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Summary. The concept of optimization-finding the extrema of a function that 
maps candidate 'solutions' to scalar values of 'quality'-is an extremely general and 
useful idea that can be, and is, applied to innumerable problems in science, industry, 
and commerce. However, the vast majority of 'real' optimization problems, whatever 
their origins, comprise more than one objective; that is to say, 'quality' is actually 
a vector, which may be composed of such distinct attributes as cost, performance, 
profit, environmental impact, and so forth, which are often in mutual conflict. Until 
relatively recently this uncomfortable truth has been (wilfully?) overlooked in the 
sciences dealing with optimization, but now, increasingly, the idea of multiobjectiue 
optimization is taking over the centre ground. Multiobjective optimization takes se- 
riously the fact that in most problems the different components that describe the 
quality of a candidate solution cannot be lumped together into one representative, 
overall measure, a t  least not easily, and not before some understanding of the pos- 
sible 'tradeoffs' available has been established. Hence a multiobjective optimization 
algorithm is one which deals directly with a vector objective function and seeks to 
find multiple solutions offering different, optimal tradeoffs of the multiple objectives. 
This approach raises several unique issues in optimization algorithm design, which 
we consider in this article, with a particular focus on memetic algorithms (MAS). We 
summarize much of the relevant literature, attempting to be inclusive of relatively 
unexplored ideas, highlight the most important considerations for the design of mul- 
tiobjective MAS, and finally outline our visions for future research in this exciting 
area. 

1 Introduction 

Many important problems arising in science, industry and commerce fall very 
neatly into the ready-made category of optimization problems; that is to say, 
these problems are solved if we can simply find a 'solution' that maximizes 
or minimizes some important and measurable property or attribute, such as 
cost or profit. For example, we might want to find the set of routes that 
minimizes the distance travelled by a fleet of delivery lorries; or to find the 
tertiary structure of a trans-membrane protein that minimizes its free energy; 



314 Joshua Knowles and David Come 

or to find the portfolio of stocks that maximizes the expected profit over the 
forthcoming year. Of course, solving these problems exactly might be very dif- 
ficult or impossible in practice, but by applying one of numerous optimization 
algorithms-memetic algorithms (MAS) being one very flexible and successful 
possibility-very good solutions can often be found. 

However, there is a caveat: maximizing or minimizing a single, lone at- 
tribute can, in many cases, be a very bad thing to do. Consider designing 
a car with the single objective of minimizing its weight: other desirable at- 
tributes like safety, comfort, and capacity would be severely compromised as 
a result. And so it is in many other generic problems: maximizing profit often 
leads to compromises in environmental impact or customer satisfaction; min- 
imizing production costs often leads to decreased reliability; and minimizing 
planned time to completion of a project often leads to soaring costs for over- 
running. Thus, it is easy to appreciate that most 'real' optimization problems 
involve optimizing, simultaneously, more than one single attribute. 

Now, given that most problems are as we've described-'multiobjective' in 
nature-, what are the options for tackling them? There are basically three: 
(1) ignore some of the attributes entirely and just optimize one that looks 
most important; (2) lump all the objectives together by just adding them 
up or multiplying them together and then optimize the resulting function; 
or (3) apply a multiobjective algorithm that seeks to find all the solutions 
that are nondominated (we define this later but, roughly speaking, nondom- 
inated solutions are those that are optimal under some/any reasonable way 
of combining the different objective functions into a single one). The first and 
second options are very common and the third less so. However, (3) is rapidly 
gaining popularity as it is more and more understood that (1) and (2) can 
be very damaging in practice-solving the problem might be very satisfying 
to the algorithm or MA practitioner, but the resulting solution may be far 
from optimal when it is applied back in the real world. Thus, in this chapter, 
we will argue that option (3)-seeking multiple, distinct solutions to a prob- 
lem, conferring different tradeoffs of the objectives,-is the essence of true 
multiobjective optimization (MOO). 

Doing true multiobjective optimization with memetic algorithms requires 
a few salient adaptations to the normal design principles. Clearly, since we 
need to find multiple, distinct solutions, the design of multiobjective MAS will 
be heavily affected by the need to encourage and preserve diversity. Indeed, 
much of the research in evolutionary algorithms (EAs) for MOO has concerned 
itself primarily with this issue, but with MAS the use of local search introduces 
further complications for achieving diversity that must be resolved. 

The goal of finding multiple solutions also dictates that the MA incor- 
porate some means of storing the best solutions discovered. While MAS are 
already endowed with a population, some research in EAs for MOO has found 
that methods that exploit secondary populations, or archives, seem to per- 
form better than single-population approaches, and elitism based on archives 
appears to be particularly effective in improving search capability. Thus, ques- 
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tions about how to control and use multiple populations (or non-fixed size 
populations) are somewhat more relevant and pressing in MOO than they are 
in 'normal' optimization. 

A second key distinction of MOO, closely related to the need for multiple 
solutions, is the inherent partial ordering of solutions in terms of their overall 
quality, which characterises MOO. This impacts on many aspects of search 
and how it should be conducted. In particular, the simple comparison of two 
solutions is fraught with difficulties. Local search, which relies upon such com- 
parisons being made, must be re-defined in some way, and there are several 
competing possibilities. 

There are also innumerable possibilities concerning the overall organization 
of the search-how the set of tradeoff solutions (the nondominated set) is to be 
built up, over time. Very coarsely, should we try to sweep across the objective 
space from one 'edge' t o  the other, i.e. improving one combination of objectives 
at  a time, or should we more try to push the entire 'surface' down in parallel, 
improving the whole currently nondominated set at  once? In either case, what 
is the best way to exploit the population(s) and the different local searchers 
at  our disposal? 

In the remainder of this article, we will try to fill the reader in on the core 
issues we have but sketched here, mapping out the little that is known and 
has been tried so far, and speculating about where further research may be 
most fruitful. In section 2, some MOO applications are outlined to give some 
idea of their range and differing characteristics. The mathematical definition 
of the MOO problem is then given, and Pareto optimization is described. 
Section 3 visits a large number of metaheuristics for MOO and identifies 
concepts and strategies that, we suggest, may be useful as components in 
a memetic algorithm. In section 4, we elaborate on other issues in MOO 
research that may impact on the design and application of multiobjective 
MAS, including how to measure performance, how multiple populations can 
be used, and available test functions. Section 5 provides a focused review of 
existing MAS for MOO, while section 6 proposes some principles for designing 
more advanced MAS. The last section considers future research directions and 
gives some recommendations for immediate investigation. 

2 A Brief Introduction to MOO 

2.1 MAS and MOO: a good combination 

The impressive record of memetic algorithms in producing high quality so- 
lutions in combinatorial optimization and in real-world applications (e.g. see 
page 220 [18]) is sometimes cited as a testament to their inherent effective- 
ness or robustness as black-box searchers. However, since the advent of the No 
Free Lunch theorems [log, 19, 211, we know that MAS, like any other search 
algorithm, are only really good to the extent to which they can be 'aligned' 
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to the specific features of an optimization problem. Nonetheless, MAS, like 
their forebears, EAs, do have one unassailable advantage over other more tra- 
ditional search techniques: that is their flexibility. EAs and MAS impose no 
requirement for a problem to be formulated in a particular constraint lan- 
guage, and do not ask for the function to be differentiable, continuous, linear, 
separable, or of any particular data-type. Rather, they can be applied to any 
problem for which the following are available: (1) some (almost) any way to 
encode a candidate solution to the problem, and (2) some means of computing 
the quality of any such encoded solution-the so-called objective function. 

This flexibility has important advantages. As has been observed in [83], 
there are basically two ways to solve optimization problems: one is to choose 
some traditional technique and then simplify or otherwise alter the problem 
formulation to allow the problem to be tackled using the chosen technique; 
the other is to leave the problem formulation in its original form and use an 
EA, MA, or other metaheuristic. Clearly, the latter is preferable because the 
answer one arrives at  is (at least) to  the right question, not to a question 
which may have been distorted (perhaps so much so as to be irrelevant to 
the real question), simply to fit in with the requirements of a chosen search 
method. 

