
A Memetic Algorithm Solving the VRP, 
the CARP and General Routing Problems 
with Nodes, Edges and Arcs 

Christian Prins and Samir Bouchenoua 

LOSI, University of Technology of Troyes 
BP 2060, 12 Rue Marie Curie 
F-10010 Troyes Cedex, France 
{Christian.Prins, Samir.Bouchenoua)@utt.fr 

Summary. The VRP (Vehicle Routing Problem) and the CARP (Capacitated Arc 
Routing Problem) involve the routing of vehicles in an undirected network to ser- 
vice respectively a set of nodes or a set of arcs. Motivated by applications in waste 
collection, we define a more general model called NEARP (Node, Edge and Arc 
Routing Problem) for tackling mixed graphs with required nodes, edges and arcs. 
A memetic algorithm (MA) is developed for the NEARP. An evaluation on stan- 
dard VRP and CARP benchmarks shows that the MA is competitive with most 
metaheuristics for these particular cases of the NEARP. We finally propose a set 
of NEARP instances, together with the solutions costs achieved by the MA, as a 
challenge for other researchers in vehicle routing. 

Key words: memetic algorithm, vehicle routing, general routing problem. 

1 Introduction 

Traditionally, the literature devoted t o  multi-vehicle routing problems consid- 
ers an undirected network and studies two distinct families of problems: node 
routing problems and arc routing problems, depending on the entities t o  be 
serviced in the network. 

The VRP or Vehicle Routing Problem is a typical representative of node 
routing problems. I t  is usually defined on an undirected network in which 
some nodes correspond to  customers. Each customer has a weight or demand 
for a commodity and a service cost. Each network edge has a travel cost. A 
fleet of identical vehicles of limited capacity is based at a depot node. A trip 
for a vehicle starts a t  the depot, visits a sequence of customers, and returns 
to  the depot. The cost of a trip includes the service costs of its customers and 
the costs of each traversed edge. 

The VRP consists of designing a set of trips of least total cost, such that 
each customer is visited exactly once and the total demand serviced by any 



66 C. Prins and S. Bouchenoua 

trip does not exceed vehicle capacity. The VRP has important applications in 
logistics, for instance in distribution networks. It  is unfortunately NP-hard and 
exact methods [I] have a limited interest, since some instances with 75 nodes 
(and even 50 nodes for the distance-constrained VRP) are not yet solved to 
optimality. This is why heuristics are required in practice for tackling real-life 
VRP instances. They comprise simple algorithms [2], like the merge heuristic 
from Clarke and Wright, and more recent and powerful metaheuristics like 
tabu search [3, 4, 51. 

Comparatively, arc routing problems have been neglected for a long time 
by researchers, but they have raised a growing interest in the two last decades, 
mainly because of their applications like urban waste collection or winter 
gritting (see the good survey from Assad and Golden [6]). The problem corre- 
sponding to the VRP in arc routing is the CARP or Capacitated Arc Routing 
Problem. Its definition is similar but this time the tasks to be performed by 
the vehicles consist of servicing some edges, for instance spreading salt or 
collecting municipal refuse along a street. 

The CARP is also NP-hard. Theoretically, it can be converted into an 
equivalent node routing problem as shown by Pearn et al. [7]. This transfor- 
mation converts a CARP with k required arcs into a VRP with 3k + 1 nodes. 
Since the VRP itself is very hard, this increase in size is of course not accept- 
able and most researchers prefer to attack the CARP directly. The CARP 
seems more difficult than the VRP in practice: the exact solution methods 
published are still limited to small instances with at most 20 edges [8]. On 
the other hand, Belenguer and Benavent [9] have exploited the rich underly- 
ing structure of this problem to design an excellent lower bound, allowing an 
accurate evaluation of heuristics. 

As for the VRP, the simplest heuristics published for the CARP are con- 
structive methods, e.g. Path-Scanning from Golden et al. [lo], Augment-Merge 
from Golden and Wong [ l l ]  and Ulusoy's tour splitting heuristic [12]. Meta- 
heuristics have been designed more recently, like the powerful tabu search 
algorithm CARPET from Hertz, Laporte and Mittaz [13] and the genetic al- 
gorithms (GAS) from Lacomme, Prins and Ramdane-ChQrif [14, 151. The best 
of these GAS is the only algorithm able to reach the lower bound of Belenguer 
and Benavent [9] on 21 out of 23 standard instances proposed by DeArmon 
[16], containing up to 55 required edges. 

Despite the success of metaheuristics for the VRP and the CARP, it is clear 
that these two problems cannot formalize the requirements of many real-world 
scenarios. Consider for instance urban waste collection. Although most tasks 
consist of servicing streets, the problem cannot be modeled as a pure CARP 
because of punctual accumulations of waste that must be modeled as required 
nodes (hospitals, schools, supermarkets, etc.). Moreover, an undirected graph 
can only model 2-way streets whose both sides are collected in parallel and in 
any direction (zigzag or bilateral collection, a practice reserved to low-traffic 
residential areas). In reality, a street can be a 2-way street with bilateral 
collection (giving an edge in the modeled network), a 2-way street with two 



A Memetic Algorithm Solving Geseral Routing Problems 67 

sides collected independently (giving two opposite arcs), or even a 1-way street 
(giving one arc). 

