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Summary. Learning Classifier Systems have previously been shown to have some 
application in deducing the characteristics of complex multi-modal test environments 
to a suitable level of accuracy. In this study, an accuracy-based Learning Classifier 
System, XCS, is used. The system has the capability of inducing a set of general 
rules from a sample of data points using a combination of Reinforcement Learning 
and a Genetic Algorithm. The investigation presented here builds on earlier work 
in this area by considering the application of a memetic approach during learning. 
The motivation for this investigation is identify if any increases in learning speed 
and classification performance can be made. The type of memetic learning used is 
based on Lamarckian Evolution but has several subtle differences from the standard 
approach. In particular, the Learning Classifier System is based on a Reinforcement 
Learning paradigm that has a dynamic effect on the fitness landscape. And, the form 
of lifetime learning used is based on a Widrow-Hoff delta rule update procedure in 
which changes to an individual's genotypic description are based upon some distance 
measure between the individual and a "focal rule"' (analogous to a local optima in a 
standard MA). In addition, no distinction is made between genotype and phenotype. 
Initial investigations focus on the effects on performance for three different learning 
rates and three different "focal rule" identification options for two different test envi- 
ronments - a two-dimensional and a decomposable six-dimensional test environment. 
Results show that improvements can be made over a non-memetic approach. The 
study also considers the use of a self-adaptive learning mechanism. Self-adaptation 
has been suggested as beneficial for Genetic Algorithms where the technique is usu- 
ally used for adapting the mutation rate in a time-dependant and decentralised way. 
However, the investigation of a self-adaptive learning mechanism presented here fo- 
cuses on the benefits of adjusting the Widrow-Hoff learning rate used within the 
memetic-learning component of the system. The mechanism was applied to both 
test environments. Results show that the mechanism can provide a more robust 
learning system both in terms of reduction in the number of system parameters 
and increased generalisation and solution convergence. Further detailed analysis of 
experimental results for the decomposable six-dimensional test function is also per- 
formed. This would otherwise be non-trivial for a non-decomposable six-dimensional 
function. The classification accuracy of several different versions of the system in- 
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cluding those systems with and without memetic or self-adaptive memetic learning 
are analysed region by region showing the effects of the new learning approach at a 
much greater level of detail. Analysis shows that the self-adaptive memetic version 
of the classifier system outperforms the non-adaptive and non-memetic versions in 
some of the regions. 

1 Introduction 

There have been several published studies demonstrating the capabilities of 
XCS [30] for data-mining through rule-induction. XCS is a Learning Classi- 
fier System (LCS) [ll] that is capable of inducing a set of general rules from 
a sample of data points using a combination of Reinforcement Learning [14] 
and a Genetic Algorithm [lo]. In [4], Bernado et al. describe an experimen- 
tal comparison of XCS with seven other learning schemes, including C4.5, 
Naive Bayes and Support Vector Machines. Fifteen UCI repository data-sets 
[5] were used in that study each having a mixture of attribute types and dif- 
fering numbers of classes and data-set sizes. The XCS system was shown to be 
highly competitive when compared with the other learning schemes. Wilson 
[32][33] has also demonstrated the capabilities of an interval based encoding 
when used to induce rules describing the Wisconsin Breast Cancer data-set. 
In fact, XCS was shown to improve on the best known performance for that 
data-set. That is, the XCS classifier system can be cast as an induction en- 
gine that is trained using a reinforcement learning approach, i.e., an external 
agent provides a reward for each classified data instance. Once the system 
has completed its training, new unseen data are presented and a measure of 
classification accuracy made. 

Initial investigations in [8] show that the XCSR system [31] (an extension 
of the binary-input XCS to real-inputs) is able to identify high performance 
regions from a continuous multi-variable search space using a sample of train- 
ing data points. Parmee [25] introduced the concept of the identification of 
high performance regions of complex preliminary design spaces rather than 
the identification of single optimal design solutions. A region of high per- 
formance is any contiguous set of points in a given design space which are 
considered to be exceptional solutions to a particular set of possibly conflict- 
ing design criteria. The solution provided by XCSR is a complete set of simple 
classification rules that define orthogonal regions of the solution space with 
attached classification labels. Investigations continued using a new Simplified 
Learning Scheme with the aim of improving XCSR performance with respect 
to learning speed and ability to respond to changes in the underlying test 
environment (such as class relabelling). When using the Simplified Learning 
Scheme newly created rules have their expected payoff value set to that of 
the first training instance they experience. This value remains constant. The 
new system was termed sXCSR and results showed that improvements can 
be made under the new learning scheme. The work presented clearly demon- 
strated the capability of XCSR to evolve real-valued pairs to describe interval 
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bounds for each variable in the multi-variable problem and thereby define a 
set of simple classification rules for the high performance regions. 

The investigation was extended in [34] by applying XCSR and sXCSR to 
progressively more complex multi-modal test environments each with typical 
search space characteristics, convex/non-convex regions of high performance 
and complex interplay between variables. In particular, two test environments 
were used to investigate the effects of different degrees of feature sampling, 
parameter sensitivity, training set size and rule subsumption. Both test envi- 
ronments are constructed using a combination of functions allowing for the 
simple generation of training and test points. Each sample point can be repre- 
sented by a vector of continuous values and a continuous performance measure 
which may be discretised as appropriate. Both test environments are also used 
in this study. Fixed size training data-sets were used in an effort to provide 
some consistency in experimentation with those design problems for which the 
cost of an on-line evaluation per sample point is high or for which data-sets 
are constructed from other off-line data sources. 

The study is arranged as follows: Sect. 2 presents a basic overview of 
memetic algorithms, and in particular, how this relates to the approach pre- 
sented here; Sect. 3 describes the XCSR system used throughout; Sect. 4 de- 
scribes the experimental details for this study; Sect. 5 describes and presents 
results for a two-dimensional test environment; Sect. 6 describes and presents 
results for a six-dimensional test environment; Sect. 7 presents the results from 
using a self-adaptive approach to tuning the memetic learning rate for both 
the two and six-dimensional test environments; Sect. 8 shows a more detailed 
analysis of a selection of six-dimensional test environment results by decom- 
posing the test data-set into eighteen distinct regions of high performance 
and finally, all findings are discussed in Sect. 9. Section 10 defines several re- 
lated equations that can be used to define the two and six dimensional test 
environments used in this study. 

