
Memet ic Evolutionary Algorithms

W.E. Hart1, N. Krasnogor", and J.E. Smith3

Sandia National Laboratory
Albuquerque, New Mexico
USA
Automatic Scheduling, Optimisation and Planning Group
School of Computer Science and IT
University of Nottingham, U.K.
http:\\www.cs.nott.ac.uk\"nxk
natalio.krasnogorQnottingham.ac.uk
Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England,
Bristol BS16 12QY, U.K.
james.smithQuwe.ac.uk
http://www.cems.uwe.ac.uk/ jsmith

1 Summary

Memetic Evolutionary Algorithms (MAS) are a class of stochastic heuristics
for global optimization which combine the parallel global search nature of
Evolutionary Algorithms with Local Search to improve individual solutions.
These techniques are being applied to an increasing range of application do-
mains with successful results, and the aim of this book is both to highlight
some of these applications, and to shed light on some of the design issues and
considerations necessary to a successful implementation. In this chapter we
provide a background for the rest of the volume by introducing Evolutionary
Algorithms (EAs) and Local Search. We then move on to describe the syn-
ergy that arises when these two are combined in Memetic Algorithms, and to
discuss some of the most salient design issues for a successful implementation.
We conclude by describing various other ways in which EAs and MAS can be
hybridized with domain-specific knowledge and other search techniques.

2 Introduction

Memetic Algorithms (MAS) are a class of stochastic global search heuristics
in which Evolutionary Algorithms-based approaches are combined with local
search techniques to improve the quality of the solutions created by evolution.
MAS have proven very successful across a wide range of problem domains such

4 W.E. Hart, N. Krasnogor and J.E. Smith

as combinatorial optimization [27], optimization of non-stationary functions
[42], and multi-objective optimization 1201 (see [29] for an extensive bibliog-
raphy).

Methods for hybridizing EAs with local search have been given various
names in research papers such as: hybrid GAS, Baldwinian EAs, Lamarckian
EAs, genetic local search algorithms, and others. Moscato [3] coined the name
memetic algorithm to cover a wide range of techniques where evolutionary-
based search is augmented by the addition of one or more phases of local
search.

The natural analogies between human evolution and learning, and EAs
and artificial neural networks (ANNs) prompted a great deal of research into
the use of MAS to evolve the structure of ANNs. ANNs were trained using
back-propagation or similar means during the 1980s and early 1990s. However,
research applying MAS to ANNs gave a great deal of insight into the role
of learning, Lamarckianism, and the Baldwin effect to guide evolution (e.g.
[8, 7, 8, 9, 10, 11, 121 amongst many others). This research reinforced the
experience of "real-world" practitioners as to the usefulness of incorporating
local search and domain-based heuristics within an EA framework.

Since then a number of PhD theses 114, 25, 15, 27, 161 have developed
algorithmic analyses of MAS. These analyses and related empirical results
demonstrate the potential impact of MAS, and in practice, many state-of-the-
art EAs employ some element of hybridization using local search. Research
in MAS is now sufficiently mature and distinct to have its own annual inter-
national workshop, and an extensive on-line bibliography of MA research is
maintained at [29].

In this chapter we set the scene for the rest of this book by providing brief
introductions to Evolutionary Algorithms (EAs) and Local Search (LS). We
also discuss some of the issues which arise when hybridizing the two to create
MAS. As our aim is to provide an overview, we cannot hope to give a detailed
description of either EAs or the many LS methods available. There are wide
variety of books discussing these methods that the user can read for further
detail (e.g., see 117, 181). The rest of this chapter is organized as follows:

In Section 3 we provide a brief overview and historical background to
the field of Evolutionary Algorithms, focusing particularly on their use as
search and optimization techniques.
In Section 4 we provide a brief introduction to local search and some
related techniques.
In Section 5 we discuss some of the motives and rationale underpinning
the hybridization of EAs with other search technologies and motivate this
book's focus on Memetic Algorithms. Our focus is on EA hybrids in which
LS acts on the output of evolutionary operators, that is to say in which
some form of "lifetime learning" or "plasticity" is incorporated into the
"standard" evolutionary cycle..

Memetic Evolutionary Algorithms 5

In Section 6 we discuss some of the design issues that must be considered
when implementing an MA.
Finally, in Section 7 we discuss the structure of evolutionary and memetic
algorithms, and consider various places within the evolutionary cycle that
other heuristics and or domain specific knowledge may be incorporated.

3 A Brief Introduction to Evolutionary Algorithms

The idea of applying Darwinian principles to automated problem solving dates
back to the forties, long before the breakthrough of computers [19]. As early
as 1948, Turing proposed "genetical or evolutionary search", and by 1962
Bremermann had actually executed computer experiments on "optimization
through evolution and recombination". During the 1960s three different im-
plementations of the basic idea were developed in different places. In the USA,
Fogel, Owens, and Walsh introduced evolutionary programming [20, 211,
while Holland called his method a genetic algori thm [22, 23, 241. Mean-
while, in Germany, Rechenberg and Schwefel invented evolution strategies
[25, 261. For about 15 years these areas developed separately; but since the
early 1990s they have been viewed as different representatives of a common
technology that has come to be known as evolutionary comput ing (EC)
[27, 28, 29, 30, 311. In the early 1990s a fourth methodology following the
same general ideas emerged, genetic programming, championed by Koza
[32, 33, 341. The contemporary terminology denotes the whole field by evo-
lutionary computing, and the algorithms involved are termed evolutionary
algorithms; evolutionary programming, evolution strategies, genetic algo-
rithms, and genetic programming are subareas belonging to the corresponding
algorithmic variants.

3.1 T h e Principal Metaphor

The common underlying idea behind different evolutionary algorithms is the
same: given a population of individuals, mechanisms adapted from natural
selection and genetic variation are used to evolve individuals with high fit-
ness. Given a quality function to be maximized, we can randomly create a set
of candidate solutions, i.e., elements of the function's domain, and apply the
quality function as an abstract fitness measure - the higher the better. Based
on this fitness, some of the better candidates are chosen to seed the next gen-
eration by applying recombination and/or mutation to them. Recombination
is an operator applied to two or more selected candidates (the so-called par-
ents) and results in one or more new candidates (the children). Mutation is
applied to one candidate and results in one new candidate. Executing recom-
bination and mutation leads to a set of new candidates (the offspring) that
compete - based on their fitness (and possibly age)- with the old ones for a
place in the next generation. This process can be iterated until a candidate

6 W.E. Hart, N. Krasnogor and J.E. Smith

with sufficient quality (a solution) is found or a previously set computational
limit is reached.

In this process there are two fundamental forces that form the basis of
evolutionary systems:

Variation operators (recombination and mutation) create the necessary di-
versity and thereby facilitate novelty.

