMemetic Algorithms and the Self-Adaptation
of search strategies, through co-evolutionary, learning and developmental sys-
tems, to the evolutionary search for generalised rules as per Learning Classifier
Systems. Space precludes a full discussion of each of these, so the more im-
portant are briefly outlined below.

Although the authors are not aware of other algorithms in which the LSOs
used by an MA are adapted in this fashion, there are other examples of the use
of multiple LS operators within evolutionary systems. Krasnogor and Smith
[26] describe a "MultiMemetic Algorithm", in which a gene is added to the
end of each chromosome indicating which of a fixed set of static LS operators
("memes") should be applied to the individual solution. Variation is provided
during the mutation process, by randomly resetting this value with a low
probability. They report that their systems are able to adapt to use the best
meme available for different instances of TSP.

Krasnogor and Gustafson have extended this and proposed a grammar for
"Self-Generating MAS" which specifies, for instance, where in the evolutionary
cycle local search takes place [22]. Noting that each meme potentially defines
a different neighbourhood function for the local search part of the MA, we can
also see an obvious analogy to the Variable Neighbourhood Search algorithm
[49], where a heuristic is used to control the order of application of a set of
local searchers (using different, fixed, neighbourhood structures) to a single
improving solution. The difference here lies in the population based nature of
COMA, so that not only do we have multiple candidate solutions, but also
multiple adaptive neighbourhood functions in the memes.

As noted above, if the populations are of the same size, and are con-
sidered to be linked, then this instantiation of the COMA framework can
be considered as a type of Self Adaptation. The use of the intrinsic evolu-
tionary processes to adapt step sizes governing the mutation of real-valued
variables has long been used in Evolution Strategies [35], and Evolutionary
Programming [ll]. Similar approaches have been used to self-adapt mutation
probabilities [2, 391 and recombination operators [34] in genetic algorithms
as well as complex generating operators which combined both mutation and
recombination [38]. This body of work contains many useful results concern-
ing the conditions necessary for strategy adaptation, which could be used to
guide implementations of COMA.

If the two populations are not linked, then COMA is a co-operative coevo-
lutionary system, where the fitness of the members of the LSO population is
assigned as some function of the relative improvement they cause in the "so-
lution" population. Paredis has examined the co-evolution of solutions and
their representations [31], and Potter and DeJong have also used co-operative
co-evolution of partial solutions in situations where an obvious problem de-

112 J.E. Smith

composition was available [33], both with good reported results. Bull [5] con-
ducted a series of more general studies on co-operative co-evolution using
Kauffmann's static NKC model [17]. In [7] he examined the evolution of link-
age flags in co-evolving "symbiotic" systems and showed that the strategies
which emerge depend heavily on the extent to which the two populations
affect each others fitness landscape, with linkage preferred in highly interde-
pendent situations. He also examined the effect of different pairing strategies
[6], with mixed results, although the NKC systems he investigated used fixed
interaction patterns, whereas in the systems used here are more dynamic in
nature.

There has also been a large body of research into competitive-coevolution,
(an overview can be seen in [32]) whereby the fitnesses assigned to the two
populations are directly related to how well individuals perform "against" the
other population, what has been termed "predator-prey" interactions.

In both the co-operative and competitive co-evolutionary work cited above,
the different populations only affect each other's perceived fitness, unlike the
COMA framework where the LSO population can directly affect the geno-
types within the solution population. A major source of debate and research
within the community has focused around the perception that this phase of
improvement by LS can be viewed as a kind of lifetime learning. This has
lead naturally to speculation and research into whether the modified pheno-
type which is the outcome of the improvement process should be written back
into the genotype (Lamarkian Learning) or not (Baldwinian Learning). Note
that although the pseudo code of the local search, and the discussion above
assumes Lamarkian learning, this is not a prerequisite of the framework. How-
ever, even if a Baldwinian approach was used, the principal difference between
the COMA approach and the co-evolutionary systems above lies in the fact
that there is a selection phase within the local search, that is to say that if
all of the neighbours of a point defined by the LSO rule are of inferior fitness,
then the point is retained unchanged within the population.

If one was to discard this criterion and simply apply the rule (possibly
iteratively), the system could be viewed as a type of "developmental learning"
akin to the studies in Genetic Code e.g. [16] and the "Developmental Genetic
Programming" of Keller and Banzhaf [18, 191

Finally, and perhaps most importantly, it should be considered that if a
rule has an improving effect on different parts of a solution chromosome over
as number of generations, then the evolution of rules can be seen as learning
generalisations about patterns within the problem representation, and hence
the solution space. This point of view is akin to that of Learning Classifier Sys-
tems. For the case of unlinked fitness-based selection of LS operators, insight
from this field can be used to guide the credit assignment process.