2 Memetic Algorithms 

In [23], Moscato termed a Memetic Algorithm (MA) as "a marriage between 
a population-based global search and the heuristic local search made by each 
of the individuals" and made it clear that the global search need not be 
constrained to a genetic representation. However, for the purposes of this in- 
vestigation, a more constrained definition provided by Krasnogor and Smith 
[18] is used, that is, "MAS are extensions of Evolutionary Algorithms (EAs) 
that apply separate local search processes to refine individuals". It should 
also be made clear that the local search processes used to refine individuals 
may include constructive and exact methods as well as iterative improvement 
techniques. The key feature of the memetic approach to learning is that in- 
dividuals are permitted to learn during their lifetime. This type of learning 
is applied using the phenotypic description of an individual rather than the 
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genotypic description. However, for the evolutionary process to take advan- 
tage of this lifetime learning, the effects of any improvements need to be felt 
in succeeding generations of the genetic search. There are two basic models 
of evolution that can be used for this purpose. These are the Baldwin Effect 
[2] [22] [24] and Lamarckian Evolution [29]. 

The Baldwin Effect was discovered independently by Baldwin [2], Morgan 
[22] and Osborn [24] in 1896 and has since become known as the Baldwin 
Effect due to Baldwin's dedicated research efforts. The Baldwin Effect allows 
an individual's fitness to be determined as a result of the local search processes 
but without any resulting changes in phenotypic description being reflected in 
the individual's genotypic description. According to Whitley et al. [29], this 
technique has the effect of changing, or smoothing out, the fitness landscape 
while retaining the advantages of the evolutionary process. Here, it is not 
characteristics acquired during an individual's lifetime that are inherited, but 
its ability to acquire those characteristics. 

Larmarckian Evolution, introduced by Jean Baptiste Larmarck in 1809, is 
based on an assumption that characteristics acquired during an individual's 
lifetime are inherited, that is, any changes to the phenotypic description will 
be reflected in the individual's genotypic description. One of the drawbacks 
of using this technique for real-world problem solving is the requirement for 
an inverse mapping from phenotype and environment to genotype. There is 
no such requirement when using the Baldwin Effect. 

Despite the issues raised above, the Larmarckian approach is used as the 
basis for memetic learning in this investigation. However, there are several 
subtle differences between the standard approach to Larmarckian Evolution 
and that employed here. Firstly, the underlying Evolutionary Algorithm used 
is based on a Reinforcement Learning paradigm that has a dynamic effect on 
the fitness landscape. Secondly, the form of lifetime learning used is based on a 
Widrow-Hoff update procedure in which changes to an individual's genotypic 
description are based upon some distance measure between the individual 
and a "focal rule". Here, the "focal rule" is analogous to a local optima in a 
standard MA. It  should be noted that no distinction is made between genotype 
and phenotype in this study. 

In particular, this involves identifying a "focal rule" together with any 
members of the current Action Set that qualify for update. In order to qualify 
for update, a rule must have been a member of a sufficient number of previous 
Action Sets, that is, the rule is expected to have been updated enough times 
to show its true potential. This threshold is termed as the update qualification 
threshold and is denoted by the symbol c. The "focal rule" is a single rule 
used in a Widrow-Hoff update procedure applied to all qualifying Action Set 
members. In this investigation, three different approaches are used to identify 
the "focal rule": Best Fitness, Most Numerate and Accurate. Each approach 
involves sorting the Action Set members in descending order with the first 
member in the sorted list being defined as the "focal rule". It  is possible 
in each of these approaches, and likely in the case of Accurate, for several 
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members of a given Action Set to be competing for the title of "focal rule", 
in which case, one of them is selected at  random. Once the "focal rule" and 
members qualifying for update have been identified, the following update rule 
is applied, xi = xi + rl Fi - xi , V i ,  j, where represents gene i of qualifying [ I 
member j, Fi represents gene i of the "focal rule" F, and rl is a learning rate 
between 0 and 1 applied to the update. The new system is termed mXCSR. 
Initial investigations focused on the effects on performance for three different 
learning rates and three different "focal rule" identification options over those 
for the standard non-memetic approach. 

3 XCSR 

In [31], Wilson presents a version of XCS [30] for problems which can be de- 
fined by a vector of bounded continuous real-coded variables - XCSR. In that 
system, each rule in the classifier system population consists of the following 
parameters: < condition > : < action > : prediction (p) : prediction error 
(E) : fitness (F) : experience (exp) : time-stamp (ts) : action set size (as) : 
numerosity (n). Given that XCSR is an accuracy-based classifier system, the 
three parameters p, E and F are used to assess the accuracy of the rule's pre- 
diction in relation to its experiences over time, that is, how accurately the rule 
predicts the actual reward or payoff from its use for a given environment in- 
put. The other parameters, exp, ts, as  and n, are used by the classifier system 
to maintain the internal dynamics of the system, such as balancing resources 
across environmental niches, genetic algorithm invocation and computational 
issues. 

Figure 1 shows a schematic illustration of the architecture of a single-step 
version of the XCSR system with a particular emphasis on the data-mining 
capabilities of the system. The following description of the process actions of 
the XCSR system can be found in algorithmic form in [9]. A sample point 
is selected at random from the database and is presented to the system as 
an input vector. The system defines a subset of the Population, called the 
Match Set, from those rules whose < condition > matches the input vector, 
where each rule predicts one of n actions (n = 2 for this study). If there are no 
matching rules, the system generates, or covers, a rule for each possible action 
using the input vector as a template. The Prediction Array is calculated as 
a sum of the fitness-weighted prediction of each rule in the Match Set, that 
is, T represents the sum of fitness-weighted prediction for all rules advocating 
action 1 and 4 for those advocating action 2. The action with the highest sum 
represents the systems "best guess" at the classification for the given input 
vector. There are two action selection regimes, explore and exploit. Assuming 
the system exploits its knowledge, the system defines a subset of the Match 
Set, called the Action Set, from those rules advocating the selected action. The 
predicted class is compared with the actual class for the given input vector and 
a reward is received, 1000 for correct and 0 for incorrect. The system reinforces 
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those rules in the Action Set using the reward. If the average number of time- 
steps since the last invocation of the Genetic Algorithm component is greater 
than some pre-defined threshold, the Genetic Algorithm is permitted to act 
upon the members of the Action Set. 

(U 
(D actual class 

reward 
redicted class 

select action 

Fig. 1. The XCSR Classifier System Schematic Illustration for Single Step Data- 
mining Tasks 

Another operator that acts upon the Action Set is the subsumption op- 
erator. One rule may subsume another if every interval predicate in the sub- 
sumee's < condition > can be subsumed by the corresponding predicate in the 
subsumer, that is, for real-coded <condition >'s the subsumee's lower bound 
must be greater and its upper bound must be lesser than the corresponding 
subsuming predicate. In fact, XCSR implements two different forms of sub- 
sumption, Action Set Subsumption and Genetic Algorithm Subsumption. In 
the first form, a single rule is defined as the most general in a given Action Set 
and is permitted to subsume any other rule in the Action Set providing it is 
sufficiently experienced and accurate enough. In the second form of subsump- 
tion, a newly generated offspring rule may be subsumed if either of its parents 
are more general than it, sufficiently experienced and accurate enough. 

