
The Design of Memetic Algorithms for
Scheduling and Timetabling Problems

E.K. Burke and J.D. Landa Silva

Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science and IT, The University of Nottingham, UK
(ekbljds)@cs.nott.ac.uk

Summary. There are several characteristics that make scheduling and timetabling
problems particularly difficult to solve: they have huge search spaces, they are of-
ten highly constrained, they require sophisticated solution representation schemes,
and they usually require very time-consuming fitness evaluation routines. There is
a considerable number of memetic algorithms that have been proposed in the liter-
ature to solve scheduling and timetabling problems. In this chapter, we concentrate
on identifying and discussing those strategies that appear to be particularly use-
ful when designing memetic algorithms for this type of problems. For example, the
many different ways in which knowledge of the problem domain can be incorporated
into memetic algorithms is very helpful to design effective strategies to deal with
infeasibility of solutions. Memetic algorithms employ local search, which serves as
an effective intensification mechanism that is very useful when using sophisticated
representation schemes and time-consuming fitness evaluation functions. These al-
gorithms also incorporate a population, which gives them an effective explorative
ability to sample huge search spaces. Another important aspect that has been investi-
gated when designing memetic algorithms for scheduling and timetabling problems,
is how to establish the right balance between the work performed by the genetic
search and the work performed by the local search. Recently, researchers have put
considerable attention in the design of self-adaptive memetic algorithms. That is, to
incorporate memes that adapt themselves according to the problem domain being
solved and also to the particular conditions of the search process. This chapter also
discusses some recent ideas proposed by researchers that might be useful when de-
signing self-adaptive memetic algorithms. Finally, we give a summary of the issues
discussed throughout the chapter and propose some future research directions in the
design of memetic algorithms for scheduling and timetabling problems.

1 Introduction

It is possible to think of a memetic algorithm as an evolutionary algorithm that
incorporates knowledge about the problem domain being solved (see [29, 331).
This knowledge can be in the form of specialised operators, heuristics and

290 E.K. Burke and J.D. Landa Silva

other helpers that contribute towards a self-improvement ability in the indi-
viduals of the population. Most memetic algorithms described in the literature
are a combination of genetic algorithms with local search heuristics and these
approaches are also known as genetic local search, hybrid genetic algorithms,
hybrid evolutionary algorithms and other names (e.g. [13,22, 25, 38,441). This
type of hybrid approach has been applied to a vast number of optimisation
problems with considerable success (see [34] for a list of example references).

In this paper we concentrate on the application of memetic algorithms to
scheduling and timetabling problems such as machine scheduling, educational
timetabling and personnel rostering [47]. One goal here is to identify and dis-
cuss those strategies that appear to be applied more frequently by researchers
and practitioners, when designing memetic algorithms for the type of prob-
lems mentioned above. Another goal is to discuss some recent ideas proposed
by researchers in this area that might help to design more robust memetic
algorithms for scheduling and timetabling problems. We do not attempt to
provide an exhaustive survey of memetic approaches to such problems. First,
in Sect. 2 we briefly describe the paradigm behind memetic search followed by
a short discussion of scheduling and timetabling problems in Sect. 3. Then,
in Sect. 4 we concentrate on those strategies that are frequently employed
when implementing memetic algorithms for scheduling and timetabling (and
perhaps related problems). Scheduling and timetabling problems are usually
highly constrained and one of the difficulties when solving these problems is
how to deal with infeasibility. Section 4.1 discusses the strategies employed
for this purpose within the context of memetic algorithms. For most schedul-
ing and timetabling problems, a complete evaluation of the solution fitness
is computationally costly. Therefore, the use of approximate evaluation rou-
tines can help to implement more efficient memetic algorithms. This topic
is discussed in Sect. 4.2. Selecting an appropriate solution encoding is es-
sential when designing memetic algorithms because both genetic and local
search should operate on this encoding in an efficient way. This is discussed in
Sect. 4.1. The importance of obtaining knowledge of the fitness landscape to
aid the design of better memetic algorithms is discussed in Sect. 4.4. Another
very important aspect when designing memetic algorithms is to establish a
good balance between the genetic search and the local search parts of the al-
gorithm and this is the subject of Sect. 4.5. Most implementations of memetic
algorithms incorporate memes designed a priori and these remain unchanged
during the search. However, one of the original ideas that motivated the con-
ception of memetic algorithms is the evolut ion of memes and this is discussed
in Sect. 4.6. Section 5 describes some local search strategies that have been
proposed recently by researchers and that might also be useful if they are in-
corporated within memetic algorithms. Finally, this paper presents some final
remarks and suggests some future research directions in Sect. 6.

3 Scheduling and Timetabling Problems 291

2 Memetic Algorithms

It is generally believed that memetic algorithms are successful because they
combine the explorative search ability of recombinative evolutionary algo-
rithms and the exploitive search ability of local search methods. An analogy
is that the evolutionary part of a memetic algorithm attempts to simulate the
genetic evolution of individuals through generations, while the local search
part attempts to simulate the individual learning within a lifetime. The ma-
jority of memetic algorithms proposed in the literature are a result of incor-
porating some form of local search to a genetic algorithm. This is illustrated
in Fig. 1.

This local search can be for example, constructive heuristics, repair meth-
ods, specialised self-improvement operators, etc. The local search phase can
be applied before, after or in between the genetic operations. However, as
discussed in [29], the interaction between the memes and the genes can be
even more sophisticated than that and most implementations of memetic al-
gorithms fail to reflect the complex interactions of the memetic paradigm.
Krasnogor [29] argues that in a truly memetic system:

1. Memes also evolve representing the way in which "individuals learn, adopt
or imitate certain memes or modify other memes" and,

2. the distribution of memes changes dynamically within the population rep-
resenting the effects of "teaching, preaching, etc." within the population
of individuals.

Krasnogor also proposed a formulation of memetic algorithms that at-
tempts to better represent the memetic paradigm including adaptive and self-
adaptive memes, for more details see [29]. For a more detailed discussion of
memetic algorithms see [29, 33, 341 and the references therein.