It is tempting to draw a further generalisation which would see the con-
ditions as representing schema and the actions as representing higher fitness
(and possibly higher order) alternatives, but this is a more dubious analogy
as the conditions are allowed to match anywhere within the string, i.e. even a

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 113

fully specified rule of length 1 matches L - 1 schema within a string of length

4 Dill's HP model of Protein Structure Prediction

The problem of Protein Structure Prediction (PSP), i.e. the prediction of the
"native" three-dimensional form of a protein from knowledge of the sequence
of its constituent amino-acid residues is one of the foremost challenges facing
computational biology. Current approaches to PSP can be divided into three
classes; comparative modelling, fold recognition, and ab initio methods. The
first two explicitly search the ever-growing databases of known structures
for similar sequences (homologues) and sub-sequences. In contrast, the third
approach represents the "last chance" scenario of trying to predict the tertiary
structure by minimising a free energy model of the structure. Approaches that
make use of existing knowledge currently represent the state of the art (and
are likely to remain so), however ab initio approaches are important for two
main reasons. The first of these relates to the situation where a sequence does
not correspond to any known fold. The second, and more fundamental reason
is that the development of true ab initio methods can give greater insight into
the relationship between different fold families, and to the dynamical process
of folding.

Current approaches to ab initio PSP can be divided according to two
criteria, namely the nature of the choice of energy function, and the number
of degrees of freedom in the conformation, as exemplified by the granularity
(all atom models vs. virtual atom) and locational constraints (e.g. lattice
based models vs. off-lattice models). Although most lattice based models are
physically unrealistic, they have proved a useful tool for exploring issues within
the field. Some of the more complex models, e.g. SICHO [21] have been shown
to be capable of accurate predictions of the conformations of simple proteins,
especially when used in conjunction with techniques for subsequent refinement
to an all-atom model [lo].

The HP model for PSP [8] provides an estimate of the free energy of a fold
of a given instance, based on the summation of pair-wise interactions between
the amino acid residues. It is a "virtual residue" model, that is to say that
each amino acid residue is modelled by a single atom, whose properties are
reduced to a quality of being hydrophobic or hydrophilic, thus simplifying the
energy calculations still further. Hydrophobic residues avoid interacting with
the water molecules of the solvent, whereas hydrophilic (or polar) residues are
able to form hydrogen bonds with the water molecules. Thus, polar residues
are often found at the surface of the protein and hydrophobic residues are
normally found buried in the inner part, or core, of the protein. The HP
model captures this behaviour, despite its extreme simplicity. In the model,
a sequence of 1 amino acid residues is represented by s E {H, P) ~ , where H
represents a hydrophobic amino acid and P represents a hydrophilic one. The

114 J.E. Smith

space of valid conformations is restricted to self-avoiding paths on a selected
lattice, with each amino acid located on a vertex. The torsion angles of the
peptide bonds between residues are thus restricted by a finite set determined
by the shape of the lattice. The first amino acid of the sequence is located on
a randomly selected vertex, and an orientation is assumed for it. From there,
according to the orientation, the chain grows, placing every subsequent amino
acid either ahead of the previous one, a t 90 degrees to the left or at 90 degrees
to the right (assuming a square lattice). Hydrophobic units that are adjacent
in the lattice but non-adjacent in the sequence add a constant negative factor
to the energy level. All other interactions are ignored. In some cases, to make
feasible conformations more attractive, the infeasible folds suffer penalisation
in the form of adding a substantial positive factor to their energy levels. In
this way, the model reflects the tendency of hydrophobic amino acids to form
a hydrophobic core. Despite the apparent simplicity of this model, the search
for the global energy minimum in the space of possible conformations of a
given sequence has been shown to be NP complete on various lattices [4].

Evolutionary algorithms (in particular Genetic Algorithms) have been ap-
plied, with some success, to the PSP using the HP and all-atom off-lattice
models, by a number of authors since [41, 401. In [23] the effect of differ-
ent encoding schemes and constraint management techniques were examined,
and a modified fitness function was developed which extends the basic HP
model to permit the allocation of reward for non-adjacent pairs of Hydrophilic
residues. More recent work has demonstrated the use of self-adaptation within
a memetic algorithm to permit the selection from amongst a fixed set of
predetermined local search strategies, using different move operators such as
local "stretches", reflections etc [25, 301. The work described here extends
this by not relying on a fixed set of move operators encoding domain-specific
knowledge, but rather evolving a set of move operators, thus learning that
domain-specific knowledge.

