
Self-Assembling of Local Searchers in Memetic
Algorithms

Natalio Krasnogor and Steven Gustafson

Automatic Scheduling, Optimisation and Planning Group
School of Computer Science and IT
University of Nottingham, U.K.
http: \\www. cs .nott. ac .uk/"{nxk, smg)
{Natalio.Krasnogor,Steven.Gustafson)@nottingham.ac.uk

Summary. In this chapter we concentrate on one particular class of Global-Local
Search Hybrids, Memetic Algorithms (MAS), and we describe the implementation
of "self-assembling" mechanisms to produce the local searches the MA uses. To un-
derstand the context in which self-assembling is applied we discuss some important
aspects of Memetic theory and how these concepts could be harnessed to implement
more competitive MAS. Our implementation is tested in two problems, Maximum
Contact Map Overlap Problem (MAX-CMO) and the NK-Landscape Problems.

Three lessons can be drawn from this paper:
Memetic theory provides a rich set of metaphors and insights that can be har-
nessed within optimisation algorithms as to provide better search methods.
The optimization of solutions can be done simultaneously with the self-
assembling of local search strategies which can then be exploited by the Memetic
Algorithm (or other metaheuristic)
Local search strategies that are evolved to supply building blocks can greatly
improve the quality of the search obtained by the Memetic Algorithm and do not
seem to suffer from premature convergence (an ubiquitous problem for global-
local hybrids).

1 Introduction

A vast number of very successful applications of Memetic algorithms (MAS)
have been reported in the literature in the last years for a wide range of
problem domains. The majority of the papers dealing with MAS are the result
of the combination of highly specialized pre-existing local searchers and
usually purpose-specific genetic operators. Moreover, those algorithms require
a considerable effort devoted to the tuning of the local search and evolutionary
parts of the algorithm.

In [23] and [25] we propose the so called "Self-Generating Metaheuris-
tics". Self-Generating Metaheuristics can create on-the-fly the type of opera-
tors needed to successfully perform certain task. The self-generation concept

230 Krasnogor and Gustafson

can be applied to any existing metaheuristic like simulated annealing, tabu
search, etc. In the case of Memetic Algorithms, self-Generation implies that
the MAS are able to self-assemble their own local searchers and to co-evolve
the behaviors it needs to successfully solve a given problem. In Self-Generating
Memetic Algorithms two evolutionary processes occur. On one hand evolution
takes place at the chromosome level as in any other Evolutionary Algorithm;
chromosomes and genes represent solutions and features of the problem one
is trying to solve. On the other hand, evolution also happens at the memetic
level. That is, the behaviors and strategies that individuals (also called agents)
use to alter the survival value of their chromosomes are self-assembled from a
set of components by means of, for example, an evolutionary process. As the
self-assembeld memes (i.e. local search strategies) are propagated, mutated
and are selected in a Darwinian sense, the Self-Generating MAS we propose
are closer to Dawkins concept of memes than the previous works on memetic
algorithms (e.g. [14],[33],[34],[4]). Additionally, they seem to be more robust
and scalable than their single local searchers counterpart.

In this chapter we will review some important ideas arising from Memetic
theory and we will describe the implementation we have choosen for the pro-
posed algorithms. Results on the use of the Self-Assembling of local searchers
for MAS are reported and future lines of research discussed.

2 The Memetic Metaphor

Memetic algorithms are not the first kind of algorithms to draw inspiration
from natural phenomena. In this case the inspiration came from memetic
theory. However, unlike Simulate annealing, Ant Colony optimization, GAS,
etc., scholars working on MAS, as will be argued later, departed considerably
from the metaphor and ignored its main features.

The common use of the term "memetic algorithm" refers to an evolution-
ary algorithm that employs as a distinctive part of its main evolutionary cycle
(mutation, crossover and selection), a local search stage.

The name "memetic algorithm" is a very contested label that stirs crit-
ics and controversies among researchers and practitioners who usually adopt
names such as lamarckian GAS, genetic local search, hybrid GAS, etc. Al-
though very justificable in the large mayority of cases, these names obscure
the fact that there is a large body of literature on memetic theory that is
being neglected. We would like to argue in this section that if we were to put
back the "memetic" into memetic algorithms then progress could be made
with a new breed of algorithms that are more atune to the name "memetic
algorithms" .

Memetic theory started as such with the definition given by R. Dawkins
of a meme in [l 11 :

The definition was later refined in [12]

2 The Memetic Metaphor 231

I think that a new kind of replicator has recently emerged on this
very planet. It is staring us in the face. It is still in its infancy, still
drifting clumsily about in its primeval soup, but already it is achieving
evolutionary change at a rate that leaves the old gene panting far
behind. The new soup is the soup of human culture. We need a name
for the new replicator, a noun that conveys the idea of a unit of cultural
transmission, or a unit of imitation. "Mimeme" comes from a suitable
Greek root, but I want a monosyllable that sounds a bit like "gene".
I hope my classicist friends will forgive me if I abbreviate mimeme
to meme.(2) If it is any consolation, it could alternatively be thought
of as being related to "memory", or to the French word "meme". It
should be pronounced to rhyme with "cream". Examples of memes
are tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the gene
pool by leaping from body to body via sperms or eggs, so memes
propagate themselves in the meme pool by leaping from brain to brain
via a process which, in the broad sense, can be called imitation.

Many other researchers and philosophers "flirted" with the idea that cul-
tural phenomena can somehow be explained in evolutionary terms even before
Dawkins' introduction of a meme. Other symbols were introduced to refer to
the elementary unit of cultural change and/or transmission (e g , m-culture
and i-culture [7], culture-type [42], etc.). See [13] for a comprehensive analy-
sis. The merit of Dawkins contribution can be attributed to his insight into
correctly assigning a new signifier, i.e., a label or symbol, to the thing being
signified, i.e., the unit of cultural transmission. The term meme was a new
word hence it was not loaded with preconceptions and misconceptions. From
the computer sciences perspective it was appealing because it defined that
concept as a discrete structure which can be easily harnessed in a computer
program.

The fundamental innovation of memetic theory is the recognition that a
dual system of inheritance, by means of the existence of two distinct repli-
cators, mould human culture. Moreover, these two replicators interact and
co-evolve shaping each other's environment. As a consequence evolutionary
changes at the gene level are expected to influence the second replicator, the
memes. Symmetrically, evolutionary changes in the meme pool can have con-
sequences for the genes.

2.1 Memetic Theory in Evolutionary Computation

In any of the major evolutionary computation paradigms, e.g., GAS, Evolution
Programs, Evolutionary Strategies, GPs, etc, the computation cycle shown in
graph 1 takes place.

232 Krasnogor and Gustafson

Fig. 1. Evolutionary genetic cycle.

