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Summary. The objective of the maximum diversity problem (MDP) is to select 
a set of m-elements from larger set of n-elements such that the selected elements 
maximize a given diversity measure. The paper presents an evolutionary algorithm 
incorporating local search - memetic algorithm (MA) - for the MDP which con- 
sists of a greedy method, simple evolutionary operators, a repair method, and a k-flip 
local search based on variable depth search. In the MA, the k-flip local search starts 
with a feasible solution and obtains a local optimum in the feasible search space. 
Since infeasible solutions may be created by the simple crossover and mutation op- 
erators even if they start with feasible ones found by the local search, the repair 
method is applied to such infeasible solutions after the crossover and the mutation 
in order to guarantee feasibility of solutions to the problem. To show the effective- 
ness of the MA with the k-flip local search, we compare with a MA with 2-flip local 
search for large-scale problem instances (of up to n = 2500) which are larger than 
those investigated by other researchers. The results show that the k-flip local search 
based MA is effective particularly for larger instances. We report the best solution 
found by the MA as this is the first time such large instances are tackled. 

1 Introduction 

We consider the following maximum diversity problem (MDP). Given a sym- 
metric n x n matrix dij (di j  = dji  and dii = 0) and a predetermined number 
of size m (n  > m > I), the objective of the MDP is t o  select a subset of 
m-elements from n-elements such that the selected elements maximize a di- 
versity measure. The MDP is represented as the following quadratic zero-one 
integer program: 
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maximize f (x) = C C dijxixj, 

n 

subject to C x i  = m ,  

The first model of the MDP has been formulated by Kuo, Glover, and 
Dhir [15] in which the concept of diversity is quantifiable and measurable. 
The concept of diversity is described as follows: consider a set of elements 
S = {si : i E N )  with the index set N = {1,2,. . . , n )  and their common r 
attributes that each element possesses, denoted by s i k ,  k E R = {1,2,. . . , r). 
To measure the diversity of a selected set of elements, a specified distance dij 
between each pair of elements si and sj is required. One of the most commonly 
used distances may be the Euclidean distance, dij = [ z ; = l ( ~ i k  - sjk)"1/2. In 
the MDP, it is assumed that the matrix d can be given by such a distance. 

Kuo et al. proved the problem to be NP-hard, both with and without 
restricting the dij coefficients to non-negative values. Moreover, they trans- 
formed the maximum diversity model into two equivalent linear integer pro- 
gramming models and maximin diversity model in order to solve the problem 
by integer programming approaches. The MDP shown above is a general di- 
versity maximization model that arises in data mining [14] and is substantially 
equivalent to the model of Kuo et al. 

The MDP has a large number of applications. For example, such applica- 
tions are immigration and admissions policies, committee formation, curricu- 
lum design, market planning and portfolio selection [5, 151. Moreover, there 
are VLSI design and exam timetabling problems [23]. Others are environ- 
mental balance, medical treatment, genetic engineering, molecular structure 
design, agricultural breeding stocks, right sizing the firm, and composing jury 
panels [14]. 

The form of the MDP is quite similar to that of the unconstrained bi- 
nary quadratic programming problem (BQP) in that they are both problems 
of maximizing a quadratic objective by suitable choice of binary (zero-one) 
variables. The BQP can be expressed as follows: 

Thus, the MDP can be interpreted as a constrained version of the BQP. 
Applications of the BQP are known to be abundant as well as the MDP. 

They appear in machine scheduling, traffic message management, CAD, cap- 
ital budgeting and financial analysis, and molecular conformation [3]. Fur- 
thermore, it has been known that several classical combinatorial optimization 
problems can be formulated as a BQP, such as maximum cut problem, max- 
imum clique problem, maximum vertex packing problem, minimum vertex 
cover problem, and maximum (weight) independent set problem [21, 221. 
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Since the problems MDP and BQP are NP-hard, exact methods would 
become prohibitively expensive to apply for large scale problem instances, 
whereas the heuristic or metaheuristic approaches may find high quality solu- 
tions of near-optimum with reasonable times. For the BQP, several heuristic 
and metaheuristic approaches have been developed; for example, greedy meth- 
ods [7, 191, local searches [ll, 191, and the metaheuristics, tabu search [3, 61, 
simulated annealing [3, 91, iterated local search [12], and evolutionary meth- 
ods such as scatter search [I] and genetic algorithms incorporating local 
search [lo, 17, 18, 201. 