In [19], the advantages of 'leaving the problem alone' (and applying a 
flexible search technique) was reiterated and used to make a further, com- 
pelling point. How often are optimization problems in the real world (or from 
real-world origins) squeezed and stretched into the strait-jacket of a single- 
objective formulation, when their natural formulation is to have multiple ob- 
jectives? Doesn't the same observation of [83] apply in this case, too? What 
is the effect of throwing away objectives or of combining them together as a 
weighted, linear sum, as is so often done? If we are to believe the EA/MA 
mantra about tackling problems in their original formulation, shouldn't we be 
tackling multiobjective problems in the same way? 

Of course, the answer is that we should. And there are two reasons: (1) 
simplifying a problem does change it irrevocably and make it irrelevant in 
many cases, and (2) with EAs, including MAS, we have the capability to 
tackle multiobjective problems in their native form and indeed the cost of 
doing so is demonstrably not high. 

2.2 Some example MOO problems 

One could argue that engineering is the art of finding the good compromise; 
and indeed many problems encountered in engineering do have multiple and 
distinct objectives. Fortunately, we are now gradually seeing that the op- 
timization problems being formulated in various engineering sub-disciplines 
are respecting the multiobjective nature of the underlying problem. For ex- 
ample, civil engineering tasks such as designing water networks are being 
seen as multiobjective optimization problems [48, 13, 14, 151, as is power 
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distribution [3, 4, 6, 791, and various telecommunications network optimiza- 
tion tasks [73, 721. And, at  the other end of the engineering spectrum, 
the design of various types of controllers has been aided by such an ap- 
proach [2, 8, 104, 24, 38, 411 for some years now. 

Scheduling and timetabling are two huge classes of planning problem that 
can involve a multitude of different objectives. In scheduling, problems tackled 
in the academic literature often consider only one objective: minimizing the 
makespan-the total time needed to complete all jobs. However, the reality of 
scheduling in factories, space programmes, engineering projects and so forth 
is far more complex. Reducing the makespan is undoubtedly one objective 
but other important ones are mean and total tardiness, mean flow time, mean 
waiting time, and the mean and total completion time. In addition to these 
objectives there are often a number of constraints. If all these constraints are 
modelled as 'hard', the resulting schedules can be brittle and sub-optimal. 
By softening some of these constraints (those which are not really inviolable) 
and treating them as further objectives, great gains can sometimes be made 
for minute sacrifices elsewhere. Frequently, the robustness of a schedule to 
unforeseen changes, such as late arrival times of materials, machine failures 
and so forth, should also be modelled. Making robustness an objective enables 
planners to consider fully the tradeoffs between allowing some slack, versus 
'risking it' and going for the absolutely optimal schedule. 

Much the same can be said for timetabling, particularly with regard to 
constraints. More often than not, timetabling problems are tackled as con- 
straint satisfaction problems in which hard constraints must be satisfied and 
soft constraint violations should be minimized. However, the latter are usu- 
ally just added together, leading to absurd situations, where, for example, the 
optimization algorithm 'chooses' that nineteen students having consecutive 
exams is better than 14 having to get up early one morning, together with 
6 invigilators working through their lunch break! Fortunately, the recogni- 
tion that these problems are multiobjective, and need to be tackled as such, 
is leading to more research in this vein: e.g. [46, 51, 59, 621 in scheduling, 
and [91, 121 in timetabling. 

There are a whole host of other varied MOO applications emerging on a 
more and more frequent basis: from the training of neural networks [I, 11, 11 1, 
931, to various design applications [92, 95, 51, to dealing with the challenges of 
dynamic optimization [110,35]. The short survey presented here scratches but 
the surface, and the reader is directed to [32] and [16] for more comprehensive 
reviews. 

Basic MOO definitions 

An unconstrained multiobjective optimization problem can be formulated as 
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Minimize 

. 
Minimize z1 

Fig. 1. An illustration of a multiobjective optimization problem with a search space 
X ,  a vector fitness function f that maps solutions in X to objective vectors made up 
of two component 'costs' zl and z2 to be minimized. The solid objective vectors are 
nondominated and comprise the Pareto front. The solutions corresponding to these 
points are Pareto optimal. The relation between the three objective vectors A, B,  
a n d C i s A < B < C  

involving k 2 2 different objective functions fi : Rn H R to be minimized 
simultaneously. Note that if fi is to  be maximized, it is equivalent to minimize 
- f i .  

The term "minimize" appears in quotes in (1) to emphasise that the exact 
meaning of the vector minimization must be specified before optimization can 
be performed. That is, we need to specify a binary relation on objective vectors 
in order to form a (partial) ordering of them. Although different possibilities 
exist, in this chapter we will be concerned only with the component-wise order 
relation, which forms the basis for Pareto optimization as defined below (also 
see figure 1). 

Definition 1 The component-wise order relation < is defined as zT < zs H 
zf 5 zf,i = l..k A zr # zS. 

Definition 2 A solution x* E X is called Pare to  opt imal  if there is no 
x E X such that f(x)  < f(x*). If x* is Pareto optimal, z* = f(x*) is called 
(globally) nondominated.  The set of all Pareto optima is called the Pare to  
opt imal  se t ,  and the set of all nondominated objective vectors is called the 
Pare to  front ( P F ) .  Finding an approximation to either the Pareto optimal 
set or the Pareto front is called Pare to  optimization. 
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More generally, Miettinen [84] defines solving a multiobjective problem as 
finding a Pareto optimal solution to (1) that also satisfies a decision maker 
(DM), who knows or understands something more about the problem. Such 
a definition brings into play the science of multi-criteria decision making 
(MCDM), where methods are used to model the preferences of decision mak- 
ers in order to aid them in comparing and choosing solutions. Thus, according 
to this definition, solving a multiobjective problem, involves both search and 
decision making, and to accomplish this, one of three general approaches is 
normally taken: 

1. A priori optimization 
2. A posteriori optimization 
3. Interactive optimization 

In a priori optimization, the decision maker is consulted before search 
and a mathematical model of her preferences is constructed (following one of 
several regimes for this), and used in the search to evaluate all solutions. The 
best solution found, according to the model, is returned and represents the 
outcome of the optimization process with no further input from the DM. The 
drawback with such methods is obvious: decision makers find it very hard 
to give adequate models determining which solutions they prefer, without 
knowing or having any idea what it is possible to attain, and how much one 
objective may have to be sacrificed with respect to others. Furthermore, notice 
that this method, in a sense, places all the additional work associated with 
MOO, firmly with the DM, and leaves the search problem as seen by a search 
algorithm, in much the same form as for normal optimization, i.e. one solution 
must be found and all solutions are comparable (using the DM'S a priori pref- 
erence model). For this reason, we do not consider a priom' optimization any 
further in this article, as standard MAS could be used (or trivially adapted) 
to this case. 

A posteriori optimization approaches the multiobjective problem from the 
reverse angle. First, search is conducted to find the Pareto optimal set (or an 
approximation/representation thereof) and the DM will then choose between 
these alternatives by inspection (with or without using some mathematical 
decision-making aid). The disadvantage (according to 1841) of this approach 
is the difficulty DMs may have in visualizing the different alternatives and 
choosing between them, particularly if a large number have been generated. 
Nonetheless, the problem of decision-making is in our opinion definitely aided 
by knowing something about what solutions are possible. Thus, a posteriori 
methods move at  least some of the work from the DM to the search algorithm, 
which now is given the task of searching for multiple different solutions. Ex- 
actly what solutions the search algorithm finds will depend upon how, inter- 
nally, it evaluates solutions, but it should be oriented towards finding Pareto 
optima. And in order to give the DM what she needs-real alternatives-the 
Pareto optima should not be all in one region of the objective space, but 
should be spread as far and wide as possible. (Being more precise than this is 
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Minimize Minimize 

Fig. 2. Illustration of the drawbacks of scalarizing objectives using the weighted sum 
approach. The figures show a Pareto front and lines of equal cost under a weighted 
sum. In the left figure, A is the optimal solution. A slight change to the weights, 
slightly altering the angle of the isocost lines, as shown in the figure on the right, 
makes C the optimal solution. The nondominated solution B is 'non-supported' - 
not on the convex hull of the Pareto front. Therefore it is not optimal under any 
linear combination of the objectives 

problematic as seen in section 4.1 where we will discuss how to evaluate differ- 
ent approximations to Pareto fronts). In any case, a posteriori optimization is 
the method we advocate in this article, in preference to a priori methods, and 
we assume in the remainder of the article that finding a 'good' approximation 
to the whole Pareto front is the goal of multiobjective optimization, leaving 
decision-making as a separate issue. 