In [31], Wilson defines a <condition > as consisting of interval predicates 
of the form {{q, sl),  . . . , {c,, s,)), where c is the interval's range "centre" 
and s is the "spread" from that centre - termed here as the Centre-Spread 
encoding. Each interval predicate's upper and lower bounds are calculated as 
follows : [c, - s,, c, + s,]. If an interval predicate goes outside the variable's 
defined bounds, it is truncated. In order for a rule to match the environmental 
stimulus, each input vector value must sit within the interval predicate defined 
for that variable. 

In [32], Wilson describes another version of XCS which could also be used 
for such multi-variable problems in which a vector of integer-coded interval 
predicates is used in the form {[11, ul], . . . , [l,, u,]}, where 1 and u are the 
intervals' lower and upper bounds, respectively - termed here as the Interval 
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encoding. It is clear that a real-coded version of the integer bounded interval 
predicates would be trivial to implement. For both the Centre-Spread and 
Interval encoded versions, mutation is implemented via a random step (range 
-0.1 5 x 5 0.1) and cover produces rules centred on the input value with a 
"spread" of so. 

It is important to note in the case of the Interval encoding, a potential 
problem may arise through the action of the mutation operator such that 
it is possible for a variable predicate's upper bound to become smaller than 
its lower bound. There are two ways to deal with this problem, termed here 
as Ordered Interval and Unordered Interval [26]. The first way uses a repair 
operator to enforce an ordering restriction on the predicates by swapping the 
offending values to ensure that all interval predicates in the < condition > 
remain feasible, i.e., in the form { [ l ~ ,  ul], . . . , [l,, u,]). The second way lifts 
the ordering restriction such that an interval [l,, u,] is equivalent to [u,, l,]. 
The reader is referred to [26] for a discussion of the issues related to the 
differences between Interval encodings. 

4 Experimental Details 

The investigation presented in [34] compared the three different real-coded 
interval encodings described in Sect. 3 and showed that there was little or 
no difference between the encodings for the two and six-dimensional test en- 
vironments used. Given that these same test environments are used in this 
study, the choice of encoding becomes an arbitrary one. In fact, the Unordered 
Interval encoding is used throughout. 

The investigation also showed results for different sized training data-sets, 
that is, 500 and 2000 sample points for the two-dimensional environment and 
6000 and 12000 sample points for the six-dimensional environment. In both 
cases, the larger training data-set led to better performance. For this reason, 
the 2000 and 12000 sample point data-sets are used in this study. Results 
presented in [34] for different population sizes show that a population of 8000 
rules for the two-dimensional test environment and a population of 2000 rules 
for the six-dimensional test environment led to the best performance. 

To clarify, all experiments in this study use a system based on the Un- 
ordered Interval encoding. Experiments using the two-dimensional environ- 
ment run for a total of 200000 trials with a population size of N = 8000 
while those using the six-dimensional test environment run for 250000 tri- 
als with a population size of N = 2000. XCSR's other parameters are de- 
fined as: ,B = 0.2, a = 0.1, EO = 10, v = 5, OGA = 12, x = 0.8, p = 
0.04, Od,l = 20, 6=0 .1 ,  p~ = 10, EI  = 0, FI =0.01, Om,, = 2, BSub = 20, 
plus m = f 10% and so = 2% for the two-dimensional environment while 
m = f 10% and so = 25% for the six-dimensional environment. 

An approach is required to enable comparisons of performance to be made 
between different parameter sets. One common way to define the performance 
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of a classification system is to use a confusion matrix [16] of size L x L, where 
L is the number of different classifications. The matrix contains information 
about the actual and predicted classifications resulting from the classification 
task and provides a simple format to record and analyse system performance. 
Fimire 2 gives an examnle of a 2 x 2 confusion matrix with the two nossible 

Predicted 
Class 

Fig. 2. An Example 2 x 2 Confusion Matrix with High and Low Classifications 

Several measures of classification accuracy based on confusion matrices 
were developed to overcome problems associated with analysis where the num- 
ber of examples in each classification is significantly different. These include 
Lewis and Gale's F-measure [20], the geometric mean as defined by Kubat 
et al. in [19], using ROC graphs to examine classifier performance [27] and 
Kononenko and Bratko's information-based evaluation criterion 1171. 

Given that all the test data-sets used in this study have been manipulated 
such that the number of examples per classification are nearly equal, a simple 
accuracy measure will suffice for basic analysis. For a two-class classification 
problem, the accuracy measure is defined as the number of examples correctly 
classified as High plus the number correctly classified as Low divided by the 
total number of examples classified, that is, (a + d) / (a + b + c + d) according 
to Fig. 2. Unclassified test examples are not included in this measure, that is, 
the denominator may not always equal the number of sample points in the 
test data-set. The percentage of High and Low points correctly classified are 
traditionally known as sensitivity and specificity, respectively. These terms 
frequently appear in the medical literature and are mainly used to describe 
the result of medical trials for disease prevention, but have come to be used 
in many non-medical classification tasks including information retrieval. A 
similar set of performance metrics were introduced for the EpiCS [12] system. 

An important aspect of the experimental method identified in [34] was 
the class imbalance problem [13][28] which can be defined as a problem en- 
countered by any inductive learning system in domains for which one class 
is under-represented and which assume a balanced class distribution in the 
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training data. For a two-class problem, the class defined by the smaller set 
of examples is referred to as the minority class while the other class is re- 
ferred to as the majority class. Initial experiments for the six-dimensional 
test environment used in [34], and here, showed that without applying some 
form of rebalancing of the class distribution, the six-dimensional test problem 
could not be described to an acceptable level of accuracy. The solution used 
in [34] for the six-dimensional test environment was an approach suggested by 
Ling and Li [21] that makes use of both minority over-sampling and majority 
under-sampling. In particular, the minority class is re-sampled with replace- 
ment until some pre-defined multiple, n, of the original sample size is achieved. 
The majority class is re-sampled without replacement until a number of ex- 
amples equal to those sampled from the minority class have been defined. 
The Ling and Li re-sampling solution is restricted to the six-dimensional test 
environment as was the case in [34]. 