Our research is a step towards more generic models and algorithms able to 
handle such complications in vehicle routing. Section 2 presents our extended 
model, the NEARP or Node, Edge and Arc Routing Problem. It  is defined on 
a mixed graph with required nodes, edges and arcs and contains the VRP and 
the CARP as particular cases. Section 3 describes three simple heuristics for 
the NEARP that are used to initialize the memetic algorithm (MA). The third 
one, a tour splitting method, plays also a key-role in chromosome evaluation. 
The MA itself is developed in section 4. It  undergoes in section 5 a preliminary 
testing on standard VRP and CARP instances to check its competitiveness 
with respect to existing algorithms. A generator of instances for the new 
problem is described in section 6. We finally propose in section 7 a set of 
NEARP instances with the solution costs computed by the MA, as a challenge 
for OR researchers of the vehicle routing community. An appendix provides 
the reader with detailed tables of results and a list of formal definitions for 
all problems discussed. 

2 The Node, Edge and Arc Routing Problem (NEARP) 

This section formally defines the NEARP as a new problem generalizing both 
the VRP and the CARP and describes data structures for the algorithms of 
sections 3 and 4. The NEARP allows a mixed network with required nodes, 
edges and arcs. Contrary to the CARP, two distinct costs are handled for each 
link: one deadheading cost, i.e., the cost for a traversal without service (called 
deadhead by transporters) and one service cost, when the link is traversed to 
be treated. The entities to be serviced are directly tackled, i.e. the model does 
not rely on a conversion into a CARP or a VRP. 

2.1 Problem statement 

The NEARP is defined on a strongly connected and loopless mixed network 
G = (N, E, A) with three sets of entities: a set N of n nodes, a set of edges 
E, and a set of arcs A. We call links the m entities in E U A. N includes a 
depot node s with a fleet of K identical vehicles of capacity W. The number 
of vehicles K is a decision variable. Each entity u has a non-negative traversal 
cost c,. This cost is null for a node. For a link, it corresponds to a deadheading 
traversal (i.e., without service). 

Some entities, the tasks, are required, i.e., they need to be processed by 
a vehicle. NR, ER and AR respectively denote the subset of required nodes 
or node-tasks, the subset of required edges or edge-tasks, and the subset of 
required arcs or arc-tasb. Their cardinalities are respectively denoted by v, 6 

and a. T = v + ~ + a  denotes the total number of tasks. Each task u = 1,2, .  . . , r 
has a non-negative demand q, and a non-negative processing cost p,. To 



68 C. Prins and S. Bouchenoua 

ensure feasibility, we assume that no demand exceeds W. Theoretically, all 
costs and demands should be integers, but our implementation accepts real 
numbers to handle some Euclidean instances from literature in section 5. 

Any feasible vehicle trip must start from the depot, process a sequence 
of tasks whose total demand does not exceed W, and return to the depot. 
Its cost includes the processing costs of its tasks (required nodes, edges and 
arcs) and the traversal costs of the links used to travel from the depot to the 
first task, from each task to the subsequent one, and from the last task to the 
depot. The next subsection introduces data structures allowing to specify the 
cost of a trip by a concise formula. 

Any feasible solution is a set of feasible trips covering all tasks. Tasks 
cannot be preempted, i.e., each task must appear in exactly one trip and only 
once in the sequence of tasks of that trip. Recall that the number of trips 
actually used, K, is not imposed but is part of the solution. The cost of a 
solution is the sum of its trip costs. 

The NEARP consists of determining a least-cost solution. Clearly, this 
is a new problem that generalizes the VRP and the CARP: the VRP is the 
particular case with A = 0 and ER = 0, while the CARP corresponds to A = 0 
and NR = 0. The General Routing Problem (GRP) is another special case of 
the NEARP, introduced by Orloff in 1974 [17]. In this generalization of the 
well-known Traveling Salesman Problem ( TSP), one single vehicle must visit 
a subset of nodes and a subset of edges in an undirected graph to minimize 
the total mileage. Hence, the NEARP could also be called Mixed Capacitated 
GRP or MCGRP. 

2.2 Internal network representation 

Our algorithms rely on an internal network in which all entities (nodes and 
links) are encoded with the same attributes and stored in a common list L, 
indexed from 1 to n + IAl+ 21EI. The attributes for entity u are a begin node 
b,, an end node e,, a traversal cost c,, a demand q,, a processing cost p, and 
a pointer inv(u) explained below. 

By convention, we set b, = e, and c, = 0 if entity u is a node: no confusion 
with a link is possible, since G is loopless. The required entities (tasks) are the 
ones with non-zero demands. Each required edge is encoded as two opposite 
arcs u and z linked thanks to their pointers inv, i.e., e, = b,, e, = b,, 
inv(u) = z and inv(z) = u. These two arcs inherit their demands and their 
costs from the edge. Any arc or non-required edge u is such that inv(u) = 0. 
If u is a node, then inv(u) = u by convention. Therefore, the three sets of 
tasks can be concisely defined by equations 1-3. 



A Memetic Algorithm Solving General Routing Problems 69 

The costs of the shortest paths between any two entities can be pre- 
computed between their two end-nodes using Dijkstra's algorithm [18], result- 
ing in a distance matrix D, n x n. A trip 0 is defined as a list (&, & ? , .  . . , Bt) 
of task indexes, with a total demand load(0) < W and a total cost cost(@ 
defined by equations 4 and 5. Implicitly, 0 starts and ends at  the depot and 
shortest paths are assumed to connect the successive steps. A solution T is a 
list (TI, T2, . . . , TK) of K vehicle trips (recall that K is a decision variable). 
Its cost is the sum of its trip costs. Each task appears exactly once in T and 
each edge-task occurs as one of its two opposite arcs. 

