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1 Summary 

Memetic Evolutionary Algorithms (MAS) are a class of stochastic heuristics 
for global optimization which combine the parallel global search nature of 
Evolutionary Algorithms with Local Search to improve individual solutions. 
These techniques are being applied to an increasing range of application do- 
mains with successful results, and the aim of this book is both to highlight 
some of these applications, and to shed light on some of the design issues and 
considerations necessary to a successful implementation. In this chapter we 
provide a background for the rest of the volume by introducing Evolutionary 
Algorithms (EAs) and Local Search. We then move on to describe the syn- 
ergy that arises when these two are combined in Memetic Algorithms, and to 
discuss some of the most salient design issues for a successful implementation. 
We conclude by describing various other ways in which EAs and MAS can be 
hybridized with domain-specific knowledge and other search techniques. 

2 Introduction 

Memetic Algorithms (MAS) are a class of stochastic global search heuristics 
in which Evolutionary Algorithms-based approaches are combined with local 
search techniques to improve the quality of the solutions created by evolution. 
MAS have proven very successful across a wide range of problem domains such 
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as combinatorial optimization [27], optimization of non-stationary functions 
[42], and multi-objective optimization 1201 (see [29] for an extensive bibliog- 
raphy). 

Methods for hybridizing EAs with local search have been given various 
names in research papers such as: hybrid GAS, Baldwinian EAs, Lamarckian 
EAs, genetic local search algorithms, and others. Moscato [3] coined the name 
memetic algorithm to  cover a wide range of techniques where evolutionary- 
based search is augmented by the addition of one or more phases of local 
search. 

The natural analogies between human evolution and learning, and EAs 
and artificial neural networks (ANNs) prompted a great deal of research into 
the use of MAS to evolve the structure of ANNs. ANNs were trained using 
back-propagation or similar means during the 1980s and early 1990s. However, 
research applying MAS to ANNs gave a great deal of insight into the role 
of learning, Lamarckianism, and the Baldwin effect to guide evolution (e.g. 
[8, 7, 8, 9, 10, 11, 121 amongst many others). This research reinforced the 
experience of "real-world" practitioners as to the usefulness of incorporating 
local search and domain-based heuristics within an EA framework. 

Since then a number of PhD theses 114, 25, 15, 27, 161 have developed 
algorithmic analyses of MAS. These analyses and related empirical results 
demonstrate the potential impact of MAS, and in practice, many state-of-the- 
art EAs employ some element of hybridization using local search. Research 
in MAS is now sufficiently mature and distinct to have its own annual inter- 
national workshop, and an extensive on-line bibliography of MA research is 
maintained at  [29]. 

In this chapter we set the scene for the rest of this book by providing brief 
introductions to Evolutionary Algorithms (EAs) and Local Search (LS). We 
also discuss some of the issues which arise when hybridizing the two to create 
MAS. As our aim is to provide an overview, we cannot hope to give a detailed 
description of either EAs or the many LS methods available. There are wide 
variety of books discussing these methods that the user can read for further 
detail (e.g., see 117, 181). The rest of this chapter is organized as follows: 

In Section 3 we provide a brief overview and historical background to 
the field of Evolutionary Algorithms, focusing particularly on their use as 
search and optimization techniques. 
In Section 4 we provide a brief introduction to local search and some 
related techniques. 
In Section 5 we discuss some of the motives and rationale underpinning 
the hybridization of EAs with other search technologies and motivate this 
book's focus on Memetic Algorithms. Our focus is on EA hybrids in which 
LS acts on the output of evolutionary operators, that is to say in which 
some form of "lifetime learning" or "plasticity" is incorporated into the 
"standard" evolutionary cycle.. 
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In Section 6 we discuss some of the design issues that must be considered 
when implementing an MA. 
Finally, in Section 7 we discuss the structure of evolutionary and memetic 
algorithms, and consider various places within the evolutionary cycle that 
other heuristics and or domain specific knowledge may be incorporated. 

3 A Brief Introduction to Evolutionary Algorithms 

The idea of applying Darwinian principles to automated problem solving dates 
back to the forties, long before the breakthrough of computers [19]. As early 
as 1948, Turing proposed "genetical or evolutionary search", and by 1962 
Bremermann had actually executed computer experiments on "optimization 
through evolution and recombination". During the 1960s three different im- 
plementations of the basic idea were developed in different places. In the USA, 
Fogel, Owens, and Walsh introduced evolutionary programming [20, 211, 
while Holland called his method a genetic algori thm [22, 23, 241. Mean- 
while, in Germany, Rechenberg and Schwefel invented evolution strategies 
[25, 261. For about 15 years these areas developed separately; but since the 
early 1990s they have been viewed as different representatives of a common 
technology that has come to be known as evolutionary comput ing  (EC) 
[27, 28, 29, 30, 311. In the early 1990s a fourth methodology following the 
same general ideas emerged, genetic programming,  championed by Koza 
[32, 33, 341. The contemporary terminology denotes the whole field by evo- 
lutionary computing, and the algorithms involved are termed evolutionary 
algorithms; evolutionary programming, evolution strategies, genetic algo- 
rithms, and genetic programming are subareas belonging to the corresponding 
algorithmic variants. 