On the other hand, studies on such approaches for the MDP seem much 
more limited. Ghosh [8] showed a greedy randomized adaptive search proce- 
dure (GRASP) for the MDP. The GRASP metaheuristic was tested on small 
problem instances with n 5 40. Glover et al. [5] proposed two constructive 
heuristics and two destructive heuristics for the MDP. They tested them for 
several instances of up to n = 30. Kochenberger et al. [14] dealt with large 
instances of the general MDP from n = 100 to n = 1000, which are randomly 
generated, and tested a tabu search metaheuristic taken into account search- 
ing infeasible space. Their tabu search to the MDP is based on the algorithm 
that has been developed for the BQP. The tabu search includes the strate- 
gic oscillation with constructive and destructive heuristics. The details of the 
tabu search can be found in [6]. 

This paper presents an evolutionary approach to the MDP. To the best 
of our knowledge, such an evolutionary approach is the first attempt to the 
MDP. Our approach consists of a greedy method to create initial solutions, 
simple evolutionary operators such as uniform crossover and bit-flip mutation, 
a repair method to turn an infeasible solution created by crossover or mutation 
into a feasible one, and a sophisticated k-flip local search based on variable 
depth search [13, 161, to be an effective memetic algorithm (MA) for the 
MDP. To show the effectiveness of the MA, computational experiments are 
conducted on large problem instances of up to n = 2,500 compared to the 
previous studies for the MDP. The results demonstrate that the k-flip local 
search based MA is more effective than a MA based on 2-flip local search in 
terms of final solutions, particularly for large-scale problem instances. 

The paper is organized as follows. In the next section, we show the k-flip 
local search incorporated in the memetic algorithm for the MDP. In section 3, 
a flow of the memetic algorithm is given, and each operation in the algorithm 
is described. In section 4, we report experimental results for the memetic al- 
gorithms tested on our new problem instances and on several benchmarks 
derived from well-known BQP7s ones in which the di j  coefficients are not re- 
stricted to non-negative values. The final section contains concluding remarks. 
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2 Local Search for MDP 

Local Search (LS) is a generally applicable approach that can be used to 
find approximate solutions to hard optimization problems. Many powerful 
heuristics are so-called metaheuristics such as memetic algorithm are based 
on LS. 

The basic idea of LS is to start with a feasible solution x (e.g., randomly 
generated solution) and to repeatedly replace x with a better solution XI 

selected from the set of neighboring solutions that can be reached by a slight 
modification of the current solution. If no better solutions can be found in the 
set of neighbors, LS immediately stops and finally returns the best solution 
found during the search. Thus, a resulting solution cannot be improved by the 
slight modification. This modification is achieved by a predefined structure 
often referred to as neighborhood N B .  The resulting solution is called locally 
optimal with respect to the neighborhood. LS is an integral process in the 
memetic framework. The remainder of this section describes a LS, k-flip local 
search, for the MDP. We begin by describing the fitness (objective) function 
and the solution representation on which the local search and the evolutionary 
operators in the memetic algorithm are based. 

2.1 Fitness Function and Solution Representation 

In our memetic algorithm incorporating the local search for the MDP, the 
fitness, i.e., a solution cost, is evaluated by equation (1). 

A solution to the MDP can be represented in a binary string x of length 
n = INI, where N denotes an index set of elements N = {1,2,. . . , n). In this 
representation, a value of 0 or 1 a t  the i-th bit (element) implies that xi = 0 
or 1 in the solution, respectively. 

Let S1 be an index set of elements with xi = 1 for all i E N and So be 
an index set of elements with xi = 0 for all i E N .  In the MDP, we thus note 
that S1 U So = N and Sl n So = 8. To be a feasible solution, it is restricted 
that a sum of Xi  = 1 for all i E N is equal to m (= lSll = IN1 - ISo[) due 
to the constraint in the formulation (1). Note that in this paper the solution 
representation x always corresponds to a representation S1 and So. 

2.2 Neighborhoods 

Although we use a k-flip local search heuristic in the LS process of the memetic 
framework for the MDP, Zflip based neighborhood is mainly used in the k-flip 
local search as a basic move structure. In the crossover and mutation operators 
in the memetic algorithm, 1-flip based neighborhood is used. Thus, we here 
describe the two neighborhoods for the MDP. 