3 Three simple heuristics for the NEARP 

These heuristics are briefly described before the MA, because they are used to 
provide the initial population of the MA with good solutions. Moreover, the 
splitting technique of the third heuristic is also used in the MA for chromosome 
evaluation. 

3.1 Nearest neighbor heuristic 

Our Nearest Neighbor Heuristic or NNH adapts to the NEARP the Path- 
Scanning heuristic proposed by Golden and Wong for the CARP [lo]. NNH is a 
sequential heuristic building the trips one by one until all tasks are processed. 
In building each trip, the sequence of tasks is extended at  each iteration 
by joining the nearest free task z ,  until vehicle capacity W is exhausted. In 
NEARP instances with a majority of required links, the distance between the 
last task of the trip and the nearest free tasks is often zero, for instance when 
the tasks correspond to adjacent streets. 

So, five rules are used to break ties among nearest tasks: 1) maximize the 
distance d,, to  the depot, 2) minimize this distance, 3) maximize a kind of 
yield q,/p,, 4) minimize this yield, 5) use rule 1 if the vehicle is less than half- 
full, else use rule 2. NNH computes one complete NEARP solution for each 
rule and returns the best one. A small example is given for rule 1 in Figure 
1. Each black square represents a required node and each thick segment a 
required link. Thin lines correspond to shortest paths. The last task of the 
trip in construction is link u. The two nearest free tasks are node a and edge 
b, since dua = dub = 3. NNH will select edge b because dbs > d,,. 



70 C. Prins and S. Bouchenoua 

rn depot 

Fig. 1. Basic step of heuristic NNH with rule 1. 

3.2 Merge heuristic 

Our Merge heuristic or MH corresponds to the Clarke and Wright method 
for the VRP [2] and to the Augment-Merge heuristic for the CARP [l l ] .  It 
starts with a trivial solution with T trips reduced to one task. Then, each 
iteration evaluates the merger (concatenation) of any two trips, subject to W. 
For instance, in Figure 2, merging Ti and Tj yields a saving of 8 + 6 - 10 = 4. 
MH merges the two trips with the largest positive savings. This process is 
repeated until no such merger is possible. 

Trip Ti Trip Tj 

. 
depot 

Fig. 2. Concatenation of two trips in the Merge Heuristic (MH). 

Note that there exist up to 8 possible mergers for two trips Ti and Tj: 
one can put Ti before or after Tj and each trip may be inverted or not. In 
fact, the direction of each edge-task is changed in an inverted trip: e.g., if a 
trip contains a subsequence of two edge-tasks (u, z ) ,  then the inverted trip 
will contain the subsequence (inv(z), inv(u)). This also holds for a node u 
with inv(u) = u. Finally, the only case where a trip cannot be inverted is the 
presence of at  least one arc-task u, since inv(u) = 0. In a real network, this 
occurs when a trip goes thru one-way streets. 

3.3 Tour splitting heuristic 

The Tour Splitting Heuristic or TSH extends a CARP algorithm from Ulusoy 
[12]. First, TSH relaxes vehicle capacity to build a giant tour S servicing 



A Memetic Algorithm Solving General Routing Problems 71 

all tasks. This can be done by any heuristic, for instance NNH called with 
W = m. Figure 3 shows such a giant tour S = (a, b, c, d, e), with two node- 
tasks b and d and three required links a,  c and e. The demand and processing 
cost of each task are given in brackets. An optimal procedure Split is then 
called to cut S into capacity-feasible trips. 

C ( 5 s )  cost  40 ,  load 5 
b ( 3 3 )  20 - 20 d (1,5)  

- 
rn 2 0  15 w w Trip 2 rn 

l o  I 1 c o s ~ ~ ~ ~ ~ o a d  7 
Trip 3 

a (4.5) e (4,7) cost  5 1 ,  load 5 
rn rn 

2 0 depot 16 depot 
I 

a) one  giant tour S = (a,b,c,d,e) with 5 tasks c )  Resulting trips 
(demand and service cost  in brackets) 

b) Auxiliary graph and shortest path for W=9 (labels in each node) 

Fig. 3. Principle of the Tour Splitting Heuristic (TSH). 

Split builds an auxiliary graph H with r + 1 nodes indexed from 0 to T. 
Each subsequence (Si, Si+l, . . . , Sj) of S that could give a capacity-feasible 
trip gives in H as one arc (i - 1, j ) ,  weighted by the cost of the trip. This 
auxiliary graph is given in figure 3 for W = 9. Since H is acyclic by definition 
and contains 0 ( r 2 )  arcs, a shortest path from node 0 to node r can be com- 
puted in 0 ( r 2 )  using Bellman's algorithm [18]. The resulting shortest path 
(boldface) indicates where to split the giant trip. It  corresponds to a solution 
with 3 trips and a total cost equal to 142. Our implementation of TSH splits 5 
giant trips, obtained by calling NNH with an infinite capacity and one priority 
rule at  a time (see subsection 3.1). The best solution obtained is returned. 