3 Scheduling and Timetabling Problems

Broadly speaking, the task in scheduling and timetabling problems is to ac-
commodate a set of entities (for example, events, activities, people, vehicles,
etc.) into a pattern of time-space so that the available resources are utilised in
the best possible way and the existing constraints are satisfied. This paper is
mainly concerned with three types of scheduling problems: machine schedul-
ing, educational timetabling and personnel scheduling (also called rostering).
However, we will also allude to papers which consider other scheduling prob-
lems. A brief description of machine scheduling, educational timetabling and
personnel scheduling follows. For more details please see the given references.
In machine scheduling, the problem is to schedule a set of jobs for processing
on one or more machines [37]. Educational timetabling refers to the allocation

292 E.K. Burke and J.D. Landa Silva

Recombinative
evolutionary algorithm

population
2. Select individuals for
recombination
3. Recombine
4. Select individuals for
mutation
5. Mutatc
6. Select individuals to I'orm
the new populat~on
7. Got to the next generation

1

~ r o b l e m domain
knowledge,
specialised
operators,
specialised
heuristics, etc.

w 'helpers' for local search

Fig. 1. Most memetic algorithms are a combination of genetic algorithms and local
search strategies.

of events (teaching sessions, exams, lab sessions, etc.) to time slots and possi-
bly to rooms 1421. In personnel scheduling, employees must be accommodated
into shift patterns [19].

Scheduling and timetabling problems arise in many situations and hence,
there is a need for developing effective and efficient automated solution meth-
ods. But as with many other combinatorial optimisation problems, scheduling
and timetabling are difficult problems to tackle with computer algorithms.
The following characteristics are those that make scheduling and timetabling
problems very difficult:

Huge search space. The combinatorial nature of scheduling and timetabling
problems implies that the size of the search space increases dramatically with
the size of the problem making it practically impossible to explore all solu-
tions but for very small problems.

Highly constrained. It is commonly the case that a considerable number
of constraints exist in these problems. Constraints limit the possible ways in
which a schedule can be constructed. Some constraints must be satisfied for
the solutions to be feasible (hard constraints) while other constraints are de-
sirable but not absolutely essential (soft constraints). Examples of constraints
are: job A must be processed before job C but after job D (machine schedul-
ing); lecturers cannot teach more than two consecutive sessions (educational
timetabling); a minimum number of nurses must be scheduled during busy
times (personnel scheduling).

4 Designing Memetic Algorithms 293

Difficult to represent. It is often difficult to find a representation with
associated data structures that capture all details of the problem including
the complete set of constraints. Most of the times the problem is simplified,
otherwise very elaborate representations are required to model it (see the sec-
tions below).

Time-consuming fitness evaluation. Computing the fitness of solutions
in scheduling and timetabling problems is usually time consuming. The main
reason for this is the existence of many constraints. When a solution is modi-
fied even slightly during the search, a number of constraints might be affected
and therefore, a complete computation of the whole solution is required.

There is a significant school of thought which says that for most schedul-
ing and timetabling problems, the improvement of solutions can be achieved
more effectively with local search heuristics than with recombinative oper-
ators. These local search heuristics are usually tailored to the application
problem by incorporating knowledge of the problem domain in order to deal
with the constraints in a more effective way. It is also generally believed that,
because memetic algorithms operate on a population of solutions, they are less
dependant on the quality of the initial solutions than local search methods
which operate on a single solution. Then, the appeal of applying memetic algo-
rithms for scheduling and timetabling problems is that the powerful improving
mechanism of local search is maintained and at the same time, enriched by
the addition of a population of individuals.

4 Designing Memetic Algorithms

There is a considerable number of applications of memetic algorithms to
scheduling problems reported in the literature including: machine schedul-
ing (eg. [22, 24]), educational timetabling (e.g. [2, 5, 6, 16, 36]), personnel
scheduling (e.g. [I, 9, 26]), maintenance scheduling (e.g. [12, 131) among many
others.

As mentioned above, the addition of local search helpers into genetic algo-
rithms is the most common approach reported in the literature. The variety of
helpers that have been proposed range from the use of tailored chromosome
representations and operators (e.g. [17, 261) and simple repairing methods
based on constraint-based reasoning (e.g. [16]) to very sophisticated combina-
tions of algorithm components in which a memetic algorithm is embedded into
a genetic algorithm (e.g. [3]). In this Sect., we discuss the strategies that have
been used more frequently by researchers and practitioners when designing
memetic algorithms for scheduling and timetabling problems.

294 E.K. Burke and J.D. Landa Silva

4.1 Dealing with Infeasibility

A major issue of concern in scheduling and timetabling is how to deal with
the infeasibility of solutions. Due to the large number of hard constraints that
typically exist in these problems, generating feasible solutions and keeping
them feasible during the search is a difficult task. In general, the first decision
that has to be made is whether to consider or not infeasible solutions as part
of the searching process. In both cases, the design of adequate solution repre-
sentations and search operators is an essential ingredient for an effective and
efficient operation of the search algorithm. The incorporation of knowledge of
the problem domain in the form of choosing the representation and operators
according to the existing constraints in the problem, can be considered to be
a memetic approach in itself if we accept the broad description of memetic
algorithms [33].

Elaborate Encodings and Operators

One way to deal with infeasible solutions is to forbid them completely. That
is, only feasible solutions are generated in the initialisation phase and then,
the genetic and local search operators are restricted to work only in the fea-
sible region. This approach was used by Burke et al. in the nurse scheduling
problem [9] and by Erben and Keppler in the course timetabling problem [18].
Very elaborate solution encodings can also be used to avoid the generation of
infeasible solutions altogether. For example, Erben applied grouping genetic
algorithms to examination timetabling problems in [17]. In a grouping genetic
algorithm, the chromosome representation is made of groups of genes (a group
can be, for example, the events scheduled in the same time slot). Then, while
in a direct representation of a timetable each gene represents one event, in a
grouping representation each gene represents a group of events. In this way,
it is easier to design genetic operators that recombine timetables without de-
stroying the feasibility of solutions (i.e. in this case keeping events in the same
time slot). Similarly, Kawanaka et al. employed a very elaborate encoding that
guaranteed the feasibility of solutions for the nurse scheduling problem [26].
Also, Aickelin and Dowsland [I] implemented two levels of crossover operators
for the nurse scheduling problem, one operating at the individual nurse sched-
ule level and another operating at a higher level for the complete schedule. In
the first operator, the genes are the time slots while in the second operator
the genes are the whole individual schedules of the nurses.

