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Summary. Memetic algorithms (MAS) with greedy initialization and recombina- 
tion operators have been successfully applied to several combinatorial optimization 
problems, including the traveling salesman problem and the graph bipartitioning 
problem. In this contribution, a k-opt local search heuristic and a greedy heuris- 
tic for NK-landscapes are proposed for use in memetic algorithms. The latter is 
used for the initialization of the population and in a greedy recombination operator. 
Memetic algorithms with k-opt local search and three different variation operators, 
including the newly proposed greedy recombination operator, are compared on three 
types of NK-landscapes. In accordance with the landscape analysis, the MAS with 
recombination perform better than the MAS with mutation for landscapes with low 
epistasis. Moreover, the MAS are shown to be superior to previously proposed MAS 
using 1-opt local search. 

1 Introduction 

The NK-model of fitness landscapes has been introduced by Kauffman [1, 21 
to study gene interaction in biological evolution. In the NK-model, the fitness 
is the average value of the fitness contributions of the loci in the genome. 
For each locus, the fitness contribution is a function of the gene value (allele) 
at the locus and the values of K other interacting genes. Although this is a 
very simplified model, it allows to produce families of fitness landscapes with 
interesting properties. 

Besides its biological implications, the model is interesting for researchers 
in the field of evolutionary computation, since the NK-landscape model pro- 
vides combinatorial optimization problems with tunable difficulty. 

In this paper, effective memetic algorithms [3, 4, 51 for NK-landscapes are 
presented. New greedy and k-opt local search heuristics for NK-landscapes are 
proposed which can be easily embedded into memetic algorithms. The proper- 
ties of NK-landscapes are discussed and a fitness distance correlation analysis 
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is performed for the newly introduced heuristic algorithms. It is shown that 
based on the results of the analysis, the performance algorithms can be pre- 
dicted: For low epistasis - low values of K in the model - recombination 
based algorithms are able to exploit the structure of the search space effec- 
tively. With increasing epistasis, the landscapes become quickly unstructured, 
limiting the usefulness of recombination. For high epistasis, mutation based al- 
gorithms become favorable over recombination based evolutionary algorithms. 

In computer experiments, the effectiveness of sophisticated MAS based 
on the proposed greedy and kopt  local search heuristics is demonstrated. 
These algorithms offer (near) optimum solutions in short time even for high 
dimensional landscapes. 

The paper is organized as follows. In section 2, greedy and local search 
heuristics for the NK-model are introduced. The fitness landscape of three 
types of NK-models is discussed in section 3. In section 4, results from exper- 
iments with memetic algorithms using k-opt local search and three different 
variation mechanisms are presented. Section 5 concludes the paper and out- 
lines areas of future research. 

2 Heuristics for the NK-Model 

Since NK-Landscapes have been studied mainly in the context of simulated 
biological evolution, little attention has been payed to the development of 
simple non-evolutionary heuristics. However, besides hill climbing/local search 
techniques, constructive heuristics such as greedy algorithms can be applied 
to problems of the NK-model. 

In the following, a solution vector x is assumed to be a binary vector of 
length N,  i.e. x = (XI,. . . ,XN)  with the fitness function 

where the fitness contribution fi of locus i depends on the value of gene xi 
and the values of K other genes Xi,, . . . , XiK. The function fi : (0, 1IK+' + R 
assigns a uniformly distributed random number between 0 and 1 to each of 
its 2K+1 inputs. Other random search landscapes have been proposed in [6, 71 
which are highly tunable, but will not be investigated in this work. 

The NK-model is similar to the unconstrained binary programming prob- 
lem (BQP) [8]. In fact, the BQP can be regarded as a special case of NK- 
fitness landscapes with 

f(x) = fi(x) with 

where Q = (qij) is a n x n matrix. 
is constant for all i, in the BQP k(i) 

While for NK-landscapes k(i) = K 
is defined as the number of non-zero 



2 Heuristics for the NK-Model 211 

entries in the i-th column of matrix Q. The mean of the k(i) is given by - 
k = n. dens(Q). Due to the strong resemblance of the two problems, heuristics 
developed for one problem can be applied after small modifications to the 
other. The heuristics described in the following are similar to the greedy and 
local search heuristics for the BQP in [9]. 

2.1 Greedy Algorithms 

A point in a NK-landscape can be constructed in N steps by assigning in 
each step a gene value to a gene at  a given locus. If the choice of a gene value 
follows a greedy rule, such an approach can be classified as a greedy heuristic 
for NK-landscapes. 

