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Summary. There are several characteristics that make scheduling and timetabling 
problems particularly difficult to solve: they have huge search spaces, they are of- 
ten highly constrained, they require sophisticated solution representation schemes, 
and they usually require very time-consuming fitness evaluation routines. There is 
a considerable number of memetic algorithms that have been proposed in the liter- 
ature to solve scheduling and timetabling problems. In this chapter, we concentrate 
on identifying and discussing those strategies that appear to be particularly use- 
ful when designing memetic algorithms for this type of problems. For example, the 
many different ways in which knowledge of the problem domain can be incorporated 
into memetic algorithms is very helpful to design effective strategies to deal with 
infeasibility of solutions. Memetic algorithms employ local search, which serves as 
an effective intensification mechanism that is very useful when using sophisticated 
representation schemes and time-consuming fitness evaluation functions. These al- 
gorithms also incorporate a population, which gives them an effective explorative 
ability to sample huge search spaces. Another important aspect that has been investi- 
gated when designing memetic algorithms for scheduling and timetabling problems, 
is how to establish the right balance between the work performed by the genetic 
search and the work performed by the local search. Recently, researchers have put 
considerable attention in the design of self-adaptive memetic algorithms. That is, to 
incorporate memes that adapt themselves according to the problem domain being 
solved and also to the particular conditions of the search process. This chapter also 
discusses some recent ideas proposed by researchers that might be useful when de- 
signing self-adaptive memetic algorithms. Finally, we give a summary of the issues 
discussed throughout the chapter and propose some future research directions in the 
design of memetic algorithms for scheduling and timetabling problems. 

1 Introduction 

It is possible to think of a memetic algorithm as an evolutionary algorithm that 
incorporates knowledge about the  problem domain being solved (see [29, 331). 
This knowledge can be in the  form of specialised operators, heuristics and 
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other helpers that contribute towards a self-improvement ability in the indi- 
viduals of the population. Most memetic algorithms described in the literature 
are a combination of genetic algorithms with local search heuristics and these 
approaches are also known as genetic local search, hybrid genetic algorithms, 
hybrid evolutionary algorithms and other names (e.g. [13,22, 25, 38,441). This 
type of hybrid approach has been applied to a vast number of optimisation 
problems with considerable success (see [34] for a list of example references). 

In this paper we concentrate on the application of memetic algorithms to 
scheduling and timetabling problems such as machine scheduling, educational 
timetabling and personnel rostering [47]. One goal here is to identify and dis- 
cuss those strategies that appear to be applied more frequently by researchers 
and practitioners, when designing memetic algorithms for the type of prob- 
lems mentioned above. Another goal is to discuss some recent ideas proposed 
by researchers in this area that might help to design more robust memetic 
algorithms for scheduling and timetabling problems. We do not attempt to 
provide an exhaustive survey of memetic approaches to such problems. First, 
in Sect. 2 we briefly describe the paradigm behind memetic search followed by 
a short discussion of scheduling and timetabling problems in Sect. 3. Then, 
in Sect. 4 we concentrate on those strategies that are frequently employed 
when implementing memetic algorithms for scheduling and timetabling (and 
perhaps related problems). Scheduling and timetabling problems are usually 
highly constrained and one of the difficulties when solving these problems is 
how to deal with infeasibility. Section 4.1 discusses the strategies employed 
for this purpose within the context of memetic algorithms. For most schedul- 
ing and timetabling problems, a complete evaluation of the solution fitness 
is computationally costly. Therefore, the use of approximate evaluation rou- 
tines can help to implement more efficient memetic algorithms. This topic 
is discussed in Sect. 4.2. Selecting an appropriate solution encoding is es- 
sential when designing memetic algorithms because both genetic and local 
search should operate on this encoding in an efficient way. This is discussed in 
Sect. 4.1. The importance of obtaining knowledge of the fitness landscape to 
aid the design of better memetic algorithms is discussed in Sect. 4.4. Another 
very important aspect when designing memetic algorithms is to establish a 
good balance between the genetic search and the local search parts of the al- 
gorithm and this is the subject of Sect. 4.5. Most implementations of memetic 
algorithms incorporate memes designed a priori and these remain unchanged 
during the search. However, one of the original ideas that motivated the con- 
ception of memetic algorithms is the evolut ion of memes and this is discussed 
in Sect. 4.6. Section 5 describes some local search strategies that have been 
proposed recently by researchers and that might also be useful if they are in- 
corporated within memetic algorithms. Finally, this paper presents some final 
remarks and suggests some future research directions in Sect. 6. 
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2 Memetic Algorithms 

It is generally believed that memetic algorithms are successful because they 
combine the explorative search ability of recombinative evolutionary algo- 
rithms and the exploitive search ability of local search methods. An analogy 
is that the evolutionary part of a memetic algorithm attempts to simulate the 
genetic evolution of individuals through generations, while the local search 
part attempts to simulate the individual learning within a lifetime. The ma- 
jority of memetic algorithms proposed in the literature are a result of incor- 
porating some form of local search to a genetic algorithm. This is illustrated 
in Fig. 1. 