Given a solution x, the 1-flip neighborhood NB1 is defined by the set 
of solutions that can be obtained by flipping a single bit xi in the current 
solution. Thus, a hamming distance da(x,xl) between the current solution 
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x and the neighboring solution x' is 1. The number of all possible solutions 
that can be created from a current solution by the 1-flip neighborhood NBl 
at a time is equal to n. Even if a given solution is feasible, a feasibility of 
the neighboring solutions that can be reached by the neighborhood is not 
preserved since the number of '0' and that of '1' in the neighboring solutions 
are changed from the feasible condition of Cy=l xi = m. In order to guarantee 
feasibility of solutions, several considerations should be taken into account. 

The 2-flip neighborhood NB2 is defined by the set of all solutions that can 
be reached by simultaneously flipping two bits xi (i E S1) and x j  ( j  E So) in 
the current solution x. The hamming distance between the current solution 
x and its neighboring solution x' can be d ~ ( x ,  x') = 2. Note in this neigh- 
borhood that it is not allowed to flip two bits i and j in the same set (e.g., 
i ,  j E S o )  Given a feasible solution, therefore, the feasibility of neighboring so- 
lutions by the neighborhood can be always preserved. The number of possible 
neighboring solutions at a time is equal to IS1 I ISo 1. 

2.3 Gain Calculation for Neighbors 

In order to perform an efficient search for a problem, it is crucial to calculate 
the difference A = f (x') - f (x), where f is an objective function of the 
problem, and x' denotes a neighboring solution obtained from a current one x 
by reference of a neighborhood, instead of naively calculating the cost of x' by 
f (x') from scratch. In this paper, we refer the difference A to the term gain 
for a given neighboring solution x'. For the MDP, the gain can be computed 
much faster than the naive calculation f (x'). 

Fast Gain Calculation for 1-flip Neighborhood 

To achieve a fast calculation for the gain in the local search or memetic al- 
gorithm to the MDP, we refer to the paper of Merz and Freisleben [19] (see 
also [6, 201 as other related references). They showed that a calculation of all 
gains for the 1-flip (or 1-opt) neighbors to the BQP can be computed in linear 
time. The gain calculation for the BQP can be used for the MDP without 
modification. 

Naively, the gain value gj of flipping a single j-th bit in a current solution 
x can be computed by the difference between the objective function values of 
f (x') and f (x), i.e., gj = f (x') - f (x), where x' = 1 - xj. However, the gain 
gj can be calculated by the following formula: 

n 

9 .  j - - d . .  3 3 ( ~ j  - -x j )  + 2  C dij xi (Zj -x j ) ,  (3) 
k l  ,i#j 

with Zj = 1 - xj. In this case, the gain gj of flipping j-th bit in the current 
solution can be calculated in O(n). However, the calculation of the all gains 
for the n candidates takes O(n2) time by using this formula. 
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Using the information of the all gains that have been already computed, all 
of new gains can be calculated efficiently, instead of recalculating them by (3). 
To achieve such a calculation, we take into account the update of the gains 
that is based on calculating the difference of gains Agi (Vi 'i N). Assuming 
that all gi have been calculated and the bit j  is flipped, the new gains gi can 
be computed efficiently by 

-gi if i = j  g! = ' {gi + dgi ( j )  otherwise with A g i ( j ) = 2 d i j ( Z i - x i ) ( x j - Z j ) .  

(4) 
The update of the gains for the n candidates of the 1-flip neighboring solutions 
can be performed in linear time. Furthermore, only the gains gi for dij  # 0 
have to be updated [19]. 

This update technique [19] for the 1-flip neighbors is basically embedded 
with our local search and memetic algorithms for the MDP. If we consider a 
k-flip (1 < k < n) based neighborhood as used in the k-flip local search for 
the MDP, the following can be useful. 