The interactive methods of search combine a priori and a posteriori meth- 
ods in an iterative funnelling of goals, preferences and solutions discovered. 
These methods are probably preferable to a posteriori methods, since they 
limit the choices shown to a DM at  any instant, and focus the search on a 
smaller area. However, we do not make more than a passing reference to them 
in what follows, for two reasons. First, because, so far, relatively little research 
in the EA community has been directed to this general approach, so it is diffi- 
cult to  make judgments or recommendations. And more importantly, because 
effectively, from a search point of view, the problem is still one of finding a 
set of alternatives, albeit reduced in size, and so we can regard it as a special 
case of a posteriori optimization. 

2.3 An overview of methods for generating a Pareto front 

What methods can we use to build up an approximation to the true Pareto 
front (our goal as outlined above)? Leaving aside, for the moment, the finer 
details of the overall algorithm design, the initial question is simply: how 
can any solution be evaluated so that some form of heuristic search can be 
effected? 
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Minimize Minimize 

Minimize z, 

Fig. 3. The figure on the left shows a Pareto front where even a large change in the 
weights of a weighted sum scalarization would result in finding the same solution. 
On the right, the weighted Tchebycheff problem (equation 3) can find non-supported 
Pareto optima, as shown. Here, the reference point is taken as the origin 

There are a great variety of answers possible. One large family of meth- 
ods is to replace (1) with some parameterized single scalarizing function to 
minimize, such as a weighted sum of the objectives: 

where we usually specify Ck wi = 1 and wi 2 0, for i E 1 .h .  Then, by 
varying the weighting parameters wi in some systematic way, a representation 
of the P F  can be built up. The weighted sum is only one possible method 
in this family of scalarizing methods and has some serious drawbacks. Only 
supported solutions-those on the convex hull of the PF-will be generated by 
minimizing the weighted sum. Furthermore, a small change in the weights can 
cause big changes in the objective vectors (see figure 2); while, on the other 
hand, very big changes in the weights may lead to the same or very similar 
vectors (figure 3, left). Other methods in this family that can generate the 
non-supported solutions are possible, e.g. the weighted Tchebycheff problem: 

minimize maxiel..r, [ wil fi(x) - z t  I ] (3) 

where z* is a reference point beyond the ideal point, i.e. each of its compo- 
nents is less than the minimum value possible on the corresponding objective. 
With such a reference point correctly specified, every Pareto optimal solution 
minimizes the function for some particular value of the weights. However, as 
with the weighted sum, in order to achieve an 'even sampling' of the Pareto 
front, care must be taken with how the weights are adjusted. 

Other parameterized scalarizing methods include the epsilon-constraint 
method and achievement scalarizing functions: see [84] for further details. 
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Notice that these methods are suitable for exact algorithms, local searchers 
and so forth, since they effectively transform the problem back into a single- 
objective problem temporarily. So, for MAS, they may well be used as part of 
the overall algorithm. 

With many metaheuristics, particularly traditional EAs, however, it is not 
necessary to have an explicit function to minimize, but only some means 
of estimating relative fitness (as in EA populations) or accepting/rejecting 
neighbour solutions (as in e.g., simulated annealing and tabu search). This 
opens the door to at least two other distinct approaches. One is to consider 
alternately one objective function then another; and there are various ways 
this could be organized (see section 3.5). The other approach is to use some 
form of relative ranking of solutions in terms of Pareto dominance (section 3.1 
and 3.2). The latter is the most favoured approach in the EA community be- 
cause it naturally suits population-based algorithms and avoids the necessity 
of specifying weights, normalizing objectives, and setting reference points. 

In the last section, we discussed the reasons why we will restrict our work- 
ing definition of MOO to be the problem of generating an approximation to 
the entire PF, ignoring methods that seek only a single solution. Following 
this, we went on to outline three general ways in which solutions could be 
evaluated in a search algorithm in order to effect optimization. In this sec- 
tion, we will expand greatly on this outline as we tour a host of metaheuristics 
for MOO. In addition, we will begin to appreciate two other related issues: 
how to build up the Pareto front during search (i.e. how to ensure a spread of 
solutions across it); and how memory of these solutions is organized to exploit 
them during search and/or to store them for presentation at the termination 
of the search process. 

In the following we attempt a fairly broad survey of MOO algorithms 
in order to furnish the reader with a library of 'components' from which 
MAS could be constructed. We cluster different algorithms together in ad-hoc 
categories, as we review them. 

2.4 Non-elitist EAs using dominance ranking 

Goldberg in a short discussion in [44] suggested that multiple objectives could 
be handled in an EA using a ranking procedure to assign relative fitness to 
the individuals in a population, based on their relative Pareto dominance. The 
procedure, known as nondominated sorting, has become one of the bedrocks 
of the whole E M 0 0  field. It is described and depicted in Figure 4. Although 
Goldberg did not implement it himself, it was not long before it gave rise 
to the popular NSGA [loo]. The contemporaneous MOGA, of Fonseca and 
Fleming, [39] uses a slightly different ranking procedure based on counting 
the number of individuals that dominate each member of the population but 
otherwise the idea is very much the same. 

Both NSGA and MOGA also employ fitness sharing [45], a procedure that 
reduces the effective fitness of an individual in relation to the number of other 
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z1 z1 

Nondominated sorting Nondominated ranking 

Fig. 4. On the left, individuals in a population are assigned dummy fitness values 
using Goldberg's nondominated sorting scheme. In this, successive iterations of the 
sorting procedure identify, and remove from further consideration, the nondominated 
set of solutions. A dummy fitness of 1 is assigned to the first set of solutions removed, 
and then fitness 2, and so on, 'peeling off' layers of mutually nondominated solutions. 
On the right, individuals in the same population are assigned fitness values using 
MOGA-style ranking, where fitness is 1+ the number of dominating solutions. Note, 
in both schemes, lower values are associated with greater fitness in the sense of 
reproductive opportunity or survival chances 

individuals that occupy the same 'niche'. In MOO, the niche is often defined 
by the 'distance' of solutions to one another in the objective space, though 
parameter space niching may also be used. Sharing and other methods of 
niching have to be used in dominance-ranking MOEAs in order to encourage 
a spread of solutions in the objective space. Some objective-space niching 
methods are depicted schematically in Figure 5. Both NSGA and MOGA use 
similar methods to convert the shared fitness value to actual reproductive 
opportunity: a ranking-based selection. 

The niched Pareto GA (NPGA) of Horn and Nafpliotis [53] uses, instead, 
tournament selection. In addition to the two individuals competing in each 
tournament, a sample of other individuals is used to estimate the dominance 
rank of the two individuals. In the case of a tie, again, fitness sharing was 
applied. 

These EAs, NSGA, MOGA and NPGA, represent a trio that were tested 
and applied to more problems than any preceding algorithms for MOO, and 
pushed forward immensely the popularity and development of the evolution- 
ary multiobjective optimization (EMOO) field. Most MOEAs today still use 
some form of dominance ranking of solutions, albeit often combined with 
elitism, and some form of niching to encourage diversity. 



