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Summary. In this chapter we extend our previous studies on the self-adaptation of 
local searchers within a Memetic Algorithm.Self-adaptation allows the MA to learn 
which local searcher to use during search. In particular, we extend our results in [12], 
where memes were instantiated as Fuzzy-Logic based local searchers, and we show 
that our Multimeme algorithms are capable of producing new optimum solutions to 
instances of the Protein Structure Prediction Problem in the HP-model. 

1 Introduction 

Fuzzy Adaptive Neighborhood Search (FANS) was introduced in [4,23]. Build- 
ing upon local search, a classical method often used in optimization and op- 
erational research, and some basic elements of Fuzzy Sets theory, FANS was 
shown to  be a robust optimization tool. This was noted for a variety of do- 
mains like knapsack problems [4], continuous function minimization [23] and 
more recently [23, 24, 261 in the protein structure prediction problem. 

In our previous work [4], FANS was compared against a genetic algorithm. 
It was verified that both algorithms have similar performance for the range of 
problems studied. However, one of the advantages of using FANS is the easier 
implementation and parameter tuning. On the other hand, FANSperforms its 
search by sampling one solution a t  a time which in some cases compromises 
its global search capabilities; as the Genetic Algorithm keeps a population of 
solutions it (more) consistently avoid local optima and performs a more global 
search. 

In [12] we hybridized a Multimeme Algorithm [23, 281 with a simplified 
version of FANSin order to implement the pool of local searchers that the Mul- 
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timeme algorithm used. We demonstrated how FANS, and in turn fuzzy sets 
and systems ideas, could be successfully used to design a wide range of memes' 
behaviors. Moreover, we showed some benefits of using a Fuzzy-Evolutionary 
hybrid to tackle the Protein Structure Prediction problem (PSP). 

The problem of predicting the three-dimensional structure of a protein 
is, perhaps, the single most important problem that biochemistry and bioin- 
formatics face today. Even after almost five decades of intensive research it 
has not been "cracked". All-atom models of the folding process are extremely 
expensive. Moreover, there is no unique and ideal model for folding simula- 
tions, therefore, researchers use simplified descriptions of the phenomenon and 
tackle the slightly simpler (yet still intractable) problem of predicting the final 
structure of the folding process rather than the process itself. In this research 
we use such model, known as the HP-model [8]. The later has been widely 
used to benchmark folding and structure prediction algorithms and it was the 
source of important theoretical insights on the Protein Folding process [lo]. 

This paper is organized as follows: in section 2 the protein structure predic- 
tion problem is introduced. Then in section 3 a brief descriptions of Memetic 
and Multimeme algorithms are presented. The hybrid approach we propose, 
i.e. a Multimeme Algorithm that includes FANS as local searchers, is de- 
scribed in Section 4. In order to assess the usefulness of the approach, several 
computational experiments were performed. These are described in Section 6 
and the results discussed there. A section with conclusions ends the chapter. 

2 The Protein Structure Prediction Problem 

A protein is a chain of amino acid residues that folds into a specific na- 
tive tertiary structure under certain physiological conditions. Proteins unfold 
when folding conditions provided by the environment are disrupted, and many 
proteins spontaneously re-fold to their native structures when physiological 
conditions are restored. This observation is the basis for the belief that pre- 
diction of the native structure of a protein can be done computationally from 
the information contained in the amino acid sequence alone. 

In practice, solving the structure prediction problem means finding an 
adequate energy formulation (that correctly identifies native states) and be- 
ing able to (by means of an adequate algorithm) search for candidate native 
states under that energy formulation. Exhaustive search of a protein's con- 
formational space is clearly not a feasible algorithmic strategy for PSP. The 
number of possible conformations is exponential in the length of the protein 
sequence, and even powerful computational hardware is not capable of enu- 
merating this space for even moderately large proteins. As an example consider 
the case where a protein structure is confined to a three dimensional cubic 
lattice. In this case, for a protein of length n there are potentially 4.7n acces- 
sible conformations. Furthermore, recent computational analysis of PSP have 
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Fig. 1. HP sequence embedded in the square lattice and triangular lattice. 

shown that this problem is intractable even on simple lattice models 11, 2, 71 
such as the three dimensional case mentioned above. 