0 Selection filters, and induces constraints on, candidate solutions.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy to view such an
evolutionary process as optimizing by iteratively generating solutions with in-
creasingly better values. Alternatively, evolution it is often seen as a process
of adaptation. From this perspective, the fitness is not seen as an objective
function to be optimized, but as an expression of environmental requirements.
Matching these requirements more closely implies an increased viability, re-
flected in a higher number of offspring. The evolutionary process makes the
population increasingly better at being adapted to the environment.

The general scheme of an evolutionary algorithm is shown in Figure 1 in
a pseudocode fashion. It is important to note that many components of evo-
lutionary algorithms are stochastic. During selection, fitter individuals have
a higher chance to be selected than less fit ones, but typically even the weak
individuals have a chance to become a parent or to survive. For recombina-
tion of individuals the choice of which pieces will be recombined is random.
Similarly for mutation, the pieces that will be mutated within a candidate
solution, and the new pieces replacing them, are chosen randomly.

Begin
INITIALIZE population with random candidate solutions;
EVALUATE each candidate;
Repeat Until (TERMINATION CONDITION is satisfied) Do

1 SELECT parents;
2 RECOMBINE pairs of parents ;
3 MUTATE the resulting offspring;
4 EVALUATE new candidates;
5 SELECT individuals for the next generation;

endDo
End.

Fig. 1. The general scheme of an evolutionary algorithm in pseudocode.

Memetic Evolutionary Algorithms 7

3.2 Components of an EA

Representation

Solutions to the problem being solved are usually referred to as phenotypes.
Phenotypes are indirectly manipulated by the EA variation and selection op-
erators by virtue of being encoded in genotypes. Genotypes within the EA
population are the objects upon which the operators act.

The representation employed by an EA can thus be represented by a
ternary relation R = (P , 6 , M) that specifies the relationship between the
space of phenotypes,P, and the space of genotypes 6. The mapping M is a
function with domain in 6 and range in P that provides the "interpretation"
of the representation. For example, a phenotypic space of real values, P = $2,
can be easily encoded by a binary genotypic search space, 6 = (0 , I)+, using
as a mapping M a gray coding. That is, the gray coding defines how binary
strings are to be mapped to, or interpreted into, real values.

It is important to understand that the phenotype space can be very differ-
ent from the genotype space, and thus the EA designer must ensure that the
(optimal) solution to the problem at hand - a phenotype - can be represented
in the given genotype space.

The common EC terminology uses many synonyms for naming the ele-
ments of these two spaces. On the side of the original problem context, can-
didate solution, phenotype, and individual are used to denote points of
the space of possible solutions. This space itself is commonly called the phe-
notype space. On the side of the EA, genotype, chromosome, and again
individual can be used for points in the space where the evolutionary search
actually takes place. This space is often termed the genotype space. There
are also many synonymous terms for the elements of individuals. A place-
holder is commonly called a variable, a locus (plural: loci), a position, or -
in a biology-oriented terminology - a gene. An object on such a place can be
called a value or an allele.

Evaluation Function

The evaluation function represents the quality of an individual. It forms the
basis for selection, and thereby it facilitates improvements. More accurately,
it defines what improvement means. From the problem-solving perspective, it
provides the measure with which alternative solutions can be compared. The
evaluation function is commonly called the fitness function in EC. Problems
typically solved by EAs are optimization problems, which are specified with
an objective function. For minimization problems, an evaluation function
is commonly formed by negating the objective function.

8 W.E. Hart, N. Krasnogor and J.E. Smith

Population

A population is a set of possible solutions. Specifically, a population is a
multiset of genotypes.4 In some sophisticated EAs, a population has an addi-
tional spatial structure, with a distance measure or a neighborhood relation.
In such cases the additional structure has also to be defined to fully specify a
population. Initialization is kept simple in most EA applications: The first
population is seeded by (uniformly) randomly generated individuals. However
as we shall see in the next section, and succeeding chapters, there may be
practical advantages to non-random initialization.

The diversity of a population is a measure of the number of different
solutions present. Common diversity measures are the number of different
fitness values present, the number of different phenotypes present, the number
of different genotypes, and statistical measures such as entropy. Note that only
one fitness value does not necessarily imply only one phenotype is present, and
in turn only one phenotype does not necessarily imply only one genotype. The
reverse is, however, not true: one genotype implies only one phenotype and
fitness value.

As opposed to variation operators that act on the one or two parent indi-
viduals, the selection operators (parent selection and survivor selection) work
at population level. In general, they take the whole current population into
account. For instance, the best individual of the given population is chosen to
seed the next generation, or the worst individual of the given population is cho-
sen to be replaced by a new one. In almost all EA applications the population
size is constant and does not change during the evolutionary search.

Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among
individuals based on their quality to allow the better individuals to become
parents of the next generation. An individual is a parent if it has been se-
lected to undergo variation in order to create offspring. Together with the sur-
vivor selection mechanism, parent selection is responsible for pushing quality
improvements. In EC, parent selection is typically probabilistic. Thus, high-
quality individuals get a higher chance to become parents than those with
low quality. Nevertheless, low-quality individuals are often given a small posi-
tive chance, which helps the evolutionary search avoid getting stuck in a local
optimum.

Survivor Selection Mechanism

The role of survivor selection or environmental selection is to distin-
guish among individuals, based on their quality, to identify those that will

* A multiset is a set where multiple copies of an element are possible.

Memetic Evolutionary Algorithms 9

be used in the next generation. The survivor selection mechanism is called
after the offspring of the selected parents are created. As mentioned above,
in EC the population size is almost always constant, thus a choice has to be
made on which individuals will be allowed in the next generation. For this
reason survivor selection is also often called replacement or replacement
strategy. This selection is usually based on their fitness values, favoring those
with higher quality, although the concept of age is also frequently used. As
opposed to parent selection, which is typically stochastic, survivor selection is
often deterministic, for instance, ranking the unified multiset of parents and
offspring and selecting the top segment (fitness biased), or selecting only from
the offspring (age biased).

Variation Opera tors - Mutat ion

The role of variation opera tors is to create new individuals from old ones. In
the corresponding phenotype space this amounts to generating new candidate
solutions. Variation operators in EC are divided into two types based on the
number of objects that they take as inputs.

Muta t ion , a unary variation operator, is applied to one genotype and
delivers a (slightly) modified mutant: a child or offspring genotype. A mu-
tation operator is always stochastic: its output - the child - depends on the
outcomes of a series of random choices. It should be noted that an arbitrary
unary operator is not necessarily seen as mutation. A problem-specific heuris-
tic operator acting on one individual could be termed as mutation for being
unary. However, in general mutation denotes a random, unbiased change. Thus
heuristic unary operators can be distinguished from mutation in most cases.