3.1 T h e  Principal  Metaphor  

The common underlying idea behind different evolutionary algorithms is the 
same: given a population of individuals, mechanisms adapted from natural 
selection and genetic variation are used to evolve individuals with high fit- 
ness. Given a quality function to be maximized, we can randomly create a set 
of candidate solutions, i.e., elements of the function's domain, and apply the 
quality function as an abstract fitness measure - the higher the better. Based 
on this fitness, some of the better candidates are chosen to seed the next gen- 
eration by applying recombination and/or mutation to them. Recombination 
is an operator applied to two or more selected candidates (the so-called par- 
ents) and results in one or more new candidates (the children). Mutation is 
applied to one candidate and results in one new candidate. Executing recom- 
bination and mutation leads to a set of new candidates (the offspring) that 
compete - based on their fitness (and possibly age)- with the old ones for a 
place in the next generation. This process can be iterated until a candidate 
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with sufficient quality (a solution) is found or a previously set computational 
limit is reached. 

In this process there are two fundamental forces that form the basis of 
evolutionary systems: 

Variation operators (recombination and mutation) create the necessary di- 
versity and thereby facilitate novelty. 

0 Selection filters, and induces constraints on, candidate solutions. 

The combined application of variation and selection generally leads to im- 
proving fitness values in consecutive populations. It is easy to view such an 
evolutionary process as optimizing by iteratively generating solutions with in- 
creasingly better values. Alternatively, evolution it is often seen as a process 
of adaptation. From this perspective, the fitness is not seen as an objective 
function to be optimized, but as an expression of environmental requirements. 
Matching these requirements more closely implies an increased viability, re- 
flected in a higher number of offspring. The evolutionary process makes the 
population increasingly better at  being adapted to the environment. 

The general scheme of an evolutionary algorithm is shown in Figure 1 in 
a pseudocode fashion. It is important to note that many components of evo- 
lutionary algorithms are stochastic. During selection, fitter individuals have 
a higher chance to be selected than less fit ones, but typically even the weak 
individuals have a chance to become a parent or to survive. For recombina- 
tion of individuals the choice of which pieces will be recombined is random. 
Similarly for mutation, the pieces that will be mutated within a candidate 
solution, and the new pieces replacing them, are chosen randomly. 

Begin 
INITIALIZE population with random candidate solutions; 
EVALUATE each candidate; 
Repeat Until ( TERMINATION CONDITION is satisfied ) Do 

1 SELECT parents; 
2 RECOMBINE pairs of parents ; 
3 MUTATE the resulting offspring; 
4 EVALUATE new candidates; 
5 SELECT individuals for the next generation; 

endDo 
End. 

Fig. 1. The general scheme of an evolutionary algorithm in pseudocode. 
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3.2 Components of an EA 

Representation 

Solutions to the problem being solved are usually referred to as phenotypes. 
Phenotypes are indirectly manipulated by the EA variation and selection op- 
erators by virtue of being encoded in genotypes. Genotypes within the EA 
population are the objects upon which the operators act. 

The representation employed by an EA can thus be represented by a 
ternary relation R = ( P ,  6 ,  M) that specifies the relationship between the 
space of phenotypes,P, and the space of genotypes 6. The mapping M is a 
function with domain in 6 and range in P that provides the "interpretation" 
of the representation. For example, a phenotypic space of real values, P = $2, 
can be easily encoded by a binary genotypic search space, 6 = (0 ,  I)+, using 
as a mapping M a gray coding. That is, the gray coding defines how binary 
strings are to be mapped to, or interpreted into, real values. 

It is important to understand that the phenotype space can be very differ- 
ent from the genotype space, and thus the EA designer must ensure that the 
(optimal) solution to the problem at hand - a phenotype - can be represented 
in the given genotype space. 

The common EC terminology uses many synonyms for naming the ele- 
ments of these two spaces. On the side of the original problem context, can- 
didate solution, phenotype, and individual are used to denote points of 
the space of possible solutions. This space itself is commonly called the phe- 
notype space. On the side of the EA, genotype, chromosome, and again 
individual can be used for points in the space where the evolutionary search 
actually takes place. This space is often termed the genotype space. There 
are also many synonymous terms for the elements of individuals. A place- 
holder is commonly called a variable, a locus (plural: loci), a position, or - 
in a biology-oriented terminology - a gene. An object on such a place can be 
called a value or an allele. 

Evaluation Function 

The evaluation function represents the quality of an individual. It  forms the 
basis for selection, and thereby it facilitates improvements. More accurately, 
it defines what improvement means. From the problem-solving perspective, it 
provides the measure with which alternative solutions can be compared. The 
evaluation function is commonly called the fitness function in EC. Problems 
typically solved by EAs are optimization problems, which are specified with 
an objective function. For minimization problems, an evaluation function 
is commonly formed by negating the objective function. 
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Population 

A population is a set of possible solutions. Specifically, a population is a 
multiset of genotypes.4 In some sophisticated EAs, a population has an addi- 
tional spatial structure, with a distance measure or a neighborhood relation. 
In such cases the additional structure has also to be defined to fully specify a 
population. Initialization is kept simple in most EA applications: The first 
population is seeded by (uniformly) randomly generated individuals. However 
as we shall see in the next section, and succeeding chapters, there may be 
practical advantages to non-random initialization. 