324 Joshua Knowles and David Corne 

I 

(a) fitness sharing 

- 
z1 

(b) NSGA-I1 crowding 

(c) grid-based niching (d) E-dominance 

Fig. 5. Schematics depicting the different forms of niching used in various MOEAs 
to encourage diversity in the objective space; nondominated solutions are shown 
solid, and dominated ones are in outline. (a) fitness sharing (as used in NSGA and 
MOGA) reduces the fitness of an individual falling within another's niche (dashed 
circles), the radius being defined explicitly by a parameter. (b) NSGA-I1 crowding 
ranks solutions by measuring the distance of it's nearest nondominated neighbours, 
in each objective. (c) a grid is used in PAES, PESA and PESA-11, to estimate 
crowding: individuals in crowded grid regions have reduced chances of selection. (d) 
in e-dominance archiving, a solution dominates a region just beyond itself, specified 
by the E parameter so that the shaded region is forbidden - thus new nondominated 
solutions very nearby to those shown would not enter the archive 

2.5 Elitist EAs using dominance ranking 

Elitism in the EA terminology means the retention of good parents in the 
population from one generation to the next, to allow them to take part in 
selection and reproduction more than once and across generations. 
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The first multiobjective evolutionary algorithms employing elitism seem 
to have appeared a t  approximately the same time as MOGA, NSGA, and 
NPGA were put forward, around 1993-4 as reviewed in detail in [52]. In some 
elitist MOEAs, the strategy of elitism is combined with the maintenance of 
an 'external population' of solutions that are nondominated among all those 
found so far. Several early schemes are discussed in I1121 but the first elitist 
MOEA paper to be published in the mainstream evolutionary computation 
literature was [94]. In this work, Parks and Miller describe a MOEA that 
maintains an 'archive' of nondominated solutions, similar to a store of all 
nondominated solutions evaluated, but limited in size: members of the main 
population only enter the archive if they are sufficiently dissimilar from any 
already stored. Reproductive selection takes parents from both the main pop- 
ulation and the archive. The authors investigate the effects of different degrees 
of selection from each, and also different strategies for selecting from amongst 
the archive, including how long individuals have remained there. 

At around the same time Zitzler and Thiele proposed what is to date one 
of the most popular of all MOEAs: the strength Pareto EA (SPEA) [113]. 
It uses two populations: an internal population, and an external population 
consisting of a limited number of nondominated solutions. In each generation, 
the external population is updated by two processes: addition of new nondom- 
inated individuals coming from the internal population (with removal of any 
solutions that consequently become dominated); and removal of solutions by 
objective-space clustering, to maintain a bound on the population's size. The 
new internal population is then generated by selection from the union of the 
two populations, and then by applying variation operators. The novelty, and 
perhaps the efficacy, of SPEA derives from the way the internal and exter- 
nal population interact in the fitness assignment step. In this, each external 
population member is first awarded a strength, proportional to the number 
of internal population members it dominates. Then each internal population 
member is assigned a dummy fitness based on the sum of the strengths of 
the external population members that dominate it. Binary tournament selec- 
tion with replacement is used based on the dummy fitness/strengths of the 
combined populations. This fitness assignment strategy is a co-evolutionary 
approach between two distinct populations and its purpose is to bias selection 
towards individuals with a lower dominance rank and that inhabit relatively 
unpopulated 'niches'. The niches in SPEA are governed by the position of the 
nondominated individuals, and these are clustered so should themselves be 
well-distributed. 

Numerous other elitist MOEAs exist in the literature, offering slightly 
differing ways of assigning fitness, choosing from a main population and an 
archive, and encouraging or preserving diversity. Regarding the latter, a trend 
towards self-adaptive niching (see Figure 5) has established itself with SPEA, 
PAES [73], NSGA-I1 [26], and PESA [20], amongst others, to  avoid the ne- 
cessity of setting niche sizes in the objective space, a problem with early 
algorithms such as MOGA and NSGA. Control of the degree of elitism has 
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Fig. 6. Schematics depicting the different strategies employed by different local 
search metaheuristics, as described in section 3.3 

also been investigated, e.g. in [27], and there has also been a trend towards 
lower computationally complexity, as evidenced by PAES, NSGA-I1 and the 
micro-GA 1171. More efficient data structures for ranking and niching avail- 
able now [64] should make the current breed of elitist MOEAs a good starting 
point for designing good MAS for MOO. 

2.6 Local search algorithms using scalarizing functions 

One of the earliest papers on local-search metaheuristics for MOO is [99], 
which proposes and investigates modifications to simulated annealing in order 
to tackle the multiobjective case. A number of alternative acceptance criteria 
are considered, including those based on Pareto dominance, but the preferred 
strategy combines two weight-based scalarizing functions. In order to sam- 
ple different Pareto optima during one run of the algorithm, the weights for 
each objective are slowly modified, at  each fixed temperature, using a purely 
random (non-adaptive) scheme. 

The MOSA method [107] follows Serafini regarding the modification of 
the SA acceptance function, but uses a different approach to building up the 
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approximation to the Pareto set. Where Serafini's approach varied the weights 
of the scalarizing function as the cooling occurred, MOSA method works by 
executing (effectively) separate runs of SA, each run using its own unique 
weight vector, and archiving all of the nondominated solutions found. 

A population-based version of Serafini's SA is proposed and tested in [23]. 
The Pareto simulated annealing algorithm, PSA, performs each step of the 
SA algorithm 'in parallel' on each independent member of a population (N.B. 
the members are not in competition: there is no selection step), and each 
member carries with it its own weighting vector. Of particular note is the fact 
that the members of the population co-operate through an innovative adaptive 
scheme for setting their individual objective weights, in order to achieve a good 
distribution of solutions in the objective space. In this scheme, each member 
of the population continually adjusts its own weight vector to encourage it to 
move away from the nearest neighbour solution in the objective space. 

These three SA algorithms, Serafini's SA, MOSA method, and PSA, il- 
lustrate three different ways to organize the building up of a Pareto front, 
respectively: (1) use a single solution and improve it, letting it drift up and 
down the P F  via the use of randomly changing scalarizing weights; (2) use 
separate, independent runs and improve a single solution towards the PF, 
each run using a unique direction; (3) use a population of solutions and try 
to improve them all in parallel, at the same time encouraging them to spread 
out in the objective space. These alternatives are illustrated respectively in 
Figure 6 (a), (b) , (c) . 

The idea of adaptively setting the weight vectors of individuals in a popu- 
lation, as used in PSA, is also used and extended in a tabu search algorithm, 
called MOTS [49]. In this, an initial population of points is improved in par- 
allel, much as in PSA, but using a tabu search acceptance criterion. MOTS 
has another notable feature of particular relevance to MA design: it uses an 
adaptive population size based on the current nondominance rank of each 
member of the population. When the average of this rank is very low, it indi- 
cates that the members of the population are already well-spread (since few 
dominate each other), so the population size is increased in order to be able 
to cover more of the Pareto front. If the rank becomes too high this indicates 
that solutions are overlapping each other in objective space, and hence the 
population size is decreased-see figure 6(d). 

Most recently, [go] describes a generic local search-based procedure for bi- 
objective problems, the two-phase local search (2PLS). In this approach the 
so-called 'first phase' applies local search to the problem, considering only 
one objective in isolation. When a good local optimum has been found, the 
'second phase' begins. It uses the previous good solution as a starting solution 
for a new local search based on a scalarizing of the two objectives. Once a 
good solution has been found, the weights of scalarization are adjusted and 
the LS is again applied, again using the previous solution as a starting solu- 
tion. Thus, a 'chain' of LS runs is applied, until a specified number of weights 
has been completed and the algorithm terminates (figure 6(e)). Depending 
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on the problem, the weights may be adjusted gradually or randomly. For the 
multiobjective TSP it is shown that gradual changes in the weights leads to 
good performance. In a slight variation to the algorithm, called the Pareto 
double two phase local search (PD2PLS), two first phases are used, one for 
each objective, and subsequently the best solution returned by each LS run 
is augmented using a search for nondominated solutions in its neighbourhood 
(figure 6(f)). This increases the number of nondominated solutions found by 
the algorithm with little overhead in time. Overall, the 2PLS and PD2PLS 
algorithms exhibit high performance on benchmark multiobjective combinato- 
rial optimization problems, and are thus worthy contenders as subroutines for 
use within an MA for MOO, although versions for more than two objectives 
are needed. 