A way of partially overcoming both the problem of the energy formulation 
and the enormous amount of candidate structures to analyze, is to use reduced 
protein models and knowledge-based potentials. Such simplified protein mod- 
els are continuously playing an important role in improving our understanding 
of the fundamental physical properties of real-life proteins while paving the 
way for the development of algorithms to predict their native conformations 
using just the information of the amino acid sequence. 

HP models abstract the hydrophobic interaction process in protein folding 
by reducing a protein to a heteropolymer that represents a predetermined 
pattern of hydrophobicity in the protein; non-polar amino acids are classified 
as hydrophobics and polar amino acids are classified as hydrophilics. A se- 
quence is s E {H, PI+, where H represents a hydrophobic amino acid and P 
represents a hydrophilic amino acid. 

The HP model restricts the space of conformations to self-avoiding paths 
on a lattice in which vertices are labelled by the amino acids. The energy 
potential in the HP model reflects the fact that hydrophobic amino acids have 
a propensity to form a hydrophobic core. To capture this feature of protein 
structures, the HP model adds a value E for every pair of hydrophobes that 
form a topological contact; a topological contact is formed by a pair of amino 
acids -that are adjacent on the lattice and not consecutive in the sequence. 
The value of E is typically taken to be -1. 

Figure 1 shows a sequence embedded in the square and the triangular lat- 
tice, with hydrophobic-hydrophobic contacts (HH contacts) highlighted with 
dotted lines. The conformation in Fig. l (a )  embedded in a square lattice, has 
an energy of -4, while the embedding in the triangular lattice (b) has an energy 
of -6 (there are 4 and 6 dotted lines, i.e. contacts, in the figure). 

The particular version of the problem that we are going to tackle in this 
chapter is given by: 
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Maximum Protein Structure Prediction 
Instance: A protein, i.e. a string over the alphabet {H, P) (s E {H, P I* ) .  
Solution: A self avoiding embedding of s into a 2D square lattice. 
Measure: The number of H s  that are topological neighbors in the embed- 
ding (neighbors in the lattice but not consecutive in s) 

Protein structure prediction has been shown to be NP-complete for a va- 
riety of simple lattice models (see Atkins and Hart [l] for a recent review), 
including the HP-model version on the square [7] and cubic lattices 121. A 
wide variety of global optimization techniques have been applied to various 
models of the PSP problem, e.g. see the papers in Biegler et al. [3], Parda- 
los, Shalloway and Xue 1211 and Pelta et al. 1261. Evolutionary algorithms 
(in their various forms) were shown to be particularly robust and effective 
global optimization techniques for molecular conformation problems. In par- 
ticular, evolutionary methods have been used by several researchers engaged 
in proteomics related activities [9, 10, 11, 23, 15, 16, 22, 23, 27, 28, 29, 30, 311. 

3 Memetic Algorithms 

Memetic Algorithms are metaheuristics designed to find solutions to complex 
and difficult optimization problems. They are evolutionary algorithms that 
include a stage of individual optimization or learning as part of their search 
strategy. Memetic Algorithms are also called hybrid genetic algorithms, ge- 
netic local search, etc. A simple Memetic Algorithm scheme is shown in Fig. 2. 

The inclusion of a local search stage into the traditional evolutionary cy- 
cle of crossover-mutation-selection is not a minor change of the evolutionary 
algorithm architecture. On the contrary, it is a crucial deviation that affects 
how local and global search is performed. The reader should also note that 
the pseudocode shown in Fig. 2 is just one possible way to hybridize a genetic 
algorithm with local search. In fact, a great number of distinct memetic algo- 
rithms' architectures have been presented in the literature and even integrated 
into formal models [23, 131. 

An interesting variant of memetic algorithms are the Multimeme Algo- 
rithms (MMA in what follows) as introduced in 123, 281. M M A  are memetic 
algorithms where several types of local searchers, called memes, are available 
to the evolutive process during the local optimization phase. An individual in 
a M M A  is composed of a genetic part, representing the solution to the prob- 
lem being solved, and a memetic part, encoding a meme or local searcher, 
that is employed during the individual optimization stage. 

