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Summary. In this chapter we concentrate on one particular class of Global-Local 
Search Hybrids, Memetic Algorithms (MAS), and we describe the implementation 
of "self-assembling" mechanisms to produce the local searches the MA uses. To un- 
derstand the context in which self-assembling is applied we discuss some important 
aspects of Memetic theory and how these concepts could be harnessed to implement 
more competitive MAS. Our implementation is tested in two problems, Maximum 
Contact Map Overlap Problem (MAX-CMO) and the NK-Landscape Problems. 

Three lessons can be drawn from this paper: 
Memetic theory provides a rich set of metaphors and insights that can be har- 
nessed within optimisation algorithms as to provide better search methods. 
The optimization of solutions can be done simultaneously with the self- 
assembling of local search strategies which can then be exploited by the Memetic 
Algorithm (or other metaheuristic) 
Local search strategies that are evolved to supply building blocks can greatly 
improve the quality of the search obtained by the Memetic Algorithm and do not 
seem to suffer from premature convergence (an ubiquitous problem for global- 
local hybrids). 

1 Introduction 

A vast number of very successful applications of Memetic algorithms (MAS) 
have been reported in the literature in the last years for a wide range of 
problem domains. The majority of the papers dealing with MAS are the result 
of the combination of highly specialized pre-existing local searchers and 
usually purpose-specific genetic operators. Moreover, those algorithms require 
a considerable effort devoted to  the tuning of the local search and evolutionary 
parts of the algorithm. 

In [23] and [25] we propose the so called "Self-Generating Metaheuris- 
tics". Self-Generating Metaheuristics can create on-the-fly the type of opera- 
tors needed to successfully perform certain task. The self-generation concept 
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can be applied to any existing metaheuristic like simulated annealing, tabu 
search, etc. In the case of Memetic Algorithms, self-Generation implies that 
the MAS are able to self-assemble their own local searchers and to co-evolve 
the behaviors it needs to successfully solve a given problem. In Self-Generating 
Memetic Algorithms two evolutionary processes occur. On one hand evolution 
takes place at  the chromosome level as in any other Evolutionary Algorithm; 
chromosomes and genes represent solutions and features of the problem one 
is trying to solve. On the other hand, evolution also happens at  the memetic 
level. That is, the behaviors and strategies that individuals (also called agents) 
use to alter the survival value of their chromosomes are self-assembled from a 
set of components by means of, for example, an evolutionary process. As the 
self-assembeld memes (i.e. local search strategies) are propagated, mutated 
and are selected in a Darwinian sense, the Self-Generating MAS we propose 
are closer to Dawkins concept of memes than the previous works on memetic 
algorithms (e.g. [14],[33],[34],[4]). Additionally, they seem to be more robust 
and scalable than their single local searchers counterpart. 

In this chapter we will review some important ideas arising from Memetic 
theory and we will describe the implementation we have choosen for the pro- 
posed algorithms. Results on the use of the Self-Assembling of local searchers 
for MAS are reported and future lines of research discussed. 

2 The Memetic Metaphor 

Memetic algorithms are not the first kind of algorithms to draw inspiration 
from natural phenomena. In this case the inspiration came from memetic 
theory. However, unlike Simulate annealing, Ant Colony optimization, GAS, 
etc., scholars working on MAS, as will be argued later, departed considerably 
from the metaphor and ignored its main features. 

The common use of the term "memetic algorithm" refers to an evolution- 
ary algorithm that employs as a distinctive part of its main evolutionary cycle 
(mutation, crossover and selection), a local search stage. 

The name "memetic algorithm" is a very contested label that stirs crit- 
ics and controversies among researchers and practitioners who usually adopt 
names such as lamarckian GAS, genetic local search, hybrid GAS, etc. Al- 
though very justificable in the large mayority of cases, these names obscure 
the fact that there is a large body of literature on memetic theory that is 
being neglected. We would like to argue in this section that if we were to put 
back the "memetic" into memetic algorithms then progress could be made 
with a new breed of algorithms that are more atune to the name "memetic 
algorithms" . 

Memetic theory started as such with the definition given by R. Dawkins 
of a meme in [l 11 : 

The definition was later refined in [12] 
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I think that a new kind of replicator has recently emerged on this 
very planet. It  is staring us in the face. It is still in its infancy, still 
drifting clumsily about in its primeval soup, but already it is achieving 
evolutionary change at  a rate that leaves the old gene panting far 
behind. The new soup is the soup of human culture. We need a name 
for the new replicator, a noun that conveys the idea of a unit of cultural 
transmission, or a unit of imitation. "Mimeme" comes from a suitable 
Greek root, but I want a monosyllable that sounds a bit like "gene". 
I hope my classicist friends will forgive me if I abbreviate mimeme 
to meme.(2) If it is any consolation, it could alternatively be thought 
of as being related to "memory", or to the French word "meme". It 
should be pronounced to rhyme with "cream". Examples of memes 
are tunes, ideas, catch-phrases, clothes fashions, ways of making pots 
or of building arches. Just as genes propagate themselves in the gene 
pool by leaping from body to body via sperms or eggs, so memes 
propagate themselves in the meme pool by leaping from brain to brain 
via a process which, in the broad sense, can be called imitation. 

Many other researchers and philosophers "flirted" with the idea that cul- 
tural phenomena can somehow be explained in evolutionary terms even before 
Dawkins' introduction of a meme. Other symbols were introduced to refer to 
the elementary unit of cultural change and/or transmission ( e g ,  m-culture 
and i-culture [7], culture-type [42], etc.). See [13] for a comprehensive analy- 
sis. The merit of Dawkins contribution can be attributed to his insight into 
correctly assigning a new signifier, i.e., a label or symbol, to  the thing being 
signified, i.e., the unit of cultural transmission. The term meme was a new 
word hence it was not loaded with preconceptions and misconceptions. From 
the computer sciences perspective it was appealing because it defined that 
concept as a discrete structure which can be easily harnessed in a computer 
program. 