It is important to note that variation operators are representation depen-
dent. That is, for different representations different variation operators have
to be defined. For example, if genotypes are bit-strings, then inverting a 0
to a 1 (1 to a 0) can be used as a mutation operator. However, if we rep-
resent possible solutions by tree-like structures another mutation operator is
required.

Variation Opera tors - Recombination

Recombination (or crossover) is (usually) a binary variation operator.
As the names indicate, such an operator merges information from two parent
genotypes into one or two offspring genotypes. Like mutation, recombination
is a stochastic operator: the choice of what parts of each parent are combined,
and the way these parts are combined, depend on random events. Recom-
bination operators with a higher arity (using more than two parents) are
sometimes possible and easy to implement, but have no biological equivalent.
Perhaps this is why they are not commonly used, although several studies
indicate that they have positive effects on the evolution [35].

10 W.E. Hart, N. Krasnogor and J.E. Smith

The principle behind recombination is simple - by mating two individ-
uals with different but desirable features, it may be possible to produce an
offspring that combines both of those features. This principle has a strong
supporting case: it is one which has been successfully applied for millennia
by breeders of plants and livestock to produce species that give higher yields
or have other desirable features. Evolutionary algorithms create a number of
offspring by random recombination, and accept that some will have undesir-
able combinations of traits, most may be no better, or even worse, than their
parents, and hope that some will have improved characteristics. As with muta-
tion, recombination operators in EAs are representation dependant. Whether
to apply crossover (mutation) or not is a stochastic decision with a non-zero
probability of the operator(s) not being applied.

4 A Brief Introduction to Local Search

Local search is a search method that iteratively examines the set of points in
a neighborhood of the current solution and replace the current solution with
a better neighbor if one exists. In this section we give a brief introduction to
local search in the context of memetic algorithms. For more information there
are a number of books on optimization that cover local search in more detail,
such as [18]. A local search algorithm can be illustrated by the pseudocode
given in Figure 2.

There are three principal components that affect the workings of this local
search algorithm.

The pivot rule defines the criteria for accepting an improving point. A
steepest ascent pivot rule terminates the inner loop only after the entire
neighborhood n(i) has been searched, (i.e., count = In(i)l). A greedy
ascent (or first ascent) pivot rule terminates the inner loop as soon as an
improvement is found (i.e., ((count = In(i)l) or (best # i))). In practice it
is sometimes necessary to only consider a randomly drawn sample of size
N <(In(i)l if the neighborhood is too large to search.
The depth of the local search defines the termination condition for the
outer loop. This lies in the continuum between only one improving step
being applied (iterations = 1) to the search continuing to local optimality
where all the neighboors of a solution i have been explored but no one of
them found to be better: ((count = In(i)l) and (best = i)). Considerable
attention has been paid to studying the effect of changing this parameter
within MAS [14, 251, and it can be shown to have an effect on the perfor-
mance of the local search algorithm, both in terms of time taken, and in
the quality of solution found. Furthermore, the impact on computational
complexity of various pivot rules have been studied both in the context of
local search [36, 371 and within MAS [25].

Memetic Evolutionary Algorithms 11

Begin
/* given a starting solution i and a neighborhood function n */
set best = i ;
set iterations = 0;
Repeat Until (depth condition is satisfied) Do

set count = 0;
Repeat Until (pivot rule is satisfied) Do
generate the next neighbor j E n (i) ;
set count = count + 1 ;
If (f (j) is better than f (best)) Then

set best = j ;
endIf

endDo
set i = best;
set iterations = iterations + 1 ;

endDo
End.

Fig. 2. Pseudocode of a local search algorithm.

The neighborhood generat ing function, n(i), defines a set of points
that can be reached by the application of some move operator to the
point i. The application of a neighborhood generating function can be
represented as a graph G = (v,e), where the set of vertices v are the
points in the search space, and the edges relate to applications of the move
operator; eij E G j E n(i). The provision of a scalar fitness value
f defined over the search space means that we can consider the graphs
defined by different move operators as fitness landscapes [14, 17, 151. Merz
and Freisleben [28] present a number of statistical measures that can be
used to characterize fitness landscapes, and that have been proposed by
various authors as potential measures of problem difficulty. They show that
the choice of move operator can have a dramatic effect on the efficiency
and effectiveness of the local search, and hence of the resultant MA.

In some cases, domain-specific information may be used to guide the choice
of neighborhood structure within local search algorithms. However, it has
recently been shown that the optimal choice of operators can be not only
instance specific within a class of problems [28, pp. 254-2581, but when in-
corporated in an MA, it can be dependent on the state of the evolutionary
search [26]. Changing the neighborhood operator during search (eg. [30]) may
provide a means of progression in cases where points were locally optimal for
a given neighborhood operator because a point that is locally optimal with
respect to one neighborhood structure may not be with respect to another

12 W.E. Hart, N. Krasnogor and J.E. Smith

(unless they are globally optimal). This observation has also been the guiding
principle behind variable neighborhood search algorithm [49].

The local search method presented in Figure 2 is fairly simplistic, but local
search is a central idea in most successful global search methods. The simplest
of these is the so-called "multi-start local search", in which the algorithm is
run repeatedly from randomly generated solutions. An elaboration on this
is Iterated Local search [45], where a new search is begun from a perturbed
version of the end-point of the previous one. Iterated local search attempts to
traverse a succession of "nearby" local optima, which is often quite effective
in practice.

Perhaps more relevant to this book are two well known heuristics based on
local search, namely Tabu Search [46] and Simulated Annealing [47]. Giving
a full description of these techniques is beyond the scope of this book, but in
essence both modify the pivot rule. Tabu Search does so such that points in the
neighborhood of the current solution which have been previously considered
are not (generally) eligible to be accepted, whereas in Simulated Annealing a
move to an inferior neighbor is permitted with some probability dependent on
the fitness difference. Both of these have been used with noticeable success,
both as heuristics in their own right, and as improvement methods within
Memetic algorithms.

5 Hybridizing EAs

As suggested above, there are a number of benefits that can be achieved by
combining the global search of EAs with local search or other methods for im-
proving or refining an individual solution. In this section we give an overview
of some of the theoretical and practical motivations for such hybridizations,
before presenting one possible framework for Memetic Algorithms.

5.1 Motives

There are a number of factors that motivate the hybridization of evolutionary
algorithms with other techniques.

Many complex problems can be decomposed into a number of parts, for
some of which exact methods (or very good heuristics) may already be
available. In these cases it makes sense to use a combination of the most
appropriate methods for different subproblems. In some cases this may take
the form of using the EA either as a post or pre-processor for other algo-
rithms, or incorporating instance specific knowledge into "greedy" varia-
tion operators as will be discussed in Section 7. However it is also frequently
possibly to use this knowledge to define local search operators (or existing
solution improvement techniques) within an evolutionary algorithm.