Generalized Gain Calculation 

We now show a generalized gain calculation for a k-flip neighbor (1 < k < n) 
in the current solution in order to efficiently perform k-flip neighborhood 
search. The information of the matrix of a given problem instance and the 
gains for the 1-flip neighbors in a solution is fully used in the generalized gain 
calculation. Assuming that all gains g for the 1-flip neighbors are calculated 
and several k bits are flipped for a current solution x, a gain G of flipping 
the k bits (we assume in the following that the bits are stored in flip[ ] for 
convenience and all the bits are different) can be computed by 

For example, assuming that two bits of a- th and ,8-th are flipped (i.e., 
2-flip neighborhood) in the current solution, the gain G for the two bits can 
be given by a sum of g,, go, and 2daB(1 - 2x,) (1 - 2xp) if the gains g for 
the 1-flip neighbors in the current solution is provided in advance. As shown 
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above, this calculation for the 2-flip neighbor can be extended to several k 
bits for the generalized k-flip neighborhood. The update of the gains have to 
be performed after each flip of k bits. The update can be done by (4). 

This generalized gain calculation is valid for the MDP and the BQP. 

2.4 k-flip Local Search 

The larger sized neighborhoods such as k-flip neighborhood (1 <( k < n)  for 
the MDP may yield better local optima but the effort needed to search the 
neighborhood is too computationally expensive. An idea of the variable depth 
search (VDS) [13, 161 is based on efficiently searching a small fraction of the 
large neighborhood. 

A basic idea of VDS based local search for the MDP is described as follows. 
Given a feasible solution x as an initial solution, in each iteration a sequence of 
m (or n-m, see below) solutions is produced by 2-flip based sub-moves leading 
from one solution to another, and the best solution xbest in the sequence is 
adopted as a new initial solution x for the next iteration. Such a process is 
repeated until no better solution is found. 

To produce the sequence, the 2-flip based moves are sequentially performed 
so that each bit of x is flipped no more than once. All m solutions in the 
sequence are different and each solution x' differs two to k bits from the 
initial solution x. Thus, the hamming distance dH between the initial solution 
x and each solution x' is d ~ ( x ,  x') = k, where k = {2,4,. . . ,2m - 2,2m). 
Since the solution xbest with the highest cost is selected from the resulting 
sequence, the hamming distance d ~ ( x , x ~ , , ~ )  is variable in each iteration of 
the algorithm, i.e., dH(x, xbest) = k. 

This specialized neighborhood may be called k-flip neighborhood. The k-flip 
neighborhood, denoted by N B k ,  for the MDP can be defined as follows: 

NDk(x) := {x' I x' is obtained from a sequence of m solutions that can 
be obtained from x by exchanging an index i in one set S1 with an index j in 
the other set So under the following prohibition: all of the exchanged i and j 
are not re-exchanged). 

Note in this neighborhood that the number m of the solutions in the 
sequence described above depends on the problem constraint. Throughout 
the paper, we assume that a given number m in the problem constraint is 
greater than one and fewer than a half of n variables 3 .  If the given number 
m is greater than n/2, the elements of each So and S1 are all swapped before 
the search and the number of solutions produced in each iteration should be 
n - m .  

If the given number m is just n/2  in the problem constraint, we should produce 
m - 1 solutions for the sequence in each iteration of the algorithm, because both 
a given current solution and a resulting m-th solution in the sequence become 
the same, that is, all elements in each set SI and So in an initial state are only 
exchanged each other, if the 2-flip move is embedded with the k-flip neighborhood 
search. 
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procedure k-Flip-Local-Search-QuasiBstImp2-FlipMove(x, g) 
begin 

1 repeat 
2 x,,,, := x, Gmax := 0, G := 0, C1 := SI, CO := S o ;  
3 repeat 
4 find j with gj = maxj~c l  gj; 
5 find k with gain = maxk~co (gk + gj + 2djk(l - 2xk)(l - 2xj)); 
6 G := G + gain; 
7 xj := 1 - xj, xk := 1 - xk, and update gains g for each flipping; 
8 C l  := Cl\{j}, CO := CO\{k}; 
9 if G > GmaX then Gmax := G, Xbest := 2; 

10 until new xbest is not found for several repeats or C1 = 0; 
11 if Gma+ > 0 then x := xbest else x := x,,,,; 
12 until Gmax 5 0; 
13 return x; 

end; 

Fig. 1. k-flip Local Search with Quasi-Best Improvement 2-flip Move 

Quasi-Best Improvement k-flip Local Search 

Our k-flip local search used in our memetic algorithm is based on the above 
basic idea. To produce a sequence of different m solutions in each iteration, we 
perform the 2-flip based sub-move with quasi-best improvement. We thus call 
it the quasi-best improvement k-flip local search. The meaning of the quasi-best 
is mentioned later. 