The fundamental innovation of memetic theory is the recognition that a 
dual system of inheritance, by means of the existence of two distinct repli- 
cators, mould human culture. Moreover, these two replicators interact and 
co-evolve shaping each other's environment. As a consequence evolutionary 
changes at  the gene level are expected to influence the second replicator, the 
memes. Symmetrically, evolutionary changes in the meme pool can have con- 
sequences for the genes. 

2.1 Memetic Theory in Evolutionary Computation 

In any of the major evolutionary computation paradigms, e.g., GAS, Evolution 
Programs, Evolutionary Strategies, GPs, etc, the computation cycle shown in 
graph 1 takes place. 
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Fig. 1. Evolutionary genetic cycle. 

In graph 1 a hypothetical population of individuals is represented at  two 
different points in time, generation 1 (GI) and at  a later generation (G2). In 
the lower line, Gi for i = 1,2  represents the distribution of genotypes in the 
population. In the upper line, Pi represents the distribution of phenotypes at  
the given time. Transformations TA account for epigenetic phenomena, e.g., 
interactions with the environment, in-migration and out-migrations, individ- 
ual development, etc., all of them affecting the distribution of phenotypes and 
producing a change in the distribution of genotypes during this generation. 
On the other hand transformations TB account for the Mendelian principles 
that govern genetic inheritance and transforms a distribution of genotypes G', 
into another one Gq. Evolutionary computation endeavors concentrate on the 
study and assessment of many different ways the cycle depicted in 1 can be 
implemented. This evolutionary cycle implicitly assumes the existence of only 
one replicator: genes. 

On the other hand what memetic algorithmicists should somehow inves- 
tigate, if they were more faithful to the natural phenomena that inspired 
the methodology, is the implementation of a more general and complex dual 
evolutionary cycle where two replicators co-exist. This is shown in 23. 

In the context of memetic algorithms, memes represent instructions to self- 
improve. That is, memes specify sets of rules, programs, heuristics, strategies, 
behaviors, etc, individuals can use in order to improve their own fitnesses 
under certain metric. 

As we mentioned earlier, the fundamental difference between the later 
graph and the former resides in the fact that graph 2 reflects a coevolu- 
tionary system where two replicators of a different nature interact. Moreover 
the interactions between genes and memes are indirect and mediated by the 
common carrier of both: individuals. A truly memetic system should not be 
confused with other coevolutionary approaches where different "species", sub- 
populations or just different individuals interact by ways of a combination of 
cooperation, competition, parasitism, symbiosis, etc. In coevolutionary ap- 
proaches like those described by [19] ,[36] ,[37] ,[38] ,[39] ,[40] and others, only 

This graph is adapted from [13] page 114. 
This graph is adapted from [13] page 186. 
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Fig. 2. Coevolutionary memetic-genetic cycle. 

Mendelian transformations are allowed and sometimes in-migration and out- 
migration operators are also included. In a memetic system, memes can poten- 
tially change and evolve using rules and time scales other than the traditional 
genetic ones. In the words of Feldman and Cavalli-Sforza[6] memetic evolution 
is driven by: 

... the balance of several evolutionary forces: (1) mutation, which 
is both purposive (innovation) and random (copy error); (2) transmi- 
sion, which is not as inert as in biology [i.e., conveyance may also be 
horizontal and oblique]; (3) cultural drift (sampling fluctuations); (4) 
cultural selection) (decisions by individuals); and (5) natural selection 
(the consequences at  the level of Darwinian fitness) ... 

In graph 2 we have the same set of transformations as before between genes 
and phenotypes, but also meme-phenotypes and memes-memes relations are 
shown. There are mainly two transformations for memes that are depicted, 
Tc and To. Transformations Tc represents the various ways in which "cul- 
tural" instructions can re-shape phenotypes distributions, e.g., individuals 
learn, adopt or imitate certain memes or modify other memes. To, on the 
other hand, reflects the changes in memetic distribution that can be expected 
from changes in phenotypic distributions, e.g., those attributed to teaching, 
preaching, etc. 

Memetic Algorithms as they were used so far failed completely, or almost 
completely, to  implement this dual inheritance system to any degree, except 
for the works initiated with 1221, [23] and continued with [25],[45], [24], [26]. 
Consequently, it is not surprising that researchers hesitate to call a GA (or 
other evolutionary approach) that uses local search a memetic algorithm. 
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2.2 Memes Self-Assembling 

In [23],[25],[45],[24] it was proposed and demonstrated that the concept of 
Self-Generating Memetic algorithms can be implemented and, a t  least for the 
domains considered in those papers, beneficial. In the context of SGMAs, 
memes specify sets of rules, programs, heuristics, strategies, behaviors, or 
move operators the individuals in the population can use in order to improve 
their own fitnesses (under a given metric). Moreover the interactions between 
genes and memes are indirect and mediated by the common carrier of both: 
individuals (sometimes also called agents). 

Gabora[l5] mentions three phenomena that are unique to cultural (i.e. 
memetic) evolution. Those phenomena are Knowledge-based, imitation and 
mental simulation. 

It is these three phenomena that our Self-Generating Memetic Algorithm 
implements and use to self-assemble its own local search strategies. The rep- 
resentation of the low level operators (in this chapter the local searchers) 
includes features such as the acceptance strategy (eg. next ascent, steepest 
ascent, random walk, etc), the maximum number of neighborhood members 
to be sampled, the number of iterations for which the heuristic should be run, 
a decision function that will tell the heuristic whether it is beneficial for a 
particular solution or a particular region of a solution and, more importantly, 
the move operator itself in which the low level heuristic will be based[23]. 