In graph 1 a hypothetical population of individuals is represented at two
different points in time, generation 1 (GI) and at a later generation (G2). In
the lower line, Gi for i = 1,2 represents the distribution of genotypes in the
population. In the upper line, Pi represents the distribution of phenotypes at
the given time. Transformations TA account for epigenetic phenomena, e.g.,
interactions with the environment, in-migration and out-migrations, individ-
ual development, etc., all of them affecting the distribution of phenotypes and
producing a change in the distribution of genotypes during this generation.
On the other hand transformations TB account for the Mendelian principles
that govern genetic inheritance and transforms a distribution of genotypes G',
into another one Gq. Evolutionary computation endeavors concentrate on the
study and assessment of many different ways the cycle depicted in 1 can be
implemented. This evolutionary cycle implicitly assumes the existence of only
one replicator: genes.

On the other hand what memetic algorithmicists should somehow inves-
tigate, if they were more faithful to the natural phenomena that inspired
the methodology, is the implementation of a more general and complex dual
evolutionary cycle where two replicators co-exist. This is shown in 23.

In the context of memetic algorithms, memes represent instructions to self-
improve. That is, memes specify sets of rules, programs, heuristics, strategies,
behaviors, etc, individuals can use in order to improve their own fitnesses
under certain metric.

As we mentioned earlier, the fundamental difference between the later
graph and the former resides in the fact that graph 2 reflects a coevolu-
tionary system where two replicators of a different nature interact. Moreover
the interactions between genes and memes are indirect and mediated by the
common carrier of both: individuals. A truly memetic system should not be
confused with other coevolutionary approaches where different "species", sub-
populations or just different individuals interact by ways of a combination of
cooperation, competition, parasitism, symbiosis, etc. In coevolutionary ap-
proaches like those described by [19] ,[36] ,[37] ,[38] ,[39] ,[40] and others, only

This graph is adapted from [13] page 114.
This graph is adapted from [13] page 186.

2 The Memetic Metaphor 233

Fig. 2. Coevolutionary memetic-genetic cycle.

Mendelian transformations are allowed and sometimes in-migration and out-
migration operators are also included. In a memetic system, memes can poten-
tially change and evolve using rules and time scales other than the traditional
genetic ones. In the words of Feldman and Cavalli-Sforza[6] memetic evolution
is driven by:

... the balance of several evolutionary forces: (1) mutation, which
is both purposive (innovation) and random (copy error); (2) transmi-
sion, which is not as inert as in biology [i.e., conveyance may also be
horizontal and oblique]; (3) cultural drift (sampling fluctuations); (4)
cultural selection) (decisions by individuals); and (5) natural selection
(the consequences at the level of Darwinian fitness) ...

In graph 2 we have the same set of transformations as before between genes
and phenotypes, but also meme-phenotypes and memes-memes relations are
shown. There are mainly two transformations for memes that are depicted,
Tc and To. Transformations Tc represents the various ways in which "cul-
tural" instructions can re-shape phenotypes distributions, e.g., individuals
learn, adopt or imitate certain memes or modify other memes. To, on the
other hand, reflects the changes in memetic distribution that can be expected
from changes in phenotypic distributions, e.g., those attributed to teaching,
preaching, etc.

Memetic Algorithms as they were used so far failed completely, or almost
completely, to implement this dual inheritance system to any degree, except
for the works initiated with 1221, [23] and continued with [25],[45], [24], [26].
Consequently, it is not surprising that researchers hesitate to call a GA (or
other evolutionary approach) that uses local search a memetic algorithm.

234 Krasnogor and Gustafson

2.2 Memes Self-Assembling

In [23],[25],[45],[24] it was proposed and demonstrated that the concept of
Self-Generating Memetic algorithms can be implemented and, a t least for the
domains considered in those papers, beneficial. In the context of SGMAs,
memes specify sets of rules, programs, heuristics, strategies, behaviors, or
move operators the individuals in the population can use in order to improve
their own fitnesses (under a given metric). Moreover the interactions between
genes and memes are indirect and mediated by the common carrier of both:
individuals (sometimes also called agents).

Gabora[l5] mentions three phenomena that are unique to cultural (i.e.
memetic) evolution. Those phenomena are Knowledge-based, imitation and
mental simulation.

It is these three phenomena that our Self-Generating Memetic Algorithm
implements and use to self-assemble its own local search strategies. The rep-
resentation of the low level operators (in this chapter the local searchers)
includes features such as the acceptance strategy (eg. next ascent, steepest
ascent, random walk, etc), the maximum number of neighborhood members
to be sampled, the number of iterations for which the heuristic should be run,
a decision function that will tell the heuristic whether it is beneficial for a
particular solution or a particular region of a solution and, more importantly,
the move operator itself in which the low level heuristic will be based[23].

Previous technologies for Evolutionary Algorithms, GRASP, Simulated
Annealing, Tabu Search, etc have concentrated so far in, for example, self-
adapting the probabilities with which different move operators[46] are used
during the search for a problem's solution, the size of the tabu lists[49] or
the size of populations[48], the adaptation of the aspiration criteria [I], the
crossover points[43], mutations frequencies and intensities[47], the weights in
the choice functions of Hyperheuristics [9], the appropriate local searcher that
must be used by a Memetic Algorithms [28], the intensity of search[30], the
degree of exploitation and exploration of local search [27], etc. However, only
recentely some exploration on the on-line self-assembling of local searchers
has been developed.

The role played by local search in both Memetic and Multimeme algo-
rithms has traditionally been associated to that of a "fine tuner". The evolu-
tionary aspect of the algorithm is expected to provide for a global exploration
of space while the local searchers are assumed to exploit current solutions and
to fine tune the search in the vicinity of those solutions (i.e. exploitation)

We will show next that local search strategies can be self-assembled in the
realm of NK-Landscape problems and a graph theory combinatorial problem.
Equally important, we will suggest a new role for local search in evolution-
ary computation in general and memetic algorithms in particular: the local
searcher not as a fine-tuner but rather as a supplier of building-blocks4. Ini-

For an overview of selectorecombinative evolutionary algorithms from a building-
blocks perspective please refer to [17]

3 The NK-Landscapes Experiments 235

tial explorations of the many concepts described here appeared before in [25],
[26] and [24] and we invite the reader to also consult those papers for further
details.

3 The NK-Landscapes Experiments

The NK model of rugged fitness landscapes are particularly useful to un-
derstand the dynamics of evolutionary search[20] as they can be tunned to
represent low or high epistasis regimes. The amount of epistasis is related
to the level of interdependency of genes within a genome. That is, the fit-
ness contribution of a particular gene's allele depends not only on the iden-
tity of that allele by also on which are the specific alleles in the remaining
genes. To model this situation an NK-landscape instance consists of two in-
teger n and k representing the total number of genes n and the number of
other genes a gene i is epistatically realted to. The values k can take are
0 5 k 5 n - 1. Besides n and k, a n x 2k+1 matrix E with elements sampled
randomly from the (usually) uniform distribution U(0,l) is also required to
completely define an instans. A solution to an NK-landscape problem instance
is represented as a binary string S with length n. The fitness of S is given by
f itness(S) = * fi (Si, Si, , . . . , Si,) where fi (.) is an entry in E, Si the
value of string S a t position i and Sij is the value of string S at the j - th
neighbour of bit i. The neighbours, not necessarily adjacent, j of bit i are part
of the input as well.