Figure 1 shows the pseudo-code of the quasi-best improvement k-flip local 
search heuristic for the MDP. In the figure, we assume that 1) a feasible 
solution x and an associated gain vector g are provided in advance. 2) the gain 
vector is maintained and updated using (4) after each flip, and the generalized 
gain calculation (5) is used for solutions by 2-flip moves. 3)  the solution x 
always corresponds to the representation of the sets S1 and So as mentioned 
in the section 2.1. 

The local search consists of two loops: an inner loop in which a sequence of 
solutions is produced and the best solution is selected from the sequence and 
an outer loop in which the best solution found in the inner loop is evaluated. 

To produce a sequence of different solutions in the inner loop, two can- 
didate sets of C1  and CO are used to ensure that each bit of a given initial 
solution x is flipped no more than once. Therefore, a basic stopping crite- 
rion of the search in the inner loop is expressed as C1  = 0. To choose the 
best solution in the sequence, the inner loop involves a judgment process (line 
9) whether a current solution x' is better than the incumbently stored best- 
solution %best. Such a judgment plays a key role in a reduction of running time 
for the local search. In the k-flip local search, we change the stopping criterion 
of the search in the inner loop as follows: the inner loop (line 10) is terminated 
if new xbest is not found for more than t repeats or if C1 = 0. A parameter 
t for the MDP is set to a range 1 < t < m in advance and is fixed during 
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procedure MA 
begin 

1 initialize a population P E {II, . . . , Ips);  
2 foreach individual I E P do I := Local-Search(1); 
3 repeat 
4 for i := 1 to #crossovers do 
5 choose two parents I,, Ib E P randomly; 
6 I,  := Crossover(I,, Ib); 
7 I, := Repair(1,); 
8 I, := Local-Search(1,); 
9 add an individual I, to PC; 

10 endfor 
11 P := Selection(P, PC); 
12 if diversification=true then 
13 foreach individual I E P\{best individual ) do 
14 I := Mutation(1); 
15 I := Repair(1); 
16 I := Local-Search(1); 
17 endif 
18 until terminate=true; 
19 return best individual E P ;  

end; 

Fig. 2. An outline of our evolutionary approach to the MDP 

the local search. When choosing a suitable value of the parameter, it is quite 
expected that the running time of the local search is considerably reduced in 
comparison with only the basic criterion, but a sacrifice may be made in the 
guarantee of choosing the true best solution in the sequence which might be 
produced with the criterion C1 = 8. Such a parameter setting is derived from 
the k-opt local search for the BQP [19]. In our k-flip local search for the MDP, 
we adopt a parameter value t = m/5 for larger MDP instances (n 1 500), for 
smaller instances (n < 500) t is set to m. These setting show good behavior 
in our initial experiments. 

In the outer loop, the solution xbe,t selected is evaluated whether xbeSt 
is better than the initial solution given at  beginning of the inner loop. This 
can be done by a check G,,, > 0. If satisfied, the k-flip neighborhood search 
is performed after x,,,,t is set to x, otherwise, the local search is terminated 
after the return of the best solution found during the search. 

The quasi-best improvement k-flip local search is a faster variant of the 
best improvement k-flip local search. In the best improvement version, each 
solution in the sequence is produced by selecting the best pair with the highest 
gain in the sets C1 and CO. This local search takes O(mlSIIISol) t' ime per 
iteration. However, in the quasi-best improvement version, a first bit with the 
highest gain is selected from C1 and then a second bit with the highest gain 
in the Zflip move is determined from CO. Thus, the time complexity of each 
iteration in the quasi-best improvement version is O(mlS1 1 + mlSol) time. 
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3 Memetic Algorithm for MDP 

Memetic framework for the MDP shown in this paper is similar to one for other 
difficult optimization problems, which consists of a local search procedure and 
evolutionary operators. However, each operation in the framework has to be 
devised so as to work well for the MDP. 

An outline of our memetic algorithm is shown in Figure 2. After the initial- 
ization of the population, new offspring are created by application of crossover 
and local search a predefined number of times. A new population is produced 
by selecting individuals from the old population and the set of generated off- 
spring (PC). Unless the search has converged, this process is repeated until a 
predefined time limit is exceeded. 