For all experiments presented in this study, the new mXCSR system is 
trained using a single training data-set and tested using a different test data- 
set generated from a uniform random distribution. The test data-sets have 
been manipulated in such a way as to provide an equal number of test points 
per classification. In particular, n points are sampled from a uniform random 
distribution and evaluated according to the given environment. The sample 
points are sorted in descending order of performance and the top 2m points 
are used to define the test data-set, where m equals the total number of 
High points generated. All data-sets used have two defined classes, High and 
Low. The training data-sets are generated from a Halton Sequence Leaped 
(HSL) sequence [15], where the HSL is a quasi-random sequence that provides 
a set of real numbers whose degree of uniformity is high. By manipulating 
the test data-sets to include sample points from both classifications near to 
the classification decision boundaries, it is hoped that clear evidence of the 
classifier system's capability to evolve rules that define those boundaries will 
be gathered. 

The results for each parameter setting of the mXCSR system are averaged 
over ten independent runs and presented together with a standard deviation 
for that sample. Any conclusions made are based on the application of Mann- 
Whitney Rank Sum Test which makes no assumptions about the distribution 
of population from which the runs where sampled. 

5 A Two-dimensional Test Environment 

The two-dimensional test environment used in this paper is the multi-modal 
modified Himmelblau function [3]. The equation for the modified Himmelblau 
function, which is used to evaluate each sample point, is given in Sect. 10.1. 
There are four optima of approximately equal magnitude. This function is 
used to define a two-class classification task to investigate the effects of 
using a memetic approach to learning within the XCSR classifier system, 
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that is, mXCSR. In particular, an exact threshold value of + = 184, where 
+ E [-1986,2001, is used to  define HighlLow class decision boundaries. Fig- 
ure 3 shows a contour plot of the function, clearly indicating the four regions 
of high performance as defined by the threshold value given above. 

Fig. 3. The Modified Himmelblau Function Contour with Four High Performance 
Regions 

The new mXCSR system was trained using a single training data-set, 
Fig. 4, generated from a HSL sequence with 2000 sample points and was tested 
using a different data-set generated from a uniform random distribution. This 
test data-set has 2116 sample points of which 1073 points are defined as High 
- shown as faint dots in Fig. 5 .  

Table 1 shows a single performance measure (ten run average with stan- 
dard deviation) for each parameter combination using the Uniform Random 
test data-set. The parameter combinations used include running the new 
mXCSR system both with and without Action Set Subsumption and Simplified 
Learning Scheme using three different approaches to "focal rule" identification 
together with three different learning rates for each approach. 

It is clear from Table 1 that the system performed well on the two- 
dimensional Himmelblau test problem in terms of correct classification of un- 
seen data, between 72.8% and 90.1% depending on "focal rule" identification 
approach, learning rate, subsumption type and whether or not the Simplified 
Learning Scheme was used. The performance gain for mXCSR when Action 
Set Subsumption is turned off is remarkably clear in Table 1. In fact, the 
difference between mXCSR with and without Action Set Subsumption is sta- 
tistically significant (> 99.9%) for all parameter settings shown. Although, a 
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-5 -4 -3. -2 I 0 1 2 3 4 .  5 

Fig. 4. Training Data-set with 2000 HSL-generated Sample Points 

Fig. 5. Test Data-set with 2116 Sample Points Generated from a Uniform Random 
Distribution 
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Table 1. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Two-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

difference has been identified in previous work [34], it is clear from the results 
shown here that the difference is significantly smaller, that is, the memetic 
learning approach has help to mitigate some of the problems associated with 
using Action Set Subsumption in the two-dimensional test domains. Figures 6 
and 7 show the performance gain for the mXCSR system using the Accu- 
r ~ t e ( , = ~ . ~ )  "focal rule" identification approach when Action Set Subsumption 
is turned off. 

Regarding different "focal rule" identification approaches, Table 1 shows 
a clear difference in performance between Acc~rate(,,~.~) and the other two 
approaches, Most N~merate(,,~,~) and Best Fitnes~(,,~.~), when Action Set 
Subsumption is turned on. This effect is a statistically significant (> 99%) 
improvement in performance. In fact, a learning rate of 0.1 can also be shown 
to be statistically significant (> 95%) when compared with the other two 
settings for the Accurate "focal rule" identification approach. 

Figures 6 and 8 show a comparison of performance based on the Simplified 
Learning Scheme, that is, Fig. 6 does not use it and Fig. 8 does. Both sys- 
tems are based on the Acc~rate(,,~.~) approach with Action Set Subsumption 
turned on. Results suggest that there may be a slight degradation in perfor- 
mance when the Simplified Learning Scheme is used. In fact, this result is 
statistically significant (> 97.5%). Figures 9 and 10 show the learning speed 
and system error for the same two systems. These figures show that despite 
final performance being significantly different, there is no increase in learning 
speed as demonstrated in [8]. 

Overall, results suggest that when Action Set Subsumption is turned on, 
the memetic learning helps to improve system performance significantly above 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and with AS-Subsumption 

ExploitTnals 

-Accuracy - - - -Sensitivity -Specificity 

Fig. 6. Classification Accuracy for mXCSR with Action Set Subsumption using the 
A~curate(,,~,~) "focal rule" identification approach 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and without AS-Subsumption 

0 50000 I00000 150000 20000[ 

ExploitTnals 

- Accuracy - - - Sensitivity -Specificity 

Fig. 7. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Accur~te(,=~.~) "focal rule" identification approach 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 with AS-Sub and Simplified Learning 

1 
/ 

C 

Fig. 8. Classification Accuracy for mXCSR with Action Set Subsumption and Sim- 
plified Learning Scheme using the Acc~rate(,=~.~) "focal rule" identification ap- 
proach 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and No Simplified Learning Scheme 

In 

P 0.6 3 
Q 
Lo p 0.4 
'5 
Q) J 

0.2 

0 
0 50000 I00000 150000 2000C 

ExploitTlials 

I -Learning Speed - System Error - % Macro-Rules 1 

Fig. 9. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and without Simplified Learning Scheme using the Acc~rate(,=~.~) "focal rule" 
identification approach 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Simplified Learning Scheme 

111 

2 0.6 ; 
LL 
U) 

0.4 

5 
-I 0.2 

0 
0 50000 100000 150000 20000 

E xplolllials 

I -Learning Speed -System Error - % Macro-Rules 1 

Fig. 10. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and with Simplified Learning Scheme using the Acc~rate(, ,~,~) "focal rule" 
identification approach 

that of a non-memetic system except for the Most Numer~te( ,=~.~)  approach. 
In fact, this improvement is statistically significant at  a level of > 95%. How- 
ever, it also clear that the memetic learning degrades performance for those 
systems that do not use Action Set Subsumption. Although this degradation 
is very small (around 2%), it is statistically significant (> 95%). 