Elaborate encodings and operators help to maintain good sub-solutions
(parts of schedules) and aim to generate better complete schedules by mixing
good building blocks. However, this can generate more design issues which
need to be solved. For example, how do we measure fitness in each type of
operator? This might then lead on to investigating various selection schemes
within the same algorithm while it is necessary to somehow preserve the good
parts of solutions that are already created in order to obtain sensible results,

4 Designing Memetic Algorithms 295

we should keep in mind that restricting the search to only the feasible regions
of the solution space could considerably limit the explorative ability of the
memetic algorithm.

Repair Methods and Penalty Schemes

Another approach to deal with infeasibility is to penalise and/or repair infeasi-
ble solutions. That is, if the solution encoding and associated search operators
permit the generation of infeasible solutions, then repairing heuristics that re-
cover the feasibility of solutions can be implemented. The reparing method
should be easy to implement so that no excessive overhead is added to the
search process. Also, if the reparing method is too elaborate, it may happen
that most of the changes made by the search operators to obtain the new
solution from the previous one are reversed by the repairing method resulting
in a very inefficient process. For example, repairing heuristics were used by
Colorni et al. in the application of genetic and memetic algorithms to high
school timetabling problems [14].

An alternative strategy when infeasible solutions are allowed, it is to heav-
ily penalise them in order to discourage their survival. The selection of the
penalties must be carefully made. The recommendation is that the penalties
should discourage the inclusion of infeasible solutions but without completely
eliminating them because infeasible solutions may be required for the algo-
rithm to have a better explorative ability. In our experience, if local search
is used, relatively low penalties for infeasibility should be set in many cases
because if these penalties are too high, then the local search attempts to re-
cover feasibility first and this could increase substantially the violation of soft
constraints [7, 91. Penalties can be fixed or they can be adapted during the
search. Aickelin and Dowsland implemented an adaptive scheme where the
infeasibility penalty depends on the number of violated hard constraints [I]: if
q > 0 then gdemand = a x q where q is the number of violated hard constraints,
a is a severity parameter and gdemand is the infeasibility penalty weight used
in the fitness function.

Multi-Phased Strategies

Some researchers have employed multi-phased approaches to deal with hard
constraints and hence, infeasibility of solutions by dividing the solution pro-
cess in multiple stages. In the first phase the goal is to generate semi-complete
feasible solutions. For example, in the nurse scheduling problem, the emphasis
can be on the generation of a semi-complete schedule in which it is guaranteed
that there are enough nurses available to meet the requirements in each shift,
without assigning actual working time slots to each nurse [I]. Then, in the sub-
sequent phases the schedule is incrementally completed by assigning working
time slots to individual nurses and forbidding the violation of hard constraints.

296 E.K. Burke and J.D. Landa Silva

Burke and Newall also used a multi-phased approach in their memetic algo-
rithm for the examination timetabling problem [5] (this is an improved version
of their previous algorithm presented in [6]). Their memetic approach, how-
ever, did not use recombination operators, only mutation operators followed
by a hill-climbing algorithm. They constructed a partial timetable and then
iteratively applied a memetic algorithm with the aim of scheduling a subset of
events in each iteration, i.e. the memetic approach is applied to a subproblem
in each iteration. This can be represented in diagrammatic form as shown in
Fig. 2.

Initialisation
Heuristic

I Partial Schedule 1

Memetic Algorithm
(Mutations followed by

hill-climbing)

complete?

+
YES then STOP

Fig. 2. The multi-phase memetic algorithm implemented by Burke and Newall [5]
acts as a peckish (not too greedy) constructive heuristic.

4.2 Approximate Fitness Evaluation

It has been shown that using approximate evaluation (also known as delta
evaluation) to measure the quality of solutions helps to improve the efficiency
of the search algorithm in problems for which the fitness evaluation function
is very time consuming (e.g. [5, 6, 20, 31, 461). With approximate evaluation,
instead of a complete and accurate evaluation of each newly generated so-
lution, only the difference between the previous solution and the new one is
computed. Approximate evaluation can be applied as follows to reduce the
computation time spent by the memetic algorithm. Two fitness evaluation
routines are implemented. One routine completely evaluates the fitness of the
new solution (complete evaluator). The second one only makes an estimation

4 Designing Memetic Algorithms 297

of the new fitness based on the previous solution and the changes made (ap-
proximate evaluator). Suppose that a population of new solutions is created
in each generation. Instead of computing the fitness of these solutions with
the complete evaluator, their fitness is measured with the approximate evalu-
ator. Then, only a fraction of the population of new solutions is re-assessed
with the complete evaluator. These solutions can be for example, the best
ones, those that have a minimum quality level, or only those that represent
an improvement with respect to the previous solutions. This simple strategy
can save a considerable amount of computation time because it is very likely
that few solutions would need to be re-evaluated with the complete evaluator
in the first stages of the evolutionary process. As the search progresses and
the overall quality of the population improves, more solutions will have high
fitness and perhaps, only the accurate evaluator will be used. For more details
on how this kind of strategy was implemented for the warehouse scheduling
problem see [46], for the examination timetabling problem see [5, 61 and for
the space allocation problem see [31].

Of course, for this strategy to be effective it is required that the structure
of the combinatorial optimisation problem is such that the quality of the new
solutions can be updated by evaluating only the changes made to the previous
solution. Approximate evaluation can be applied in any of the stages of a
memetic algorithm, i.e. during the local search phase or during the genetic
search phase. As mentioned above, a common characteristic of many real
world scheduling and timetabling problems is that a considerable number of
constraints exist in these situations. Hence, it is very likely that many of
the constraints in a particular problem instance are affected by even simple
changes to the previous solution. This means that the degree of inaccuracy
when using the approximate evaluator can be higher than in less constrained
combinatorial problems and the implementation of the approximate routine
must be carried out carefully.

4.3 Encodings Based on Linked Lists

Another aspect that must be considered when using approximate evaluation is
that the solution encoding selected and associated data structures should allow
an efficient implementation of the approximate evaluation routine (i.e. much
more efficiently that the complete evaluation). In this respect, for scheduling
and timetabling problems (and combinatorial problems in general) solution
encodings and data structures based on linked lists have been shown to be very
helpful for implementing moves and fitness evaluation routines more efficiently
(e.g. [5, 31, 391). This type of representation is advantageous in combinatorial
optimisation for several reasons:

0 Linked lists can dynamically shrinklgrow easily by deletingladding ele-
ments,
they can also be modified efficiently by only changing pointers,

298 E.K. Burke and J.D. Landa Silva

linked lists can be used to represent virtually any structure (array, matrix,
set, etc.), and
local search operators such as move, swap, invert, add, delete, change, etc.
can be performed directly and very easily with linked lists.