In the following, the evolutionary operators are described in detail. 

3.1 Creating the Initial Population 

In our approach, the initial solutions (individuals) ( I l , .  . . , IPS)  of a popula- 
tion P are created by a randomized greedy method, where PS is a predeter- 
mined number of the individuals. The method is a variant of the randomized 
greedy heuristic for the BQP described in [19]. The greedy method for the 
MDP is devised so that m bits with '1' are appeared in a solution of length n 
in order to create a feasible solution. Afterwards, each of these feasible indi- 
viduals is locally optimized by a local search, i.e., the quasi-best improvement 
k-flip local search, to create an initial population of locally optimum solutions. 

3.2 Crossover 

In the MDP, classical crossover operators, such as one-point, two-point, or 
uniform crossover can be applied, but it is not preserved in many cases that a 
new solution created by such a crossover is feasible even if starting with two 
feasible parents. 

In our approach, we use the uniform crossover in which a single offspring 
is created from two parents, as shown in Figure 3. In the crossover process, 
two parents are chosen randomly from a current population such that all 
individuals are used with a restriction that no individual in the population is 
used twice in each generation. Therefore, the number of crossover processes 
depends on the size of population, i.e., PS/2. 

After each crossover process, a repair method is applied to turn an infeasi- 
ble offspring into a feasible one, and each feasible solution is locally improved 
by the k-flip local search. The repair method is described in 3.4. 

3.3 Selection and Diversification/Restart Strategy 

In each generation, a new population has to be formed after offspring have 
been generated. In our approach, the PS individuals with the highest fitness 
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Comment : For the offspring, a value of 0 or 1 at each position '*' is chosen with 
probability 0.5. 

Fig. 3. An example of uniform crossover 

procedure Repair(x, g) 
begin 

1 calculate a violation v := m - IS1 1 ;  
2 if v = 0 then return x; 
3 else if v < 0 then 
4 repeat 
5 find j with gj = maxj~s,  gj; 
6 xj := 1 - xj, S1 := Sl\{j), and update gains g; 
7 until Cy=l xi = m; 
8 return x; 
9 else 

10 repeat 
11 find j with gj = maxj~s? gj; 
12 xj := 1 - xj, S o  := SO\{J), and update gains g; 
13 until C;=l xi = m; 
14 return x; 
15 endif 

end; 

Fig. 4. Repair Method 

of the old population P and the set of offspring PC are selected. However, the 
duplicates from the temporary set containing P and PC are removed to ensure 
that no MDP solution is contained in the new population more than once. 

A general drawback in evolutionary approach may be a premature conver- 
gence of the algorithm, especially in the absence of mutation. We thus perform 
a diversification/restart strategy, which is borrowed from [4], in order to move 
to other points of the search space if no new best individual in the population 
was found for more than 30 generations. In response to this requirement, the 
individuals except for the best one in the population are mutated by flipping 
randomly chosen n/2 bits for each individual of length n. After that, each of 
the mutated individuals is applied to the repair method. Then each individual 
after the repair method is locally improved by the k-flip local search to obtain 
a renewal set of local optima and the search is started again with the new, 
diverse population. 
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3.4 Repair Method 

A repair method should be applied to an infeasible solution after the crossover 
and the mutation in the diversification strategy, since the feasibility of the 
solution by such an operator is not preserved for the MDP. 

Analogous to the k-flip local search procedure shown above, the gains g 
corresponding to a given solution x is managed and updated in the repair 
procedure. When a solution x given for the repair method is infeasible, it is 
repeated that a violated bit with the highest gain is flipped in each repair 
iteration even if the highest one is negative. Such a repair process is executed 
until x becomes feasible. By using this repair algorithm, the given infeasible 
solution is turned to be feasible one that is as better cost as possible. 

Our repair algorithm for the MDP is given in pseudo-code in Figure 4. 
At first, the violation number of the given solution x is calculated. If no 
violation, the solution is immediately returned as a feasible one at  line 2, 
otherwise, the repair process is performed to obtain a feasible solution from 
the given infeasible one by flipping v bits in the set of S1 or So according to a 
judgment of line 3. The number of the repair iterations therefore depends on 
the number v. The each iteration consists of selecting a bit with the highest 
gain and flipping the bit with the update of the gains. The time complexities 
of each repair iteration in the algorithm are O(IS1)) or O(ISol) time for the 
line 5 or 11 and O(n) time for updating gains g after each flip. 