Memetic Evolutionary Algorithms 13

Successful and efficient all-purpose "black-box" problem solvers do not ex-
ist. The rapidly growing body of empirical evidence and some theoretical
results, such as the No Free Lunch (NFL) theorem [10915 strongly support
this view. From an Evolutionary Computing perspective, this implies that
EAs are not the holy grail for global search. Experience suggests that in
fact the competence of an EA in any given domain depends on the amount
of problem-specific knowledge incorporated within it. In practice we fre-
quently apply an evolutionary algorithm to a problem where there is a
considerable amount of hard-won user experience and knowledge available.
In such cases performance benefits can often arise from utilizing this infor-
mation in the form of specialist operators (eg. variation and local search)
and/or good solution initializations. In these cases it is commonly experi-
enced that the combination of an evolutionary and a heuristic method -
a hybrid EA - that somehow encapsulates domain specific information
performs better than either of its "parent" algorithms alone.

Although EAs are very good at rapidly identifying good areas of the search
space (exploration), they are often less good at refining near-optimal so-
lutions (exploitation). For example, when a GA is applied to the "One-
Max" problem, near-optimal solutions are quickly found but convergence
to the optimal solution is slow because the choice of which genes are mu-
tated is r a n d ~ r n . ~ Thus EA hybrids can search more efficiently by incor-
porating a more systematic search in the vicinity of "good" solutions. For
example, a bit-flipping hill-climber could be quickly applied within each
generation for One-Max to ensure fast convergence.

In practice, many problems have a set of constraints associated with them,
and local search or other heuristics can be used as a means of "repairing"
infeasible solutions generated by standard variation operators. This is of-
ten far simpler and more effective than attempting to find a specialized
representation and set of variation operators which ensure the feasibility
of all offspring.

0 Dawkin's idea of "memes" [ll] is often used as a motivation for hybridiza-
tion. Memes can be viewed as units of "cultural transmission" in the same
way that genes are the units of biological transmission. They are selected
for replication according to their perceived utility or popularity, and then
copied and transmitted via inter-agent communication.

The NFL and its implications are still a matter of current debate, for the present
we interpret it as stating that all stochastic algorithms have the same performance
when averaged over all discrete problems.
The One-Max problem is a binary maximization problem, where the fitness is
simply the count of the number of genes set to "1".

14 W.E. Hart, N. Krasnogor and J.E. Smith

Examples of memes are tunes, ideas, catch-phrases, clothes fashions,
ways of making pots or of building arches. Just as genes propagate
themselves in the gene pool by leaping from body to body via sperm
or eggs, so memes propagate themselves in the meme pool by leap-
ing from brain to brain via a process which, in the broad sense, can
be called imitation [l l , p. 1921.

Since the idea of memes was first proposed by Dawkins, it has been ex-
tended by other authors (eg., [6, 13, 15, 21). From the point of view of
the study of adaptive systems as optimization techniques, memetic the-
ory (see for example papers in [54]) provides with a rich set of tools and
metaphors to work with. In the context of memetic theory an EA keeps
a population of agents composed by both genotypes and memes. As in
standard EA, genotypes represent solutions to a particular problem while
memes represent "strategies" on how to improve those solutions. It is the
memes abilities to transform a candidate solution into (hopefully) a bet-
ter one that is of direct interest in the context of optimisation. The idea
of memes as representing alternative improvement strategies agents can
harness (implemented, for example, as distinct local searchers) is what
motivated us to propose in [22] the co-evolution of memes and genes and
to develop later in [25] the concept of multimeme, self-generating memetic
algorithms[56] ,[57] and co-evolving memetic algorithms [58].

5.2 Memetic Algorithms

The most common use of hybridization within EAs, and that which fits best
with Dawkin's concept of the meme, is via the application of one or more
phases of improvement to individual members of the population within each
generation of an EA. In the simplest design, local search is applied to indi-
viduals created by mutation or recombination. A more general form can be
described by the pseudocode given in Figure 3 (see also Figure 4), although
practitioners typically choose to only apply local search once to the offspring,
and sometimes to avoid the use of mutation entirely when using local search.

6 Design Issues for Memetic Algorithms

So far we have discussed the rationale for the use of problem-specific knowledge
or heuristics within EAs, and some possible ways in which this can be done.
However, as ever we must accept the caveat that like any other technique,
MAS are not some "magic solution" to optimization problems, and care must
be taken in their implementation. In the sections below we briefly discuss
some of the issues that have arisen from experience and theoretical reasoning.

Memetic Evolutionary Algorithms

Begin
INITIALIZE population;
EVALUATE each candidate;
Repeat Until (TERMINATION CONDITION is satisfied) Do

SELECT parents;
RECOMBINE to produce offspring;
EVALUATE offspring;
IMPROVE offspring via Local Search;
MUTATE offspring;
EVALUATE offspring;
IMPROVE offspring via Local Search;
SELECT individuals for next generation;

endDo
End.

Fig. 3. Pseudocode for a simple memetic algorithm

6.1 Lamarckianism and the Baldwin Effect

The local search methods described above assume that the current incum-
bent solution is always replaced by the fitter neighbor when found. Within a
memetic algorithm, we can consider the local search stage to occur as an im-
provement, or developmental learning phase within each generation. As such,
we can consider whether the changes (acquired traits) made to an individual
should be kept, or whether the resulting improved fitness should be awarded
to the original (pre-local search) member of the population.

The issue of whether acquired traits could be inherited by an individual's
offspring was a major issue in nineteenth century, and Lamarck was a strong
proponent of this inheritance mechanism. However, the Baldwin effect [59]
suggests a mechanism whereby evolutionary progress can be guided towards
favorable adaptation without this type of inheritance. Although modern the-
ories of genetics strongly favor the latter viewpoint, the design of MAS can
employ either Lamarckian or Baldwinian inheritance schemes. MAS are re-
ferred to as Lamarckian if the result of the local search stage replaces the
individual in the population, and Baldwinian if the original member is kept,
but has as its fitness the value belonging to the outcome of the local search
process. In a classic early study, Hinton and Nowlan [8] showed that the Bald-
win effect could be used to improve the evolution of artificial neural networks,
and a number of researchers have studied the relative benefits of Baldwinian
versus Lamarckian algorithms [8, 9, 10, 11, 121. In practice, most recent work
has tended to use either a pure Lamarckian approach, or a probabilistic com-
bination of the two approaches, such that the improved fitness is always used,
and the improved individual replaces the original with a given probability.