This local search can be for example, constructive heuristics, repair meth- 
ods, specialised self-improvement operators, etc. The local search phase can 
be applied before, after or in between the genetic operations. However, as 
discussed in [29], the interaction between the memes and the genes can be 
even more sophisticated than that and most implementations of memetic al- 
gorithms fail to  reflect the complex interactions of the memetic paradigm. 
Krasnogor [29] argues that in a truly memetic system: 

1. Memes also evolve representing the way in which "individuals learn, adopt 
or imitate certain memes or modify other memes" and, 

2. the distribution of memes changes dynamically within the population rep- 
resenting the effects of "teaching, preaching, etc." within the population 
of individuals. 

Krasnogor also proposed a formulation of memetic algorithms that at- 
tempts to better represent the memetic paradigm including adaptive and self- 
adaptive memes, for more details see [29]. For a more detailed discussion of 
memetic algorithms see [29, 33, 341 and the references therein. 

3 Scheduling and Timetabling Problems 

Broadly speaking, the task in scheduling and timetabling problems is to ac- 
commodate a set of entities (for example, events, activities, people, vehicles, 
etc.) into a pattern of time-space so that the available resources are utilised in 
the best possible way and the existing constraints are satisfied. This paper is 
mainly concerned with three types of scheduling problems: machine schedul- 
ing, educational timetabling and personnel scheduling (also called rostering). 
However, we will also allude to papers which consider other scheduling prob- 
lems. A brief description of machine scheduling, educational timetabling and 
personnel scheduling follows. For more details please see the given references. 
In machine scheduling, the problem is to schedule a set of jobs for processing 
on one or more machines [37]. Educational timetabling refers to the allocation 
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Fig. 1. Most memetic algorithms are a combination of genetic algorithms and local 
search strategies. 

of events (teaching sessions, exams, lab sessions, etc.) to time slots and possi- 
bly to rooms 1421. In personnel scheduling, employees must be accommodated 
into shift patterns [19]. 

Scheduling and timetabling problems arise in many situations and hence, 
there is a need for developing effective and efficient automated solution meth- 
ods. But as with many other combinatorial optimisation problems, scheduling 
and timetabling are difficult problems to tackle with computer algorithms. 
The following characteristics are those that make scheduling and timetabling 
problems very difficult: 

Huge search space. The combinatorial nature of scheduling and timetabling 
problems implies that the size of the search space increases dramatically with 
the size of the problem making it practically impossible to explore all solu- 
tions but for very small problems. 

Highly constrained. It  is commonly the case that a considerable number 
of constraints exist in these problems. Constraints limit the possible ways in 
which a schedule can be constructed. Some constraints must be satisfied for 
the solutions to be feasible (hard constraints) while other constraints are de- 
sirable but not absolutely essential (soft constraints). Examples of constraints 
are: job A must be processed before job C but after job D (machine schedul- 
ing); lecturers cannot teach more than two consecutive sessions (educational 
timetabling); a minimum number of nurses must be scheduled during busy 
times (personnel scheduling). 
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Difficult to represent. It  is often difficult to find a representation with 
associated data structures that capture all details of the problem including 
the complete set of constraints. Most of the times the problem is simplified, 
otherwise very elaborate representations are required to model it (see the sec- 
tions below). 

Time-consuming fitness evaluation. Computing the fitness of solutions 
in scheduling and timetabling problems is usually time consuming. The main 
reason for this is the existence of many constraints. When a solution is modi- 
fied even slightly during the search, a number of constraints might be affected 
and therefore, a complete computation of the whole solution is required. 

There is a significant school of thought which says that for most schedul- 
ing and timetabling problems, the improvement of solutions can be achieved 
more effectively with local search heuristics than with recombinative oper- 
ators. These local search heuristics are usually tailored to the application 
problem by incorporating knowledge of the problem domain in order to deal 
with the constraints in a more effective way. It is also generally believed that, 
because memetic algorithms operate on a population of solutions, they are less 
dependant on the quality of the initial solutions than local search methods 
which operate on a single solution. Then, the appeal of applying memetic algo- 
rithms for scheduling and timetabling problems is that the powerful improving 
mechanism of local search is maintained and at the same time, enriched by 
the addition of a population of individuals. 

4 Designing Memetic Algorithms 

There is a considerable number of applications of memetic algorithms to 
scheduling problems reported in the literature including: machine schedul- 
ing (eg. [22, 24]), educational timetabling (e.g. [2, 5, 6, 16, 36]), personnel 
scheduling (e.g. [I,  9, 26]), maintenance scheduling (e.g. [12, 131) among many 
others. 