5 Experimental Results

5.1 The Test Suite and Experimental set-up

In order to investigate the value of this approach, 20 instances and parameter
settings from [24], were used, which use a two-dimensional triangular lattice.
These instances are detailed in Table 1.

The representation used is a relative encoding. In this, where the alleles
come from the set {leftback, leftforward, front, rightforward, rightback) and
represent the direction of the next move on the lattice from the point of view of
the head of the growing chain. This is an alternative to the absolute encoding
used by Unger and Moult [41], where alleles specify directions to move relative
to an external frame of reference. Results presented in [23] have suggested that
this relative encoding is preferable, not least because the absence of a "back"

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 115

Table 1. HP instances used in these experiments

Sequence 1 Length
HHPHPHPHPHPH 112
HHPPHPHPHPHPHP
HHPPHPPHPHPHPH
HHPHPPHPPHPPHPPH
HHPPHPPHPHPHPPHP
HHPPHPPHPPHPPHPPH
HHPHPHPHPHPHPHPHH
HHPPHPPHPHPHPPHPHPHH
HHPHPHPHPHPPHPPHPPHH
HHPPHPPHPHPPHPHPPHPHH
HHPHPPHPPHPHPHPPHPPHH
HHPPHPHPHPPHPHPPHPPHH
HHPPHPPHPHPHPPHPPHPPHH
HHHPHPHPHPHPHPHPHPHPHHH
HHPPHPPHPPHPPHPPHPPHPPHH
HHHPHPHPPHPHPHPHPHPHPHHH
HHHPHPHPHPPHPHPHPHPHPHHH
HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH
HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH

Optimum
11
11
11
11
11
11
17
17
17
17
17
17
17
25
17
25
25
25
25
29

move means that all conformations that can be represented are one-step self-
avoiding.

The generational genetic algorithm used (500+500) selection. One Point
Crossover was applied with probability 0.8 and a Double Mutation was made
with probability 0.3. Viewed from an external frame of reference the mutation
operator has the effect of causing the mutation point to act as a pivot, about
which one half of the structure is rotated through some multiple of 7r/6 (for
a triangular lattice). Mutation was applied to the rules with a probability of
0.0625 of selecting a new allele value in each locus (the inverse of the maximum
rule length).

For each combination of algorithm and instance, 25 runs were made, each
run continued until the global optimum was reached, subject to a maximum
of 1 million evaluations. Note that since one iteration of a local search may
involve several evaluations, this allows more generations to the GA, i.e. al-
gorithms are compared strictly on the basis of the number of calls to the
evaluation function. The algorithms used (and the abbreviations which will
be used to refer to them hereafter) are as follows:

A GA i.e. with no use of Local Search (GA).
A simple MA using a bit-flipping neighbourhood, with one iteration of
greedy ascent (SMA) .

116 J.E. Smith

0 Versions of COMA using a randomly created rule in each application, i.e.
with the learning disabled. One iteration of steepest (SRand) or greedy
(GRand) ascent local search was applied.
Adaptive versions of COMA with the two pivot rules (SComa and GComa).
In these the rule lengths are randomly initialised in the range [1,16]. During
mutation, a value of +/ - 1 is randomly chosen and added with probability
0.0625.

These results are analysed according to three different performance crite-
ria: firstly the Success Rate (the number of runs in which the global optimum
was found), secondly in terms of efficiency, as measured by the average num-
ber of evaluations to solution (AES) in those successful runs, and thirdly in
terms of the mean performance measured in terms of the best value found in
the maximum time do ted , averaged over 25 runs.

5.2 Success Rate

Table 2 shows the Success Rate for each algorithm itemised by instance and
in total. Using a non-parametric Friedman's test for k-related variables shows
that the differences in success rate between algorithms is significant, and a
series of paired t-tests confirms that the results for the SComa algorithm are
significantly better than any of the others with over 95% confidence. This
difference is particularly noticeable on the longer instances. Of the other re-
sults, the simple MA (SMA) performs well on the shorter instances, and the
GComa and GRand results are surprisingly similar. This may well be due
to the noise inherent in the greedy ascent mechanism making it hard for the
credit assignment mechanism to function properly as was previously noted in
[36]. Significantly, whatever the form of the local search phase, all but one of
the Memetic Algorithms perform much better than the simple GA. The least
reliable algorithm was SRand, and possible reasons for this will be discussed
further in the following section.