16 W.E. Hart, N. Krasnogor and J.E. Smith

6.2 Preservation of Diversity

The problem of premature convergence, whereby the population converges
around some suboptimal point, can be particularly problematic for MAS. If
the local search is applied until each point has been moved to a local optimum,
then this can lead to a loss of diversity within the population unless new
local minima are constantly identified. Alternatively, even if local search is
terminated before local optimality, an induced search space with wide basins
of attractions could also result in premature convergence to the suboptimal
solution at the center of a wide basin of attraction. A number of approaches
have been developed to combat this problem:

when initializing the population with known good individuals, only using
a relatively small proportion of them,
applying local search to a small fraction of the population (which helps
ensure that the rest of the population is diverse),
using recombination operators that are designed to preserve diversity,
using multiple local searchers, where each one induces a different search
space with distinct local optima (eg. [26, 121);
modifying the selection operator to prevent duplicates (e.g. as in CHC
WI), and
using a fuzzy criteria, that explicitly controls diversity, as the pivot rule
in the local search stage (eg. [12], 5).
modifying the selection operator, or local search acceptance criteria, to use
a Boltzmann method so as to preserve diversity (eg. 111).

This last method bears natural analogies to simulated annealing [62, 471,
where worsening moves can be accepted with nonzero probability to aid es-
cape from local optima. A promising method that tackles the diversity issue
explicitly is proposed in [24], where during the local search phase a less-fit
neighbor may be accepted with a probability that increases exponentially as
the range of fitness values in the population decreases:

1 if A E > 0,
P(accept) =

ek* F m ~ = - F a v g , otherwise,

where k is a normalization constant and we assume a maximization problem,
= Fneighbour - Foriginal.

6.3 Choice of Operators

Probably the most important factor in the design of a MA is the choice of
improving heuristic or local search move operator, that is to say, the way that
the set of neighboring points to be examined when looking for an improved
solution is generated.

Memetic Evolutionary Algorithms 17

There has been a large body of theoretical and empirical analysis of the
utility of various statistical measures of landscapes for predicting problem
difficulty. The interested reader can find a good summary in [64]. Merz and
Freisleben [28] consider a number of these measures in the context of memetic
algorithms, and show that the choice of move operator can have a dramatic
effect on the efficiency and effectiveness of the local search, and hence of the
resultant MA.

One recent result of particular interest to the practitioner is Krasnogor's
formal proof that, in order to reduce the worst-case run times, it is necessary
to choose a local search method whose move operator is not the same as
those of the recombination and mutation operators [25]. This formalizes the
intuitive point that within a MA recombination, and particularly mutation,
have valuable roles in generating points that lie in different basins of attraction
with respect to the local search operator. This diversification is best done
either by an aggressive mutation rate, or preferably by the use of a variation
operators that have different neighborhood structures.

In general then, it is worth giving careful consideration to the choice of
move operators used when designing a MA: for example, using 2-opt for a TSP
problem might yield better improvement if not used in conjunction with the
"inversion" mutation operator which picks a subtour at random and reverses
it. The reason for that is that a genotypic inversion induces (a subspace of)
the phenotypic effect of the 2-exchange move operator which is at the heart
of 2-opt local searcher.

In some cases, domain-specific information may be used to guide the choice
of neighborhood structure within the local search algorithms. However, as we
noted earlier, the optimal choice of operators can be not only instance specific
within a class of problems but also dependant on the state of the evolutionary
search.

One simple way to surmount these problems is the use of multzple local
search operators in tandem. An example of this can be seen in [30], where
a range of problem specific move operators, such as local stretches, rotations
and reflections, each tailored to different stages of the protein folding process,
are used for a protein structure prediction problem within the context of what
is called a multimemetic algorithm [26].

The use of a set of possible local search strategies is analogous to Dawkin's
memes. The extension of this approach to allow the adaptation of the local
search "memes" in the form of a coevolving population, and the implications
for search is currently under way in different research groups [22, 65, 22, 37,
68, 58, 69, 56, 571.

6.4 Use of Knowledge

A final point that might be taken into consideration when designing a MA
concerns the use and reuse of knowledge gained during the optimization pro-
cess. One possible hybridization that explicitly uses knowledge about points

18 W.E. Hart, N. Krasnogor and J.E. Smith

already searched to guide optimization is with tabu search [46]. In this al-
gorithm a "tabu" list of visited points is maintained, which the algorithm is
forbidden to return to. Such methods appear to offer promise for maintaining
diversity. Similarly, it is easy to imagine extensions to the Boltzmann accep-
tance/selection schemes that utilize information about the spread of genotypes
in the current population, or even past populations, when deciding whether
to accept new solutions.

6.5 Specific Considerations for Continuous Domains

The design of MAS for continuous domains is complicated by several factors.
Effective search requires the use of different search scales for global and local
search. It is not always possible to determine whether a solution is locally
optimal. Relatively long local searches may be needed to ensure convergence
to local optima (especially if gradient information is unavailable). Although
many different local search methods have been developed, they are general
methods and thus it is not clear whether any given local search method is
effective for a particular application.

Because of these considerations, the design of effective MAS for continuous
domains can be quite different than for combinatorial problems. For example,
in combinatorial domains it is not unusual to apply local search until a locally
optimal solution is found. However, it is often unrealistic to assume that local
search methods can quickly identify local minima within a continuous domain.
This is often the case when applying derivative-free methods (e.g. the Nelder-
Mead simplex method), but it may also be true when derivative information
is available. Thus it is generally the case that local search is truncated based
on a target balance between global and local search. Specifically, two main
strategies have been used to achieve such a balance: (1) truncate local searches
after a given number of iterations (or fitness evaluations) and (2) apply local
search infrequently (e.g. with a fixed probability).

Although these hybridization strategies are quite effective in practice, they
can make it difficult to ensure convergence for these MAS. Although general
conditions on the mutation and recombination operators can be enforced to
ensure global convergence [70], these convergence results provide little insight
into the efficacy of local search. Gradient-based methods can be applied to
generate stationary-points (using first-order information) or locally-optimal
points (using second-order information), assuming that local search is not
truncated after a given number of iterations. However, in many applications
derivative-free methods are applied for which the search is truncated. To our
knowledge, MAS based on evolutionary pattern search is the only class of MAS
for which the convergence of tandem derivative-free local searches within the
MA can be ensured [71].

Memetic Evolutionary Algorithms 19

7 Other Hybridization Possibilities

Although our working definition of MAS has been restricted to those methods
that incorporate some form of improvement mechanism acting on the output
of the evolutionary variation operators, there are a number of other ways in
which an EA or MA can be used in conjunction with other operators and/or
domain-specific knowledge. This is illustrated in Figure 4.

Known solutions,
Constructive heuristics,
Local search
Overselection

Modified Selection
operators

Use of problem-specific
info, in operator

Local Search

Use of problem-specific
info. in operator

Local Search

Fig. 4. Possible places to incorporate knowledge or other operators within a single
generation.