Previous technologies for Evolutionary Algorithms, GRASP, Simulated 
Annealing, Tabu Search, etc have concentrated so far in, for example, self- 
adapting the probabilities with which different move operators[46] are used 
during the search for a problem's solution, the size of the tabu lists[49] or 
the size of populations[48], the adaptation of the aspiration criteria [I], the 
crossover points[43], mutations frequencies and intensities[47], the weights in 
the choice functions of Hyperheuristics [9], the appropriate local searcher that 
must be used by a Memetic Algorithms [28], the intensity of search[30], the 
degree of exploitation and exploration of local search [27], etc. However, only 
recentely some exploration on the on-line self-assembling of local searchers 
has been developed. 

The role played by local search in both Memetic and Multimeme algo- 
rithms has traditionally been associated to that of a "fine tuner". The evolu- 
tionary aspect of the algorithm is expected to provide for a global exploration 
of space while the local searchers are assumed to exploit current solutions and 
to fine tune the search in the vicinity of those solutions (i.e. exploitation) 

We will show next that local search strategies can be self-assembled in the 
realm of NK-Landscape problems and a graph theory combinatorial problem. 
Equally important, we will suggest a new role for local search in evolution- 
ary computation in general and memetic algorithms in particular: the local 
searcher not as a fine-tuner but rather as a supplier of building-blocks4. Ini- 

For an overview of selectorecombinative evolutionary algorithms from a building- 
blocks perspective please refer to [17] 
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tial explorations of the many concepts described here appeared before in [25], 
[26] and [24] and we invite the reader to also consult those papers for further 
details. 

3 The NK-Landscapes Experiments 

The NK model of rugged fitness landscapes are particularly useful to un- 
derstand the dynamics of evolutionary search[20] as they can be tunned to 
represent low or high epistasis regimes. The amount of epistasis is related 
to the level of interdependency of genes within a genome. That is, the fit- 
ness contribution of a particular gene's allele depends not only on the iden- 
tity of that allele by also on which are the specific alleles in the remaining 
genes. To model this situation an NK-landscape instance consists of two in- 
teger n and k representing the total number of genes n and the number of 
other genes a gene i is epistatically realted to. The values k can take are 
0 5 k 5 n - 1. Besides n and k, a n x 2k+1 matrix E with elements sampled 
randomly from the (usually) uniform distribution U(0,l) is also required to 
completely define an instans. A solution to an NK-landscape problem instance 
is represented as a binary string S with length n. The fitness of S is given by 
f itness(S) = * fi (Si, Si, , . . . , Si, ) where fi (.) is an entry in E, Si the 
value of string S a t  position i and Sij is the value of string S at  the j - th 
neighbour of bit i. The neighbours, not necessarily adjacent, j of bit i are part 
of the input as well. 

In figure 3 we show a (10,3) NK-landscape. The genome is formed by 10 
genes (N = 10) and each of the genes is epistatically linked to 3 other genes 
(K = 3). In the example this is depicted by the curved arrows going out from 
gene i towards adyacent genes. 

Fig. 3. An example of NK-Landscapes 

Low values for k represent low epistatic problems while large k value make 
up highly epistatic landscapes. The extreme case of an uncorrelated random 
fitness landscape is when k = n - 1. The optimization version of this problem 
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can be solved in polynomial time by dynamic programming if the neighbor- 
hood structure used is that of adjacent neighbours. The problem becomes 
NP-Hard if the structure used is that of random neighbours[50]. 

NK-Landscapes have been the subject of intensive and varied studies. 
Kaufmann et al. [31] explore a phase change in search when a parameter r of a 
local search algorithm reaches a certain critical value on some NK-Landscape 
problems . 

In their paper the authors show experimentally that the quality of the 
search follows an s-shape curve when plotted against r making evident a 
change in phase. M. Oates et al. [35] showed performance profiles for evo- 
lutionary search based algorithms where phase changes were also present. 
Krasnogor and Smith [28] and Krasnogor [23] showed the existence of the 
"solvability" phase transition for GAS (instead than LS) and demonstrated 
that a self-adapting MA can learn the adequate set of parameters to use. Merz 
[32] devotes at least one whole chapter of his Ph.D. dissertation to the devel- 
opment of efficient Memetic Algorithms for this problem (we will return to 
his MAS later on). With a different target as the object of research 0.Sharpe 
in [44] performs some analysis on the parameter space of evolutionary search 
strategies for NK landscapes. 

The NK-Landscapes represent a rich problem and they are an ideal test 
case for our purposes. We will describe the behavior of our Self-Generating 
Memetic Algorithms in 4 different regimes: low epistasis and poly-time solv- 
able, high epistasis and poly-time solvable, low epistasis and NP-hard and 
high epistasis and NP-hard. 

In [23] and in previous sections we argued briefly about the need to cre- 
atively adapt every aspect of the local searchers, that is, the acceptance strat- 
egy, the maximum number of neighborhood members to be sampled, the num- 
ber of iterations for which the meme should be run, a decision function that 
will tell the meme whether it is worth or not to be applied on a particular 
individual and, more importantly, the move operator itself. In this part of the 
chapter we will focus only on the self-generation of the move operator itself 
as a proof of concept5. 

The MA will be composed of two simultaneous processes. Individuals in 
the MA population will be composed of genetic and memetic material. The 
genetic material will represent a solution to NK-Landscapes problems (i.e. 
a bit string) while the memetic part will represent "mental constructs" to 
optimize the NK-Landscape string. As such we will be evolving individuals 
whose goal is to self-optimize by genetic evolution (first process) and memetic 
evolution (second process) as sugested by figure 2. 