The greedy heuristic proposed in this paper works as follows. A solution 
is built in N steps by choosing a gene which is still not assigned a value, 
and a gene value to assign to the gene. The choice is made by maximizing a 
gain function g(i, v) : (1, . . . , N )  x {O,1) + R with g(i, v) denoting the gain 
attained by setting the value of the i-th gene to v. The gain function g(i, v) 
is defined as the difference between the fitness of a partial solution y with 
gene i set to v and the fitness of a partial solution x with gene i unspecified: 
g(i, v) = fp(y) - fP(x) with 

The fitness f p  of a partial solution is defined as the average fitness of all solu- 
tions matching the template defined by the partial solution: Assume the par- 
tial solution x is x = (1,0, *, 0, *, 1) with * denoting the don't care symbol (the 
gene has no value). Then, the fitness f p  of x is the average fitness of the four 
solutions (1,0,0,0,0,1), (1,0,0,O,I;,l), (1,0,1,0,0,1),and (1,0,1,0,1,1). 

Assuming the fitness contribution of site i denoted fi (xi, X i l ,  . . . , XiK ), 
depends on the site i itself and K neighbors i l ,  . . . , iK,  then the neighborhood 
Ni = {i, i l ,  . . . , iK) defines the set of geneslloci which contribute to the fitness 
a t  site i. The set of locilgenes which depend on the value of gene k is thus 
defined as Dk = {i I k E Ni). Hence, the gain function becomes 

Initially, the partial fitness contribution of locus i is the average over all 2K+1 
possible values of fi. Hence, the greedy heuristic based on partial fitness calcu- 
lations requires more than n . 2K+1 additions and is therefore only practically 
useful for landscapes with small values of K. On the other hand, with increas- 
ing K, the solutions produced by the greedy heuristic approach the average 
fitness of the points in the landscape since for high epistasis the values of f,P 
differ significantly from the values of fi in the final solution. 
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The greedy heuristic is randomized by (1) choosing a small fraction (N/20) 
of the genes randomly, and (2) by selecting randomly with a probability pro- 
portional to the gains from {arg maxi g(i, 0), arg maxi g(i, 1)). 

2.2 Local Search 

The application of local search techniques to NK-landscapes is straightfor- 
ward: Neighboring solutions can be reached by flipping one or more bits simul- 
taneously in the genome. However, instead of calculating the fitness for each 
neighboring solution anew, it is more efficient to calculate the gain achieved 
by moving to the new solution. In this context the gain is referred to as the 
fitness difference between the new and the old solution. 

The gain associated with the flipping of a single gene k in the genome x 
leading to a solution y with 

is the fitness difference of the new solution y and the old solution x: 

A local search for the NK-model can be implemented by maintaining a gain 
vector g = (gl . . . , g ~ )  instead of calculating all gains anew in each iteration. 
After flipping gene k, generally not all of the gains have to be updated. A 
gain gi only changes if there is a j E Di with k E Nj  or in words the gain of 
flipping gene i changes if there is a fitness distribution function that depends 
on the value of gene k and i. 

1-opt Local Search 

A simple local search based on a 1-opt neighborhood can be realized straight- 
forwardly. The neighborhood is searched by flipping a single bit in the current 
solution. The gain vector can now be used to find an improving flip in reduced 
computation time. However, after flipping the gene value, some elements of 
the gain vector have to be updated accordingly. 

Variable kopt Local Search 

The basic scheme described above can be extended to derive more powerful 
local search algorithms. For example, a 2-opt local search can be realized by 
flipping two genes to reach a solution in the neighborhood of the current 
solution. More generally, a k-opt local search can be realized by flipping k 
genes simultaneously. Since the neighborhood size of a k-opt local search grows 
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exponentially with 5, mechanisms are required to perform a k-opt local search 
in reasonable time. This can be achieved be considering a small fraction of 
the kop t  neighborhood similarly to the heuristics by Lin and Kernighan for 
the TSP [lo] and the GBP [ll]. The k-opt local search for NK-landscapes 
proposed here is based on the ideas of Lin and Kernighan: in each iteration, 
a variable number of genes is flipped, depending on a gain criterion. To find 
the most profitable k-opt move, a sequence of up to n solutions is generated 
by stepwise flipping genes with the highest associated gain. Every gene is 
flipped no more than once to guarantee that all solutions in the sequence are 
different. The solution in the sequence with the highest gain is accepted as the 
new current solution. This solution may differ in 1 up to n genes depending 
on the position in the sequence. The pseudo code for the approach is provided 
in Figure 1. To reduce the running time of the algorithm, the value for the 