7.1 Intelligent Initialization

The most obvious way in which existing knowledge about the structure of
a problem or potential solutions can be incorporated into an EA is in the
initialization phase. In many cases the EA will make rapid initial progress,

20 W.E. Hart, N. Krasnogor and J.E. Smith

which raises questions about the value of expending effort creating a good
initial population, however starting the EA by using existing solutions can
offer interesting benefits:

1. It is possible to avoid "reinventing the wheel" by using existing solutions.
Preventing waste of computational efforts can yield increased efficiency
(speed).

2. A nonrandom initial population can direct the search into particular re-
gions of the search space that contain good solutions. Biasing the search
can result in increased effectiveness (quality of end solution).

3. All in all, a given total amount of computational effort divided over heuris-
tic initialization and evolutionary search might deliver better results than
spending it all on "pure" evolutionary search, or an equivalent multistart
heuristic.

There are a number of possible ways in which the initialization function
can be changed from simple random creation, such as:

Seeding the population with one or more previously known good solutions
arising from other techniques.
In selective initialization a large number of random solutions are cre-
ated and then the initial population is selected from these. Bramlette [72]
suggests that this should be done as a series of N k-way tournaments rather
than by selecting the best N from k - N solutions. Other alternatives in-
clude selecting a set based not only on fitness but also on diversity so as
to maximize the coverage of the search space.
Performing a local search starting from each member of initial population,
so that the initial population consists of a set of points that are locally
optimal with respect to some move operator.
Using one or more of the above methods to identify one (or possibly more)
good solutions, and then cloning them and applying mutation at a high
rate (mass mutation) to produce a number of individuals in the vicinity
of the start point.

These methods have been tried and have exhibited performance gains for
certain problems. However, the important issue of providing the EA with suf-
ficient diversity for evolution to occur must also be considered. In [73] Surry
and Radcliffe examined the effect of varying the proportion of the initial popu-
lation of a GA that was derived from known good solutions. Their conclusions
were:

The use of a small proportion of derived solutions in the initial population
aided genetic search.
As the proportion was increased, the average performance improved.
The best performance came about from a more random initial population.

In other words, as the proportion of solutions derived from heuristics used
increased, so did the mean performance, but the variance in performance

Memetic Evolutionary Algorithms 21

decreased. This meant that there were not the occasional really good runs re-
sulting from the EA searching completely new regions of space and coming up
with novel solutions. For a certain type of problems, such as design problems,
this is an undesirable property.

7.2 Hybridization During Genotype to Phenotype Mapping

A widely used hybridization of memetic algorithms with other heuristics is
during the genotype-phenotype mapping M prior to evaluation. This ap-
proach, where the EA is used to provide the inputs controlling the application
of another heuristic, is frequently used and similar approaches have been used
to great effect for timetabling and scheduling problems [74], and in the "sector
first-order second" approach to the vehicle routing problem [75].

There is a common thread to all of these approaches, which is to make use
of existing heuristics and domain information wherever possible. The role of
the EA is often that of enabling a less biased application of the heuristics, or
of problem decomposition, so as to permit the use of sophisticated, but badly
scaling heuristics when the overall problem size would preclude their use.

7.3 Hybridization Within Variation Operators: Intelligent
Crossover and Mutation

A number of authors have proposed so-called "intelligent" variation operators,
which incorporate problem- or instance-specific knowledge. To give a simple
example, if a binary-coded GA is used to select features for use in another
classification algorithm, one might attempt to bias the search towards more
compact features sets via the use of a greater probability for mutating from
the allele value "use" to "don't use" rather than vice versa. A related approach
can be seen in [76], where genes encode for microprocessor instructions, which
group naturally into sets with similar effects. The mutation operator was then
biased to incorporate this expert knowledge, so that mutations were more
likely to occur between instructions in the same set than between sets.

A slightly different example of the use of problem-specific (rather than
instance-specific) knowledge can be seen in the modified one-point crossover
operator used for protein structure prediction in [77]. Here the authors realized
that the heritable features being combined by recombination were folds, or
fragments of three-dimensional structure. A property of the problem is that
during folding protein structures can be free to rotate about peptide bonds.
The modified operator made good use of this knowledge by explicitly testing
all the possible different orientations of the two fragments, (accomplished by
trying all the possible allele values in the gene at the crossover point) in order
to find the most energetically favorable. If no feasible conformation was found,
then a different crossover point was selected and the process repeated. This
could be seen as a simple example of the incorporation of a local search phase
into the recombination operator, but in practice the nature of the models

22 W.E. Hart, N. Krasnogor and J.E. Smith

used is such that generally these approaches only need to consider partial
solutions when deciding whether an offspring is feasible. Note that this should
be distinguished from the simpler "crossover hill-climber" proposed in [15], in
which all of the 1-1 possible offspring arising from one-point crossover are
constructed and the best chosen.

Operators can be modified in a complex manner to incorporate highly
specific heuristics, which makes use of instance-specific knowledge. A good
example of this is Merz and Friesleben's distance-preserving crossover (DPX)
operator for the TSP [78]. This operator has two motivating principles: mak-
ing use of instance specific knowledge, whilst at the same time preserving
diversity within the population to prevent premature convergence. Diversity
is maintained by ensuring that the offspring inherits all of the edges common
to both parents, but none of the edges that are present in only one parent. The
"intelligent" part of the operator comes from the use of a nearest-neighbor
heuristic to join together the subtours inherited from the parents, thus ex-
plicitly exploiting instance-specific edge length information. It is easy to see
how this type of scheme could be adapted to other problems, via the use of
suitable heuristics for completing the partial solutions after inheritance of the
common factors from both parents.

It should be noted that under our working definition of MAS, the use of
such "intelligent" operator within an EA does not generally on its own consti-
tute a MA, since they use instance-specific knowledge to guide the construc-
tion of partial solutions. This can be contrasted with the use of local search
acting on offspring, where a neighborhood of complete solutions is examined
and an improved solution accepted.

8 Conclusions

In this chapter we gave a gentle introduction to Memetic Evolutionary Algo-
rithms and role they play as complements to pure Evolutionary Algorithms
and pure Local Search. We briefly discussed the historical context of MAS, and
we gave the motivation behind the use and research on this important brand
of global-local search hybrids. We also mentioned some of the design princi-
ples a practitioner needs to take into consideration when designing Memetic
Algorithms for new domains.