As mentioned above, the addition of local search helpers into genetic algo- 
rithms is the most common approach reported in the literature. The variety of 
helpers that have been proposed range from the use of tailored chromosome 
representations and operators (e.g. [17, 261) and simple repairing methods 
based on constraint-based reasoning (e.g. [16]) to very sophisticated combina- 
tions of algorithm components in which a memetic algorithm is embedded into 
a genetic algorithm (e.g. [3]). In this Sect., we discuss the strategies that have 
been used more frequently by researchers and practitioners when designing 
memetic algorithms for scheduling and timetabling problems. 
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4.1 Dealing with Infeasibility 

A major issue of concern in scheduling and timetabling is how to deal with 
the infeasibility of solutions. Due to the large number of hard constraints that 
typically exist in these problems, generating feasible solutions and keeping 
them feasible during the search is a difficult task. In general, the first decision 
that has to be made is whether to consider or not infeasible solutions as part 
of the searching process. In both cases, the design of adequate solution repre- 
sentations and search operators is an essential ingredient for an effective and 
efficient operation of the search algorithm. The incorporation of knowledge of 
the problem domain in the form of choosing the representation and operators 
according to the existing constraints in the problem, can be considered to be 
a memetic approach in itself if we accept the broad description of memetic 
algorithms [33]. 

Elaborate Encodings and Operators 

One way to deal with infeasible solutions is to forbid them completely. That 
is, only feasible solutions are generated in the initialisation phase and then, 
the genetic and local search operators are restricted to work only in the fea- 
sible region. This approach was used by Burke et al. in the nurse scheduling 
problem [9] and by Erben and Keppler in the course timetabling problem [18]. 
Very elaborate solution encodings can also be used to avoid the generation of 
infeasible solutions altogether. For example, Erben applied grouping genetic 
algorithms to examination timetabling problems in [17]. In a grouping genetic 
algorithm, the chromosome representation is made of groups of genes (a group 
can be, for example, the events scheduled in the same time slot). Then, while 
in a direct representation of a timetable each gene represents one event, in a 
grouping representation each gene represents a group of events. In this way, 
it is easier to design genetic operators that recombine timetables without de- 
stroying the feasibility of solutions (i.e. in this case keeping events in the same 
time slot). Similarly, Kawanaka et al. employed a very elaborate encoding that 
guaranteed the feasibility of solutions for the nurse scheduling problem [26]. 
Also, Aickelin and Dowsland [I] implemented two levels of crossover operators 
for the nurse scheduling problem, one operating at  the individual nurse sched- 
ule level and another operating at  a higher level for the complete schedule. In 
the first operator, the genes are the time slots while in the second operator 
the genes are the whole individual schedules of the nurses. 

Elaborate encodings and operators help to maintain good sub-solutions 
(parts of schedules) and aim to generate better complete schedules by mixing 
good building blocks. However, this can generate more design issues which 
need to be solved. For example, how do we measure fitness in each type of 
operator? This might then lead on to investigating various selection schemes 
within the same algorithm while it is necessary to somehow preserve the good 
parts of solutions that are already created in order to obtain sensible results, 
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we should keep in mind that restricting the search to only the feasible regions 
of the solution space could considerably limit the explorative ability of the 
memetic algorithm. 

Repair Methods and Penalty Schemes 

Another approach to deal with infeasibility is to penalise and/or repair infeasi- 
ble solutions. That is, if the solution encoding and associated search operators 
permit the generation of infeasible solutions, then repairing heuristics that re- 
cover the feasibility of solutions can be implemented. The reparing method 
should be easy to implement so that no excessive overhead is added to the 
search process. Also, if the reparing method is too elaborate, it may happen 
that most of the changes made by the search operators to obtain the new 
solution from the previous one are reversed by the repairing method resulting 
in a very inefficient process. For example, repairing heuristics were used by 
Colorni et al. in the application of genetic and memetic algorithms to high 
school timetabling problems [14]. 

An alternative strategy when infeasible solutions are allowed, it is to heav- 
ily penalise them in order to discourage their survival. The selection of the 
penalties must be carefully made. The recommendation is that the penalties 
should discourage the inclusion of infeasible solutions but without completely 
eliminating them because infeasible solutions may be required for the algo- 
rithm to have a better explorative ability. In our experience, if local search 
is used, relatively low penalties for infeasibility should be set in many cases 
because if these penalties are too high, then the local search attempts to re- 
cover feasibility first and this could increase substantially the violation of soft 
constraints [7, 91. Penalties can be fixed or they can be adapted during the 
search. Aickelin and Dowsland implemented an adaptive scheme where the 
infeasibility penalty depends on the number of violated hard constraints [I]: if 
q > 0 then gdemand = a x  q where q is the number of violated hard constraints, 
a is a severity parameter and gdemand is the infeasibility penalty weight used 
in the fitness function. 

Multi-Phased Strategies 

Some researchers have employed multi-phased approaches to deal with hard 
constraints and hence, infeasibility of solutions by dividing the solution pro- 
cess in multiple stages. In the first phase the goal is to generate semi-complete 
feasible solutions. For example, in the nurse scheduling problem, the emphasis 
can be on the generation of a semi-complete schedule in which it is guaranteed 
that there are enough nurses available to meet the requirements in each shift, 
without assigning actual working time slots to each nurse [I]. Then, in the sub- 
sequent phases the schedule is incrementally completed by assigning working 
time slots to individual nurses and forbidding the violation of hard constraints. 
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Burke and Newall also used a multi-phased approach in their memetic algo- 
rithm for the examination timetabling problem [5] (this is an improved version 
of their previous algorithm presented in [6]). Their memetic approach, how- 
ever, did not use recombination operators, only mutation operators followed 
by a hill-climbing algorithm. They constructed a partial timetable and then 
iteratively applied a memetic algorithm with the aim of scheduling a subset of 
events in each iteration, i.e. the memetic approach is applied to a subproblem 
in each iteration. This can be represented in diagrammatic form as shown in 
Fig. 2. 