4 A memetic algorithm for the NEARP 

4.1 Chromosomes and evaluation 

A chromosome is simply defined as a sequence S of T task indexes, without 
trip delimiters. It is almost a permutation chromosome because each task 



72 C. Prins and S. Bouchenoua 

appears exactly once in S. However, each edge-task may appear as one of 
its two opposite arcs. Clearly, S does not directly represent a valid NEARP 
solution but it can be considered as a giant tour for a vehicle of infinite 
capacity. The Split procedure described in 3.3 for the TSH heuristic is used 
to extract from S the best possible NEARP solution. The guiding function 
F (S)  is nothing more than the cost of this solution. The following claim 
shows that the validity property stressed by Moscato in [19] holds. Hence, 
a memetic algorithm combining such chromosomes is expected to find an 
optimal NEARP solution. 

Claim. The proposed chromosome structure is a valid representation. 

Proof. By definition, Split converts any chromosome into an optimal NEARP 
solution (subject to the sequence order). Moreover, there exists at least one 
optimal chromosome: consider any optimal NEARP solution and concatenate 
its trips in any order. 

4.2 Extended OX crossover 

Thanks to chromosomes without trip delimiters, classical crossovers for per- 
mutation chromosomes can be used for the NEARP. We quickly obtained good 
results by adapting the classical Order Crossover or OX, developed by Oliver 
et al. for the TSP [20]. This chromosome works well for cyclic permutations. 
Although a NEARP solution is not (strictly speaking) a permutation, it can 
be viewed as a cyclic list of trips because there is no reason to give a special 
role to a "first" or "last" trip. 

Given two parents Pl and P2 of length T, OX randomly draws two posi- 
tions i and j with 1 5 i 5 j 5 T. To build the first child Cl, the substring 
PI (i) . . . PI ( j )  is first copied into Cl (i) . . . Cl (j).  The tasks P2(j + 1) . . . P2(7) 
and P2 (1) . . . P2 (i - 1) are then examined in that order. The tasks which are 
not yet present in Cl are used to fill the empty slots of C1, in the order 
Cl ( j  + 1) . . . CI (T), Cl(1) . . . Cl (i - 1). 

Fig. 4. Example of OX crossover 

This process is illustrated by Figure 4. The other child C2 is obtained in a 
similar way, by inverting the roles of PI and P2. For the NEARP, the classical 



A Memetic Algorithm Solving General Routing Problems 73 

crossover must be adapted to take edge directions into account, i.e. a task u 
may be copied from PI to C1 only if both u and inv(u) are not already in the 
child. The extended crossover can be implemented in O(T). 

4.3 Local search procedure 

To get a memetic algorithm, a local search procedure (LSP) replaces the muta- 
tion operator traditionally applied to new solutions created by recombination 
(children) after a crossover. Since LSP cannot work on chromosomes (with- 
out trip delimiters), the input chromosome S must be converted first into a 
NEARP solution, using the Split procedure of 3.3 LSP performs successive 
phases that scan in O ( T ~ )  the following types of moves, depicted in figures 5 
and 6. 

Flip one task a,  i.e., replace a by inv(a) in its trip, 
Move one task a after another task or after the depot, 
Move two consecutive tasks a and b after another task or after the depot, 
Swap two tasks a and b, 
Sopt  moves depicted in figure 6. 

Ini t ia l  trip F l ip  a M o v e  g be fo re  a 

depot 

M o v e  e a n d  f a f t e r  c S w a p  c a n d  g 

Fig. 5. Simple moves in the Local Search Procedure. 

All these moves can be applied to one or two trips. Moreover, each task a 
moved to another location or swapped with another task may be inserted as 
a or inv(a). For instance, the third move (move two tasks a and b) comprises 
in fact four distinct sub-cases: insert a and b, inv(a) and b, a and inv(b), or 
inv(a) and inv(b). 



74 C. Prins and S. Bouchenoua 

Initial trip Cross paths u - x  and v-y 

/ \ b  / \ T2 ( i n v ( b \  i n v ( y  
r depot / / / 

r 

Initial trips Cross a-b and c-d: case 1 Cross a-b and c-d: case  2 

Fig. 6. 2-OPT moves on one trip and on two trips. 

Each phase ends by performing the first improving move detected or when 
all moves have been examined. The loop on phases stops when a phase re- 
ports no improvement. The resulting NEARP solution is converted back into 
a chromosome by concatenating the tasks of its trips. In all cases, LSP termi- 
nates by applying Split to the result, because this sometimes decreases a bit 
the total cost. 

On big instances, the neighborhood cardinality O(r2) leads to  very time- 
consuming local searches, that typically absorb 95% of the total MA running 
time. To remedy this drawback, a classical neighbourhood reduction technique 
is used. We define for each task a list neib(a) that contains the T tasks sorted 
in increasing order of distance to a and a threshold thresh between 1 and T. 
Then, each iteration of the local search is restricted to all pairs (a, b), such 
that b belongs to the thresh first tasks in neib(a). 

4.4 Population structure and initialization 

The population is stored in an array II of nc chromosomes, kept sorted in in- 
creasing order of costs (computed by Split). So, the best solution corresponds 
to II1. Identical solutions (clones) are forbidden to prevent a premature con- 
vergence of the MA (amplified by the local search) and to favour a better 
dispersal of solutions. Instead of an exact clone detection (e.g., using hashing 
methods), we adopt a simpler system in which the costs of any two solutions 
S1, Sz must be spaced at  least by a constant A > 0, i.e., IF(S1) -F(S2)1 5 A. 
This condition is called the A-property. Its simplest form for integer costs is 
A = 1, ensuring solutions with distinct costs. 