5.3 Efficiency

Figure 1 shows the Average Evaluations to Solution (i.e., the globally optimal
conformation) for the runs in which algorithms were successful. Immediately
we can see that even when it is successful, the SRand algorithm is far slower
than all of the other algorithms. Like the more successful GRand algorithm, it
is using a randomly created rule to define the neighbourhood for each solution
in each generation. However, unlike the GRand algorithm it is searching the
whole of each neighbourhood, and the increase in the AES values suggests
that the neighbourhoods are generally quite large. This suggests the frequent
use of short, low rules of low specificity, i.e. with lots of #'s. It is possible that
left to run for longer, the Success Rate of the SRand algorithm would have
been improved.

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 117

Table 2. Number of runs (out of 25) in which the minimum energy conformation
was identified

nstancf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Total

algorithm

Of the others, the GA is always fastest, followed by the SMA. The rest
of the picture is less clear, although the greedy versions are usually faster
than their steepest ascent counterparts. A two way Analysis of Variance, with
instance and algorithm as factors, shows that both are significant, and post-
hoc analysis using the Least-Significant Difference test shows that the ordering
GA < SMA < {GRand,GComa) < SComa < SRand is significant with 95%
confidence. If we do not assume equal variance, Tamhane's T2 test shows that
the GA is significantly faster, but under these more cautious assumptions the
SMA is only significantly faster than GRand with 93% confidence and is not
significantly faster than GComa. Similarly GRand and SComa are no longer
significantly different in speed of finding solutions.

5.4 Mean Best Fitness

As was evidenced in Table 2 it is not hard to find solutions for the shorter
instances. Therefore when comparing performance on the basis of the quality
of the best solutions found, i.e., mean best fitness (MBF), only results for

118 J.E. Smith

5 10
Instance

Fig. 1. Average Evaluations to Solution (when found) by algorithm.

the longer and harder instances 14-20 have been considered. Figure 2 shows
these results graphically for each algorithm, sorted by instance. From these it
is clear that the SComa reaches consistently higher values and with a smaller
variance in performance than the others, and that the SRand algorithm is
correspondingly worse.

In order to investigate the statistical significance of these results, a two-
way ANOVA test was performed on the values for the best solution found in
each run, with instance number and algorithm as the factors. This confirmed
the significance of the algorithm in determining the performance, and so two
sets of post-hoc tests were performed to analyse the differences between pairs
of algorithms. These were Least-Significant Difference, and Tamhane's T2 test
(the latter is more conservative as it does not make any assumptions about
the samples having equal variances). The results of these tests are summarised
in Table 3. An entry r or R indicates that the algorithm indicated by the row
index was significantly better than the one indicated by the column index,
with 95% confidence according to the LSD or T2 test respectively. Similarly
an entry of c or C indicates that the column algorithm is better than the row
algorithm with 95% confidence according to the LSD or T2 test respectively.

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 119

17
Instance

Fig. 2. Mean and std deviation of best values found for instances 14-20, analysed
by algorithm

Table 3. Statistical significance of pairwise comparisons between algorithms on
basis of best values found. - indicates no significant difference. r[c] denotes algorithm
indicated by row[column] is better with 95% confidence. Lower triangle (lower case)
is for LSD test, upper quarter (upper case) is for Tamhane's T2 test.

GComa
SRand C C
GRand c r
SMA c r r r - R

I -

AlgorithmlSCOMX GComa SRand GRand SMA GA

6 Restricting the Search to Feasible Solutions

In [9] results are reported from a detailed study of the fitness landscape of HP
model proteins which suggests that the feasible regions of the search space
are more highly connected than has previously been thought, and that corre-
spondingly there may be performance advantages arising from a restriction of
the search process to only considering feasible solutions.

120 J.E. Smith

In order to investigate this, the crossover and mutation operators were
modified so that they only produced feasible offspring. This process is less
lengthy than it would first appear since in practice infeasible offspring can
almost always be quickly identified during the path growth process and the
evaluation stopped. However no attempt was made to restrict the initial pop-
ulation to feasible solutions, as the infeasible ones are quickly weeded out by
selection, and preliminary experimentation revealed that creating a feasible
initial population by random generation of values takes an extremely long
time.