procedure Local-Search-k-opt(% E X): X; 
begin 

calculate gains gi for all i in (1,. . . , N}; 
repeat 

xprev := x, Gmax := 0, G := 0, steps = 0, C := (1,. . . , N } ;  
repeat 

find j with gj = rnaxi~c gi; 
G := G+gj ;  
xj := 1 - xj; 
if G > Gmaz then 

Gmax := G; 
Xbest := x; 

endif 
update gains gi for all i; 
c := C\{j}; 
steps := steps + 1; 

until steps > maxsteps or C = 0; 
if Gmax > 0 then 

x := xbest; 
else 

x := xpre",; 
endif 

until Gmax 5 0; 
return x; 

end; 

Fig. 1. k-opt Local Search for NK Landscapes 

maximum k can be bound to a value smaller than N. Furthermore, the inner 
repeat loop may be terminated if there was no new xb,,t for more than m 
solutions. 
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3 The Fitness Landscape of the NK-Model 

The NK-model of Kauffman [2,12] defines a family of fitness landscapes which 
can be tuned by two parameters: N and K. While N determines the dimension 
of the search space, K specifies the degree of epistatic interactions of the genes 
constituting a genome. Each point in the fitness landscape is represented by 
a bit string of length N and can be viewed as a vertex in the N-dimensional 
hypercube. 

With this model, the "ruggedness" of a fitness landscape can be tuned by 
changing the value of K and thus the number of interacting genes per locus. 
Low values of K indicate low epistasis and high values of K represent high 
epistasis. The two extremes are considered in more detail in the following. 

Properties of K = 0 Landscapes 

The K = 0 landscapes have the following properties [2]: 

There is only one 1-opt local/global optimum 
The landscape is smooth; neighboring points (I-opt neighbors) in the 
search space are highly correlated. The fitness of 1-opt neighbors can differ 
by no more than *. 
The number of fitter neighbors decreases by one in each iteration of a 1-opt 
local search. 
The average number of iterations to reach the optimum is and thus in 
0 ( N ) .  

For the highest value of K ,  the properties of the fitness landscapes become 
quite different. 

Properties of K = N - 1 Landscapes 

If K = N - 1, the fitness contribution of a gene depends on the values of all 
other genes, which results in a highly uncorrelated, rugged fitness landscape. 
These landscapes have the following properties [2]: 

The expected number of 1-opt local optima is & 
0 The expected fraction of fitter 1-opt neighbors dwindles by $ after each 

iteration of a 1-opt local search 
The expected number of improvement steps to reach a 1-opt local optimum 
is in O(1og N)  
The expected number of solutions to examine for reaching a 1-opt local 
optimum is proportional to N 
The ratio of accepted to tried moves scales as log N/N 

0 Starting from an arbitrary solution, only a small fraction of local optima 
< N ' o ~ Q ( ~ - ~ ) / ~ )  can be reached by a 1-opt local search. L 
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Only from a small fraction of starting solutions (2(I0g2 N ) 2 / 2 ) ,  the global 
optimum can be reached by a 1-opt local search. 

Furthermore, Kauffman [2] has shown that for increasing N ,  the fitness values 
of the local optima decrease towards i. He calls this phenomenon a complexity 
catastrophe. 

R a n d o m  vs. Adjacent Neighbor Model  

Besides the values for the parameters N and K ,  the choice of the neighbor 
model is important for NK-landscapes, too. Kauffman [2] distinguishes two 
variants, the random neighbor model and the adjacent neighbor model. In the 
former, the genes which contribute to the fitness at  locus i are chosen at  
random. In other words, the neighbors il through iK are randomly selected 
among the N. In the latter, the il through ik are the nearest loci to the gene 
at  locus i. 

The landscape properties described above are independent of the neighbor 
model. However, Weinberger [13] has shown that the computational complex- 
ity of both models differs. He was able to show that the NK decision problem 
with adjacent neighbors is solvable in 0(2K N) steps and is thus in P and that 
the NK decision problem with random neighbors is NF-complete for K 2 3. 