In figure 3 we show a (10,3) NK-landscape. The genome is formed by 10
genes (N = 10) and each of the genes is epistatically linked to 3 other genes
(K = 3). In the example this is depicted by the curved arrows going out from
gene i towards adyacent genes.

Fig. 3. An example of NK-Landscapes

Low values for k represent low epistatic problems while large k value make
up highly epistatic landscapes. The extreme case of an uncorrelated random
fitness landscape is when k = n - 1. The optimization version of this problem

236 Krasnogor and Gustafson

can be solved in polynomial time by dynamic programming if the neighbor-
hood structure used is that of adjacent neighbours. The problem becomes
NP-Hard if the structure used is that of random neighbours[50].

NK-Landscapes have been the subject of intensive and varied studies.
Kaufmann et al. [31] explore a phase change in search when a parameter r of a
local search algorithm reaches a certain critical value on some NK-Landscape
problems .

In their paper the authors show experimentally that the quality of the
search follows an s-shape curve when plotted against r making evident a
change in phase. M. Oates et al. [35] showed performance profiles for evo-
lutionary search based algorithms where phase changes were also present.
Krasnogor and Smith [28] and Krasnogor [23] showed the existence of the
"solvability" phase transition for GAS (instead than LS) and demonstrated
that a self-adapting MA can learn the adequate set of parameters to use. Merz
[32] devotes at least one whole chapter of his Ph.D. dissertation to the devel-
opment of efficient Memetic Algorithms for this problem (we will return to
his MAS later on). With a different target as the object of research 0.Sharpe
in [44] performs some analysis on the parameter space of evolutionary search
strategies for NK landscapes.

The NK-Landscapes represent a rich problem and they are an ideal test
case for our purposes. We will describe the behavior of our Self-Generating
Memetic Algorithms in 4 different regimes: low epistasis and poly-time solv-
able, high epistasis and poly-time solvable, low epistasis and NP-hard and
high epistasis and NP-hard.

In [23] and in previous sections we argued briefly about the need to cre-
atively adapt every aspect of the local searchers, that is, the acceptance strat-
egy, the maximum number of neighborhood members to be sampled, the num-
ber of iterations for which the meme should be run, a decision function that
will tell the meme whether it is worth or not to be applied on a particular
individual and, more importantly, the move operator itself. In this part of the
chapter we will focus only on the self-generation of the move operator itself
as a proof of concept5.

The MA will be composed of two simultaneous processes. Individuals in
the MA population will be composed of genetic and memetic material. The
genetic material will represent a solution to NK-Landscapes problems (i.e.
a bit string) while the memetic part will represent "mental constructs" to
optimize the NK-Landscape string. As such we will be evolving individuals
whose goal is to self-optimize by genetic evolution (first process) and memetic
evolution (second process) as sugested by figure 2.

3.1 The Self-Generating Memetic Algorithm

The pseudocode in Figure 2 depicts the algorithm used to solve the NK-
Landscape Problem.

The other aspects are actively being investigated.

3 The NK-Landscapes Experiments

Memetic-Algorithm():
Begin

t = O ;
/* Initialize the evolutionary clock(generations) to 0 */
Randomly generate an initial population P (t) ;
/* The individuals in the population */
/* are composed by genes & memes */
/* both randomly initialized */
Repeat Until (Termination Criterion Fulfilled) Do
Variate individuals in M (t) ;
/* The variation of an individual includes */
/* both genetic and memetic variation */
Improve~by~local~search(M (t)) ;
/* The local search is performed accordingly */
/* to the individual's meme */
Compute the fitness f (p) Vp € M (t) ;
Generate P (t + 1) by selecting from P (t) and M (t) ;
t = t + l ;

endDo
Return best p E P (t - 1) ;

End.

Fig. 4. The memetic algorithm employed.

The initial population in P is created at random. Each individual is com-
posed of genetic material in the form of a bit string (B). The bit string rep-
resent the solution to the NK landscape instance being solved. The memetic
material is of the form * + S where the * symbol matches any bit in the
solution string and S is another bit string. The only variation mechanism is
bitwise mutation (applied with probability 0.05) to the chromosomes. The
replacement strategy is a (20,50). There is no genetic crossover but the SIM
mechanism, as described in [28], is used to transfer memes between individ-
uals. Memetic mutation occurs with an innovation rate[23] of 0.2. A meme
can be mutated (with equal probability) in three ways: either a random bit
is inserted in a random position, a bit is deleted from a random position, or
a bit is flipped at a random position. The length of memes cannot decrease
below 0 nor increase beyond 3 * k for an (n, k)-problem.

The Local Search Procedure: Memes description for
NK-Landscapes

A meme is represented as a rule of the form * + S. During the local search
stage this meme is interpreted as follows:

238 Krasnogor and Gustafson

Every bit in the chromosome B has the opportunity to be improved by
steepest hill-climbing. In general NK-Landscapes are epistatic problems so
flipping only one bit a t a time cannot produce reasonable improvements except
of course in problems with very low k. To accommodate for this fact, for each
bit, one wants to optimize the value of that bit and that of IS1 other bits. A
sample of size n is taken from all the (IS1 + l)! possible binary strings. Based
on the content of S , these sample strings serve as bits template with which
the original chromosome B will be modified. If IS1 = 0 then only Bi (the ith
bit of B) will be subjected to hill-climbing. On the other hand, if IS1 > 0 then
the local searchers scans the bits of S one after the other. If the first bit of S
is a 0, then the bit B(i+l) will be set accordingly to what one of the n samples
template mandates. On the other hand, if Bi is a 1 then bit B(i+,)nn will be set
as what one of the n samples template mandates. Here r is a random number
between 0 and n - 1. By distinguishing in S between ones and zeroes memes
can reflect the adjacent neighbour or the random neighbour version of the NK-
landscapes. The larger the size of S the more bits will be affected by the local
search process. As an example consider the case where the rule is * + 0000.
This rules implies S = 0000. In this case, for every bit i in B we will produce a
sample of size n out of the possible 25 binary strings. Each one of these samples
will be used as a template to modify B. As S is built out of all O's, a fully-
adjacent neighbourhood is considered. Suppose B = 1010101010101111 10 and
the bit to be optimized is the fourth bit. Bq equals 0 in the example and its
four adjacent neighbours are B5 = l ,Bs = 0,B7 = l,Bs = 0. If one of the n
samples is 11111 then B will be set to B' = 101111111010111110 provided B'
has better fitness than B. The process is repeated in every bit of B once for
every sample in the sample set.