A Memetic Algorithm Solving General Routing Problems 75 

At the beginning, the heuristics NNH, MH and TSH described in section 3 
are executed. The local search procedure LSP of 4.3 is applied to the solutions 
computed by NNH and TSH, and after each merger for the Merge Heuristic 
MH. The resulting solutions are converted into chromosomes by concatenating 
their trips and stored in IT. The population is then completed by random 
chromosomes. On very small problems, it may be difficult to satisfy the A- 
property, especially if nc is large. In practice, we try up to mnt times to draw 
a random IIk such that the A-property holds for IIl . . . IIlz In case of failure, 
the number of chromosomes nc is truncated to k - 1. 

Large populations raise another problem. During the MA, some crossovers 
are unproductive because their children violate the A-property and cannot be 
kept. The percentage of unproductive crossovers quickly increases with nc and 
with the local search rate. It  is tolerable (less than 5%) if the population is 
relatively small (30-40 chromosomes) and if less than 20% of children undergo 
the local search. 

Compared to the MA template proposed by Moscato [19], note that the 
local search is applied to the three initial heuristic solutions, but not to the 
random ones: because of the small population size, we are obliged to do so to 
have a sufficient dispersal of initial solutions and a better exploration of the 
solution space. 

4.5 Basic iteration and stopping criteria 

Each iteration of the MA starts by selecting two parents PI and f i  by bi- 
nary tournament: two chromosomes are randomly selected and the best one 
becomes PI,  this process is repeated to get P2. The extended OX crossover 
(4.2) is applied to generate two children Cl and C2.  One child C is selected at  
random, evaluated by Split, and improved by local search (4.3) with a fixed 
probability pls. An existing chromosome TIk is drawn above the median cost 
(k 2 nc/2) to be replaced by C. The replacement is performed only iff the 
A-property holds for (TI \ {IIk)) U {C). 

The MA stops after a maximum number of iterations mni, after a maxi- 
mum number of crossovers without improving the best solution (II1) mniwi, 
or when a lower bound LB known for some instances is achieved. 

4.6 Overall MA structure 

The overall MA structure is given by Algorithm 1. The parameters are the 
population size nc, the minimal cost spacing A between any two solutions, 
the maximum number of tries mnt to get each initial random chromosome, 
the local search rate pls, the maximum number of iterations (crossovers) mni, 
the maximum number of iterations without improving the best solution mnwi 
and the lower bound LB. 



76 C. Prins and S. Bouchenoua 

Memetic Algorithm: 
Begin 
run heuristics NNH, MH, TSH and improve solutions with LSP; 
discard solutions violating the A-property; 
convert the remaining solutions into chromosomes, by concatenating their trips; 
II t {resulting chromosomes) ; 
complete II with random chromosomes satisfying the A-property; 
sort II in increasing cost order; 
ni, niwi t 0; 
Repeat Until ( (ni = mni) or (niwi = mniwi) or (F(II1) = L B )  ) Do 
ni t ni + 1; 
select two parents PI and Pz by binary tournament; 
apply OX to PI, P2 and choose one child C at random; 
evaluate C with Split ; 
If (random < pls) Then 
improve C with the local search procedure LSP; 

endIf 
draw k at random between Lncl'LJ and nc included; 
If (I3 \ {rIk) U {C) satisfies the A-property) Then 

rIk t C; 
If (F(C) < F(rI1)) Then 
niwi t 0; 
Else 
niwi t niwi + 1; 

end1 f 
shift IIk to keep II sorted; 

endIf 
endDo 

End. 

Fig. 7. Overall MA structure 

5 Preliminary testing on VRP and CARP instances 

5.1 Implementat ion a n d  instances 

The heuristics and the memetic algorithm have been programmed in the 
Pascal-like language Delphi version 5 and tested on a 1 GHz Pentium I11 PC 
with Windows 98. Before running the MA on NEARP instances, for which 
no published algorithm is available for comparison, we decided to test it on 
standard VRP and CARP instances. 

The selected set of CARP instances (gdb files) contains 25 undirected 
problems built by DeArmon [16] and used by almost all algorithms published 
for the CARP. They can be downloaded on the Internet [21]. Instances 8 and 
9 are discarded by all authors because they contain inconsistencies. The other 



A Memetic Algorithm Solving General Routing Problems 77 

files contain 7 to 27 nodes and 11 to 55 edges. All data are integers and all 
edges are required. 

An excellent lower bound [9] is available for all these instances. The opti- 
mum is known for 21 instances out of 23, thanks to the tabu search CARPET 
of Hertz et al. [13] and the genetic algorithm of Lacomme et al. 1151. The only 
two remaining open instances are gdblO and gdbl4. In spite of their relatively 
small size, the gdb instances are not so easy: for example, no constructive 
heuristic is able to solve more than two problems to optimality. 

The set of VRP instances contains 14 Euclidean problems proposed by 
Christofides et al. [22]. They can be downloaded for instance from the OR 
Library [23]. They have 50 to 199 nodes. The network is complete and the costs 
are real numbers corresponding to the Euclidean distances between nodes. 
Files 6 to 10, 13 and 14 contain a route-length restriction. This constraint 
is easily handled by the MA, by ignoring the too long trips in the auxiliary 
graph built by the chromosome evaluation procedure Split (see 3.3). 