Initialisation 
Heuristic 

I Partial Schedule 1 

Memetic Algorithm 
(Mutations followed by 

hill-climbing) 

complete? 

+ 
YES then STOP 

Fig. 2. The multi-phase memetic algorithm implemented by Burke and Newall [5] 
acts as a peckish (not too greedy) constructive heuristic. 

4.2 Approximate Fitness Evaluation 

It has been shown that using approximate evaluation (also known as delta 
evaluation) to measure the quality of solutions helps to improve the efficiency 
of the search algorithm in problems for which the fitness evaluation function 
is very time consuming (e.g. [5, 6, 20, 31, 461). With approximate evaluation, 
instead of a complete and accurate evaluation of each newly generated so- 
lution, only the difference between the previous solution and the new one is 
computed. Approximate evaluation can be applied as follows to reduce the 
computation time spent by the memetic algorithm. Two fitness evaluation 
routines are implemented. One routine completely evaluates the fitness of the 
new solution (complete evaluator). The second one only makes an estimation 
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of the new fitness based on the previous solution and the changes made (ap- 
proximate evaluator). Suppose that a population of new solutions is created 
in each generation. Instead of computing the fitness of these solutions with 
the complete evaluator, their fitness is measured with the approximate evalu- 
ator. Then, only a fraction of the population of new solutions is re-assessed 
with the complete evaluator. These solutions can be for example, the best 
ones, those that have a minimum quality level, or only those that represent 
an improvement with respect to the previous solutions. This simple strategy 
can save a considerable amount of computation time because it is very likely 
that few solutions would need to be re-evaluated with the complete evaluator 
in the first stages of the evolutionary process. As the search progresses and 
the overall quality of the population improves, more solutions will have high 
fitness and perhaps, only the accurate evaluator will be used. For more details 
on how this kind of strategy was implemented for the warehouse scheduling 
problem see [46], for the examination timetabling problem see [5, 61 and for 
the space allocation problem see [31]. 

Of course, for this strategy to be effective it is required that the structure 
of the combinatorial optimisation problem is such that the quality of the new 
solutions can be updated by evaluating only the changes made to the previous 
solution. Approximate evaluation can be applied in any of the stages of a 
memetic algorithm, i.e. during the local search phase or during the genetic 
search phase. As mentioned above, a common characteristic of many real 
world scheduling and timetabling problems is that a considerable number of 
constraints exist in these situations. Hence, it is very likely that many of 
the constraints in a particular problem instance are affected by even simple 
changes to the previous solution. This means that the degree of inaccuracy 
when using the approximate evaluator can be higher than in less constrained 
combinatorial problems and the implementation of the approximate routine 
must be carried out carefully. 

4.3 Encodings Based on Linked Lists 

Another aspect that must be considered when using approximate evaluation is 
that the solution encoding selected and associated data structures should allow 
an efficient implementation of the approximate evaluation routine (i.e. much 
more efficiently that the complete evaluation). In this respect, for scheduling 
and timetabling problems (and combinatorial problems in general) solution 
encodings and data structures based on linked lists have been shown to be very 
helpful for implementing moves and fitness evaluation routines more efficiently 
(e.g. [5, 31, 391). This type of representation is advantageous in combinatorial 
optimisation for several reasons: 

0 Linked lists can dynamically shrinklgrow easily by deletingladding ele- 
ments, 
they can also be modified efficiently by only changing pointers, 
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linked lists can be used to represent virtually any structure (array, matrix, 
set, etc.), and 
local search operators such as move, swap, invert, add, delete, change, etc. 
can be performed directly and very easily with linked lists. 

An example of this type of encoding is shown in Fig. 3 for the space allo- 
cation problem. In this problem, a set of entities (staff, lecture rooms, labs, 
etc.) must be allocated to a set of available rooms in such a way that all hard 
constraints are satisfied, the space misuse is minimised, and the violation of 
soft constraints is minimised (see [31] for more details). In the encoding of 
Fig. 3, the lists Entities, Rooms and Constraints hold details of the problem 
being solved, then these lists remain unchanged throughout the search. That 
is, these lists hold, for example, the required space for each entity, the ca- 
pacity of rooms, the type and nominal penalty of constraints, etc. The lists 
EntityGene, RoomGene and ConstraintGene, hold details of a solution or al- 
location, i.e. fitness statistics, pointers to the problem data, and pointer that 
define the structure of the solution. In the solution represented in Fig. 3, en- 
tity E l  is allocated to room R5, room R2 is empty, entity E3 is not allocated, 
constraints C3 and C4 apply to entity E5, etc. With this data structure, it is 
easy to implement local search moves by only changing the appropriate point- 
ers. Similarly, fitness evaluation routines can be performed efficiently because 
it is easy to identify which constraints have been affected (by walking along 
the corresponding linked lists) after a change to the solution structure. 