2.7 Model-based searchers using dominance ranking 

Model-based search is a name for a class of algorithms that employ some 
kind of statistical model of the distribution of remembered good solutions in 
order to generate new solutions. They can be seen as a development of EAs, 
in which recombination is replaced by a more statistically unbiased way of 
sampling from the components of known good solutions. Examples of model- 
based search algorithms are population-based incremental learning (PBIL), 
univariate distribution algorithms (UDAs), ant-colony optimization (ACO), 
Bayesian optimization algorithms (BOAs), and linkage-learning EAs. Recently 
a number of attempts at  extending model-based search to the multiobjective 
case have been made, and like most MOEAs, they use the dominance ranking 
(see figure 4) to evaluate solution quality. 

Straddling the middle-ground between a standard EA and a model-based 
search, the messy genetic algorithm, which attempts to learn explicit 'building 
blocks' for crossover to operate with, has been extended to the MOO case with 
the MOMGA and MOMGA-I1 algorithms [108, 1151. 

A step further away from standard, recognisable EAs, are algorithms 
that replace recombination altogether by using instead an explicit proba- 
bility distribution over solution components, in order to generate new so- 
lutions. Several different attempts have been made at  adapting Bayesian 
optimization algorithms (BOAs) and similar variants, to the multiobjective 
case [65, 80, 98, 1061. In the models proposed in [106], it is found that a fac- 
torization based on clusters in the objective space is necessary to obtain a 
good spread across the Pareto front. This results in an algorithm that is quite 
similar to the population-based ACO [47], described below, except that here 
the model is based only on the current population and not on a selection from 
a store of all nondominated solutions. The approach of [80] is a little different: 
instead of a mixture of clustered univariate distributions, a binary decision 
tree is used to model the conditional probabilities of good solution compo- 
nents. In order to encourage this model to generate sufficient diversity in the 
objective space, the selection step is based on +dominance [82] (see figure 5), 
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whereby solutions that are very similar tend to €-dominate each other and 
will not be selected. 

Ant colony optimization [30], is an agent-based search paradigm, partic- 
ularly suited for constrained combinatorial optimization. Briefly, in this ap- 
proach, candidate solutions are constructed 'component by component' by the 
choices made by 'ants' as they walk over a solution construction graph. At 
each step of a solution construction, the components available for the ants 
to select have associated with them a particular desirability, which biases the 
selection. This bias is mediated through the concentration of pheromone on 
the nodes or edges of the construction graph. In the usual implementations 
of ACO, the initially random pheromone levels change gradually via two pro- 
cesses: depositing of pheromone on the components making up a very good 
solution whenever one is found, and evaporation of pheromone, as a forget- 
ting mechanism to remove the influence of older solutions. In population-based 
ACO, no evaporation is used, and instead a population of good solutions is 
always stored. Whenever a solution in the population is replaced by a new 
one, the pheromone trails associated with the old one are entirely removed 
from the construction graph, and the new member of the population deposits 
its pheromone instead. In [47], population-based ACO is adapted to the mul- 
tiobjective case. This is achieved by making use of a store of all nondominated 
solutions found, and periodically choosing a subset of this to act as a tem- 
porary population. Promotion of diversity in the objective space is achieved 
in two ways: (1) the members of a temporary population are selected from 
the nondominated set based on their proximity to one another in the objec- 
tive space (so there is a kind of restricted-mating or island-model effect); and 
(2) each objective has its own pheromone and the selection of components is 
governed by a weighted sum over the different pheromone levels-the weights 
being determined by the location, in objective space, of the current temporary 
population, relative to the entire nondominated set. 

2.8 Algorithms using alternating objective functions 

Schaffer is widely regarded as having started the field of evolutionary mul- 
tiobjective optimization with his seminal paper on the vector evaluated ge- 
netic algorithm (VEGA) [97]. This was a true attempt at the evolution of 
multiple nondominated solutions concurrently in a single EA run, and the 
strategy was aimed at treating possibly non-commensurable objectives. Thus, 
aggregation of objectives was ruled out in favour of a selection procedure that 
treated each objective separately and alternately. As explained in [40], the ap- 
proach is, however, effectively assigning reproduction opportunities (fitness) 
as a weighted linear function of the objective functions, albeit it implicitly 
adapts the weighting to favour the objective which is 'lagging' behind. This 
behaviour means that on problems with concave Pareto fronts, 'speciation' oc- 
curs, meaning that only solutions which do well on a single objective are found, 
while compromise or middling solutions do not tend to survive. Another early 
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approach, this time using evolution strategies (ESs) as the basis, was proposed 
by Kursawe [78]. The paper included some interesting early ideas about how 
to deal with non-commensurable objectives but the algorithm proposed has 
not been tested thoroughly to date. 

Nearly ten years younger than the latter, [102], describes one of the first 
distributed EAs for MOO. It employs three separate but interacting popula- 
tions: a main population and two islands, with the main population accepting 
immigrants from the islands. The performance of three strategies were com- 
pared. One strategy is to use homogeneous populations, each evolving indi- 
viduals using the dominance ranking for fitness assignment. The second is to 
use heterogeneous islands, each evolving individuals to optimize a different 
objective, while the main population is still evolved using dominance ranking. 
The third is the same as the second but restarts are additionally used in the 
island populations. Testing on a number of scheduling problems revealed the 
latter to be consistently and significantly the most effective and efficient of 
the three strategies. 

Gambardellaet al. use a similar kind of heterogeneous, co-operative ap- 
proach in their ant-colony optimization algorithm for a vehicle routing prob- 
lem [42]. The problem tackled has two objectives: to minimize the number of 
vehicles needed to visit a set of customers with particular time window con- 
straints; and to minimize the total time to complete the visits. To achieve this, 
two separate ant colonies work pseudo-independently and in parallel. Starting 
from a heuristically generated feasible solution, one colony attempts to mini- 
mize the number of constraint violations when one fewer vehicle is used than 
in the current best solution, while the other colony attempts to reduce the 
total time, given the current best number of vehicles. Feasible improvements 
made by either colony are used to update the current best solution (which is 
used by both colonies to direct construction of candidate solutions). In the 
case that the colony using one fewer vehicles finds a feasible solution, both 
ant colonies are restarted from scratch, with the reduced number of vehicles. 

2.9 Other approaches 

One MOO approach which stands very much on its own is a method proposed 
in [37]. The originality of the approach lies in the way the whole multiobjec- 
tive optimization problem is viewed. In every other approach outlined above, 
whether it be population-based, model-based, or a local search, it is individ- 
ual solutions that are evaluated, and the fitter ones somehow utilised. By 
contrast, [37] proposes evaluating the whole current population of solutions 
in toto and using this scalar quantity in an acceptance function. For example, 
simulated annealing in this scheme would work by applying some measure 
(and Fleischer proposes the Lebesgue integral of the dominated region - see 
figure 7 )  over a population of current solutions. When a neighbour solution 
of one of the population is generated, it is accepted modulo the change in the 
Lebesgue measure of the whole population. Fleischer points out that since the 
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Fig. 7. The Lebesgue measure (or S metric) of a nondominated approximation set 
is a measure of the hypervolume dominated by it (shaded region), with respect to 
some bounding point (here shown by an X). The maximum of the Lebesgue measure 
corresponds to the Pareto front 

maximum of the Lebesgue integral is the Pareto optimal set (provided the 
number of solutions is large enough), a simulated annealing (for example) op- 
timizing this measure provably converges in probability to the Pareto optimal 
set. 