The set of memes available to the algorithm is called the memepool and its 
design is a critical aspect for the success of the metaheuristic. Several design 
criteria for the memepool are described in 1231. Multimeme algorithms for 
the Protein Structure Prediction problem and Protein Structure Comparison 
Problem are reported in [ l l ]  and [5] respectively. 
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Memetic-Algorithm(): 
Begin 

t  = 0; 
/* We put the evolutionary clock (generations), to null */ 
Randomly generate an initial population P ( t ) ;  
Repeat Until ( Termination Criterion Fulfilled ) Do 

Compute the fitness f (p) Vp E P ( t )  ; 
Accordingly to f (p) choose a subset of P ( T ) ,  store them in M ( t ) ;  
Recombine and variate individuals in M ( t ) ,  store result in M 1 ( t ) ;  
Improve-by-local-search( M 1 ( t ) )  ; 
Compute the fitness f (p )  Vp E M 1 ( t )  ; 
Generate P ( t  + 1) selecting some individuals from P ( t )  and M 1 ( t ) ;  
t = t + l ;  

endDo 
Return best p  E P ( t  - 1 ) ;  

End. 

Fig. 2. A basic version of a memetic algorithm. 

4 Fuzzy Memes for Multimeme Algorithms 

The Fuzzy Adaptive Neighborhood Search Method (FANS) [4, 251 is a local 
search procedure which differs from other local searchers in two aspects. The 
first aspect is how the solutions are evaluated. Within FANS a fuzzy valua- 
tion representing some (maybe fuzzy) property P is used together with the 
objective function to obtain a "semantic evaluation" of the solution. In this 
way, we may talk about solutions satisfying P to a certain degree. Thus, the 
neighborhood of a solution effectively becomes a fuzzy set with the neighbor 
solutions as elements and the fuzzy valuation as the membership function. 

The fuzzy valuation enables the algorithm to achieve the qualitative behav- 
ior of other classical local search schemes [4]. FANS moves between solutions 
satisfying P with at least certain degree, until it became trapped in a local 
optimum. In this situation, the second novel aspect arises: the operator used 
to construct solutions is changed, so solutions coming from different neigh- 
borhoods are explored next. This process is repeated once for each of a set of 
available operators until some finalization criterion for the local search is met. 

The simplified scheme of FANS used here is shown in Fig. 3. The execution 
of the algorithm finishes when some external condition holds. In this research 
this happens when the number of cost function evaluations reached a pre- 
specified limit. Each iteration begins with a call to the neighborhood scheduler 
NS, which is responsible for the generation and selection of the next solution 
in the optimization path. The call is done with parameters S,,, (the current 
solution), p( )  (the fuzzy valuation), and O v a  parameterized operator which 
is used to construct solutions). The neighborhood scheduler can return two 
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Procedure FANS: 
Begin 

Initvariables 0 ; 
k:=maxK; ; 
While ( not-end ) Do 

/* The neighborhood scheduler NS is called */ 
Snew = Ns(uk, p, ~cu,) ; 
If (SneW is good enough in terms of p()) Then 

Scur := Snew ; 
adapt~uzzy~aluation(p(), Scu,) ; 
Else 
/* NS could not obtain a good enough solution */ 
/* The operator will be changed modifying the parameter k */  
If ((k=l)) Then 
k:= maxK;; 
Else 
k := k-1;; 

endIf 
end1 f 

endDo 
End. 

Fig. 3. Scheme of FANS 

alternative results; either a good enough (in terms of p()) solution (S,,,) was 
found or not. 

In the first case S,,, is taken as the current solution and p() parameters 
are adapted. In this way, the fuzzy valuation is changed as a function of 
the state of the search. This mechanism allows the local search stages to 
adapt during the search, hence accordingly to [23] the FANS based memes are 
adaptive helpers. If N S  failed to return an acceptable solution (no solution was 
good enough in the neighborhood induced by the operator), the parameters 
of the operator are changed. In the full version of FANS, the strategy for this 
adaptation is encapsulated in the so called operator scheduler 0s. Here we 
simply decrease the value of the parameter 5 of the operator 0. Effectively this 
induces, for each fixed operator, a variable radius search. At the beginning, 
the radius of the search is wide and it will be reduced as the search progresses. 
The next time N S  is executed, it will have a modified operator (i.e., a different 
radius) to search for solutions. 

The reader should note that what varies at each iteration are the param- 
eters used in the NS call. The algorithm starts with NS (so, 00, po). If NS 
could retrieve an acceptable neighborhood solution, the next iteration the call 
will be NS (sl, Oto, p l ) ,  the current solution is changed and the fuzzy valua- 
tion is adapted. If NS failed to retrieve an acceptable neighborhood solution 
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(at certain iteration I), the operator scheduler will be executed returning a 
modified version of the operator, so the call will be NS (sl, Otl ,  pL). 