4.4 The Fitness Landscape 

Another aspect that makes scheduling and timetabling problems difficult to  
tackle is that, as in most combinatorial optimisation problems, the shape of the 
fitness landscape usually depends on each particular problem instance. More- 
over, the penalties associated to the various soft constraints in the problem 
can have an effect on the distribution of local optima. For example, consider 
two soft constraints SCl and SC2 with associated penalties and r 2  respec- 
tively. Let SC1 be 'more important' than SC2 but 'less difficult' to satisfy 
than SC2. That is, more solutions are expected to violate the 'less important' 
SC2 than SCl. If TI >> r2 it is likely that the search will be biased towards 
finding many very attractive solutions that satisfy SCl (the more important 
one), but improvements in SC2 are likely to be overlooked. One the other 
hand, if r1 << r2 improvements in SC2 will be preferred over improvements 
in SC1 and it is likely that the number of attractive solutions satisfying SCl 
will be less than in the previous case. Further, for the same problem instance, 
different search operators (local search, crossover, mutation, etc.) explore the 
solution landscape in very different ways. An ideal situation would be that 
some knowledge of the fitness landscape for a given problem could be available 
before the search, but this is rarely the case. Even when preliminary exami- 
nations are carried out, it turns out that the solution landscape presents very 
different characteristics for each problem instance [I]. 
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Fig. 3. Solution encoding based on linked lists used for the space allocation problem. 
The global lists Entities, Rooms and Constraints hold data corresponding to the 
problem instance being solved. The linked lists of genes EntityGene, RoomGene 
and ConstraintGene, hold details of a particular allocation or solution. 

In this respect, Merz and Freisleben proposed the idea of fitness landscape 
analysis as a means to obtain, a priori, some knowledge of the fitness landscape 
which could help to design better memetic approaches [32]. They suggest that 
the first step to perform fitness landscape analysis is to  define the fitness 
landscape for the problem instance. For this it is necessary to assign a fitness 
value to each solution in the search space, i.e. define the fitness function. Then, 
the spatial structure of the landscape should be defined by defining a metric 
that measures the distance (in the genotypical space) between two solutions. 
As Merz and Freisleben note, a simple metric to define the distance between 
two solutions s and t could be the minimum number of applications of an 
operator w required to obtain t from s.  Then, they suggest to carry out some 
preliminary experiments on the problem instance and perform calculations to 
estimate the properties of the fitness landscape that are known to have an 
effect on the performance of heuristic methods (see [32] for full details): 

The difference in fitness value between neighbouring solutions. 
The number of local optima. 
An estimation of the distribution of the local optima. 
The topology of the basins of attraction of the local optima. 
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Knowles and Corne have also carried out some studies on the analysis 
of the fitness landscape in combinatorial optimisation problems [28] (their 
approach is discussed below). 

4.5 Balance Between Genetics and Memetics 

An issue that has received considerable attention when designing memetic 
algorithms is how to establish the right balance between the work performed 
by the genetic search and the work performed by the local search. Ideally, in 
a memetic algorithm, genetic and local search, i.e. the two broadly defined 
groups of operators, should be able to work together in cooperation instead 
of against each other [29]. This balance can be tuned from three perspectives 
among others: 

1. The balance between the sophistication of the genetic operators and the 
local search operators. 

2. The decision as to which solutions each group of operators is applied. 
3. The balance between the computing time allocated to each type of search. 

Some Recommendations 

Tuning Genetic and Local Search 

For example, with respect the sophistication of the operators, Burke et al. 
noted that recombining large parts of schedules to form a child solution was 
very ineffective because the local search heuristics in their memetic algorithm 
were not powerful enough to improve on these solutions [9]. They observed 
that instead, it was more beneficial to combine small parts from the parents 
so that more diversity could be obtained and the local search part could 
be performed more effectively. But if the local search part of the memetic 
approach is too powerful, it dominates the search as observed by Burke and 
Smith when a well tuned tabu search procedure was incorporated as the local 
search phase in a memetic algorithm for the maintenance scheduling problem 
[13]. One might feel tempted to use the powerful local search operators and 
heuristics already known for scheduling and timetabling problems, but the 
difficulties mentioned above can be encountered. 

In the case of which solutions should be applied to each group of oper- 
ators, an approach that has been used is to improve by local search only a 
number of the best solutions in the population (e.g. [I]). In [22] Ishibuchi 
et al. implemented a first version of a memetic algorithm for the flow-shop 
scheduling problem (named genetic local search in that paper) where they 
proposed not to examine the whole neighbourhood but only a fraction of it 
(i.e. best of k instead of best of all) and stop the search when no better neigh- 
bour is found after a small number of iterations. Later, they also proposed 
to apply local search to only good offspring to improve the search ability of 
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their genetic local search approach [23]. Although in that paper Ishibuchi et 
al. consider multi-objective flow-shop scheduling problems, this idea can be 
transferred from the multi-objective domain to the single-objective domain 
by noting that good solutions are not those that offer a good coverage of the 
front but solutions that represent a good subset of the population because 
of fitness and diversity. In a more recent study, Ishibuchi et al. proposed the 
following strategies [24]: 

To apply local search to a subset of the population selected based upon a 
given probability p and on the fitness of the solutions according to preset 
criteria. 