Several complex local search strategies have been applied to the NK-
landscapes domain. For example Merz in [32] uses various optimisation fea-
tures with the aim of acelerating his MAS. Furthermore, in chapter 6 in this
book he describes varios K - opt, Lin - Kernighan and other sophisticated
heuristics for NK problems. In the following case studies, initially explored in
1251 and [57], we use simpler local searchers to serve only as a proof of concept.
The evolved memes induce a variable-sampled k - opt local search strategy.
We say variable as k varies with the size of S and it can be as small as 0 or
as large as 3 * k. It is sampled as we do not exhaustively explore all the 2"'
possible ways of settings the bits in a chromosome but rather take a reduced
sample of size n.

3.2 Results

In previous sections we described our self-generating MAS. What sort of be-
haviors can we expect to see emerging? Four different scenarios needs to be
analysed: low epistasis-poly-time solvable, high epistasis-poly-time solvable,
low epistasis-NP-hard and high epistasis-NP-hard landscapes. The level of
epistasis is controlled by the n and k . The closer k is to 0 the more negli-

3 The NK-Landscapes Experiments 239

gible the epistatic interactions among loci. If k grows up to n - 1 then the
induced problems is a random field. The transition between polynomial time
solvability to NP-hardness depends on the type of neighborhood used as it
was explained before. We should expect the emergence of short strings (i.e.
IS1 not too big) for the low epistasis regimes while longer strings will be fa-
vored in high epistasis cases. We should be able to compare the length of the
evolved local searcher with the k of the problem that is being solved. That is,
we expect to see memes emerging with lengths close to k . We should probably
also see distinct patterns of activity for the different problem regimes. The
range of problems we experimented with are:

low epistasis, poly-time solvable: (50, l) , (50,4) with adjacent neighbours.
0 high epistasis, poly-time solvable: (50,8), (50, lo), (50,12), (50,14) with ad-

jacent neighbours
0 low epistasis, NP-hard: (50, I), (50,4) with random neighbours.
0 high epistasis, NP-hard: (50,8), (50, lo), (50,12), (50,14) with random neigh-

bours.

3.3 Discussion

In the following figures we plot the evolution of the length of the meme as-
sociated with the fittest individual as a function of time and the evolution of
fitness. For clarity, just 5 runs are depicted.

Low epistasis, poly-time solvable:

In Figures 5(a) and 5(b) we can observe the behaviour of the system. For
the case n = 50, k = 1 the main activity occurs at the early generations
(before generation 4). After that point the system becomes trapped in a local
(possible global) optimum. The length of the memes evolved oscillates between
1 and 2. As the allowed length are restricted to be in the range [O, 3 * k], the
expected length of memes is 1.5. It is evident that the problem is solved
before any creative learning can take place. When the Self-Generating MA is
confronted with problem n = 50, k = 4 (a value of k just before the phase
transitions mentioned in previous sections) the length of the meme in the
best run oscillates between a minimum value of 3 (after generation 1) and a
maximum of 10 for the run marked with a thick line (the best run). In this
case the expected length (if a purely random rule was chosen) for a meme is
6 which is the most frequently visited value. For these simple NK-Landscape
regimes, it does not seem to be of benefit to learn any specific meme, but
rather, a random rule seems to suffice.

High epistasis, poly-time solvable:

In Figure 5(c) we can see the system's behaviour for a value of k after the phase
transition mentioned in [31] and [23]. In this case there is effective evolutionary

240 Krasnogor and Gustafson

- L..: W , j . :(....: :. J : ..:
. : I , ... < .. :.. ... ,

,I
.

I> I I - 1 i 6 7 R '1 111 11 12 IZ I* IS 16 n 18 19 x)

(ir,,rra,,n,,

(c)

Fig. 5. NK(50,l) in (a), NK(50,4) in (b) and NK(50,8) in (c). Adjacent neighbours.

3 The NK-Landscapes Experiments 241

activity during the whole period depicted. Also, we can see clearly that the
length of the meme employed by the most successful individual converges
towards the value of k(in this case 8). If a purely random rule was used
the expected length would have been 12. The case shown in Figure 6(a) is
even clearer. All but one of the runs converge towards a meme length almost
identical to k = 10, except for one that is very close to the expected length of
15.

The same trends can be seen in Figures 6(b) and 6(c) where meme lengths
converge to values around to k = 12 and k = 14 respectively. It is interesting
to note that although the values are very close to our predictions they do not
remain at a fixed value but rather oscillates. This is a very intriguing behaviour
as it resembles the variable-neighborhood nature of Lin-Kernighan, the most
successful local search strategy for NK-Landscapes and other combinatorial
problems. It will be interesting to investigate on the range of values that the
Memetic Algorithms presented in [32] (which uses K -opt and Lin-Kernighan)
effectively employs; we speculate that the range of changes, i.e. the number of
bits modified in each iteration of LS, will be close to the epistatic parameter
of the problem instance.

Low epistasis, NP-hard:

In Figure 7(a) we start to investigate the behaviour of the Self-Generating MA
on the NP-Hard regime (i.e. the random neighborhood model). Figure 7(a)
is similar to the adjacent neighborhoods version shown in Figure 5(a) except
that oscillations are more frequent in the former. Comparisons between 7(b)
and 5(b) reveal very similar trends.

High epistasis, NP-hard:

The experiments with (n = 50, k = 8) under the random neighbours model
reveal marked differences with the consecutive neighbour model (see Figures
7(c) and 5(c) respectively). While in the later all the runs converged toward
a meme length very close to k, the random model shows a richer dynamics.
Meme length were divided into 3 groups. In one group, the emerged meme
length were very close to the value of k, 8 in this case. The other two groups
either continually increase the size of the memes or decreased it. Two of the
most successful runs are identified with a cross or circle and each belong
to a different group. Interestingly, the run that converges first to the local
optimum is the one that uses very short memes. In contrast, the run that uses
memes with length equivalent to a value of k show a continued improvement.
It is important to note that none of the evolved memes converged towards
the expected length of 12. Figure 8(a) seems to reveal a similar 3-grouped
pattern.

The runs that correspond to instances of (n = 50, k = 12) differ notably
from previous ones. The meme length seems to be converging towards a value

242 Krasnogor and Gustafson

Fig. 6 . NK(50,lO) in (a), 1&!(50,12) in (b) and NK(50,11) in (c). Adjacent neigh-
bours.

3 The NK-Landscapes Experiments 243

Cu,,r&",r

(c)

Fig. 7. NK(50,l) in (a), NK(50,4) in (b) and NK(50,8) in (c). Random neighbours.

244 Krasnogor and Gustafson

Nk.L",,.,%ap ,5CI.,~,>

G<,,c,s,,,",.

(c)
Fig. 8. NK(50,lO) in (a), NK(50,12) in (b) and NK(50,14) in (c). Random neigh.
bours.

4 The Maximum Contact Map Overlap Experiments 245

well below the expected length of 18 and even the epistatic value k = 12 for
these problems. However, between generation 34 and 68 the meme lengths
oscillates very close to k = 12 values. The next figure, 8(c), presents similar
features as that of 8(b). However, now two clusters appear, one that suggest
length around the value of k and another with length values of 6.