The mutation operator still applied one double mutation - a random per-
mutation of the loci was .generated, and for each of these a random permuta-
tion of the possible changes was created. Offspring were produced and tested
in this order until a feasible one was created. The crossover operator was
modified similarly: if the offspring produced using a given crossover point was
infeasible the operator next tested all of the different possible orientation of
the two substrings by varying the allele value in the locus corresponding to
that crossover point, before moving on to trying the next.

6.1 Success Rate

Table 4 shows the results from running the GA, SMA and SComa algorithms
with the modified crossover and mutation operators, alongside those for the
unmodified versions. As can be seen (and statistical testing confirms) there
is far better reliability for the GA-F and SMA-F algorithms than their unre-
stricted counterparts. The results for the SComa are less clear - if anything
the performance is better for short instances and worse for long ones, but the
difference is not statistically significant.

6.2 Efficiency

Figure 3 shows the efficiency (AES) comparisons for the same set of algo-
rithms, again restricted to successful runs. As when comparing Success Rates,
there is little difference between the SComa and SComa-F algorithms, but
under this metric the performance of the GA and GA-F algorithms are not
significantly different, i.e., the GA is still very efficient on those runs when it
does find the optimum, and with the restricted operators it does so far more
often. In contrast to this, the SMA algorithm exhibits much greater AES
values when restricted to feasible solutions, despite being more successful.

6.3 Mean Best Fitness

As evidenced in Table 4, restricting the search to feasible solutions makes it
even easier to find solutions for the shorter instances. Therefore when com-
paring performance on the basis of the quality of the best solutions found,

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 121

Table 4. Effect on Success Rate of restricting search to feasible solutions. Results for
GA, SMA and SComa algorithms are shown alongside those using modified crossover
and mutation (indicated by -F)

nstanct

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

total

algorit

i.e., mean best fitness (MBF), only results for the longer and harder instances
14-20 have been considered again. Figure 4 shows these results graphically for
each algorithm, sorted by instance.

In order to investigate the statistical significance of these results, a two-
way ANOVA test was performed on the values for the best solution found in
each run, with instance number and algorithm as the factors. This confirmed
the significance of the algorithm in determining the performance, and so two
sets of post-hoc tests were performed to analyse the differences between pairs
of algorithms. These were Least-Significant Difference, and Tamhane's T2 test
(the latter is more conservative as it does not make any assumptions about
the samples having equal variances). The results of these tests are summarised
in Table 5. An entry r or R indicates that the algorithm indicated by the row
index was significantly better than the one indicated by the column index,
with 95% confidence according to the LSD or T2 test respectively. Similarly
an entry of c or C indicates that the column algorithm is better than the row
algorithm with 95% confidence according to the LSD or T2 test respectively.

In general it is plain that the rank order is GA < GA-F < SMA< SMA-F
< SComa-F < SComa. These differences are generally statistically significant

122 J.E. Smith

5 10
Instance

Fig. 3. Effect on efficiency of restricting search to feasible solutions. Plot shows
Average Evaluations to Solution for successful runs of GA, SMA, SComa and their
restricted counterparts (indicated by -F).

according to both tests, although it should be noted that this depends to some
extent on the choice of instances considered. If we include all instances, then
the general success on the shorter ones makes the differences less significant,
whereas if we restrict ourselves to only considering a few harder instances, the
significance increases.

Table 5. Statistical significance of pairwise comparisons between algorithms on
basis of best values found. - indicates no significant difference. r[c] denotes algorithm
indicated by row[column] is better with 95% confidence. Lower triangle (lower case)
is for LSD test, upper quarter (upper case) is for Tamhane's T2 test.

GA
GA-F
SMA
SMA-F
SComa
SComa-F
Algorithm

C C C C C
r - - C C C
r - - C C C
r r r C
r r r r
r r r

GA GA-F SMA SMA-F SComa SComa-F

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 123

I * SMA

I
A SComa

I
GA-F

I
e$ SMA-F

INSTANCE

Fig. 4. Mean and std deviation of best values found for instances 14-20, analysed
by algorithm

7 Analysis of LSO Evolution

In order to gain a greater understanding of the behaviour of the SComa al-
gorithm, a number of test runs were made in which the contents of the LSO
population were output to file at regular intervals.