6 A Six-dimensional Test Environment 

The six-dimensional test environment used in this paper is a multi-modal 
function developed by Bonham and Parmee, [6] and [7], and is described in 
Sect. 10.2. It  is defined by the additive effect of three different two-dimensional 
planes, as shown in contour plot form in Figs. 11-13 . Each plane has an associ- 
ated "local" fitness value and the "global" fitness value of the six-dimensional 
function is defined by adding each of these "local" fitness values together, that 
is, f itnessglObal = f itnessplanel + f itnessplane2 + f i t n e ~ s ~ ~ ~ , ~ ~ .  Each sample 
point is defined by a six-dimensional vector of the form {a, b, c, d, e,  f ), where 
a . .  . f E [O,l]. 

In this two-class classification problem, a sample point is classified as either 
High or Low. It is classified as High only when each "local" fitness value is 
greater than the exact threshold value II, = 0.35, where II, E [O, 0.51, and the 
"global" fitness value is greater than exact threshold value II,G = 1.20, where 



370 David Wvatt and Larrv Bull 

Fig. 11. Plane 1 of Bonham and Parmee's Six-dimensional Function showing Three 
Local Regions of High Performance 

Fig. 12. Plane 2 of Bonham and Parmee's Six-dimensional Function showing Two 
Local Regions of High Performance 
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Fig. 13. Plane 3 of Bonham and Parmee's Six-dimensional Function showing Three 
Local Regions of High Performance 

$G E [O, 1.51, otherwise the point is classified as Low. By combining local 
regions of high performance, as shown in Table 2, an environment of eighteen 
unique regions of globally high performance are defined, that is, three local 
high performance regions in Plane 1, two in Plane 2 and three in Plane 3. In 
fact, Sect. 8 presents an analysis of a selection of results for this environment 
emphasising its decomposable nature. 

The XCSR system was trained using a single 12000 sample point training 
data-set (not shown) generated from a HSL sequence which is re-balanced 
using the approach suggested by Ling and Li [21] with a predefined multiple 
of n = 32. The new data-set consists of 11968 sample points, that is, within 
3% of the original size. The system was tested using a data-set generated from 
a uniform random distribution with 1693 sample points of which 813 points 
are defined as High. The test data-set is manipulated to include sample points 
from both classifications near to the classification decision boundaries as was 
the case in the two-dimensional test environment. 

In general, Table 3 shows no significant difference in performance between 
"focal rule" identification approaches except where the standard deviation fig- 
ure is high. However, there is a statistically significant difference (> 97.5%) 
between Acc~rate(,,~.~) and the other approaches as well as between Ac- 
c~ra te ( ,=~ .~)  and Most Numerate. The memetic learning appears to provide 
little or no advantage in performance over the non-memetic system except for 
a slight degradation when Action Set Subsumption is turned off. This degrada- 
tion is statistically significant (> 95%). Figures 14 and 15 show a comparison 
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Table 2. Eighteen Unique Regions of Globally High Performance (HPR,,,i,,) based 
on the Six-dimensional Test Function 

Plane 1 Plane 2 Plane 3 

6) 
(i) 
6) 
(9 
(9 
(9 
(ii) 
(ii) 
(ii) 
(ii) 
(ii) 
(ii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 

(9 
(ii) 
(iii) 

(i) 
(ii) 
(iii) 

6) 
(ii) 
(iii) 

(9 
(ii) 
(iii) 

6) 
(ii) 
(iii) 

(i) 
(ii) 
(iii) 

of performance between a memetic learning and non-memetic system where 
both system have Action Set Subsumption turned off. It is clear from the figure 
that there is little difference between these systems for the given parameters 
settings. 

Results also show that there is no clear difference in performance between 
using and not using the Simplified Learning Scheme. However, there seems to 
be the potential for further increases in learning speed when using the Sim- 
plified Learning Scheme as shown in Figs. 16 and 17, where Action Set Sub- 
sumption was also used. It  is clear from the figure that the Simplified Learning 
Scheme does provide the same level of performance some 25000-30000 exploit 
trials quicker than the standard scheme. Given that the speed-up was not ap- 
parent in the simpler two-dimensional test environment, this provides some 
strength to an argument put forth in [8] in which it was hypothesized that 
the Simplified Learning Scheme may have a greater effect on performance as 
the complexity of the test environment increases. 

In order to qualify for update, a rule must have been a member of a suf- 
ficient number of previous Action Sets, that is, the rule is expected to have 
been updated enough times to show its true potential. Given the similarities 
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Table 3. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Six-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 with No AS-Subsumption 

1 1  I 

- Accuracy - - - -Sensitivity -Specificity 

Fig. 14. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Acc~rate(,=~.~) Yocal rule" identification approach 
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No Memetic Learning 

4 
0 50000 100000 150000 200000 25000 

Exploitlrials 

I A c c u r a c y  - - - . Sensitivity -Specificity 

Fig. 15. Classification Accuracy for XCSR without Action Set Subsumption 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and No Simplified Learning Scheme 

1 ,  I 

I -Learning Speed - System Error - % Macro-Rules I 

Fig. 16. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and without Simplified Learning Scheme using the Acc~rate(,,~.~) "focal rule" 
identification approach 
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Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Simplified Learning Scheme 

1 ,  I 

[ -Learning Speed -System Error - % Macro-Rules 1 

Fig. 17. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and with Simplified Learning Scheme using the A c c ~ r a t e ( , , ~ , ~ )  "focal rule" 
identification approach 

in nature between the subsumption operator and the memetic learning sug- 
gested in this study, the update qualification value, J, has been fixed at  20 to 
this point. However, there was some evidence in [8] and [34] that permitting 
initially weaker rules enough time to show their true potential by reducing 
the early domination of more numerate rules in a given Action Set can lead 
to improvements. Based on this insight, another set of experiments was per- 
formed using the Ac~urate(,,~.~) "focal rule" identification approach where 
the threshold for update qualification varies between 20 and 200. The choice 
of identification approach was somewhat arbitrary given the results in Table 3 
above. 

It  is clear from the result of these experiments, shown in Table 4, that 
a small improvement can be made in performance when J = 50 or J = 100, 
except for any highly variant results. In fact, this effect is statistically signifi- 
cant a t  the level of > 95% for differences between J = 20 and J = 50. There 
is also significant difference (> 95%) in performance between those systems 
using the Simplified Learning Scheme with and without Action Set Subsump- 
tion. It should be noted that those settings of J greater than 100 lead to a 
performance that is not statistically different from the original settings of J 
= 20. 