The diversity of a population is a measure of the number of different 
solutions present. Common diversity measures are the number of different 
fitness values present, the number of different phenotypes present, the number 
of different genotypes, and statistical measures such as entropy. Note that only 
one fitness value does not necessarily imply only one phenotype is present, and 
in turn only one phenotype does not necessarily imply only one genotype. The 
reverse is, however, not true: one genotype implies only one phenotype and 
fitness value. 

As opposed to variation operators that act on the one or two parent indi- 
viduals, the selection operators (parent selection and survivor selection) work 
at  population level. In general, they take the whole current population into 
account. For instance, the best individual of the given population is chosen to 
seed the next generation, or the worst individual of the given population is cho- 
sen to be replaced by a new one. In almost all EA applications the population 
size is constant and does not change during the evolutionary search. 

Parent Selection Mechanism 

The role of parent selection or mating selection is to distinguish among 
individuals based on their quality to allow the better individuals to become 
parents of the next generation. An individual is a parent if it has been se- 
lected to undergo variation in order to create offspring. Together with the sur- 
vivor selection mechanism, parent selection is responsible for pushing quality 
improvements. In EC, parent selection is typically probabilistic. Thus, high- 
quality individuals get a higher chance to become parents than those with 
low quality. Nevertheless, low-quality individuals are often given a small posi- 
tive chance, which helps the evolutionary search avoid getting stuck in a local 
optimum. 

Survivor Selection Mechanism 

The role of survivor selection or environmental selection is to distin- 
guish among individuals, based on their quality, to identify those that will 

* A multiset is a set where multiple copies of an element are possible. 
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be used in the next generation. The survivor selection mechanism is called 
after the offspring of the selected parents are created. As mentioned above, 
in EC the population size is almost always constant, thus a choice has to be 
made on which individuals will be allowed in the next generation. For this 
reason survivor selection is also often called replacement or replacement 
strategy. This selection is usually based on their fitness values, favoring those 
with higher quality, although the concept of age is also frequently used. As 
opposed to parent selection, which is typically stochastic, survivor selection is 
often deterministic, for instance, ranking the unified multiset of parents and 
offspring and selecting the top segment (fitness biased), or selecting only from 
the offspring (age biased). 

Variation Opera tors  - Mutat ion  

The role of variation opera tors  is to create new individuals from old ones. In 
the corresponding phenotype space this amounts to generating new candidate 
solutions. Variation operators in EC are divided into two types based on the 
number of objects that they take as inputs. 

Muta t ion ,  a unary  variation operator, is applied to one genotype and 
delivers a (slightly) modified mutant: a child or offspring genotype. A mu- 
tation operator is always stochastic: its output - the child - depends on the 
outcomes of a series of random choices. It  should be noted that an arbitrary 
unary operator is not necessarily seen as mutation. A problem-specific heuris- 
tic operator acting on one individual could be termed as mutation for being 
unary. However, in general mutation denotes a random, unbiased change. Thus 
heuristic unary operators can be distinguished from mutation in most cases. 

It  is important to note that variation operators are representation depen- 
dent. That is, for different representations different variation operators have 
to be defined. For example, if genotypes are bit-strings, then inverting a 0 
to a 1 (1 to a 0) can be used as a mutation operator. However, if we rep- 
resent possible solutions by tree-like structures another mutation operator is 
required. 

Variation Opera tors  - Recombination 

Recombination (or crossover) is (usually) a binary variation operator. 
As the names indicate, such an operator merges information from two parent 
genotypes into one or two offspring genotypes. Like mutation, recombination 
is a stochastic operator: the choice of what parts of each parent are combined, 
and the way these parts are combined, depend on random events. Recom- 
bination operators with a higher arity (using more than two parents) are 
sometimes possible and easy to implement, but have no biological equivalent. 
Perhaps this is why they are not commonly used, although several studies 
indicate that they have positive effects on the evolution [35]. 
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The principle behind recombination is simple - by mating two individ- 
uals with different but desirable features, it may be possible to produce an 
offspring that combines both of those features. This principle has a strong 
supporting case: it is one which has been successfully applied for millennia 
by breeders of plants and livestock to produce species that give higher yields 
or have other desirable features. Evolutionary algorithms create a number of 
offspring by random recombination, and accept that some will have undesir- 
able combinations of traits, most may be no better, or even worse, than their 
parents, and hope that some will have improved characteristics. As with muta- 
tion, recombination operators in EAs are representation dependant. Whether 
to apply crossover (mutation) or not is a stochastic decision with a non-zero 
probability of the operator(s) not being applied. 

4 A Brief Introduction to Local Search 

Local search is a search method that iteratively examines the set of points in 
a neighborhood of the current solution and replace the current solution with 
a better neighbor if one exists. In this section we give a brief introduction to 
local search in the context of memetic algorithms. For more information there 
are a number of books on optimization that cover local search in more detail, 
such as [18]. A local search algorithm can be illustrated by the pseudocode 
given in Figure 2. 