Examination of the form of the evolving LSOs showed that there was a
strong tendency towards short rules of the form ## + l r or ## + 1L.
Here 1 = leftback, r = rightback, and L = leftforward relative to the previous
direction of growth. Both of these rules act to bring residues i and i + 2 into
contact, via causing a torsion angle of 1716 at residue i + 1.

Given that the system is evolving conformations in a two-dimensional
plane, these patterns these could possibly be thought of as the two-dimensional
equivalent of representing a single turn of an alpha helix. Experimentation on a
square two-dimensional lattice showed that the rules which evolved on a num-
ber of instances tended to have length three and be of the form ### + 111
or ### + rrr which is the shortest path that can be made bringing two
residues into contact.

124 J.E. Smith

The use of the word "tended" should be noted here: in most cases the rule-
set continued to contain a number of different rules of varying lengths. It has
been argued elsewhere [36] that in addition to the extra scalability attained
by identifying and re-applying regular structural motifs, the presence of a
diverse, evolving rule-set means that the neighbourhood structure defining
which points around the current population are examined, is continuously
changing. Thus, even if the population is converged to a single point, which
is locally optimal according to most neighbourhood structures, eventually a
rule may evolve for which the neighbourhood of that point contains a fitter
solution. This can be thought of as continually testing new search landscapes
to look for "escape routes" from local optima.

Looking back to the results for the GRand algorithm, in which the rules
defining neighbourhoods are created at random, this "changing landscape"
effect is noticeable in the superior success rates to the SMA. The fact that the
SComa algorithm is the best performer according to both Success Rate and
MBF metrics points to both modes of operation having a positive effect.

8 Discussion and Conclusions

As can be seen from the results section above, the S-Coma algorithm provides
better performance according to Success Rate and Mean Best Fitness met-
r i c ~ than the GA, MA or a comparable system with the rule-learning turned
off (SRand, GRand). These results are especially noticeable for the longer
instances where the COMA system is able to learn and then exploit regulari-
ties within energetically favourable conformations, corresponding to secondary
structural motifs. This happens at some expense of speed - the AES results
show that the addition of any local search to a GA slows down the rate of
discovery of globally optimal solutions, and that searching the whole neigh-
bourhood (steepest ascent) rather than stopping once a better neighbour is
found (greedy ascent) also imposes a cost. Nevertheless it must be emphasised
that the results for the GA and the greedy algorithms come from many fewer
successful runs. In other words, when the genetic search is able to find the
optimum, it does so quickly, but it is prone to premature convergence.

Restricting the crossover and mutation operators to producing feasible so-
lutions has mixed results. The Success Rate and Mean Best Fitness are much
improved for the GA and SMA, and for the SComa on the shorter problems
but if anything is slightly worse for SComa on the long instances. It was sug-
gested in the previous section that the SComa had two modes of operation,
re-use of secondary structural motifs, and continuously changing neighbour-
hoods. These results suggests that possibly the former mode is enhanced by
the restriction to feasible solutions, but that the latter, which permits escape
from local optima on the longer instances, is inhibited. Clearly this warrants
further attention. Considering the efficiency with which solutions are found,

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 125

this is not significantly changed for the GA or SComa, but is much worse for
the SMA algorithm.

There is a clear place for the use of expert knowledge in the design of
search algorithms, and its encapsulation in the form of carefully designed
move operators. Nevertheless the approach outlined in this paper represents
a highly promising prospect given its ability to discover and explicitly repre-
sent structural motifs. As an example, the reliability results reported above
are better, especially for the longer instances, than those reported elsewhere
using a self-adaptive multi-memetic algorithm, with the meme set especially
designed after a comprehensive study of the literature and extensive experi-
mentation [24]. This suggests that there is a clear role for adaptation of some
kind within the specification of memes, rather than using a fixed set. The
results presented here and elsewhere suggest that evolution may well be a
suitable way of achieving that adaptation.

One obvious path for future work would be to examine the effects of seed-
ing the rule population with expert-designed rules. Another, perhaps more
pressing path is to examine the behaviour on more complex lattices and for
different energy functions. As indicated above, these results are only the begin-
ning of a process of investigation, clearly more analysis of the evolving rule-sets
is needed, as well as a thorough investigation of the other algorithmic possi-
bilities. It seems likely however that this represents a promising direction for
the future development of scalable optimisation techniques which may yield
new insights into the energy landscapes of the HP and other lattice models of
proteins.

9 Acknowledgements

The author would like to thank Natalio Krasnogor for many fruitful discus-
sions during the initial stages of this work, and for introducing him to the
Protein Structure Prediction problem.