From the analysis of the previous figures we can see that our expectation
that memes of length proportional to k will arise confirmed. However, other
interesting features are evident. There are clear differences between memes
that are evolved to solve the poly-time solvable cases and the NP-hard cases.
In the first case, all the memes length for k > 4 converged toward values in the
proximity of k. However, for the random neighborhood model and for high
epistasis (k > 4) problems, the runs were clustered mainly around memes
lengths close to k or close to around 6 (regardless the value of k). This is
indeed a very interesting behaviour that deserves further studies as values of
5 in the range [4,5,6] are on the edge of the phase transitions described in
[31],[23] and [28]. That is, between 4,5 or 6 bits were the optimum number of
bits that need to be considered to boost the efficiency of the search. Moreover,
in the case of the NP-hard random neighbourhood with k = 8 three clusters
are noted; we speculate that problems in this range are on the so called "edge
of chaos" where emergent behaviours are more likely to occur[8],[20].

4 The Maximum Contact Map Overlap Experiments

We explore next the evolved local searcher as a supplier of building block in
the context of a problem drawn from computational biology. A contact map
is represented as an undirected graph that gives a concise representation of a
protein's 3D fold. In this graph, each residue6 is a node and there exists an edge
between two nodes if they are neighbors. Two residues are deemed neighboors
if their 3D location places them closer than certain threshold. Figures 9 &
10 show two contact maps. An alignment between two contact maps is an
assignment of residues in the first contact map to residues on the second
contact map. Residues that are thus aligned are considered equivalents. The
value of an alignment between two contact maps is the number of contacts
in the first map whose end-points are aligned with residues in the second
map that, in turn, are in contact (i.e. the number of size 4 undirected cycles
that are made between the two contact maps and the alignment edges). This
number is called the overlap of the contact maps and the goal is to maximize
this value. The complexity of Max CMO problem was studied in [18] and later
in [23].

A residue is a constitutent element of a protein.

246 Krasnogor and Gustafson

4.1 Self-Generating Memetic Algorithms for MAX-CMO

The overall architecture of the Memetic Algorithm is similar to that described
by the pseudocode in Figure 4. The backbone of the MA is a genetic algorithm
in which chromosomes are represented by a vector c E [0, . . . , mIn. Here m is
the size of the longer protein and n the size of the shorter. A position j in c,
c[j], specifies that the j th residue in the longer protein is aligned to the c[jlth
residue in the shorter. A value of -1 in that position will signify that residue
j is not aligned to any of the residues in the other protein (i.e., a structural
alignment gap). Unfeasible configurations are not allowed, that is, if i < j
and v[i] > v[j] or i > j and v[i] < v[j] (e.g., a crossing a1ignment)then the
chromosome is discarded. It is simple to define genetic operators that preserve
feasibilities based on this representation. Two-point crossover with boundary
checks was used in [29] to mate individuals and create one offspring. Although
both parents were feasible valid alignments the newly created offspring can
result in invalid (crossed) alignments. After constructing the offspring, feasi-
bility is restored by deleting any alignment that crosses other alignments. The
mutation move employed in the experiments is called a sliding mutation. It
selects a consecutive region of the chromosome vector and adds, slides right,
or subtracts, slides left, a small number. The phenotypic effect produced is
the tilting of the alignments. In [29] a few variations on the sliding mutation
were described and used. Further implementation details can be found also in
[23] and [5]. We describe next the make-up of memes.

The Local Search Procedure: Memes description for MAX-CMO

As mentioned in previous sections, we seek to produce a metaheuristic that
creates from scratch the appropriate local searcher to use under different
circumstances. A meme represents one particular way of doing local search.
Memes can adapt through changes in their parameter set or through changes
in the actions they perform. The local search involved can be very complex
and composed of several phases and processes. In the most general case we
want to be able to explore the space of all possible memes. One can achieve
this by using a formal grammar that describes memes and by letting a genetic
programming[21] based system to evolve sentences in the language gener-
ated by that grammar[23]. The sentences in the language generated by this
grammar represent syntactically valid complex local searchers and they are
the instructions used to implement specific search behaviors and strategies.
To describe the particular representation employed to self-assemble the move
operator used by a local search strategy we resort to a few examples.

In Figure 9 we can see two contact maps ready to be aligned by our
algorithm. To simplify the exposition, both contact maps are identical (i.e.
we are aligning a contact map with itself) and have a very specific pattern of
contacts among their residues. In the present example a residue is connected
to either its nearest neighbor residue, to a residue that is 4 residues away in

4 The Maximum Contact Map Overlap Experiments 247

Fig. 9. A contact map snapshot. The two randomly generated proteins have 10
residues.

the protein sequence, or to both (with a given probability). In Figure 9 the
contact map is 10 residues long, while in 10 it is 50 residues long (but with the
same connectivity patterns). This contact pattern can be represented by the
string 1 - 4, meaning that the residue which occupies the ith position in the
protein sequence is in contact in the native state with residues (i + 1)th and
(i + 4)th. That is, the pattern 1 - 4 is a succint representation of a possible
building block which, if matched by the local searcher, could be propagated
later on by crossover into other solutions.

An appropriate move operator for a local searcher acting in any of the
contact maps on Figures 9 & 10 would be one that iterates through every
residue in one of the contact maps, checking which residues on the lower
contact map fulfills the pattern of connectivity and making a list of them.
The same procedure would be applied to the top contact map producing a
second list of residues. The local searcher then would pair residues of one list
with residues of the second list thus producing a new and correct alignment
which includes that building blocks.

The number of residues that verifies the pattern in each list puts an upper
bound on how expensive the local search move operator can be. If the size
of the first list is L1 and the size of the second list is La, and without loss
of generality we assume that L1 5 L2 then there are at most ~ i ~ f ' (Lt!C)!.
Clearly this number is too big to be searched exhaustively, this is why the
previous grammar allows for the adaptation of the sample size. Moreover,
although it is well known that real proteins present these contact patterns[lO]
it is impossible to know a priori which of these patterns will provide the best
fitness improvement for a particular pair of protein structures. Hence, the
Self-Generating MA needs to discover this itself.

248 Krasnogor and Gustafson

Fig. 10. A contact map snapshot. The two randomly generated proteins have 50
residues and the patterns of contacts are similar to those in Fig. 9.

If the graphs to be aligned were different (in the previous cases a graph
was aligned with itself for the sake of clarity), then a move operator able to
account for that variation in patterns must be evolved.

The defined move operator induces a neighborhood for every feasible align-
ment. If an alignment s is represented as explained above and L1, L2 are the
list of vertices that matches the move operator, then every feasible solution
that can be obtained by adding to s one or more alignments of vertices in L1
with vertices on L2 is a neighbor of s. The other components of a meme will
then decide how to sample this neighborhood and which solutions to accept
as the next one. As this paper is an account of the initial investigations we
performed on the use of SGMA, we fixed several aspects of the memes that
could otherwise be evolved. In this paper all memes employ first improve-
ment ascent strategy and they are applied after crossover. The sample size
was either 50 or 500 and the local search was iterated 2 times.