3.1 The Self-Generating Memetic Algorithm 

The pseudocode in Figure 2 depicts the algorithm used to solve the NK- 
Landscape Problem. 

The other aspects are actively being investigated. 
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Memetic-Algorithm(): 
Begin 

t = O ;  
/* Initialize the evolutionary clock(generations) to 0 */ 
Randomly generate an initial population P ( t ) ;  
/* The individuals in the population */ 
/* are composed by genes & memes */ 
/* both randomly initialized */ 
Repeat Until ( Termination Criterion Fulfilled ) Do 
Variate individuals in M ( t ) ;  
/* The variation of an individual includes */ 
/* both genetic and memetic variation */ 
Improve~by~local~search( M ( t ) )  ; 
/* The local search is performed accordingly */ 
/* to the individual's meme */ 
Compute the fitness f (p )  Vp € M ( t )  ; 
Generate P ( t  + 1) by selecting from P ( t )  and M ( t ) ;  
t = t + l ;  

endDo 
Return best p E P ( t  - 1 ) ;  

End. 

Fig. 4. The memetic algorithm employed. 

The initial population in P is created at  random. Each individual is com- 
posed of genetic material in the form of a bit string (B). The bit string rep- 
resent the solution to the NK landscape instance being solved. The memetic 
material is of the form * + S where the * symbol matches any bit in the 
solution string and S is another bit string. The only variation mechanism is 
bitwise mutation (applied with probability 0.05) to the chromosomes. The 
replacement strategy is a (20,50). There is no genetic crossover but the SIM 
mechanism, as described in [28], is used to transfer memes between individ- 
uals. Memetic mutation occurs with an innovation rate[23] of 0.2. A meme 
can be mutated (with equal probability) in three ways: either a random bit 
is inserted in a random position, a bit is deleted from a random position, or 
a bit is flipped at  a random position. The length of memes cannot decrease 
below 0 nor increase beyond 3 * k for an (n, k)-problem. 

The Local Search Procedure: Memes description for 
NK-Landscapes 

A meme is represented as a rule of the form * + S. During the local search 
stage this meme is interpreted as follows: 
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Every bit in the chromosome B has the opportunity to be improved by 
steepest hill-climbing. In general NK-Landscapes are epistatic problems so 
flipping only one bit a t  a time cannot produce reasonable improvements except 
of course in problems with very low k. To accommodate for this fact, for each 
bit, one wants to optimize the value of that bit and that of IS1 other bits. A 
sample of size n is taken from all the (IS1 + l)! possible binary strings. Based 
on the content of S ,  these sample strings serve as bits template with which 
the original chromosome B will be modified. If IS1 = 0 then only Bi (the ith 
bit of B)  will be subjected to hill-climbing. On the other hand, if IS1 > 0 then 
the local searchers scans the bits of S one after the other. If the first bit of S 
is a 0, then the bit B(i+l) will be set accordingly to what one of the n samples 
template mandates. On the other hand, if Bi is a 1 then bit B(i+,)nn will be set 
as what one of the n samples template mandates. Here r is a random number 
between 0 and n - 1. By distinguishing in S between ones and zeroes memes 
can reflect the adjacent neighbour or the random neighbour version of the NK- 
landscapes. The larger the size of S the more bits will be affected by the local 
search process. As an example consider the case where the rule is * + 0000. 
This rules implies S = 0000. In this case, for every bit i in B we will produce a 
sample of size n out of the possible 25 binary strings. Each one of these samples 
will be used as a template to modify B. As S is built out of all O's, a fully- 
adjacent neighbourhood is considered. Suppose B = 1010101010101111 10 and 
the bit to be optimized is the fourth bit. Bq equals 0 in the example and its 
four adjacent neighbours are B5 = l ,Bs = 0,B7 = l,Bs = 0. If one of the n 
samples is 11111 then B will be set to B' = 101111111010111110 provided B' 
has better fitness than B. The process is repeated in every bit of B once for 
every sample in the sample set. 

Several complex local search strategies have been applied to the NK- 
landscapes domain. For example Merz in [32] uses various optimisation fea- 
tures with the aim of acelerating his MAS. Furthermore, in chapter 6 in this 
book he describes varios K - opt, Lin - Kernighan and other sophisticated 
heuristics for NK problems. In the following case studies, initially explored in 
1251 and [57], we use simpler local searchers to serve only as a proof of concept. 
The evolved memes induce a variable-sampled k - opt local search strategy. 
We say variable as k varies with the size of S and it can be as small as 0 or 
as large as 3 * k. It  is sampled as we do not exhaustively explore all the 2"' 
possible ways of settings the bits in a chromosome but rather take a reduced 
sample of size n. 

3.2 Results 

In previous sections we described our self-generating MAS. What sort of be- 
haviors can we expect to see emerging? Four different scenarios needs to be 
analysed: low epistasis-poly-time solvable, high epistasis-poly-time solvable, 
low epistasis-NP-hard and high epistasis-NP-hard landscapes. The level of 
epistasis is controlled by the n and k .  The closer k is to 0 the more negli- 
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gible the epistatic interactions among loci. If k grows up to n - 1 then the 
induced problems is a random field. The transition between polynomial time 
solvability to NP-hardness depends on the type of neighborhood used as it 
was explained before. We should expect the emergence of short strings (i.e. 
IS1 not too big) for the low epistasis regimes while longer strings will be fa- 
vored in high epistasis cases. We should be able to compare the length of the 
evolved local searcher with the k of the problem that is being solved. That is, 
we expect to see memes emerging with lengths close to k .  We should probably 
also see distinct patterns of activity for the different problem regimes. The 
range of problems we experimented with are: 

low epistasis, poly-time solvable: (50, l ) ,  (50,4) with adjacent neighbours. 
0 high epistasis, poly-time solvable: (50,8), (50, lo),  (50,12), (50,14) with ad- 

jacent neighbours 
0 low epistasis, NP-hard: (50, I),  (50,4) with random neighbours. 
0 high epistasis, NP-hard: (50,8), (50, lo), (50,12), (50,14) with random neigh- 

bours. 