An example of this type of encoding is shown in Fig. 3 for the space allo-
cation problem. In this problem, a set of entities (staff, lecture rooms, labs,
etc.) must be allocated to a set of available rooms in such a way that all hard
constraints are satisfied, the space misuse is minimised, and the violation of
soft constraints is minimised (see [31] for more details). In the encoding of
Fig. 3, the lists Entities, Rooms and Constraints hold details of the problem
being solved, then these lists remain unchanged throughout the search. That
is, these lists hold, for example, the required space for each entity, the ca-
pacity of rooms, the type and nominal penalty of constraints, etc. The lists
EntityGene, RoomGene and ConstraintGene, hold details of a solution or al-
location, i.e. fitness statistics, pointers to the problem data, and pointer that
define the structure of the solution. In the solution represented in Fig. 3, en-
tity E l is allocated to room R5, room R2 is empty, entity E3 is not allocated,
constraints C3 and C4 apply to entity E5, etc. With this data structure, it is
easy to implement local search moves by only changing the appropriate point-
ers. Similarly, fitness evaluation routines can be performed efficiently because
it is easy to identify which constraints have been affected (by walking along
the corresponding linked lists) after a change to the solution structure.

4.4 The Fitness Landscape

Another aspect that makes scheduling and timetabling problems difficult to
tackle is that, as in most combinatorial optimisation problems, the shape of the
fitness landscape usually depends on each particular problem instance. More-
over, the penalties associated to the various soft constraints in the problem
can have an effect on the distribution of local optima. For example, consider
two soft constraints SCl and SC2 with associated penalties and r 2 respec-
tively. Let SC1 be 'more important' than SC2 but 'less difficult' to satisfy
than SC2. That is, more solutions are expected to violate the 'less important'
SC2 than SCl. If TI >> r2 it is likely that the search will be biased towards
finding many very attractive solutions that satisfy SCl (the more important
one), but improvements in SC2 are likely to be overlooked. One the other
hand, if r1 << r2 improvements in SC2 will be preferred over improvements
in SC1 and it is likely that the number of attractive solutions satisfying SCl
will be less than in the previous case. Further, for the same problem instance,
different search operators (local search, crossover, mutation, etc.) explore the
solution landscape in very different ways. An ideal situation would be that
some knowledge of the fitness landscape for a given problem could be available
before the search, but this is rarely the case. Even when preliminary exami-
nations are carried out, it turns out that the solution landscape presents very
different characteristics for each problem instance [I].

4 Designing Memetic Algorithms 299

RoomGene List EnlilyGcnc List

Entities

I nl
CI C 2 C 3 C 4 ConslraintGcnc Lisl

I I I I] Constraints

Fig. 3. Solution encoding based on linked lists used for the space allocation problem.
The global lists Entities, Rooms and Constraints hold data corresponding to the
problem instance being solved. The linked lists of genes EntityGene, RoomGene
and ConstraintGene, hold details of a particular allocation or solution.

In this respect, Merz and Freisleben proposed the idea of fitness landscape
analysis as a means to obtain, a priori, some knowledge of the fitness landscape
which could help to design better memetic approaches [32]. They suggest that
the first step to perform fitness landscape analysis is to define the fitness
landscape for the problem instance. For this it is necessary to assign a fitness
value to each solution in the search space, i.e. define the fitness function. Then,
the spatial structure of the landscape should be defined by defining a metric
that measures the distance (in the genotypical space) between two solutions.
As Merz and Freisleben note, a simple metric to define the distance between
two solutions s and t could be the minimum number of applications of an
operator w required to obtain t from s. Then, they suggest to carry out some
preliminary experiments on the problem instance and perform calculations to
estimate the properties of the fitness landscape that are known to have an
effect on the performance of heuristic methods (see [32] for full details):

The difference in fitness value between neighbouring solutions.
The number of local optima.
An estimation of the distribution of the local optima.
The topology of the basins of attraction of the local optima.

300 E.K. Burke and J.D. Landa Silva

Knowles and Corne have also carried out some studies on the analysis
of the fitness landscape in combinatorial optimisation problems [28] (their
approach is discussed below).

4.5 Balance Between Genetics and Memetics

An issue that has received considerable attention when designing memetic
algorithms is how to establish the right balance between the work performed
by the genetic search and the work performed by the local search. Ideally, in
a memetic algorithm, genetic and local search, i.e. the two broadly defined
groups of operators, should be able to work together in cooperation instead
of against each other [29]. This balance can be tuned from three perspectives
among others:

1. The balance between the sophistication of the genetic operators and the
local search operators.

2. The decision as to which solutions each group of operators is applied.
3. The balance between the computing time allocated to each type of search.

Some Recommendations

Tuning Genetic and Local Search

For example, with respect the sophistication of the operators, Burke et al.
noted that recombining large parts of schedules to form a child solution was
very ineffective because the local search heuristics in their memetic algorithm
were not powerful enough to improve on these solutions [9]. They observed
that instead, it was more beneficial to combine small parts from the parents
so that more diversity could be obtained and the local search part could
be performed more effectively. But if the local search part of the memetic
approach is too powerful, it dominates the search as observed by Burke and
Smith when a well tuned tabu search procedure was incorporated as the local
search phase in a memetic algorithm for the maintenance scheduling problem
[13]. One might feel tempted to use the powerful local search operators and
heuristics already known for scheduling and timetabling problems, but the
difficulties mentioned above can be encountered.

In the case of which solutions should be applied to each group of oper-
ators, an approach that has been used is to improve by local search only a
number of the best solutions in the population (e.g. [I]). In [22] Ishibuchi
et al. implemented a first version of a memetic algorithm for the flow-shop
scheduling problem (named genetic local search in that paper) where they
proposed not to examine the whole neighbourhood but only a fraction of it
(i.e. best of k instead of best of all) and stop the search when no better neigh-
bour is found after a small number of iterations. Later, they also proposed
to apply local search to only good offspring to improve the search ability of

4 Designing Memetic Algorithms 301

their genetic local search approach [23]. Although in that paper Ishibuchi et
al. consider multi-objective flow-shop scheduling problems, this idea can be
transferred from the multi-objective domain to the single-objective domain
by noting that good solutions are not those that offer a good coverage of the
front but solutions that represent a good subset of the population because
of fitness and diversity. In a more recent study, Ishibuchi et al. proposed the
following strategies [24]:

To apply local search to a subset of the population selected based upon a
given probability p and on the fitness of the solutions according to preset
criteria.