3 Going Further: Issues and Methods 

We have seen in the last section a variety of metaheuristic approaches to 
MOO, illustrating some of the basic principles of how to assign fitness and 
maintain diverse 'populations' of solutions. These are the basic pre-requisites 
for MAS for MOO, however a number of further issues present themselves. 
In this section we briefly discuss the current thinking on some of these other 
issues. 

3.1 Performance measures in MOO 

If one is developing or using an algorithm for optimization it almost goes 
without saying that there should be some way to measure its performance. 
Indeed, if we are to compare algorithms and improve them we really must 
first be able to define some means of assessing them. In single-objective op- 
timization it is a relatively simple case of measuring the quality of solution 
obtained in fixed time, or alternatively the time taken to obtain fixed quality 
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Minimize Minimize 

Fig. 8. On the left, two sets A and B, where A outperforms B, since every vector in 
B is dominated by at least one in A. On the right, two sets that are incomparable- 
neither is better under the minimal assumptions of Pareto optimization 

- and quality and time can themselves be defined unequivocally in some con- 
venient way. In MOO the situation is the same regarding the time aspect of 
performance assessment but the quality aspect is clearly more difficult. Recall 
that the standard goal of MOO (as far as we are concerned) is to approximate 
the true Pareto optimal set, and hence the outcome of the search is not one 
best solution, but a set of solutions, each of which has not one, but multiple 
dimensions of quality. We call these approximation sets, and it is clear that 
approximation sets cannot be totally ordered by quality, (see figure 8), if we 
remain loyal to the minimal assumptions of Pareto optimization. Nonetheless, 
a partial order of all approximation sets does exist, so it is possible to say that 
one set is better than another for some pairs, while others are incomparable. 

The partial ordering of approximation sets is sometimes unsatisfying be- 
cause it, of itself, does not enable an approximation set to be evaluated in 
isolation. For this reason, practitioners sometimes (often implicitly) adopt an 
ad hoc definition of a 'good approximation set' as one exhibiting one or more 
of: proximity to the true PF; extent in the objective space; and a good or even 
distribution-and use measures for evaluating these properties. The problem 
with such an approach (if not done with great care and thought) is that these 
measures can conflict utterly with the stated goal of approximating the PF. 
This problem is illustrated in Figure 9. 

If one wants to really do Pareto optimization, and needs a unary measure 
of approximation set quality, the fact that there is a true partial ordering 
of all approximation sets (under Pareto optimization assumptions) demands 
that good or reliable measures of quality respect this ordering in some way. 
Using this fact, it is possible to assess how useful and reliable are different 
potential measures of approximation set quality. If a measure can judge an 
approximation set A to be better than B, when the converse is true, for 
some pair of sets A and B, then the measure is, in a sense, unreliable and 
fairly useless. On the other hand if a measure never states that A is better 
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Fig. 9. A Pareto front and three approximation sets, A, B, and C. Depending on 
the measure used A, B, or C might be considered the best, and even better than 
the PF! If a measure of 'well-distributednes' is used B is best, better even than the 
PF. If a measure of proximity to the PF is used, C is best, even though B is just as 
close in parts, and if extent in objective space is measured, A is best 

than B when the reverse is true, then it may be of some use, even if it does 
not detect all positive cases. More useful still, is if it always detects positive 
cases correctly but sometimes judges one set better when they are, in fact, 
incomparable. The ideal situation is when a measure always detects A better 
than B when it is the case, and never gives a false positive, when it is not. 

A plethora of different measures for overall or specific aspects of MOO 
performance are described in the E M 0 0  literature but it is not until rela- 
tively recently that some researchers have begun to critically assess them. 
Most notably, Zitzler et al. [I141 give an extensive treatment of performance 
measures in MOO, using a framework that formalizes the notion of respecting 
the true partial ordering of approximation sets, as described above. A key 
result of [114] is that no unary measure (i.e. one taking just one approxima- 
tion set as input, and returning a number or vector of numbers) whatever, 
including any finite combination of unary measures, can detect reliably when 
one approximation set is better than another, without giving false positives. 
Such results underline the necessity of thinking very hard before selecting 
measures to evaluate performance. For earlier work on the same issue, see 
also [50, 68, 721. 
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3.2 Archiving, multi-populations, and convergence 

In the tour of metaheuristics of section 3 we saw some examples of algorithms 
using secondary populations, archives, and/or populations of non-fixed size. 
The use of such mechanisms seems to be a necessary element of more advanced 
methods for MOO, which aim to build up and store a good approximation to 
the PF. Some of the options for incorporating these elements within existing 
algorithms are summarised below: 

0 Use a main population only: the population is the store (NPGA [53], 
NSGA [loo], NSGA-I1 [26]) 
Use a single-point local search, but keep separately a bounded-sized archive 
of nondominated points found (PAES [73]) 
Use a main and a secondary population - both of fixed size (SPEA [113], 
PESA [20]) 
Use a main population of fixed size and an archive of unbounded size [36] 
(RD-MOGLS [60]) 
Use multiple populations as in an island model [66] 
Have a dynamic main population size [I051 (MOTS [50]) 

With the use of an (unbounded) archive of solutions, an algorithm can 
potentially converge to the (entire) Pareto front. Thus, convergence proofs 
for MOEAs now exist in the literature: Rudolph [96] proved convergence to 
the Pareto front (that is at  least one Pareto optimal solution) for some simple 
multiobjective EAs, and it is possible to prove that the entire Pareto front can 
be enumerated provided an unbounded archive is available. More realistically, 
archives should be bounded in some way. A number of more recent papers have 
been written regarding what can be proved with respect to the convergence 
properties of such bounded archives [71,70,74,82,81]. Research in this area is 
still needed and the issue of which solutions to store during the search in order 
to converge towards a 'good approximation set' remains an open question. 

3.3 Test functions, problems, and landscapes 

Early test functions in the E M 0 0  literature comprised a number of ad hoc, 
low-dimensional functions, enabling a proof-of-concept for early MOEAs, but 
nothing more. A large step toward a more scientific approach was taken with 
the introduction, by Deb [25], of a framework for constructing functions with 
identifiable features such as concave, discontinuous, and non-uniform PFs, lo- 
cal optima, and deception. A suite of six 2-objective functions derived from 
these became popular for some time, despite some drawbacks. Deb later ex- 
tended the framework in [29] to allow scalable functions of any number of 
objectives to be generated and this is becoming more popular for testing now. 

There is still a lack of understanding of the relationships between the 
properties of problems, their 'landscapes', and strategies for search. A couple 
of studies that have begun investigating this with respect to combinatorial 
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problems are [9] and [69]. [9] investigates 'global convexity' in multiobjective 
TSP problems and finds that optima nearby to each other on the PI? are quite 
similar, a finding that suggests restricted mating in MOEAs and strategies for 
chaining local searches along the PF, like the 2PLS [go], would be effective 
on this problem. [69] introduces a tunable multiobjective version of the QAP 
problem and proposes some techniques for characterising the landscapes of 
instances of this problem. The latter is ongoing work. 

3.4 Not quite Pareto 

In much of the above discussion we have explicitly stated that finding a good 
approximation to the entire Pareto front is the goal of MOO, as far as we 
are concerned. Nonetheless, several situations arise when finding the whole 
Pareto front may not be desirable, and yet finding a single solution, as would 
be obtained by transforming the problem into a single objective, would not be 
adequate either. In particular, when the number of objectives is much above 
two or three, the size of the Pareto optimal set may be very large, necessitat- 
ing a more restrictive notion of optimal. In these cases, some kind of 'middle 
ground' may be the best option, in which some Pareto optima may be treated 
as more desirable than others. One of the seminal papers on non-Pareto ap- 
proaches is [7], which proposes a number of alternative ranking policies for 
use in EA selection. Other more recent policies are described in [lo, 341, and 
in [31] where the concept of the order relation, 'favour', is introduced. Where 
more explicit preferences of a decision maker are available more advanced 
methods may be used, as in, for example, [22]. 