0 To apply the local search procedure not after each generation but every 
T > 1 generations. 
To carry out preliminary experiments for tuning the values of the above 
mentioned parameters (k, p and T). 
To carry out preliminary experiments to establish the adequate values 
for the crossover and mutation probabilities for tuning the genetic search 
(provided the parameters of k, p and T have been fixed). 

With respect to the genetic operators, it has been proposed to apply them 
only to parent solutions that have a certain distance between them in the 
genotypical space (this is called a mating restriction) [35]. It has been observed 
that applying the local search for a limited number of iterations enables better 
results in the long run as reported by Burke and Smith for the maintenance 
scheduling problem [12]. 

Archives of Solutions 

The use of archives of solutions (a form of elitism) as in [27] can also be 
employed to enhance the balance of genetic and local search. Such an archive 
can be used to store elite solutions from which to chose the appropriate ones 
before carrying out the genetic operations. 

Reacting to the Shape of the Fitness Landscape 

Measuring the characteristics of the fitness landscape as the search progresses 
can help in the design of a dynamic method to balance the genetic and the 
local search. This has been investigated by Knowles and Corne in the context 
of the multi-objective quadratic assignment problem [28]. Fitness landscape 
analysis techniques can help to identify the structure of a given problem, not 
only before the search but perhaps also dynamically during the search [32]. 
The study of the fitness landscape is a very promising avenue of research 
that can be of considerable benefit to enhance the performance of memetic 
algorithms, particularly on problems such as scheduling and timetabling. This 
is because adequate operators could then be designed and the search tuned 
according to the landscape. 
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Common Annealing Schedules 

Krasnogor and Smith have investigated a form of adapting the algorithm 
performance according to the search, so that the emphasis can be adapted: 
1) to improve the fitness of the population, or 2) to diversify the population 
[30]. They used a common temperature for the whole population to control 
the acceptance of solutions during the local search phase. The temperature is 
inversely proportional to the spread of fitness in the population. Therefore, 
as the population converges (spread of fitness is reduced) the temperature 
increases and more non-improving solutions are accepted in order to induce 
more exploration. Once the spread of fitness is recovered, the temperature 
falls so that only improving solutions are accepted and the search acts as a 
local search procedure. Burke et al. implemented a population-based anneal- 
ing algorithm in which a common annealing schedule is used to control the 
acceptance probability of solutions generated by each of the individuals in 
the population [7]. In their approach, there is no recombination of solutions 
and the balance between exploration and intensification is managed only by 
the evolution of the population by self-improvement. They applied the algo- 
rithm to the space allocation problem which shares various features with the 
class of timetabling problems and was briefly described above (see [31]). The 
idea behind their common annealing schedule was to allow a certain degree of 
flexibility in an attempt to use the mechanism as a diversification strategy. 

4.6 Towards Adaptive Memes 

Most of the research related to memetic algorithms for scheduling and 
timetabling problems has concentrated on: 1) the design of specialised op- 
erators that enable constraints to be dealt with more efficiently, and/or 2) the 
comparison between the performance of different operators. For example, 
Alkan and Ozcan recently carried out a comparison of various mutation oper- 
ators that are directed towards the satisfaction of specific constraints (these 
can be considered as local search heuristic more than mutation operators, 
see our discussion in the final Sect.) [2]. Another aspect that Alkan and Oz- 
can investigated was the comparison of various hill-climbers. They designed 
a specific hill-climber for each type of constraint and all hill-climbers were 
combined under a single hill-climber controlling the whole local search phase. 

This idea of designing specialised local search heuristics to target a par- 
ticular constraint or group of constraints has also been investigated by Viana 
et al. in what they call constraint oriented neighbourhoods [45]. Their idea 
is to use, for a given problem, neighbourhood structures that explicitly take 
into account the particular characteristics of the problem constraints. Then, 
during the local search the neighbourhood moves are chosen according to the 
constraints that are not satisfied in that moment. The adaptation of neigh- 
bourhood search heuristics has also been explored by Burke et al. in the 
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context of multi-objective optimisation where different heuristics are targeted 
to different objectives (for more details see [Ill). 

The progress or success rate of different operators can be assessed during 
the search. Then, their application can be adapted accordingly to the condi- 
tions of the search process. For example, Basseur et al. used a scheme to mea- 
sure the progress of various mutation operators when tackling multi-objective 
flow-shop scheduling problems [3]. They implemented various mutation op- 
erators which are applied with the same probability at  the beginning of the 
search. As the search progresses, the decision as to which mutation operator 
to use is made dynamically. The generated solutions are evaluated before and 
after the application of each mutation operator. Depending on the success of 
the operator, they calculate an average growth value which is used to dynam- 
ically adjust the probability of each mutation operator. More specifically: 

1. When a mutation operator M is applied, a solution M(z) is generated 
from a solution x. 

2. The progress of the mutation operator M when applied to solution x is 1 
if x is dominated by M(x), 0 if x dominates M(z)  and 0.5 otherwise. A 
solution x dominates a solution y if x is as good as y in all objectives and 
better in at  least one of them (see [43]). 