0 To apply the local search procedure not after each generation but every
T > 1 generations.
To carry out preliminary experiments for tuning the values of the above
mentioned parameters (k, p and T).
To carry out preliminary experiments to establish the adequate values
for the crossover and mutation probabilities for tuning the genetic search
(provided the parameters of k, p and T have been fixed).

With respect to the genetic operators, it has been proposed to apply them
only to parent solutions that have a certain distance between them in the
genotypical space (this is called a mating restriction) [35]. It has been observed
that applying the local search for a limited number of iterations enables better
results in the long run as reported by Burke and Smith for the maintenance
scheduling problem [12].

Archives of Solutions

The use of archives of solutions (a form of elitism) as in [27] can also be
employed to enhance the balance of genetic and local search. Such an archive
can be used to store elite solutions from which to chose the appropriate ones
before carrying out the genetic operations.

Reacting to the Shape of the Fitness Landscape

Measuring the characteristics of the fitness landscape as the search progresses
can help in the design of a dynamic method to balance the genetic and the
local search. This has been investigated by Knowles and Corne in the context
of the multi-objective quadratic assignment problem [28]. Fitness landscape
analysis techniques can help to identify the structure of a given problem, not
only before the search but perhaps also dynamically during the search [32].
The study of the fitness landscape is a very promising avenue of research
that can be of considerable benefit to enhance the performance of memetic
algorithms, particularly on problems such as scheduling and timetabling. This
is because adequate operators could then be designed and the search tuned
according to the landscape.

302 E.K. Burke and J.D. Landa Silva

Common Annealing Schedules

Krasnogor and Smith have investigated a form of adapting the algorithm
performance according to the search, so that the emphasis can be adapted:
1) to improve the fitness of the population, or 2) to diversify the population
[30]. They used a common temperature for the whole population to control
the acceptance of solutions during the local search phase. The temperature is
inversely proportional to the spread of fitness in the population. Therefore,
as the population converges (spread of fitness is reduced) the temperature
increases and more non-improving solutions are accepted in order to induce
more exploration. Once the spread of fitness is recovered, the temperature
falls so that only improving solutions are accepted and the search acts as a
local search procedure. Burke et al. implemented a population-based anneal-
ing algorithm in which a common annealing schedule is used to control the
acceptance probability of solutions generated by each of the individuals in
the population [7]. In their approach, there is no recombination of solutions
and the balance between exploration and intensification is managed only by
the evolution of the population by self-improvement. They applied the algo-
rithm to the space allocation problem which shares various features with the
class of timetabling problems and was briefly described above (see [31]). The
idea behind their common annealing schedule was to allow a certain degree of
flexibility in an attempt to use the mechanism as a diversification strategy.

4.6 Towards Adaptive Memes

Most of the research related to memetic algorithms for scheduling and
timetabling problems has concentrated on: 1) the design of specialised op-
erators that enable constraints to be dealt with more efficiently, and/or 2) the
comparison between the performance of different operators. For example,
Alkan and Ozcan recently carried out a comparison of various mutation oper-
ators that are directed towards the satisfaction of specific constraints (these
can be considered as local search heuristic more than mutation operators,
see our discussion in the final Sect.) [2]. Another aspect that Alkan and Oz-
can investigated was the comparison of various hill-climbers. They designed
a specific hill-climber for each type of constraint and all hill-climbers were
combined under a single hill-climber controlling the whole local search phase.

This idea of designing specialised local search heuristics to target a par-
ticular constraint or group of constraints has also been investigated by Viana
et al. in what they call constraint oriented neighbourhoods [45]. Their idea
is to use, for a given problem, neighbourhood structures that explicitly take
into account the particular characteristics of the problem constraints. Then,
during the local search the neighbourhood moves are chosen according to the
constraints that are not satisfied in that moment. The adaptation of neigh-
bourhood search heuristics has also been explored by Burke et al. in the

4 Designing Memetic Algorithms 303

context of multi-objective optimisation where different heuristics are targeted
to different objectives (for more details see [Ill).

The progress or success rate of different operators can be assessed during
the search. Then, their application can be adapted accordingly to the condi-
tions of the search process. For example, Basseur et al. used a scheme to mea-
sure the progress of various mutation operators when tackling multi-objective
flow-shop scheduling problems [3]. They implemented various mutation op-
erators which are applied with the same probability at the beginning of the
search. As the search progresses, the decision as to which mutation operator
to use is made dynamically. The generated solutions are evaluated before and
after the application of each mutation operator. Depending on the success of
the operator, they calculate an average growth value which is used to dynam-
ically adjust the probability of each mutation operator. More specifically:

1. When a mutation operator M is applied, a solution M(z) is generated
from a solution x.

2. The progress of the mutation operator M when applied to solution x is 1
if x is dominated by M(x), 0 if x dominates M(z) and 0.5 otherwise. A
solution x dominates a solution y if x is as good as y in all objectives and
better in at least one of them (see [43]).

3. The average Progress(M(i)) of each mutation operator M is calculated
by summing all the progresses of M and dividing it by the number of
solutions to which M was applied.

4. Then, the probability of each mutation operator is adjusted using (1)
where 7 is the number of mutation operators and 6 indicates the minimal
ratio value permitted for each operator. That is, 6 is a parameter that
permits to keep each operator even if the progress of the operator is too
poor.

As discussed here, although some research has been carried out on how
to adapt the application of different genetic and local search operators and
heuristics (memes) throughout the search, in most cases the memes have
been designed before the search and remain unchanged during the process.
The notion of evolution of memes instead of evolution of genes in the context
of timetabling was first suggested by Ross et al. who said: "we suggest that a
GA might be better employed in searching for a good algorithm rather than
searching for a specific solution to a specific problem" [40]. As also argued by
Krasnogor, the evolution of memes is an aspect that deserves more attention
in order to design more advanced and improved memetic systems 1291.