4 Computational Experiments 

4.1 Test Instances 

For the experiments, we newly provide six problem sets for the MDP. Each 
problem set is characterized by the following problem sizes: n = 100, 250, 
500, 750, 1,000, and 2,500 variables. We name them mdp00100, mdp00250, 
mdp00500, mdp00750, mdp01000, and mdp02500, respectively. The each set, 
i.e., the matrix d, is generated in the following way: each of dij (i < j )  values 
is given randomly between 1 and 50. Therefore, each matrix is 100% dense 
problem but the diagonal is off, dii = 0. Each problem set consists of four 
instances, and each of the four instances in the set is characterized by a 
different value of m. The four values of m are set to lo%, 20%, 30%, 40% 
of the variable size n ,  respectively. 

In addition, we also use three test problem sets, which we modified bench- 
mark instances of the BQP contained in ORLIB [2]. (This is the first attempt 
in research for the MDP.) Their variable sizes are n = 500, 1,000, and 2,500, 
and their names are beas500-1, beas1000-1, and beas2500-1, respectively, 
which are first used as test instances for BQP's heuristic algorithms in [3]. 
Note in each problem set that the di j  coefficients in the original matrix are 
not restricted to non-negative values. In the three sets a density of each matrix 
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is 10%. However, we modified the matrix as follows: the diagonal is off, i.e., 
dii = 0, due to the definition in the MDP. Each set consists of four instances 
that are characterized by the four values of m as well as the new test problem 
instances we provided above. 

The variable sizes of the first five sets in our new test problems and the 
first two sets in ORLIB are competitive with [14] that reported results for 
randomly generated instances of up to 1,000 variables, but the remainders are 
much larger than any reported in the literature for the MDP. 

The test instances we newly provided are available from the following web 
page:http://k2x.ice.ous.ac.jp/-katayama/bench/. 

4.2 Results and Discussions 

We imposed a time limit for the memetic algorithm. The time limit was chosen 
for each variable size of the problem sets: 10 seconds for 100 variable instances, 
30 (sec) for 250 variable instances, 100 (sec) for 500 variable instances, 300 
(sec) for 750 variable instances, 1000 (sec) for 1,000 variable instances, and 
3000 (sec) for 2,500 variable instances, on a Sun Ultra 5/10 (UltraSPARC- 
IIi 440MHz). The algorithm was run 30 times for each instance. Each run 
of the algorithm is performed with a different seed. The value of the best 
solution found by the algorithm in each run was saved with their corresponding 
generation number, running time, etc. The algorithm was implemented in C. 
The program code was compiled with the gcc compiler using the optimization 
flag - 0 2  on Solaris 8. 

The parameters contained in the memetic algorithm have already de- 
scribed in the previous sections except for the population size. The popu- 
lation size PS was set to 40, which is a commonly used population size for 
evolutionary algorithms incorporating local search. 

Table 1 shows the results for the memetic algorithm with the kflip local 
search obtained for the test problem instances. In the first three columns of 
the table, the name of the problem sets, the variable size n, and the number 
of the problem constraint m are given. In the following columns, we provide 
the best solution value (quality % of the best solution), the average solution 
value (quality % of the average solution) of 30 runs, the number of times 
in which the best solution could be found by the algorithm "b/run", the 
average running time "tl" in seconds in case the algorithm could find the 
best solution, and the time-limit "t2" in seconds (exclusive of the case the 
algorithm could find the best solution). In addition, "tl" and "t2" are provided 
with their corresponding average generation numbers "(gens)". In the table, 
the number of 30130 shown in the column of "b/runn indicates that the best- 
known solution could be found by the algorithm within the predefined time 
limit in all 30 trials. As an additional result, the final line in this table shows 
the result of the MA with longer time limit of 30000 seconds for mdp02500 with 
m = 750. In the result, the MA found a better solution of f (x) = 14988436 
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Table 1. Results for the quasi-best improvement Ic-flip local search based MA 

instance (off diag.) Memetic Algorithm with k-flip Local Search 

name best (%I I avg. (%) lb/runl t l  (gens) t2 (gens) 
mdpOOlOO 1001 10 3606 (0.000000) 1 3606.0 (0.000000) 130/301 0.1 (4) - (-) 

than the case of 3000 seconds. Thus, it indicates that the MA is capable of 
finding better solutions if longer running times are allowed. 