As described in the introduction, there were three memetic processes: imi-
tation, innovation and mental simulation. Upon reproduction, a newly created
offsprings inherits the meme of one of its parents accordingly to the simple
inheritance mechanism described in [28]. In addition to this mechanism, and
with a certain probability (called "imitation probability"), an agent could
choose to override its parental meme by copying the meme of some successful
agent in the population to which it was not (necessarily) genetically related.
In order to select from which agent to imitate a search behavior, a tournament
selection of size 4 was used among individuals in the population and the win-
ner of the tournament was used as role model and its meme copied. Innovation
was a random process of mutating a meme's specification by either extending,
modifying or shortening the pattern in a meme (either before or after the -+).
If during 10 consecutive generations no improvement was produced by either
the local search or the evolutionary algorithm a stage of mental simulation was

4 The Maximum Contact Map Overlap Experiments 249

started. During mental simulation, each individual (with certain probability)
will intensively mutate its current meme, try it in the solution it currently
holds, and if the mutant meme produces an improvement, both the newly
created solution and the meme will be accepted as the next state for that
agent. That is, mental simulation can be considered as a guided hill-climbing
on memetic space. If ten mental simulation cycles finished without improve-
ments, then metal simulation was terminated and the standard memetic cycle
resumed.

4.2 Results

We designed a random instance generator with the purpose of parameterizing
the complexity of the contact map overlap problems to be solved. The input
to the random instance generator is a list of the form:

r d n p, prl p2 pr2 . . . p, pr, where r is the number of residues in the
randomly generated contact map, d is the density of random edges (i.e. noise)
and n is the number of patterns in the contact map. For each of the n patterns
two numbers are available, pi and pri, where pi specifies that a residue j is
connected to residue j +pi with probability pri for all i E [I, n]. That is, every
pattern occurs with certain probability in each residue, thus an upper bound
on the expected number of contacts is given by r*d+r*C%zypri 5 r*(n+d). In
our experiments r E {10,50,100,150,200,250), d = 0.01 and n E {1,2,3,4),
that is, contact maps as short as 10 residues and as long as 250 residues were
considered. For each contact map length, every possible number of patterns
was used, this gives rise to 24 pairs of (r, n) values. For each pair, 5 random
instances were generated spanning from low density contact maps to high
density contact maps7. A total of 120 instances were generated. From all the
possible parings of contact maps we randomly choose a total of 96 pairs to be
aligned by means of 10 runs each.

We present next comparisons of the performance of a Genetic Algorithm
versus that of the SGMA. In this experiment we would like to elucidate
whether the overhead of learning suitable local searchers is amortized along the
run and whether our proposed approach is ultimately useful. In order to run
the experiments we implemented a GA as described previously. We were able
to reproduce the results of [29] and [5] hence we considered our implementa-
tions as equivalent to the earlier ones. The difference between the GA and the
SGMA are described below. In graphs 11,12,13 and 14 we compare the overlap
values8 against the first hitting times. First hitting time (FHT) is the time (in
number of fitness evaluations) a t which the best value of a run was encoun-
tered. Each graphs presents the results for 1,2,3 and 4 patterns respectively
and for a range of contact maps sizes. The particular parameters used in the

' The program to generate random contact maps was written in java 1.1.8 as is
available by request from the author.
A higher overlap value means a better structural alignment.

250 Krasnogor and Gustafson

GA are 0.15, 0.75 for mutation and crossover probabilities, and a (50,75) re-
placement strategy. The Self-Generating MA uses 0.15,0.75,1.0,1.0,1.0,1.0 for
the probabilities of mutation, crossover,local search, imitation, mental simu-
lation and innovation respectively. The algorithms uses the same replacement
strategy and for both local search and mental simulation a cpu budget of 50
samples is allocated.

4.3 Discussion

The graphs in 11,12,13 and 14 are good representatives of the results obtained
with the two types of algorithms. That is, under a variety of changes to the pa-
rameter values mentioned above the results remain equivalent to those shown
here.

1 Pattern Contact Map Overlaps
10.50.IW, 150,ZW & 250 residue instances

Fig. 11. Comparison of the first hitting times and the quality o f overlaps obtained
for GA and SGMA on increasingly difficult randomly generated instances. Complex-
i ty increases as a function of residues number. Contact maps present one pattern.

From Figures 11,12,13 and 14 we can see that the Self-Generating Memetic
Algorithm produces a much better amortized overlap value than the simple
GA. That is, if enough time is given to the SGMA, it will sooner or later
discover an appropriate local searcher move that will supply new building
blocks. In turn, this will deliver an order of magnitude better overlaps than
the Genetic Algorithm. Also, it seems that the GA is oblivious to the size
(i.e. residues number) of the contact maps as it seems to produce mediocre
local optima solutions even when given the maximum cpu time allocation (in
these experiments 2 * lo5 fitness evaluations) for the whole range of 10 to 250
residues. The GA converges very quickly into local optima. This is seen in the
graphs by bands parallel to the x-axis over the range of energy evaluations for
low overlap values. However, as the SGMA continuously improves its solutions,

4 The Maximum Contact Map Overlap Experiments 251

2 Pattern Contact Map Overlaps
10.50,100,150,200 & 250 midue inrlilnccs

#Fitness Evaluations (first hiting time)

Fig. 12. Comparison of the first hitting times and the quality o f overlaps obtained
for GA and SGMA on increasingly difficult randomly generated instances. Complex-
i ty increases as a function of residues number.Contact maps present two patterns.

3 Pattern Contact Map Overlaps
10.50.100.150.200& 250residue instances

M C " " " I ' ' ' " " " I ' ' ' " " " I ' .;i

Fig. 13. Comparison of the first hitting times and the quality o f overlaps obtained
for GA and SGMA on increasingly difficult randomly generated instances. Complex-
i ty increases as a function of residues number.Contact maps present three patterns.

it is not until very late in the execution (i.e. to the right of the x - axis) that
the best solutions are found.

In contrast to the GA, the SGMA (as expected) is sensitive to the number
of residues in the contact maps involved, that is, longer contact maps require
larger cpu time to come up with the best value of the run (which is seen in the
graph in the clustering patterns for the different residues number). Another

252

Fig.

Krasnogor and Gustafson

4 Pattern Contact Map Overlaps
10.50.1 00. 150,200 & 250 rcqidue instunccs

6 4 C " " I ' ' ' ' " " I ' ' ' ' " " ' I ' ' ' ' a ' " ' I ' ' 4

$8 1x10- 1 x 1 0 ~ 1x10'

IRtnes- Evaluations (first hiting lime)

14. Comparison of the first hitting times and the quality o f overlaps obtained
for-GA and SGMA on increasingly difficult randomly generated instances. Complex-
i ty increases as a function of residues number.Contact maps present four patterns.

important aspect to note is that both the x - axis and the y - axis are
represented in logarithmic scales. Taking this into consideration it is evident
that the quality of the overlaps produced by the SGMA are much better than
those produce by the GA. As it is evident from the graphs, for sufficiently
small instances (e.g all the 10 residues long and some of the 50 residues long)
it is not worth using the SGMA as it requires more cpu effort to produce same
quality of overlaps as the GA.