There are three principal components that affect the workings of this local 
search algorithm. 

The pivot rule defines the criteria for accepting an improving point. A 
steepest ascent pivot rule terminates the inner loop only after the entire 
neighborhood n(i) has been searched, (i.e., count = In(i)l). A greedy 
ascent (or first ascent) pivot rule terminates the inner loop as soon as an 
improvement is found (i.e., ((count = In(i)l) or (best # i))). In practice it 
is sometimes necessary to only consider a randomly drawn sample of size 
N <( In(i)l if the neighborhood is too large to search. 
The depth of the local search defines the termination condition for the 
outer loop. This lies in the continuum between only one improving step 
being applied (iterations = 1) to the search continuing to local optimality 
where all the neighboors of a solution i have been explored but no one of 
them found to be better: ((count = In(i)l) and (best = i)). Considerable 
attention has been paid to studying the effect of changing this parameter 
within MAS [14, 251, and it can be shown to have an effect on the perfor- 
mance of the local search algorithm, both in terms of time taken, and in 
the quality of solution found. Furthermore, the impact on computational 
complexity of various pivot rules have been studied both in the context of 
local search [36, 371 and within MAS [25]. 
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Begin 
/* given a starting solution i and a neighborhood function n */ 
set best = i ;  
set iterations = 0; 
Repeat Until ( depth condition is satisfied ) Do 

set count = 0; 
Repeat Until ( pivot rule is satisfied ) Do 
generate the next neighbor j E n ( i ) ;  
set count = count + 1 ; 
If ( f ( j )  is better than f (best))  Then 

set best = j ;  
endIf 

endDo 
set i = best; 
set iterations = iterations + 1 ; 

endDo 
End. 

Fig. 2. Pseudocode of a local search algorithm. 

The neighborhood generat ing function, n(i),  defines a set of points 
that can be reached by the application of some move operator to the 
point i. The application of a neighborhood generating function can be 
represented as a graph G = (v,e), where the set of vertices v are the 
points in the search space, and the edges relate to applications of the move 
operator; eij E G j E n(i). The provision of a scalar fitness value 
f defined over the search space means that we can consider the graphs 
defined by different move operators as fitness landscapes [14, 17, 151. Merz 
and Freisleben [28] present a number of statistical measures that can be 
used to characterize fitness landscapes, and that have been proposed by 
various authors as potential measures of problem difficulty. They show that 
the choice of move operator can have a dramatic effect on the efficiency 
and effectiveness of the local search, and hence of the resultant MA. 

In some cases, domain-specific information may be used to guide the choice 
of neighborhood structure within local search algorithms. However, it has 
recently been shown that the optimal choice of operators can be not only 
instance specific within a class of problems [28, pp. 254-2581, but when in- 
corporated in an MA, it can be dependent on the state of the evolutionary 
search [26]. Changing the neighborhood operator during search (eg. [30]) may 
provide a means of progression in cases where points were locally optimal for 
a given neighborhood operator because a point that is locally optimal with 
respect to one neighborhood structure may not be with respect to another 
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(unless they are globally optimal). This observation has also been the guiding 
principle behind variable neighborhood search algorithm [49]. 

The local search method presented in Figure 2 is fairly simplistic, but local 
search is a central idea in most successful global search methods. The simplest 
of these is the so-called "multi-start local search", in which the algorithm is 
run repeatedly from randomly generated solutions. An elaboration on this 
is Iterated Local search [45], where a new search is begun from a perturbed 
version of the end-point of the previous one. Iterated local search attempts to 
traverse a succession of "nearby" local optima, which is often quite effective 
in practice. 

Perhaps more relevant to this book are two well known heuristics based on 
local search, namely Tabu Search [46] and Simulated Annealing [47]. Giving 
a full description of these techniques is beyond the scope of this book, but in 
essence both modify the pivot rule. Tabu Search does so such that points in the 
neighborhood of the current solution which have been previously considered 
are not (generally) eligible to be accepted, whereas in Simulated Annealing a 
move to an inferior neighbor is permitted with some probability dependent on 
the fitness difference. Both of these have been used with noticeable success, 
both as heuristics in their own right, and as improvement methods within 
Memetic algorithms. 

5 Hybridizing EAs 

As suggested above, there are a number of benefits that can be achieved by 
combining the global search of EAs with local search or other methods for im- 
proving or refining an individual solution. In this section we give an overview 
of some of the theoretical and practical motivations for such hybridizations, 
before presenting one possible framework for Memetic Algorithms. 

5.1 Motives 

There are a number of factors that motivate the hybridization of evolutionary 
algorithms with other techniques. 