3. The average Progress(M(i)) of each mutation operator M is calculated 
by summing all the progresses of M and dividing it by the number of 
solutions to which M was applied. 

4. Then, the probability of each mutation operator is adjusted using (1) 
where 7 is the number of mutation operators and 6 indicates the minimal 
ratio value permitted for each operator. That is, 6 is a parameter that 
permits to keep each operator even if the progress of the operator is too 
poor. 

As discussed here, although some research has been carried out on how 
to adapt the application of different genetic and local search operators and 
heuristics (memes) throughout the search, in most cases the memes have 
been designed before the search and remain unchanged during the process. 
The notion of evolution of memes instead of evolution of genes in the context 
of timetabling was first suggested by Ross et al. who said: "we suggest that a 
GA might be better employed in searching for a good algorithm rather than 
searching for a specific solution to a specific problem" [40]. As also argued by 
Krasnogor, the evolution of memes is an aspect that deserves more attention 
in order to design more advanced and improved memetic systems 1291. 
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5 Other Ideas for Memetics 

5.1 Cooperative Local Search 

As discussed in Sect. 2, most memetic algorithms result from the hybridis- 
ation of evolutionary algorithms and the incorporation of a variety of spe- 
cialised helpers such as elaborate encodings, local search heuristics, etc., from 
the knowledge of the problem domain. Another form of hybridising evolu- 
tionary methods and local search is by adding some elements of evolutionary 
algorithms (such as genetic operators, populations of solutions, a common 
annealing schedule, etc.) into a cooperative local search scheme. This form of 
hybridisation is illustrated in Fig. 4. To describe the difference between most 
memetic approaches and cooperative local search, we also refer to Fig. 3. 

'cycle of  each individual 
in the population' 

the search 
cyclc or 
cach 

self-improvement individual 
by local search bcgins 

'cooperation mechanisms' i 
moves, 
sharing parts 
of  good and 
bad solutions, 
centralised 
control, etc. 

finds 
something 
to do, gets 

stuck unstuck 

\ asks for c00pcraL10n 
from othcr mcmbcrs 
,f the populat~on 

Fig. 4. In a cooperative local search scheme, each individual carries out its own local 
search. When an individual gets stuck it asks for the cooperation of the population 
in order to find something to do to get unstuck and continue the search from an- 
other position in the solution space. The results achieved by each individual may be 
different at different times and this encourages diversity within the population. 

While in most memetic algorithms as depicted in Fig. 3, the structure of 
the evolutionary algorithm based on generations is maintained, in the cooper- 
ative local search approach, the self-improving individual cycle is the driving 
mechanism and the helpers come from evolutionary methods. This form of 
hybridisation was proposed in [31] as an alternative strategy to combine the 
explorative capability of genetic search with the intensification ability of local 
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searchers. This type of hybrid, can be beneficial in those problems in which 
the recombination of solutions requires the design of specialised encodings, 
repairing methods or recombinative operators. This is the case in most of the 
scheduling and timetabling problems as discussed above. With the cooperative 
local search approach, a population of local searchers evolve mainly by self- 
improvement. But the individuals also share information during the search 
process with the rest of the population and hence, a form of recombination 
can be achieved. In [31] this concept was applied to the space allocation prob- 
lem and it proved to be very effective. The cooperation between individuals 
was accomplished by maintaining a pool of good and bad parts of solutions. 
Then, the cooperation (possible recombination) between individuals in the 
population is asynchronous as opposed to most memetic algorithms. In a syn- 
chronous mechanism (as in memetic algorithms) the cooperation is regulated 
by generations. In an asynchronous mechanism (as proposed in cooperative 
local search) the individuals cooperate between them at  any required time. 
When an individual gets stuck, it asks for the help of the population and 
this is implemented by accessing the pool of genes. There are several variants 
of this approach that can be explored following the terminology of hybrid 
metaheuristics proposed by Talbi in [44](see also [38]). For example, the co- 
operation can be synchronous or asynchronous, the explorers can employ the 
same (homogeneous) or different (heterogeneous) local search procedures and 
also can search the same or different areas of the solution space (global, partial 
or functional). 

5.2 Teams of Heuristics 

Some researchers have investigated the design of search algorithms based upon 
a collection of simple local search heuristics. The idea is that a set of simple 
local search heuristics can be applied in a systematic or adaptive way to tackle 
difficult combinatorial optimization problems. Examples of these approaches 
are: 

Variable neighbourhood search [21]. In variable neighbourhood search 
a number of different neighbourhood structures are used in a systematic fash- 
ion to attempt improvements in the current solution while attempting to avoid 
getting stuck in poor local optima. 

A-teams of heuristics [41]. An A-team of heuristics consists of a set of con- 
structors (to generate solutions), a set of improvers (to perform local search 
and improve solutions) and a set of destructors (to eliminate poor quality 
solutions). All these heuristics operate on a population of solutions and all of 
them behave like independent agents cooperating in an asynchronous fashion. 