304 E.K. Burke and J.D. Landa Silva

5 Other Ideas for Memetics

5.1 Cooperative Local Search

As discussed in Sect. 2, most memetic algorithms result from the hybridis-
ation of evolutionary algorithms and the incorporation of a variety of spe-
cialised helpers such as elaborate encodings, local search heuristics, etc., from
the knowledge of the problem domain. Another form of hybridising evolu-
tionary methods and local search is by adding some elements of evolutionary
algorithms (such as genetic operators, populations of solutions, a common
annealing schedule, etc.) into a cooperative local search scheme. This form of
hybridisation is illustrated in Fig. 4. To describe the difference between most
memetic approaches and cooperative local search, we also refer to Fig. 3.

'cycle of each individual
in the population'

the search
cyclc or
cach

self-improvement individual
by local search bcgins

'cooperation mechanisms' i
moves,
sharing parts
of good and
bad solutions,
centralised
control, etc.

finds
something
to do, gets

stuck unstuck

\ asks for c00pcraL10n
from othcr mcmbcrs
,f the populat~on

Fig. 4. In a cooperative local search scheme, each individual carries out its own local
search. When an individual gets stuck it asks for the cooperation of the population
in order to find something to do to get unstuck and continue the search from an-
other position in the solution space. The results achieved by each individual may be
different at different times and this encourages diversity within the population.

While in most memetic algorithms as depicted in Fig. 3, the structure of
the evolutionary algorithm based on generations is maintained, in the cooper-
ative local search approach, the self-improving individual cycle is the driving
mechanism and the helpers come from evolutionary methods. This form of
hybridisation was proposed in [31] as an alternative strategy to combine the
explorative capability of genetic search with the intensification ability of local

5 Other Ideas for Memetics 305

searchers. This type of hybrid, can be beneficial in those problems in which
the recombination of solutions requires the design of specialised encodings,
repairing methods or recombinative operators. This is the case in most of the
scheduling and timetabling problems as discussed above. With the cooperative
local search approach, a population of local searchers evolve mainly by self-
improvement. But the individuals also share information during the search
process with the rest of the population and hence, a form of recombination
can be achieved. In [31] this concept was applied to the space allocation prob-
lem and it proved to be very effective. The cooperation between individuals
was accomplished by maintaining a pool of good and bad parts of solutions.
Then, the cooperation (possible recombination) between individuals in the
population is asynchronous as opposed to most memetic algorithms. In a syn-
chronous mechanism (as in memetic algorithms) the cooperation is regulated
by generations. In an asynchronous mechanism (as proposed in cooperative
local search) the individuals cooperate between them at any required time.
When an individual gets stuck, it asks for the help of the population and
this is implemented by accessing the pool of genes. There are several variants
of this approach that can be explored following the terminology of hybrid
metaheuristics proposed by Talbi in [44](see also [38]). For example, the co-
operation can be synchronous or asynchronous, the explorers can employ the
same (homogeneous) or different (heterogeneous) local search procedures and
also can search the same or different areas of the solution space (global, partial
or functional).

5.2 Teams of Heuristics

Some researchers have investigated the design of search algorithms based upon
a collection of simple local search heuristics. The idea is that a set of simple
local search heuristics can be applied in a systematic or adaptive way to tackle
difficult combinatorial optimization problems. Examples of these approaches
are:

Variable neighbourhood search [21]. In variable neighbourhood search
a number of different neighbourhood structures are used in a systematic fash-
ion to attempt improvements in the current solution while attempting to avoid
getting stuck in poor local optima.

A-teams of heuristics [41]. An A-team of heuristics consists of a set of con-
structors (to generate solutions), a set of improvers (to perform local search
and improve solutions) and a set of destructors (to eliminate poor quality
solutions). All these heuristics operate on a population of solutions and all of
them behave like independent agents cooperating in an asynchronous fashion.

Hyper-heuristics [lo]. A hyper-heuristic can be described as a heuristic that
manages the application of a set of heuristics (which can be simple neighbour-

306 E.K. Burke and J.D. Landa Silva

hood heuristics or elaborate meta-heuristics) during the search. For example,
a hyper-heuristic might, a t each moment during the search, make the decision
as to which heuristic to use according to the historical performance of each
heuristic. The central idea is that the hyper-heuristic learns and adapts itself
dynamically during the search process.

The ideas behind the above approaches can be used to inspire more
strategies for designing more advanced memetic algorithms for scheduling,
timetabling problems and other combinatorial optimisation problems. Specif-
ically, the self-adaptation of local search heuristics would help to further de-
velop the idea of meme evolution [29].

6 Final Remarks and Future Research

6.1 Scheduling and Timetabling: Interesting Domain for Memetic
Algorithms

Scheduling and timetabling problems represent an interesting domain for the
application of memetic algorithms. There are already a number of applications
reported in the literature (e.g. [I, 2, 3, 5, 6, 9, 12, 13, 16, 19, 22, 26, 361) but
certainly there are still several promising research directions to be explored.
We can summarise some of the reasons for which memetic algorithms are a
good approach to solve scheduling and timetabling problems as follows:

The size of the search space in scheduling and timetabling problems is
huge for most real-world problems, and a good explorative ability, which
memetic approaches have, is required.
These problems are highly constrained and therefore, most of the times it
is easier to self-improve solutions that to recombine them. This highly con-
strained nature also leads to the design of specialised solution encodings.
Memetic algorithms also incorporate specialised encodings and operators
for self-improvement of solutions, which are based on the knowledge of the
problem domain.
A complete fitness evaluation function is time consuming in many real-
world scheduling and timetabling problems. Using approximate evaluation
in memetic algorithms is more robust than in single-solution methods. This
is because having a population of new solutions instead of only one new
solution, helps to reduce the the effect of the error in the fitness estimation.