4 MAS for MOO: the fossil record 

The extensive array of existing metaheuristics, issues and methods reviewed 
in the sections above gives a richer basis from which to design new MAS than 
do the existing MAS for MOO themselves. Nonetheless, before outlining some 
principles and ideas for new MAS, it is worth reviewing the few multiobjective 
MAS described in the current literature. 

Arguably, it is just three separate groups of authors that are responsible 
for much of the small multiobjective MA literature, each group having writ- 
ten several papers. A small number of others have published more isolated 
works and these tend to be application-based rather than aiming at  devel- 
oping general algorithms. The three main groups are: Ishibuchi and Murata, 
who proposed a 'multiobjective genetic local search' (MOGLS) [54] algorithm 
in 1996; Jaszkiewicz, who proposed an algorithm initially called RD-MOGLS 
for 'random directions' MOGLS [60], and a slight variant called the Pareto 
memetic algorithm (PMA) [61]; and Knowles and Corne, who developed an 
algorithm called M-PAES [67]. In all of these algorithms, the basic idea is sim- 
ple: a local search is applied to every new offspring generated (by crossover 
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or mutation), and the improved offspring then competes with the population 
for survival to the next generation (Lamarckianism). In all cases, only one 
local search operator is available and there has been no work on mechanisms 
for deciding whether or not to apply a local search to an offspring. The al- 
gorithms of Ishibuchi and Murata and Jaszkiewicz are quite similar in other 
respects too: both use randomly-drawn scalarizing functions to assign fitness 
for parent selection and in the local search. The algorithm of Jaszkiewicz uses 
an unbounded 'current set' of solutions, CS, and from this selects a small 
'temporary population', TP that comprises the best solutions on the incum- 
bent scalarizing function. It is then TP that is used to generate offspring 
by crossover. Some results put forward by Jaszkiewicz suggest that scalariz- 
ing functions are particularly better at encouraging diversity than dominance 
ranking methods used in most EAs. Ishibuchi and Murata have also made a 
number of interesting studies on their algorithm over the years, investigating 
restricted mating and other innovations, and have tested it on several prob- 
lems [55, 86, 87, 88, 58, 57, 56, 891. Knowles and Corne's M-PAES algorithm 
is quite different in at least one respect from the other two: it does not use 
scalarizing functions at all, either in the local search or the parental selection, 
employing instead a form of Pareto ranking based on comparing solutions 
to an archive of nondominated solutions. This may perhaps make it slower 
when very fast local search heuristics are available because the comparison of 
solutions takes longer to operate than applying a scalar acceptance function. 
On the other hand, whereas the MOGLS algorithms will discard newly gen- 
erated nondominated solutions if they are poor on the incumbent scalarizing 
function, this will not happen in M-PAES, making it potentially more parsi- 
monious of function evaluations-an advantage when these are more costly. 

Of the more isolated papers, a few stand out for their interesting ideas or 
applications. In [43] the idea of using supported solutions (figure 9) to seed 
an EA is proposed. That is, on problems where some exact algorithm for 
computing supported Pareto optima is available, [43] proposes a two-phase 
hybrid approach where the exact algorithm is applied first, then an EA is 
used to search for the non-supported Pareto optima, which cannot be found 
using the exact heuristic. 

Another kind of two-phase approach is described in [103]. The proposed 
procedure is as follows: run an MOEA for a fixed number of generations; then 
for each Pareto optimal solution, compute the neighbourhood and store any 
nondominated solutions found; update the list of PO solutions and again re- 
compute all the neighbourhoods; iterate the procedure until no improvement 
occurs. 

Similarly to [103], [27] proposes to run an EA (NSGA-11) and then apply 
local search afterwards to improve the Pareto optimal set. To do this, the 
authors apply a local search using a weighted sum of objectives. The weights 
used are computed for each solution based on its location in the Pareto front 
such that the direction of improvement is roughly in the direction perpendic- 



5 Recommendations for MA design and practice 337 

ular to the PF. Nondominated solutions are then identified and clustering is 
finally applied to reduce the number of solutions returned. 

Finally, worth mentioning because the results on a well-known application 
problem are apparently good, is [I]. This paper introduces a hybrid of differen- 
tial evolution [loll and backpropagation learning in order to evolve both the 
architecture and weights of an artificial neural network. Two objectives are 
minimized, the summed squared error in training, and the number of neural 
units in the network. Abbass reports good reports on the Australian Credit 
Card and Diabetes Data sets. 

5 Recommendations for MA design and practice 

In the previous sections we have reviewed current MOO practices: we revisited 
a swathe of metaheuristics, considered some of the most salient issues and 
results, and looked briefly at  some existing MAS. We now consider how we 
should draw on this background to build a more 'memetic' MA for MOO. 

In recent years, Moscato and Krasnogor have provided a guiding manifesto 
for putting the 'memetic' back in memetic algorithms 177, 851 advocating, in 
particular, the use of multiple memes: memeplexes. These are collections of 
ways of learning or adapting which can be transmitted at  different levels and 
through different processes. For example, multiple local searches, multiple 
recombination operators, and so on could co-exist in a single algorithm, that 
then learns, at  both the individual and the population level, which operators 
to use, and when, depending on the monitoring of internal processes at  the 
level of the individual or population. The MAS that we have seen in the MOO 
literature to date are relatively poor images of these 'fully-fledged' MAS. 

In Algorithm 1, we put forward a simple framework that could serve as a 
guide for making a more memetic MA for MOO. In line 1, a population P of 
solutions is initialized. As usual, this procedure may be simply random or it 
may employ some heuristic(s). Line 2 sets the archive A to the nondominated 
solutions from P. Thereafter, the main loop of the MA begins. Line 4 sets up 
an inner loop in which a stagnation criterion is checked. This should be based 
on some memeplex which monitors progress in diversity, proximity, and/or 
some other criteria. Lines 5-9 give a very high level description of the update of 
the population and archive. Five different 'schedulers' are employed, basically 
corresponding to mating selection, reproduction, lifetime learning, survival 
selection, and update of the archive, respectively. Each scheduler chooses from 
a memeplex of operators, based on estimates of the current success of those 
operators. E.g., in line 5, SelectFrom is the operation of mating selection, the 
domain of which is the union of the population and archive, and co-domain 
is a child population C; the selection is controlled by the scheduler, selsched, 
which uses a success measure, succ, to choose one operator from the set, 
SEL, of currently available operators for selection. Notice that P and A are 
potentially of variable size, in this scheme. In line 11, the population P is 
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Multi- Objective MA(): 
Begin 

P := Initialize(P) ; 
A := Nondom(P); 
While ( stop-criterion not  satisfied ) Do 

While ( stagnation-criterion not  satisfied ) Do 
C := SelectFrom(P U A, selsched(succ(SEL))) ; 
C' := Vary(C, varsched(succ( VAR))) ; 
C" := LocalSearch(C', Issched(succ(LS))) ; 
P := Replace(P U C", repsched(succ(REP))) ; 
A := Reduce(Nondom(A U P), red-sched(succ(RED))) ; 

endDo 
P := Randomlrnmigrants(P, imm-sched(succ(IMM))); 

endDo 
return (A); 

End. 

Fig. 10. Candidate MA framework for MOO 

updated using some immigration policy to release it from stagnation. The 
archive of nondominated solutions is returned in line 13. 

The framework proposed is rather broad and actually instantiating it re- 
quires us to consider how we should resolve many choices, including those 
considered in the following sections, at  the very least. Table 1 summarises 
some of the MA elements/configuration choices to consider. 

5.1 Desired outcomes and prevailing conditions 

As in any other optimization scenario, we should know at the outset what is 
a desirable outcome, how this can be measured, and what are the prevailing 
conditions under which the search is going to take place. 

One important factor in MOO is knowing how many solutions are desired. 
The answer could be as many as possible, an exact number, or could be 
expressed in terms of some resolution at which the PF is sampled. These 
considerations might affect different options for storing the nondominated 
solutions (see Table 1, question 1). 