References

1. ., editor. 2003 Congress on Evolutionary Computation (CEC'2003). IEEE Press,
Piscataway, NJ, 2003.

2. Thomas Bkk. Self adaptation in genetic algorithms. In F.J. Varela and
P. Bourgine, editors, Toward a Practice of Autonomous Systems: Proceedings
of the 1st European Conference on Artificial Life, pages 263-271. The MIT
Press, Cambridge, MA, 1992.

3. W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and
R.E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999). Morgan Kaufmann, 1999.

4. B. Berger and T. Leight. Protein folding in the hydrophobic-hydrophilic (hp)
model is NP-complete. In Proc. 2nd Annual Intnl. Conf. Computational Molec-
ular Biology RECOMB98, 1998.

126 J.E. Smith

5. Larry Bull. Artificial Symbiology. PhD thesis, University of the West of England,
1995.

6. Larry Bull. Evolutionary computing in multi agent environments: Partners. In
Th. Back, editor, Proceedings of the 7th International Conference on Genetic
Algorithms, pages 370-377. Morgan Kaufmann, San Francisco, 1997.

7. Lawrence Bull and Terence C. Fogarty. Horizontal gene transfer in endosymbio-
sis. In Christopher G. Langton and Katsunori Shimohara, editors, Proceedings
of the 5th International Workshop on Artificial Life : Synthesis and Simulation
of Living Systems (ALIFE-96), pages 77-84, Cambridge, May 16-18 1997. MIT
Press.

8. K. Dill. Biochemistry, 24:1501, 1985.
9. S. Duarte-Flores and J.E. Smith. Study of fitness landscapes for the HP model

of Protein Structure Prediction. In . [I], page to appear.
10. M. Feig, P. Rotkiewicz, A. Kolinski, J. Skolnick, and C. Brooks. Accurate

reconstruction of all-atom protein representations from side-chain-based low-
resolution models. Proteins:Structure Fucntion and Genetics, 41:86-97, 2000.

11. David B. Fogel. Evolving Artificial Intelligence. PhD thesis, University if Cali-
fornia, 1992.

12. J.J. Merelo Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, and
H.-P. Schwefel, editors. Proceedings of the 7th Conference on Parallel Prob-
lem Solving from Nature, number 2439 in Lecture Notes in Computer Science.
Springer, Berlin, 2002.

13. P. Hansen and N. Mladenovit. An introduction to variable neighborhood search.
In S. Vo13, S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-Heuristics:
Advances and trends i n local search paradigms for optimization. Proceedings of
MIC 97 Conference. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998.

14. W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis,
University of California, San Diego, 1994.

15. Terry Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD
thesis, The University of New Mexico, Albuquerque, NM, 1995.

16. Hill01 Kargupta and Samiran Ghosh. Towards machine learning through ge-
netic code-like transformations. Technical Report TR-CS-01-10, Computer Sci-
ence and Electrical Engineering Department, University of Maryland Baltimore
County, 2001.

17. S.A. Kauffman. Origins of Order: Self-Organization and Selection i n Evolution.
Oxford University Press, New York, NY, 1993.

18. Robert E. Keller and Wolfgang Banzhaf. Genetic programming using genotype-
phenotype mapping from linear genomes into linear phenotypes. In J.R. Koza,
D.E. Goldberg, D.B. Fogel, and R.L. Riolo, editors, Proceedings of the 1st An-
nual Conference on Genetic Programming, pages 116-122. MIT Press, 1996.

19. Robert E. Keller and Wolfgang Banzhaf. The evolution of genetic code in genetic
programming. In Banzhaf et al. [3], pages 1077-1082.

20. Joshua Knowles and David Corne. A comparative assessment of memetic, evo-
lutionary and constructive algorithms for the multi-objective D-MSAT problem.
In Gecco-2001 Workshop Program, pages 162-167, 2001.

21. A. Kolinski and J . Skolnick. Assembly of protein structure from sparse exper-
imental data: An efficient Monte-Carlo method. Proteins: Structure Function
and Genetics, 32:475-494, 1998.

The Co-Evolution of Memetic Algorithms for Protein Structure Prediction 127

22. N. Krasnogor and S. Gustafson. Toward truly "memetic" memetic algorithms:
discussion and proofs of concept. In David Corne, Gary Fogel, William Hart,
Joshua Knowles, Natalio Krasnogor, Rajkumar Roy, Jim Smith, and Ashutosh
Tiwari, editors, Advances in Nature-Inspired Computation: The PPSN VII
Workshops, pages 9-10, Reading, UK, 2002. PEDAL (Parallel, Emergent &
Distributed Architectures Lab), University of Reading.