Many complex problems can be decomposed into a number of parts, for 
some of which exact methods (or very good heuristics) may already be 
available. In these cases it makes sense to use a combination of the most 
appropriate methods for different subproblems. In some cases this may take 
the form of using the EA either as a post or pre-processor for other algo- 
rithms, or incorporating instance specific knowledge into "greedy" varia- 
tion operators as will be discussed in Section 7. However it is also frequently 
possibly to use this knowledge to define local search operators (or existing 
solution improvement techniques) within an evolutionary algorithm. 
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Successful and efficient all-purpose "black-box" problem solvers do not ex- 
ist. The rapidly growing body of empirical evidence and some theoretical 
results, such as the No Free Lunch (NFL) theorem [10915 strongly support 
this view. From an Evolutionary Computing perspective, this implies that 
EAs are not the holy grail for global search. Experience suggests that in 
fact the competence of an EA in any given domain depends on the amount 
of problem-specific knowledge incorporated within it. In practice we fre- 
quently apply an evolutionary algorithm to a problem where there is a 
considerable amount of hard-won user experience and knowledge available. 
In such cases performance benefits can often arise from utilizing this infor- 
mation in the form of specialist operators (eg. variation and local search) 
and/or good solution initializations. In these cases it is commonly experi- 
enced that the combination of an evolutionary and a heuristic method - 
a hybrid EA - that somehow encapsulates domain specific information 
performs better than either of its "parent" algorithms alone. 

Although EAs are very good at  rapidly identifying good areas of the search 
space (exploration), they are often less good at  refining near-optimal so- 
lutions (exploitation). For example, when a GA is applied to the "One- 
Max" problem, near-optimal solutions are quickly found but convergence 
to the optimal solution is slow because the choice of which genes are mu- 
tated is r a n d ~ r n . ~  Thus EA hybrids can search more efficiently by incor- 
porating a more systematic search in the vicinity of "good" solutions. For 
example, a bit-flipping hill-climber could be quickly applied within each 
generation for One-Max to ensure fast convergence. 

In practice, many problems have a set of constraints associated with them, 
and local search or other heuristics can be used as a means of "repairing" 
infeasible solutions generated by standard variation operators. This is of- 
ten far simpler and more effective than attempting to find a specialized 
representation and set of variation operators which ensure the feasibility 
of all offspring. 

0 Dawkin's idea of "memes" [ll] is often used as a motivation for hybridiza- 
tion. Memes can be viewed as units of "cultural transmission" in the same 
way that genes are the units of biological transmission. They are selected 
for replication according to their perceived utility or popularity, and then 
copied and transmitted via inter-agent communication. 

The NFL and its implications are still a matter of current debate, for the present 
we interpret it as stating that all stochastic algorithms have the same performance 
when averaged over all discrete problems. 
The One-Max problem is a binary maximization problem, where the fitness is 
simply the count of the number of genes set to "1". 
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Examples of memes are tunes, ideas, catch-phrases, clothes fashions, 
ways of making pots or of building arches. Just as genes propagate 
themselves in the gene pool by leaping from body to body via sperm 
or eggs, so memes propagate themselves in the meme pool by leap- 
ing from brain to brain via a process which, in the broad sense, can 
be called imitation [ l l ,  p. 1921. 

Since the idea of memes was first proposed by Dawkins, it has been ex- 
tended by other authors (eg., [6, 13, 15, 21). From the point of view of 
the study of adaptive systems as optimization techniques, memetic the- 
ory (see for example papers in [54]) provides with a rich set of tools and 
metaphors to work with. In the context of memetic theory an EA keeps 
a population of agents composed by both genotypes and memes. As in 
standard EA, genotypes represent solutions to a particular problem while 
memes represent "strategies" on how to improve those solutions. It  is the 
memes abilities to transform a candidate solution into (hopefully) a bet- 
ter one that is of direct interest in the context of optimisation. The idea 
of memes as representing alternative improvement strategies agents can 
harness (implemented, for example, as distinct local searchers) is what 
motivated us to propose in [22] the co-evolution of memes and genes and 
to develop later in [25] the concept of multimeme, self-generating memetic 
algorithms[56] ,[57] and co-evolving memetic algorithms [58]. 

5.2 Memetic Algorithms 

The most common use of hybridization within EAs, and that which fits best 
with Dawkin's concept of the meme, is via the application of one or more 
phases of improvement to individual members of the population within each 
generation of an EA. In the simplest design, local search is applied to indi- 
viduals created by mutation or recombination. A more general form can be 
described by the pseudocode given in Figure 3 ( see also Figure 4), although 
practitioners typically choose to only apply local search once to the offspring, 
and sometimes to avoid the use of mutation entirely when using local search. 

6 Design Issues for Memetic Algorithms 

So far we have discussed the rationale for the use of problem-specific knowledge 
or heuristics within EAs, and some possible ways in which this can be done. 
However, as ever we must accept the caveat that like any other technique, 
MAS are not some "magic solution" to optimization problems, and care must 
be taken in their implementation. In the sections below we briefly discuss 
some of the issues that have arisen from experience and theoretical reasoning. 
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Begin 
INITIALIZE population; 
EVALUATE each candidate; 
Repeat Until ( TERMINATION CONDITION is satisfied ) Do 

SELECT parents; 
RECOMBINE to produce offspring; 
EVALUATE offspring; 
IMPROVE offspring via Local Search; 
MUTATE offspring; 
EVALUATE offspring; 
IMPROVE offspring via Local Search; 
SELECT individuals for next generation; 

endDo 
End. 