3.1 Autocorrelation Analysis 

To measure of the ruggedness of a fitness landscape, Weinberger [14] sug- 
gests the use of (auto)correlation functions. The autocorrelation function p(d) 
[15, 141 reflects the fitness correlation of points a t  distance d in the search 
space. Weinberger [16] derived formulas for the autocorrelation function of 
NK-landscapes. He found that the autocorrelation function p(d) depends on 
the neighbor model of the landscape. In the random neighbor model, the 
autocorrelation function becomes 

and for the adjacent neighbor model, p becomes 

with d denoting the hamming distance between bit vectors. 
Alternatively, Weinberger suggested to perform random walks to investi- 

gate the correlation structure of a landscape. The random walk correlation 
function r(s) [14, 17, 181 of a time series {f (xt)) defines the correlation of 
two points s steps away along a random walk through the fitness landscape. 
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The random walk correlation function for the NK-model has been calculated 

for the adjacent and random neighbor model. 
If the time series is isotropic, Gaussian and Markovian [14], then the cor- 

responding landscape is called AR(1) landscape, and the random walk corre- 
lation function is of the form r(s) = r(1)" = e-s /e  with e being the correlation 
length of the landscape. Hence, the correlation length e [18] of the landscape 
is defined as 

for r ( l ) ,  p(1) # 0. The correlation length directly reflects the ruggedness of a 
landscape: the lower the value for C, the more rugged the landscape. In the 
NK-model, the correlation length is for adjacent and random neighbors 

It  is not surprising that the correlation length decreases with increasing K. 
The formula show that the NK-model allows to produce landscapes with 

arbitrary ruggedness. The correlation length can be set to 1 by choosing K = 
N - 1 leading to a totally random landscape with uncorrelated neighboring 
points. Choosing the other extreme K = 0, the correlation length grows to its 
maximum value: N ,  resulting in a smooth, single peaked landscape. 

3.2 Fitness Distance Correlation Analysis 

The fitness distance correlation (FDC) coefficient is known to be an important 
measure in the context of fitness landscapes, proposed in [20] as a measure for 
problem difficulty for genetic algorithms. The FDC coefficient Q is defined as 

given a set of points XI, x2,. . . , xrn with fi = f (xi) denoting the objective 
value, di = dTt(xi) denoting the shortest distance to a global optimum solu- 
tion, and a ( f )  and a(d) denoting the standard deviation of f and d, respec- 
tively. 

In his studies of NK-landscapes, Kauffman [2] investigated the correlation 
of fitness and distance to the optimum of local optimum solutions with respect 
to 1-opt local search. In this work, the analysis is extended by investigating 
fitness distance correlation with respect to the greedy heuristic and k-opt local 
search. Experiments were conducted for three selected instances with N fixed 



3 The Fitness Landscape of the NK-Model 217 

to  1024, K in {2,4,11) and a random neighbor model. Since the optimum 
solutions for these instances are not known, the best solutions found with the 
MAS described below in long runs (14400 s on a Pentium I1 300 MHz PC) 
are used instead. These solutions are likely to be the global optima or at  least 
close to the global optima with respect to fitness and distance. 

In the first experiment, the distribution of greedy solutions in the search 
space is investigated. The results of the analysis are summarized in Table 1. 
In the first column, the name of the instance is displayed, and in the second 

Table 1. Results of the Fitness Distance Analysis of Greedy Solutions. 
- - 

Instance N K mindopt dopt dgr Ngr e 
C2-1024 1024 2 130 220.62 (0.22) 195.03 2500 -0.62 

D4-1024 1024 4 264 372.29 (0.36) 377.38 2500 -0.24 

Bll-1024 1024 11 458 515.74 (0.50) 469.35 2500 -0.01 

and third column the parameters N and K are given. In columns four through 
eight, the minimum distance of the greedy solutions to the expected global 
optimum (mindopt), the average distance of greedy solutions to the global 
optimum (&), the average distance between the greedy solutions (ag,), the 
number of distinct greedy solutions (N,,) out of 2500, and the fitness dis- 
tance correlation coefficient (Q) are provided, respectively. Additionally, the 
normalized average distance, i.e. the average distance of the local optima to 
the global optimum divided by the maximum distance in the search space N 
is shown in column five in parentheses. 