On the other hand, as the number of residues increases beyond 50, then
instances are sufficiently complex to allow for the emergence of suitable local
searchers in time to overtake and improve on the GA results. Also, as the
number of patterns that are present in the instances increases both algorithms,
as expected, require larger amounts of CPU to come up with the best solution
of a run. However, it is still seen that the GA is insensitive to the number of
residues, while the SGMA is clustered in the upper right corner (of Figure 14).
This indicates that during all its execution the algorithm is making progress
toward better and better solutions, the best of which is to be found near
the end of the run. Moreover, this behavior indicates that the SGMA is not
prematurely trapped in poor local optima as is the GA.

The ability of the SGMA to overcome local optima comes from the fact
that the evolved local searchers will introduce good building-blocks that match
the particular instance. This supply of building-blocks is essential for a syn-
ergistic operation of both the local searcher and the genetic operators. That
is, using Goldberg's notation [17], we have that for the SGMA the take over
time t* is greater than the innovation time ti, which allows the algorithms to
continuously improve. In Figure 15 10 runs of the GA are compared agaisnt

5 Conclusions 253

GA vs SGMA
250 residues long, 4 patterns contact map nlignrnent

Generation #

Fig. 15. Representative example o f G A and SGMA runs for a 250 residues and 4
patterns instance.

10 runs of the SGMA. It can be seen that the GA runs get trapped very early
(around the 20th generation) in poor local optima while the SGMA keeps im-
proving durin all the run. All the runs in Figure 15 use the same total number
of fitness evaluations.

5 Conclusions

In this chapter we discussed concepts arising from Memetic theory that could
be use to produce a new breed of optimisation algorith,~ We tied some of these
memetic ideas with the concept of "Self-Generating Metaheuristics" and we
exemplified the use of the resulting algorithms in two hard combinatorial
problems.

The Memetic algorithms described in this paper do not resort to human-
designed local searchers but rather they assemble on-the-fly the local search
strategies that best suits each particular situation.

In this paper we argued that from an optimization point of view there are
obvious advantages in self-assembling the local search behaviours for memetic
algorithms. MAS that can self-generate the local searchers will be able to adapt
to each problem, to every instance within a class of problem and to every
stage of the search. A similar strategy could be use in other metaheuristics
(e.g. Simulated Annealing, Tabu Search, Ant Colonies, GRASP, etc) where
more sophisticated GP implementations might be needed to co-evolve the
used operators.

One of the reasons for the success of the SGMA is that the evolved local
searchers act as a (low and medium order) building block supplier. These

254 Krasnogor and Gustafson

continuous supply of building blocks aids the evolutionary process to improve
solutions continuously by producing a more synergistic operation of the local
and gloabl operators.

It is our hope that researchers confronted with new problems for which
there are not %ilver bullet" local search heuristics (like is the case for TSP
and Graph Partitioning where K-opt and Lin-Kernighan are known t o be
extremely efficient) with which t o hybridize a Memetic Algorithm will try
the obvious: the Dawkins method of self-assembling of local search behaviors.
That is, use memes to evolutionary self-assemble appropriate local search
strategies.

References

1. R. Battiti and G. Tecchiolli. The reactive tabu search. O R S A Journal on
Computing, 6(2):126-140, 1994.

2. S. Blackmore. The Meme Machine. Oxford University Press, 1999.
3. E.K. Burke, J.P. Newall, and R.F. Weare. A memetic algorithm for university

exam timetabling. In E.K. Burke and P. Ross, editors, The Practice and Theory
of Automated Timetabling, volume 1153 of Lecture Notes i n Computer Science,
pages 241-250. Springer Verlag, 1996.

4. E.K. Burke and A.J. Smith. A memetic algorithm for the maintenance schedul-
ing problem. In Proceedings of the ICONIP/ANZIIS/ANNES '97 Conference,
Dunedin, New Zealand, pages 469-472. Springer, 24-28 November 1997.

5. R.D. Carr, W.E. Hart, N. Krasnogor, E.K. Burke, J.D. Hirst, and J.E. Smith.
Alignment of protein structures with a memetic evolutionary algorithm. In W.B.
Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F.
Miller, E. Burke, and N. Jonoska, editors, GECCO-2002: Proceedings of the
Genetic and Evolutionary Computation Conference, 2002.

6. L.L. Cavalli-Sforza and M.W. Feldman. Cultural Transmission and Evolution:
A Quatitative Approach. Princeton University Press, Princeton, NJ., 1981.

7. F.T. Cloak. Is a cultural ethology possible. Human Ecology, 3:161-182, 1975.
8. P. Coveney and R. Highfield. Frontiers of Complexity, the search for order i n a

chaotic world. faber and faber (ff), 1995.
9. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to schedul-

ing a sales summit. In E. Burke and W. Erben editors, editors, Theory of Auto-
mated Timetabling PATAT 2000, Springer Lecture Notes i n Computer Science,,
pages 176-190. Springer, 2001.

10. T. E. Creighton, editor. Protein Folding. W. H. Freeman and Company, 1993.
11. R. Dawkins. The Selfish Gene. Oxford University Press, New York, 1976.
12. R. Dawkins. The extended phenotype. 1982.
13. W.H. Durham. Coevolution: Genes, Culture and Human Diversity. Stanford

University Press, 1991.
14. P.M. Fraqa, A.S. Mendes, and P. Moscato. Memetic algorithms to minimize

tardiness on a single machine with sequence-dependent setup times. In Pro-
ceedings of the 5th International Conference of the Decision Sciences Institute,
Athens, Greece, July 1999.

References 255

15. L.M. Gabora. Meme and variations: A computational model of cultural evo-
lution. In L.Nade1 and D.L. Stein, editors, 1993 Lectures in Complex Systems,
pages 471-494. Addison Wesley, 1993.

16. A. Godzik, J.Skolnick, and A.Kolinski. A topology fingerprint approach to
inverse protein folding problem. Journal of Molecular Biology, 227:227-238,
1992.

17. D.E. Goldberg. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, 2002.

18. D. Goldman, S. Istrail, and C. Papadimitriou. Algorithmic aspects of protein
structure similarity. Proceedings of the 40th Annual Symposium on Foundations
of Computer Sciences, pages 512-522, 1999.

19. D. Hillis. Co-evolving parasites improve simulated evolution a s an optimization
procedure. In Artificial Life 11: Proc. of the 2nd Conf. on Artificial Life, 1992.