Fig. 3. Pseudocode for a simple memetic algorithm 

6.1 Lamarckianism and the Baldwin Effect 

The local search methods described above assume that the current incum- 
bent solution is always replaced by the fitter neighbor when found. Within a 
memetic algorithm, we can consider the local search stage to occur as an im- 
provement, or developmental learning phase within each generation. As such, 
we can consider whether the changes (acquired traits) made to an individual 
should be kept, or whether the resulting improved fitness should be awarded 
to the original (pre-local search) member of the population. 

The issue of whether acquired traits could be inherited by an individual's 
offspring was a major issue in nineteenth century, and Lamarck was a strong 
proponent of this inheritance mechanism. However, the Baldwin effect [59] 
suggests a mechanism whereby evolutionary progress can be guided towards 
favorable adaptation without this type of inheritance. Although modern the- 
ories of genetics strongly favor the latter viewpoint, the design of MAS can 
employ either Lamarckian or Baldwinian inheritance schemes. MAS are re- 
ferred to as Lamarckian if the result of the local search stage replaces the 
individual in the population, and Baldwinian if the original member is kept, 
but has as its fitness the value belonging to the outcome of the local search 
process. In a classic early study, Hinton and Nowlan [8] showed that the Bald- 
win effect could be used to improve the evolution of artificial neural networks, 
and a number of researchers have studied the relative benefits of Baldwinian 
versus Lamarckian algorithms [8, 9, 10, 11, 121. In practice, most recent work 
has tended to use either a pure Lamarckian approach, or a probabilistic com- 
bination of the two approaches, such that the improved fitness is always used, 
and the improved individual replaces the original with a given probability. 
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6.2 Preservation of Diversity 

The problem of premature convergence, whereby the population converges 
around some suboptimal point, can be particularly problematic for MAS. If 
the local search is applied until each point has been moved to a local optimum, 
then this can lead to a loss of diversity within the population unless new 
local minima are constantly identified. Alternatively, even if local search is 
terminated before local optimality, an induced search space with wide basins 
of attractions could also result in premature convergence to the suboptimal 
solution at  the center of a wide basin of attraction. A number of approaches 
have been developed to combat this problem: 

when initializing the population with known good individuals, only using 
a relatively small proportion of them, 
applying local search to a small fraction of the population (which helps 
ensure that the rest of the population is diverse), 
using recombination operators that are designed to preserve diversity, 
using multiple local searchers, where each one induces a different search 
space with distinct local optima (eg. [26, 121); 
modifying the selection operator to prevent duplicates (e.g. as in CHC 
WI), and 
using a fuzzy criteria, that explicitly controls diversity, as the pivot rule 
in the local search stage (eg. [12], 5). 
modifying the selection operator, or local search acceptance criteria, to use 
a Boltzmann method so as to preserve diversity (eg. 111). 

This last method bears natural analogies to simulated annealing [62, 471, 
where worsening moves can be accepted with nonzero probability to aid es- 
cape from local optima. A promising method that tackles the diversity issue 
explicitly is proposed in [24], where during the local search phase a less-fit 
neighbor may be accepted with a probability that increases exponentially as 
the range of fitness values in the population decreases: 

1 if A E  > 0, 
P(accept) = 

ek* F m ~ = - F a v g  , otherwise, 

where k is a normalization constant and we assume a maximization problem, 
= Fneighbour - Foriginal. 

6.3 Choice of Operators 

Probably the most important factor in the design of a MA is the choice of 
improving heuristic or local search move operator, that is to say, the way that 
the set of neighboring points to be examined when looking for an improved 
solution is generated. 
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There has been a large body of theoretical and empirical analysis of the 
utility of various statistical measures of landscapes for predicting problem 
difficulty. The interested reader can find a good summary in [64]. Merz and 
Freisleben [28] consider a number of these measures in the context of memetic 
algorithms, and show that the choice of move operator can have a dramatic 
effect on the efficiency and effectiveness of the local search, and hence of the 
resultant MA. 

One recent result of particular interest to the practitioner is Krasnogor's 
formal proof that, in order to reduce the worst-case run times, it is necessary 
to choose a local search method whose move operator is not the same as 
those of the recombination and mutation operators [25]. This formalizes the 
intuitive point that within a MA recombination, and particularly mutation, 
have valuable roles in generating points that lie in different basins of attraction 
with respect to the local search operator. This diversification is best done 
either by an aggressive mutation rate, or preferably by the use of a variation 
operators that have different neighborhood structures. 

In general then, it is worth giving careful consideration to the choice of 
move operators used when designing a MA: for example, using 2-opt for a TSP 
problem might yield better improvement if not used in conjunction with the 
"inversion" mutation operator which picks a subtour at  random and reverses 
it. The reason for that is that a genotypic inversion induces (a subspace of) 
the phenotypic effect of the 2-exchange move operator which is at  the heart 
of 2-opt local searcher. 

In some cases, domain-specific information may be used to guide the choice 
of neighborhood structure within the local search algorithms. However, as we 
noted earlier, the optimal choice of operators can be not only instance specific 
within a class of problems but also dependant on the state of the evolutionary 
search. 