For small K ,  the greedy solutions are close to each other and close to the 
best known solution. There is a correlation between fitness and distance to 
the best known solution as the value p indicates. About three quarters of the 
gene values are equal in all greedy solutions for K = 2 and thus the solutions 
are contained in a small fraction of the search space. With increasing K ,  
average distance between the greedy solutions quickly converges to the average 
distance (N/2) of the solutions in the search space. Surprisingly, already at  
K = 11 there is no correlation between greedy solutions and they have random 
distribution in the search space as expected for large values of K .  

In the second experiment, the correlation of fitness and distance to the best 
known solution of kop t  solutions was investigated. The results are shown in 
Table 2. Again, in the first column, the name of the instance is displayed, 
and in the second and third column the parameters N and K are given. In 
columns four through eight, the minimum distance of the locally optimal so- 
lutions to the expected global optimum (min do,t), the average distance of the 
local optima to the global optimum (&,,t), the average distance between the 
local optima (a,,), the number of distinct local optima (Nk-,,t) out of 2500, 
and the fitness distance correlation coefficient (Q) are provided, respectively. 
Additionally, the normalized average distance, i.e. the average distance of the 
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Table 2. Fitness Distance Correlation Analysis of k-opt Solutions. 
- - 

Instance N K mindopt dopt dloc e 
C2-1024 1024 2 191 301.47 (0.29) 346.16 2500 -0.65 

local optima to the global optimum divided by the maximum distance in the 
search space N is shown in column five in parentheses. Similarly as for the 
greedy heuristic, the average distance between the local optima and the av- 
erage distance to the best known solution increases quickly with increasing 
K.  At K = 11 there is no correlation between fitness and distance, and the 
distribution is similar to a uniform distribution of random points in the search 
space. There is slightly higher correlation in case of k-opt in comparison to 
1-opt in case of the K = 2,4 landscapes. However, greedy solutions have even 
a shorter minimum and average distance to the best known solution than 
k-opt solutions. In addition to Tables 1 and 2, fitness distance plots for the 
three instances are shown in Figure 2. On the left, the scatter plots for 2500 
greedy solutions are provided, and on the right the scatter plots for 2500 k-opt 
solutions are displayed. For K = 2, the orientation of the points towards the 
origin is obvious. The cloud of points "moves" with increasing K quickly to 
the middle of the plane losing the orientation to the origin and thus to the 
optimum. These results correspond to the findings of Kauffman [2] for 1-opt 
local search. He further observed that for instances of the adjacent neighbor 
model the correlation of fitness and distances decreases not as rapidly as for 
the random neighbor model with increasing K.  

From the perspective of performance prediction of MAS, the analysis pro- 
vides some useful information. For small K (< 5) , recombination-based 
memetic algorithms are expected to have a good performance since with 
recombination the fitness distance correlation of the local optima can be ex- 
ploited: With increasing fitness, the local optima are closer together, and their 
distance to the optimum becomes smaller. Furthermore, the locally optimal 
solutions are found in a small region of the search space in which the global 
optimum has a more or less central position. The greedy heuristic is very well 
suited for these instances with low epistasis and it is therefore promising to 
include the heuristic in the initialization phase of the population as well as 
in the recombination step. For larger K ,  the effectiveness of recombination 
decreases and eventually mutation based MAS are better suited. 

3.3 Alternative Distance Measures 

The fitness distance correlation analysis requires a feasible distance measure 
for the search space. In case of bit-strings, the hamming distance appears to 
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Fig. 2. Fitness-Distance Plots of Greedy Solutions (left) and k-opt Solutions (right) 

be a natural choice. However, the hamming distance does not reflect exactly 
how a k-opt local search "sees" the landscape. Alternatively, an edit distance 
may be considered which counts the changes required for a k-opt local search 
to convert one solution to the other. However, a problem arises with such 
an approach, since the k-opt local search is not capable of converting all 
solutions into all other solutions. Besides the fact that only better solutions 
are produced by a k-opt, per definition not all better solutions are found by 
the local search. The hamming distance is a lower bound of the number of 
steps (flips) required for a k-opt local search to convert a solution to another 
assuming that it can. Essentially, a 1-opt local search and a k-opt local search 
are based on single flips, only the acceptance criterion is different in k-opt. 
Note, that the k-opt local search discussed in this paper considers only a 
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sequence of order one flips, not, for example, all pairs of order two flips (as 
would be in a true 2-opt local search). Finally, the FDC analysis may provide 
hints how the evolutionary part of a MA "sees" the landscape. Here, the 
hamming distance appears still to  be a suitable choice, since properties like 
respectfulness and assortedness [21, 221 can be described with this distance 
measure. 