The dimensionality of the objective space is another important factor and 
how this is going to be dealt with. If there are only two or three objectives 
then there is some evidence that dominance-ranking-based selection methods 
may be the most appropriate, assuming a good approximation to the Pareto 
front is desired, with no particular preference for either diversity or proxim- 
ity. On the other hand, if the number of objectives is high, Pareto selection 
may be problematic, because many solutions will be incomparable. There 
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Table 1. Some suggcstions for configuring an MA dcsign 

Question Answer Choiccs 

1. How many solutions 
are desired? 

precisely N: Usc Lcbcsguc archiving [75] or adaptivc 
grid archiving [70] 

as many as possiblc: Usc an unboundcd archive [36] 

require eapprox sct: Usc 6-Parcto archiving [82] 

2. Is diversity more 
or less important than 
proximity? 

Morc: Usc scalarizing functions; optimize di- 
vcrsity only 

Less: Usc strong clitist sclcction; dominancc 
ranking approach; 

No prefcrcncc: Combinc Parcto approach with scalar- 
izing mcthods; monitor progress using 
an ovcrall unary mcasurc likc the S 
mctric 

3. What is the dimen- 
sionality of the objective 
space? 

1-d: Considcr 'multi-objcctivizing' [76, 631 

2-d or 3-d: Usc Parcto-ranking approachcs 

4-d+: Usc the ordcr rclation favour [31], or 
prefcrcnce mcthods [22], to reduce the 
number of cffectivc optima; consider 
aggregating corrclatcd objectivcs 

4. How long does func- 
tion evaluation take? 

Minutcs-to-days: Usc Baycsian approach [80] , or othcr 
computationally intcnsivc model-based 
mcthods 

Scconds: Usc self-adaptation, other medium- 
ovcrhcad methods 

Microsccouds: Rcly on fast LS stratcgics [go] 

5. Is the true Pareto 
front known? 

Ycs: Usc epsilon-mcasure to compute 
progrcss/mcasure overall perfor- 
mancc [I141 

N o  Use S measure to computc 
progrcss/mcasurc ovcrall pcrformancc 

6. Are supported solu- 
tions available? 

Yes: Sced thc M A  with them and try to find 
thc non-supported solutions [43] 
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are various alternatives to consider: using the relation favour [31], instead 
of component-wise order; using some other aggregating methods as proposed 
in [7]; or, actually aggregating some of the objectives together following a 
correlation/mutual information analysis. 

5.2 Methods for monitoring progress 

The MA framework proposed above requires that operators and procedures be 
selected based on their current success rates. These, in turn, must be estimated 
by some notion of progress. How should this progress be measured? Deb has 
proposed a number of running time metrics in [28] and Zitzler has advocated 
using the S metric [I121 (see figure 7) to  detect convergence. We have not 
seen much in the way of statistics for detecting or measuring the success of 
particular operators so far but these could be adapted from similar measures 
used in EAs. 

5.3 System- and self-adaptation 

Adaptation of mutation rates, crossover probabilities, and so forth is a topic 
that has received significant attention in the EAs literature over the years 
(see [33] for an extensive review). By comparison, the topic of self-adaptation 
in MOO, is surprisingly under-developed. Where it has been used, as we saw 
earlier, is in the control of the search 'direction' in the objective space: i.e. to  
direct the search towards sparsely populated areas of the Pareto front. Thus, 
it is usually some kind of weighting vector adaptation. The potential in MOO 
for self-adaptation is large, however, and should be part of any 'real' memetic 
approach. The adaptation of selection pressure/elitism maybe of particular 
importance, since we would expect that the different stages of building up 
a Pareto front might demand more or less aggressive searches. Getting to a 
local Pareto front quickly may demand aggression, whereas stagnation there 
might suggest decreasing the selection pressure in order to spread out along 
it, or hopefully find a route to a better front. 

Some attempts have been made at  adapting population size to the size of 
the Pareto front - whether that be the archive population or the main one. 
Eg. ,  as we saw in MOTS, the mutual dominance of the population was used 
to adapt the size of the population. In the work of Laumanns, it is by setting 
a desired level of approximation that the archive's size is controlled, so that 
an appropriate number of solutions is maintained. These methods seem to be 
going in the right direction, as the use of a fixed population size, when trying 
to search efficiently a multi-dimensional objective space would seem to be too 
restrictive. 

5.4 Controlling the overall search 

Let us assume that we are interested in maximizing the rate at  which the S 
measure increases - that is our gold standard of progress. Then, we could have 
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a number of overall search strategies competing with each other in some form 
of bidding mechanism, where they each have wealth in proportion to a record 
of the prior rates of progress they achieved when in control of the search. We 
could have, for example, the following two search strategies: 

1. A PLS-like strategy that applies a local search repeatedly in one direction, 
using an aggregation function, until some convergence criterion is fulfilled. 
After this, a nearby weight is chosen and the same solution is once again 
improved. All nondominated solutions are stored in an archive. 

2. A PESA-like strategy in which a whole front of nondominated solutions 
is used to generate new solutions, generation by generation, via recombi- 
nation and variation, with selection based on crowding. 

One strategy could be chosen a t  random to start with. After each 'generation' 
the strategy of choice could be reviewed. However, changing a strategy could 
be tabu for some time immediately after a change, in order to give it a chance 
and for decent statistics on it to  be collected. Noticeable drops in progress 
rate could invoke a change in the current strategy in use. 

Much work is needed to investigate if advanced 'multi-meme' approaches 
like this illustrative example really could provide robustness over different 
types of landscapes arising from different problems, or indeed within a single 
problem. It  is not clear, even from the existing single objective literature, that 
this kind of high-level adaptation is really beneficial, but the time is perhaps 
overdue for us to try and find out. 

6 Future Prospects 

What does the future of multiobjective MAS hold and what are the most 
promising avenues to investigate now? In this article we have tried to dis- 
til a rich soup of ideas from the ever-growing literature on multiobjective 
metaheuristics, and a little on MAS, in order to provide some basis for the 
generation of new, more advanced algorithms. Many of the basics will proba- 
bly remain the same: solutions will be evaluated by a combination of Pareto 
ranking-type methods and scalarizing methods; diversity will be encouraged 
using niching and crowding in parameter and objective space, and by the 
controlled use of different weights in the scalarizing functions. However, there 
is great scope for building more advanced and more memetic algorithms. In 
particular, it seems that the need, unique to MOO, to obtain and maintain a 
diverse pool of different solutions, suggests that such things as adaptive pop- 
ulation sizes, multi-populations, and combinations of local and global search 
are especially relevant. 

Expanding on this, and looking into the near future, we see that there is 
potential for more investigation as to the effects of restricted mating schemes, 
and how the success of these relates to features of the underlying problem 
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and/or multiobjective landscapes. For problems with a large number of objec- 
tives, new non-Pareto methods for ranking solutions need more investigation, 
as do methods for analysing correlations between objectives, perhaps to com- 
bine some objectives together; and conversely, we have seen some evidence 
in the recent literature [76, 631 that even single-objective problems may be 
tackled more effectively using multiobjective methods - work which merits 
further attention. 

We have also provided in this article a glimpse of the different possible 
routes to building up a Pareto front employed by different multiobjective 
algorithms and have hinted at  ways that these different overall strategies 
could be combined together in self-adaptive strategies that are sensitive to the 
progress being made in the search. This area, we think, is most promising. 

New, advanced data structures for the storage and retrieval of Pareto 
optima [64] may offer increased speed of MAS and EAs which will, if developed 
further, enable exact solutions to be found even in relatively large solution 
spaces, provided fast local searches and evaluation functions are available. 

And at  the other end of the spectrum, where the evaluation of a solution 
takes a relatively long time, the recent advanced methods in model-based 
search promise a more principled way of sampling the search space. We have 
yet to see how these could be combined with local searches and other heuristics 
to build advanced MAS for these tough problems but the future is certainly 
exciting. 
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