23. N. Krasnogor, W. Hart, J.E. Smith, and D. Pelta. Protein structure prediction
with evolutionary algorithms. In Banzhaf et al. [3], pages 1596-1601.

24. N. Krasnogor and J. Smith. A memetic algorithm with self-adaptive local search:
TSP as a case study. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages 987-994. Morgan Kaufmann,
2000.

25. Natalio Krasnogor. Studies in the Theory and Design Space of Memetic Algo-
rithms. PhD thesis, University of the West of England, 2002.

26. Natalio Krasnogor and Jim Smith. Emergence of profitiable search strategies
based on a simple inheritance mechanism. In L. Spector, E. Goodman, A. Wu,
W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon,
and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 432-439. Morgan Kaufmann, 2001.

27. Peter Merz. Memetic Algorithms for Combinatorial Optimization Problems:
Fitness Landscapes and Efective Search Strategies. PhD thesis, Department of
Electrical Engineering and Computer Science, University of Siegen, Germany,
2000.

28. Peter Merz and Bernd Freisleben. Fitness landscapes and memetic algorithm
design. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimiza-
tion, pages 245-260. McGraw Hill, 1999.

29. Pablo Moscato. Memetic algorithms' home page. Technical report,
http://www.densis.fee.unicamp.br/-moscato/memeticome.html, 2002.

30. N. Krasnogor, B.P. Blackburne, E.K. Burke and J. D. Hirst. Multimeme algo-
rithms for protein structure prediction. In Guervos et al. [12], pages 769 -778.

31. Jan Paredis. The symbiotic evolution of solutions and their representations.
In L.J. Eshelman, editor, Proceedings of the 6th International Conference on
Genetic Algorithms, pages 359-365. Morgan Kaufmann, San Francisco, 1995.

32. Jan Paredis. Coevolutionary algorithms. In T. BEk, D. Fogel, and
Z. Michalewicz, editors, Handbook of Evolutionary Computation. Institute of
Physics Publishing, Bristol, and Oxford University Press, New York, 1998.

33. M. A. Potter and K.A. DeJong. A cooperative coevolutionary approach to
function optimisation. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors,
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature,
number 866 in Lecture Notes in Computer Science, pages 248-257. Springer,
Berlin, 1994.

34. J.David SchafFer and Amy Morishima. An adaptive crossover distribution mech-
anism for genetic algorithms. In J.J. Grefenstette, editor, Proceedings of the 2nd
International Conference on Genetic Algorithms and Their Applications, pages
36-40. Lawrence Erlbaum Associates, 1987.

35. H.-P. Schwefel. Numerical Optimisation of Computer Models. John Wiley and
Sons, New York, 1981.

36. J.E. Smith. Co-evolving memetic algorithms: A learning approach to robust
scalable optimisation. In . [I], page to appear.

128 J.E. Smith

37. Jim Smith. Co-evolution of memetic algorithms : Initial investigations. In
Guervos et al. [12], pages 537-548.

38. Jim Smith and T.C. Fogarty. Adaptively parameterised evolutionary systems:
Self adaptive recombination and mutation in a genetic algorithm. In Voigt et al.
[43], pages 441-450.

39. Jim Smith and T.C. Fogarty. Self adaptation of mutation rates in a steady state
genetic algorithm. In Proceedings of the 1996 IEEE Conference on Evolutionary
Computation, pages 318-323. IEEE Press, Piscataway, NJ, 1996.

40. R. Unger and J. Moult. Genetic algorithms for protein folding simulations.
Journal of Theoretical Biology, 231(1):75-81, 1993.

41. Ron Unger and John Moult. A genetic algorithm for 3D Protein Folding Simu-
lations. In S. Forrest, editor, Proceedings of the 5th International Conference on
Genetic Algorithms, pages 581-588. Morgan Kaufmann, San Francisco, 1993.

42. F. Vavak, T.C Fogarty, and K. Jukes. A genetic algorithm with variable range
of local search for tracking changing environments. In Voigt et al. [43], pages
376-385.

43. H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors. Proceedings
of the 4th Conference on Parallel Problem Solving from Nature, number 1141 in
Lecture Notes in Computer Science. Springer, Berlin, 1996.