4 Memetic Algorithms for NK Landscapes 

Memetic algorithms have been applied with great success to several combi- 
natorial optimization problems. In this paper, we focus on a class of memetic 
algorithms that uses a simple evolutionary framework with a single panmictic 
population instead of spatially structured populations [23], or tree-structured 
populations [24]. Furthermore, we concentrate on using a single local search 
strategy in contrast to the self-adaptation of the local search strategy [25]. 
The framework is thus rather simple and derived from other evolutionary 
algorithms, with the only difference that after initialization and after recom- 
bination or mutation, a local search procedure is applied to assure that all 
individuals in the population are local optima. This simple framework has 
been successfully used in studies for several combinatorial problems, including 
the graph bipartitioning problem [26], the quadratic assignment problem [27], 
the traveling salesman problem [28], and the binary quadratic programming 
problem [29]. 

The application of MAS to NK-landscapes is straightforward. Since prob- 
lems of the NK-model are binary-coded, all GA variation operators such as 
k-point crossover and bit-flip mutation for bit strings can be used in a MA. As 
shown in [30], genetic algorithms do not scale well with problem size N. They 
perform much worse than memetic algorithms for a problem size N 2 512. 
Therefore, we concentrate in the following on the hardest landscapes from the 
studies in [30] with N = 1024 and varying K. 

4.1 Population Initialization and Local Search 

The population can be initialized by randomly generating bit strings and by 
subsequently applying local search. For low values of K ,  the use of the random- 
ized greedy heuristic described above can be used alternatively in combination 
with local search. Suitable local search algorithms are 1-opt local search and 
k-opt local search as described above. 

4.2 Evolutionary Variation Operators 

Due to the binary coding of the problem, all operators on binary strings can be 
applied in an evolutionary algorithm and therefore in a memetic algorithm, 
such as single point or two-point crossover, uniform crossover and bit flip 
mutation operators. 
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Recombination 

A variant of uniform crossover (UX) that is used in the CHC algorithm of 
Eshelman [31] is an alternative to the crossover operators noted above. The 
operator creates (with high probability) offspring that have a maximum Ham- 
ming distance to the parents which is half of the distance between the parents 
themselves. The operator is called denoted HUX in the following. 

Alternatively, the greedy construction scheme can be used in recombina- 
tion to produce offspring. A greedy recombination operator denoted GX is 
therefore devised that works by first inheriting all the gene values that are 
common to the two parents to retain respectful recombination [22]. Then 
the remaining loci are set making greedy choices as in the greedy heuristic 
described above. This operator is especially effective for problems with low 
epistasis. 

Mutation 

Simple bit flip mutation is not useful in a memetic algorithm, since the flipping 
of a single bit will be reversed by a subsequently performed local search with 
a high probability. Hence more than one bit must be flipped simultaneously 
in the parent solution. If p bits are flipped by the mutation operator, the 
Hamming distance of the resulting offspring and the original parent solution 
becomes p. The value of p should be chosen to minimize the probability that 
the subsequent local search rediscovers the unmutated solution. 

4.3 Selection and Restarts 

Selection for reproduction is performed on a purely random basis without bias 
to fitter individuals, while selection for survival is achieved by choosing the 
best individuals from the pool of parents and children. Thus, replacement in 
our algorithm is similar to the selection in the ( p  + A)-ES [32]. Additionally, 
duplicates will be replaced by other solutions, so that each phenotype exists 
only once in the new population. 

In order to circumvent the problem of premature convergence, cataclysmic 
mutations [31] are performed when the population has converged. The muta- 
tion operator is applied to all but the best individual in the population, where 
p is determined by a third of the average Hamming distance between the indi- 
viduals in the initial population. This value for p exhibited good performance 
in several experiments. 

5 Performance Evaluation 

We studied the performance of the memetic algorithms described above in 
several experiments. The results are discussed in the following starting with 
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an evaluation of the components, namely the greedy and local search heuris- 
tics. All experiments were performed on a Pentium I1 PC (300 MHz). The 
algorithms were implemented in C++. 

5.1 Variable k-opt Local Search Variants 

Running time and solution quality of the k-opt local search highly depend 
on the termination criterion of the inner loop, in other words, the maximum 
number of steps (search depth) considered in each iteration. 