5 Description of the Memepool 

Multimeme algorithms (the overall strategy guiding the search behind our 
approach) have been described in detail elsewhere [5, 11, 23, 281, so we only 
describe here the memepool our MMA employs. 

The memes of our MMA are implemented as simplified versions of FANS 
as a way to obtain a wide range of behaviors in a simple and unified fashion 
[12]. For the neighborhood scheduler, a First strategy was implemented: given 
the current solution s, the scheduler samples the search space with the oper- 
ator O and returns the first solution satisfying p(f (s), f (O(s))) > X using at  
most certain number of trials (length of the local search), defined here as n/2 
where n is the size of the instance. The value X represents the minimum level 
of acceptability required for a solution to be considered as a "good enough" 
solution. 

Each meme is identified by a 3-tuple: 

(< basic operator > < fuzzy valuation > < value of X >) (1) 

where each element will be described below. 

The < basic operator > can be instantiated to anyone of the following 
basic moves: 

0. Ref lex(i, k): This operator reflects the protein structure across one of its 
symmetry axes. The change takes place between residues i and i + k. 

1. Shuf fle(i, k): This operator performs a random re-positioning of the 
residues ith to (i + k)th. 

2. Stretch(i,k): The stretch operator unfolds a substructure of length k 
starting from residue i.  

3. Pivot(k): The pivot operator represents a rigid rotation. In this case, k 
random residues are selected and rigid rotations are performed sequen- 
tially on each one of them. 

The operator has a parameter k indicating the number of positions to change. 
This value of k will be modified when the neighborhood scheduler fails to 
return an acceptable solution. In this case, the value of k is decremented by 
1. When the failure occurs with k = 1, the value is set again to k = maxK. 
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Fig. 4. Fuzzy Valuations ,UI (left) and p2 (right). 

There are two options available for the item < fuzzy valuation >: 

1. The first fuzzy valuation proposed, 1-11, has the following definition: 

where /3 is a threshold specifying what is, and what is not, considered 
an acceptable deterioration in solution quality. Given that the energy 
of a structure can take negative values (e.g. when the structure is not 
self-avoiding), the parameter ,B has two definitions3: when f > 0 then 
,B = f * 0.5 (a deterioration in cost of 50% is allowed); when f < 0 then 
p = f * 1.2 (a deterioration in cost of 20% is allowed). This fuzzy valua- 
tion promotes acceptability to solutions improving the current cost. When 
used with X = 1, it induces in FANS a hillclimber like behavior, allowing 
transitions only to improving solutions. The graphical representation of 
1-11 is shown in Fig. 4 (left). 

2. The second fuzzy valuation proposed, 1-12, has the following definition: 

here, the parameters L and R are defined as follows: when f (s) > 0 then 
L = f (s )  * 0.5 and R = f(s) * 1.5; when f (s)  > 0 then L = f (s )  * 1.5 
and R = f (s) * 0.5. This fuzzy valuation promotes diversity, in the sense 
of cost. Solutions similar in cost to the current one, get very low degrees 
of acceptability and those differing in more than 50% with respect to the 
cost of the current solution gets the highest degree of acceptability. The 
graphical representation of 1-12 is shown in Fig. 4 (right). 

Although in Protein Structure Prediction one tries to minimize the energy of the 
conformation, in this chapter we recast the problem to a maximization problem 
by simply multiplying the energies by -1. 
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Table 1. HP model test Instances for the 2D Square Lattice. 