One simple way to surmount these problems is the use of multzple local 
search operators in tandem. An example of this can be seen in [30], where 
a range of problem specific move operators, such as local stretches, rotations 
and reflections, each tailored to different stages of the protein folding process, 
are used for a protein structure prediction problem within the context of what 
is called a multimemetic algorithm [26]. 

The use of a set of possible local search strategies is analogous to Dawkin's 
memes. The extension of this approach to allow the adaptation of the local 
search "memes" in the form of a coevolving population, and the implications 
for search is currently under way in different research groups [22, 65, 22, 37, 
68, 58, 69, 56, 571. 

6.4 Use of Knowledge 

A final point that might be taken into consideration when designing a MA 
concerns the use and reuse of knowledge gained during the optimization pro- 
cess. One possible hybridization that explicitly uses knowledge about points 
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already searched to guide optimization is with tabu search [46]. In this al- 
gorithm a "tabu" list of visited points is maintained, which the algorithm is 
forbidden to return to. Such methods appear to offer promise for maintaining 
diversity. Similarly, it is easy to imagine extensions to the Boltzmann accep- 
tance/selection schemes that utilize information about the spread of genotypes 
in the current population, or even past populations, when deciding whether 
to accept new solutions. 

6.5 Specific Considerations for Continuous Domains 

The design of MAS for continuous domains is complicated by several factors. 
Effective search requires the use of different search scales for global and local 
search. It  is not always possible to determine whether a solution is locally 
optimal. Relatively long local searches may be needed to ensure convergence 
to local optima (especially if gradient information is unavailable). Although 
many different local search methods have been developed, they are general 
methods and thus it is not clear whether any given local search method is 
effective for a particular application. 

Because of these considerations, the design of effective MAS for continuous 
domains can be quite different than for combinatorial problems. For example, 
in combinatorial domains it is not unusual to apply local search until a locally 
optimal solution is found. However, it is often unrealistic to assume that local 
search methods can quickly identify local minima within a continuous domain. 
This is often the case when applying derivative-free methods (e.g. the Nelder- 
Mead simplex method), but it may also be true when derivative information 
is available. Thus it is generally the case that local search is truncated based 
on a target balance between global and local search. Specifically, two main 
strategies have been used to achieve such a balance: (1) truncate local searches 
after a given number of iterations (or fitness evaluations) and (2) apply local 
search infrequently (e.g. with a fixed probability). 

Although these hybridization strategies are quite effective in practice, they 
can make it difficult to  ensure convergence for these MAS. Although general 
conditions on the mutation and recombination operators can be enforced to 
ensure global convergence [70], these convergence results provide little insight 
into the efficacy of local search. Gradient-based methods can be applied to 
generate stationary-points (using first-order information) or locally-optimal 
points (using second-order information), assuming that local search is not 
truncated after a given number of iterations. However, in many applications 
derivative-free methods are applied for which the search is truncated. To our 
knowledge, MAS based on evolutionary pattern search is the only class of MAS 
for which the convergence of tandem derivative-free local searches within the 
MA can be ensured [71]. 
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7 Other Hybridization Possibilities 

Although our working definition of MAS has been restricted to those methods 
that incorporate some form of improvement mechanism acting on the output 
of the evolutionary variation operators, there are a number of other ways in 
which an EA or MA can be used in conjunction with other operators and/or 
domain-specific knowledge. This is illustrated in Figure 4. 

Known solutions, 
Constructive heuristics, 
Local search 
Overselection 

Modified Selection 
operators 

Use of problem-specific 
info, in operator 

Local Search 

Use of problem-specific 
info. in operator 

Local Search 

Fig. 4. Possible places to incorporate knowledge or other operators within a single 
generation. 

7.1 Intelligent Initialization 

The most obvious way in which existing knowledge about the structure of 
a problem or potential solutions can be incorporated into an EA is in the 
initialization phase. In many cases the EA will make rapid initial progress, 



20 W.E. Hart, N. Krasnogor and J.E. Smith 

which raises questions about the value of expending effort creating a good 
initial population, however starting the EA by using existing solutions can 
offer interesting benefits: 

1. It is possible to avoid "reinventing the wheel" by using existing solutions. 
Preventing waste of computational efforts can yield increased efficiency 
(speed). 

2. A nonrandom initial population can direct the search into particular re- 
gions of the search space that contain good solutions. Biasing the search 
can result in increased effectiveness (quality of end solution). 

3. All in all, a given total amount of computational effort divided over heuris- 
tic initialization and evolutionary search might deliver better results than 
spending it all on "pure" evolutionary search, or an equivalent multistart 
heuristic. 

There are a number of possible ways in which the initialization function 
can be changed from simple random creation, such as: 

Seeding the population with one or more previously known good solutions 
arising from other techniques. 
In selective initialization a large number of random solutions are cre- 
ated and then the initial population is selected from these. Bramlette [72] 
suggests that this should be done as a series of N k-way tournaments rather 
than by selecting the best N from k - N solutions. Other alternatives in- 
clude selecting a set based not only on fitness but also on diversity so as 
to maximize the coverage of the search space. 
Performing a local search starting from each member of initial population, 
so that the initial population consists of a set of points that are locally 
optimal with respect to some move operator. 
Using one or more of the above methods to identify one (or possibly more) 
good solutions, and then cloning them and applying mutation at  a high 
rate (mass mutation) to produce a number of individuals in the vicinity 
of the start point. 