In order to investigate the influence of the search depth termination cri- 
terion we tested three variants of the local search procedure in Fig. 1. The 
full k-opt variant is exactly as shown in the figure, with maxsteps set to N .  
In the fast variant, the inner loop is terminated if there was no new xbest for 
more than m = 40 steps and the number of maxsteps was set to N/2. Finally, 
a simple tabu search variant was considered. In this variant the inner loop is 
terminated as soon as a better solution has been found. It is essentially a 
tabu search with a memory of N solutions and no aspiration criterion. The 
results of the comparison is displayed in Table 3. In the table, the percentage 

Table 3. Comparison of k-opt Local Search Variants 

Instance Fast k-opt Full k-opt Tabu k-opt 

C2-1024 3.322% 1.0 3.263% 3.1 3.708% 20.4 

D4-1024 4.918% 1.0 4.810% 2.7 5.614% 10.3 

deviation from the best known solution as well as the relative performance 
in respect to the fast variant are provided (larger values denote higher run 
times). As the figures suggest, the full variant is approximately 3 up to 5 times 
slower than the fast variant with only slightly better average objective values. 
Hence, the extra running time for the full variant appears not to be justified. 
The tabu search variant is much slower (up to 20 times) than the fast variant 
and also clearly inferior in average solution quality. Therefore, the fast variant 
is used in all remaining experiments. 

An interesting issue is how the dynamics of a k-opt local search change if 
the landscapes become more rugged: The number of K and the search depth of 
the k-opt local search may be related. To investigate this issue the local search 
variants were compared in respect to the average number of steps per iteration 
and the number of iterations required to find a local optimum. The findings 
are summarized in Fig. 3 and Fig. 4. In the left plot of Fig. 3, the average 
number of flips performed in each iteration of the fast variant are displayed. 
As can be seen, the number of flips is initially very high and slightly less 
than N / 2  for K = 2. Not surprisingly, the number is much lower for K = 11 
due to the rapidly decreasing (auto-)correlation function of the landscape. As 
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Fig. 3. k-opt Local Search Statistics for the Fast k-opt Variant 

shown in the right of the figure, the number of iterations to reach a local 
optimum is very low (below 14 iterations), and increases with K. In the tabu 
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iteration 

Fig. 4. k-opt Local Search Statistics for the Tabu k-opt Variant 

search variant the expected number of iterations is much higher since flips 
are performed immediately, when an improving flip is found. The probability 
of termination is provided in the right plot of Fig. 4. Up to 800 iterations 
are required for N = 1024. The plot in the left hand side of the figure shows 
the frequency of k-flips depending on k on a logarithmic scale. Again, the 
frequencies of the K = 11 landscape are lower than those of the other two 
landscapes with K = 2 and K = 4, and the frequencies decrease exponentially. 
These results indicate that the optimum number of k (the search depth) in 
a k-opt local search should be dynamically chosen and not to be fixed in 
advance. In MAS where this parameter is adapted, it should be ensured that 
the parameter can be adjusted fast enough to meet the requirements at  the 
current state of the search. 

5.2 Greedy and Local Search 

To investigate the relative performance of the greedy heuristic and the k-opt 
local search, experiments were conducted in which the two together with the 
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1-opt local search were applied to the three landscapes with N = 1024 used in 
the analysis above. The results are shown in Table 4. In the table, the average 

Table 4. Performance of the Greedy Heuristic, 1-opt and k-opt Local Search. 

Greedy 1-opt LS k-opt LS 

Instance fitness t/ms fitness t/ms fitness t /ms 

performance (fitness and average percentage excess in parentheses) and the 
average running time (t/ms) in milliseconds of a single run, is shown for the 
greedy heuristic and 1-opt and k-opt local search applied to randomly gener- 
ated solutions. The values are averaged over 10000 runs except for the greedy 
heuristic and the problem instance Bll-1024: Due to the long running time, 
1000 runs were performed instead of 10000. The values given in parentheses 
denote the deviation from the best known solution in percent. 

For K = 2 and K = 4, the greedy heuristic outperforms the local searches 
but requires more CPU time. For K = 11, the k-opt local search dominates 
over the two others. The CPU time required for a run of the greedy algorithm 
exceeds 22 seconds and is thus more than 32 times higher than for k-opt local 
search rendering the greedy heuristic impractical for such relative large K. For 
K = 2, the greedy heuristic is furthermore capable of producing comparable 
results to a GA in a single run and thus in 173 milliseconds, where the GA 
requires 1200 seconds [30]. Also for K = 4 and K = 11, the GAS in [30] are 
outperformed by the greedy heuristic and the k-opt local search in a single run, 
demonstrating even more drastically the inferior performance of traditional 
GAS on relatively large instances. 