6.2 Ideas That Have Been Investigated

In the literature and from the previous sections in this paper, we can sum-
marise some of the ideas that have been investigated with respect to the
application of memetic algorithms for scheduling and timetabling problems:

6 Final Remarks and Future Research 307

The design of specialised encodings (e.g. linked lists), local search strate-
gies, genetic operators, and multi-phased methods, all assist the algorithm
in dealing with infeasible solutions and have received considerable atten-
tion.
Approximate fitness evaluation has been used in memetic algorithms but
to a lesser extent than the above.
Some work has been carried out on analysing the fitness landscape to
inform the design of the memetic algorithm. That is, to select more ap-
propriate operators and to tune the genetic and local search phases. How-
ever, this analysis is usually performed prior to the implementation of the
memetic approach.
The balance between the genetic and the local search parts of memetic al-
gorithms has received considerable attention particularly in recent years.
The aspects studied here include: the sophistication of operators, the selec-
tion of solutions to which apply the operators (including elitist strategies
such as archives of solutions), the computing time allocated to the genetic
and the local search, the tuning and balance of the parameters (previous
to the search), use of population control mechanisms (such as common
annealing schedule), etc.

6.3 A Few Thoughts

Designing a memetic algorithm is frequently associated with the incorpora-
tion of knowledge from the problem domain in the form of helpers to evo-
lutionary algorithms. We should be careful because almost every new piece
of specific knowledge that is added to a memetic algorithm can potentially
produce improved results. Then, we can many times keep designing a 'new' or
an 'improved' version of the memetic algorithm, i.e. an incremental design of
algorithms. We should concentrate on the main ideas and strategies without
getting lost in the details of the different implementations.

Krasnogor proposes in [29] a grammar to formulate a wide range of
memetic algorithms. He also expresses that the grammar can help to envisage
many more different implementations of memetic algorithms that have not
been investigated. It would be interesting to investigate such variants. But we
should also be careful and focus on the main strategies for designing memetic
algorithms and not necessarily on the many ways in which they are combined.

6.4 Suggested Future Research

We argue here that by studying in detail the problem domain, there is always
room to create a 'new' memetic approach. If memetic algorithms simulate the
evolution of ideas, should we not take for granted that many different ideas
would exist so we should concentrate more on the mechanism to evolve these
ideas instead of manufacturing these ideas by hand before the search process?
The research carried out by researchers on the design of memetic algorithms

308 E.K. Burke and J.D. Landa Silva

for scheduling and timetabling has contributed enormously to our understand-
ing of specialised encodings, operators, heuristics, evaluation routines, etc. and
their inter-relationships. But as suggested in [29, 331, to learn more about the
memetic paradigm, we should concentrate now on using this knowledge for
designing approaches t o evolve genes and memes during the search and also
automatically select memes given the problem domain and also the particu-
lar instance characteristics. This was also proposed by Ishibuchi et al. in 1241
where they suggested t o investigate the dynamic adaptation of the balance
between local and genetic search. We also believe that an important challenge
in this area is t o investigate the design of self-adaptive memetic systems, i.e.
the evolution of genes and memes.

References

1. Aickelin U., Dowsland K.A. (2000). Exploiting problem structure in a genetic
algorithm approach to a nurse rostering problem. Journal of scheduling, 3(3),
139-153.

2. Alkan A., Ozcan E. (2003). Memetic algorithms for timetabling. Proceedings of
the 2003 congress on evolutionary computation (CEC 2003), 1796-1802, IEEE
press.

3. Basseur M., Seynhaeve F., Talbi E.G. (2002). Design of multi-objective evolu-
tionary algorithms to the flow-shop scheduling problem. Proceedings of the 2002
congress on evolutionary computation (CEC 2002), IEEE press, 1151-1156.

4. Blazewicz J., Domschke W., Pesch E. (1996). The job shop scheduling prob-
lem: conventional and new solution techniques. European journal of operational
research, 93, 1-33.

5. Burke E.K., Newall J.P. (1999). A multi-stage evolutionary algorithm for the
timetable problem. IEEE transactions on evolutionary computation, 3(1), 1085-
1092.

6. Burke E.K., Newall J.P., Weare R.F. (1996). A memetic algorithm for university
exam timetabling. The practice and theory of automated timetabling: Selected
papers from the 1st international conference on the practice and theory of
automated timetabling (PATAT 1995), Lecture notes in computer science, 1153,
241-250, Springer.

7. Burke E.K., Cowling P., Landa Silva J.D. (2001). Hybrid population-based
metaheuristic approaches for the space allocation problem. Proceedings of the
2001 congress on evolutionary computation (CEC 2001), IEEE press, 232-239.

8. Burke E.K., Cowling P., Landa Silva J.D., Petrovic S. (2001). Combining hy-
brid metaheuristics and populations for the multiobjective optimisation of space
allocation problems. Proceedings of the 2001 genetic and evolutionary compu-
tation conference (GECCO 2001), Morgan kaufmann, 1252-1259.

9. Burke E., Cowling P., De Causmaecker P., Vanden Berghe G. (2001). A memetic
approach to the nurse rostering problem. Applied intelligence, 15(3), 199-214.

10. Burke E.K., Hart E., Kendall G., Newall J., Ross P., Schulemburg S. (2003).
Hyper-heuristics: an emerging direction in modern search technology. In: Glover
F.W., Kochenberger G.A. (eds.), Handbook of metaheuristics, Kluwer academic
publishers, 2003.

References 309

11. Burke E.K., Landa Silva J.D., Soubeiga E. (2003). Hyperheuristic approaches
for multiobjective optimisation. Proceedings of the 5th metaheuristics interna-
tional conference (MIC 2003), Kyoto Japan. Extended version available from
the authors.

12. Burke E.K., Smith A. (1999). A memetic algorithm to schedule planned main-
tenance for the national grid. ACM Journal of experimental algorithmics, 4(1),
1084-1096.

13. Burke E.K., Smith A. (2000) Hybrid evolutionary techniques for the mainte-
nance scheduling problem, IEEE transactions on power systems, 15(1), 122-128.

14. Colorni A., Dorigo M., Maniezzo V. (1998). Metaheuristics for high school
timetabling, Computational optimization and applications, 9, 275-298.

15. Corne D., Dorigo M., Glover F. (eds.) (1999). New ideas in optimisation. Mc-
Graw Hill.

16. Deris S., Omatu S., Ohta H., Saad P. (1999). Incorporating constraint propa-
gation in genetic algorithm for university timetable planning. Engineering ap-
plications of artificial intelligence, 12, 241-253.

17. Erben Wilhelm (2001). A grouping genetic algorithm for graph colouring and
exam timetabling. The practice and theory of automated timetabling 111: Se-
lected papers from the 3rd international conference on the practice and theory
of automated timetabling (PATAT 2000), Lecture notes in computer science,
2079, 132-156, Springer.