Since the optimal solution for each instance is unknown yet, we reported 
the value of the best solution found by the algorithm for each instance as a 
result. It  is expected that each of these best-known solutions is likely to be 
the very near-optimal or the optimal solution for each of the instances. 

To show the effectiveness of the k-flip local search based memetic algorithm 
(MA-k-flip) for the MDP, we test a 2-flip local search based variant algorithm 
(MA-2-flip). The difference between them is only the local search process. In 
the variant, the same parameters and time limits set in the memetic algorithm 
with k-flip local search are adopted to be fair. This 2-flip local search performs 
the quasi-best improvement strategy as moves in each iteration. 
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Table 2. Results for the quasi-best improvement 2-flip local search based MA 

Table 2 shows the results obtained by MA-Zflip, the memetic algorithm 
with the 2-flip local search, only for the 100,500 and 1000 variables instances 
among the nine problem sets. In the table, we give the same column entries 
as in Table 1. 

From the results of Tables 1 and 2, the performance of MA-k-flip may 
be comparable with that of MA-2-flip for the instances of n 5 500 since 
the best solution found by MA-k-flip can be obtained by MA-2-flip with a 
high frequency (see the column of "b/run7'). However, MA-k-flip has a better 
advantage for the larger instances of n > 500: the numbers of "b/runn in MA- 
k-flip are greater and the running times for reaching the best-known solutions 
are less than those of MA-2-flip in many cases, although it seems that MA-k- 
flip spends more running times per generation in the predefined time limit for 
the computation. Thus, the effectiveness of the k-flip local search based MA 
is superior to MA-2-flip. 

Since the difference between MA-k-flip and MA-2-flip is only the process 
of local search, the results of Tables 1 and 2 make it clear that a design in 
the local search process is quite important to obtain good solutions for the 
problem. Moreover, better results are expected if the optimal value of the 
parameters is determined and if we devise evolutionary operators instead of 
simple ones used in our algorithms. 

Unfortunately, a comparison wit,h the previously proposed approaches to 
the MDP is difficult because in most cases their algorithms were tested on 
smaller instances generated by them and without using of publicly available 
instances such as BQP contained in ORLIB as tried in this paper. 

instance (off diag.) 

name 
mdp00100 

Memetic Algorithm with 2-flip Local Search 

best (%I 
3606 (0.000000) 

12956 (0.000000) 
27036 (0.000000) 

n 
100 
100 
100 

avg. (%) 
3606.0 (0.000000) 

12956.0 (0.000000) 
27036.0 (0.000000) 

m 
10 
20 
30 

b/run 
30/30 
30130 
30/30 

t l  (gens) t2 (gens) 
0.1 (14) - (-1 
0.1 (4) - (-1 
0.1 (3) - (-) 
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Finally, we give our experience on the setting value of mutation in the 
diversification/restart strategy. Although our strategy with the default setting 
of n/2 in the mutation is considerably disruptive, we believe that this setting 
value is a better choice than that of a smaller value in this memetic framework 
for the MDP. In our additional experiments, we have attempted to flip smaller 
bits of n/3 chosen randomly in the mutation for each individual except for the 
best one of the current population, instead of the default setting. The results 
showed that the default setting gave better solutions, particularly with MA- 
k-flip and MA-2-flip for large instances. 

5 Conclusion 

In this paper, we have presented a memetic algorithm for solving the maximum 
diversity problem. Although most of the components of our algorithm were 
comparable in a standard memetic framework, newly developed methods, i.e., 
the powerful k-flip local search, the repair method, etc. were incorporated to 
obtain good solutions and to preserve the feasibility of solutions for the MDP. 
The results showed that the lc-flip local search based memetic algorithm out- 
performed the 2-flip local search based variant particularly for larger instances 
we newly provided and contained as the BQP instances in ORLIB. Due to 
the first report for such instances, the values of the best solution found by the 
algorithm were also reported for the problem instances investigated. 

One of the most important issues for future research is to compare the 
MA with other (meta-)heuristics for the same problem instances in order to 
assert the effectiveness of memetic approach to the MDP. 
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