References

1. Merz, P.: Memetic Algorithms for Combinatorial Optimization Problems: Fit-
ness Landscapes and Efective Search Strategies. PhD thesis, Department of
Electrical Engineering and Computer Science, University of Siegen, Germany
(2000)

Memetic Evolutionary Algorithms 23

2. Vavak, F., Fogarty, T., Jukes, K.: A genetic algorithm with variable range
of local search for tracking changing environments. In Voigt, H.M., Ebeling,
W., Rechenberg, I., Schwefel, H.P., eds.: Proceedings of the 4th Conference
on Parallel Problem Solving from Nature. Number 1141 in Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, New York (1996) 376-385

3. Knowles, J., Corne, D.: A comparative assessment of memetic, evolutionary and
constructive algorithms for the multi-objective d-msat problem. In: Gecco-2001
Workshop Program. (2001) 162-167

4. Moscato, P.: Memetic algorithms' home page, visited july 2003:
http://www.densis.fee.unicamp.br/-moscato/memetichome.html (2003)

5. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report Caltech Concurrent Com-
putation Program Report 826, Caltech, Caltech, Pasadena, California (1989)

6. Hinton, G., Nowlan, S.: How learning can guide evolution. Complex Systems 1
(1987) 495-502

7. Bull, L., Fogarty, T.: An evolutionary strategy and genetic algorithm hybrid: An
initial implementation and first results. In Fogarty, T., ed.: Evolutionary Com-
putation: Proceedings of the 1994 AISB Workshop on Evolutionary Computing,
Springer, Berlin, Heidelberg, New York (1994) 95-102

8. Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical investigation of the benefits
of partial Lamarckianism. Evolutionary Computation 5 (1997) 31-60

9. Mayley, G.: Landscapes, learning costs and genetic assimilation. Evolutionary
Computation 4 (1996) 213-234

10. Turney, P.: How to shift bias: lessons from the Baldwin effect. Evolutionary
Computation 4 (1996) 271-295

11. Whitley, L., Gordon, S., Mathias, K.: Lamarkian evolution, the Baldwin effect,
and function optimisation. In Davidor, Y., Schwefel, H.P., Mbner , R., eds.:
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature.
Number 866 in Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
New York (1994) 6-15

12. Whitley, L., Gruau, F.: Adding learning to the cellular development of neural
networks: evolution and the Baldwin effect. Evolutionary Computation 1 (1993)
213-233

13. Hart, W.: Adaptive Global Optimization with Local Search. PhD thesis, Uni-
versity of California, San Diego (1994)

14. Krasnogor, N.: Studies in the Theory and Design Space of Memetic Algorithms.
PhD thesis, University of the West of England (2002)

15. Land, M.: Evolutionary Algorithms with Local Search for Combinatorial Opti-
mization. PhD thesis, University of California, San Diego (1998)

16. Moscato, P.: Problemas de Otimizac?io NP, Aproximabilidade e ComputacZlo
Evo1utiva:Da Prhtica h Teoria. PhD thesis, Universidade Estadual de Camp-
inas,Brasil (2001)

17. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin,
Heidelberg, New York (2003)

18. Aarts, E., Lenstra, J., eds.: Local Search in Combinatorial Optimization. Dis-
crete Mathematics and Optimization. Wiley, Chichester, UK (1997)

19. Fogel, D., ed.: Evolutionary Computation: the Fossil Record. IEEE Press,
Piscataway, NJ (1998)

24 W.E. Hart, N. Krasnogor and J.E. Smith

20. Fogel, L., Owens, A., Walsh, M.: Artificial intelligence through a simulation
of evolution. In Callahan, A., Maxfield, M., Fogel, L., eds.: Biophysics and
Cybernetic Systems. Spartan, Washington DC (1965) 131-156

21. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence through Simulated Evo-
lution. Wiley, Chichester, UK (1966)

22. De Jong, K.: An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan (1975)

23. Holland, J.: Genetic algorithms and the optimal allocation of trials. SIAM J. of
Computing 2 (1973) 88-105

24. Holland, J.: Adaption in Natural and Artificial Systems. MIT Press, Cambridge,
MA (1992) 1st edition: 1975, The University of Michigan Press, Ann Arbor.

25. Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart
(1973)

26. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)
27. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University

Press, Oxford, UK (1996)
28. B%k, T., Fogel, D., Michalewicz, Z., eds.: Evolutionary Computation 1: Basic

Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)
29. Bikk, T., Fogel, D., Michalewicz, Z., eds.: Evolutionary Computation 2: Ad-

vanced Algorithms and Operators. Institute of Physics Publishing, Bristol
(2000)

30. Eiben, A., Michalewicz, Z., eds.: Evolutionary Computation. IOS Press (1998)
31. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.

3rd edn. Springer, Berlin, Heidelberg, New York (1996)
32. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An

Introduction. Morgan Kaufmann, San Francisco (1998)
33. Koza, J.: Genetic Programming. MIT Press, Cambridge, MA (1992)
34. Koza, J.: Genetic Programming 11. MIT Press, Cambridge, MA (1994)
35. Eiben, A.: Multiparent recombination. [28] chapter 33.7 289-307
36. Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search.

Journal of Computer And System Sciences 37 (1988) 79-100
37. Yannakakis, M.: Computational complexity. In Aarts, E., Lenstra, J., eds.:

Local Search in Combinatorial Optimization, John Wiley & Sons Ltd. (1997)
19-55

38. Weinberger, E.D.: Correlated and Uncorrelated Fitness Landscapes and How
to Tell the Difference. Biological Cybernetics 63 (1990) 325-336

39. Stadler, P.F.: Towards a Theory of Landscapes. In LopBz-Peiia, R., Capovilla,
R., Garcia-Pelayo, R., Waelbroeck, H., Zertuche, F., eds.: Complex Systems and
Binary Networks. Volume 461 of Lecture Notes in Physics., Berlin, New York,
Springer Verlag (1995) 77-163 SF1 preprint 95-03-030.

40. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
The University of New Mexico, Albuquerque, NM (1995)

41. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In
Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw
Hill, London (1999) 245-260

42. Krasnogor, N., Smith, J.: Emergence of profitable search strategies based on a
simple inheritance mechanism. In Spector, L., Goodman, E., Wu, A., Langdon,
W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke,

Memetic Evolutionary Algorithms 25

E., eds.: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), Morgan Kaufmann, San Francisco (2001) 432-439

43. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. [12] 769-778

44. Hansen, P., MladenoviC, N.: An introduction to variable neighborhood search. In
Vof3, S., Martello, S., Osman, I., Roucairol, C., eds.: Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization. Proceedings of MIC 97
Conference. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)

45. Lourenco, H.R., Martin, O., Stutzle, T.: Iterated local search. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, Norwell, MA (2002) 321-353

46. Glover, F.: Tabu search: 1. ORSA Journal on Computing 1 (1989) 190-206
47. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated anealing.