The best-known solution costs to Christofides instances have been com- 
puted by various tabu search algorithms (TS) and simulated annealing proce- 
dures. They can be found for example in Gendreau et al. [3] and in Golden et 
al. [4]. As underlined by these authors, double-precision computations must 
be used to avoid cumulating rounding errors and to guarantee meaningful 
comparisons between final solution costs. No tight lower bound is available, 
but the best exact methods have proved that the solution values found for 
files 1 and 12 are in fact optimal. 

5.2 Results for CARP instances 

The MA parameters used for the gdb instances are nc = 30, A = 1, mnt = 60, 
pls = 0.1, mni = 20000 and mniwi = 6000. Since these instances are not too 
large, the local search is set to a full aperture, i.e., thresh = T (see 4.3). 

Table 1 gathers the results for the CARP. The columns show, from left to 
right, the file name, the number of nodes n, the number of links m (equal to T, 
since all edges are required), the best known solution value (BKS), the results 
obtained by the heuristics NNH, MH and TSH (followed by one call to the 
local search) and by the MA. The same setting of parameters is applied to all 
instances, except in the last column Best MA that reports the best solutions 
found with various settings during our experiments. The CPU time is given 
in seconds for all algorithms. The two last rows give the average deviation to 
the lower bound in % and the number of best solutions retrieved. 

The MA solves 17 out of 23 instances to optimality, within reasonable 
CPU times (42 seconds on average, max. 4 minutes). The average deviation 
to the bound is quite small: 0.43%. To compare with, the best tabu search 
published [13] finds 18 optima, but with a slightly greater deviation of 0.48%. 
Using various settings, only two instances are improved (gdbll and gdb24). 



78 C. Prins and S. Bouchenoua 

5.3 Results for VRP instances 

Table 2 reports the results found for the VRP in nearly the same format as 
table 1. However, the numbers of edges are here omitted because the networks 
are complete and, due to the lack of good lower bounds, the Average row now 
gives the average deviation to best-known solutions. 

The MA parameters used this time are nc = 30, A = 0.5, mnt = 60, pls = 
0.5, mni = 20000 and mniwi = 6000. Neighborhood aperture is reduced to 
thresh = 2 x max(l0,  TO.^). After the first phase with up to 20000 crossovers, 
the MA performs four short restarts of 2500 crossovers, in which the 7 worst 
chromosomes are replaced by random ones. 

The MA finds 3 best-known solutions and the average deviation to best 
solutions is very small: 0.39%. The CPU time (10 minutes on average) exceeds 
30 min only for one of the two largest instances with 199 nodes (vrpnclo, 42 
min). In [4], Golden et al. list the results obtained by the 10 best TS methods 
for the VRP, which find 3 to 12 best-known solutions. Using several settings of 
parameters (Best MA column), the MA would be at  rank 3 in this comparison, 
after three TS methods that respectively retrieve 12, 10 and 8 best-known 
solutions. 

In a preliminary version of the MA, there was no neighborhood reduction 
technique in the local search and no restart. The average solution cost was 
only a bit larger, but the CPU time was excessive, exceeding 1 hour for four 
instances and reaching 2 hours and 53 minutes on vrpncl0. 

The possibility of using a tabu search step for diversification has not been 
used for three reasons. Firstly, tabu search competitors are already available 
for the CARP and the VRP, so we wanted to develop in contrast a "pure" 
evolutionary algorithm. Secondly, a sufficient diversification seems to be pro- 
vided by the restarts. Thirdly, we do not strictly follow Moscato's template 
and two features favour a good dispersal of solutions in the search space: a) 
the local search is not systematic and b) the population contains at  any step 
distinct solutions. 

6 Random generator of NEARP instances 

A random generator has been designed to build NEARP instances. These 
networks are mixed, planar, strongly connected and imitate the shape of real 
street networks. The generation starts with a rectangle of basic squares. At 
the beginning, only the nodes a t  the corners of the basic squares exist, see a) 
in figure 8. 

Four modifications can be applied to each square (see b) in figure 8): split 
vertically (V), horizontally (H), along the 1st diagonal (Dl) and along the 2nd 
one (D2). Note that V and H create two new nodes and that a square may 
undergo up to four modifications. As from two, a central node is created to 
preserve planarity. We obtain in that way a planar undirected graph (see c) 



A Memetic Algorithm Solving General Routing Problems 79 

in figure 8). Since this graph is too regular, each node is randomly moved in a 
small circle. At this stage, provisional lengths in meters can be computed from 
node coordinates. To simulate streets that are a bit curved (without drawing 
them), a second perturbation consists of applying a random growth factor to 
each length (between 0 and 10% for instance). 

Each edge is then converted into a one-way street with a given probability, 
by suppressing at  random one of the two internal arcs that code the edge. Of 
course, strong connectivity is preserved. Traversal costs are computed from 
the length of each link, assuming an average deadheading speed of vehicles. 
Then, we decide for each link if its is required. If yes, we draw a non-zero 
demand a t  random. 

a) Initial grid with basic squares 

b b b b 

Vertical  Horizontal 
b b b b 

b )  Random modifications of squares 

c) Planar result with node slumbers c )  Random distortions 

Fig. 8. Principles of random generation. 