3.3 Discussion 

In the following figures we plot the evolution of the length of the meme as- 
sociated with the fittest individual as a function of time and the evolution of 
fitness. For clarity, just 5 runs are depicted. 

Low epistasis, poly-time solvable: 

In Figures 5(a) and 5(b) we can observe the behaviour of the system. For 
the case n = 50, k = 1 the main activity occurs at  the early generations 
(before generation 4). After that point the system becomes trapped in a local 
(possible global) optimum. The length of the memes evolved oscillates between 
1 and 2. As the allowed length are restricted to be in the range [O, 3 * k], the 
expected length of memes is 1.5. It  is evident that the problem is solved 
before any creative learning can take place. When the Self-Generating MA is 
confronted with problem n = 50, k = 4 (a value of k just before the phase 
transitions mentioned in previous sections) the length of the meme in the 
best run oscillates between a minimum value of 3 (after generation 1) and a 
maximum of 10 for the run marked with a thick line (the best run). In this 
case the expected length (if a purely random rule was chosen) for a meme is 
6 which is the most frequently visited value. For these simple NK-Landscape 
regimes, it does not seem to be of benefit to learn any specific meme, but 
rather, a random rule seems to suffice. 

High epistasis, poly-time solvable: 

In Figure 5(c) we can see the system's behaviour for a value of k after the phase 
transition mentioned in [31] and [23]. In this case there is effective evolutionary 
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Fig. 5. NK(50,l) in (a), NK(50,4) in (b) and NK(50,8) in (c). Adjacent neighbours. 
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activity during the whole period depicted. Also, we can see clearly that the 
length of the meme employed by the most successful individual converges 
towards the value of k( in this case 8). If a purely random rule was used 
the expected length would have been 12. The case shown in Figure 6(a) is 
even clearer. All but one of the runs converge towards a meme length almost 
identical to k = 10, except for one that is very close to the expected length of 
15. 

The same trends can be seen in Figures 6(b) and 6(c) where meme lengths 
converge to values around to k = 12 and k = 14 respectively. It is interesting 
to note that although the values are very close to our predictions they do not 
remain at  a fixed value but rather oscillates. This is a very intriguing behaviour 
as it resembles the variable-neighborhood nature of Lin-Kernighan, the most 
successful local search strategy for NK-Landscapes and other combinatorial 
problems. It will be interesting to investigate on the range of values that the 
Memetic Algorithms presented in [32] (which uses K -opt and Lin-Kernighan) 
effectively employs; we speculate that the range of changes, i.e. the number of 
bits modified in each iteration of LS, will be close to the epistatic parameter 
of the problem instance. 

Low epistasis, NP-hard: 

In Figure 7(a) we start to  investigate the behaviour of the Self-Generating MA 
on the NP-Hard regime (i.e. the random neighborhood model). Figure 7(a) 
is similar to the adjacent neighborhoods version shown in Figure 5(a) except 
that oscillations are more frequent in the former. Comparisons between 7(b) 
and 5(b) reveal very similar trends. 

High epistasis, NP-hard: 

The experiments with (n = 50, k = 8) under the random neighbours model 
reveal marked differences with the consecutive neighbour model (see Figures 
7(c) and 5(c) respectively). While in the later all the runs converged toward 
a meme length very close to k, the random model shows a richer dynamics. 
Meme length were divided into 3 groups. In one group, the emerged meme 
length were very close to the value of k, 8 in this case. The other two groups 
either continually increase the size of the memes or decreased it. Two of the 
most successful runs are identified with a cross or circle and each belong 
to a different group. Interestingly, the run that converges first to the local 
optimum is the one that uses very short memes. In contrast, the run that uses 
memes with length equivalent to a value of k show a continued improvement. 
It is important to note that none of the evolved memes converged towards 
the expected length of 12. Figure 8(a) seems to reveal a similar 3-grouped 
pattern. 

The runs that correspond to instances of (n = 50, k = 12) differ notably 
from previous ones. The meme length seems to be converging towards a value 
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Fig. 6 .  NK(50,lO) in (a), 1&!(50,12) in (b)  and NK(50,11) in (c).  Adjacent neigh- 
bours. 
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(c) 

Fig. 7. NK(50,l) in (a),  NK(50,4) in (b) and NK(50,8) in (c). Random neighbours. 
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Nk.L",,.,%ap ,5CI.,~,> 
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( c )  
Fig. 8. NK(50,lO) in (a), NK(50,12) in (b) and NK(50,14) in (c). Random neigh. 
bours. 
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well below the expected length of 18 and even the epistatic value k = 12 for 
these problems. However, between generation 34 and 68 the meme lengths 
oscillates very close to k = 12 values. The next figure, 8(c), presents similar 
features as that of 8(b). However, now two clusters appear, one that suggest 
length around the value of k and another with length values of 6. 