On closer examination, the differences in performance for those systems 
using the memetic learning but with Action Set Subsumption turned off, as 
shown in Table 3, are mitigated by the alteration of the threshold J, as shown 
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Table 4. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Six-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

in Table 4. That is to  say that when the qualification threshold is between 
50 and 100 for systems with Action Set Subsumption turned off, performance 
is comparable with a standard non-memetic system. Figures 18-21 illustrate 
this effect and also show that the number of rules required to  achieve this level 
of performance is some 20% larger in the case of the memetic learning version 
of the system. This is likely to  be one side effect of performing a Widrow-Hoff 
update on the qualifying members of a given Action Set, that is, there may 
be several rules in the rule-base with almost identical <condition > parts but 
which cannot be subsumed in the normal manner. 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Qualification Threshold of 50 

1 1  

0 50000 100000 150000 200000 25000C 

ExploitTrials 

- Accuracy - - - -Sensitivity -Specificity 

Fig. 18. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Accurate(,~o.l,+50) "focal rule" identification approach 
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I No Memetic Learning 

o 4 
0 50000 1 OOOM) 150000 200000 250001 

ExploitTrials 

-Accuracy - - - .Sensitivity -Specificity 

Fig. 19. Classification Accuracy for XCSR without Action Set Subsumption 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate ofO.1 and Qualification Threshold of50 

1 ,  

0 50000 I00000 150000 200000 25000[ 
ExploitTrials 

I -Learning Speed - System Error - % Macro-Rules I 

Fig. 20. Learning Speed and System Error for mXCSR without Action Set Sub- 
sumption using the Acc~rate(,,~.~,~,~o) "focal rule" identification approach 
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No Memetic Learning 

I -Learning Speed - System Error - % Macro-Rules 1 

Fig. 21. Learning Speed and System Error for XCSR without Action Set Subsump- 
tion 

7 Self-Adaptive Memetic Learning 

Self-adaptation was suggested as beneficial for Genetic Algorithms in [I] where 
the author investigated the use of a technique for adapting the GA's mutation 
rate in a time-dependant and decentralised way. One advantage of using this 
technique is that the external global rate becomes an internal time-dependant 
rate, that is, there is a reduction in the number of parameters that require 
careful, possibly problem-dependant, setting by the user. Given this study, the 
investigation of a self-adaptive learning mechanism presented here focuses on 
the benefits of using this technique to adjust the Widrow-Hoff learning rate 
used within the memetic learning component of the new system. It is hoped 
that providing the classifier system with this capability will allow positive 
selective pressure toward a learning rate that is in proportion to the degree 
of solution convergence aiding both learning speed and solution quality in the 
process. 

The self-adaptation is implemented by adding an extra real-coded gene to 
each rule in the population of the classifier system representing that partic- 
ular rule's Widrow-Hoff learning rate. The approach used is similar to that 
presented in [I] except that the gene is affected by the mutation operator 
in the same way as the other genes, plus it is not included in the Widrow- 
Hoff update. Learning rates are initially assigned a random value in the range 
[O.O, 1.01. 
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This section has been divided into two subsections, that is, results for the 
two-dimensional and six-dimensional test environments, respectively. 

7.1 Two-dimensional Test Environment 

The results shown in Sect. 5 suggest that, under certain circumstances, the 
Acc~rate(,,~,~) "focal rule7' identification approach provides the best level of 
performance and as such it has been used for the following set of experiments. 
In particular, four self-adaptive versions of the system (with and without 
Action Set Subsumption and Simplified Learning Scheme) are compared with 
the same non-adaptive versions (77 fixed a t  0.1). 

Table 5. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Two-dimensional Test Environment 

With AS-Sub Without AS-Sub 

Table 5 shows a clear degradation in performance, of around 16%, for 
the self-adaptive versions when Action Set Subsumption is turned on. In fact, 
this difference is statistically significant at  the level of greater than 99.9%. 
However, the table also shows that when Action Set Subsumption is turned 
off there is an improvement of between 0.7% and 2.8% for the self-adaptive 
versions of the system. This difference is statistically significant at  the level 
of greater than 95%. Figures 22 and 23 shows a comparison of performance 
between self-adaptive and non-adaptive versions of the system where Action 
Set Subsumption is turned off and the Simplified Learning Scheme is not used. 
This comparison provides some evidence of the degree of convergence shown 
by both versions of the system and, in particular, how that level is greater 
in the self-adaptive version. Another apparent advantage of using the self- 
adaptive technique is an increase in generalisation as indicated by fall in % 
Macro-Rules during the experiment as seen in Figs. 24 and 25. 

Finally, Fig. 26 shows the average learning rate for all four self-adaptive 
versions of the system, that is, with and without both Action Set Subsumption 
and Simplified Learning Scheme. This figure clearly shows that average learn- 
ing rates are very noisy when Action Set Subsumption is turned on, but that 
the average learning rates for the other two systems have much in common 
with both the falling % Macro-Rules and rising degree of convergence, that 
is, positive selective pressure toward lower learning rates for systems without 
Action Set Subsumption exists. 
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Using Accurate "Focal Rule" Identification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 

I 

ExploitTnals 

-Accuracy - - - -Sensitivity -Specificity 

Fig. 22. Classification Accuracy for mXCSR without Action Set Subsumption us- 
ing the Accurate "focal rule" identification approach with Self-Adaptive Memetic 
Learning 

Using Accurate "Focal Rule" Identification Approach, 
Learning Rate of 0.1 and Qualification Threshold of 20 

- 
- - _ _ _ _ _ _ - - - - - - - - - - - - - -  

ExploitTnals 

-Accuracy - - - -Sensitivity -Specificity 

Fig. 23. Classification Accuracy for mXCSR without Action Set Subsumption using 
the Acc~rate(,,~.~) "focal rule" identification approach 
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Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 

1 

I 0.8 
UI 
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P 0.6 p 
Q 
U) z 0.4 

.E 
8 
-I 
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) -Learning Speed - System Error - % Macro-Rules 1 

Fig. 24. Learning Speed and System Error for mXCSR without Action Set Sub- 
sumption using the Accurate "focal rule" identification approach with Self-Adaptive 
Memetic Learning 

Using Accurate "Focal Rule" ldentification Approach, 
Learning Rate ofO.1 and Qualification Threshold of20 

I -Learning Speed -System Error - '10 Macro-Rules 1 

Fig. 25. Learning Speed and System Error for mXCSR without Action Set Sub- 
sumption using the Acc~ra te ( , ,~ .~~  "focal rule" identification approach 
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Using Accurate "Focal Rule" Identification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 

Fig. 26. Self-Adaptive Learning Rates for mXCSR with and without Action Set 
Subsumption and Simplified Learning Scheme using the Accurate "focal rule" iden- 
tification approach 

7.2 Six-dimensional Test Environment 

Although results from using the Acc~rate(,,~.~) "focal rule" identification ap- 
proach in the six-dimensional test environment were less clear than was the 
case in the two-dimensional environment, this identification approach is used 
throughout this subsection. It  is hoped that using this approach together with 
the use of two different update qualification values, J = 20 and J = 50, will 
provide a consistent picture of the effectiveness of the self-adaptive approach. 
In this subsection, eight self-adaptive versions of the system (with and with- 
out Action Set Subsumption and Simplified Learning Scheme for two different 
update qualification values) are compared with the same non-adaptive ver- 
sions. 