Finally, we decide for each 2-way street if it must be considered as one 
edge. If yes, the two arcs are linked with the inv pointer (see subsection 2.2) 
and the edge demand is the sum of quantities of the two sides. The processing 
cost of each task is computed as a function of its length, its demand, and 
a given vehicle processing speed. The instance generation ends by drawing 
vehicle capacity and depot location. 

7 Selected set of NEARP instances with MA solutions 

The generator has been used to build 23 large scale NEARP instances listed 
in table 3, with n = 11 - 150 nodes, m = IAl + 21EI = 29 - 311 internal arcs 
and T = 20 - 212 tasks. The tasks comprise u = 3 - 93 node-tasks, E = 0 - 94 



80 C. Prins and S. Bouchenoua 

edge-tasks, and a = 0 - 149 arc-tasks. All these files can be requested by an 
e-mail sent to the authors. 

These networks are comparable in size to the ones observed in waste col- 
lection applications. Of course, the whole network of a big town can be much 
larger, but the collecting process is divided into sectors in practice. This de- 
fines an independent NEARP in each sector, with typically 100-200 street 
segments. 

The MA parameters already applied to the VRP (including the restarts) 
are used, except A = 1 instead of A = 0.5, because all costs are integers in our 
NEARP instances. The results of the MA are listed in table 3. The average 
running time is 8 minutes of CPU time (max. 23 minutes). No published algo- 
rithm can be used for comparison and no good lower bound is available. This 
is why the table reports average deviations to the best MA solutions obtained 
by using various sets of parameters. However, by extrapolating the very good 
results achieved on the CARP and on the VRP, we think that the solutions 
values computed for the NEARP are quite good and other researchers are 
invited to try to obtain better results. 

8 Conclusion 

This paper presents a new problem, the NEARP, that generalizes the VRP 
and the CARP, and a memetic algorithm to solve it. Computational testing on 
standard VRP and CARP instances show that the MA can compete with the 
best metaheuristics published for these particular cases of the NEARP. Using 
a dedicated random network generator, we have built a set of 23 NEARP in- 
stances to evaluate the MA in the general case. The results are promising but 
the time spent in the local search procedure seems affected by the number of 
required nodes and should be improved by using more efficient neighborhoods 
for the instances with a majority of node-tasks. Beyond these interesting re- 
sults, the main interest of this research is to solve several classical routing 
problems with one single algorithm. 

References 

1. Toth P, Vigo D (1998) Exact solution of the Vehicle Routing Problem. In: 
Crainic TG, Laporte G (eds) Fleet management and logistics, 1-31. Kluwer, 
Boston. 

2. Laporte G, Gendreau M, Potvin JY, Semet F (2000) Classical and modern 
heuristics for the Vehicle Routing Problem. International Transactions in Op- 
erational Research 7:285-300. 

3. Gendreau M, Laporte G, Potvin JY (1998) Metaheuristics for the Vehicle Rout- 
ing problem. GERAD research report G-98-52, MontrBal, Canada. 



A Memetic Algorithm Solving General Routing Problems 81 

4. Golden BL, Wasil EA, Kelly JP, Chao IM (1998) The impact of metaheuris- 
tics on solving the Vehicle Routing Problem: algorithms, problem sets, and 
computational results. In: Crainic TG, Laporte G (eds) Fleet management and 
logistics, 33-56. Kluwer, Boston. 

5. Toth P, Vigo D. The granular tabu search and its application to the Vehicle 
Routing Problem. To appear in INFORMS Journal on Computing. 

6. Assad AA, Golden BL (1995) Arc routing methods and applications. In: Ball 
MO et al. (eds) Handbooks in OR and MS, volume 8, 375-483. Elsevier. 

7. Pearn WL, Assad A, Golden BL (1987) Transforming arc routing into node 
routing problems. Computers and Operations Research 14:285-288. 

8. Hirabayashi R, Saruwatari Y, Nishida N (1992) Tour construction algorithm 
for the Capacitated Arc Routing Problem. Asia-Pacific Journal of Operational 
Research 9:155-175. 

9. Belenguer JM, Benavent E (2003) A cutting plane algorithm for the Capaci- 
tated Arc Routing Problem. Computers and Operations Research 30(5):705- 
728. 

10. Golden BL, DeArmon JS, Baker EK (1983) Computational experiments with 
algorithms for a class of routing problems. Computers and Operations Research 
10:47-59. 

11. Golden BL, Wong RT (1981) Capacitated arc routing problems, Networks 
11:305-315. 

12. Ulusoy G (1985) The fleet size and mix problem for capacitated arc routing. 
European Journal of Operational Research 22:329-337. 

13. Hertz A, Laporte G, Mittaz M (2000) A tabu search Heuristic for the Capaci- 
tated Arc Routing Problem. Operations Research 48:129-135. 

14. Lacomme P, Prins C, Ramdane-ChBrif W (2001) A genetic algorithm for the 
Capacitated Arc Routing Problem and its extensions. In: Boers EJW et al. (eds) 
Applications of evolutionnary computing. Lecture Notes in Computer Science 
2037, 473-483. Springer, Berlin. 

15. Lacomme P, Prins C, Ramdane-ChBrif W. Competitive memetic algorithms for 
arc routing problems. To appear in Annals of Operations Research. 

16. DeArmon JS (1981) A comparison of heuristics for the Capacitated Chinese 
Postman Problem. Master's thesis, The University of Maryland at College Park, 
MD, USA. 