From the analysis of the previous figures we can see that our expectation 
that memes of length proportional to k will arise confirmed. However, other 
interesting features are evident. There are clear differences between memes 
that are evolved to solve the poly-time solvable cases and the NP-hard cases. 
In the first case, all the memes length for k > 4 converged toward values in the 
proximity of k. However, for the random neighborhood model and for high 
epistasis (k > 4) problems, the runs were clustered mainly around memes 
lengths close to k or close to around 6 (regardless the value of k). This is 
indeed a very interesting behaviour that deserves further studies as values of 
5 in the range [4,5,6] are on the edge of the phase transitions described in 
[31],[23] and [28]. That is, between 4,5 or 6 bits were the optimum number of 
bits that need to be considered to boost the efficiency of the search. Moreover, 
in the case of the NP-hard random neighbourhood with k = 8 three clusters 
are noted; we speculate that problems in this range are on the so called "edge 
of chaos" where emergent behaviours are more likely to occur[8],[20]. 

4 The Maximum Contact Map Overlap Experiments 

We explore next the evolved local searcher as  a supplier of building block in 
the context of a problem drawn from computational biology. A contact map 
is represented as an undirected graph that gives a concise representation of a 
protein's 3D fold. In this graph, each residue6 is a node and there exists an edge 
between two nodes if they are neighbors. Two residues are deemed neighboors 
if their 3D location places them closer than certain threshold. Figures 9 & 
10 show two contact maps. An alignment between two contact maps is an 
assignment of residues in the first contact map to residues on the second 
contact map. Residues that are thus aligned are considered equivalents. The 
value of an alignment between two contact maps is the number of contacts 
in the first map whose end-points are aligned with residues in the second 
map that, in turn, are in contact (i.e. the number of size 4 undirected cycles 
that are made between the two contact maps and the alignment edges). This 
number is called the overlap of the contact maps and the goal is to maximize 
this value. The complexity of Max CMO problem was studied in [18] and later 
in [23]. 

A residue is a constitutent element of a protein. 
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4.1 Self-Generating Memetic Algorithms for MAX-CMO 

The overall architecture of the Memetic Algorithm is similar to that described 
by the pseudocode in Figure 4. The backbone of the MA is a genetic algorithm 
in which chromosomes are represented by a vector c E [0, . . . , mIn. Here m is 
the size of the longer protein and n the size of the shorter. A position j in c, 
c[j], specifies that the j th residue in the longer protein is aligned to the c[jlth 
residue in the shorter. A value of -1 in that position will signify that residue 
j is not aligned to any of the residues in the other protein (i.e., a structural 
alignment gap). Unfeasible configurations are not allowed, that is, if i < j 
and v[i] > v[j] or i > j and v[i] < v[j] (e.g., a crossing a1ignment)then the 
chromosome is discarded. It  is simple to define genetic operators that preserve 
feasibilities based on this representation. Two-point crossover with boundary 
checks was used in [29] to mate individuals and create one offspring. Although 
both parents were feasible valid alignments the newly created offspring can 
result in invalid (crossed) alignments. After constructing the offspring, feasi- 
bility is restored by deleting any alignment that crosses other alignments. The 
mutation move employed in the experiments is called a sliding mutation. It  
selects a consecutive region of the chromosome vector and adds, slides right, 
or subtracts, slides left, a small number. The phenotypic effect produced is 
the tilting of the alignments. In [29] a few variations on the sliding mutation 
were described and used. Further implementation details can be found also in 
[23] and [5]. We describe next the make-up of memes. 

The Local Search Procedure: Memes description for MAX-CMO 

As mentioned in previous sections, we seek to produce a metaheuristic that 
creates from scratch the appropriate local searcher to use under different 
circumstances. A meme represents one particular way of doing local search. 
Memes can adapt through changes in their parameter set or through changes 
in the actions they perform. The local search involved can be very complex 
and composed of several phases and processes. In the most general case we 
want to be able to explore the space of all possible memes. One can achieve 
this by using a formal grammar that describes memes and by letting a genetic 
programming[21] based system to evolve sentences in the language gener- 
ated by that grammar[23]. The sentences in the language generated by this 
grammar represent syntactically valid complex local searchers and they are 
the instructions used to implement specific search behaviors and strategies. 
To describe the particular representation employed to self-assemble the move 
operator used by a local search strategy we resort to  a few examples. 

In Figure 9 we can see two contact maps ready to be aligned by our 
algorithm. To simplify the exposition, both contact maps are identical (i.e. 
we are aligning a contact map with itself) and have a very specific pattern of 
contacts among their residues. In the present example a residue is connected 
to either its nearest neighbor residue, to a residue that is 4 residues away in 
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Fig. 9. A contact map snapshot. The two randomly generated proteins have 10 
residues. 

the protein sequence, or to both (with a given probability). In Figure 9 the 
contact map is 10 residues long, while in 10 it is 50 residues long (but with the 
same connectivity patterns). This contact pattern can be represented by the 
string 1 - 4, meaning that the residue which occupies the ith position in the 
protein sequence is in contact in the native state with residues (i + 1)th and 
(i + 4)th. That is, the pattern 1 - 4 is a succint representation of a possible 
building block which, if matched by the local searcher, could be propagated 
later on by crossover into other solutions. 

An appropriate move operator for a local searcher acting in any of the 
contact maps on Figures 9 & 10 would be one that iterates through every 
residue in one of the contact maps, checking which residues on the lower 
contact map fulfills the pattern of connectivity and making a list of them. 
The same procedure would be applied to the top contact map producing a 
second list of residues. The local searcher then would pair residues of one list 
with residues of the second list thus producing a new and correct alignment 
which includes that building blocks. 