Table 6 presents results for both update qualification values. It  is clear 
from the results that improvements in performance have been made for all 
but two of the self-adaptive versions of the system. In fact, the improvements 
shown for three of the four systems using J = 20 are statistically significant 
at  the level of greater than 95% and, in particular, a t  a level greater than 
97.5% for the two systems using the Simplified Learning Scheme. Although 
the other four systems using J = 50 do not show significant improvements, 
they do provide evidence of the robustness of the self-adaptive technique, that 
is, there is no significant degradation in performance even when changes to 
other sensitive parameters (such as J) are made. 
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Table 6. Classification Accuracy on Test Data for Several Different Versions of 
XCSR when applied to a Six-dimensional Test Environment 

With AS-Sub Without AS-Sub 

mXCSR smXCSR mXCSR smXCSR 

Figures 27 and 28 show a comparison of performance between self-adaptive 
and non-adaptive versions of the system ([ = 20) where Action Set Subsump- 
tion is turned on and the Simplified Learning Scheme is not used. The in- 
crease in generalisation as well as in the degree of convergence seen in the 
two-dimensional test environment is also evident here - although the mag- 
nitudes of both are reduced. It is also clear from Figs. 29 and 30 that there 
is some evidence of a speed-up in learning when using the self-adaptive ver- 
sion of the system, where the adaptive system reaches an accuracy of 0.8 
at  around 20000 exploit trials earlier than the non-adaptive version of the 
system. Results for the self-adaptive version of the system using an update 
qualification value of 50 (not shown) do not indicate any learning speed-up 
nor do they show an increase in generalisation, although there is evidence of 
a greater degree of convergence during the last 20000-30000 exploit trials of 
the experimental run. 

Figure 31 shows the average learning rate for four self-adaptive ([ = 20) 
versions of the system, that is, with and without both Action Set Subsumption 
and Simplified Learning Scheme. This figure clearly shows a positive selective 
pressure for lower average learning rates after an initial period of around 50000 
exploit trials. The initial period of static average learning rate is linked to the 
effects of the covering operator and the way it initialises the learning rates of 
newly generated rules uniformly in the interval [0.0,1.0] leading to an average 
learning rate of 0.5. 

Figure 32 shows the average learning rate for four self-adaptive ([ = 50) 
versions of the system. This figure shows that there is little positive selective 
pressure for lower average learning rates. The reason for this lack of selective 
pressure may be a result of the increasing the delay before the memetic learn- 
ing is applied thereby providing evolution with less opportunity to test a rule's 
learning rate. A simple experiment was performed to see if there was selective 
pressure toward a higher average learning rate, that is, initial learning rates 
were restricted to the interval [0.0,0.2]. Results (not shown) indicate that 
there is little selective pressure even when the interval is restricted providing 
some evidence to support the hypothesis given above. 
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Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of20 

4 
0 50000 I00000 150000 200000 25000( 

ExploitTrials 

- Accuracy . - - -Sensitivity -Specificity 

Fig. 27. Classification Accuracy for mXCSR with Action Set Subsumption and with- 
out Simplified Learning Scheme using the Accurate(~,zn~ "focal rule" identification ,, --, 
approach with self-~daptive ~ e m e t c  Learning 

Using Accurate "Focal Rule" ldentification Approach, 
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Fig. 28. Classification Accuracy for mXCSR with Action Set Subsumption and 
without Simplified Learning Scheme using the A c c u ~ t e ( ~ , ~ , ~ , ~ , ~ ~ )  "focal rule" iden- 
tification approach 
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Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 

0 50000 100000 150000 200000 250001 
ExploitTrials 

I -Learning Speed -System Error - O/O Macro-Rules 1 

Fig. 29. Learning Speed and System Error for mXCSR with Action Set Subsump- 
tion and without Simplified Learning Scheme using the Accu~-ate(~,~~) LLfocal rule'' 
identification approach with Self-Adaptive Memetic Learning 

Using Accurate "Focal Rule" ldentification Approach, 
Learning Rate ofO.1 and Qualification Threshold of20 

1 ,  I 

0 50000 100000 150000 200000 25000 
ExploitTrials 

I -Learning Speed - System Error - % Macro-Rules 1 

Fig. 30. Learning Speed and System Error for mXCSR with Action Set Subsumption 
and without Simplified Learning Scheme using the A c c ~ r a t e ( ~ = ~ . ~ , ~ = 2 ~ )  "focal rule" 
identification approach 
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Using Accurate "Focal Rulen Identification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 20 
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Fig. 31. Self-Adaptive Learning Rates for mXCSR with and without Action Set 
Subsumption and Simplified Learning Scheme using the A c c ~ r a t e ( ~ = ~ ~ )  "focal rule" 
identification approach 

Using Accurate "Focal Rule" ldentification Approach, Self- 
Adaptive Learning Rate and Qualification Threshold of 50 

o !  I 
0 50000 I00000 150000 200000 250000 

ExploitTrials 

I -AS - AS + sXCSR - NO AS -----NO AS + sXCSR I 

Fig. 32. Self-Adaptive Learning Rates for mXCSR with and without Action Set 
Subsumption and Simplified Learning Scheme using the A ~ c u r a t e ( ~ = ~ ~ )  "focal rule" 
identification approach 
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8 Decomposing the Six-dimensional Test Environment 

The six-dimensional test environment used in this study is defined by the 
additive effect of three different two-dimensional planes, shown in Figs. 11- 
13, allowing detailed analysis of experimental results that would otherwise be 
non-trivial for a non-decomposable six-dimensional function. By combining 
local regions of high performance, as shown in Table 2, an environment of 
eighteen unique regions of globally high performance is defined. 