18. Erben W., Keppler J. (1996). A genetic algorithm solving a weekly course-
timetabling problem. The practice and theory of automated timetabling: Se-
lected papers from the 1st international conference on the practice and theory
of automated timetabling (PATAT 1995), Lecture notes in computer science,
1153, 198-211, Springer.

19. Ernst A.T., Jiang H., Krishnamoorthy M., Sier D. (2004). Staff scheduling and
rostering: a review of applications, methods and models. European journal of
operational research, 153, 3-27.

20. Grefenstette J.J., Fitzpatrick M.J. (1985). Genetic search with approximate
function evaluation. Genetic algorithms and their applications: Proceedings of
the first international conference on genetic algorithms, 112-120.

21. Mlandenovic N., Hansen P. (1997). Variable neighbourhood search. Computers
and operations research, 24(ll), 1097-1 100.

22. Ishibuchi H., Murata T., Tomioka S. (1997). Effectiveness of genetic local search
algorithms, Proceedings of the seventh international conference on genetic al-
gorithms, 505-512.

23. Ishibuchi H., Yoshida T., Murata T. (2002b). Selection of initial solutions for
local search in multiobjective genetic local search. Proceedings of the 2002
congress on evolutionary computation (CEC 2002), 950-955, IEEE press.

24. Ishibuchi H., Yoshida T., Murata T. (2003). Balance between genetic search
and local search in memetic algorithms for multiobjective permutation flowshop
scheduling. IEEE transactions on evolutionary computation, 7(2), 204-223.

25. Jaszkiewicz A. (2002). Genetic local search for multi-objective combinatorial
optimization. European journal of operational research, 137(1), 50-71.

26. Kawanaka H., Yamamoto K., Toshikawa T., Shinogi T., Tsuruoka S. (2001).
Genetic algorithm with the constraints for nurse scheduling problem. Proceed-
ings of the 2001 congress on evolutionary computation (CEC 2001), 1123-1130,
IEEE press.

310 E.K. Burke and J.D. Landa Silva

27. Knowles J.D., Corne D.W. (2000). M-PAES a memetic algorithm for multiob-
jective optimization. Proceedings of the 2000 congress on evolutionary compu-
tation (CEC 2000), 325-332, IEEE press.

28. Knowles J.D., Corne D.W. (2002). Towards landscape analyses to inform the
design of a hybrid local search for the multiobjective quadratic assignment
problem. In: Soft computing systems: design, management and applications,
271-279, IOS Press.

29. Krasnogor N. (2002). Studies on the theory and design space of memetic al-
gorithms. PhD thesis, Faculty of computing, engineering and mathematical
sciences, University of the West of England, UK.

30. Krasnogor N., Smith J. (2000). A memetic algorithm with self-adaptive local
search: TSP as a case study. Proceedings of the 2000 genetic and evolutionary
computation conference (GECCO 2000), 987-994, Morgan kaufmann.

31. Landa-Silva J.D. (2003). Metaheuristic and multiobjective approaches for space
allocation. PhD Thesis, School of Computer Science and Information Technol-
ogy, University of Nottingham.

32. Merz P, Freisleben B. (1999). Fitness landscape and memetic algorithm design.
In: Corne D., Dorigo M., Glover F. (eds.), New ideas in optimisation, McGraw
Hill, 245-260.

33. Moscato P. (1999). Memetic algorithms: a short introduction. In: Corne D.,
Dorigo M., Glover F. (eds.), New Ideas in Optimisation, 219-234, McGraw
Hill, 1999.

34. Moscato P. (2002). Memetic algorithms' home page. Online, available at
http://www.densis.fee.unicamp.br/moscato/memetichome.html.

35. Murata T., Ishibuchi H., Gen M. (2000). Cellular genetic local search for multi-
objective optimization. Proceedings of the 2000 genetic and evolutionary com-
putation conference (GECCO 2000), Morgan kaufmann, 307-314.

36. Paechter B., Cumming A., Norman M.G., Luchiam H. (1996). Extensions
to a memetic timetabling system. The practice and theory of automated
timetabling: Selected papers from the 1st international conference on the prac-
tice and theory of automated timetabling (PATAT l995), Lecture notes in com-
puter science, 1153, 251-265, Springer.

37. Pinedo Michael (1995). Scheduling, theory, algorithms, and systems. Prentice-
hall.

38. Preux Ph., Talbi E.G. (1999). Towards hybrid evolutionary algorithms. Inter-
national transactions in operational research, 6, 557-570.

39. Randall M., Abramson D. (2001). A general meta-heuristic based solver for
combinatorial optimisation problems. Computational optimization and appli-
cations, 20, 185-210.

40. Ross P., Hart E., Corne D. (1998). Some Observations about GA-based exam
timetabling. The practice and theory of automated timetabling 11: Selected
papers from the 2nd international conference on the practice and theory of
automated timetabling (PATAT 1997), Lecture notes in computer science, 1408,
115-129, Springer.

41. Salman F.S., Kalagnaman J.R., Murthy S., Davenport A. (2002). Cooperative
strategies for solving bicriteria sparse multiple knapsack problem. Journal of
heuristics, 8, 215-239.

42. Schaerf A. (1999). A Survey of automated timetabling. Artificial intelligence
review, 13, 87-127.

References 31 1

43. Steuer Ralph E. (1986). Multiple criteria optimization: theory, computation
and application. Wiley.

44. Talbi E.G. (2002). A Taxonomy of hybrid metaheuristics. Journal of heuristics,
8, 541-564.

45. Viana A., Pinho de Sousa J., Matos M.A. (2003). GRASP with constraint
neighbourhoods: an application to the unit commitment problem. Proceedings
of the 5th metaheuristics international conference (MIC 2003), 2003.

46. Watson J.P., Rana S., Whitley L.D., Howe A.E. (1999). The impact of ap-
proximate evaluation on the performance of search algorithms for warehouse
scheduling. Journal of scheduling, 2, 79-98.

47. Wren A. (1996). Scheduling, timetabling and rostering, a special relationship?.
The practice and theory of automated timetabling: Selected papers from the 1st
international conference on the practice and theory of automated timetabling
(PATAT 1995), Lecture notes in computer science, 1153, 46-75, Springer.