Science 220 (1983) 671-680
48. Wolpert, D., Macready, W.: No Free Lunch theorems for optimisation. IEEE

Transactions on Evolutionary Computation 1 (1997) 67-82
49. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford, UK (1976)
50. Cavalli-Sforza, L., Feldman, M.: Cultural Tkansmission and Evolution: A Quati-

tative Approach. Princeton University Press, Princeton, NJ. (1981)
51. Durham, W.: Coevolution: Genes, Culture and Human Diversity. Stanford

University Press (1991)
52. Gabora, L.: Meme and variations: A computational model of cultural evolution.

In L.Nade1, Stein, D., eds.: 1993 Lectures in Complex Systems. Addison Wesley
(1993) 471-494

53. Blackmore, S.: The Meme Machine. Oxford University Press, Oxford, UK (1999)
54. of Memetics. Advisory Board:S.Blackmore, J., G.Cziko, R.Dawkins, D.Dennett,

L.Gabora, D.Hull., eds.: Journal of Memetics: Evolutionary Models of Informa-
tion Transmission. (http://jom-emit.cfpm.org/)

55. Krasnogor, N.: Co-evolution of genes and memes in memetic algorithms. In
Wu, A., ed.: Proceedings of the 1999 Genetic And Evolutionary Computation
Conference Workshop Program. (1999)

56. Krasnogor, N.: Self-generating metaheuristics in bioinformatics: The protein
structure comparison case. Genetic Programming and Evolvable Machines.
Kluwer academic Publishers 5 (2004) 181-201

57. Krasnogor, N., Gustafson, S.: A study on the use of "self-generation" in memetic
algorithms. Natural Computing 3 (2004) 53-76

58. Smith, J.: Co-evolving memetic algorithms: A learning approach to robust
scalable optimisation. [I] 498-505

59. Baldwin, J.: A new factor in evolution. American Naturalist 30 (1896)
60. Krasnogor, N., Pelta, D.: Fuzzy memes in multimeme algorithms: a fuzzy-

evolutionary hybrid. In Verdegay, J., ed.: Fuzzy Sets based Heuristics for Opti-
mization, Springer (2002)

61. Eshelman, L.: The CHC adaptive search algorithm: how to have safe search
when engaging in non-traditional genetic recombination. In Rawlins, G., ed.:
Foundations of Genetic Algorithms, Morgan Kaufmann, San Francisco (1990)
263-283

62. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley,
Chichester, UK (1989)

26 W.E. Hart, N. Krasnogor and J.E. Smith

63. Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search:
TSP as a case study. In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector,
L., Parmee, I., Beyer, H.G., eds.: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), Morgan Kaufmann, San Francisco
(2000) 987-994

64. Kallel, L., Naudts, B., Reeves, C.: Properties of fitness functions and search
landscapes. In Kallel, L., Naudts, B., Rogers, A., eds.: Theoretical Aspects of
Evolutionary Computing. Springer, Berlin, Heidelberg, New York (2001) 175-
206

65. Bull, L., Holland, O., Blackmore, S.: On meme-gene coevolution. Artificial Life
6 (2000) 227-235

66. Krasnogor, N., Gustafson, S.: Toward truly LLmemetic" memetic algorithms:
discussion and proofs of concept. In Corne, D., Fogel, G., Hart, W., Knowles,
J., Krasnogor, N., Roy, R., Smith, J., Tiwari, A., eds.: Advances in Nature-
Inspired Computation: The PPSN VII Workshops, Reading, UK, PEDAL (Par-
allel, Emergent & Distributed Architectures Lab), University of Reading (2002)
9-10

67. Smith, J.: Co-evolution of memetic algorithms: Initial investigations. 1121 537-
548

68. Smith, J.: The co-evolution of memetic algorithms for protein structure pre-
diction. In Corne, D., Fogel, G., Hart, W., Knowles, J., Krasnogor, N., Roy,
., Smith, J., Tiwari, A., eds.: Advances in Nature-Inspired Computation: The
PPSN VII Workshops, Reading, UK, PEDAL (Parallel, Emergent & Distributed
Architectures Lab), University of Reading (2002) 14-15

69. Smith, J.: Protein structure prediction with co-evolving memetic algorithms.
[I] 2346-2353

70. Rudolph, G.: Convergence of evolutionary algorithms in general search spaces.
1821 50-54

71. Hart, W., DeLaurentis, J., Ferguson, L.: On the convergence of an implicitly self-
adaptive evolutionary algorithm on one-dimensional unimodal problems. IEEE
Trans Evolutionary Computation (to appear) (2003)

72. Bramlette, M.: Initialization, mutation and selection methods in genetic algo-
rithms for function optimization. In Belew, R., Booker, L., eds.: Proceedings
of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann,
San Francisco (1991) 100-107

73. Surry, P., Radcliffe, N.: Innoculation to initialise evolutionary search. In
T.C.Fogarty, ed.: Evolutionary Computing: Proceedings of the 1996 AISB Work-
shop, Springer, Berlin, Heidelberg, New York (1996) 269-285

74. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving
heuristically driven schedule builder. Evolutionary Computation 6 (1998) 61-81

75. Thangiah, S., Vinayagamoorty, R., Gubbi, A.: Vehicle routing and time dead-
lines using genetic and local algorithms. 1811 506-515

76. Smith, J., Bartley, M., Fogarty, T.: Microprocessor design verification by two-
phase evolution of variable length tests. In: Proceedings of the 1997 IEEE
Conference on Evolutionary Computation, IEEE Press, Piscataway, NJ (1997)
453-458

77. Unger, R., Moult, J.: A genetic algorithm for 3D protein folding simulations.
1811 581-588

78. Friesleben, B., Merz, P.: A genetic local search algorithm for solving the sym-
metric and assymetric travelling salesman problem. [82] 616-621

Memetic Evolutionary Algorithms 27

79. Guervos, J.M., Adamidis, P., Beyer, H.G., Fernandez-Villacanas, J.L., Schwefel,
H.P., eds.: Proceedings of the 7th Conference on Parallel Problem Solving from
Nature. In Guervos, J.M., Adamidis, P., Beyer, H.G., Fernandez-Villacanas,
J.L., Schwefel, H.P., eds.: Proceedings of the 7th Conference on Parallel Prob-
lem Solving from Nature. Number 2439 in Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, New York (2002)

80. 2003 Congress on Evolutionary Computation (CEC 2003). In: 2003 Congress
on Evolutionary Computation (CEC 2003), IEEE Press, Piscataway, NJ (2003)

81. Forrest, S., ed.: Proceedings of the 5th International Conference on Genetic
Algorithms. In Forrest, S., ed.: Proceedings of the 5th International Conference
on Genetic Algorithms, Morgan Kaufmann, San Francisco (1993)

82. Proceedings of the 1996 IEEE Conference on Evolutionary Computation. In:
Proceedings of the 1996 IEEE Conference on Evolutionary Computation, IEEE
Press, Piscataway, NJ (1996)