Table 7 shows the classification accuracy of twelve different versions of the 
system (J = 20) that include those systems with and without memetic or self- 
adaptive memetic learning, termed Memetic, Non-Memetic and Self-Adaptive 
Memetic (or SA-Memetic) accordingly. Comparisons between these systems 
show that for all parameter settings the SA-Memetic version is statistically 
equivalent to the strongest of the Non-Memetic and Memetic versions of the 
system and is significantly (> 95%) better in 1 or 2 regions. 

It is clear from the results that the performance of the system in each of the 
eighteen regions is at  least 60% (except for 5 regions in Table 7) and for many 
regions performance is greater than 70%. Figure 33 represents an overview of 
Table 7 with respect to the number of regions falling into the performance 
intervals [0%, 70%] and [70%, loo%] for the Memetic, Non-Memetic and SA- 
Memetic versions of the system. It is clear from Fig. 33 that in terms of 
performance across the regions that the SA-Memetic version outperforms the 
other two versions and it is also clear that the number of regions above 70% 
performance rises from Non-Memetic through Memetic to SA-Memetic. 

9 Conclusion 

The motivation for this work was to investigate the effects of applying a 
memetic learning paradigm to the normal operations of the XCSR classifier 
system. Previous work showed how the classifier system is able to describe 
high performance regions in a design-oriented environment. It was hoped that 
the new memetic learning method would provide results that were at least 
comparable with the original system. In fact, the new method showed clear 
improvements for some parameter combinations in the two test environments 
studied here. 

Results for the two-dimensional test environment show a clear improve- 
ment in performance for those parameter combinations that have Action Set 
Subsumption turned on and the system is still performing at a significantly 
higher level when Action Set Subsumption is turned off. Results for this en- 
vironment highlighted a clear statistically significant improvement (> 99%) 
in performance for Ac~urate(,,~.~) over the other two approaches when Ac- 
tion Set Subsumption is turned on and only slightly weaker performance when 
turned off. The Ac~urate(,=~.~) "focal rule" identification approach appears 
to be the best one for this test environment. However, the Simplified Learning 
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Performance Interval Counts for 
Different Versions of the System 

below 70% above 70% 

Performance 

Fig. 33. Performance Interval Counts for Memetic, Non-Memetic and SA-Memetic 
Systems ( E  = 20) 

Scheme appeared to degrade performance when Action Set Subsumption was 
used as well as failing to provide any increases in learning speed. 

For the more complex six-dimensional test environment, the memetic 
learning appears to provide little or no advantage to performance over the 
non-memetic system except for a slight degradation when Action Set Sub- 
sumption is turned off. However, the memetic learning approach does provide 
a clear learning speed-up of some 25000-30000 exploit trials over non-memetic 
learning when the Simplified Learning Scheme is used. It  is clear that any po- 
tential increase in learning speed must be balanced with a potential decrease 
in performance for a given problem. 

Another important result was seen when the update qualification value, J, 
was allowed to vary between 20 and 200 in experiments on the six-dimensional 
test environment. Results showed that a small, but statistically significant 
(> 95%) improvement can be made in performance when J = 50. In fact, 
differences in performance for those systems with Action Set Subsumption 
turned off, discussed above, are mitigated by the alteration of the threshold 
6 to 50. 

The study also considered the use of a self-adaptive learning mechanism 
for adjusting the Widrow-Hoff learning rate used in the memetic learning. 
The mechanism was applied to both test environments. Results for the two- 
dimensional test environment showed that although performance varies (de- 
pending on Action Set Subsumption) there is clear evidence of increased gen- 
eralisation as well as solution convergence when the self-adaptive technique is 
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used. Results for the six-dimensional test environment also showed evidence 
of increased generalisation and solution convergence in addition to a learning 
speed-up of some 20000 exploit trials. One disadvantage of using the memetic 
learning approach is an increase in rule-set size. This is clearly at  odds with 
the requirement for a compact rule-set. However, using the self-adaptive mech- 
anism seems to reverse the bloating effects of the standard memetic learning 
approach on rule-set size for both test environments. 

Finally, experimental results for the decomposable six-dimensional test 
function were analysed region by region. Three different versions of the 
classifier system, Non-Memetic, Memetic and Self-Adaptive Memetic, were 
compared clearly showing that for all parameter settings the Self-Adaptive 
Memetic version is statistically equivalent to the strongest of the Non-Memetic 
and Memetic versions and is significantly (> 95%) better in 1 or 2 regions. 
It  was also shown that the Self-Adaptive Memetic version outperformed the 
other two by simply counting the number of regions for which each version 
achieved 70% or greater performance. 

10 Mathematical Description of Test Environments 

This section defines several related equations that can be used to define the 
two and six dimensional test environments used in this study. In order to es- 
timate the fitness of a given sample point, a vector of real values is needed, 
where each value is within some pre-defined interval. For the two dimensional 
test environment, XI,  x2 E [--6.0,6.0], and for the six dimensional test envi- 
ronment, a .  . . f E [O.O, 1.01. 

10.1 Two-dimensional Test Environment 

The two-dimensional test environment is the multi-modal modified Himmel- 
blau function defined by the equation: 

10.2 Six-dimensional Test Environment 

The six-dimensional test environment is defined by the additive effect of three 
different two-dimensional planes. Each plane has an associated "local" fitness 
value and the "global" fitness value of the six-dimensional function is defined 
by adding each of these "local" fitness values together: 
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Plane 1 

Plane 2 

~6 = max 
{Z4 -0: 

if (C < 0.5) AND (d > 0.5) 

otherwise 

if ( C  > 0.5) AND (d < 0.5) 

otherwise 

0.0 if (C < 0.5) AND (d < 0.5) { 0.35 
(0.75-c)' + (0.75-d)' + 

otherwise 
0.09 0.09 
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0.0 if ( C  > 0.5) AND (d  > 0.5) 
210 = 0.35 

( 0 . 2 5 - ~ ) ~  (0 25-d)2  
otherwise 

0.09 +*+' 

Plane 3 

21 = min 0.5 

1.8e2 + 3 f 2  

0.0 if ( e  > 0.6) O R  (f > 0.5) 

zl otherwise 

0.625 f if ( f  < 0.8) 

0.5 if ( f  2 0.8) AND ( f  < 0.85) 

if ( f  2 0.85) 

z3 if ( e  > 0.6) 

0.0 otherwise 

25 = min 
{o: 

26 = min 
0.5 

1.5(0.6 - e )  x 2.5(f  - 0.5) 

z7 = { 26 if ( e  5 0.6) AND ( f  > 0.5) 

0.0 otherwise 
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