20. S.A. Kauffman. The Origins of Order, Self Organization and Selection in Evo-
lution. Oxford University Press, 1993.

21. J.R. Koza, F.H. Bennet, D. Andre, and M.A. Keane. Genetic Programming
III, Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers,
1999.

22. N. Krasnogor. Co-evolution of genes and memes in memetic algorithms. In A.S.
Wu, editor, Proceedings of the 1999 Genetic And Evolutionary Computation
Conference Workshop Program, 1999.

23. N. Krasnogor. http://www.cs.nott.ac.uk/ -nxk/papers.html. In Studies on the
Theory and Design Space of Memetic Algorithms. Ph.D. Thesis, University of
the West of England, Bristol, United Kingdom., 2002.

24. N. Krasnogor. Self-generating metaheuristics in bioinformatics: The protein
structure comparison case. To appear in the Journal of Genetic Programming
and Evolvable Machines. Kluwer academic Publishers, 5(2), 2004.

25. N. Krasnogor and S. Gustafson. Toward truly "memetic" memetic algorithms:
discussion and proof of concepts. In D.Corne, G.Foge1, W.Hart , J.Knowles,
N.Krasnogor, R.Roy, J.E.Smith, and A.Tiwari, editors, Advances in Nature-
Inspired Computation: The PPSN VII Workshops. PEDAL (Parallel, Emergent
and Distributed Architectures Lab). University of Reading. ISBN 0-9543481-0-9,
2002.

26. N. Krasnogor and S. Gustafson. The local searcher as a supplier of building
blocks in self-generating memetic algorithms. In J.E. Smith W.E. Hart and
N. Krasnogor, editors, Fourth International Workshop on Memetic Algorithms
(WOMA4). In GECCO 2003 workshop proceedings, 2003.

27. N. Krasnogor and J.E. Smith. A memetic algorithm with self-adaptive local
search: Tsp as a case study. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spec-
tor, I. Parmee, and Hans-Georg Beyer, editors, GECCO 2000: Proceedings of the
2000 Genetic and Evolutionary Computation Conference. Morgan Kaufmann,
2000.

28. N. Krasnogor and J.E. Smith. Emergence of profitable search strategies based
on a simple inheritance mechanism. In L. Spector, E.D. Goodman, A. Wu,
W.B. Langdon, H. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshj, M.H. Gar-
zon, and E. Burke, editors, GECCO 2001: Proceedings of the 2001 Genetic and
Evolutionary Computation Conference. Morgan Kaufmann, 2001.

29. G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal pdb structure align-
ments: a branch-and-cut algorithm for the maximum contact map overlap prob-

256 Krasnogor and Gustafson

lem. Proceedings of The Fifth Annual International Conference on Computa-
tional Molecular Biology, RECOMB 2001, 2001.

30. M.W.S. Land. Evolutionary algorithms with local search for combinatorial op-
timization. Ph.D. Thesis, University of California, Sun Diego, 1998.

31. W.G. Macready, A.G. Siapas, and S.A. Kauffman. Criticality and parallelism
in combinatorial optimization. Science, 261:56-58, 1996.

32. P. Merz. Memetic Algorithms for Combinatorial Optimization Prob1ems:Fitness
Landscapes and Effecitve Search Strategies. Ph.D. Thesis, Parallel Systems Re-
search Group. Department of Electrical Engineering and Computer Science.
University of Siegen., 2000.

33. P. Moscato. Memetic algorithms: A short introduction. In D. Corne, F. Glover,
and M. Dorigo, editors, New Ideas in Optimization. McGraw-Hill, 1999.

34. P.A. Moscato. Problemas de otimizac60 np, aproximabilidade e computac6o
evo1utiva:da prcitica h teoria. Ph.D Thesis, Universidade Estadual de Camp-
inas, Brasil, 2001.

35. M.J. Oates, D.W. Corne, and R.J. Loader. Tri-phase profile of evolutionary
search on uni- and multi-modal search spaces. Proceedings of the Congress on
Evolutionary Computation (CEC2000), 1:357-364, 2000.

36. B. Olsson. A host-parasite genetic algorithm for asymmetric tasks. In
C. NBdellec and C. Rouveirol, editors, Machine Learning: ECML-98 (Proceed-
ings of the 9th European Conference on Machine Learning), pages 346-351.
Springer-Verlag, 1998.

37. B. Olsson. Algorithms for Coevolution of Solutions and Fitness Cases in Asym-
metric Problem Domains. PhD thesis, University of Exeter, 1999.

38. B. Olsson. Handling asymmetric problems with host-parasite algorithms, 1999.
39. J. Paredis. Chapter c7.4: Coevolutionary algorithms. In T. Back, D.B. Fogel,

and Z. Michalewicz, editors, Handbook of Evolutionary Computation, page C7.4.
IOP publishing Ltd and Oxford Unviersity Press, 1997.

40. M.A. Potter and K.A. De Jong. A cooperative coevolutionary approach to
function optimization. In Parallel Problem Solving From Nature, 1994.

41. P.L. Privalov. Physical basis of the stability of the folded conformations of pro-
teins. In T.E. Creighton, editor, Protein Folding. W.H. Freedman and Company,
1999.

42. P.J. Richerson and R. Boyd. A dual inheritance model of the human evolu-
tionary process: I. basic postulates and a simple model. Journal of Social and
Biological Structures, I:127-154, 1978.

43. J. Schaffer and A. Morishima. An adaptive crossover distribution mechanism
for genetic algorithms. In J.J. Grefenstette, editor, Proceedigns of Second Inter-
national Conference on Genetic Algorithms. Lawrence Erlbaum, 1987.

44. 0 . Sharpe. Introducing performance landscapes and a generic framework for
evolutionary search algorithms. Proceedings of the Congress on Evolutionary
Computation (CEC2000), 1:341-348, 2000.

45. J.E. Smith. Co-evolution of memetic algorithms : Initial results. In Beyer
Fgenandez-Villacans Merelo, Adamitis and Schwefel (eds), editors, Parallel
problem solving from Nature - PPSN VII, LNCS 2439. Springer Verlag, 2002.

46. J.E. Smith and T.C. Fogarty. Operator and parameter adaptation in genetic
algorithms. Soft Computing, pages 81-87, 1997.

47. Jim Smith and T.C. Fogarty. Self adaptation of mutation rates in a steady state
genetic algorithm. In Proceedings of the Third IEEE International Conference
on Evolutionary Computing, pages 318-323. IEEE Press, 1996.

References 257

48. R.E. Smith and E. Smuda. Adaptively resizing populations: Algorithms, analysis
and first results. Complex Systems, 1(9):47-72, 1995.

49. E. G. Talbi, Z. Hafidi, and J-M. Geib. A parallel adaptive tabu search approach.
Parallel Computing, 24(14):2003-2019, 1998.

50. E.D. Weinberger and A. Fassberg. Np completness of kauffman's n-k model,
a tuneably rugged fitness landscape. In Santa Fe Institute Technical Reports,
1996.