17. Orloff CS (1974) A fundamental problem in vehicle routing. Networks 4:35-64. 
18. Cormen TH, Leiserson CL, Rivest ML, Stein C (2001) Introduction to algo- 

rithms, 2nd edition. The MIT Press, Cambridge, MA. 
19. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, 

Dorigo M and Glover F. (eds) New ideas in optimization, 219-234. McGraw- 
Hill. 

20. Oliver IM, Smith DJ, Holland JRC (1987) A study of permutation crossover 
operators on the traveling salesman problem. In: Grefenstette J J  (ed) Proceed- 
ings of the 2nd Int. Conf. on Genetic Algorithms, 224-230. Lawrence Erlbaum, 
Hillsdale, NJ. 

21. Belenguer JM, Benavent E. Directory with 3 sets of CARP instances. Web site: 
http://www.uv.es/"belengue/carp.html. 

22. Christofides N, Mingozzi A, Toth P (1979) The Vehicle Routing Problem. In: 
Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization, 
315-338. Wiley. 



82 C. Prins and S. Bouchenoua 

23. Beasley JE. Set of VRP instances from the OR library. Web site: 
http://mscmga.ms.ic.ac.uk/jeb/orlib/vrpinfo.html. 

24. Crescenzi P, Kann V. A compendium of NP optimization problem. Web site: 
http://www.nada.kth.se/"viggo/wwwcompendium/node103.html. 

Appendix 

The problems studied in this paper can be described in the style used by 
Crescenzi and Kann [24] for their compendium of NP optimisation problems. 
The most general problem is the NEARP. Its highest-level particular cases 
are the CARP and the VRP. These three problems are not listed in the com- 
pendium. 

Node, Edge and Arc routing problem (NEARP) 

INSTANCE: Mixed graph G = (V, E,A),  initial vertex s E V, vehicle 
capacity W E IN, subset VR c V, subset ER c El subset AR c A, 
traversal cost C(U) 6 IN  for each "entity" u E VUEUA, demand q(u) E IN  
and processing cost p(u) E I N  for each required entity (task) u E VR U 
ER U AR. 
SOLUTION: A set of cycles (trips), each containing the initial vertex s ,  
that may traverse each entity any number of times but process each task 
exactly once. The total demand processed by any trip cannot exceed W. 
MEASURE: The total cost of the trips, to be minimized. The cost of a 
trip comprises the processing costs of its serviced tasks and the traversal 
costs of the entities used for connecting these tasks. 

Vehicle Routing Problem (VRP) 

0 INSTANCE: Complete undirected graph G = (V, E ) ,  initial vertex s E V, 
vehicle capacity W E IN,length c(e) E I N  for each e E E ,  demand q(i) E 
IN  for each i E V. 

0 SOLUTION: A set of cycles (trips), each containing the initial vertex s, 
that collectively traverses every node at  least once. A node must be ser- 
viced by one single trip and the total demand processed by any trip cannot 
exceed W. 

0 MEASURE: The total cost of the trips, to be minimized. The cost of a 
trip is the sum of its traversed edges. 

Capacitated Arc Routing Problem (CARP) 

0 INSTANCE: Undirected graph G = (V, E ) ,  initial vertex s E V, vehicle 
capacity W E IN,  subset ER El length c(e) E IN and demand q(e) 6 I N  
for each edge e E R. 



A Memetic Algorithm Solving General Routing Problems 83 

SOLUTION: A set of cycles (trips), each containing the initial vertex s ,  
that collectively traverse each edge of ER at  least once. Each edge of ER 
must be serviced by one single trip and the total demand processed by any 
trip cannot exceed W. 
MEASURE: The total cost of the trips, to be minimized. The cost of a 
trip comprises the costs of its traversed edges, serviced or not. 

However, the following special cases can be found in the compendium: 

the minimum travelling salesperson, an uncapacitated version of the VRP, 
the minimum Chinese postman for mixed graphs (an uncapacitated version 
of the CARP, but with a mixed network instead of an undirected one, 
the minimum general routing problem, which is an uncapacitated and undi- 
rected particular case of the NEARP. 

Table 1. Computational results for CARP instances (see 5.2) 

F i l e  n m LB BKS NNH+LS MHtLS TSH+LS MA Time BestMA 

Average 0.13% 4.01% 5.47% 5.71% 0.43% 41.88s 0.36% 

BKS retrieved 5 1 3 18 18 

Times in seconds on a 1 CHz PC. Average deviations to LB in 1. 
Asterisks denote proven optima, '=' best-known solutions retrieved 



84 C. Prins and S. Bouchenoua 

Table 2. Computational results for VRP instances (see comments in 5.3) 

File n BKS NNH+LS MH+LS TSH+LS MA Time BestMA 

Average 7.13% 5.62% 5.20% 0.39% 629.86s 0.25% 

BKS retrieved 0 0 0 3 8 

Times in s on a 1 GBz PC. Average deviations to BKS in X .  
Asterisks denote proven optima, '=' best-known solution retrieved. 



A Memetic Algorithm Solving General Routing Problems 85 

Table 3. Computational results for the new NEARP instances (see section 7) 

File n m r v E aNNH+LS MH+LS TSH+LS MA Time BestMA 

Average 10.07% 8.87% 10.49% 1.26% 452.92s 0% 

Solns of Best MA retrieved 0 1 0 5 23 

Times in seconds on a 1 GHz PC. Average deviations to best MA taken as reference, in X. 