Instance Sequence Opt Size 
I 1 PPHPPHHPPHHPPPPPHHHHHHHH -22 48 

HHPPPPPPHHPPHHPPHPPHHHHH 
I 2 HHPHPHPHPHHHHPHPPPHPPPHPP -21 50 

PPHPPPHPPPHPHHHHPHPHPHPHH 
I 3 PPHHHPHHHHHHHHPPPHHHHHHHH -34 60 

HHPHPPPHHHHHHHHHHHHPPPPHH 
HHHHPHHPHP 

I 4  HHHHHHHHHHHHPHPHPPHHPPHHP -42 64 
PHPPHHPPHHPPHPPHHPPHHPPHP 
HPHHHHHHHHHHHH 

The last element to define a meme is the < value of X >. This parameter 
defines the minimum level of acceptability that a solution needs to be consid- 
ered as the next solution in the search. Each pair (p(), A) defines a particular 
behavior for the meme. For example, with the fuzzy valuation p l  and X = 1, 
the meme will only accept transitions to improving solutions. As X -+ 0 the 
chance to move to cost deteriorating solutions is increased. We can say that as 
X increases, the use of p1 leads to exploitative memes. In turn, the use of the 
fuzzy valuation p2 leads to explorative memes. The higher values of accept- 
ability are assigned to those solution with quite different cost with respect to 
that of the current solution. The lower values correspond to solutions similar 
in cost. In this work we consider three values for A, where X E {0.4,0.8,1.0). 

Here, we want to stress the overall intended dynamics of our metaheuristic: 

At the local level (i.e. the process of individual local search) FANS memes 
perform a fuzzy-based variable-operator and variable-radius local search. 
At the global level (i.e the process of population evolutionary search) the 
Multimeme Algorithm is co-adapting solutions to the Protein Structure 
Prediction and the best local searcher (i.e. meme) to use in each individual 
at  different stages of the search. 

The metaheuristic searches concurrently on both solution and searcher spaces. 

6 Description of Experiments and Results 

The experiments were done with the four instances of the HP model in the 
square lattice shown in Table 1. For each one, the length of the sequence and 
the optimum value of the corresponding structure are described. 

We perform two experiments which differ in the size of the mating pool. In 
the first one, the memepool has 12 memes which arise from the combination of 
the four basic moves, the fuzzy valuation pl  and the three values of A. In the 
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second experiment, the memepool size is 24 after adding 12 more memes which 
arise from the use of the fuzzy valuation pz. In this way, we are incorporating 
memes promoting diversification. We use also the following parameters that 
were used in previous experiments by the authors [12]: 

1. Replacement Strategy: (p  = 350, X = 350) 
2. Depth of the local search, i.e. number of iterations performed by each 

meme application: 3 
3. Length of the local search, i.e. max. number of trials allocated in the 

neighborhood scheduler of FANS: n/2, with n the length of the sequence. 

For each memepool size and instance we performed 30 runs of the MMA. 
Each run was allocated 200 generations. The initial population was generated 
randomly and consisted of 350 individuals. Two(consecutive)-point muta- 
tions and two-point crossover were employed with probabilities 0.2 and 0.8, 
respectively. In the case of mutation, the probability was per individual. The 
innovation rate was set to I R  = 0.2. Tournament selection was used to select 
the mating parents and a tournament size of 2 individuals was used. 

Three values were recorded at  the end of every run: bestF, the fitness of 
the best solution found; e2b, the number of fitness evaluations used to reach 
the best solution; and eDone, the total amount of evaluations done in the 
whole run. 

Tables 2, 3, 4 show the average, standard deviation, minimum and max- 
imum values obtained for each variable over 30 runs. Each row is named 
I < x > m < y > where x E {1,2,3,4} stands for the instance used and 
y E (12,241 represents the memepool size used within the MMA. The re- 
sults obtained using the implementation of FANS presented in [12] are also 
included. FANS was executed 30 times, where each instance ended after 26 
evaluations. 

The first thing to notice is that for instances 1 and 3, structures with 
higher bonds than the known optima were obtained. For instance 1, a struc- 
ture with 23 bonds was found while for instance 3, one with 35 bonds was 
obtained. Fig. 5 shows both structures. To the best of our knowledge, such 
optimal values were only achieved before in [20]. However, in that paper the 
authors do not measure the cost of their algorithm in number of total en- 
ergy evaluations so it is impossible to provide comparisons. Moreover, they 
enforce a strong bias in the search to regions of the search space that contain 
secondary structure information derived from the native structure they are 
searching for. In other words, they used specific domain knowledge that is 
not present in our algorithm. Having this in mind, we deem our algorithms 
as the first blind search method (to the best of the authors knowledge) able 
to obtain these novel native structures. 

The results in terms of bestF were quite similar using 12 or 24 memes. 
The algorithms using 24 memes had a slightly higher standard deviation and 
lower minimum values. The 12 memes version, achieved a higher maximum 
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Fig. 5. New best structures obtained for instances 1, in (a), and instance 3, in (b). 