The number of residues that verifies the pattern in each list puts an upper 
bound on how expensive the local search move operator can be. If the size 
of the first list is L1 and the size of the second list is La, and without loss 
of generality we assume that L1 5 L2 then there are at most ~ i ~ f '  (Lt!C)!. 
Clearly this number is too big to be searched exhaustively, this is why the 
previous grammar allows for the adaptation of the sample size. Moreover, 
although it is well known that real proteins present these contact patterns[lO] 
it is impossible to know a priori which of these patterns will provide the best 
fitness improvement for a particular pair of protein structures. Hence, the 
Self-Generating MA needs to discover this itself. 
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Fig. 10. A contact map snapshot. The two randomly generated proteins have 50 
residues and the patterns of contacts are similar to  those in Fig. 9. 

If the graphs to be aligned were different (in the previous cases a graph 
was aligned with itself for the sake of clarity), then a move operator able to 
account for that variation in patterns must be evolved. 

The defined move operator induces a neighborhood for every feasible align- 
ment. If an alignment s is represented as explained above and L1, L2 are the 
list of vertices that matches the move operator, then every feasible solution 
that can be obtained by adding to s one or more alignments of vertices in L1 
with vertices on L2 is a neighbor of s. The other components of a meme will 
then decide how to sample this neighborhood and which solutions to accept 
as the next one. As this paper is an account of the initial investigations we 
performed on the use of SGMA, we fixed several aspects of the memes that 
could otherwise be evolved. In this paper all memes employ first improve- 
ment ascent strategy and they are applied after crossover. The sample size 
was either 50 or 500 and the local search was iterated 2 times. 

As described in the introduction, there were three memetic processes: imi- 
tation, innovation and mental simulation. Upon reproduction, a newly created 
offsprings inherits the meme of one of its parents accordingly to the simple 
inheritance mechanism described in [28]. In addition to this mechanism, and 
with a certain probability (called "imitation probability"), an agent could 
choose to override its parental meme by copying the meme of some successful 
agent in the population to which it was not (necessarily) genetically related. 
In order to select from which agent to imitate a search behavior, a tournament 
selection of size 4 was used among individuals in the population and the win- 
ner of the tournament was used as role model and its meme copied. Innovation 
was a random process of mutating a meme's specification by either extending, 
modifying or shortening the pattern in a meme (either before or after the -+). 
If during 10 consecutive generations no improvement was produced by either 
the local search or the evolutionary algorithm a stage of mental simulation was 
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started. During mental simulation, each individual (with certain probability) 
will intensively mutate its current meme, try it in the solution it currently 
holds, and if the mutant meme produces an improvement, both the newly 
created solution and the meme will be accepted as the next state for that 
agent. That is, mental simulation can be considered as a guided hill-climbing 
on memetic space. If ten mental simulation cycles finished without improve- 
ments, then metal simulation was terminated and the standard memetic cycle 
resumed. 

4.2 Results 

We designed a random instance generator with the purpose of parameterizing 
the complexity of the contact map overlap problems to be solved. The input 
to the random instance generator is a list of the form: 

r d n p, prl p2 pr2 . . . p, pr, where r is the number of residues in the 
randomly generated contact map, d is the density of random edges (i.e. noise) 
and n is the number of patterns in the contact map. For each of the n patterns 
two numbers are available, pi and pri, where pi specifies that a residue j is 
connected to residue j +pi with probability pri for all i E [I, n]. That is, every 
pattern occurs with certain probability in each residue, thus an upper bound 
on the expected number of contacts is given by r*d+r*C%zypri 5 r*(n+d). In 
our experiments r E {10,50,100,150,200,250), d = 0.01 and n E {1,2,3,4), 
that is, contact maps as short as 10 residues and as long as 250 residues were 
considered. For each contact map length, every possible number of patterns 
was used, this gives rise to 24 pairs of (r, n) values. For each pair, 5 random 
instances were generated spanning from low density contact maps to high 
density contact maps7. A total of 120 instances were generated. From all the 
possible parings of contact maps we randomly choose a total of 96 pairs to be 
aligned by means of 10 runs each. 

We present next comparisons of the performance of a Genetic Algorithm 
versus that of the SGMA. In this experiment we would like to elucidate 
whether the overhead of learning suitable local searchers is amortized along the 
run and whether our proposed approach is ultimately useful. In order to run 
the experiments we implemented a GA as described previously. We were able 
to reproduce the results of [29] and [5] hence we considered our implementa- 
tions as equivalent to the earlier ones. The difference between the GA and the 
SGMA are described below. In graphs 11,12,13 and 14 we compare the overlap 
values8 against the first hitting times. First hitting time (FHT) is the time (in 
number of fitness evaluations) a t  which the best value of a run was encoun- 
tered. Each graphs presents the results for 1,2,3 and 4 patterns respectively 
and for a range of contact maps sizes. The particular parameters used in the 

' The program to generate random contact maps was written in java 1.1.8 as is 
available by request from the author. 
A higher overlap value means a better structural alignment. 
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GA are 0.15, 0.75 for mutation and crossover probabilities, and a (50,75) re- 
placement strategy. The Self-Generating MA uses 0.15,0.75,1.0,1.0,1.0,1.0 for 
the probabilities of mutation, crossover,local search, imitation, mental simu- 
lation and innovation respectively. The algorithms uses the same replacement 
strategy and for both local search and mental simulation a cpu budget of 50 
samples is allocated. 

4.3 Discussion 

The graphs in 11,12,13 and 14 are good representatives of the results obtained 
with the two types of algorithms. That is, under a variety of changes to the pa- 
rameter values mentioned above the results remain equivalent to those shown 
here. 

1 Pattern Contact Map Overlaps 
10.50.IW, 150,ZW & 250 residue instances 

Fig. 11. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty increases as a function of residues number. Contact maps present one pattern. 