5.3 Memetic Algorithms with k-opt Local Search 

To assess the performance of memetic algorithms with k-opt, additional ex- 
periments have been conducted. With the same time limit (1200 seconds) as 
chosen for the comparison of genetic algorithms with MAS in [30], the MAS 
with k-opt local search were applied to the three instances of size 1024. With 
a population size of 40, the production of 20 new offspring per generation, and 
restarts enabled as in [30], the MA were run with three different variation op- 
erators. The first MA uses the greedy heuristic in the initialization phase and 
the greedy recombination operator (GX). The second MA uses HUX as the 
recombination operator and the third MA uses the mutation operator (MUT) 
described above with p = 3. The results of the experiments are summarized 
in Table 5. For each algorithm, the average number of generations (gen) pro- 
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Table 5. Performance of f-opt Local Search MAS with three types of variation. 

OP gen fitness, quality gen fitness, quality gen fitness, quality 
GX 12505 0.750002, 0.01% 5750 0.787570, 0.39% 
HUX 11954 0.750009, 0.01% 5730 0.786874, 0.48% 216 0.753565, 1.99% 
MUT 6402 0.744757, 0.71% 4306 0.772776, 2.26% 704 0.755747, 1.71% 
HUXl 12615 0.748230, 0.25% 4540 0.783665, 0.89% 105 0.732874, 4.91% 
Best 0.750065, 0.00% 0.790640, 0.00% 0.768882, 0.00% 

duced is provided as well as the average fitness (fitness) of the final solution 
along with the percentage excess over the best known solution (quality). The 
results of the MA with 1-opt local search and HUX recombination (denoted 
HUX1) from [30] are included for easy comparison. Due to the long running 
times for the greedy heuristic on Bll-1024, the MA with GX was not tested 
on this landscape. 

For K = 2, the MA with greedy recombination and HUX recombination 
perform equally well. Both find the best known solution in one out of 20 
runs and have the same worst result. For K = 4 and K = 11, the greedy 
recombination MA outperforms the others. The mutation based MA is as 
expected the worst out of the three for K = 2 and K = 4. For K = 11, 
the mutation based MA achieves a better average result than the MA with 
HUX. The same tendency appeared in the results of the MAS with 1-opt 
local search [30]: for the unstructured landscape with K = 11, recombination 
has no benefit compared to mutation. The recombination based MAS with 
k-opt local search perform clearly better than the algorithms with 1-opt local 
search in [30]. In particular new best solutions have been found for the three 
landscapes. Summarizing, the k-opt MAS have a higher potential and perform 
better if longer running times are chosen. 

6 Conclusions 

NK-landscapes have been introduced as a formal model of gene interaction in 
biological evolution, and since they are random, several statistical properties 
of the landscapes are known. To derive highly effective memetic algorithms 
for the NK-model, two new heuristics have been proposed, a greedy algo- 
rithm and a k-opt local search. The distribution of the solutions produced by 
these heuristics has been analyzed by performing a fitness distance correla- 
tion analysis on selected instances. The results allow to predict when greedy 
choices based on the greedy heuristic are favorable in a memetic framework 
and when not. Additionally, investigating the distribution of local optima in 
the landscapes allows to determine whether or not recombination is effective. 
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The greedy heuristic incorporated in the initialization phase as well as 
in the recombination operator of a MA with k-opt local search is shown to 
be highly effective for landscapes with low epistasis. The landscape analysis 
has shown that with increasing epistasis, the landscape becomes rapidly un- 
structured. Thus, for these instances, a k-opt local search MA with mutation 
instead of recombination has been shown to  be favorable. 

Moreover, the memetic algorithms with k-opt local search are shown to 
outperform previously proposed memetic algorithms with 1-opt local search: 
new best solutions have been found with the former for three landscapes. 

There are several issues for future research. Firstly, the algorithms and 
landscape studies should be extended t o  cover other random search landscapes 
[6, 71. Secondly, random walk correlation analysis may be applied on paths 
between local optima in the spirit of path relinking [33] t o  gain more insight in 
the effectiveness of recombination in memetic algorithm frameworks. Finally, 
the potentials of the algorithms described in the paper have to  be investigated 
in other application domains of practical interest. 
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