Table 2. Statistics for bestF 

Algorithm Mean SD Min Max 
ilm12 20.55 0.97 19.02 23.02 
ilm24 20.02 1.23 18.01 23.02 
fans-il 19.35 0.76 18.02 21.02 
i2m12 19.98 1.00 18.01 21.01 
i2m24 19.98 0.98 17.01 21.01 
fans-i2 18.94 0.74 18.01 20.01 
i3m12 32.82 0.96 31.02 35.02 
i3m24 32.15 1.20 29.02 34.02 
fans-i3 30.82 0.81 29.02 32.02 
i4m12 33.45 1.65 30.02 38.02 
i4m24 33.47 2.38 28.02 38.02 
fans44 28.75 1.08 27.02 32.02 

value on instance 3. FANS achieved the lowest values of standard deviation, 
but the higher ones in terms of the mean. 

In terms of e2b, it is clear that the use of 24 memes allowed it to reach 
good results with less effort. This situation is reasonable if we consider in 
the number of trials that each meme has to perform to obtain an acceptable 
solution. Those memes using p2 can obtain acceptable solutions quite easily. 
For example, given a value X = 1, the memes using p1 need to find solutions 
improving the cost, which may result in the use of a high number of trials. On 
the contrary, memes using p2 will accept any transition leading to a decrease in 
cost of more than 50%, and this is easy to achieve using a low number of trials. 
This aspect is confirmed looking at the statistics for eDone. Considering the 
mean, the MMA with 12 memes used approximately 2.35 million evaluations 
while the MMA with 24 never used more than 2 millions. 

To finish the analysis, two additional aspects are considered. First, Fig. 
6 shows the evolution of the average cost of the best individual through the 
generations. It can be seen that the use of 12 or 24 memes leads to very similar 
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Table 3. Statistics for e2b 
Algorithm Mean SD Min Max 

ilm12 1356104 481405 549691 2269640 
ilm24 894661 331121 367357 1510390 
fans-il 933126 526296 160522 1960500 
i2m12 1109461 545856 362400 2565580 
i2m24 675173 198261 447300 1509880 
fans42 1202764 589958 243614 2000050 
i3m12 1358837 563218 605457 2790530 
i3m24 990789 343991 356614 1599350 
fans43 1066657 590136 65746 1940400 
i4m12 1852648 399233 991046 2356310 
i4m24 1520624 376036 469575 2005740 
fans44 1074369 562966 76854 1965090 

Table 4. Statistics for eDone 

Algorithm Mean SD Min Max 
ilm12 2310653 218389 1864000 2579590 

patterns of evolution. Looking at  the graph for instance 4, we can conclude 
that the MMA has not converged when the run finished. This fact may be 
considered an explanation about the quite low values of bestF obtained. 

Second, Fig. 7 shows the evolution of the average cost of the average fitness 
of the whole population through the generations. It is clear that the use of 
diversification memes kept the overall fitness lower (i.e. better solutions) 

7 Conclusions 

A hybridization strategy between a fuzzy sets-based heuristic, and a Multi- 
meme algorithm was proposed and tested. 

The construction of the memepool using simplified versions of FANS en- 
abled us to obtain a wide range of fuzzy memes, each one with its particular 
behavior. The advantage of using FANS as the memes for a MMA over using 
adaptive helpers as in [23,27] is that it is much easier to tune the search of the 
memes. Moreover, human knowledge or instance specific knowledge (e.g. sec- 
ondary structure information as that used in [20]) can be readily incorporated 
into FANS based memes. 
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Fig. 6. Evolution of the cost of the best individual vs Generations for test instances 
1 (a), 2 (b), 3 (c) and 4 (d) using a MMA with 12 and 24 memes. 

The scheduling of memes by the simple inheritance mechanism was proven 
successful in the detection of the most suitable fuzzy meme for different stages 
of the search. This has been verified in other domains [23, 281, which deems 
Multimeme Algorithms a very robust metaheuristic. 

The coupled effect of both elements lead to a robust and general purpose 
metaheuristic. In the test cases shown in this chapter it was able to improve 
previous results in the protein structure prediction problem. We suggest that 
this approach can be a powerful1 metaheuristic for other combinatorial prob- 
lems. 
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Fig. 7. Evolution of the cost of the average fitness of the population vs Generations 
for test instances 1 (a), 2 (b), 3 (c) and 4 (d) using a M M A  with 12 and 24 memes. 
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