Hyper-heuristics [lo]. A hyper-heuristic can be described as a heuristic that 
manages the application of a set of heuristics (which can be simple neighbour- 
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hood heuristics or elaborate meta-heuristics) during the search. For example, 
a hyper-heuristic might, a t  each moment during the search, make the decision 
as to which heuristic to use according to the historical performance of each 
heuristic. The central idea is that the hyper-heuristic learns and adapts itself 
dynamically during the search process. 

The ideas behind the above approaches can be used to inspire more 
strategies for designing more advanced memetic algorithms for scheduling, 
timetabling problems and other combinatorial optimisation problems. Specif- 
ically, the self-adaptation of local search heuristics would help to further de- 
velop the idea of meme evolution [29]. 

6 Final Remarks and Future Research 

6.1 Scheduling and Timetabling: Interesting Domain for Memetic 
Algorithms 

Scheduling and timetabling problems represent an interesting domain for the 
application of memetic algorithms. There are already a number of applications 
reported in the literature (e.g. [I, 2, 3, 5, 6, 9, 12, 13, 16, 19, 22, 26, 361) but 
certainly there are still several promising research directions to be explored. 
We can summarise some of the reasons for which memetic algorithms are a 
good approach to solve scheduling and timetabling problems as follows: 

The size of the search space in scheduling and timetabling problems is 
huge for most real-world problems, and a good explorative ability, which 
memetic approaches have, is required. 
These problems are highly constrained and therefore, most of the times it 
is easier to self-improve solutions that to recombine them. This highly con- 
strained nature also leads to the design of specialised solution encodings. 
Memetic algorithms also incorporate specialised encodings and operators 
for self-improvement of solutions, which are based on the knowledge of the 
problem domain. 
A complete fitness evaluation function is time consuming in many real- 
world scheduling and timetabling problems. Using approximate evaluation 
in memetic algorithms is more robust than in single-solution methods. This 
is because having a population of new solutions instead of only one new 
solution, helps to reduce the the effect of the error in the fitness estimation. 

6.2 Ideas That Have Been Investigated 

In the literature and from the previous sections in this paper, we can sum- 
marise some of the ideas that have been investigated with respect to the 
application of memetic algorithms for scheduling and timetabling problems: 
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The design of specialised encodings (e.g. linked lists), local search strate- 
gies, genetic operators, and multi-phased methods, all assist the algorithm 
in dealing with infeasible solutions and have received considerable atten- 
tion. 
Approximate fitness evaluation has been used in memetic algorithms but 
to a lesser extent than the above. 
Some work has been carried out on analysing the fitness landscape to 
inform the design of the memetic algorithm. That is, to select more ap- 
propriate operators and to tune the genetic and local search phases. How- 
ever, this analysis is usually performed prior to the implementation of the 
memetic approach. 
The balance between the genetic and the local search parts of memetic al- 
gorithms has received considerable attention particularly in recent years. 
The aspects studied here include: the sophistication of operators, the selec- 
tion of solutions to which apply the operators (including elitist strategies 
such as archives of solutions), the computing time allocated to the genetic 
and the local search, the tuning and balance of the parameters (previous 
to the search), use of population control mechanisms (such as common 
annealing schedule), etc. 

6.3 A Few Thoughts 

Designing a memetic algorithm is frequently associated with the incorpora- 
tion of knowledge from the problem domain in the form of helpers to evo- 
lutionary algorithms. We should be careful because almost every new piece 
of specific knowledge that is added to a memetic algorithm can potentially 
produce improved results. Then, we can many times keep designing a 'new' or 
an 'improved' version of the memetic algorithm, i.e. an incremental design of 
algorithms. We should concentrate on the main ideas and strategies without 
getting lost in the details of the different implementations. 

Krasnogor proposes in [29] a grammar to formulate a wide range of 
memetic algorithms. He also expresses that the grammar can help to envisage 
many more different implementations of memetic algorithms that have not 
been investigated. It  would be interesting to investigate such variants. But we 
should also be careful and focus on the main strategies for designing memetic 
algorithms and not necessarily on the many ways in which they are combined. 

6.4 Suggested Future Research 

We argue here that by studying in detail the problem domain, there is always 
room to create a 'new' memetic approach. If memetic algorithms simulate the 
evolution of ideas, should we not take for granted that many different ideas 
would exist so we should concentrate more on the mechanism to evolve these 
ideas instead of manufacturing these ideas by hand before the search process? 
The research carried out by researchers on the design of memetic algorithms 
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for scheduling and timetabling has contributed enormously to  our understand- 
ing of specialised encodings, operators, heuristics, evaluation routines, etc. and 
their inter-relationships. But as suggested in [29, 331, to  learn more about the 
memetic paradigm, we should concentrate now on using this knowledge for 
designing approaches t o  evolve genes and memes during the search and also 
automatically select memes given the problem domain and also the particu- 
lar instance characteristics. This was also proposed by Ishibuchi et  al. in 1241 
where they suggested t o  investigate the dynamic adaptation of the balance 
between local and genetic search. We also believe that  an important challenge 
in this area is t o  investigate the design of self-adaptive memetic systems, i.e. 
the evolution of genes and memes. 
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