From Figures 11,12,13 and 14 we can see that the Self-Generating Memetic 
Algorithm produces a much better amortized overlap value than the simple 
GA. That is, if enough time is given to the SGMA, it will sooner or later 
discover an appropriate local searcher move that will supply new building 
blocks. In turn, this will deliver an order of magnitude better overlaps than 
the Genetic Algorithm. Also, it seems that the GA is oblivious to the size 
(i.e. residues number) of the contact maps as it seems to produce mediocre 
local optima solutions even when given the maximum cpu time allocation (in 
these experiments 2 * lo5 fitness evaluations) for the whole range of 10 to 250 
residues. The GA converges very quickly into local optima. This is seen in the 
graphs by bands parallel to  the x-axis over the range of energy evaluations for 
low overlap values. However, as the SGMA continuously improves its solutions, 
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2 Pattern Contact Map Overlaps 
10.50,100,150,200 & 250 midue inrlilnccs 

#Fitness Evaluations (first hiting time) 

Fig. 12. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty  increases as a function of  residues number.Contact maps present two patterns. 

3 Pattern Contact Map Overlaps 
10.50.100.150.200& 250residue instances 

M C " " " I '  ' ' " " " I '  ' ' " " " I '  .;i 

Fig. 13. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty  increases as a function of  residues number.Contact maps present three patterns. 

it is not until very late in the execution (i.e. to the right of the x - axis) that 
the best solutions are found. 

In contrast to the GA, the SGMA (as expected) is sensitive to the number 
of residues in the contact maps involved, that is, longer contact maps require 
larger cpu time to come up with the best value of the run (which is seen in the 
graph in the clustering patterns for the different residues number). Another 



252 

Fig. 

Krasnogor and Gustafson 

4 Pattern Contact Map Overlaps 
10.50.1 00. 150,200 & 250 rcqidue instunccs 

6 4 C " " I '  ' ' ' " " I '  ' ' ' " " ' I '  ' ' ' a ' " ' I '  ' 4 
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IRtnes- Evaluations (first hiting lime) 

14. Comparison of  the first hitting times and the quality o f  overlaps obtained 
for-GA and SGMA on increasingly difficult randomly generated instances. Complex- 
i ty  increases as a function of  residues number.Contact maps present four patterns. 

important aspect to note is that both the x - axis and the y - axis are 
represented in logarithmic scales. Taking this into consideration it is evident 
that the quality of the overlaps produced by the SGMA are much better than 
those produce by the GA. As it is evident from the graphs, for sufficiently 
small instances (e.g all the 10 residues long and some of the 50 residues long) 
it is not worth using the SGMA as it requires more cpu effort to produce same 
quality of overlaps as the GA. 

On the other hand, as the number of residues increases beyond 50, then 
instances are sufficiently complex to allow for the emergence of suitable local 
searchers in time to overtake and improve on the GA results. Also, as the 
number of patterns that are present in the instances increases both algorithms, 
as expected, require larger amounts of CPU to come up with the best solution 
of a run. However, it is still seen that the GA is insensitive to the number of 
residues, while the SGMA is clustered in the upper right corner (of Figure 14). 
This indicates that during all its execution the algorithm is making progress 
toward better and better solutions, the best of which is to be found near 
the end of the run. Moreover, this behavior indicates that the SGMA is not 
prematurely trapped in poor local optima as is the GA. 

The ability of the SGMA to overcome local optima comes from the fact 
that the evolved local searchers will introduce good building-blocks that match 
the particular instance. This supply of building-blocks is essential for a syn- 
ergistic operation of both the local searcher and the genetic operators. That 
is, using Goldberg's notation [17], we have that for the SGMA the take over 
time t* is greater than the innovation time ti, which allows the algorithms to 
continuously improve. In Figure 15 10 runs of the GA are compared agaisnt 



5 Conclusions 253 

GA vs SGMA 
250 residues long, 4 patterns contact map nlignrnent 

Generation # 

Fig. 15. Representative example o f  G A  and SGMA runs for a 250 residues and 4 
patterns instance. 

10 runs of the SGMA. It can be seen that the GA runs get trapped very early 
(around the 20th generation) in poor local optima while the SGMA keeps im- 
proving durin all the run. All the runs in Figure 15 use the same total number 
of fitness evaluations. 

5 Conclusions 

In this chapter we discussed concepts arising from Memetic theory that could 
be use to produce a new breed of optimisation algorith,~ We tied some of these 
memetic ideas with the concept of "Self-Generating Metaheuristics" and we 
exemplified the use of the resulting algorithms in two hard combinatorial 
problems. 

The Memetic algorithms described in this paper do not resort to  human- 
designed local searchers but rather they assemble on-the-fly the local search 
strategies that best suits each particular situation. 

In this paper we argued that from an optimization point of view there are 
obvious advantages in self-assembling the local search behaviours for memetic 
algorithms. MAS that can self-generate the local searchers will be able to adapt 
to each problem, to every instance within a class of problem and to every 
stage of the search. A similar strategy could be use in other metaheuristics 
(e.g. Simulated Annealing, Tabu Search, Ant Colonies, GRASP, etc) where 
more sophisticated GP implementations might be needed to co-evolve the 
used operators. 

One of the reasons for the success of the SGMA is that the evolved local 
searchers act as  a (low and medium order) building block supplier. These 
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continuous supply of building blocks aids the  evolutionary process to improve 
solutions continuously by producing a more synergistic operation of the local 
and gloabl operators. 

It is our hope that  researchers confronted with new problems for which 
there are not %ilver bullet" local search heuristics (like is the case for TSP 
and Graph Partitioning where K-opt and Lin-Kernighan are known t o  be 
extremely efficient) with which t o  hybridize a Memetic Algorithm will try 
the obvious: the Dawkins method of self-assembling of local search behaviors. 
That  is, use memes to  evolutionary self-assemble appropriate local search 
strategies. 
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