These methods have been tried and have exhibited performance gains for 
certain problems. However, the important issue of providing the EA with suf- 
ficient diversity for evolution to occur must also be considered. In [73] Surry 
and Radcliffe examined the effect of varying the proportion of the initial popu- 
lation of a GA that was derived from known good solutions. Their conclusions 
were: 

The use of a small proportion of derived solutions in the initial population 
aided genetic search. 
As the proportion was increased, the average performance improved. 
The best performance came about from a more random initial population. 

In other words, as the proportion of solutions derived from heuristics used 
increased, so did the mean performance, but the variance in performance 
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decreased. This meant that there were not the occasional really good runs re- 
sulting from the EA searching completely new regions of space and coming up 
with novel solutions. For a certain type of problems, such as design problems, 
this is an undesirable property. 

7.2 Hybridization During Genotype to Phenotype Mapping 

A widely used hybridization of memetic algorithms with other heuristics is 
during the genotype-phenotype mapping M prior to evaluation. This ap- 
proach, where the EA is used to provide the inputs controlling the application 
of another heuristic, is frequently used and similar approaches have been used 
to great effect for timetabling and scheduling problems [74], and in the "sector 
first-order second" approach to the vehicle routing problem [75]. 

There is a common thread to all of these approaches, which is to make use 
of existing heuristics and domain information wherever possible. The role of 
the EA is often that of enabling a less biased application of the heuristics, or 
of problem decomposition, so as to permit the use of sophisticated, but badly 
scaling heuristics when the overall problem size would preclude their use. 

7.3 Hybridization Within Variation Operators: Intelligent 
Crossover and Mutation 

A number of authors have proposed so-called "intelligent" variation operators, 
which incorporate problem- or instance-specific knowledge. To give a simple 
example, if a binary-coded GA is used to select features for use in another 
classification algorithm, one might attempt to bias the search towards more 
compact features sets via the use of a greater probability for mutating from 
the allele value "use" to "don't use" rather than vice versa. A related approach 
can be seen in [76], where genes encode for microprocessor instructions, which 
group naturally into sets with similar effects. The mutation operator was then 
biased to incorporate this expert knowledge, so that mutations were more 
likely to occur between instructions in the same set than between sets. 

A slightly different example of the use of problem-specific (rather than 
instance-specific) knowledge can be seen in the modified one-point crossover 
operator used for protein structure prediction in [77]. Here the authors realized 
that the heritable features being combined by recombination were folds, or 
fragments of three-dimensional structure. A property of the problem is that 
during folding protein structures can be free to rotate about peptide bonds. 
The modified operator made good use of this knowledge by explicitly testing 
all the possible different orientations of the two fragments, (accomplished by 
trying all the possible allele values in the gene at the crossover point) in order 
to find the most energetically favorable. If no feasible conformation was found, 
then a different crossover point was selected and the process repeated. This 
could be seen as a simple example of the incorporation of a local search phase 
into the recombination operator, but in practice the nature of the models 
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used is such that generally these approaches only need to consider partial 
solutions when deciding whether an offspring is feasible. Note that this should 
be distinguished from the simpler "crossover hill-climber" proposed in [15], in 
which all of the 1-1 possible offspring arising from one-point crossover are 
constructed and the best chosen. 

Operators can be modified in a complex manner to incorporate highly 
specific heuristics, which makes use of instance-specific knowledge. A good 
example of this is Merz and Friesleben's distance-preserving crossover (DPX) 
operator for the TSP [78]. This operator has two motivating principles: mak- 
ing use of instance specific knowledge, whilst at the same time preserving 
diversity within the population to prevent premature convergence. Diversity 
is maintained by ensuring that the offspring inherits all of the edges common 
to both parents, but none of the edges that are present in only one parent. The 
"intelligent" part of the operator comes from the use of a nearest-neighbor 
heuristic to join together the subtours inherited from the parents, thus ex- 
plicitly exploiting instance-specific edge length information. It is easy to see 
how this type of scheme could be adapted to other problems, via the use of 
suitable heuristics for completing the partial solutions after inheritance of the 
common factors from both parents. 

It  should be noted that under our working definition of MAS, the use of 
such "intelligent" operator within an EA does not generally on its own consti- 
tute a MA, since they use instance-specific knowledge to guide the construc- 
tion of partial solutions. This can be contrasted with the use of local search 
acting on offspring, where a neighborhood of complete solutions is examined 
and an improved solution accepted. 

8 Conclusions 

In this chapter we gave a gentle introduction to Memetic Evolutionary Algo- 
rithms and role they play as complements to pure Evolutionary Algorithms 
and pure Local Search. We briefly discussed the historical context of MAS, and 
we gave the motivation behind the use and research on this important brand 
of global-local search hybrids. We also mentioned some of the design princi- 
ples a practitioner needs to take into consideration when designing Memetic 
Algorithms for new domains. 
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